]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_buf.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c
NS
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
ce8e922c 265 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 266
1fa40b01 267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
268 uint i;
269
73c77e2c 270 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
1da177e4 273
948ecdb4
NS
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
1fa40b01
CH
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
948ecdb4
NS
279 page_cache_release(page);
280 }
1da177e4 281 }
3fc98b1a 282 _xfs_buf_free_pages(bp);
ce8e922c 283 xfs_buf_deallocate(bp);
1da177e4
LT
284}
285
286/*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289STATIC int
ce8e922c 290_xfs_buf_lookup_pages(
1da177e4
LT
291 xfs_buf_t *bp,
292 uint flags)
293{
ce8e922c
NS
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
1da177e4 297 size_t nbytes, offset;
ce8e922c 298 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
299 unsigned short page_count, i;
300 pgoff_t first;
204ab25f 301 xfs_off_t end;
1da177e4
LT
302 int error;
303
ce8e922c
NS
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 306
ce8e922c 307 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
308 if (unlikely(error))
309 return error;
ce8e922c 310 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 311
ce8e922c
NS
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 314
ce8e922c 315 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
ce8e922c
NS
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
6ab455ee
CH
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
1da177e4
LT
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
34a622b2 339 __func__, gfp_mask);
1da177e4 340
ce8e922c 341 XFS_STATS_INC(xb_page_retries);
7f8275d0 342 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 343 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
344 goto retry;
345 }
346
ce8e922c 347 XFS_STATS_INC(xb_page_found);
1da177e4
LT
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
948ecdb4 352 ASSERT(!PagePrivate(page));
1da177e4
LT
353 if (!PageUptodate(page)) {
354 page_count--;
6ab455ee
CH
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
1da177e4
LT
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
ce8e922c 364 bp->b_pages[i] = page;
1da177e4
LT
365 offset = 0;
366 }
367
6ab455ee
CH
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
ce8e922c
NS
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
1da177e4 375
1da177e4
LT
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if nessecary.
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
387 /* A single page buffer is always mappable */
ce8e922c
NS
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
8a262e57
AE
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
ce8e922c 394 if (unlikely(bp->b_addr == NULL))
1da177e4 395 return -ENOMEM;
ce8e922c
NS
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
398 }
399
400 return 0;
401}
402
403/*
404 * Finding and Reading Buffers
405 */
406
407/*
ce8e922c 408 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415xfs_buf_t *
ce8e922c 416_xfs_buf_find(
1da177e4 417 xfs_buftarg_t *btp, /* block device target */
204ab25f 418 xfs_off_t ioff, /* starting offset of range */
1da177e4 419 size_t isize, /* length of range */
ce8e922c
NS
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
1da177e4 422{
204ab25f 423 xfs_off_t range_base;
1da177e4
LT
424 size_t range_length;
425 xfs_bufhash_t *hash;
ce8e922c 426 xfs_buf_t *bp, *n;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
ce8e922c
NS
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
ce8e922c 443 atomic_inc(&bp->b_hold);
1da177e4
LT
444 goto found;
445 }
446 }
447
448 /* No match found */
ce8e922c
NS
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 451 range_length, flags);
ce8e922c
NS
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 454 } else {
ce8e922c 455 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
456 }
457
458 spin_unlock(&hash->bh_lock);
ce8e922c 459 return new_bp;
1da177e4
LT
460
461found:
462 spin_unlock(&hash->bh_lock);
463
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
467 */
ce8e922c
NS
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
1da177e4 470 /* wait for buffer ownership */
ce8e922c
NS
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
ce8e922c
NS
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
1da177e4 479 */
ce8e922c
NS
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
1da177e4
LT
483 }
484 } else {
485 /* trylock worked */
ce8e922c 486 XB_SET_OWNER(bp);
1da177e4
LT
487 }
488
ce8e922c
NS
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
2f926587 492 }
0b1b213f
CH
493
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
1da177e4
LT
497}
498
499/*
ce8e922c 500 * Assembles a buffer covering the specified range.
1da177e4
LT
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
503 */
504xfs_buf_t *
6ad112bf 505xfs_buf_get(
1da177e4 506 xfs_buftarg_t *target,/* target for buffer */
204ab25f 507 xfs_off_t ioff, /* starting offset of range */
1da177e4 508 size_t isize, /* length of range */
ce8e922c 509 xfs_buf_flags_t flags)
1da177e4 510{
ce8e922c 511 xfs_buf_t *bp, *new_bp;
1da177e4
LT
512 int error = 0, i;
513
ce8e922c
NS
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
1da177e4
LT
516 return NULL;
517
ce8e922c
NS
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
521 if (error)
522 goto no_buffer;
523 } else {
ce8e922c
NS
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
1da177e4
LT
526 return NULL;
527 }
528
ce8e922c
NS
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
1da177e4 531
ce8e922c
NS
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 536 __func__);
1da177e4
LT
537 goto no_buffer;
538 }
539 }
540
ce8e922c 541 XFS_STATS_INC(xb_get);
1da177e4
LT
542
543 /*
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
546 */
ce8e922c
NS
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
1da177e4 549
0b1b213f 550 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 551 return bp;
1da177e4
LT
552
553 no_buffer:
ce8e922c
NS
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
1da177e4
LT
557 return NULL;
558}
559
5d765b97
CH
560STATIC int
561_xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
564{
565 int status;
566
5d765b97
CH
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575 status = xfs_buf_iorequest(bp);
ec53d1db
DC
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
