]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
[XFS] Make metadata IO completion consistent with other IO completion
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33#include "xfs.h"
34#include "xfs_inum.h"
35#include "xfs_log.h"
36#include "xfs_sb.h"
37#include "xfs_dir.h"
38#include "xfs_dir2.h"
39#include "xfs_trans.h"
40#include "xfs_dmapi.h"
41#include "xfs_mount.h"
42#include "xfs_bmap_btree.h"
43#include "xfs_alloc_btree.h"
44#include "xfs_ialloc_btree.h"
45#include "xfs_alloc.h"
46#include "xfs_btree.h"
47#include "xfs_attr_sf.h"
48#include "xfs_dir_sf.h"
49#include "xfs_dir2_sf.h"
50#include "xfs_dinode.h"
51#include "xfs_inode.h"
52#include "xfs_error.h"
53#include "xfs_rw.h"
54#include "xfs_iomap.h"
55#include <linux/mpage.h>
56#include <linux/writeback.h>
57
58STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
59STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *,
60 struct writeback_control *wbc, void *, int, int);
61
62#if defined(XFS_RW_TRACE)
63void
64xfs_page_trace(
65 int tag,
66 struct inode *inode,
67 struct page *page,
68 int mask)
69{
70 xfs_inode_t *ip;
71 bhv_desc_t *bdp;
72 vnode_t *vp = LINVFS_GET_VP(inode);
73 loff_t isize = i_size_read(inode);
74 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
75 int delalloc = -1, unmapped = -1, unwritten = -1;
76
77 if (page_has_buffers(page))
78 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
79
80 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
81 ip = XFS_BHVTOI(bdp);
82 if (!ip->i_rwtrace)
83 return;
84
85 ktrace_enter(ip->i_rwtrace,
86 (void *)((unsigned long)tag),
87 (void *)ip,
88 (void *)inode,
89 (void *)page,
90 (void *)((unsigned long)mask),
91 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
92 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
93 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(isize & 0xffffffff)),
95 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(offset & 0xffffffff)),
97 (void *)((unsigned long)delalloc),
98 (void *)((unsigned long)unmapped),
99 (void *)((unsigned long)unwritten),
100 (void *)NULL,
101 (void *)NULL);
102}
103#else
104#define xfs_page_trace(tag, inode, page, mask)
105#endif
106
107void
108linvfs_unwritten_done(
109 struct buffer_head *bh,
110 int uptodate)
111{
112 xfs_buf_t *pb = (xfs_buf_t *)bh->b_private;
113
114 ASSERT(buffer_unwritten(bh));
115 bh->b_end_io = NULL;
116 clear_buffer_unwritten(bh);
117 if (!uptodate)
118 pagebuf_ioerror(pb, EIO);
119 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
120 pagebuf_iodone(pb, 1, 1);
121 }
122 end_buffer_async_write(bh, uptodate);
123}
124
125/*
126 * Issue transactions to convert a buffer range from unwritten
127 * to written extents (buffered IO).
128 */
129STATIC void
130linvfs_unwritten_convert(
131 xfs_buf_t *bp)
132{
133 vnode_t *vp = XFS_BUF_FSPRIVATE(bp, vnode_t *);
134 int error;
135
136 BUG_ON(atomic_read(&bp->pb_hold) < 1);
137 VOP_BMAP(vp, XFS_BUF_OFFSET(bp), XFS_BUF_SIZE(bp),
138 BMAPI_UNWRITTEN, NULL, NULL, error);
139 XFS_BUF_SET_FSPRIVATE(bp, NULL);
140 XFS_BUF_CLR_IODONE_FUNC(bp);
141 XFS_BUF_UNDATAIO(bp);
142 iput(LINVFS_GET_IP(vp));
143 pagebuf_iodone(bp, 0, 0);
144}
145
146/*
147 * Issue transactions to convert a buffer range from unwritten
148 * to written extents (direct IO).
149 */
150STATIC void
151linvfs_unwritten_convert_direct(
92198f7e 152 struct kiocb *iocb,
1da177e4
LT
153 loff_t offset,
154 ssize_t size,
155 void *private)
156{
92198f7e 157 struct inode *inode = iocb->ki_filp->f_dentry->d_inode;
1da177e4
LT
158 ASSERT(!private || inode == (struct inode *)private);
159
160 /* private indicates an unwritten extent lay beneath this IO */
161 if (private && size > 0) {
162 vnode_t *vp = LINVFS_GET_VP(inode);
163 int error;
164
165 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
166 }
167}
168
169STATIC int
170xfs_map_blocks(
171 struct inode *inode,
172 loff_t offset,
173 ssize_t count,
174 xfs_iomap_t *mapp,
175 int flags)
176{
177 vnode_t *vp = LINVFS_GET_VP(inode);
178 int error, nmaps = 1;
179
180 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
181 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
182 VMODIFY(vp);
183 return -error;
184}
185
186/*
187 * Finds the corresponding mapping in block @map array of the
188 * given @offset within a @page.
