]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: make ubifs_ro_mode() not inline
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/random.h>
34#include <linux/kthread.h>
35#include <linux/parser.h>
36#include <linux/seq_file.h>
37#include <linux/mount.h>
38#include "ubifs.h"
39
40/* Slab cache for UBIFS inodes */
41struct kmem_cache *ubifs_inode_slab;
42
43/* UBIFS TNC shrinker description */
44static struct shrinker ubifs_shrinker_info = {
45 .shrink = ubifs_shrinker,
46 .seeks = DEFAULT_SEEKS,
47};
48
49/**
50 * validate_inode - validate inode.
51 * @c: UBIFS file-system description object
52 * @inode: the inode to validate
53 *
54 * This is a helper function for 'ubifs_iget()' which validates various fields
55 * of a newly built inode to make sure they contain sane values and prevent
56 * possible vulnerabilities. Returns zero if the inode is all right and
57 * a non-zero error code if not.
58 */
59static int validate_inode(struct ubifs_info *c, const struct inode *inode)
60{
61 int err;
62 const struct ubifs_inode *ui = ubifs_inode(inode);
63
64 if (inode->i_size > c->max_inode_sz) {
65 ubifs_err("inode is too large (%lld)",
66 (long long)inode->i_size);
67 return 1;
68 }
69
70 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
71 ubifs_err("unknown compression type %d", ui->compr_type);
72 return 2;
73 }
74
75 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
76 return 3;
77
78 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
79 return 4;
80
81 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
82 return 5;
83
84 if (!ubifs_compr_present(ui->compr_type)) {
85 ubifs_warn("inode %lu uses '%s' compression, but it was not "
86 "compiled in", inode->i_ino,
87 ubifs_compr_name(ui->compr_type));
88 }
89
90 err = dbg_check_dir_size(c, inode);
91 return err;
92}
93
94struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
95{
96 int err;
97 union ubifs_key key;
98 struct ubifs_ino_node *ino;
99 struct ubifs_info *c = sb->s_fs_info;
100 struct inode *inode;
101 struct ubifs_inode *ui;
102
103 dbg_gen("inode %lu", inum);
104
105 inode = iget_locked(sb, inum);
106 if (!inode)
107 return ERR_PTR(-ENOMEM);
108 if (!(inode->i_state & I_NEW))
109 return inode;
110 ui = ubifs_inode(inode);
111
112 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
113 if (!ino) {
114 err = -ENOMEM;
115 goto out;
116 }
117
118 ino_key_init(c, &key, inode->i_ino);
119
120 err = ubifs_tnc_lookup(c, &key, ino);
121 if (err)
122 goto out_ino;
123
124 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
125 inode->i_nlink = le32_to_cpu(ino->nlink);
126 inode->i_uid = le32_to_cpu(ino->uid);
127 inode->i_gid = le32_to_cpu(ino->gid);
128 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
129 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
130 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
131 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
132 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
133 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
134 inode->i_mode = le32_to_cpu(ino->mode);
135 inode->i_size = le64_to_cpu(ino->size);
136
137 ui->data_len = le32_to_cpu(ino->data_len);
138 ui->flags = le32_to_cpu(ino->flags);
139 ui->compr_type = le16_to_cpu(ino->compr_type);
140 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
141 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
142 ui->xattr_size = le32_to_cpu(ino->xattr_size);
143 ui->xattr_names = le32_to_cpu(ino->xattr_names);
144 ui->synced_i_size = ui->ui_size = inode->i_size;
145
146 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147
148 err = validate_inode(c, inode);
149 if (err)
150 goto out_invalid;
151
152 /* Disable readahead */
153 inode->i_mapping->backing_dev_info = &c->bdi;
154
155 switch (inode->i_mode & S_IFMT) {
156 case S_IFREG:
157 inode->i_mapping->a_ops = &ubifs_file_address_operations;
158 inode->i_op = &ubifs_file_inode_operations;
159 inode->i_fop = &ubifs_file_operations;
160 if (ui->xattr) {
161 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
162 if (!ui->data) {
163 err = -ENOMEM;
164 goto out_ino;
165 }
166 memcpy(ui->data, ino->data, ui->data_len);
167 ((char *)ui->data)[ui->data_len] = '\0';
168 } else if (ui->data_len != 0) {
169 err = 10;
170 goto out_invalid;
171 }
172 break;
173 case S_IFDIR:
174 inode->i_op = &ubifs_dir_inode_operations;
175 inode->i_fop = &ubifs_dir_operations;
176 if (ui->data_len != 0) {
177 err = 11;
178 goto out_invalid;
179 }
180 break;
181 case S_IFLNK:
182 inode->i_op = &ubifs_symlink_inode_operations;
183 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
184 err = 12;
185 goto out_invalid;
186 }
187 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
188 if (!ui->data) {
189 err = -ENOMEM;
190 goto out_ino;
191 }
192 memcpy(ui->data, ino->data, ui->data_len);
193 ((char *)ui->data)[ui->data_len] = '\0';
194 break;
195 case S_IFBLK:
196 case S_IFCHR:
197 {
198 dev_t rdev;
199 union ubifs_dev_desc *dev;
200
201 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206
207 dev = (union ubifs_dev_desc *)ino->data;
208 if (ui->data_len == sizeof(dev->new))
209 rdev = new_decode_dev(le32_to_cpu(dev->new));
210 else if (ui->data_len == sizeof(dev->huge))
211 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
212 else {
213 err = 13;
214 goto out_invalid;
215 }
216 memcpy(ui->data, ino->data, ui->data_len);
217 inode->i_op = &ubifs_file_inode_operations;
218 init_special_inode(inode, inode->i_mode, rdev);
219 break;
220 }
221 case S_IFSOCK:
222 case S_IFIFO:
223 inode->i_op = &ubifs_file_inode_operations;
224 init_special_inode(inode, inode->i_mode, 0);
225 if (ui->data_len != 0) {
226 err = 14;
227 goto out_invalid;
228 }
229 break;
230 default:
231 err = 15;
232 goto out_invalid;
233 }
234
235 kfree(ino);
236 ubifs_set_inode_flags(inode);
237 unlock_new_inode(inode);
238 return inode;
239
240out_invalid:
241 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
242 dbg_dump_node(c, ino);
243 dbg_dump_inode(c, inode);
244 err = -EINVAL;
245out_ino:
246 kfree(ino);
247out:
248 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
249 iget_failed(inode);
250 return ERR_PTR(err);
251}
252
253static struct inode *ubifs_alloc_inode(struct super_block *sb)
254{
255 struct ubifs_inode *ui;
256
257 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
258 if (!ui)
259 return NULL;
260
261 memset((void *)ui + sizeof(struct inode), 0,
262 sizeof(struct ubifs_inode) - sizeof(struct inode));
263 mutex_init(&ui->ui_mutex);
264 spin_lock_init(&ui->ui_lock);
265 return &ui->vfs_inode;
266};
267
268static void ubifs_destroy_inode(struct inode *inode)
269{
270 struct ubifs_inode *ui = ubifs_inode(inode);
271
272 kfree(ui->data);
273 kmem_cache_free(ubifs_inode_slab, inode);
274}
275
276/*
277 * Note, Linux write-back code calls this without 'i_mutex'.