5d765b97
CH
579}
580
1da177e4 581xfs_buf_t *
6ad112bf 582xfs_buf_read(
1da177e4 583 xfs_buftarg_t *target,
204ab25f 584 xfs_off_t ioff,
1da177e4 585 size_t isize,
ce8e922c 586 xfs_buf_flags_t flags)
1da177e4 587{
ce8e922c
NS
588 xfs_buf_t *bp;
589
590 flags |= XBF_READ;
591
6ad112bf 592 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 593 if (bp) {
0b1b213f
CH
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
ce8e922c 596 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 597 XFS_STATS_INC(xb_get_read);
5d765b97 598 _xfs_buf_read(bp, flags);
ce8e922c 599 } else if (flags & XBF_ASYNC) {
1da177e4
LT
600 /*
601 * Read ahead call which is already satisfied,
602 * drop the buffer
603 */
604 goto no_buffer;
605 } else {
1da177e4 606 /* We do not want read in the flags */
ce8e922c 607 bp->b_flags &= ~XBF_READ;
1da177e4
LT
608 }
609 }
610
ce8e922c 611 return bp;
1da177e4
LT
612
613 no_buffer:
ce8e922c
NS
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
1da177e4
LT
617 return NULL;
618}
619
1da177e4 620/*
ce8e922c
NS
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
1da177e4
LT
623 */
624void
ce8e922c 625xfs_buf_readahead(
1da177e4 626 xfs_buftarg_t *target,
204ab25f 627 xfs_off_t ioff,
1da177e4 628 size_t isize,
ce8e922c 629 xfs_buf_flags_t flags)
1da177e4
LT
630{
631 struct backing_dev_info *bdi;
632
ce8e922c 633 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
634 if (bdi_read_congested(bdi))
635 return;
636
ce8e922c 637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
6ad112bf 638 xfs_buf_read(target, ioff, isize, flags);
1da177e4
LT
639}
640
641xfs_buf_t *
ce8e922c 642xfs_buf_get_empty(
1da177e4
LT
643 size_t len,
644 xfs_buftarg_t *target)
645{
ce8e922c 646 xfs_buf_t *bp;
1da177e4 647
ce8e922c
NS
648 bp = xfs_buf_allocate(0);
649 if (bp)
650 _xfs_buf_initialize(bp, target, 0, len, 0);
651 return bp;
1da177e4
LT
652}
653
654static inline struct page *
655mem_to_page(
656 void *addr)
657{
9e2779fa 658 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
659 return virt_to_page(addr);
660 } else {
661 return vmalloc_to_page(addr);
662 }
663}
664
665int
ce8e922c
NS
666xfs_buf_associate_memory(
667 xfs_buf_t *bp,
1da177e4
LT
668 void *mem,
669 size_t len)
670{
671 int rval;
672 int i = 0;
d1afb678
LM
673 unsigned long pageaddr;
674 unsigned long offset;
675 size_t buflen;
1da177e4
LT
676 int page_count;
677
d1afb678
LM
678 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
679 offset = (unsigned long)mem - pageaddr;
680 buflen = PAGE_CACHE_ALIGN(len + offset);
681 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
682
683 /* Free any previous set of page pointers */
ce8e922c
NS
684 if (bp->b_pages)
685 _xfs_buf_free_pages(bp);
1da177e4 686
ce8e922c
NS
687 bp->b_pages = NULL;
688 bp->b_addr = mem;
1da177e4 689
36fae17a 690 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
691 if (rval)
692 return rval;
693
ce8e922c 694 bp->b_offset = offset;
d1afb678
LM
695
696 for (i = 0; i < bp->b_page_count; i++) {
697 bp->b_pages[i] = mem_to_page((void *)pageaddr);
698 pageaddr += PAGE_CACHE_SIZE;
1da177e4 699 }
1da177e4 700
d1afb678
LM
701 bp->b_count_desired = len;
702 bp->b_buffer_length = buflen;
ce8e922c 703 bp->b_flags |= XBF_MAPPED;
6ab455ee 704 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
705
706 return 0;
707}
708
709xfs_buf_t *
ce8e922c 710xfs_buf_get_noaddr(
1da177e4
LT
711 size_t len,
712 xfs_buftarg_t *target)
713{
1fa40b01
CH
714 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
715 int error, i;
1da177e4 716 xfs_buf_t *bp;
1da177e4 717
ce8e922c 718 bp = xfs_buf_allocate(0);
1da177e4
LT
719 if (unlikely(bp == NULL))
720 goto fail;
ce8e922c 721 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 722
1fa40b01
CH
723 error = _xfs_buf_get_pages(bp, page_count, 0);
724 if (error)
1da177e4
LT
725 goto fail_free_buf;
726
1fa40b01
CH
727 for (i = 0; i < page_count; i++) {
728 bp->b_pages[i] = alloc_page(GFP_KERNEL);
729 if (!bp->b_pages[i])
730 goto fail_free_mem;
1da177e4 731 }
1fa40b01 732 bp->b_flags |= _XBF_PAGES;
1da177e4 733
1fa40b01
CH
734 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
735 if (unlikely(error)) {
736 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 737 __func__);
1da177e4 738 goto fail_free_mem;
1fa40b01 739 }
1da177e4 740
ce8e922c 741 xfs_buf_unlock(bp);
1da177e4 742
0b1b213f 743 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
1da177e4 744 return bp;
1fa40b01 745
1da177e4 746 fail_free_mem:
1fa40b01
CH
747 while (--i >= 0)
748 __free_page(bp->b_pages[i]);
ca165b88 749 _xfs_buf_free_pages(bp);
1da177e4 750 fail_free_buf:
ca165b88 751 xfs_buf_deallocate(bp);
1da177e4
LT
752 fail:
753 return NULL;
754}
755
756/*
1da177e4
LT
757 * Increment reference count on buffer, to hold the buffer concurrently
758 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
759 * Must hold the buffer already to call this function.
760 */
761void
ce8e922c
NS
762xfs_buf_hold(
763 xfs_buf_t *bp)
1da177e4 764{
0b1b213f 765 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 766 atomic_inc(&bp->b_hold);
1da177e4
LT
767}
768
769/*
ce8e922c
NS
770 * Releases a hold on the specified buffer. If the
771 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
772 */
773void
ce8e922c
NS
774xfs_buf_rele(
775 xfs_buf_t *bp)
1da177e4 776{
ce8e922c 777 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 778
0b1b213f 779 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 780
fad3aa1e
NS
781 if (unlikely(!hash)) {
782 ASSERT(!bp->b_relse);
783 if (atomic_dec_and_test(&bp->b_hold))
784 xfs_buf_free(bp);
785 return;
786 }
787
3790689f 788 ASSERT(atomic_read(&bp->b_hold) > 0);
ce8e922c
NS
789 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
790 if (bp->b_relse) {
791 atomic_inc(&bp->b_hold);
1da177e4 792 spin_unlock(&hash->bh_lock);
ce8e922c
NS
793 (*(bp->b_relse)) (bp);
794 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 795 spin_unlock(&hash->bh_lock);
1da177e4 796 } else {
ce8e922c
NS
797 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
798 list_del_init(&bp->b_hash_list);
1da177e4 799 spin_unlock(&hash->bh_lock);
ce8e922c 800 xfs_buf_free(bp);
1da177e4
LT
801 }
802 }
803}
804
805
806/*
807 * Mutual exclusion on buffers. Locking model:
808 *
809 * Buffers associated with inodes for which buffer locking
810 * is not enabled are not protected by semaphores, and are
811 * assumed to be exclusively owned by the caller. There is a
812 * spinlock in the buffer, used by the caller when concurrent
813 * access is possible.