189 */
190STATIC xfs_iomap_t *
191xfs_offset_to_map(
192 struct page *page,
193 xfs_iomap_t *iomapp,
194 unsigned long offset)
195{
196 loff_t full_offset; /* offset from start of file */
197
198 ASSERT(offset < PAGE_CACHE_SIZE);
199
200 full_offset = page->index; /* NB: using 64bit number */
201 full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */
202 full_offset += offset; /* offset from page start */
203
204 if (full_offset < iomapp->iomap_offset)
205 return NULL;
206 if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset)
207 return iomapp;
208 return NULL;
209}
210
211STATIC void
212xfs_map_at_offset(
213 struct page *page,
214 struct buffer_head *bh,
215 unsigned long offset,
216 int block_bits,
217 xfs_iomap_t *iomapp)
218{
219 xfs_daddr_t bn;
220 loff_t delta;
221 int sector_shift;
222
223 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
224 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
225 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
226
227 delta = page->index;
228 delta <<= PAGE_CACHE_SHIFT;
229 delta += offset;
230 delta -= iomapp->iomap_offset;
231 delta >>= block_bits;
232
233 sector_shift = block_bits - BBSHIFT;
234 bn = iomapp->iomap_bn >> sector_shift;
235 bn += delta;
236 BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME));
237 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
238
239 lock_buffer(bh);
240 bh->b_blocknr = bn;
241 bh->b_bdev = iomapp->iomap_target->pbr_bdev;
242 set_buffer_mapped(bh);
243 clear_buffer_delay(bh);
244}
245
246/*
247 * Look for a page at index which is unlocked and contains our
248 * unwritten extent flagged buffers at its head. Returns page
249 * locked and with an extra reference count, and length of the
250 * unwritten extent component on this page that we can write,
251 * in units of filesystem blocks.
252 */
253STATIC struct page *
254xfs_probe_unwritten_page(
255 struct address_space *mapping,
256 pgoff_t index,
257 xfs_iomap_t *iomapp,
258 xfs_buf_t *pb,
259 unsigned long max_offset,
260 unsigned long *fsbs,
261 unsigned int bbits)
262{
263 struct page *page;
264
265 page = find_trylock_page(mapping, index);
266 if (!page)
267 return NULL;
268 if (PageWriteback(page))
269 goto out;
270
271 if (page->mapping && page_has_buffers(page)) {
272 struct buffer_head *bh, *head;
273 unsigned long p_offset = 0;
274
275 *fsbs = 0;
276 bh = head = page_buffers(page);
277 do {
278 if (!buffer_unwritten(bh) || !buffer_uptodate(bh))
279 break;
280 if (!xfs_offset_to_map(page, iomapp, p_offset))
281 break;
282 if (p_offset >= max_offset)
283 break;
284 xfs_map_at_offset(page, bh, p_offset, bbits, iomapp);
285 set_buffer_unwritten_io(bh);
286 bh->b_private = pb;
287 p_offset += bh->b_size;
288 (*fsbs)++;
289 } while ((bh = bh->b_this_page) != head);
290
291 if (p_offset)
292 return page;
293 }
294
295out:
296 unlock_page(page);
297 return NULL;
298}
299
300/*
301 * Look for a page at index which is unlocked and not mapped
302 * yet - clustering for mmap write case.
303 */
304STATIC unsigned int
305xfs_probe_unmapped_page(
306 struct address_space *mapping,
307 pgoff_t index,
308 unsigned int pg_offset)
309{
310 struct page *page;
311 int ret = 0;
312
313 page = find_trylock_page(mapping, index);
314 if (!page)
315 return 0;
316 if (PageWriteback(page))
317 goto out;
318
319 if (page->mapping && PageDirty(page)) {
320 if (page_has_buffers(page)) {
321 struct buffer_head *bh, *head;
322
323 bh = head = page_buffers(page);
324 do {
325 if (buffer_mapped(bh) || !buffer_uptodate(bh))
326 break;
327 ret += bh->b_size;
328 if (ret >= pg_offset)
329 break;
330 } while ((bh = bh->b_this_page) != head);
331 } else
332 ret = PAGE_CACHE_SIZE;
333 }
334
335out:
336 unlock_page(page);
337 return ret;
338}
339
340STATIC unsigned int
341xfs_probe_unmapped_cluster(
342 struct inode *inode,
343 struct page *startpage,
344 struct buffer_head *bh,
345 struct buffer_head *head)
346{
347 pgoff_t tindex, tlast, tloff;
348 unsigned int pg_offset, len, total = 0;
349 struct address_space *mapping = inode->i_mapping;
350
351 /* First sum forwards in this page */
352 do {
353 if (buffer_mapped(bh))
354 break;
355 total += bh->b_size;
356 } while ((bh = bh->b_this_page) != head);
357
358 /* If we reached the end of the page, sum forwards in
359 * following pages.
