]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
[XFS] xfs_bdwrite() does not return errors.
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
f51623b2
NS
45STATIC void
46xfs_count_page_state(
47 struct page *page,
48 int *delalloc,
49 int *unmapped,
50 int *unwritten)
51{
52 struct buffer_head *bh, *head;
53
54 *delalloc = *unmapped = *unwritten = 0;
55
56 bh = head = page_buffers(page);
57 do {
58 if (buffer_uptodate(bh) && !buffer_mapped(bh))
59 (*unmapped) = 1;
f51623b2
NS
60 else if (buffer_unwritten(bh))
61 (*unwritten) = 1;
62 else if (buffer_delay(bh))
63 (*delalloc) = 1;
64 } while ((bh = bh->b_this_page) != head);
65}
66
1da177e4
LT
67#if defined(XFS_RW_TRACE)
68void
69xfs_page_trace(
70 int tag,
71 struct inode *inode,
72 struct page *page,
ed9d88f7 73 unsigned long pgoff)
1da177e4
LT
74{
75 xfs_inode_t *ip;
67fcaa73 76 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 77 loff_t isize = i_size_read(inode);
f6d6d4fc 78 loff_t offset = page_offset(page);
1da177e4
LT
79 int delalloc = -1, unmapped = -1, unwritten = -1;
80
81 if (page_has_buffers(page))
82 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
83
75e17b3c 84 ip = xfs_vtoi(vp);
1da177e4
LT
85 if (!ip->i_rwtrace)
86 return;
87
88 ktrace_enter(ip->i_rwtrace,
89 (void *)((unsigned long)tag),
90 (void *)ip,
91 (void *)inode,
92 (void *)page,
ed9d88f7 93 (void *)pgoff,
1da177e4
LT
94 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
95 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
96 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
97 (void *)((unsigned long)(isize & 0xffffffff)),
98 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
99 (void *)((unsigned long)(offset & 0xffffffff)),
100 (void *)((unsigned long)delalloc),
101 (void *)((unsigned long)unmapped),
102 (void *)((unsigned long)unwritten),
f1fdc848 103 (void *)((unsigned long)current_pid()),
1da177e4
LT
104 (void *)NULL);
105}
106#else
ed9d88f7 107#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
108#endif
109
6214ed44
CH
110STATIC struct block_device *
111xfs_find_bdev_for_inode(
112 struct xfs_inode *ip)
113{
114 struct xfs_mount *mp = ip->i_mount;
115
71ddabb9 116 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
117 return mp->m_rtdev_targp->bt_bdev;
118 else
119 return mp->m_ddev_targp->bt_bdev;
120}
121
0829c360
CH
122/*
123 * Schedule IO completion handling on a xfsdatad if this was
e927af90
DC
124 * the final hold on this ioend. If we are asked to wait,
125 * flush the workqueue.
0829c360
CH
126 */
127STATIC void
128xfs_finish_ioend(
e927af90
DC
129 xfs_ioend_t *ioend,
130 int wait)
0829c360 131{
e927af90 132 if (atomic_dec_and_test(&ioend->io_remaining)) {
0829c360 133 queue_work(xfsdatad_workqueue, &ioend->io_work);
e927af90
DC
134 if (wait)
135 flush_workqueue(xfsdatad_workqueue);
136 }
0829c360
CH
137}
138
f6d6d4fc
CH
139/*
140 * We're now finished for good with this ioend structure.
141 * Update the page state via the associated buffer_heads,
142 * release holds on the inode and bio, and finally free
143 * up memory. Do not use the ioend after this.
144 */
0829c360
CH
145STATIC void
146xfs_destroy_ioend(
147 xfs_ioend_t *ioend)
148{
f6d6d4fc
CH
149 struct buffer_head *bh, *next;
150
151 for (bh = ioend->io_buffer_head; bh; bh = next) {
152 next = bh->b_private;
7d04a335 153 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 154 }
b677c210
CH
155 if (unlikely(ioend->io_error)) {
156 vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error,
157 __FILE__,__LINE__);
158 }
159 vn_iowake(XFS_I(ioend->io_inode));
0829c360
CH
160 mempool_free(ioend, xfs_ioend_pool);
161}
162
ba87ea69
LM
163/*
164 * Update on-disk file size now that data has been written to disk.
165 * The current in-memory file size is i_size. If a write is beyond
613d7043 166 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
167 * updated. If this write does not extend all the way to the valid
168 * file size then restrict this update to the end of the write.
169 */
170STATIC void
171xfs_setfilesize(
172 xfs_ioend_t *ioend)
173{
b677c210 174 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69
LM
175 xfs_fsize_t isize;
176 xfs_fsize_t bsize;
177
ba87ea69
LM
178 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
179 ASSERT(ioend->io_type != IOMAP_READ);
180
181 if (unlikely(ioend->io_error))
182 return;
183
184 bsize = ioend->io_offset + ioend->io_size;
185
186 xfs_ilock(ip, XFS_ILOCK_EXCL);
187
613d7043 188 isize = MAX(ip->i_size, ip->i_new_size);
ba87ea69
LM
189 isize = MIN(isize, bsize);
190
191 if (ip->i_d.di_size < isize) {
192 ip->i_d.di_size = isize;
193 ip->i_update_core = 1;
194 ip->i_update_size = 1;
150f29ef 195 mark_inode_dirty_sync(ioend->io_inode);
ba87ea69
LM
196 }
197
198 xfs_iunlock(ip, XFS_ILOCK_EXCL);
199}
200
0829c360 201/*
f6d6d4fc 202 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
203 */
204STATIC void
205xfs_end_bio_delalloc(
c4028958 206 struct work_struct *work)
f6d6d4fc 207{
c4028958
DH
208 xfs_ioend_t *ioend =
209 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 210
ba87ea69 211 xfs_setfilesize(ioend);
f6d6d4fc
CH
212 xfs_destroy_ioend(ioend);
213}
214
215/*
216 * Buffered IO write completion for regular, written extents.
217 */
218STATIC void
219xfs_end_bio_written(
c4028958 220 struct work_struct *work)
f6d6d4fc 221{
c4028958
DH
222 xfs_ioend_t *ioend =
223 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 224
ba87ea69 225 xfs_setfilesize(ioend);
f6d6d4fc
CH
226 xfs_destroy_ioend(ioend);
227}
228
229/*
230 * IO write completion for unwritten extents.