278 */
279static int ubifs_write_inode(struct inode *inode, int wait)
280{
281 int err;
282 struct ubifs_info *c = inode->i_sb->s_fs_info;
283 struct ubifs_inode *ui = ubifs_inode(inode);
284
285 ubifs_assert(!ui->xattr);
286 if (is_bad_inode(inode))
287 return 0;
288
289 mutex_lock(&ui->ui_mutex);
290 /*
291 * Due to races between write-back forced by budgeting
292 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
293 * have already been synchronized, do not do this again. This might
294 * also happen if it was synchronized in an VFS operation, e.g.
295 * 'ubifs_link()'.
296 */
297 if (!ui->dirty) {
298 mutex_unlock(&ui->ui_mutex);
299 return 0;
300 }
301
7d32c2bb 302 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
303 err = ubifs_jnl_write_inode(c, inode, 0);
304 if (err)
305 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
306
307 ui->dirty = 0;
308 mutex_unlock(&ui->ui_mutex);
309 ubifs_release_dirty_inode_budget(c, ui);
310 return err;
311}
312
313static void ubifs_delete_inode(struct inode *inode)
314{
315 int err;
316 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 317 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 318
1e0f358e 319 if (ui->xattr)
1e51764a
AB
320 /*
321 * Extended attribute inode deletions are fully handled in
322 * 'ubifs_removexattr()'. These inodes are special and have
323 * limited usage, so there is nothing to do here.
324 */
325 goto out;
326
7d32c2bb 327 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
328 ubifs_assert(!atomic_read(&inode->i_count));
329 ubifs_assert(inode->i_nlink == 0);
330
331 truncate_inode_pages(&inode->i_data, 0);
332 if (is_bad_inode(inode))
333 goto out;
334
1e0f358e 335 ui->ui_size = inode->i_size = 0;
1e51764a
AB
336 err = ubifs_jnl_write_inode(c, inode, 1);
337 if (err)
338 /*
339 * Worst case we have a lost orphan inode wasting space, so a
340 * simple error message is ok here.
341 */
342 ubifs_err("can't write inode %lu, error %d", inode->i_ino, err);
343out:
1e0f358e
AB
344 if (ui->dirty)
345 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
346 clear_inode(inode);
347}
348
349static void ubifs_dirty_inode(struct inode *inode)
350{
351 struct ubifs_inode *ui = ubifs_inode(inode);
352
353 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
354 if (!ui->dirty) {
355 ui->dirty = 1;
356 dbg_gen("inode %lu", inode->i_ino);
357 }
358}
359
360static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
361{
362 struct ubifs_info *c = dentry->d_sb->s_fs_info;
363 unsigned long long free;
364
365 free = ubifs_budg_get_free_space(c);
366 dbg_gen("free space %lld bytes (%lld blocks)",
367 free, free >> UBIFS_BLOCK_SHIFT);
368
369 buf->f_type = UBIFS_SUPER_MAGIC;
370 buf->f_bsize = UBIFS_BLOCK_SIZE;
371 buf->f_blocks = c->block_cnt;
372 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
373 if (free > c->report_rp_size)
374 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
375 else
376 buf->f_bavail = 0;
377 buf->f_files = 0;
378 buf->f_ffree = 0;
379 buf->f_namelen = UBIFS_MAX_NLEN;
380
381 return 0;
382}
383
384static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
385{
386 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
387
388 if (c->mount_opts.unmount_mode == 2)
389 seq_printf(s, ",fast_unmount");
390 else if (c->mount_opts.unmount_mode == 1)
391 seq_printf(s, ",norm_unmount");
392
393 return 0;
394}
395
396static int ubifs_sync_fs(struct super_block *sb, int wait)
397{
398 struct ubifs_info *c = sb->s_fs_info;
399 int i, ret = 0, err;
400
401 if (c->jheads)
402 for (i = 0; i < c->jhead_cnt; i++) {
403 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
404 if (err && !ret)
405 ret = err;
406 }
407 /*
408 * We ought to call sync for c->ubi but it does not have one. If it had
409 * it would in turn call mtd->sync, however mtd operations are
410 * synchronous anyway, so we don't lose any sleep here.
411 */
412 return ret;
413}
414
415/**
416 * init_constants_early - initialize UBIFS constants.
417 * @c: UBIFS file-system description object
418 *
419 * This function initialize UBIFS constants which do not need the superblock to
420 * be read. It also checks that the UBI volume satisfies basic UBIFS
421 * requirements. Returns zero in case of success and a negative error code in
422 * case of failure.
423 */
424static int init_constants_early(struct ubifs_info *c)
425{
426 if (c->vi.corrupted) {
427 ubifs_warn("UBI volume is corrupted - read-only mode");
428 c->ro_media = 1;
429 }
430
431 if (c->di.ro_mode) {
432 ubifs_msg("read-only UBI device");
433 c->ro_media = 1;
434 }
435
436 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
437 ubifs_msg("static UBI volume - read-only mode");
438 c->ro_media = 1;
439 }
440
441 c->leb_cnt = c->vi.size;
442 c->leb_size = c->vi.usable_leb_size;
443 c->half_leb_size = c->leb_size / 2;
444 c->min_io_size = c->di.min_io_size;
445 c->min_io_shift = fls(c->min_io_size) - 1;
446
447 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
448 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
449 c->leb_size, UBIFS_MIN_LEB_SZ);
450 return -EINVAL;
451 }
452
453 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
454 ubifs_err("too few LEBs (%d), min. is %d",
455 c->leb_cnt, UBIFS_MIN_LEB_CNT);
456 return -EINVAL;
457 }
458
459 if (!is_power_of_2(c->min_io_size)) {
460 ubifs_err("bad min. I/O size %d", c->min_io_size);
461 return -EINVAL;
462 }
463
464 /*
465 * UBIFS aligns all node to 8-byte boundary, so to make function in
466 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
467 * less than 8.
468 */
469 if (c->min_io_size < 8) {
470 c->min_io_size = 8;
471 c->min_io_shift = 3;
472 }
473
474 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
475 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
476
477 /*
478 * Initialize node length ranges which are mostly needed for node
479 * length validation.
480 */
481 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
482 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
483 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
484 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
485 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
486 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
487
488 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
489 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
490 c->ranges[UBIFS_ORPH_NODE].min_len =
491 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
492 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
493 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
494 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
495 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
496 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
497 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
498 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
499 /*
500 * Minimum indexing node size is amended later when superblock is
501 * read and the key length is known.
502 */
503 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
504 /*
505 * Maximum indexing node size is amended later when superblock is
506 * read and the fanout is known.
507 */
508 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
509
510 /*
511 * Initialize dead and dark LEB space watermarks.
512 *
513 * Dead space is the space which cannot be used. Its watermark is
514 * equivalent to min. I/O unit or minimum node size if it is greater
515 * then min. I/O unit.
516 *
517 * Dark space is the space which might be used, or might not, depending
518 * on which node should be written to the LEB. Its watermark is
519 * equivalent to maximum UBIFS node size.