360 */
361 if (bh == head) {
362 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
363 /* Prune this back to avoid pathological behavior */
364 tloff = min(tlast, startpage->index + 64);
365 for (tindex = startpage->index + 1; tindex < tloff; tindex++) {
366 len = xfs_probe_unmapped_page(mapping, tindex,
367 PAGE_CACHE_SIZE);
368 if (!len)
369 return total;
370 total += len;
371 }
372 if (tindex == tlast &&
373 (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
374 total += xfs_probe_unmapped_page(mapping,
375 tindex, pg_offset);
376 }
377 }
378 return total;
379}
380
381/*
382 * Probe for a given page (index) in the inode and test if it is delayed
383 * and without unwritten buffers. Returns page locked and with an extra
384 * reference count.
385 */
386STATIC struct page *
387xfs_probe_delalloc_page(
388 struct inode *inode,
389 pgoff_t index)
390{
391 struct page *page;
392
393 page = find_trylock_page(inode->i_mapping, index);
394 if (!page)
395 return NULL;
396 if (PageWriteback(page))
397 goto out;
398
399 if (page->mapping && page_has_buffers(page)) {
400 struct buffer_head *bh, *head;
401 int acceptable = 0;
402
403 bh = head = page_buffers(page);
404 do {
405 if (buffer_unwritten(bh)) {
406 acceptable = 0;
407 break;
408 } else if (buffer_delay(bh)) {
409 acceptable = 1;
410 }
411 } while ((bh = bh->b_this_page) != head);
412
413 if (acceptable)
414 return page;
415 }
416
417out:
418 unlock_page(page);
419 return NULL;
420}
421
422STATIC int
423xfs_map_unwritten(
424 struct inode *inode,
425 struct page *start_page,
426 struct buffer_head *head,
427 struct buffer_head *curr,
428 unsigned long p_offset,
429 int block_bits,
430 xfs_iomap_t *iomapp,
431 struct writeback_control *wbc,
432 int startio,
433 int all_bh)
434{
435 struct buffer_head *bh = curr;
436 xfs_iomap_t *tmp;
437 xfs_buf_t *pb;
438 loff_t offset, size;
439 unsigned long nblocks = 0;
440
441 offset = start_page->index;
442 offset <<= PAGE_CACHE_SHIFT;
443 offset += p_offset;
444
445 /* get an "empty" pagebuf to manage IO completion
446 * Proper values will be set before returning */
447 pb = pagebuf_lookup(iomapp->iomap_target, 0, 0, 0);
448 if (!pb)
449 return -EAGAIN;
450
451 /* Take a reference to the inode to prevent it from
452 * being reclaimed while we have outstanding unwritten
453 * extent IO on it.
454 */
455 if ((igrab(inode)) != inode) {
456 pagebuf_free(pb);
457 return -EAGAIN;
458 }
459
460 /* Set the count to 1 initially, this will stop an I/O
461 * completion callout which happens before we have started
462 * all the I/O from calling pagebuf_iodone too early.
463 */
464 atomic_set(&pb->pb_io_remaining, 1);
465
466 /* First map forwards in the page consecutive buffers
467 * covering this unwritten extent
468 */
469 do {
470 if (!buffer_unwritten(bh))
471 break;
472 tmp = xfs_offset_to_map(start_page, iomapp, p_offset);
473 if (!tmp)
474 break;
475 xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp);
476 set_buffer_unwritten_io(bh);
477 bh->b_private = pb;
478 p_offset += bh->b_size;
479 nblocks++;
480 } while ((bh = bh->b_this_page) != head);
481
482 atomic_add(nblocks, &pb->pb_io_remaining);
483
484 /* If we reached the end of the page, map forwards in any
485 * following pages which are also covered by this extent.