231 *
0829c360 232 * Issue transactions to convert a buffer range from unwritten
f0973863 233 * to written extents.
0829c360
CH
234 */
235STATIC void
236xfs_end_bio_unwritten(
c4028958 237 struct work_struct *work)
0829c360 238{
c4028958
DH
239 xfs_ioend_t *ioend =
240 container_of(work, xfs_ioend_t, io_work);
7642861b 241 struct xfs_inode *ip = XFS_I(ioend->io_inode);
0829c360
CH
242 xfs_off_t offset = ioend->io_offset;
243 size_t size = ioend->io_size;
0829c360 244
ba87ea69 245 if (likely(!ioend->io_error)) {
7642861b
CH
246 if (!XFS_FORCED_SHUTDOWN(ip->i_mount))
247 xfs_iomap_write_unwritten(ip, offset, size);
ba87ea69
LM
248 xfs_setfilesize(ioend);
249 }
250 xfs_destroy_ioend(ioend);
251}
252
253/*
254 * IO read completion for regular, written extents.
255 */
256STATIC void
257xfs_end_bio_read(
258 struct work_struct *work)
259{
260 xfs_ioend_t *ioend =
261 container_of(work, xfs_ioend_t, io_work);
262
0829c360
CH
263 xfs_destroy_ioend(ioend);
264}
265
266/*
267 * Allocate and initialise an IO completion structure.
268 * We need to track unwritten extent write completion here initially.
269 * We'll need to extend this for updating the ondisk inode size later
270 * (vs. incore size).
271 */
272STATIC xfs_ioend_t *
273xfs_alloc_ioend(
f6d6d4fc
CH
274 struct inode *inode,
275 unsigned int type)
0829c360
CH
276{
277 xfs_ioend_t *ioend;
278
279 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
280
281 /*
282 * Set the count to 1 initially, which will prevent an I/O
283 * completion callback from happening before we have started
284 * all the I/O from calling the completion routine too early.
285 */
286 atomic_set(&ioend->io_remaining, 1);
7d04a335 287 ioend->io_error = 0;
f6d6d4fc
CH
288 ioend->io_list = NULL;
289 ioend->io_type = type;
b677c210 290 ioend->io_inode = inode;
c1a073bd 291 ioend->io_buffer_head = NULL;
f6d6d4fc 292 ioend->io_buffer_tail = NULL;
b677c210 293 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
294 ioend->io_offset = 0;
295 ioend->io_size = 0;
296
f6d6d4fc 297 if (type == IOMAP_UNWRITTEN)
c4028958 298 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 299 else if (type == IOMAP_DELAY)
c4028958 300 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
301 else if (type == IOMAP_READ)
302 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 303 else
c4028958 304 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
305
306 return ioend;
307}
308
1da177e4
LT
309STATIC int
310xfs_map_blocks(
311 struct inode *inode,
312 loff_t offset,
313 ssize_t count,
314 xfs_iomap_t *mapp,
315 int flags)
316{
b3aea4ed 317 xfs_inode_t *ip = XFS_I(inode);
1da177e4
LT
318 int error, nmaps = 1;
319
541d7d3c 320 error = xfs_iomap(ip, offset, count,
739bfb2a 321 flags, mapp, &nmaps);
1da177e4 322 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
b3aea4ed 323 xfs_iflags_set(ip, XFS_IMODIFIED);
1da177e4
LT
324 return -error;
325}
326
7989cb8e 327STATIC_INLINE int
1defeac9 328xfs_iomap_valid(
1da177e4 329 xfs_iomap_t *iomapp,
1defeac9 330 loff_t offset)
1da177e4 331{
1defeac9
CH
332 return offset >= iomapp->iomap_offset &&
333 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
334}
335
f6d6d4fc
CH
336/*
337 * BIO completion handler for buffered IO.
338 */
782e3b3b 339STATIC void
f6d6d4fc
CH
340xfs_end_bio(
341 struct bio *bio,
f6d6d4fc
CH
342 int error)
343{
344 xfs_ioend_t *ioend = bio->bi_private;
345
f6d6d4fc 346 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 347 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
348
349 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
350 bio->bi_private = NULL;
351 bio->bi_end_io = NULL;
f6d6d4fc 352 bio_put(bio);
7d04a335 353
e927af90 354 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
355}
356
357STATIC void
358xfs_submit_ioend_bio(
359 xfs_ioend_t *ioend,
360 struct bio *bio)
361{
362 atomic_inc(&ioend->io_remaining);
363
364 bio->bi_private = ioend;
365 bio->bi_end_io = xfs_end_bio;
366
367 submit_bio(WRITE, bio);
368 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
369 bio_put(bio);
370}
371
372STATIC struct bio *
373xfs_alloc_ioend_bio(
374 struct buffer_head *bh)
375{
376 struct bio *bio;
377 int nvecs = bio_get_nr_vecs(bh->b_bdev);
378
379 do {
380 bio = bio_alloc(GFP_NOIO, nvecs);
381 nvecs >>= 1;
382 } while (!bio);
383
384 ASSERT(bio->bi_private == NULL);
385 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
386 bio->bi_bdev = bh->b_bdev;
387 bio_get(bio);
388 return bio;
389}
390
391STATIC void
392xfs_start_buffer_writeback(
393 struct buffer_head *bh)
394{
395 ASSERT(buffer_mapped(bh));
396 ASSERT(buffer_locked(bh));
397 ASSERT(!buffer_delay(bh));
398 ASSERT(!buffer_unwritten(bh));
399
400 mark_buffer_async_write(bh);
401 set_buffer_uptodate(bh);
402 clear_buffer_dirty(bh);
403}
404
405STATIC void
406xfs_start_page_writeback(
407 struct page *page,
408 struct writeback_control *wbc,
409 int clear_dirty,
410 int buffers)
411{
412 ASSERT(PageLocked(page));
413 ASSERT(!PageWriteback(page));
f6d6d4fc 414 if (clear_dirty)
92132021
DC
415 clear_page_dirty_for_io(page);
416 set_page_writeback(page);
f6d6d4fc 417 unlock_page(page);
1f7decf6
FW
418 /* If no buffers on the page are to be written, finish it here */
419 if (!buffers)
f6d6d4fc 420 end_page_writeback(page);
f6d6d4fc
CH
421}
422
423static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
424{
425 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
426}
427
428/*
d88992f6
DC
429 * Submit all of the bios for all of the ioends we have saved up, covering the
430 * initial writepage page and also any probed pages.