520 */
521 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
522 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
523
524 return 0;
525}
526
527/**
528 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
529 * @c: UBIFS file-system description object
530 * @lnum: LEB the write-buffer was synchronized to
531 * @free: how many free bytes left in this LEB
532 * @pad: how many bytes were padded
533 *
534 * This is a callback function which is called by the I/O unit when the
535 * write-buffer is synchronized. We need this to correctly maintain space
536 * accounting in bud logical eraseblocks. This function returns zero in case of
537 * success and a negative error code in case of failure.
538 *
539 * This function actually belongs to the journal, but we keep it here because
540 * we want to keep it static.
541 */
542static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
543{
544 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
545}
546
547/*
548 * init_constants_late - initialize UBIFS constants.
549 * @c: UBIFS file-system description object
550 *
551 * This is a helper function which initializes various UBIFS constants after
552 * the superblock has been read. It also checks various UBIFS parameters and
553 * makes sure they are all right. Returns zero in case of success and a
554 * negative error code in case of failure.
555 */
556static int init_constants_late(struct ubifs_info *c)
557{
558 int tmp, err;
559 uint64_t tmp64;
560
561 c->main_bytes = (long long)c->main_lebs * c->leb_size;
562 c->max_znode_sz = sizeof(struct ubifs_znode) +
563 c->fanout * sizeof(struct ubifs_zbranch);
564
565 tmp = ubifs_idx_node_sz(c, 1);
566 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
567 c->min_idx_node_sz = ALIGN(tmp, 8);
568
569 tmp = ubifs_idx_node_sz(c, c->fanout);
570 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
571 c->max_idx_node_sz = ALIGN(tmp, 8);
572
573 /* Make sure LEB size is large enough to fit full commit */
574 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
575 tmp = ALIGN(tmp, c->min_io_size);
576 if (tmp > c->leb_size) {
577 dbg_err("too small LEB size %d, at least %d needed",
578 c->leb_size, tmp);
579 return -EINVAL;
580 }
581
582 /*
583 * Make sure that the log is large enough to fit reference nodes for
584 * all buds plus one reserved LEB.
585 */
586 tmp64 = c->max_bud_bytes;
587 tmp = do_div(tmp64, c->leb_size);
588 c->max_bud_cnt = tmp64 + !!tmp;
589 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
590 tmp /= c->leb_size;
591 tmp += 1;
592 if (c->log_lebs < tmp) {
593 dbg_err("too small log %d LEBs, required min. %d LEBs",
594 c->log_lebs, tmp);
595 return -EINVAL;
596 }
597
598 /*
599 * When budgeting we assume worst-case scenarios when the pages are not
600 * be compressed and direntries are of the maximum size.
601 *
602 * Note, data, which may be stored in inodes is budgeted separately, so
603 * it is not included into 'c->inode_budget'.
604 */
605 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
606 c->inode_budget = UBIFS_INO_NODE_SZ;
607 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
608
609 /*
610 * When the amount of flash space used by buds becomes
611 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
612 * The writers are unblocked when the commit is finished. To avoid
613 * writers to be blocked UBIFS initiates background commit in advance,
614 * when number of bud bytes becomes above the limit defined below.
615 */
616 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
617
618 /*
619 * Ensure minimum journal size. All the bytes in the journal heads are
620 * considered to be used, when calculating the current journal usage.
621 * Consequently, if the journal is too small, UBIFS will treat it as
622 * always full.
623 */
624 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
625 if (c->bg_bud_bytes < tmp64)
626 c->bg_bud_bytes = tmp64;
627 if (c->max_bud_bytes < tmp64 + c->leb_size)
628 c->max_bud_bytes = tmp64 + c->leb_size;
629
630 err = ubifs_calc_lpt_geom(c);
631 if (err)
632 return err;
633
634 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
635
636 /*
637 * Calculate total amount of FS blocks. This number is not used
638 * internally because it does not make much sense for UBIFS, but it is
639 * necessary to report something for the 'statfs()' call.
640 *
641 * Subtract the LEB reserved for GC and the LEB which is reserved for
642 * deletions.
643 *
644 * Review 'ubifs_calc_available()' if changing this calculation.
645 */
646 tmp64 = c->main_lebs - 2;
647 tmp64 *= (uint64_t)c->leb_size - c->dark_wm;
648 tmp64 = ubifs_reported_space(c, tmp64);
649 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
650
651 return 0;
652}
653
654/**
655 * take_gc_lnum - reserve GC LEB.
656 * @c: UBIFS file-system description object
657 *
658 * This function ensures that the LEB reserved for garbage collection is
659 * unmapped and is marked as "taken" in lprops. We also have to set free space
660 * to LEB size and dirty space to zero, because lprops may contain out-of-date
661 * information if the file-system was un-mounted before it has been committed.
662 * This function returns zero in case of success and a negative error code in
663 * case of failure.
664 */
665static int take_gc_lnum(struct ubifs_info *c)
666{
667 int err;
668
669 if (c->gc_lnum == -1) {
670 ubifs_err("no LEB for GC");
671 return -EINVAL;
672 }
673
674 err = ubifs_leb_unmap(c, c->gc_lnum);
675 if (err)
676 return err;
677
678 /* And we have to tell lprops that this LEB is taken */
679 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
680 LPROPS_TAKEN, 0, 0);
681 return err;
682}
683
684/**
685 * alloc_wbufs - allocate write-buffers.
686 * @c: UBIFS file-system description object
687 *
688 * This helper function allocates and initializes UBIFS write-buffers. Returns
689 * zero in case of success and %-ENOMEM in case of failure.
690 */
691static int alloc_wbufs(struct ubifs_info *c)
692{
693 int i, err;
694
695 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
696 GFP_KERNEL);
697 if (!c->jheads)
698 return -ENOMEM;
699
700 /* Initialize journal heads */
701 for (i = 0; i < c->jhead_cnt; i++) {
702 INIT_LIST_HEAD(&c->jheads[i].buds_list);
703 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
704 if (err)
705 return err;
706
707 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
708 c->jheads[i].wbuf.jhead = i;
709 }
710
711 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
712 /*
713 * Garbage Collector head likely contains long-term data and
714 * does not need to be synchronized by timer.
715 */
716 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
717 c->jheads[GCHD].wbuf.timeout = 0;
718
719 return 0;
720}
721
722/**
723 * free_wbufs - free write-buffers.
724 * @c: UBIFS file-system description object
725 */
726static void free_wbufs(struct ubifs_info *c)
727{
728 int i;
729
730 if (c->jheads) {
731 for (i = 0; i < c->jhead_cnt; i++) {
732 kfree(c->jheads[i].wbuf.buf);
733 kfree(c->jheads[i].wbuf.inodes);
734 }
735 kfree(c->jheads);
736 c->jheads = NULL;
737 }
738}
739
740/**
741 * free_orphans - free orphans.
742 * @c: UBIFS file-system description object
743 */
744static void free_orphans(struct ubifs_info *c)
745{
746 struct ubifs_orphan *orph;
747
748 while (c->orph_dnext) {
749 orph = c->orph_dnext;
750 c->orph_dnext = orph->dnext;
751 list_del(&orph->list);
752 kfree(orph);
753 }
754
755 while (!list_empty(&c->orph_list)) {
756 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
757 list_del(&orph->list);
758 kfree(orph);
759 dbg_err("orphan list not empty at unmount");
760 }
761
762 vfree(c->orph_buf);
763 c->orph_buf = NULL;
764}
765
766/**
767 * free_buds - free per-bud objects.
