]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/recovery.c
UBIFS: use anonymous device
[net-next-2.6.git] / fs / ubifs / recovery.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed sucessfully. If not, the process of mounting
27 * incorparates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
31 */
32
33#include <linux/crc32.h>
34#include "ubifs.h"
35
36/**
37 * is_empty - determine whether a buffer is empty (contains all 0xff).
38 * @buf: buffer to clean
39 * @len: length of buffer
40 *
41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
42 * %0 is returned.
43 */
44static int is_empty(void *buf, int len)
45{
46 uint8_t *p = buf;
47 int i;
48
49 for (i = 0; i < len; i++)
50 if (*p++ != 0xff)
51 return 0;
52 return 1;
53}
54
55/**
56 * get_master_node - get the last valid master node allowing for corruption.
57 * @c: UBIFS file-system description object
58 * @lnum: LEB number
59 * @pbuf: buffer containing the LEB read, is returned here
60 * @mst: master node, if found, is returned here
61 * @cor: corruption, if found, is returned here
62 *
63 * This function allocates a buffer, reads the LEB into it, and finds and
64 * returns the last valid master node allowing for one area of corruption.
65 * The corrupt area, if there is one, must be consistent with the assumption
66 * that it is the result of an unclean unmount while the master node was being
67 * written. Under those circumstances, it is valid to use the previously written
68 * master node.
69 *
70 * This function returns %0 on success and a negative error code on failure.
71 */
72static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
73 struct ubifs_mst_node **mst, void **cor)
74{
75 const int sz = c->mst_node_alsz;
76 int err, offs, len;
77 void *sbuf, *buf;
78
79 sbuf = vmalloc(c->leb_size);
80 if (!sbuf)
81 return -ENOMEM;
82
83 err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
84 if (err && err != -EBADMSG)
85 goto out_free;
86
87 /* Find the first position that is definitely not a node */
88 offs = 0;
89 buf = sbuf;
90 len = c->leb_size;
91 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
92 struct ubifs_ch *ch = buf;
93
94 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
95 break;
96 offs += sz;
97 buf += sz;
98 len -= sz;
99 }
100 /* See if there was a valid master node before that */
101 if (offs) {
102 int ret;
103
104 offs -= sz;
105 buf -= sz;
106 len += sz;
107 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
108 if (ret != SCANNED_A_NODE && offs) {
109 /* Could have been corruption so check one place back */
110 offs -= sz;
111 buf -= sz;
112 len += sz;
113 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
114 if (ret != SCANNED_A_NODE)
115 /*
116 * We accept only one area of corruption because
117 * we are assuming that it was caused while
118 * trying to write a master node.
119 */
120 goto out_err;
121 }
122 if (ret == SCANNED_A_NODE) {
123 struct ubifs_ch *ch = buf;
124
125 if (ch->node_type != UBIFS_MST_NODE)
126 goto out_err;
127 dbg_rcvry("found a master node at %d:%d", lnum, offs);
128 *mst = buf;
129 offs += sz;
130 buf += sz;
131 len -= sz;
132 }
133 }
134 /* Check for corruption */
135 if (offs < c->leb_size) {
136 if (!is_empty(buf, min_t(int, len, sz))) {
137 *cor = buf;
138 dbg_rcvry("found corruption at %d:%d", lnum, offs);
139 }
140 offs += sz;
141 buf += sz;
142 len -= sz;
143 }
144 /* Check remaining empty space */
145 if (offs < c->leb_size)
146 if (!is_empty(buf, len))
147 goto out_err;
148 *pbuf = sbuf;
149 return 0;
150
151out_err:
152 err = -EINVAL;
153out_free:
154 vfree(sbuf);
155 *mst = NULL;
156 *cor = NULL;
157 return err;
158}
159
160/**
161 * write_rcvrd_mst_node - write recovered master node.
162 * @c: UBIFS file-system description object
163 * @mst: master node
164 *
165 * This function returns %0 on success and a negative error code on failure.