814 */
815
816/*
ce8e922c
NS
817 * Locks a buffer object, if it is not already locked.
818 * Note that this in no way locks the underlying pages, so it is only
819 * useful for synchronizing concurrent use of buffer objects, not for
820 * synchronizing independent access to the underlying pages.
1da177e4
LT
821 */
822int
ce8e922c
NS
823xfs_buf_cond_lock(
824 xfs_buf_t *bp)
1da177e4
LT
825{
826 int locked;
827
ce8e922c 828 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 829 if (locked)
ce8e922c 830 XB_SET_OWNER(bp);
0b1b213f
CH
831
832 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 833 return locked ? 0 : -EBUSY;
1da177e4
LT
834}
835
1da177e4 836int
ce8e922c
NS
837xfs_buf_lock_value(
838 xfs_buf_t *bp)
1da177e4 839{
adaa693b 840 return bp->b_sema.count;
1da177e4 841}
1da177e4
LT
842
843/*
ce8e922c
NS
844 * Locks a buffer object.
845 * Note that this in no way locks the underlying pages, so it is only
846 * useful for synchronizing concurrent use of buffer objects, not for
847 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
848 *
849 * If we come across a stale, pinned, locked buffer, we know that we
850 * are being asked to lock a buffer that has been reallocated. Because
851 * it is pinned, we know that the log has not been pushed to disk and
852 * hence it will still be locked. Rather than sleeping until someone
853 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 854 */
ce8e922c
NS
855void
856xfs_buf_lock(
857 xfs_buf_t *bp)
1da177e4 858{
0b1b213f
CH
859 trace_xfs_buf_lock(bp, _RET_IP_);
860
ed3b4d6c
DC
861 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
862 xfs_log_force(bp->b_mount, 0);
ce8e922c
NS
863 if (atomic_read(&bp->b_io_remaining))
864 blk_run_address_space(bp->b_target->bt_mapping);
865 down(&bp->b_sema);
866 XB_SET_OWNER(bp);
0b1b213f
CH
867
868 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
869}
870
871/*
ce8e922c 872 * Releases the lock on the buffer object.
2f926587 873 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 874 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
875 * take a reference for the delwri queue because the unlocker is going to
876 * drop their's and they don't know we just queued it.
1da177e4
LT
877 */
878void
ce8e922c
NS
879xfs_buf_unlock(
880 xfs_buf_t *bp)
1da177e4 881{
ce8e922c
NS
882 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
883 atomic_inc(&bp->b_hold);
884 bp->b_flags |= XBF_ASYNC;
885 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
886 }
887
ce8e922c
NS
888 XB_CLEAR_OWNER(bp);
889 up(&bp->b_sema);
0b1b213f
CH
890
891 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
892}
893
ce8e922c
NS
894STATIC void
895xfs_buf_wait_unpin(
896 xfs_buf_t *bp)
1da177e4
LT
897{
898 DECLARE_WAITQUEUE (wait, current);
899
ce8e922c 900 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
901 return;
902
ce8e922c 903 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
904 for (;;) {
905 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 906 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 907 break;
ce8e922c
NS
908 if (atomic_read(&bp->b_io_remaining))
909 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
910 schedule();
911 }
ce8e922c 912 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
913 set_current_state(TASK_RUNNING);
914}
915
916/*
917 * Buffer Utility Routines
918 */
919
1da177e4 920STATIC void
ce8e922c 921xfs_buf_iodone_work(
c4028958 922 struct work_struct *work)
1da177e4 923{
c4028958
DH
924 xfs_buf_t *bp =
925 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 926
80f6c29d 927 if (bp->b_iodone)
ce8e922c
NS
928 (*(bp->b_iodone))(bp);
929 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
930 xfs_buf_relse(bp);
931}
932
933void
ce8e922c
NS
934xfs_buf_ioend(
935 xfs_buf_t *bp,
1da177e4
LT
936 int schedule)
937{
0b1b213f
CH
938 trace_xfs_buf_iodone(bp, _RET_IP_);
939
77be55a5 940 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
941 if (bp->b_error == 0)
942 bp->b_flags |= XBF_DONE;
1da177e4 943
ce8e922c 944 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 945 if (schedule) {
c4028958 946 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 947 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 948 } else {
c4028958 949 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
950 }
951 } else {
b4dd330b 952 complete(&bp->b_iowait);
1da177e4
LT
953 }
954}
955
1da177e4 956void
ce8e922c
NS
957xfs_buf_ioerror(
958 xfs_buf_t *bp,
959 int error)
1da177e4
LT
960{
961 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 962 bp->b_error = (unsigned short)error;
0b1b213f 963 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
964}
965
1da177e4 966int
64e0bc7d
CH
967xfs_bwrite(
968 struct xfs_mount *mp,
5d765b97 969 struct xfs_buf *bp)
1da177e4 970{
8c38366f 971 int error;
1da177e4 972
64e0bc7d
CH
973 bp->b_mount = mp;
974 bp->b_flags |= XBF_WRITE;
8c38366f 975 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 976
5d765b97 977 xfs_buf_delwri_dequeue(bp);
939d723b 978 xfs_bdstrat_cb(bp);
1da177e4 979
8c38366f
CH
980 error = xfs_buf_iowait(bp);
981 if (error)
982 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
983 xfs_buf_relse(bp);
64e0bc7d 984 return error;
5d765b97 985}
1da177e4 986
5d765b97
CH
987void
988xfs_bdwrite(
989 void *mp,
990 struct xfs_buf *bp)
991{
0b1b213f 992 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 993
15ac08a8 994 bp->b_mount = mp;
1da177e4 995
5d765b97
CH
996 bp->b_flags &= ~XBF_READ;
997 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
998
999 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1000}
1001
4e23471a
CH
1002/*
1003 * Called when we want to stop a buffer from getting written or read.
1004 * We attach the EIO error, muck with its flags, and call biodone
1005 * so that the proper iodone callbacks get called.