768 * @c: UBIFS file-system description object
769 */
770static void free_buds(struct ubifs_info *c)
771{
772 struct rb_node *this = c->buds.rb_node;
773 struct ubifs_bud *bud;
774
775 while (this) {
776 if (this->rb_left)
777 this = this->rb_left;
778 else if (this->rb_right)
779 this = this->rb_right;
780 else {
781 bud = rb_entry(this, struct ubifs_bud, rb);
782 this = rb_parent(this);
783 if (this) {
784 if (this->rb_left == &bud->rb)
785 this->rb_left = NULL;
786 else
787 this->rb_right = NULL;
788 }
789 kfree(bud);
790 }
791 }
792}
793
794/**
795 * check_volume_empty - check if the UBI volume is empty.
796 * @c: UBIFS file-system description object
797 *
798 * This function checks if the UBIFS volume is empty by looking if its LEBs are
799 * mapped or not. The result of checking is stored in the @c->empty variable.
800 * Returns zero in case of success and a negative error code in case of
801 * failure.
802 */
803static int check_volume_empty(struct ubifs_info *c)
804{
805 int lnum, err;
806
807 c->empty = 1;
808 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
809 err = ubi_is_mapped(c->ubi, lnum);
810 if (unlikely(err < 0))
811 return err;
812 if (err == 1) {
813 c->empty = 0;
814 break;
815 }
816
817 cond_resched();
818 }
819
820 return 0;
821}
822
823/*
824 * UBIFS mount options.
825 *
826 * Opt_fast_unmount: do not run a journal commit before un-mounting
827 * Opt_norm_unmount: run a journal commit before un-mounting
828 * Opt_err: just end of array marker
829 */
830enum {
831 Opt_fast_unmount,
832 Opt_norm_unmount,
833 Opt_err,
834};
835
836static match_table_t tokens = {
837 {Opt_fast_unmount, "fast_unmount"},
838 {Opt_norm_unmount, "norm_unmount"},
839 {Opt_err, NULL},
840};
841
842/**
843 * ubifs_parse_options - parse mount parameters.
844 * @c: UBIFS file-system description object
845 * @options: parameters to parse
846 * @is_remount: non-zero if this is FS re-mount
847 *
848 * This function parses UBIFS mount options and returns zero in case success
849 * and a negative error code in case of failure.
850 */
851static int ubifs_parse_options(struct ubifs_info *c, char *options,
852 int is_remount)
853{
854 char *p;
855 substring_t args[MAX_OPT_ARGS];
856
857 if (!options)
858 return 0;
859
860 while ((p = strsep(&options, ","))) {
861 int token;
862
863 if (!*p)
864 continue;
865
866 token = match_token(p, tokens, args);
867 switch (token) {
868 case Opt_fast_unmount:
869 c->mount_opts.unmount_mode = 2;
870 c->fast_unmount = 1;
871 break;
872 case Opt_norm_unmount:
873 c->mount_opts.unmount_mode = 1;
874 c->fast_unmount = 0;
875 break;
876 default:
877 ubifs_err("unrecognized mount option \"%s\" "
878 "or missing value", p);
879 return -EINVAL;
880 }
881 }
882
883 return 0;
884}
885
886/**
887 * destroy_journal - destroy journal data structures.
888 * @c: UBIFS file-system description object
889 *
890 * This function destroys journal data structures including those that may have
891 * been created by recovery functions.
892 */
893static void destroy_journal(struct ubifs_info *c)
894{
895 while (!list_empty(&c->unclean_leb_list)) {
896 struct ubifs_unclean_leb *ucleb;
897
898 ucleb = list_entry(c->unclean_leb_list.next,
899 struct ubifs_unclean_leb, list);
900 list_del(&ucleb->list);
901 kfree(ucleb);
902 }
903 while (!list_empty(&c->old_buds)) {
904 struct ubifs_bud *bud;
905
906 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
907 list_del(&bud->list);
908 kfree(bud);
909 }
910 ubifs_destroy_idx_gc(c);
911 ubifs_destroy_size_tree(c);
912 ubifs_tnc_close(c);
913 free_buds(c);
914}
915
916/**
917 * mount_ubifs - mount UBIFS file-system.
918 * @c: UBIFS file-system description object
919 *
920 * This function mounts UBIFS file system. Returns zero in case of success and
921 * a negative error code in case of failure.
922 *
923 * Note, the function does not de-allocate resources it it fails half way
924 * through, and the caller has to do this instead.
925 */
926static int mount_ubifs(struct ubifs_info *c)
927{
928 struct super_block *sb = c->vfs_sb;
929 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
930 long long x;
931 size_t sz;
932
933 err = init_constants_early(c);
934 if (err)
935 return err;
936
937#ifdef CONFIG_UBIFS_FS_DEBUG
938 c->dbg_buf = vmalloc(c->leb_size);
939 if (!c->dbg_buf)
940 return -ENOMEM;
941#endif
942
943 err = check_volume_empty(c);
944 if (err)
945 goto out_free;
946
947 if (c->empty && (mounted_read_only || c->ro_media)) {
948 /*
949 * This UBI volume is empty, and read-only, or the file system
950 * is mounted read-only - we cannot format it.
951 */
952 ubifs_err("can't format empty UBI volume: read-only %s",
953 c->ro_media ? "UBI volume" : "mount");
954 err = -EROFS;
955 goto out_free;
956 }
957
958 if (c->ro_media && !mounted_read_only) {
959 ubifs_err("cannot mount read-write - read-only media");
960 err = -EROFS;
961 goto out_free;
962 }
963
964 /*
965 * The requirement for the buffer is that it should fit indexing B-tree
966 * height amount of integers. We assume the height if the TNC tree will
967 * never exceed 64.
968 */
969 err = -ENOMEM;
970 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
971 if (!c->bottom_up_buf)
972 goto out_free;
973
974 c->sbuf = vmalloc(c->leb_size);
975 if (!c->sbuf)
976 goto out_free;
977
978 if (!mounted_read_only) {
979 c->ileb_buf = vmalloc(c->leb_size);
980 if (!c->ileb_buf)
981 goto out_free;
982 }
983
984 err = ubifs_read_superblock(c);
985 if (err)
986 goto out_free;
987
988 /*
989 * Make sure the compressor which is set as the default on in the
990 * superblock was actually compiled in.