431 *
432 * Because we may have multiple ioends spanning a page, we need to start
433 * writeback on all the buffers before we submit them for I/O. If we mark the
434 * buffers as we got, then we can end up with a page that only has buffers
435 * marked async write and I/O complete on can occur before we mark the other
436 * buffers async write.
437 *
438 * The end result of this is that we trip a bug in end_page_writeback() because
439 * we call it twice for the one page as the code in end_buffer_async_write()
440 * assumes that all buffers on the page are started at the same time.
441 *
442 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 443 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
444 */
445STATIC void
446xfs_submit_ioend(
447 xfs_ioend_t *ioend)
448{
d88992f6 449 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
450 xfs_ioend_t *next;
451 struct buffer_head *bh;
452 struct bio *bio;
453 sector_t lastblock = 0;
454
d88992f6
DC
455 /* Pass 1 - start writeback */
456 do {
457 next = ioend->io_list;
458 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
459 xfs_start_buffer_writeback(bh);
460 }
461 } while ((ioend = next) != NULL);
462
463 /* Pass 2 - submit I/O */
464 ioend = head;
f6d6d4fc
CH
465 do {
466 next = ioend->io_list;
467 bio = NULL;
468
469 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
470
471 if (!bio) {
472 retry:
473 bio = xfs_alloc_ioend_bio(bh);
474 } else if (bh->b_blocknr != lastblock + 1) {
475 xfs_submit_ioend_bio(ioend, bio);
476 goto retry;
477 }
478
479 if (bio_add_buffer(bio, bh) != bh->b_size) {
480 xfs_submit_ioend_bio(ioend, bio);
481 goto retry;
482 }
483
484 lastblock = bh->b_blocknr;
485 }
486 if (bio)
487 xfs_submit_ioend_bio(ioend, bio);
e927af90 488 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
489 } while ((ioend = next) != NULL);
490}
491
492/*
493 * Cancel submission of all buffer_heads so far in this endio.
494 * Toss the endio too. Only ever called for the initial page
495 * in a writepage request, so only ever one page.
496 */
497STATIC void
498xfs_cancel_ioend(
499 xfs_ioend_t *ioend)
500{
501 xfs_ioend_t *next;
502 struct buffer_head *bh, *next_bh;
503
504 do {
505 next = ioend->io_list;
506 bh = ioend->io_buffer_head;
507 do {
508 next_bh = bh->b_private;
509 clear_buffer_async_write(bh);
510 unlock_buffer(bh);
511 } while ((bh = next_bh) != NULL);
512
b677c210 513 vn_iowake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
514 mempool_free(ioend, xfs_ioend_pool);
515 } while ((ioend = next) != NULL);
516}
517
518/*
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
522 * Return true if we've finished the given ioend.
523 */
524STATIC void
525xfs_add_to_ioend(
526 struct inode *inode,
527 struct buffer_head *bh,
7336cea8 528 xfs_off_t offset,
f6d6d4fc
CH
529 unsigned int type,
530 xfs_ioend_t **result,
531 int need_ioend)
532{
533 xfs_ioend_t *ioend = *result;
534
535 if (!ioend || need_ioend || type != ioend->io_type) {
536 xfs_ioend_t *previous = *result;
f6d6d4fc 537
f6d6d4fc
CH
538 ioend = xfs_alloc_ioend(inode, type);
539 ioend->io_offset = offset;
540 ioend->io_buffer_head = bh;
541 ioend->io_buffer_tail = bh;
542 if (previous)
543 previous->io_list = ioend;
544 *result = ioend;
545 } else {
546 ioend->io_buffer_tail->b_private = bh;
547 ioend->io_buffer_tail = bh;
548 }
549
550 bh->b_private = NULL;
551 ioend->io_size += bh->b_size;
552}
553
87cbc49c
NS
554STATIC void
555xfs_map_buffer(
556 struct buffer_head *bh,
557 xfs_iomap_t *mp,
558 xfs_off_t offset,
559 uint block_bits)
560{
561 sector_t bn;
562
563 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
564
565 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
566 ((offset - mp->iomap_offset) >> block_bits);
567
568 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
569
570 bh->b_blocknr = bn;
571 set_buffer_mapped(bh);
572}
573
1da177e4
LT
574STATIC void
575xfs_map_at_offset(
1da177e4 576 struct buffer_head *bh,
1defeac9 577 loff_t offset,
1da177e4 578 int block_bits,
1defeac9 579 xfs_iomap_t *iomapp)
1da177e4 580{
1da177e4
LT
581 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
582 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
583
584 lock_buffer(bh);
87cbc49c 585 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 586 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
f6d6d4fc 589 clear_buffer_unwritten(bh);
1da177e4
LT
590}
591
592/*
6c4fe19f 593 * Look for a page at index that is suitable for clustering.