166 */
167static int write_rcvrd_mst_node(struct ubifs_info *c,
168 struct ubifs_mst_node *mst)
169{
170 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
0ecb9529 171 __le32 save_flags;
1e51764a
AB
172
173 dbg_rcvry("recovery");
174
175 save_flags = mst->flags;
0ecb9529 176 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
1e51764a
AB
177
178 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
179 err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
180 if (err)
181 goto out;
182 err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
183 if (err)
184 goto out;
185out:
186 mst->flags = save_flags;
187 return err;
188}
189
190/**
191 * ubifs_recover_master_node - recover the master node.
192 * @c: UBIFS file-system description object
193 *
194 * This function recovers the master node from corruption that may occur due to
195 * an unclean unmount.
196 *
197 * This function returns %0 on success and a negative error code on failure.
198 */
199int ubifs_recover_master_node(struct ubifs_info *c)
200{
201 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
202 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
203 const int sz = c->mst_node_alsz;
204 int err, offs1, offs2;
205
206 dbg_rcvry("recovery");
207
208 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
209 if (err)
210 goto out_free;
211
212 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
213 if (err)
214 goto out_free;
215
216 if (mst1) {
217 offs1 = (void *)mst1 - buf1;
218 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
219 (offs1 == 0 && !cor1)) {
220 /*
221 * mst1 was written by recovery at offset 0 with no
222 * corruption.
223 */
224 dbg_rcvry("recovery recovery");
225 mst = mst1;
226 } else if (mst2) {
227 offs2 = (void *)mst2 - buf2;
228 if (offs1 == offs2) {
229 /* Same offset, so must be the same */
230 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
231 (void *)mst2 + UBIFS_CH_SZ,
232 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
233 goto out_err;
234 mst = mst1;
235 } else if (offs2 + sz == offs1) {
236 /* 1st LEB was written, 2nd was not */
237 if (cor1)
238 goto out_err;
239 mst = mst1;
240 } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
241 /* 1st LEB was unmapped and written, 2nd not */
242 if (cor1)
243 goto out_err;
244 mst = mst1;
245 } else
246 goto out_err;
247 } else {
248 /*
249 * 2nd LEB was unmapped and about to be written, so
250 * there must be only one master node in the first LEB
251 * and no corruption.
252 */
253 if (offs1 != 0 || cor1)
254 goto out_err;
255 mst = mst1;
256 }
257 } else {
258 if (!mst2)
259 goto out_err;
260 /*
261 * 1st LEB was unmapped and about to be written, so there must
262 * be no room left in 2nd LEB.
263 */
264 offs2 = (void *)mst2 - buf2;
265 if (offs2 + sz + sz <= c->leb_size)
266 goto out_err;
267 mst = mst2;
268 }
269
270 dbg_rcvry("recovered master node from LEB %d",
271 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
272
273 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
274
275 if ((c->vfs_sb->s_flags & MS_RDONLY)) {
276 /* Read-only mode. Keep a copy for switching to rw mode */
277 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
278 if (!c->rcvrd_mst_node) {
279 err = -ENOMEM;
280 goto out_free;
281 }
282 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
283 } else {
284 /* Write the recovered master node */
285 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
286 err = write_rcvrd_mst_node(c, c->mst_node);
287 if (err)
288 goto out_free;
289 }
290
291 vfree(buf2);
292 vfree(buf1);
293
294 return 0;
295
296out_err:
297 err = -EINVAL;
298out_free:
299 ubifs_err("failed to recover master node");
300 if (mst1) {
301 dbg_err("dumping first master node");
302 dbg_dump_node(c, mst1);
303 }
304 if (mst2) {
305 dbg_err("dumping second master node");
306 dbg_dump_node(c, mst2);
307 }
308 vfree(buf2);
309 vfree(buf1);
310 return err;
311}
312
313/**
314 * ubifs_write_rcvrd_mst_node - write the recovered master node.
315 * @c: UBIFS file-system description object
316 *
317 * This function writes the master node that was recovered during mounting in
318 * read-only mode and must now be written because we are remounting rw.
319 *
320 * This function returns %0 on success and a negative error code on failure.
321 */
322int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
323{
324 int err;
325
326 if (!c->rcvrd_mst_node)
327 return 0;
328 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
329 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
330 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
331 if (err)
332 return err;
333 kfree(c->rcvrd_mst_node);
334 c->rcvrd_mst_node = NULL;
335 return 0;
336}
337
338/**
339 * is_last_write - determine if an offset was in the last write to a LEB.