991 */
992 if (!ubifs_compr_present(c->default_compr)) {
993 ubifs_warn("'%s' compressor is set by superblock, but not "
994 "compiled in", ubifs_compr_name(c->default_compr));
995 c->default_compr = UBIFS_COMPR_NONE;
996 }
997
998 dbg_failure_mode_registration(c);
999
1000 err = init_constants_late(c);
1001 if (err)
1002 goto out_dereg;
1003
1004 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1005 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1006 c->cbuf = kmalloc(sz, GFP_NOFS);
1007 if (!c->cbuf) {
1008 err = -ENOMEM;
1009 goto out_dereg;
1010 }
1011
1012 if (!mounted_read_only) {
1013 err = alloc_wbufs(c);
1014 if (err)
1015 goto out_cbuf;
1016
1017 /* Create background thread */
1018 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1019 c->vi.vol_id);
1020 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1021 if (!c->bgt)
1022 c->bgt = ERR_PTR(-EINVAL);
1023 if (IS_ERR(c->bgt)) {
1024 err = PTR_ERR(c->bgt);
1025 c->bgt = NULL;
1026 ubifs_err("cannot spawn \"%s\", error %d",
1027 c->bgt_name, err);
1028 goto out_wbufs;
1029 }
1030 wake_up_process(c->bgt);
1031 }
1032
1033 err = ubifs_read_master(c);
1034 if (err)
1035 goto out_master;
1036
1037 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1038 ubifs_msg("recovery needed");
1039 c->need_recovery = 1;
1040 if (!mounted_read_only) {
1041 err = ubifs_recover_inl_heads(c, c->sbuf);
1042 if (err)
1043 goto out_master;
1044 }
1045 } else if (!mounted_read_only) {
1046 /*
1047 * Set the "dirty" flag so that if we reboot uncleanly we
1048 * will notice this immediately on the next mount.
1049 */
1050 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1051 err = ubifs_write_master(c);
1052 if (err)
1053 goto out_master;
1054 }
1055
1056 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1057 if (err)
1058 goto out_lpt;
1059
1060 err = dbg_check_idx_size(c, c->old_idx_sz);
1061 if (err)
1062 goto out_lpt;
1063
1064 err = ubifs_replay_journal(c);
1065 if (err)
1066 goto out_journal;
1067
1068 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1069 if (err)
1070 goto out_orphans;
1071
1072 if (!mounted_read_only) {
1073 int lnum;
1074
1075 /* Check for enough free space */
1076 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1077 ubifs_err("insufficient available space");
1078 err = -EINVAL;
1079 goto out_orphans;
1080 }
1081
1082 /* Check for enough log space */
1083 lnum = c->lhead_lnum + 1;
1084 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1085 lnum = UBIFS_LOG_LNUM;
1086 if (lnum == c->ltail_lnum) {
1087 err = ubifs_consolidate_log(c);
1088 if (err)
1089 goto out_orphans;
1090 }
1091
1092 if (c->need_recovery) {
1093 err = ubifs_recover_size(c);
1094 if (err)
1095 goto out_orphans;
1096 err = ubifs_rcvry_gc_commit(c);
1097 } else
1098 err = take_gc_lnum(c);
1099 if (err)
1100 goto out_orphans;
1101
1102 err = dbg_check_lprops(c);
1103 if (err)
1104 goto out_orphans;
1105 } else if (c->need_recovery) {
1106 err = ubifs_recover_size(c);
1107 if (err)
1108 goto out_orphans;
1109 }
1110
1111 spin_lock(&ubifs_infos_lock);
1112 list_add_tail(&c->infos_list, &ubifs_infos);
1113 spin_unlock(&ubifs_infos_lock);
1114
1115 if (c->need_recovery) {
1116 if (mounted_read_only)
1117 ubifs_msg("recovery deferred");
1118 else {
1119 c->need_recovery = 0;
1120 ubifs_msg("recovery completed");
1121 }
1122 }
1123
1124 err = dbg_check_filesystem(c);
1125 if (err)
1126 goto out_infos;
1127
ce769caa
AB
1128 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1129 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1130 if (mounted_read_only)
1131 ubifs_msg("mounted read-only");
1132 x = (long long)c->main_lebs * c->leb_size;
1133 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1134 x, x >> 10, x >> 20, c->main_lebs);
1135 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1136 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1137 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1138 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1139 ubifs_msg("media format %d, latest format %d",
1140 c->fmt_version, UBIFS_FORMAT_VERSION);
1141
1142 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1143 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1144 dbg_msg("LEB size: %d bytes (%d KiB)",
1145 c->leb_size, c->leb_size / 1024);
1146 dbg_msg("data journal heads: %d",
1147 c->jhead_cnt - NONDATA_JHEADS_CNT);
1148 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1149 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1150 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1151 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1152 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1153 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1154 dbg_msg("fast unmount: %d", c->fast_unmount);
1155 dbg_msg("big_lpt %d", c->big_lpt);
1156 dbg_msg("log LEBs: %d (%d - %d)",
1157 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1158 dbg_msg("LPT area LEBs: %d (%d - %d)",
1159 c->lpt_lebs, c->lpt_first, c->lpt_last);
1160 dbg_msg("orphan area LEBs: %d (%d - %d)",
1161 c->orph_lebs, c->orph_first, c->orph_last);
1162 dbg_msg("main area LEBs: %d (%d - %d)",
1163 c->main_lebs, c->main_first, c->leb_cnt - 1);
1164 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1165 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1166 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1167 dbg_msg("key hash type: %d", c->key_hash_type);
1168 dbg_msg("tree fanout: %d", c->fanout);
1169 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1170 dbg_msg("first main LEB: %d", c->main_first);
1171 dbg_msg("dead watermark: %d", c->dead_wm);
1172 dbg_msg("dark watermark: %d", c->dark_wm);
1173 x = (long long)c->main_lebs * c->dark_wm;
1174 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1175 x, x >> 10, x >> 20);
1176 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1177 c->max_bud_bytes, c->max_bud_bytes >> 10,
1178 c->max_bud_bytes >> 20);
1179 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1180 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1181 c->bg_bud_bytes >> 20);
1182 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1183 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1184 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1185 dbg_msg("commit number: %llu", c->cmt_no);
1186
1187 return 0;
1188
1189out_infos:
1190 spin_lock(&ubifs_infos_lock);
1191 list_del(&c->infos_list);
1192 spin_unlock(&ubifs_infos_lock);
1193out_orphans:
1194 free_orphans(c);
1195out_journal:
1196 destroy_journal(c);
1197out_lpt:
1198 ubifs_lpt_free(c, 0);
1199out_master:
1200 kfree(c->mst_node);
1201 kfree(c->rcvrd_mst_node);
1202 if (c->bgt)
1203 kthread_stop(c->bgt);
1204out_wbufs:
1205 free_wbufs(c);
1206out_cbuf:
1207 kfree(c->cbuf);
1208out_dereg:
1209 dbg_failure_mode_deregistration(c);
1210out_free:
1211 vfree(c->ileb_buf);
1212 vfree(c->sbuf);
1213 kfree(c->bottom_up_buf);
1214 UBIFS_DBG(vfree(c->dbg_buf));
1215 return err;
1216}
1217
1218/**
1219 * ubifs_umount - un-mount UBIFS file-system.
1220 * @c: UBIFS file-system description object
1221 *
1222 * Note, this function is called to free allocated resourced when un-mounting,
1223 * as well as free resources when an error occurred while we were half way
1224 * through mounting (error path cleanup function). So it has to make sure the
1225 * resource was actually allocated before freeing it.