1da177e4
LT
594 */
595STATIC unsigned int
6c4fe19f 596xfs_probe_page(
10ce4444 597 struct page *page,
6c4fe19f
CH
598 unsigned int pg_offset,
599 int mapped)
1da177e4 600{
1da177e4
LT
601 int ret = 0;
602
1da177e4 603 if (PageWriteback(page))
10ce4444 604 return 0;
1da177e4
LT
605
606 if (page->mapping && PageDirty(page)) {
607 if (page_has_buffers(page)) {
608 struct buffer_head *bh, *head;
609
610 bh = head = page_buffers(page);
611 do {
6c4fe19f
CH
612 if (!buffer_uptodate(bh))
613 break;
614 if (mapped != buffer_mapped(bh))
1da177e4
LT
615 break;
616 ret += bh->b_size;
617 if (ret >= pg_offset)
618 break;
619 } while ((bh = bh->b_this_page) != head);
620 } else
6c4fe19f 621 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
622 }
623
1da177e4
LT
624 return ret;
625}
626
f6d6d4fc 627STATIC size_t
6c4fe19f 628xfs_probe_cluster(
1da177e4
LT
629 struct inode *inode,
630 struct page *startpage,
631 struct buffer_head *bh,
6c4fe19f
CH
632 struct buffer_head *head,
633 int mapped)
1da177e4 634{
10ce4444 635 struct pagevec pvec;
1da177e4 636 pgoff_t tindex, tlast, tloff;
10ce4444
CH
637 size_t total = 0;
638 int done = 0, i;
1da177e4
LT
639
640 /* First sum forwards in this page */
641 do {
2353e8e9 642 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 643 return total;
1da177e4
LT
644 total += bh->b_size;
645 } while ((bh = bh->b_this_page) != head);
646
10ce4444
CH
647 /* if we reached the end of the page, sum forwards in following pages */
648 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
649 tindex = startpage->index + 1;
650
651 /* Prune this back to avoid pathological behavior */
652 tloff = min(tlast, startpage->index + 64);
653
654 pagevec_init(&pvec, 0);
655 while (!done && tindex <= tloff) {
656 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
657
658 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
659 break;
660
661 for (i = 0; i < pagevec_count(&pvec); i++) {
662 struct page *page = pvec.pages[i];
265c1fac 663 size_t pg_offset, pg_len = 0;
10ce4444
CH
664
665 if (tindex == tlast) {
666 pg_offset =
667 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
668 if (!pg_offset) {
669 done = 1;
10ce4444 670 break;
1defeac9 671 }
10ce4444
CH
672 } else
673 pg_offset = PAGE_CACHE_SIZE;
674
675 if (page->index == tindex && !TestSetPageLocked(page)) {
265c1fac 676 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
677 unlock_page(page);
678 }
679
265c1fac 680 if (!pg_len) {
10ce4444
CH
681 done = 1;
682 break;
683 }
684
265c1fac 685 total += pg_len;
1defeac9 686 tindex++;
1da177e4 687 }
10ce4444
CH
688
689 pagevec_release(&pvec);
690 cond_resched();
1da177e4 691 }
10ce4444 692
1da177e4
LT
693 return total;
694}
695
696/*
10ce4444
CH
697 * Test if a given page is suitable for writing as part of an unwritten
698 * or delayed allocate extent.
1da177e4 699 */
10ce4444
CH
700STATIC int
701xfs_is_delayed_page(
702 struct page *page,
f6d6d4fc 703 unsigned int type)
1da177e4 704{
1da177e4 705 if (PageWriteback(page))
10ce4444 706 return 0;
1da177e4
LT
707
708 if (page->mapping && page_has_buffers(page)) {
709 struct buffer_head *bh, *head;
710 int acceptable = 0;
711
712 bh = head = page_buffers(page);
713 do {
f6d6d4fc
CH
714 if (buffer_unwritten(bh))
715 acceptable = (type == IOMAP_UNWRITTEN);
716 else if (buffer_delay(bh))
717 acceptable = (type == IOMAP_DELAY);
2ddee844 718 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 719 acceptable = (type == IOMAP_NEW);
f6d6d4fc 720 else
1da177e4 721 break;
1da177e4
LT
722 } while ((bh = bh->b_this_page) != head);
723
724 if (acceptable)
10ce4444 725 return 1;
1da177e4
LT
726 }
727
10ce4444 728 return 0;
1da177e4
LT
729}
730
1da177e4
LT
731/*
732 * Allocate & map buffers for page given the extent map. Write it out.
733 * except for the original page of a writepage, this is called on
734 * delalloc/unwritten pages only, for the original page it is possible
735 * that the page has no mapping at all.
736 */
f6d6d4fc 737STATIC int
1da177e4
LT
738xfs_convert_page(
739 struct inode *inode,
740 struct page *page,
10ce4444 741 loff_t tindex,
1defeac9 742 xfs_iomap_t *mp,
f6d6d4fc 743 xfs_ioend_t **ioendp,
1da177e4 744 struct writeback_control *wbc,
1da177e4
LT
745 int startio,
746 int all_bh)
747{
f6d6d4fc 748 struct buffer_head *bh, *head;
9260dc6b
CH
749 xfs_off_t end_offset;
750 unsigned long p_offset;
f6d6d4fc 751 unsigned int type;
1da177e4 752 int bbits = inode->i_blkbits;
24e17b5f 753 int len, page_dirty;
f6d6d4fc 754 int count = 0, done = 0, uptodate = 1;
9260dc6b 755 xfs_off_t offset = page_offset(page);
1da177e4 756
10ce4444
CH
757 if (page->index != tindex)
758 goto fail;
759 if (TestSetPageLocked(page))
760 goto fail;
761 if (PageWriteback(page))
762 goto fail_unlock_page;
763 if (page->mapping != inode->i_mapping)
764 goto fail_unlock_page;
765 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
766 goto fail_unlock_page;
767
24e17b5f
NS
768 /*
769 * page_dirty is initially a count of buffers on the page before
c41564b5 770 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
771 *
772 * Derivation:
773 *
774 * End offset is the highest offset that this page should represent.
775 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
776 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
777 * hence give us the correct page_dirty count. On any other page,
778 * it will be zero and in that case we need page_dirty to be the
779 * count of buffers on the page.