340 * @c: UBIFS file-system description object
341 * @buf: buffer to check
342 * @offs: offset to check
343 *
344 * This function returns %1 if @offs was in the last write to the LEB whose data
345 * is in @buf, otherwise %0 is returned. The determination is made by checking
346 * for subsequent empty space starting from the next min_io_size boundary (or a
347 * bit less than the common header size if min_io_size is one).
348 */
349static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
350{
351 int empty_offs;
352 int check_len;
353 uint8_t *p;
354
355 if (c->min_io_size == 1) {
356 check_len = c->leb_size - offs;
357 p = buf + check_len;
358 for (; check_len > 0; check_len--)
359 if (*--p != 0xff)
360 break;
361 /*
362 * 'check_len' is the size of the corruption which cannot be
363 * more than the size of 1 node if it was caused by an unclean
364 * unmount.
365 */
366 if (check_len > UBIFS_MAX_NODE_SZ)
367 return 0;
368 return 1;
369 }
370
371 /*
372 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
373 * last wbuf written. After that should be empty space.
374 */
375 empty_offs = ALIGN(offs + 1, c->min_io_size);
376 check_len = c->leb_size - empty_offs;
377 p = buf + empty_offs - offs;
378
379 for (; check_len > 0; check_len--)
380 if (*p++ != 0xff)
381 return 0;
382 return 1;
383}
384
385/**
386 * clean_buf - clean the data from an LEB sitting in a buffer.
387 * @c: UBIFS file-system description object
388 * @buf: buffer to clean
389 * @lnum: LEB number to clean
390 * @offs: offset from which to clean
391 * @len: length of buffer
392 *
393 * This function pads up to the next min_io_size boundary (if there is one) and
394 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
395 * min_io_size boundary (if there is one).
396 */
397static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
398 int *offs, int *len)
399{
400 int empty_offs, pad_len;
401
402 lnum = lnum;
403 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
404
405 if (c->min_io_size == 1) {
406 memset(*buf, 0xff, c->leb_size - *offs);
407 return;
408 }
409
410 ubifs_assert(!(*offs & 7));
411 empty_offs = ALIGN(*offs, c->min_io_size);
412 pad_len = empty_offs - *offs;
413 ubifs_pad(c, *buf, pad_len);
414 *offs += pad_len;
415 *buf += pad_len;
416 *len -= pad_len;
417 memset(*buf, 0xff, c->leb_size - empty_offs);
418}
419
420/**
421 * no_more_nodes - determine if there are no more nodes in a buffer.
422 * @c: UBIFS file-system description object
423 * @buf: buffer to check
424 * @len: length of buffer
425 * @lnum: LEB number of the LEB from which @buf was read
426 * @offs: offset from which @buf was read
427 *
de097578
AH
428 * This function ensures that the corrupted node at @offs is the last thing
429 * written to a LEB. This function returns %1 if more data is not found and
430 * %0 if more data is found.
1e51764a
AB
431 */
432static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
433 int lnum, int offs)
434{
de097578
AH
435 struct ubifs_ch *ch = buf;
436 int skip, dlen = le32_to_cpu(ch->len);
1e51764a 437
de097578
AH
438 /* Check for empty space after the corrupt node's common header */
439 skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
440 if (is_empty(buf + skip, len - skip))
441 return 1;
442 /*
443 * The area after the common header size is not empty, so the common
444 * header must be intact. Check it.
445 */
446 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
447 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
448 return 0;
1e51764a 449 }
de097578
AH
450 /* Now we know the corrupt node's length we can skip over it */
451 skip = ALIGN(offs + dlen, c->min_io_size) - offs;
452 /* After which there should be empty space */
453 if (is_empty(buf + skip, len - skip))
454 return 1;
455 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
456 return 0;
1e51764a
AB
457}
458
459/**
460 * fix_unclean_leb - fix an unclean LEB.