486 */
487 if (bh == head) {
488 struct address_space *mapping = inode->i_mapping;
489 pgoff_t tindex, tloff, tlast;
490 unsigned long bs;
491 unsigned int pg_offset, bbits = inode->i_blkbits;
492 struct page *page;
493
494 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
495 tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT;
496 tloff = min(tlast, tloff);
497 for (tindex = start_page->index + 1; tindex < tloff; tindex++) {
498 page = xfs_probe_unwritten_page(mapping,
499 tindex, iomapp, pb,
500 PAGE_CACHE_SIZE, &bs, bbits);
501 if (!page)
502 break;
503 nblocks += bs;
504 atomic_add(bs, &pb->pb_io_remaining);
505 xfs_convert_page(inode, page, iomapp, wbc, pb,
506 startio, all_bh);
507 /* stop if converting the next page might add
508 * enough blocks that the corresponding byte
509 * count won't fit in our ulong page buf length */
510 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
511 goto enough;
512 }
513
514 if (tindex == tlast &&
515 (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) {
516 page = xfs_probe_unwritten_page(mapping,
517 tindex, iomapp, pb,
518 pg_offset, &bs, bbits);
519 if (page) {
520 nblocks += bs;
521 atomic_add(bs, &pb->pb_io_remaining);
522 xfs_convert_page(inode, page, iomapp, wbc, pb,
523 startio, all_bh);
524 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
525 goto enough;
526 }
527 }
528 }
529
530enough:
531 size = nblocks; /* NB: using 64bit number here */
532 size <<= block_bits; /* convert fsb's to byte range */
533
534 XFS_BUF_DATAIO(pb);
535 XFS_BUF_ASYNC(pb);
536 XFS_BUF_SET_SIZE(pb, size);
537 XFS_BUF_SET_COUNT(pb, size);
538 XFS_BUF_SET_OFFSET(pb, offset);
539 XFS_BUF_SET_FSPRIVATE(pb, LINVFS_GET_VP(inode));
540 XFS_BUF_SET_IODONE_FUNC(pb, linvfs_unwritten_convert);
541
542 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
543 pagebuf_iodone(pb, 1, 1);
544 }
545
546 return 0;
547}
548
549STATIC void
550xfs_submit_page(
551 struct page *page,
552 struct writeback_control *wbc,
553 struct buffer_head *bh_arr[],
554 int bh_count,
555 int probed_page,
556 int clear_dirty)
557{
558 struct buffer_head *bh;
559 int i;
560
561 BUG_ON(PageWriteback(page));
24e17b5f
NS
562 if (bh_count)
563 set_page_writeback(page);
1da177e4
LT
564 if (clear_dirty)
565 clear_page_dirty(page);
566 unlock_page(page);
567
568 if (bh_count) {
569 for (i = 0; i < bh_count; i++) {
570 bh = bh_arr[i];
571 mark_buffer_async_write(bh);
572 if (buffer_unwritten(bh))
573 set_buffer_unwritten_io(bh);
574 set_buffer_uptodate(bh);
575 clear_buffer_dirty(bh);
576 }
577
578 for (i = 0; i < bh_count; i++)
579 submit_bh(WRITE, bh_arr[i]);
580
581 if (probed_page && clear_dirty)
582 wbc->nr_to_write--; /* Wrote an "extra" page */
1da177e4
LT
583 }
584}
585
586/*
587 * Allocate & map buffers for page given the extent map. Write it out.
588 * except for the original page of a writepage, this is called on
589 * delalloc/unwritten pages only, for the original page it is possible
590 * that the page has no mapping at all.
591 */
592STATIC void
593xfs_convert_page(
594 struct inode *inode,
595 struct page *page,
596 xfs_iomap_t *iomapp,
597 struct writeback_control *wbc,
598 void *private,
599 int startio,
600 int all_bh)
601{
602 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
603 xfs_iomap_t *mp = iomapp, *tmp;
24e17b5f
NS
604 unsigned long offset, end_offset;
605 int index = 0;
1da177e4 606 int bbits = inode->i_blkbits;
24e17b5f 607 int len, page_dirty;
1da177e4 608
24e17b5f
NS
609 end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1));
610
611 /*
612 * page_dirty is initially a count of buffers on the page before
613 * EOF and is decrememted as we move each into a cleanable state.
614 */
615 len = 1 << inode->i_blkbits;
616 end_offset = max(end_offset, PAGE_CACHE_SIZE);
617 end_offset = roundup(end_offset, len);
618 page_dirty = end_offset / len;
619
620 offset = 0;
1da177e4
LT
621 bh = head = page_buffers(page);
622 do {
24e17b5f 623 if (offset >= end_offset)
1da177e4
LT
624 break;
625 if (!(PageUptodate(page) || buffer_uptodate(bh)))
626 continue;
627 if (buffer_mapped(bh) && all_bh &&
628 !(buffer_unwritten(bh) || buffer_delay(bh))) {
629 if (startio) {
630 lock_buffer(bh);
631 bh_arr[index++] = bh;
24e17b5f 632 page_dirty--;
1da177e4
LT
633 }
634 continue;
635 }
636 tmp = xfs_offset_to_map(page, mp, offset);
637 if (!tmp)
638 continue;
639 ASSERT(!(tmp->iomap_flags & IOMAP_HOLE));
640 ASSERT(!(tmp->iomap_flags & IOMAP_DELAY));
641
642 /* If this is a new unwritten extent buffer (i.e. one
643 * that we haven't passed in private data for, we must
644 * now map this buffer too.