1226 */
1227static void ubifs_umount(struct ubifs_info *c)
1228{
1229 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1230 c->vi.vol_id);
1231
1232 spin_lock(&ubifs_infos_lock);
1233 list_del(&c->infos_list);
1234 spin_unlock(&ubifs_infos_lock);
1235
1236 if (c->bgt)
1237 kthread_stop(c->bgt);
1238
1239 destroy_journal(c);
1240 free_wbufs(c);
1241 free_orphans(c);
1242 ubifs_lpt_free(c, 0);
1243
1244 kfree(c->cbuf);
1245 kfree(c->rcvrd_mst_node);
1246 kfree(c->mst_node);
1247 vfree(c->sbuf);
1248 kfree(c->bottom_up_buf);
1249 UBIFS_DBG(vfree(c->dbg_buf));
1250 vfree(c->ileb_buf);
1251 dbg_failure_mode_deregistration(c);
1252}
1253
1254/**
1255 * ubifs_remount_rw - re-mount in read-write mode.
1256 * @c: UBIFS file-system description object
1257 *
1258 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1259 * mode. This function allocates the needed resources and re-mounts UBIFS in
1260 * read-write mode.
1261 */
1262static int ubifs_remount_rw(struct ubifs_info *c)
1263{
1264 int err, lnum;
1265
1266 if (c->ro_media)
1267 return -EINVAL;
1268
1269 mutex_lock(&c->umount_mutex);
1270 c->remounting_rw = 1;
1271
1272 /* Check for enough free space */
1273 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1274 ubifs_err("insufficient available space");
1275 err = -EINVAL;
1276 goto out;
1277 }
1278
1279 if (c->old_leb_cnt != c->leb_cnt) {
1280 struct ubifs_sb_node *sup;
1281
1282 sup = ubifs_read_sb_node(c);
1283 if (IS_ERR(sup)) {
1284 err = PTR_ERR(sup);
1285 goto out;
1286 }
1287 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1288 err = ubifs_write_sb_node(c, sup);
1289 if (err)
1290 goto out;
1291 }
1292
1293 if (c->need_recovery) {
1294 ubifs_msg("completing deferred recovery");
1295 err = ubifs_write_rcvrd_mst_node(c);
1296 if (err)
1297 goto out;
1298 err = ubifs_recover_size(c);
1299 if (err)
1300 goto out;
1301 err = ubifs_clean_lebs(c, c->sbuf);
1302 if (err)
1303 goto out;
1304 err = ubifs_recover_inl_heads(c, c->sbuf);
1305 if (err)
1306 goto out;
1307 }
1308
1309 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1310 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1311 err = ubifs_write_master(c);
1312 if (err)
1313 goto out;
1314 }
1315
1316 c->ileb_buf = vmalloc(c->leb_size);
1317 if (!c->ileb_buf) {
1318 err = -ENOMEM;
1319 goto out;
1320 }
1321
1322 err = ubifs_lpt_init(c, 0, 1);
1323 if (err)
1324 goto out;
1325
1326 err = alloc_wbufs(c);
1327 if (err)
1328 goto out;
1329
1330 ubifs_create_buds_lists(c);
1331
1332 /* Create background thread */
1333 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1334 if (!c->bgt)
1335 c->bgt = ERR_PTR(-EINVAL);
1336 if (IS_ERR(c->bgt)) {
1337 err = PTR_ERR(c->bgt);
1338 c->bgt = NULL;
1339 ubifs_err("cannot spawn \"%s\", error %d",
1340 c->bgt_name, err);
1341 return err;
1342 }
1343 wake_up_process(c->bgt);
1344
1345 c->orph_buf = vmalloc(c->leb_size);
1346 if (!c->orph_buf)
1347 return -ENOMEM;
1348
1349 /* Check for enough log space */
1350 lnum = c->lhead_lnum + 1;
1351 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1352 lnum = UBIFS_LOG_LNUM;
1353 if (lnum == c->ltail_lnum) {
1354 err = ubifs_consolidate_log(c);
1355 if (err)
1356 goto out;
1357 }
1358
1359 if (c->need_recovery)
1360 err = ubifs_rcvry_gc_commit(c);
1361 else
1362 err = take_gc_lnum(c);
1363 if (err)
1364 goto out;
1365
1366 if (c->need_recovery) {
1367 c->need_recovery = 0;
1368 ubifs_msg("deferred recovery completed");
1369 }
1370
1371 dbg_gen("re-mounted read-write");
1372 c->vfs_sb->s_flags &= ~MS_RDONLY;
1373 c->remounting_rw = 0;
1374 mutex_unlock(&c->umount_mutex);
1375 return 0;
1376
1377out:
1378 vfree(c->orph_buf);
1379 c->orph_buf = NULL;
1380 if (c->bgt) {
1381 kthread_stop(c->bgt);
1382 c->bgt = NULL;
1383 }
1384 free_wbufs(c);
1385 vfree(c->ileb_buf);
1386 c->ileb_buf = NULL;
1387 ubifs_lpt_free(c, 1);
1388 c->remounting_rw = 0;
1389 mutex_unlock(&c->umount_mutex);
1390 return err;
1391}
1392
1393/**
1394 * commit_on_unmount - commit the journal when un-mounting.
1395 * @c: UBIFS file-system description object
1396 *
1397 * This function is called during un-mounting and it commits the journal unless
1398 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1399 * it contains too few data.
1400 *
1401 * Sometimes recovery requires the journal to be committed at least once, and
1402 * this function takes care about this.
1403 */
1404static void commit_on_unmount(struct ubifs_info *c)
1405{
1406 if (!c->fast_unmount) {
1407 long long bud_bytes;
1408
1409 spin_lock(&c->buds_lock);
1410 bud_bytes = c->bud_bytes;
1411 spin_unlock(&c->buds_lock);
1412 if (bud_bytes > c->leb_size)
1413 ubifs_run_commit(c);
1414 }
1415}
1416
1417/**
1418 * ubifs_remount_ro - re-mount in read-only mode.
1419 * @c: UBIFS file-system description object
1420 *
1421 * We rely on VFS to have stopped writing. Possibly the background thread could
1422 * be running a commit, however kthread_stop will wait in that case.
1423 */
1424static void ubifs_remount_ro(struct ubifs_info *c)
1425{
1426 int i, err;
1427
1428 ubifs_assert(!c->need_recovery);
1429 commit_on_unmount(c);
1430
1431 mutex_lock(&c->umount_mutex);
1432 if (c->bgt) {
1433 kthread_stop(c->bgt);
1434 c->bgt = NULL;
1435 }
1436
1437 for (i = 0; i < c->jhead_cnt; i++) {
1438 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1439 del_timer_sync(&c->jheads[i].wbuf.timer);
1440 }
1441
1442 if (!c->ro_media) {
1443 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1444 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1445 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1446 err = ubifs_write_master(c);
1447 if (err)
1448 ubifs_ro_mode(c, err);
1449 }
1450
1451 ubifs_destroy_idx_gc(c);
1452 free_wbufs(c);
1453 vfree(c->orph_buf);
1454 c->orph_buf = NULL;
1455 vfree(c->ileb_buf);
1456 c->ileb_buf = NULL;
1457 ubifs_lpt_free(c, 1);
1458 mutex_unlock(&c->umount_mutex);
1459}
1460
1461static void ubifs_put_super(struct super_block *sb)
1462{
1463 int i;
1464 struct ubifs_info *c = sb->s_fs_info;
1465
1466 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1467 c->vi.vol_id);
1468 /*
1469 * The following asserts are only valid if there has not been a failure
1470 * of the media. For example, there will be dirty inodes if we failed
1471 * to write them back because of I/O errors.