461 * @c: UBIFS file-system description object
462 * @sleb: scanned LEB information
463 * @start: offset where scan started
464 */
465static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
466 int start)
467{
468 int lnum = sleb->lnum, endpt = start;
469
470 /* Get the end offset of the last node we are keeping */
471 if (!list_empty(&sleb->nodes)) {
472 struct ubifs_scan_node *snod;
473
474 snod = list_entry(sleb->nodes.prev,
475 struct ubifs_scan_node, list);
476 endpt = snod->offs + snod->len;
477 }
478
479 if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
480 /* Add to recovery list */
481 struct ubifs_unclean_leb *ucleb;
482
483 dbg_rcvry("need to fix LEB %d start %d endpt %d",
484 lnum, start, sleb->endpt);
485 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
486 if (!ucleb)
487 return -ENOMEM;
488 ucleb->lnum = lnum;
489 ucleb->endpt = endpt;
490 list_add_tail(&ucleb->list, &c->unclean_leb_list);
491 } else {
492 /* Write the fixed LEB back to flash */
493 int err;
494
495 dbg_rcvry("fixing LEB %d start %d endpt %d",
496 lnum, start, sleb->endpt);
497 if (endpt == 0) {
498 err = ubifs_leb_unmap(c, lnum);
499 if (err)
500 return err;
501 } else {
502 int len = ALIGN(endpt, c->min_io_size);
503
504 if (start) {
505 err = ubi_read(c->ubi, lnum, sleb->buf, 0,
506 start);
507 if (err)
508 return err;
509 }
510 /* Pad to min_io_size */
511 if (len > endpt) {
512 int pad_len = len - ALIGN(endpt, 8);
513
514 if (pad_len > 0) {
515 void *buf = sleb->buf + len - pad_len;
516
517 ubifs_pad(c, buf, pad_len);
518 }
519 }
520 err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
521 UBI_UNKNOWN);
522 if (err)
523 return err;
524 }
525 }
526 return 0;
527}
528
529/**
530 * drop_incomplete_group - drop nodes from an incomplete group.
531 * @sleb: scanned LEB information
532 * @offs: offset of dropped nodes is returned here
533 *
534 * This function returns %1 if nodes are dropped and %0 otherwise.
535 */
536static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
537{
538 int dropped = 0;
539
540 while (!list_empty(&sleb->nodes)) {
541 struct ubifs_scan_node *snod;
542 struct ubifs_ch *ch;
543
544 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
545 list);
546 ch = snod->node;
547 if (ch->group_type != UBIFS_IN_NODE_GROUP)
548 return dropped;
549 dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
550 *offs = snod->offs;
551 list_del(&snod->list);
552 kfree(snod);
553 sleb->nodes_cnt -= 1;
554 dropped = 1;
555 }
556 return dropped;
557}
558
559/**
560 * ubifs_recover_leb - scan and recover a LEB.
561 * @c: UBIFS file-system description object
562 * @lnum: LEB number
563 * @offs: offset
564 * @sbuf: LEB-sized buffer to use
565 * @grouped: nodes may be grouped for recovery
566 *
567 * This function does a scan of a LEB, but caters for errors that might have
568 * been caused by the unclean unmount from which we are attempting to recover.
569 *
570 * This function returns %0 on success and a negative error code on failure.