1006 */
1007STATIC int
1008xfs_bioerror(
1009 xfs_buf_t *bp)
1010{
1011#ifdef XFSERRORDEBUG
1012 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1013#endif
1014
1015 /*
1016 * No need to wait until the buffer is unpinned, we aren't flushing it.
1017 */
1018 XFS_BUF_ERROR(bp, EIO);
1019
1020 /*
1021 * We're calling biodone, so delete XBF_DONE flag.
1022 */
1023 XFS_BUF_UNREAD(bp);
1024 XFS_BUF_UNDELAYWRITE(bp);
1025 XFS_BUF_UNDONE(bp);
1026 XFS_BUF_STALE(bp);
1027
4e23471a
CH
1028 xfs_biodone(bp);
1029
1030 return EIO;
1031}
1032
1033/*
1034 * Same as xfs_bioerror, except that we are releasing the buffer
1035 * here ourselves, and avoiding the biodone call.
1036 * This is meant for userdata errors; metadata bufs come with
1037 * iodone functions attached, so that we can track down errors.
1038 */
1039STATIC int
1040xfs_bioerror_relse(
1041 struct xfs_buf *bp)
1042{
1043 int64_t fl = XFS_BUF_BFLAGS(bp);
1044 /*
1045 * No need to wait until the buffer is unpinned.
1046 * We aren't flushing it.
1047 *
1048 * chunkhold expects B_DONE to be set, whether
1049 * we actually finish the I/O or not. We don't want to
1050 * change that interface.
1051 */
1052 XFS_BUF_UNREAD(bp);
1053 XFS_BUF_UNDELAYWRITE(bp);
1054 XFS_BUF_DONE(bp);
1055 XFS_BUF_STALE(bp);
1056 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1057 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1058 /*
1059 * Mark b_error and B_ERROR _both_.
1060 * Lot's of chunkcache code assumes that.
1061 * There's no reason to mark error for
1062 * ASYNC buffers.
1063 */
1064 XFS_BUF_ERROR(bp, EIO);
1065 XFS_BUF_FINISH_IOWAIT(bp);
1066 } else {
1067 xfs_buf_relse(bp);
1068 }
1069
1070 return EIO;
1071}
1072
1073
1074/*
1075 * All xfs metadata buffers except log state machine buffers
1076 * get this attached as their b_bdstrat callback function.
1077 * This is so that we can catch a buffer
1078 * after prematurely unpinning it to forcibly shutdown the filesystem.
1079 */
1080int
1081xfs_bdstrat_cb(
1082 struct xfs_buf *bp)
1083{
1084 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1085 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1086 /*
1087 * Metadata write that didn't get logged but
1088 * written delayed anyway. These aren't associated
1089 * with a transaction, and can be ignored.
1090 */
1091 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1092 return xfs_bioerror_relse(bp);
1093 else
1094 return xfs_bioerror(bp);
1095 }
1096
1097 xfs_buf_iorequest(bp);
1098 return 0;
1099}
1100
1101/*
1102 * Wrapper around bdstrat so that we can stop data from going to disk in case
1103 * we are shutting down the filesystem. Typically user data goes thru this
1104 * path; one of the exceptions is the superblock.
1105 */
1106void
1107xfsbdstrat(
1108 struct xfs_mount *mp,
1109 struct xfs_buf *bp)
1110{
1111 if (XFS_FORCED_SHUTDOWN(mp)) {
1112 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1113 xfs_bioerror_relse(bp);
1114 return;
1115 }
1116
1117 xfs_buf_iorequest(bp);
1118}
1119
b8f82a4a 1120STATIC void
ce8e922c
NS
1121_xfs_buf_ioend(
1122 xfs_buf_t *bp,
1da177e4
LT
1123 int schedule)
1124{
6ab455ee
CH
1125 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1126 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1127 xfs_buf_ioend(bp, schedule);
6ab455ee 1128 }
1da177e4
LT
1129}
1130
782e3b3b 1131STATIC void
ce8e922c 1132xfs_buf_bio_end_io(
1da177e4 1133 struct bio *bio,
1da177e4
LT
1134 int error)
1135{
ce8e922c
NS
1136 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1137 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1138 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1139
cfbe5267 1140 xfs_buf_ioerror(bp, -error);
1da177e4 1141
73c77e2c
JB
1142 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1143 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1144
eedb5530 1145 do {
1da177e4
LT
1146 struct page *page = bvec->bv_page;
1147
948ecdb4 1148 ASSERT(!PagePrivate(page));
ce8e922c
NS
1149 if (unlikely(bp->b_error)) {
1150 if (bp->b_flags & XBF_READ)
eedb5530 1151 ClearPageUptodate(page);
ce8e922c 1152 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1153 SetPageUptodate(page);
1154 } else if (!PagePrivate(page) &&
ce8e922c 1155 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1156 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1157 }
1158
eedb5530
NS
1159 if (--bvec >= bio->bi_io_vec)
1160 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1161
1162 if (bp->b_flags & _XBF_PAGE_LOCKED)
1163 unlock_page(page);
eedb5530 1164 } while (bvec >= bio->bi_io_vec);
1da177e4 1165
ce8e922c 1166 _xfs_buf_ioend(bp, 1);
1da177e4 1167 bio_put(bio);
1da177e4
LT
1168}
1169
1170STATIC void
ce8e922c
NS
1171_xfs_buf_ioapply(
1172 xfs_buf_t *bp)
1da177e4 1173{
a9759f2d 1174 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1175 struct bio *bio;
ce8e922c
NS
1176 int offset = bp->b_offset;
1177 int size = bp->b_count_desired;
1178 sector_t sector = bp->b_bn;
1179 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1180
ce8e922c 1181 total_nr_pages = bp->b_page_count;
1da177e4
LT
1182 map_i = 0;
1183
ce8e922c
NS
1184 if (bp->b_flags & XBF_ORDERED) {
1185 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1186 rw = WRITE_FLUSH_FUA;
2ee1abad 1187 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1188 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1189 bp->b_flags &= ~_XBF_RUN_QUEUES;
1190 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1191 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1192 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1193 bp->b_flags &= ~_XBF_RUN_QUEUES;
1194 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1195 } else {
1196 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1197 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1198 }
1199
ce8e922c 1200 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1201 * we populate up the whole page, and hence the other metadata
1202 * in the same page. This optimization is only valid when the
ce8e922c 1203 * filesystem block size is not smaller than the page size.