1472 */
1473 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1474 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1475 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1476 ubifs_assert(c->budg_data_growth == 0);
1477
1478 /*
1479 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1480 * and file system un-mount. Namely, it prevents the shrinker from
1481 * picking this superblock for shrinking - it will be just skipped if
1482 * the mutex is locked.
1483 */
1484 mutex_lock(&c->umount_mutex);
1485 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1486 /*
1487 * First of all kill the background thread to make sure it does
1488 * not interfere with un-mounting and freeing resources.
1489 */
1490 if (c->bgt) {
1491 kthread_stop(c->bgt);
1492 c->bgt = NULL;
1493 }
1494
1495 /* Synchronize write-buffers */
1496 if (c->jheads)
1497 for (i = 0; i < c->jhead_cnt; i++) {
1498 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1499 del_timer_sync(&c->jheads[i].wbuf.timer);
1500 }
1501
1502 /*
1503 * On fatal errors c->ro_media is set to 1, in which case we do
1504 * not write the master node.
1505 */
1506 if (!c->ro_media) {
1507 /*
1508 * We are being cleanly unmounted which means the
1509 * orphans were killed - indicate this in the master
1510 * node. Also save the reserved GC LEB number.
1511 */
1512 int err;
1513
1514 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1515 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1516 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1517 err = ubifs_write_master(c);
1518 if (err)
1519 /*
1520 * Recovery will attempt to fix the master area
1521 * next mount, so we just print a message and
1522 * continue to unmount normally.
1523 */
1524 ubifs_err("failed to write master node, "
1525 "error %d", err);
1526 }
1527 }
1528
1529 ubifs_umount(c);
1530 bdi_destroy(&c->bdi);
1531 ubi_close_volume(c->ubi);
1532 mutex_unlock(&c->umount_mutex);
1533 kfree(c);
1534}
1535
1536static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1537{
1538 int err;
1539 struct ubifs_info *c = sb->s_fs_info;
1540
1541 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1542
1543 err = ubifs_parse_options(c, data, 1);
1544 if (err) {
1545 ubifs_err("invalid or unknown remount parameter");
1546 return err;
1547 }
1548 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1549 err = ubifs_remount_rw(c);
1550 if (err)
1551 return err;
1552 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1553 ubifs_remount_ro(c);
1554
1555 return 0;
1556}
1557
1558struct super_operations ubifs_super_operations = {
1559 .alloc_inode = ubifs_alloc_inode,
1560 .destroy_inode = ubifs_destroy_inode,
1561 .put_super = ubifs_put_super,
1562 .write_inode = ubifs_write_inode,
1563 .delete_inode = ubifs_delete_inode,
1564 .statfs = ubifs_statfs,
1565 .dirty_inode = ubifs_dirty_inode,
1566 .remount_fs = ubifs_remount_fs,
1567 .show_options = ubifs_show_options,
1568 .sync_fs = ubifs_sync_fs,
1569};
1570
1571/**
1572 * open_ubi - parse UBI device name string and open the UBI device.
1573 * @name: UBI volume name
1574 * @mode: UBI volume open mode
1575 *
1576 * There are several ways to specify UBI volumes when mounting UBIFS:
1577 * o ubiX_Y - UBI device number X, volume Y;
1578 * o ubiY - UBI device number 0, volume Y;
1579 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1580 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1581 *
1582 * Alternative '!' separator may be used instead of ':' (because some shells
1583 * like busybox may interpret ':' as an NFS host name separator). This function
1584 * returns ubi volume object in case of success and a negative error code in
1585 * case of failure.
1586 */
1587static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1588{
1589 int dev, vol;
1590 char *endptr;
1591
1592 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1593 return ERR_PTR(-EINVAL);
1594
1595 /* ubi:NAME method */
1596 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1597 return ubi_open_volume_nm(0, name + 4, mode);
1598
1599 if (!isdigit(name[3]))
1600 return ERR_PTR(-EINVAL);
1601
1602 dev = simple_strtoul(name + 3, &endptr, 0);
1603
1604 /* ubiY method */
1605 if (*endptr == '\0')
1606 return ubi_open_volume(0, dev, mode);
1607
1608 /* ubiX_Y method */
1609 if (*endptr == '_' && isdigit(endptr[1])) {
1610 vol = simple_strtoul(endptr + 1, &endptr, 0);
1611 if (*endptr != '\0')
1612 return ERR_PTR(-EINVAL);
1613 return ubi_open_volume(dev, vol, mode);
1614 }
1615
1616 /* ubiX:NAME method */
1617 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1618 return ubi_open_volume_nm(dev, ++endptr, mode);
1619
1620 return ERR_PTR(-EINVAL);
1621}
1622
1623static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1624{
1625 struct ubi_volume_desc *ubi = sb->s_fs_info;
1626 struct ubifs_info *c;
1627 struct inode *root;
1628 int err;
1629
1630 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1631 if (!c)
1632 return -ENOMEM;
1633
1634 spin_lock_init(&c->cnt_lock);
1635 spin_lock_init(&c->cs_lock);
1636 spin_lock_init(&c->buds_lock);
1637 spin_lock_init(&c->space_lock);
1638 spin_lock_init(&c->orphan_lock);
1639 init_rwsem(&c->commit_sem);
1640 mutex_init(&c->lp_mutex);
1641 mutex_init(&c->tnc_mutex);
1642 mutex_init(&c->log_mutex);
1643 mutex_init(&c->mst_mutex);
1644 mutex_init(&c->umount_mutex);
1645 init_waitqueue_head(&c->cmt_wq);
1646 c->buds = RB_ROOT;
1647 c->old_idx = RB_ROOT;
1648 c->size_tree = RB_ROOT;
1649 c->orph_tree = RB_ROOT;
1650 INIT_LIST_HEAD(&c->infos_list);
1651 INIT_LIST_HEAD(&c->idx_gc);
1652 INIT_LIST_HEAD(&c->replay_list);
1653 INIT_LIST_HEAD(&c->replay_buds);
1654 INIT_LIST_HEAD(&c->uncat_list);
1655 INIT_LIST_HEAD(&c->empty_list);
1656 INIT_LIST_HEAD(&c->freeable_list);
1657 INIT_LIST_HEAD(&c->frdi_idx_list);
1658 INIT_LIST_HEAD(&c->unclean_leb_list);
1659 INIT_LIST_HEAD(&c->old_buds);
1660 INIT_LIST_HEAD(&c->orph_list);
1661 INIT_LIST_HEAD(&c->orph_new);
1662
1663 c->highest_inum = UBIFS_FIRST_INO;
1664 get_random_bytes(&c->vfs_gen, sizeof(int));
1665 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1666
1667 ubi_get_volume_info(ubi, &c->vi);
1668 ubi_get_device_info(c->vi.ubi_num, &c->di);
1669
1670 /* Re-open the UBI device in read-write mode */
1671 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1672 if (IS_ERR(c->ubi)) {
1673 err = PTR_ERR(c->ubi);
1674 goto out_free;
1675 }
1676
1677 /*
1678 * UBIFS provids 'backing_dev_info' in order to disable readahead. For
1679 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1680 * which means the user would have to wait not just for their own I/O
1681 * but the readahead I/O as well i.e. completely pointless.