571 */
572struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
573 int offs, void *sbuf, int grouped)
574{
575 int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
576 int empty_chkd = 0, start = offs;
577 struct ubifs_scan_leb *sleb;
578 void *buf = sbuf + offs;
579
580 dbg_rcvry("%d:%d", lnum, offs);
581
582 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
583 if (IS_ERR(sleb))
584 return sleb;
585
586 if (sleb->ecc)
587 need_clean = 1;
588
589 while (len >= 8) {
590 int ret;
591
592 dbg_scan("look at LEB %d:%d (%d bytes left)",
593 lnum, offs, len);
594
595 cond_resched();
596
597 /*
598 * Scan quietly until there is an error from which we cannot
599 * recover
600 */
601 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
602
603 if (ret == SCANNED_A_NODE) {
604 /* A valid node, and not a padding node */
605 struct ubifs_ch *ch = buf;
606 int node_len;
607
608 err = ubifs_add_snod(c, sleb, buf, offs);
609 if (err)
610 goto error;
611 node_len = ALIGN(le32_to_cpu(ch->len), 8);
612 offs += node_len;
613 buf += node_len;
614 len -= node_len;
615 continue;
616 }
617
618 if (ret > 0) {
619 /* Padding bytes or a valid padding node */
620 offs += ret;
621 buf += ret;
622 len -= ret;
623 continue;
624 }
625
626 if (ret == SCANNED_EMPTY_SPACE) {
627 if (!is_empty(buf, len)) {
628 if (!is_last_write(c, buf, offs))
629 break;
630 clean_buf(c, &buf, lnum, &offs, &len);
631 need_clean = 1;
632 }
633 empty_chkd = 1;
634 break;
635 }
636
637 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
638 if (is_last_write(c, buf, offs)) {
639 clean_buf(c, &buf, lnum, &offs, &len);
640 need_clean = 1;
641 empty_chkd = 1;
642 break;
643 }
644
645 if (ret == SCANNED_A_CORRUPT_NODE)
646 if (no_more_nodes(c, buf, len, lnum, offs)) {
647 clean_buf(c, &buf, lnum, &offs, &len);
648 need_clean = 1;
649 empty_chkd = 1;
650 break;
651 }
652
653 if (quiet) {
654 /* Redo the last scan but noisily */
655 quiet = 0;
656 continue;
657 }
658
659 switch (ret) {
660 case SCANNED_GARBAGE:
661 dbg_err("garbage");
662 goto corrupted;
663 case SCANNED_A_CORRUPT_NODE:
664 case SCANNED_A_BAD_PAD_NODE:
665 dbg_err("bad node");
666 goto corrupted;
667 default:
668 dbg_err("unknown");
669 goto corrupted;
670 }
671 }
672
673 if (!empty_chkd && !is_empty(buf, len)) {
674 if (is_last_write(c, buf, offs)) {
675 clean_buf(c, &buf, lnum, &offs, &len);
676 need_clean = 1;
677 } else {
678 ubifs_err("corrupt empty space at LEB %d:%d",
679 lnum, offs);
680 goto corrupted;
681 }
682 }
683
684 /* Drop nodes from incomplete group */
685 if (grouped && drop_incomplete_group(sleb, &offs)) {
686 buf = sbuf + offs;
687 len = c->leb_size - offs;
688 clean_buf(c, &buf, lnum, &offs, &len);
689 need_clean = 1;
690 }
691
692 if (offs % c->min_io_size) {
693 clean_buf(c, &buf, lnum, &offs, &len);
694 need_clean = 1;
695 }
696
697 ubifs_end_scan(c, sleb, lnum, offs);
698
699 if (need_clean) {
700 err = fix_unclean_leb(c, sleb, start);
701 if (err)
702 goto error;
703 }
704
705 return sleb;
706
707corrupted:
708 ubifs_scanned_corruption(c, lnum, offs, buf);
709 err = -EUCLEAN;
710error:
711 ubifs_err("LEB %d scanning failed", lnum);
712 ubifs_scan_destroy(sleb);
713 return ERR_PTR(err);
714}
715
716/**
717 * get_cs_sqnum - get commit start sequence number.
718 * @c: UBIFS file-system description object
719 * @lnum: LEB number of commit start node
720 * @offs: offset of commit start node
721 * @cs_sqnum: commit start sequence number is returned here
722 *
723 * This function returns %0 on success and a negative error code on failure.
724 */
725static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
726 unsigned long long *cs_sqnum)
727{
728 struct ubifs_cs_node *cs_node = NULL;
729 int err, ret;
730
731 dbg_rcvry("at %d:%d", lnum, offs);
732 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
733 if (!cs_node)
734 return -ENOMEM;
735 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
736 goto out_err;
737 err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
738 if (err && err != -EBADMSG)
739 goto out_free;
740 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
741 if (ret != SCANNED_A_NODE) {
742 dbg_err("Not a valid node");
743 goto out_err;
744 }
745 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
746 dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
747 goto out_err;
748 }
749 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
750 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
751 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
752 c->cmt_no);
753 goto out_err;
754 }
755 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
756 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
757 kfree(cs_node);
758 return 0;
759
760out_err:
761 err = -EINVAL;
762out_free:
763 ubifs_err("failed to get CS sqnum");
764 kfree(cs_node);
765 return err;
766}
767
768/**
769 * ubifs_recover_log_leb - scan and recover a log LEB.