645 */
646 if (buffer_unwritten(bh) && !bh->b_end_io) {
647 ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN);
648 xfs_map_unwritten(inode, page, head, bh, offset,
649 bbits, tmp, wbc, startio, all_bh);
650 } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) {
651 xfs_map_at_offset(page, bh, offset, bbits, tmp);
652 if (buffer_unwritten(bh)) {
653 set_buffer_unwritten_io(bh);
654 bh->b_private = private;
655 ASSERT(private);
656 }
657 }
658 if (startio) {
659 bh_arr[index++] = bh;
660 } else {
661 set_buffer_dirty(bh);
662 unlock_buffer(bh);
663 mark_buffer_dirty(bh);
664 }
24e17b5f
NS
665 page_dirty--;
666 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 667
24e17b5f
NS
668 if (startio && index) {
669 xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty);
1da177e4
LT
670 } else {
671 unlock_page(page);
672 }
673}
674
675/*
676 * Convert & write out a cluster of pages in the same extent as defined
677 * by mp and following the start page.
678 */
679STATIC void
680xfs_cluster_write(
681 struct inode *inode,
682 pgoff_t tindex,
683 xfs_iomap_t *iomapp,
684 struct writeback_control *wbc,
685 int startio,
686 int all_bh,
687 pgoff_t tlast)
688{
689 struct page *page;
690
691 for (; tindex <= tlast; tindex++) {
692 page = xfs_probe_delalloc_page(inode, tindex);
693 if (!page)
694 break;
695 xfs_convert_page(inode, page, iomapp, wbc, NULL,
696 startio, all_bh);
697 }
698}
699
700/*
701 * Calling this without startio set means we are being asked to make a dirty
702 * page ready for freeing it's buffers. When called with startio set then
703 * we are coming from writepage.
704 *
705 * When called with startio set it is important that we write the WHOLE
706 * page if possible.
707 * The bh->b_state's cannot know if any of the blocks or which block for
708 * that matter are dirty due to mmap writes, and therefore bh uptodate is
709 * only vaild if the page itself isn't completely uptodate. Some layers
710 * may clear the page dirty flag prior to calling write page, under the
711 * assumption the entire page will be written out; by not writing out the
712 * whole page the page can be reused before all valid dirty data is
713 * written out. Note: in the case of a page that has been dirty'd by
714 * mapwrite and but partially setup by block_prepare_write the
715 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
716 * valid state, thus the whole page must be written out thing.
717 */
718
719STATIC int
720xfs_page_state_convert(
721 struct inode *inode,
722 struct page *page,
723 struct writeback_control *wbc,
724 int startio,
725 int unmapped) /* also implies page uptodate */
726{
727 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
728 xfs_iomap_t *iomp, iomap;
729 loff_t offset;
730 unsigned long p_offset = 0;
731 __uint64_t end_offset;
732 pgoff_t end_index, last_index, tlast;
733 int len, err, i, cnt = 0, uptodate = 1;
3ba0815a 734 int flags;
775bf6c9 735 int page_dirty;
1da177e4 736
3ba0815a
DM
737 /* wait for other IO threads? */
738 flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK;
739
1da177e4
LT
740 /* Is this page beyond the end of the file? */
741 offset = i_size_read(inode);
742 end_index = offset >> PAGE_CACHE_SHIFT;
743 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
744 if (page->index >= end_index) {
745 if ((page->index >= end_index + 1) ||
746 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
747 err = -EIO;
748 goto error;
749 }
750 }
751
1da177e4 752 end_offset = min_t(unsigned long long,
24e17b5f
NS
753 (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
754 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1da177e4
LT
755
756 /*
24e17b5f
NS
757 * page_dirty is initially a count of buffers on the page before
758 * EOF and is decrememted as we move each into a cleanable state.
1da177e4 759 */
24e17b5f
NS
760 len = 1 << inode->i_blkbits;
761 p_offset = max(p_offset, PAGE_CACHE_SIZE);
762 p_offset = roundup(p_offset, len);
763 page_dirty = p_offset / len;
764
765 iomp = NULL;
766 p_offset = 0;
767 bh = head = page_buffers(page);
1da177e4
LT
768
769 do {
770 if (offset >= end_offset)
771 break;
772 if (!buffer_uptodate(bh))
773 uptodate = 0;
774 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio)
775 continue;
776
777 if (iomp) {
778 iomp = xfs_offset_to_map(page, &iomap, p_offset);
779 }
780
781 /*
782 * First case, map an unwritten extent and prepare for
783 * extent state conversion transaction on completion.
784 */
785 if (buffer_unwritten(bh)) {
786 if (!startio)
787 continue;
788 if (!iomp) {
789 err = xfs_map_blocks(inode, offset, len, &iomap,
790 BMAPI_READ|BMAPI_IGNSTATE);
791 if (err) {
792 goto error;
793 }
794 iomp = xfs_offset_to_map(page, &iomap,
795 p_offset);
796 }
797 if (iomp) {
798 if (!bh->b_end_io) {
799 err = xfs_map_unwritten(inode, page,
800 head, bh, p_offset,
801 inode->i_blkbits, iomp,
802 wbc, startio, unmapped);
803 if (err) {
804 goto error;
805 }
806 } else {
807 set_bit(BH_Lock, &bh->b_state);
808 }
809 BUG_ON(!buffer_locked(bh));
810 bh_arr[cnt++] = bh;
811 page_dirty--;
812 }
813 /*
814 * Second case, allocate space for a delalloc buffer.