1682 *
1683 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1684 */
1685 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1686 c->bdi.unplug_io_fn = default_unplug_io_fn;
1687 err = bdi_init(&c->bdi);
1688 if (err)
1689 goto out_close;
1690
1691 err = ubifs_parse_options(c, data, 0);
1692 if (err)
1693 goto out_bdi;
1694
1695 c->vfs_sb = sb;
1696
1697 sb->s_fs_info = c;
1698 sb->s_magic = UBIFS_SUPER_MAGIC;
1699 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1700 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1701 sb->s_dev = c->vi.cdev;
1702 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1703 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1704 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1705 sb->s_op = &ubifs_super_operations;
1706
1707 mutex_lock(&c->umount_mutex);
1708 err = mount_ubifs(c);
1709 if (err) {
1710 ubifs_assert(err < 0);
1711 goto out_unlock;
1712 }
1713
1714 /* Read the root inode */
1715 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1716 if (IS_ERR(root)) {
1717 err = PTR_ERR(root);
1718 goto out_umount;
1719 }
1720
1721 sb->s_root = d_alloc_root(root);
1722 if (!sb->s_root)
1723 goto out_iput;
1724
1725 mutex_unlock(&c->umount_mutex);
1726
1727 return 0;
1728
1729out_iput:
1730 iput(root);
1731out_umount:
1732 ubifs_umount(c);
1733out_unlock:
1734 mutex_unlock(&c->umount_mutex);
1735out_bdi:
1736 bdi_destroy(&c->bdi);
1737out_close:
1738 ubi_close_volume(c->ubi);
1739out_free:
1740 kfree(c);
1741 return err;
1742}
1743
1744static int sb_test(struct super_block *sb, void *data)
1745{
1746 dev_t *dev = data;
1747
1748 return sb->s_dev == *dev;
1749}
1750
1751static int sb_set(struct super_block *sb, void *data)
1752{
1753 dev_t *dev = data;
1754
1755 sb->s_dev = *dev;
1756 return 0;
1757}
1758
1759static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1760 const char *name, void *data, struct vfsmount *mnt)
1761{
1762 struct ubi_volume_desc *ubi;
1763 struct ubi_volume_info vi;
1764 struct super_block *sb;
1765 int err;
1766
1767 dbg_gen("name %s, flags %#x", name, flags);
1768
1769 /*
1770 * Get UBI device number and volume ID. Mount it read-only so far
1771 * because this might be a new mount point, and UBI allows only one
1772 * read-write user at a time.
1773 */
1774 ubi = open_ubi(name, UBI_READONLY);
1775 if (IS_ERR(ubi)) {
1776 ubifs_err("cannot open \"%s\", error %d",
1777 name, (int)PTR_ERR(ubi));
1778 return PTR_ERR(ubi);
1779 }
1780 ubi_get_volume_info(ubi, &vi);
1781
1782 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1783
1784 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1785 if (IS_ERR(sb)) {
1786 err = PTR_ERR(sb);
1787 goto out_close;
1788 }
1789
1790 if (sb->s_root) {
1791 /* A new mount point for already mounted UBIFS */
1792 dbg_gen("this ubi volume is already mounted");
1793 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1794 err = -EBUSY;
1795 goto out_deact;
1796 }
1797 } else {
1798 sb->s_flags = flags;
1799 /*
1800 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1801 * replaced by 'c'.
1802 */
1803 sb->s_fs_info = ubi;
1804 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1805 if (err)
1806 goto out_deact;
1807 /* We do not support atime */
1808 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1809 }
1810
1811 /* 'fill_super()' opens ubi again so we must close it here */
1812 ubi_close_volume(ubi);
1813
1814 return simple_set_mnt(mnt, sb);
1815
1816out_deact:
1817 up_write(&sb->s_umount);
1818 deactivate_super(sb);
1819out_close:
1820 ubi_close_volume(ubi);
1821 return err;
1822}
1823
1824static void ubifs_kill_sb(struct super_block *sb)
1825{
1826 struct ubifs_info *c = sb->s_fs_info;
1827
1828 /*
1829 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1830 * in order to be outside BKL.
1831 */
1832 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1833 commit_on_unmount(c);
1834 /* The un-mount routine is actually done in put_super() */
1835 generic_shutdown_super(sb);
1836}
1837
1838static struct file_system_type ubifs_fs_type = {
1839 .name = "ubifs",
1840 .owner = THIS_MODULE,
1841 .get_sb = ubifs_get_sb,
1842 .kill_sb = ubifs_kill_sb
1843};
1844
1845/*
1846 * Inode slab cache constructor.
1847 */
51cc5068 1848static void inode_slab_ctor(void *obj)
1e51764a
AB
1849{
1850 struct ubifs_inode *ui = obj;
1851 inode_init_once(&ui->vfs_inode);
1852}
1853
1854static int __init ubifs_init(void)
1855{
1856 int err;
1857
1858 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1859
1860 /* Make sure node sizes are 8-byte aligned */
1861 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1862 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1863 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1864 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1865 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1866 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1867 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1868 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1869 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1870 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1871 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1872
1873 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1874 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1875 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1876 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1877 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1878 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1879
1880 /* Check min. node size */
1881 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1882 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1883 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1884 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1885
1886 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1887 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1888 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1889 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1890
1891 /* Defined node sizes */
1892 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1893 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1894 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1895 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1896
1897 /*
1898 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1899 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1900 */
1901 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1902 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1903 " at least 4096 bytes",
1904 (unsigned int)PAGE_CACHE_SIZE);
1905 return -EINVAL;
1906 }
1907
1908 err = register_filesystem(&ubifs_fs_type);
1909 if (err) {
1910 ubifs_err("cannot register file system, error %d", err);
1911 return err;
1912 }
1913
1914 err = -ENOMEM;
1915 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1916 sizeof(struct ubifs_inode), 0,
1917 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1918 &inode_slab_ctor);
1919 if (!ubifs_inode_slab)
1920 goto out_reg;
1921
1922 register_shrinker(&ubifs_shrinker_info);
1923
1924 err = ubifs_compressors_init();
1925 if (err)
1926 goto out_compr;
1927
1928 return 0;
1929
1930out_compr:
1931 unregister_shrinker(&ubifs_shrinker_info);
1932 kmem_cache_destroy(ubifs_inode_slab);
1933out_reg:
1934 unregister_filesystem(&ubifs_fs_type);
1935 return err;
1936}
1937/* late_initcall to let compressors initialize first */
1938late_initcall(ubifs_init);
1939
1940static void __exit ubifs_exit(void)
1941{
1942 ubifs_assert(list_empty(&ubifs_infos));
1943 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1944
1945 ubifs_compressors_exit();
1946 unregister_shrinker(&ubifs_shrinker_info);
1947 kmem_cache_destroy(ubifs_inode_slab);
1948 unregister_filesystem(&ubifs_fs_type);
1949}
1950module_exit(ubifs_exit);
1951
1952MODULE_LICENSE("GPL");
1953MODULE_VERSION(__stringify(UBIFS_VERSION));
1954MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1955MODULE_DESCRIPTION("UBIFS - UBI File System");