1da177e4 1204 */
ce8e922c 1205 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1206 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1207 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1208 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1209 bio = bio_alloc(GFP_NOIO, 1);
1210
ce8e922c 1211 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1212 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1213 bio->bi_end_io = xfs_buf_bio_end_io;
1214 bio->bi_private = bp;
1da177e4 1215
ce8e922c 1216 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1217 size = 0;
1218
ce8e922c 1219 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1220
1221 goto submit_io;
1222 }
1223
1da177e4 1224next_chunk:
ce8e922c 1225 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1226 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1227 if (nr_pages > total_nr_pages)
1228 nr_pages = total_nr_pages;
1229
1230 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1231 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1232 bio->bi_sector = sector;
ce8e922c
NS
1233 bio->bi_end_io = xfs_buf_bio_end_io;
1234 bio->bi_private = bp;
1da177e4
LT
1235
1236 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1237 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1238
1239 if (nbytes > size)
1240 nbytes = size;
1241
ce8e922c
NS
1242 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1243 if (rbytes < nbytes)
1da177e4
LT
1244 break;
1245
1246 offset = 0;
1247 sector += nbytes >> BBSHIFT;
1248 size -= nbytes;
1249 total_nr_pages--;
1250 }
1251
1252submit_io:
1253 if (likely(bio->bi_size)) {
73c77e2c
JB
1254 if (xfs_buf_is_vmapped(bp)) {
1255 flush_kernel_vmap_range(bp->b_addr,
1256 xfs_buf_vmap_len(bp));
1257 }
1da177e4
LT
1258 submit_bio(rw, bio);
1259 if (size)
1260 goto next_chunk;
1261 } else {
ec53d1db
DC
1262 /*
1263 * if we get here, no pages were added to the bio. However,
1264 * we can't just error out here - if the pages are locked then
1265 * we have to unlock them otherwise we can hang on a later
1266 * access to the page.
1267 */
ce8e922c 1268 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1269 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1270 int i;
1271 for (i = 0; i < bp->b_page_count; i++)
1272 unlock_page(bp->b_pages[i]);
1273 }
1274 bio_put(bio);
1da177e4
LT
1275 }
1276}
1277
1da177e4 1278int
ce8e922c
NS
1279xfs_buf_iorequest(
1280 xfs_buf_t *bp)
1da177e4 1281{
0b1b213f 1282 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1283
ce8e922c
NS
1284 if (bp->b_flags & XBF_DELWRI) {
1285 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1286 return 0;
1287 }
1288
ce8e922c
NS
1289 if (bp->b_flags & XBF_WRITE) {
1290 xfs_buf_wait_unpin(bp);
1da177e4
LT
1291 }
1292
ce8e922c 1293 xfs_buf_hold(bp);
1da177e4
LT
1294
1295 /* Set the count to 1 initially, this will stop an I/O
1296 * completion callout which happens before we have started
ce8e922c 1297 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1298 */
ce8e922c
NS
1299 atomic_set(&bp->b_io_remaining, 1);
1300 _xfs_buf_ioapply(bp);
1301 _xfs_buf_ioend(bp, 0);
1da177e4 1302
ce8e922c 1303 xfs_buf_rele(bp);
1da177e4
LT
1304 return 0;
1305}
1306
1307/*
ce8e922c
NS
1308 * Waits for I/O to complete on the buffer supplied.
1309 * It returns immediately if no I/O is pending.
1310 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1311 */
1312int
ce8e922c
NS
1313xfs_buf_iowait(
1314 xfs_buf_t *bp)
1da177e4 1315{
0b1b213f
CH
1316 trace_xfs_buf_iowait(bp, _RET_IP_);
1317
ce8e922c
NS
1318 if (atomic_read(&bp->b_io_remaining))
1319 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1320 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1321
1322 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1323 return bp->b_error;
1da177e4
LT
1324}
1325
ce8e922c
NS
1326xfs_caddr_t
1327xfs_buf_offset(
1328 xfs_buf_t *bp,
1da177e4
LT
1329 size_t offset)
1330{
1331 struct page *page;
1332
ce8e922c
NS
1333 if (bp->b_flags & XBF_MAPPED)
1334 return XFS_BUF_PTR(bp) + offset;
1da177e4 1335
ce8e922c
NS
1336 offset += bp->b_offset;
1337 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1338 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1339}
1340
1341/*
1da177e4
LT
1342 * Move data into or out of a buffer.
1343 */
1344void
ce8e922c
NS
1345xfs_buf_iomove(
1346 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1347 size_t boff, /* starting buffer offset */
1348 size_t bsize, /* length to copy */
b9c48649 1349 void *data, /* data address */
ce8e922c 1350 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1351{
1352 size_t bend, cpoff, csize;
1353 struct page *page;
1354
1355 bend = boff + bsize;
1356 while (boff < bend) {
ce8e922c
NS
1357 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1358 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1359 csize = min_t(size_t,
ce8e922c 1360 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1361
1362 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1363
1364 switch (mode) {
ce8e922c 1365 case XBRW_ZERO:
1da177e4
LT
1366 memset(page_address(page) + cpoff, 0, csize);
1367 break;
ce8e922c 1368 case XBRW_READ:
1da177e4
LT
1369 memcpy(data, page_address(page) + cpoff, csize);
1370 break;
ce8e922c 1371 case XBRW_WRITE:
1da177e4
LT
1372 memcpy(page_address(page) + cpoff, data, csize);
1373 }
1374
1375 boff += csize;
1376 data += csize;
1377 }
1378}
1379
1380/*
ce8e922c 1381 * Handling of buffer targets (buftargs).
1da177e4
LT
1382 */
1383
1384/*
ce8e922c
NS
1385 * Wait for any bufs with callbacks that have been submitted but
1386 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1387 */
1388void
1389xfs_wait_buftarg(
1390 xfs_buftarg_t *btp)
1391{
1392 xfs_buf_t *bp, *n;
1393 xfs_bufhash_t *hash;
1394 uint i;
1395
1396 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1397 hash = &btp->bt_hash[i];
1398again:
1399 spin_lock(&hash->bh_lock);
ce8e922c
NS
1400 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1401 ASSERT(btp == bp->b_target);
1402 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1403 spin_unlock(&hash->bh_lock);
2f926587
DC
1404 /*
1405 * Catch superblock reference count leaks
1406 * immediately
1407 */
ce8e922c 1408 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1409 delay(100);
1410 goto again;
1411 }
1412 }
1413 spin_unlock(&hash->bh_lock);
1414 }
1415}
1416
1417/*
ce8e922c
NS
1418 * Allocate buffer hash table for a given target.