24e17b5f 780 */
9260dc6b
CH
781 end_offset = min_t(unsigned long long,
782 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
783 i_size_read(inode));
784
24e17b5f 785 len = 1 << inode->i_blkbits;
9260dc6b
CH
786 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
787 PAGE_CACHE_SIZE);
788 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
789 page_dirty = p_offset / len;
24e17b5f 790
1da177e4
LT
791 bh = head = page_buffers(page);
792 do {
9260dc6b 793 if (offset >= end_offset)
1da177e4 794 break;
f6d6d4fc
CH
795 if (!buffer_uptodate(bh))
796 uptodate = 0;
797 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
798 done = 1;
1da177e4 799 continue;
f6d6d4fc
CH
800 }
801
9260dc6b
CH
802 if (buffer_unwritten(bh) || buffer_delay(bh)) {
803 if (buffer_unwritten(bh))
804 type = IOMAP_UNWRITTEN;
805 else
806 type = IOMAP_DELAY;
807
808 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 809 done = 1;
9260dc6b
CH
810 continue;
811 }
812
813 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
814 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
815
816 xfs_map_at_offset(bh, offset, bbits, mp);
817 if (startio) {
7336cea8 818 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
819 type, ioendp, done);
820 } else {
821 set_buffer_dirty(bh);
822 unlock_buffer(bh);
823 mark_buffer_dirty(bh);
824 }
825 page_dirty--;
826 count++;
827 } else {
df3c7244 828 type = IOMAP_NEW;
9260dc6b 829 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 830 lock_buffer(bh);
7336cea8 831 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
832 type, ioendp, done);
833 count++;
24e17b5f 834 page_dirty--;
9260dc6b
CH
835 } else {
836 done = 1;
1da177e4 837 }
1da177e4 838 }
7336cea8 839 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 840
f6d6d4fc
CH
841 if (uptodate && bh == head)
842 SetPageUptodate(page);
843
844 if (startio) {
f5e596bb
CH
845 if (count) {
846 struct backing_dev_info *bdi;
847
848 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 849 wbc->nr_to_write--;
f5e596bb
CH
850 if (bdi_write_congested(bdi)) {
851 wbc->encountered_congestion = 1;
852 done = 1;
9fddaca2 853 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
854 done = 1;
855 }
856 }
f6d6d4fc 857 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 858 }
f6d6d4fc
CH
859
860 return done;
10ce4444
CH
861 fail_unlock_page:
862 unlock_page(page);
863 fail:
864 return 1;
1da177e4
LT
865}
866
867/*
868 * Convert & write out a cluster of pages in the same extent as defined
869 * by mp and following the start page.
870 */
871STATIC void
872xfs_cluster_write(
873 struct inode *inode,
874 pgoff_t tindex,
875 xfs_iomap_t *iomapp,
f6d6d4fc 876 xfs_ioend_t **ioendp,
1da177e4
LT
877 struct writeback_control *wbc,
878 int startio,
879 int all_bh,
880 pgoff_t tlast)
881{
10ce4444
CH
882 struct pagevec pvec;
883 int done = 0, i;
1da177e4 884
10ce4444
CH
885 pagevec_init(&pvec, 0);
886 while (!done && tindex <= tlast) {
887 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
888
889 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 890 break;
10ce4444
CH
891
892 for (i = 0; i < pagevec_count(&pvec); i++) {
893 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
894 iomapp, ioendp, wbc, startio, all_bh);
895 if (done)
896 break;
897 }
898
899 pagevec_release(&pvec);
900 cond_resched();
1da177e4
LT
901 }
902}
903
904/*
905 * Calling this without startio set means we are being asked to make a dirty
906 * page ready for freeing it's buffers. When called with startio set then
907 * we are coming from writepage.
908 *
909 * When called with startio set it is important that we write the WHOLE
910 * page if possible.
911 * The bh->b_state's cannot know if any of the blocks or which block for
912 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 913 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
914 * may clear the page dirty flag prior to calling write page, under the
915 * assumption the entire page will be written out; by not writing out the
916 * whole page the page can be reused before all valid dirty data is
917 * written out. Note: in the case of a page that has been dirty'd by
918 * mapwrite and but partially setup by block_prepare_write the
919 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
920 * valid state, thus the whole page must be written out thing.
921 */
922
923STATIC int
924xfs_page_state_convert(
925 struct inode *inode,
926 struct page *page,
927 struct writeback_control *wbc,
928 int startio,
929 int unmapped) /* also implies page uptodate */
930{
f6d6d4fc 931 struct buffer_head *bh, *head;
1defeac9 932 xfs_iomap_t iomap;
f6d6d4fc 933 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
934 loff_t offset;
935 unsigned long p_offset = 0;
f6d6d4fc 936 unsigned int type;
1da177e4
LT
937 __uint64_t end_offset;
938 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
939 ssize_t size, len;
940 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
941 int page_dirty, count = 0;
942 int trylock = 0;
6c4fe19f 943 int all_bh = unmapped;
1da177e4 944
8272145c
NS
945 if (startio) {
946 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
947 trylock |= BMAPI_TRYLOCK;
948 }
3ba0815a 949
1da177e4
LT
950 /* Is this page beyond the end of the file? */
951 offset = i_size_read(inode);
952 end_index = offset >> PAGE_CACHE_SHIFT;
953 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
954 if (page->index >= end_index) {
955 if ((page->index >= end_index + 1) ||
956 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
957 if (startio)
958 unlock_page(page);
959 return 0;
1da177e4
LT
960 }
961 }
962
1da177e4 963 /*
24e17b5f 964 * page_dirty is initially a count of buffers on the page before
c41564b5 965 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
966 *
967 * Derivation:
968 *
969 * End offset is the highest offset that this page should represent.
970 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
971 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
972 * hence give us the correct page_dirty count. On any other page,
973 * it will be zero and in that case we need page_dirty to be the
974 * count of buffers on the page.
975 */
976 end_offset = min_t(unsigned long long,
977 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 978 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
979 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
980 PAGE_CACHE_SIZE);
981 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
982 page_dirty = p_offset / len;
983
24e17b5f 984 bh = head = page_buffers(page);
f6d6d4fc 985 offset = page_offset(page);
df3c7244
DC
986 flags = BMAPI_READ;
987 type = IOMAP_NEW;
f6d6d4fc 988
f6d6d4fc 989 /* TODO: cleanup count and page_dirty */
1da177e4
LT
990
991 do {
992 if (offset >= end_offset)
993 break;
994 if (!buffer_uptodate(bh))
995 uptodate = 0;
f6d6d4fc 996 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
997 /*
998 * the iomap is actually still valid, but the ioend
999 * isn't. shouldn't happen too often.
1000 */
1001 iomap_valid = 0;
1da177e4 1002 continue;
f6d6d4fc 1003 }
1da177e4 1004
1defeac9
CH
1005 if (iomap_valid)
1006 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1007
1008 /*
1009 * First case, map an unwritten extent and prepare for
1010 * extent state conversion transaction on completion.
f6d6d4fc 1011 *
1da177e4
LT
1012 * Second case, allocate space for a delalloc buffer.