815 * We can return EAGAIN here in the release page case.
816 */
817 } else if (buffer_delay(bh)) {
818 if (!iomp) {
1da177e4
LT
819 err = xfs_map_blocks(inode, offset, len, &iomap,
820 BMAPI_ALLOCATE | flags);
821 if (err) {
822 goto error;
823 }
824 iomp = xfs_offset_to_map(page, &iomap,
825 p_offset);
826 }
827 if (iomp) {
828 xfs_map_at_offset(page, bh, p_offset,
829 inode->i_blkbits, iomp);
830 if (startio) {
831 bh_arr[cnt++] = bh;
832 } else {
833 set_buffer_dirty(bh);
834 unlock_buffer(bh);
835 mark_buffer_dirty(bh);
836 }
837 page_dirty--;
838 }
839 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
840 (unmapped || startio)) {
841
842 if (!buffer_mapped(bh)) {
843 int size;
844
845 /*
846 * Getting here implies an unmapped buffer
847 * was found, and we are in a path where we
848 * need to write the whole page out.
849 */
850 if (!iomp) {
851 size = xfs_probe_unmapped_cluster(
852 inode, page, bh, head);
853 err = xfs_map_blocks(inode, offset,
854 size, &iomap,
855 BMAPI_WRITE|BMAPI_MMAP);
856 if (err) {
857 goto error;
858 }
859 iomp = xfs_offset_to_map(page, &iomap,
860 p_offset);
861 }
862 if (iomp) {
863 xfs_map_at_offset(page,
864 bh, p_offset,
865 inode->i_blkbits, iomp);
866 if (startio) {
867 bh_arr[cnt++] = bh;
868 } else {
869 set_buffer_dirty(bh);
870 unlock_buffer(bh);
871 mark_buffer_dirty(bh);
872 }
873 page_dirty--;
874 }
875 } else if (startio) {
876 if (buffer_uptodate(bh) &&
877 !test_and_set_bit(BH_Lock, &bh->b_state)) {
878 bh_arr[cnt++] = bh;
879 page_dirty--;
880 }
881 }
882 }
883 } while (offset += len, p_offset += len,
884 ((bh = bh->b_this_page) != head));
885
886 if (uptodate && bh == head)
887 SetPageUptodate(page);
888
24e17b5f 889 if (startio) {
24e17b5f
NS
890 xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty);
891 }
1da177e4
LT
892
893 if (iomp) {
775bf6c9 894 offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >>
1da177e4 895 PAGE_CACHE_SHIFT;
775bf6c9 896 tlast = min_t(pgoff_t, offset, last_index);
1da177e4
LT
897 xfs_cluster_write(inode, page->index + 1, iomp, wbc,
898 startio, unmapped, tlast);
899 }
900
901 return page_dirty;
902
903error:
904 for (i = 0; i < cnt; i++) {
905 unlock_buffer(bh_arr[i]);
906 }
907
908 /*
909 * If it's delalloc and we have nowhere to put it,
910 * throw it away, unless the lower layers told
911 * us to try again.
912 */
913 if (err != -EAGAIN) {
914 if (!unmapped) {
915 block_invalidatepage(page, 0);
916 }
917 ClearPageUptodate(page);
918 }
919 return err;
920}
921
922STATIC int
923__linvfs_get_block(
924 struct inode *inode,
925 sector_t iblock,
926 unsigned long blocks,
927 struct buffer_head *bh_result,
928 int create,
929 int direct,
930 bmapi_flags_t flags)
931{
932 vnode_t *vp = LINVFS_GET_VP(inode);
933 xfs_iomap_t iomap;
934 int retpbbm = 1;
935 int error;
936 ssize_t size;
937 loff_t offset = (loff_t)iblock << inode->i_blkbits;
938
939 if (blocks)
940 size = blocks << inode->i_blkbits;
941 else
942 size = 1 << inode->i_blkbits;
943
944 VOP_BMAP(vp, offset, size,
945 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
946 if (error)
947 return -error;
948
949 if (retpbbm == 0)
950 return 0;
951
952 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
953 xfs_daddr_t bn;
954 loff_t delta;
955
956 /* For unwritten extents do not report a disk address on
957 * the read case (treat as if we're reading into a hole).