770 * @c: UBIFS file-system description object
771 * @lnum: LEB number
772 * @offs: offset
773 * @sbuf: LEB-sized buffer to use
774 *
775 * This function does a scan of a LEB, but caters for errors that might have
776 * been caused by the unclean unmount from which we are attempting to recover.
777 *
778 * This function returns %0 on success and a negative error code on failure.
779 */
780struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
781 int offs, void *sbuf)
782{
783 struct ubifs_scan_leb *sleb;
784 int next_lnum;
785
786 dbg_rcvry("LEB %d", lnum);
787 next_lnum = lnum + 1;
788 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
789 next_lnum = UBIFS_LOG_LNUM;
790 if (next_lnum != c->ltail_lnum) {
791 /*
792 * We can only recover at the end of the log, so check that the
793 * next log LEB is empty or out of date.
794 */
795 sleb = ubifs_scan(c, next_lnum, 0, sbuf);
796 if (IS_ERR(sleb))
797 return sleb;
798 if (sleb->nodes_cnt) {
799 struct ubifs_scan_node *snod;
800 unsigned long long cs_sqnum = c->cs_sqnum;
801
802 snod = list_entry(sleb->nodes.next,
803 struct ubifs_scan_node, list);
804 if (cs_sqnum == 0) {
805 int err;
806
807 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
808 if (err) {
809 ubifs_scan_destroy(sleb);
810 return ERR_PTR(err);
811 }
812 }
813 if (snod->sqnum > cs_sqnum) {
814 ubifs_err("unrecoverable log corruption "
815 "in LEB %d", lnum);
816 ubifs_scan_destroy(sleb);
817 return ERR_PTR(-EUCLEAN);
818 }
819 }
820 ubifs_scan_destroy(sleb);
821 }
822 return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
823}
824
825/**
826 * recover_head - recover a head.
827 * @c: UBIFS file-system description object
828 * @lnum: LEB number of head to recover
829 * @offs: offset of head to recover
830 * @sbuf: LEB-sized buffer to use
831 *
832 * This function ensures that there is no data on the flash at a head location.
833 *
834 * This function returns %0 on success and a negative error code on failure.
835 */
836static int recover_head(const struct ubifs_info *c, int lnum, int offs,
837 void *sbuf)
838{
839 int len, err, need_clean = 0;
840
841 if (c->min_io_size > 1)
842 len = c->min_io_size;
843 else
844 len = 512;
845 if (offs + len > c->leb_size)
846 len = c->leb_size - offs;
847
848 if (!len)
849 return 0;
850
851 /* Read at the head location and check it is empty flash */
852 err = ubi_read(c->ubi, lnum, sbuf, offs, len);
853 if (err)
854 need_clean = 1;
855 else {
856 uint8_t *p = sbuf;
857
858 while (len--)
859 if (*p++ != 0xff) {
860 need_clean = 1;
861 break;
862 }
863 }
864
865 if (need_clean) {
866 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
867 if (offs == 0)
868 return ubifs_leb_unmap(c, lnum);
869 err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
870 if (err)
871 return err;
872 return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
873 }
874
875 return 0;
876}
877
878/**
879 * ubifs_recover_inl_heads - recover index and LPT heads.
880 * @c: UBIFS file-system description object
881 * @sbuf: LEB-sized buffer to use
882 *
883 * This function ensures that there is no data on the flash at the index and
884 * LPT head locations.
885 *
886 * This deals with the recovery of a half-completed journal commit. UBIFS is
887 * careful never to overwrite the last version of the index or the LPT. Because
888 * the index and LPT are wandering trees, data from a half-completed commit will
889 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
890 * assumed to be empty and will be unmapped anyway before use, or in the index
891 * and LPT heads.
892 *
893 * This function returns %0 on success and a negative error code on failure.
894 */
895int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
896{
897 int err;
898
899 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
900
901 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
902 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
903 if (err)
904 return err;
905
906 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
907 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
908 if (err)
909 return err;
910
911 return 0;
912}
913
914/**
915 * clean_an_unclean_leb - read and write a LEB to remove corruption.