1013 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1014 *
1015 * Third case, an unmapped buffer was found, and we are
1016 * in a path where we need to write the whole page out.
df3c7244 1017 */
d5cb48aa
CH
1018 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1019 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1020 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1021 int new_ioend = 0;
1022
df3c7244 1023 /*
6c4fe19f
CH
1024 * Make sure we don't use a read-only iomap
1025 */
df3c7244 1026 if (flags == BMAPI_READ)
6c4fe19f
CH
1027 iomap_valid = 0;
1028
f6d6d4fc
CH
1029 if (buffer_unwritten(bh)) {
1030 type = IOMAP_UNWRITTEN;
8272145c 1031 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1032 } else if (buffer_delay(bh)) {
f6d6d4fc 1033 type = IOMAP_DELAY;
8272145c 1034 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1035 } else {
6c4fe19f 1036 type = IOMAP_NEW;
8272145c 1037 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1038 }
1039
1defeac9 1040 if (!iomap_valid) {
effd120e
DC
1041 /*
1042 * if we didn't have a valid mapping then we
1043 * need to ensure that we put the new mapping
1044 * in a new ioend structure. This needs to be
1045 * done to ensure that the ioends correctly
1046 * reflect the block mappings at io completion
1047 * for unwritten extent conversion.
1048 */
1049 new_ioend = 1;
6c4fe19f
CH
1050 if (type == IOMAP_NEW) {
1051 size = xfs_probe_cluster(inode,
1052 page, bh, head, 0);
d5cb48aa
CH
1053 } else {
1054 size = len;
1055 }
1056
1057 err = xfs_map_blocks(inode, offset, size,
1058 &iomap, flags);
f6d6d4fc 1059 if (err)
1da177e4 1060 goto error;
1defeac9 1061 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1062 }
1defeac9
CH
1063 if (iomap_valid) {
1064 xfs_map_at_offset(bh, offset,
1065 inode->i_blkbits, &iomap);
1da177e4 1066 if (startio) {
7336cea8 1067 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1068 type, &ioend,
effd120e 1069 new_ioend);
1da177e4
LT
1070 } else {
1071 set_buffer_dirty(bh);
1072 unlock_buffer(bh);
1073 mark_buffer_dirty(bh);
1074 }
1075 page_dirty--;
f6d6d4fc 1076 count++;
1da177e4 1077 }
d5cb48aa 1078 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1079 /*
1080 * we got here because the buffer is already mapped.
1081 * That means it must already have extents allocated
1082 * underneath it. Map the extent by reading it.
1083 */
df3c7244 1084 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1085 flags = BMAPI_READ;
1086 size = xfs_probe_cluster(inode, page, bh,
1087 head, 1);
1088 err = xfs_map_blocks(inode, offset, size,
1089 &iomap, flags);
1090 if (err)
1091 goto error;
1092 iomap_valid = xfs_iomap_valid(&iomap, offset);
1093 }
d5cb48aa 1094
df3c7244
DC
1095 /*
1096 * We set the type to IOMAP_NEW in case we are doing a
1097 * small write at EOF that is extending the file but
1098 * without needing an allocation. We need to update the
1099 * file size on I/O completion in this case so it is
1100 * the same case as having just allocated a new extent
1101 * that we are writing into for the first time.
1102 */
1103 type = IOMAP_NEW;
d5cb48aa
CH
1104 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1105 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1106 if (iomap_valid)
1107 all_bh = 1;
7336cea8 1108 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1109 &ioend, !iomap_valid);
1110 page_dirty--;
1111 count++;
f6d6d4fc 1112 } else {
1defeac9 1113 iomap_valid = 0;
1da177e4 1114 }
d5cb48aa
CH
1115 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1116 (unmapped || startio)) {
1117 iomap_valid = 0;
1da177e4 1118 }
f6d6d4fc
CH
1119
1120 if (!iohead)
1121 iohead = ioend;
1122
1123 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1124
1125 if (uptodate && bh == head)
1126 SetPageUptodate(page);
1127
f6d6d4fc
CH
1128 if (startio)
1129 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 1130
1defeac9
CH
1131 if (ioend && iomap_valid) {
1132 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1133 PAGE_CACHE_SHIFT;
775bf6c9 1134 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1135 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1136 wbc, startio, all_bh, tlast);
1da177e4
LT
1137 }
1138
f6d6d4fc
CH
1139 if (iohead)
1140 xfs_submit_ioend(iohead);
1141
1da177e4
LT
1142 return page_dirty;
1143
1144error:
f6d6d4fc
CH
1145 if (iohead)
1146 xfs_cancel_ioend(iohead);
1da177e4
LT
1147
1148 /*
1149 * If it's delalloc and we have nowhere to put it,
1150 * throw it away, unless the lower layers told
1151 * us to try again.
1152 */
1153 if (err != -EAGAIN) {
f6d6d4fc 1154 if (!unmapped)
1da177e4 1155 block_invalidatepage(page, 0);
1da177e4
LT
1156 ClearPageUptodate(page);
1157 }
1158 return err;
1159}
1160
f51623b2
NS
1161/*
1162 * writepage: Called from one of two places:
1163 *
1164 * 1. we are flushing a delalloc buffer head.
1165 *
1166 * 2. we are writing out a dirty page. Typically the page dirty
1167 * state is cleared before we get here. In this case is it
1168 * conceivable we have no buffer heads.
1169 *
1170 * For delalloc space on the page we need to allocate space and
1171 * flush it. For unmapped buffer heads on the page we should
1172 * allocate space if the page is uptodate. For any other dirty
1173 * buffer heads on the page we should flush them.
1174 *
1175 * If we detect that a transaction would be required to flush
1176 * the page, we have to check the process flags first, if we
1177 * are already in a transaction or disk I/O during allocations
1178 * is off, we need to fail the writepage and redirty the page.