958 */
959 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
960 delta = offset - iomap.iomap_offset;
961 delta >>= inode->i_blkbits;
962
963 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
964 bn += delta;
965 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
966 bh_result->b_blocknr = bn;
967 set_buffer_mapped(bh_result);
968 }
969 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
970 if (direct)
971 bh_result->b_private = inode;
972 set_buffer_unwritten(bh_result);
973 set_buffer_delay(bh_result);
974 }
975 }
976
977 /* If this is a realtime file, data might be on a new device */
978 bh_result->b_bdev = iomap.iomap_target->pbr_bdev;
979
980 /* If we previously allocated a block out beyond eof and
981 * we are now coming back to use it then we will need to
982 * flag it as new even if it has a disk address.
983 */
984 if (create &&
985 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
986 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW))) {
987 set_buffer_new(bh_result);
988 }
989
990 if (iomap.iomap_flags & IOMAP_DELAY) {
991 BUG_ON(direct);
992 if (create) {
993 set_buffer_uptodate(bh_result);
994 set_buffer_mapped(bh_result);
995 set_buffer_delay(bh_result);
996 }
997 }
998
999 if (blocks) {
1000 bh_result->b_size = (ssize_t)min(
1001 (loff_t)(iomap.iomap_bsize - iomap.iomap_delta),
1002 (loff_t)(blocks << inode->i_blkbits));
1003 }
1004
1005 return 0;
1006}
1007
1008int
1009linvfs_get_block(
1010 struct inode *inode,
1011 sector_t iblock,
1012 struct buffer_head *bh_result,
1013 int create)
1014{
1015 return __linvfs_get_block(inode, iblock, 0, bh_result,
1016 create, 0, BMAPI_WRITE);
1017}
1018
1019STATIC int
1020linvfs_get_blocks_direct(
1021 struct inode *inode,
1022 sector_t iblock,
1023 unsigned long max_blocks,
1024 struct buffer_head *bh_result,
1025 int create)
1026{
1027 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1028 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1029}
1030
1031STATIC ssize_t
1032linvfs_direct_IO(
1033 int rw,
1034 struct kiocb *iocb,
1035 const struct iovec *iov,
1036 loff_t offset,
1037 unsigned long nr_segs)
1038{
1039 struct file *file = iocb->ki_filp;
1040 struct inode *inode = file->f_mapping->host;
1041 vnode_t *vp = LINVFS_GET_VP(inode);
1042 xfs_iomap_t iomap;
1043 int maps = 1;
1044 int error;
1045
1046 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1047 if (error)
1048 return -error;
1049
1050 return blockdev_direct_IO_own_locking(rw, iocb, inode,
1051 iomap.iomap_target->pbr_bdev,
1052 iov, offset, nr_segs,
1053 linvfs_get_blocks_direct,
1054 linvfs_unwritten_convert_direct);
1055}
1056
1057
1058STATIC sector_t
1059linvfs_bmap(
1060 struct address_space *mapping,
1061 sector_t block)
1062{
1063 struct inode *inode = (struct inode *)mapping->host;
1064 vnode_t *vp = LINVFS_GET_VP(inode);
1065 int error;
1066
1067 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1068
1069 VOP_RWLOCK(vp, VRWLOCK_READ);
1070 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1071 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1072 return generic_block_bmap(mapping, block, linvfs_get_block);
1073}
1074
1075STATIC int
1076linvfs_readpage(
1077 struct file *unused,
1078 struct page *page)
1079{
1080 return mpage_readpage(page, linvfs_get_block);
1081}
1082
1083STATIC int
1084linvfs_readpages(
1085 struct file *unused,
1086 struct address_space *mapping,
1087 struct list_head *pages,
1088 unsigned nr_pages)
1089{
1090 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1091}
1092
1093STATIC void
1094xfs_count_page_state(
1095 struct page *page,
1096 int *delalloc,
1097 int *unmapped,
1098 int *unwritten)
1099{
1100 struct buffer_head *bh, *head;
1101
1102 *delalloc = *unmapped = *unwritten = 0;
1103
1104 bh = head = page_buffers(page);
1105 do {
1106 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1107 (*unmapped) = 1;
1108 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1109 clear_buffer_unwritten(bh);
1110 else if (buffer_unwritten(bh))
1111 (*unwritten) = 1;
1112 else if (buffer_delay(bh))
1113 (*delalloc) = 1;
1114 } while ((bh = bh->b_this_page) != head);
1115}
1116
1117
1118/*
1119 * writepage: Called from one of two places:
1120 *
1121 * 1. we are flushing a delalloc buffer head.
1122 *
1123 * 2. we are writing out a dirty page. Typically the page dirty
1124 * state is cleared before we get here. In this case is it
1125 * conceivable we have no buffer heads.
1126 *
1127 * For delalloc space on the page we need to allocate space and
1128 * flush it. For unmapped buffer heads on the page we should
1129 * allocate space if the page is uptodate. For any other dirty
1130 * buffer heads on the page we should flush them.