1419 * For devices containing metadata (i.e. not the log/realtime devices)
1420 * we need to allocate a much larger hash table.
1da177e4
LT
1421 */
1422STATIC void
1423xfs_alloc_bufhash(
1424 xfs_buftarg_t *btp,
1425 int external)
1426{
1427 unsigned int i;
1428
9bc08a45 1429 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
bdfb0430
CH
1430 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1431 sizeof(xfs_bufhash_t));
1da177e4
LT
1432 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1433 spin_lock_init(&btp->bt_hash[i].bh_lock);
1434 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1435 }
1436}
1437
1438STATIC void
1439xfs_free_bufhash(
1440 xfs_buftarg_t *btp)
1441{
bdfb0430 1442 kmem_free_large(btp->bt_hash);
1da177e4
LT
1443 btp->bt_hash = NULL;
1444}
1445
a6867a68 1446/*
ce8e922c 1447 * buftarg list for delwrite queue processing
a6867a68 1448 */
e6a0e9cd 1449static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1450static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1451
1452STATIC void
1453xfs_register_buftarg(
1454 xfs_buftarg_t *btp)
1455{
1456 spin_lock(&xfs_buftarg_lock);
1457 list_add(&btp->bt_list, &xfs_buftarg_list);
1458 spin_unlock(&xfs_buftarg_lock);
1459}
1460
1461STATIC void
1462xfs_unregister_buftarg(
1463 xfs_buftarg_t *btp)
1464{
1465 spin_lock(&xfs_buftarg_lock);
1466 list_del(&btp->bt_list);
1467 spin_unlock(&xfs_buftarg_lock);
1468}
1469
1da177e4
LT
1470void
1471xfs_free_buftarg(
b7963133
CH
1472 struct xfs_mount *mp,
1473 struct xfs_buftarg *btp)
1da177e4
LT
1474{
1475 xfs_flush_buftarg(btp, 1);
b7963133
CH
1476 if (mp->m_flags & XFS_MOUNT_BARRIER)
1477 xfs_blkdev_issue_flush(btp);
1da177e4 1478 xfs_free_bufhash(btp);
ce8e922c 1479 iput(btp->bt_mapping->host);
a6867a68 1480
ce8e922c
NS
1481 /* Unregister the buftarg first so that we don't get a
1482 * wakeup finding a non-existent task
1483 */
a6867a68
DC
1484 xfs_unregister_buftarg(btp);
1485 kthread_stop(btp->bt_task);
1486
f0e2d93c 1487 kmem_free(btp);
1da177e4
LT
1488}
1489
1da177e4
LT
1490STATIC int
1491xfs_setsize_buftarg_flags(
1492 xfs_buftarg_t *btp,
1493 unsigned int blocksize,
1494 unsigned int sectorsize,
1495 int verbose)
1496{
ce8e922c
NS
1497 btp->bt_bsize = blocksize;
1498 btp->bt_sshift = ffs(sectorsize) - 1;
1499 btp->bt_smask = sectorsize - 1;
1da177e4 1500
ce8e922c 1501 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1502 printk(KERN_WARNING
1503 "XFS: Cannot set_blocksize to %u on device %s\n",
1504 sectorsize, XFS_BUFTARG_NAME(btp));
1505 return EINVAL;
1506 }
1507
1508 if (verbose &&
1509 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1510 printk(KERN_WARNING
1511 "XFS: %u byte sectors in use on device %s. "
1512 "This is suboptimal; %u or greater is ideal.\n",
1513 sectorsize, XFS_BUFTARG_NAME(btp),
1514 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1515 }
1516
1517 return 0;
1518}
1519
1520/*
ce8e922c
NS
1521 * When allocating the initial buffer target we have not yet
1522 * read in the superblock, so don't know what sized sectors
1523 * are being used is at this early stage. Play safe.
1524 */
1da177e4
LT
1525STATIC int
1526xfs_setsize_buftarg_early(
1527 xfs_buftarg_t *btp,
1528 struct block_device *bdev)
1529{
1530 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1531 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1532}
1533
1534int
1535xfs_setsize_buftarg(
1536 xfs_buftarg_t *btp,
1537 unsigned int blocksize,
1538 unsigned int sectorsize)
1539{
1540 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1541}
1542
1543STATIC int
1544xfs_mapping_buftarg(
1545 xfs_buftarg_t *btp,
1546 struct block_device *bdev)
1547{
1548 struct backing_dev_info *bdi;
1549 struct inode *inode;
1550 struct address_space *mapping;
f5e54d6e 1551 static const struct address_space_operations mapping_aops = {
1da177e4 1552 .sync_page = block_sync_page,
e965f963 1553 .migratepage = fail_migrate_page,
1da177e4
LT
1554 };
1555
1556 inode = new_inode(bdev->bd_inode->i_sb);
1557 if (!inode) {
1558 printk(KERN_WARNING
1559 "XFS: Cannot allocate mapping inode for device %s\n",
1560 XFS_BUFTARG_NAME(btp));
1561 return ENOMEM;
1562 }
1563 inode->i_mode = S_IFBLK;
1564 inode->i_bdev = bdev;
1565 inode->i_rdev = bdev->bd_dev;
1566 bdi = blk_get_backing_dev_info(bdev);
1567 if (!bdi)
1568 bdi = &default_backing_dev_info;
1569 mapping = &inode->i_data;
1570 mapping->a_ops = &mapping_aops;
1571 mapping->backing_dev_info = bdi;
1572 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1573 btp->bt_mapping = mapping;
1da177e4
LT
1574 return 0;
1575}
1576
a6867a68
DC
1577STATIC int
1578xfs_alloc_delwrite_queue(
e2a07812
JE
1579 xfs_buftarg_t *btp,
1580 const char *fsname)
a6867a68
DC
1581{
1582 int error = 0;
1583
1584 INIT_LIST_HEAD(&btp->bt_list);
1585 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1586 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1587 btp->bt_flags = 0;