1179 */
1180
1181STATIC int
e4c573bb 1182xfs_vm_writepage(
f51623b2
NS
1183 struct page *page,
1184 struct writeback_control *wbc)
1185{
1186 int error;
1187 int need_trans;
1188 int delalloc, unmapped, unwritten;
1189 struct inode *inode = page->mapping->host;
1190
1191 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1192
1193 /*
1194 * We need a transaction if:
1195 * 1. There are delalloc buffers on the page
1196 * 2. The page is uptodate and we have unmapped buffers
1197 * 3. The page is uptodate and we have no buffers
1198 * 4. There are unwritten buffers on the page
1199 */
1200
1201 if (!page_has_buffers(page)) {
1202 unmapped = 1;
1203 need_trans = 1;
1204 } else {
1205 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1206 if (!PageUptodate(page))
1207 unmapped = 0;
1208 need_trans = delalloc + unmapped + unwritten;
1209 }
1210
1211 /*
1212 * If we need a transaction and the process flags say
1213 * we are already in a transaction, or no IO is allowed
1214 * then mark the page dirty again and leave the page
1215 * as is.
1216 */
59c1b082 1217 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1218 goto out_fail;
1219
1220 /*
1221 * Delay hooking up buffer heads until we have
1222 * made our go/no-go decision.
1223 */
1224 if (!page_has_buffers(page))
1225 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1226
1227 /*
1228 * Convert delayed allocate, unwritten or unmapped space
1229 * to real space and flush out to disk.
1230 */
1231 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1232 if (error == -EAGAIN)
1233 goto out_fail;
1234 if (unlikely(error < 0))
1235 goto out_unlock;
1236
1237 return 0;
1238
1239out_fail:
1240 redirty_page_for_writepage(wbc, page);
1241 unlock_page(page);
1242 return 0;
1243out_unlock:
1244 unlock_page(page);
1245 return error;
1246}
1247
7d4fb40a
NS
1248STATIC int
1249xfs_vm_writepages(
1250 struct address_space *mapping,
1251 struct writeback_control *wbc)
1252{
b3aea4ed 1253 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1254 return generic_writepages(mapping, wbc);
1255}
1256
f51623b2
NS
1257/*
1258 * Called to move a page into cleanable state - and from there
1259 * to be released. Possibly the page is already clean. We always
1260 * have buffer heads in this call.
1261 *
1262 * Returns 0 if the page is ok to release, 1 otherwise.
1263 *
1264 * Possible scenarios are:
1265 *
1266 * 1. We are being called to release a page which has been written
1267 * to via regular I/O. buffer heads will be dirty and possibly
1268 * delalloc. If no delalloc buffer heads in this case then we
1269 * can just return zero.
1270 *
1271 * 2. We are called to release a page which has been written via
1272 * mmap, all we need to do is ensure there is no delalloc
1273 * state in the buffer heads, if not we can let the caller
1274 * free them and we should come back later via writepage.
1275 */
1276STATIC int
238f4c54 1277xfs_vm_releasepage(
f51623b2
NS
1278 struct page *page,
1279 gfp_t gfp_mask)
1280{
1281 struct inode *inode = page->mapping->host;
1282 int dirty, delalloc, unmapped, unwritten;
1283 struct writeback_control wbc = {
1284 .sync_mode = WB_SYNC_ALL,
1285 .nr_to_write = 1,
1286 };
1287
ed9d88f7 1288 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1289
238f4c54
NS
1290 if (!page_has_buffers(page))
1291 return 0;
1292
f51623b2
NS
1293 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1294 if (!delalloc && !unwritten)
1295 goto free_buffers;
1296
1297 if (!(gfp_mask & __GFP_FS))
1298 return 0;
1299
1300 /* If we are already inside a transaction or the thread cannot
1301 * do I/O, we cannot release this page.
1302 */
59c1b082 1303 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1304 return 0;
1305
1306 /*
1307 * Convert delalloc space to real space, do not flush the
1308 * data out to disk, that will be done by the caller.
1309 * Never need to allocate space here - we will always
1310 * come back to writepage in that case.
1311 */
1312 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1313 if (dirty == 0 && !unwritten)
1314 goto free_buffers;
1315 return 0;
1316
1317free_buffers:
1318 return try_to_free_buffers(page);
1319}
1320
1da177e4 1321STATIC int
c2536668 1322__xfs_get_blocks(
1da177e4
LT
1323 struct inode *inode,
1324 sector_t iblock,
1da177e4
LT
1325 struct buffer_head *bh_result,
1326 int create,
1327 int direct,
1328 bmapi_flags_t flags)
1329{
1da177e4 1330 xfs_iomap_t iomap;
fdc7ed75
NS
1331 xfs_off_t offset;
1332 ssize_t size;
c2536668 1333 int niomap = 1;
1da177e4 1334 int error;
1da177e4 1335
fdc7ed75 1336 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1337 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1338 size = bh_result->b_size;
541d7d3c 1339 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1340 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1341 if (error)
1342 return -error;
c2536668 1343 if (niomap == 0)
1da177e4
LT
1344 return 0;
1345
1346 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1347 /*
1348 * For unwritten extents do not report a disk address on
1da177e4
LT
1349 * the read case (treat as if we're reading into a hole).
1350 */
1351 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1352 xfs_map_buffer(bh_result, &iomap, offset,
1353 inode->i_blkbits);
1da177e4
LT
1354 }
1355 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1356 if (direct)
1357 bh_result->b_private = inode;
1358 set_buffer_unwritten(bh_result);
1da177e4
LT
1359 }
1360 }
1361
c2536668
NS
1362 /*
1363 * If this is a realtime file, data may be on a different device.
1364 * to that pointed to from the buffer_head b_bdev currently.
1365 */
ce8e922c 1366 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1367
c2536668 1368 /*
549054af
DC
1369 * If we previously allocated a block out beyond eof and we are now
1370 * coming back to use it then we will need to flag it as new even if it
1371 * has a disk address.
1372 *
1373 * With sub-block writes into unwritten extents we also need to mark
1374 * the buffer as new so that the unwritten parts of the buffer gets
1375 * correctly zeroed.