1131 *
1132 * If we detect that a transaction would be required to flush
1133 * the page, we have to check the process flags first, if we
1134 * are already in a transaction or disk I/O during allocations
1135 * is off, we need to fail the writepage and redirty the page.
1136 */
1137
1138STATIC int
1139linvfs_writepage(
1140 struct page *page,
1141 struct writeback_control *wbc)
1142{
1143 int error;
1144 int need_trans;
1145 int delalloc, unmapped, unwritten;
1146 struct inode *inode = page->mapping->host;
1147
1148 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1149
1150 /*
1151 * We need a transaction if:
1152 * 1. There are delalloc buffers on the page
1153 * 2. The page is uptodate and we have unmapped buffers
1154 * 3. The page is uptodate and we have no buffers
1155 * 4. There are unwritten buffers on the page
1156 */
1157
1158 if (!page_has_buffers(page)) {
1159 unmapped = 1;
1160 need_trans = 1;
1161 } else {
1162 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1163 if (!PageUptodate(page))
1164 unmapped = 0;
1165 need_trans = delalloc + unmapped + unwritten;
1166 }
1167
1168 /*
1169 * If we need a transaction and the process flags say
1170 * we are already in a transaction, or no IO is allowed
1171 * then mark the page dirty again and leave the page
1172 * as is.
1173 */
1174 if (PFLAGS_TEST_FSTRANS() && need_trans)
1175 goto out_fail;
1176
1177 /*
1178 * Delay hooking up buffer heads until we have
1179 * made our go/no-go decision.
1180 */
1181 if (!page_has_buffers(page))
1182 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1183
1184 /*
1185 * Convert delayed allocate, unwritten or unmapped space
1186 * to real space and flush out to disk.
1187 */
1188 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1189 if (error == -EAGAIN)
1190 goto out_fail;
1191 if (unlikely(error < 0))
1192 goto out_unlock;
1193
1194 return 0;
1195
1196out_fail:
1197 redirty_page_for_writepage(wbc, page);
1198 unlock_page(page);
1199 return 0;
1200out_unlock:
1201 unlock_page(page);
1202 return error;
1203}
1204
1205/*
1206 * Called to move a page into cleanable state - and from there
1207 * to be released. Possibly the page is already clean. We always
1208 * have buffer heads in this call.
1209 *
1210 * Returns 0 if the page is ok to release, 1 otherwise.
1211 *
1212 * Possible scenarios are:
1213 *
1214 * 1. We are being called to release a page which has been written
1215 * to via regular I/O. buffer heads will be dirty and possibly
1216 * delalloc. If no delalloc buffer heads in this case then we
1217 * can just return zero.
1218 *
1219 * 2. We are called to release a page which has been written via
1220 * mmap, all we need to do is ensure there is no delalloc
1221 * state in the buffer heads, if not we can let the caller
1222 * free them and we should come back later via writepage.
1223 */
1224STATIC int
1225linvfs_release_page(
1226 struct page *page,
1227 int gfp_mask)
1228{
1229 struct inode *inode = page->mapping->host;
1230 int dirty, delalloc, unmapped, unwritten;
1231 struct writeback_control wbc = {
1232 .sync_mode = WB_SYNC_ALL,
1233 .nr_to_write = 1,
1234 };
1235
1236 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1237
1238 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1239 if (!delalloc && !unwritten)
1240 goto free_buffers;
1241
1242 if (!(gfp_mask & __GFP_FS))
1243 return 0;
1244
1245 /* If we are already inside a transaction or the thread cannot
1246 * do I/O, we cannot release this page.
1247 */
1248 if (PFLAGS_TEST_FSTRANS())
1249 return 0;
1250
1251 /*
1252 * Convert delalloc space to real space, do not flush the
1253 * data out to disk, that will be done by the caller.
1254 * Never need to allocate space here - we will always
1255 * come back to writepage in that case.
1256 */
1257 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1258 if (dirty == 0 && !unwritten)
1259 goto free_buffers;
1260 return 0;
1261
1262free_buffers:
1263 return try_to_free_buffers(page);
1264}
1265
1266STATIC int
1267linvfs_prepare_write(
1268 struct file *file,
1269 struct page *page,
1270 unsigned int from,
1271 unsigned int to)
1272{
1273 return block_prepare_write(page, from, to, linvfs_get_block);
1274}
1275
1276struct address_space_operations linvfs_aops = {
1277 .readpage = linvfs_readpage,
1278 .readpages = linvfs_readpages,
1279 .writepage = linvfs_writepage,
1280 .sync_page = block_sync_page,
1281 .releasepage = linvfs_release_page,
1282 .prepare_write = linvfs_prepare_write,
1283 .commit_write = generic_commit_write,
1284 .bmap = linvfs_bmap,
1285 .direct_IO = linvfs_direct_IO,
1286};