e2a07812 1588 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1589 if (IS_ERR(btp->bt_task)) {
1590 error = PTR_ERR(btp->bt_task);
1591 goto out_error;
1592 }
1593 xfs_register_buftarg(btp);
1594out_error:
1595 return error;
1596}
1597
1da177e4
LT
1598xfs_buftarg_t *
1599xfs_alloc_buftarg(
1600 struct block_device *bdev,
e2a07812
JE
1601 int external,
1602 const char *fsname)
1da177e4
LT
1603{
1604 xfs_buftarg_t *btp;
1605
1606 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1607
ce8e922c
NS
1608 btp->bt_dev = bdev->bd_dev;
1609 btp->bt_bdev = bdev;
1da177e4
LT
1610 if (xfs_setsize_buftarg_early(btp, bdev))
1611 goto error;
1612 if (xfs_mapping_buftarg(btp, bdev))
1613 goto error;
e2a07812 1614 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1615 goto error;
1da177e4
LT
1616 xfs_alloc_bufhash(btp, external);
1617 return btp;
1618
1619error:
f0e2d93c 1620 kmem_free(btp);
1da177e4
LT
1621 return NULL;
1622}
1623
1624
1625/*
ce8e922c 1626 * Delayed write buffer handling
1da177e4 1627 */
1da177e4 1628STATIC void
ce8e922c
NS
1629xfs_buf_delwri_queue(
1630 xfs_buf_t *bp,
1da177e4
LT
1631 int unlock)
1632{
ce8e922c
NS
1633 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1634 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1635
0b1b213f
CH
1636 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1637
ce8e922c 1638 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1639
a6867a68 1640 spin_lock(dwlk);
1da177e4 1641 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1642 if (!list_empty(&bp->b_list)) {
1643 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1644 if (unlock)
1645 atomic_dec(&bp->b_hold);
1646 list_del(&bp->b_list);
1da177e4
LT
1647 }
1648
c9c12971
DC
1649 if (list_empty(dwq)) {
1650 /* start xfsbufd as it is about to have something to do */
1651 wake_up_process(bp->b_target->bt_task);
1652 }
1653
ce8e922c
NS
1654 bp->b_flags |= _XBF_DELWRI_Q;
1655 list_add_tail(&bp->b_list, dwq);
1656 bp->b_queuetime = jiffies;
a6867a68 1657 spin_unlock(dwlk);
1da177e4
LT
1658
1659 if (unlock)
ce8e922c 1660 xfs_buf_unlock(bp);
1da177e4
LT
1661}
1662
1663void
ce8e922c
NS
1664xfs_buf_delwri_dequeue(
1665 xfs_buf_t *bp)
1da177e4 1666{
ce8e922c 1667 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1668 int dequeued = 0;
1669
a6867a68 1670 spin_lock(dwlk);
ce8e922c
NS
1671 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1672 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1673 list_del_init(&bp->b_list);
1da177e4
LT
1674 dequeued = 1;
1675 }
ce8e922c 1676 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1677 spin_unlock(dwlk);
1da177e4
LT
1678
1679 if (dequeued)
ce8e922c 1680 xfs_buf_rele(bp);
1da177e4 1681
0b1b213f 1682 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1683}
1684
d808f617
DC
1685/*
1686 * If a delwri buffer needs to be pushed before it has aged out, then promote
1687 * it to the head of the delwri queue so that it will be flushed on the next
1688 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1689 * than the age currently needed to flush the buffer. Hence the next time the
1690 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1691 */
1692void
1693xfs_buf_delwri_promote(
1694 struct xfs_buf *bp)
1695{
1696 struct xfs_buftarg *btp = bp->b_target;
1697 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1698
1699 ASSERT(bp->b_flags & XBF_DELWRI);
1700 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1701
1702 /*
1703 * Check the buffer age before locking the delayed write queue as we
1704 * don't need to promote buffers that are already past the flush age.
1705 */
1706 if (bp->b_queuetime < jiffies - age)
1707 return;
1708 bp->b_queuetime = jiffies - age;
1709 spin_lock(&btp->bt_delwrite_lock);
1710 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1711 spin_unlock(&btp->bt_delwrite_lock);
1712}
1713
1da177e4 1714STATIC void
ce8e922c 1715xfs_buf_runall_queues(
1da177e4
LT
1716 struct workqueue_struct *queue)
1717{
1718 flush_workqueue(queue);
1719}
1720
1da177e4 1721STATIC int
23ea4032 1722xfsbufd_wakeup(
7f8275d0 1723 struct shrinker *shrink,
15c84a47
NS
1724 int priority,
1725 gfp_t mask)
1da177e4 1726{
da7f93e9 1727 xfs_buftarg_t *btp;
a6867a68
DC
1728
1729 spin_lock(&xfs_buftarg_lock);
da7f93e9 1730 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1731 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1732 continue;
c9c12971
DC
1733 if (list_empty(&btp->bt_delwrite_queue))
1734 continue;
ce8e922c 1735 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1736 wake_up_process(btp->bt_task);
1737 }
1738 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1739 return 0;
1740}
1741
585e6d88
DC
1742/*
1743 * Move as many buffers as specified to the supplied list
1744 * idicating if we skipped any buffers to prevent deadlocks.