1da177e4
LT
1376 */
1377 if (create &&
1378 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1379 (offset >= i_size_read(inode)) ||
1380 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1381 set_buffer_new(bh_result);
1da177e4
LT
1382
1383 if (iomap.iomap_flags & IOMAP_DELAY) {
1384 BUG_ON(direct);
1385 if (create) {
1386 set_buffer_uptodate(bh_result);
1387 set_buffer_mapped(bh_result);
1388 set_buffer_delay(bh_result);
1389 }
1390 }
1391
c2536668 1392 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1393 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1394 offset = min_t(xfs_off_t,
c2536668
NS
1395 iomap.iomap_bsize - iomap.iomap_delta, size);
1396 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1397 }
1398
1399 return 0;
1400}
1401
1402int
c2536668 1403xfs_get_blocks(
1da177e4
LT
1404 struct inode *inode,
1405 sector_t iblock,
1406 struct buffer_head *bh_result,
1407 int create)
1408{
c2536668 1409 return __xfs_get_blocks(inode, iblock,
fa30bd05 1410 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1411}
1412
1413STATIC int
e4c573bb 1414xfs_get_blocks_direct(
1da177e4
LT
1415 struct inode *inode,
1416 sector_t iblock,
1da177e4
LT
1417 struct buffer_head *bh_result,
1418 int create)
1419{
c2536668 1420 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1421 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1422}
1423
f0973863 1424STATIC void
e4c573bb 1425xfs_end_io_direct(
f0973863
CH
1426 struct kiocb *iocb,
1427 loff_t offset,
1428 ssize_t size,
1429 void *private)
1430{
1431 xfs_ioend_t *ioend = iocb->private;
1432
1433 /*
1434 * Non-NULL private data means we need to issue a transaction to
1435 * convert a range from unwritten to written extents. This needs
c41564b5 1436 * to happen from process context but aio+dio I/O completion
f0973863 1437 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1438 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1439 * it anyway to keep the code uniform and simpler.
1440 *
e927af90
DC
1441 * Well, if only it were that simple. Because synchronous direct I/O
1442 * requires extent conversion to occur *before* we return to userspace,
1443 * we have to wait for extent conversion to complete. Look at the
1444 * iocb that has been passed to us to determine if this is AIO or
1445 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1446 * workqueue and wait for it to complete.
1447 *
f0973863
CH
1448 * The core direct I/O code might be changed to always call the
1449 * completion handler in the future, in which case all this can
1450 * go away.
1451 */
ba87ea69
LM
1452 ioend->io_offset = offset;
1453 ioend->io_size = size;
1454 if (ioend->io_type == IOMAP_READ) {
e927af90 1455 xfs_finish_ioend(ioend, 0);
ba87ea69 1456 } else if (private && size > 0) {
e927af90 1457 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1458 } else {
ba87ea69
LM
1459 /*
1460 * A direct I/O write ioend starts it's life in unwritten
1461 * state in case they map an unwritten extent. This write
1462 * didn't map an unwritten extent so switch it's completion
1463 * handler.
1464 */
1465 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1466 xfs_finish_ioend(ioend, 0);
f0973863
CH
1467 }
1468
1469 /*
c41564b5 1470 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1471 * completion handler was called. Thus we need to protect
1472 * against double-freeing.
1473 */
1474 iocb->private = NULL;
1475}
1476
1da177e4 1477STATIC ssize_t
e4c573bb 1478xfs_vm_direct_IO(
1da177e4
LT
1479 int rw,
1480 struct kiocb *iocb,
1481 const struct iovec *iov,
1482 loff_t offset,
1483 unsigned long nr_segs)
1484{
1485 struct file *file = iocb->ki_filp;
1486 struct inode *inode = file->f_mapping->host;
6214ed44 1487 struct block_device *bdev;
f0973863 1488 ssize_t ret;
1da177e4 1489
6214ed44 1490 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1491
721259bc 1492 if (rw == WRITE) {
ba87ea69 1493 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1494 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1495 bdev, iov, offset, nr_segs,
721259bc
LM
1496 xfs_get_blocks_direct,
1497 xfs_end_io_direct);
1498 } else {
ba87ea69 1499 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1500 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1501 bdev, iov, offset, nr_segs,
721259bc
LM
1502 xfs_get_blocks_direct,
1503 xfs_end_io_direct);
1504 }
f0973863 1505
8459d86a 1506 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1507 xfs_destroy_ioend(iocb->private);
1508 return ret;
1da177e4
LT
1509}
1510
f51623b2 1511STATIC int
d79689c7 1512xfs_vm_write_begin(
f51623b2 1513 struct file *file,
d79689c7
NP
1514 struct address_space *mapping,
1515 loff_t pos,
1516 unsigned len,
1517 unsigned flags,
1518 struct page **pagep,
1519 void **fsdata)
f51623b2 1520{
d79689c7
NP
1521 *pagep = NULL;
1522 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1523 xfs_get_blocks);
f51623b2 1524}
1da177e4
LT
1525
1526STATIC sector_t
e4c573bb 1527xfs_vm_bmap(
1da177e4
LT
1528 struct address_space *mapping,
1529 sector_t block)
1530{
1531 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1532 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1533
cf441eeb 1534 xfs_itrace_entry(XFS_I(inode));
126468b1 1535 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1536 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1537 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1538 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1539}
1540
1541STATIC int
e4c573bb 1542xfs_vm_readpage(
1da177e4
LT
1543 struct file *unused,
1544 struct page *page)
1545{
c2536668 1546 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1547}
1548
1549STATIC int
e4c573bb 1550xfs_vm_readpages(
1da177e4
LT
1551 struct file *unused,
1552 struct address_space *mapping,
1553 struct list_head *pages,
1554 unsigned nr_pages)
1555{
c2536668 1556 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1557}
1558
2ff28e22 1559STATIC void
238f4c54 1560xfs_vm_invalidatepage(
bcec2b7f
NS
1561 struct page *page,
1562 unsigned long offset)
1563{
1564 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1565 page->mapping->host, page, offset);
2ff28e22 1566 block_invalidatepage(page, offset);
bcec2b7f
NS
1567}
1568
f5e54d6e 1569const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1570 .readpage = xfs_vm_readpage,
1571 .readpages = xfs_vm_readpages,
1572 .writepage = xfs_vm_writepage,
7d4fb40a 1573 .writepages = xfs_vm_writepages,
1da177e4 1574 .sync_page = block_sync_page,
238f4c54
NS
1575 .releasepage = xfs_vm_releasepage,
1576 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1577 .write_begin = xfs_vm_write_begin,
1578 .write_end = generic_write_end,
e4c573bb
NS
1579 .bmap = xfs_vm_bmap,
1580 .direct_IO = xfs_vm_direct_IO,
e965f963 1581 .migratepage = buffer_migrate_page,
1da177e4 1582};