1745 */
1746STATIC int
1747xfs_buf_delwri_split(
1748 xfs_buftarg_t *target,
1749 struct list_head *list,
5e6a07df 1750 unsigned long age)
585e6d88
DC
1751{
1752 xfs_buf_t *bp, *n;
1753 struct list_head *dwq = &target->bt_delwrite_queue;
1754 spinlock_t *dwlk = &target->bt_delwrite_lock;
1755 int skipped = 0;
5e6a07df 1756 int force;
585e6d88 1757
5e6a07df 1758 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1759 INIT_LIST_HEAD(list);
1760 spin_lock(dwlk);
1761 list_for_each_entry_safe(bp, n, dwq, b_list) {
0b1b213f 1762 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1763 ASSERT(bp->b_flags & XBF_DELWRI);
1764
4d16e924 1765 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1766 if (!force &&
585e6d88
DC
1767 time_before(jiffies, bp->b_queuetime + age)) {
1768 xfs_buf_unlock(bp);
1769 break;
1770 }
1771
1772 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1773 _XBF_RUN_QUEUES);
1774 bp->b_flags |= XBF_WRITE;
1775 list_move_tail(&bp->b_list, list);
1776 } else
1777 skipped++;
1778 }
1779 spin_unlock(dwlk);
1780
1781 return skipped;
1782
1783}
1784
089716aa
DC
1785/*
1786 * Compare function is more complex than it needs to be because
1787 * the return value is only 32 bits and we are doing comparisons
1788 * on 64 bit values
1789 */
1790static int
1791xfs_buf_cmp(
1792 void *priv,
1793 struct list_head *a,
1794 struct list_head *b)
1795{
1796 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1797 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1798 xfs_daddr_t diff;
1799
1800 diff = ap->b_bn - bp->b_bn;
1801 if (diff < 0)
1802 return -1;
1803 if (diff > 0)
1804 return 1;
1805 return 0;
1806}
1807
1808void
1809xfs_buf_delwri_sort(
1810 xfs_buftarg_t *target,
1811 struct list_head *list)
1812{
1813 list_sort(NULL, list, xfs_buf_cmp);
1814}
1815
1da177e4 1816STATIC int
23ea4032 1817xfsbufd(
585e6d88 1818 void *data)
1da177e4 1819{
089716aa 1820 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1821
1da177e4
LT
1822 current->flags |= PF_MEMALLOC;
1823
978c7b2f
RW
1824 set_freezable();
1825
1da177e4 1826 do {
c9c12971
DC
1827 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1828 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1829 int count = 0;
1830 struct list_head tmp;
c9c12971 1831
3e1d1d28 1832 if (unlikely(freezing(current))) {
ce8e922c 1833 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1834 refrigerator();
abd0cf7a 1835 } else {
ce8e922c 1836 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1837 }
1da177e4 1838
c9c12971
DC
1839 /* sleep for a long time if there is nothing to do. */
1840 if (list_empty(&target->bt_delwrite_queue))
1841 tout = MAX_SCHEDULE_TIMEOUT;
1842 schedule_timeout_interruptible(tout);
1da177e4 1843
c9c12971 1844 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1845 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1846 while (!list_empty(&tmp)) {
089716aa
DC
1847 struct xfs_buf *bp;
1848 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1849 list_del_init(&bp->b_list);
939d723b 1850 xfs_bdstrat_cb(bp);
585e6d88 1851 count++;
1da177e4 1852 }
f07c2250
NS
1853 if (count)
1854 blk_run_address_space(target->bt_mapping);
1da177e4 1855
4df08c52 1856 } while (!kthread_should_stop());
1da177e4 1857
4df08c52 1858 return 0;
1da177e4
LT
1859}
1860
1861/*
ce8e922c
NS
1862 * Go through all incore buffers, and release buffers if they belong to
1863 * the given device. This is used in filesystem error handling to
1864 * preserve the consistency of its metadata.
1da177e4
LT
1865 */
1866int
1867xfs_flush_buftarg(
585e6d88
DC
1868 xfs_buftarg_t *target,
1869 int wait)
1da177e4 1870{
089716aa 1871 xfs_buf_t *bp;
585e6d88 1872 int pincount = 0;
089716aa
DC
1873 LIST_HEAD(tmp_list);
1874 LIST_HEAD(wait_list);
1da177e4 1875
c626d174 1876 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1877 xfs_buf_runall_queues(xfsdatad_workqueue);
1878 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1879
5e6a07df 1880 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1881 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1882
1883 /*
089716aa
DC
1884 * Dropped the delayed write list lock, now walk the temporary list.
1885 * All I/O is issued async and then if we need to wait for completion
1886 * we do that after issuing all the IO.
1da177e4 1887 */
089716aa
DC
1888 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1889 while (!list_empty(&tmp_list)) {
1890 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1891 ASSERT(target == bp->b_target);
089716aa
DC
1892 list_del_init(&bp->b_list);
1893 if (wait) {
ce8e922c 1894 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1895 list_add(&bp->b_list, &wait_list);
1896 }
939d723b 1897 xfs_bdstrat_cb(bp);
1da177e4
LT
1898 }
1899
089716aa
DC
1900 if (wait) {
1901 /* Expedite and wait for IO to complete. */
f07c2250 1902 blk_run_address_space(target->bt_mapping);
089716aa
DC
1903 while (!list_empty(&wait_list)) {
1904 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1905
089716aa
DC
1906 list_del_init(&bp->b_list);
1907 xfs_iowait(bp);
1908 xfs_buf_relse(bp);
1909 }
1da177e4
LT
1910 }
1911
1da177e4
LT
1912 return pincount;
1913}
1914
04d8b284 1915int __init
ce8e922c 1916xfs_buf_init(void)
1da177e4 1917{
8758280f
NS
1918 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1919 KM_ZONE_HWALIGN, NULL);
ce8e922c 1920 if (!xfs_buf_zone)
0b1b213f 1921 goto out;
04d8b284 1922
51749e47 1923 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1924 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1925 if (!xfslogd_workqueue)
04d8b284 1926 goto out_free_buf_zone;
1da177e4 1927
b4337692 1928 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1929 if (!xfsdatad_workqueue)
1930 goto out_destroy_xfslogd_workqueue;
1da177e4 1931
c626d174
DC
1932 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1933 if (!xfsconvertd_workqueue)
1934 goto out_destroy_xfsdatad_workqueue;
1935
8e1f936b 1936 register_shrinker(&xfs_buf_shake);
23ea4032 1937 return 0;
1da177e4 1938
c626d174
DC
1939 out_destroy_xfsdatad_workqueue:
1940 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1941 out_destroy_xfslogd_workqueue:
1942 destroy_workqueue(xfslogd_workqueue);
23ea4032 1943 out_free_buf_zone:
ce8e922c 1944 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1945 out:
8758280f 1946 return -ENOMEM;
1da177e4
LT
1947}
1948
1da177e4 1949void
ce8e922c 1950xfs_buf_terminate(void)
1da177e4 1951{
8e1f936b 1952 unregister_shrinker(&xfs_buf_shake);
c626d174 1953 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1954 destroy_workqueue(xfsdatad_workqueue);
1955 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1956 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1957}
e6a0e9cd
TS
1958
1959#ifdef CONFIG_KDB_MODULES
1960struct list_head *
1961xfs_get_buftarg_list(void)
1962{
1963 return &xfs_buftarg_list;
1964}
1965#endif