916 * @c: UBIFS file-system description object
917 * @ucleb: unclean LEB information
918 * @sbuf: LEB-sized buffer to use
919 *
920 * This function reads a LEB up to a point pre-determined by the mount recovery,
921 * checks the nodes, and writes the result back to the flash, thereby cleaning
922 * off any following corruption, or non-fatal ECC errors.
923 *
924 * This function returns %0 on success and a negative error code on failure.
925 */
926static int clean_an_unclean_leb(const struct ubifs_info *c,
927 struct ubifs_unclean_leb *ucleb, void *sbuf)
928{
929 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
930 void *buf = sbuf;
931
932 dbg_rcvry("LEB %d len %d", lnum, len);
933
934 if (len == 0) {
935 /* Nothing to read, just unmap it */
936 err = ubifs_leb_unmap(c, lnum);
937 if (err)
938 return err;
939 return 0;
940 }
941
942 err = ubi_read(c->ubi, lnum, buf, offs, len);
943 if (err && err != -EBADMSG)
944 return err;
945
946 while (len >= 8) {
947 int ret;
948
949 cond_resched();
950
951 /* Scan quietly until there is an error */
952 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
953
954 if (ret == SCANNED_A_NODE) {
955 /* A valid node, and not a padding node */
956 struct ubifs_ch *ch = buf;
957 int node_len;
958
959 node_len = ALIGN(le32_to_cpu(ch->len), 8);
960 offs += node_len;
961 buf += node_len;
962 len -= node_len;
963 continue;
964 }
965
966 if (ret > 0) {
967 /* Padding bytes or a valid padding node */
968 offs += ret;
969 buf += ret;
970 len -= ret;
971 continue;
972 }
973
974 if (ret == SCANNED_EMPTY_SPACE) {
975 ubifs_err("unexpected empty space at %d:%d",
976 lnum, offs);
977 return -EUCLEAN;
978 }
979
980 if (quiet) {
981 /* Redo the last scan but noisily */
982 quiet = 0;
983 continue;
984 }
985
986 ubifs_scanned_corruption(c, lnum, offs, buf);
987 return -EUCLEAN;
988 }
989
990 /* Pad to min_io_size */
991 len = ALIGN(ucleb->endpt, c->min_io_size);
992 if (len > ucleb->endpt) {
993 int pad_len = len - ALIGN(ucleb->endpt, 8);
994
995 if (pad_len > 0) {
996 buf = c->sbuf + len - pad_len;
997 ubifs_pad(c, buf, pad_len);
998 }
999 }
1000
1001 /* Write back the LEB atomically */
1002 err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1003 if (err)
1004 return err;
1005
1006 dbg_rcvry("cleaned LEB %d", lnum);
1007
1008 return 0;
1009}
1010
1011/**
1012 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1013 * @c: UBIFS file-system description object
1014 * @sbuf: LEB-sized buffer to use
1015 *
1016 * This function cleans a LEB identified during recovery that needs to be
1017 * written but was not because UBIFS was mounted read-only. This happens when
1018 * remounting to read-write mode.
1019 *
1020 * This function returns %0 on success and a negative error code on failure.
1021 */
1022int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1023{
1024 dbg_rcvry("recovery");
1025 while (!list_empty(&c->unclean_leb_list)) {
1026 struct ubifs_unclean_leb *ucleb;
1027 int err;
1028
1029 ucleb = list_entry(c->unclean_leb_list.next,
1030 struct ubifs_unclean_leb, list);
1031 err = clean_an_unclean_leb(c, ucleb, sbuf);
1032 if (err)
1033 return err;
1034 list_del(&ucleb->list);
1035 kfree(ucleb);
1036 }
1037 return 0;
1038}
1039
1040/**
1041 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1042 * @c: UBIFS file-system description object
1043 *
1044 * Out-of-place garbage collection requires always one empty LEB with which to
1045 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1046 * written to the master node on unmounting. In the case of an unclean unmount
1047 * the value of gc_lnum recorded in the master node is out of date and cannot
1048 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1049 * However, there may not be enough empty space, in which case it must be
1050 * possible to GC the dirtiest LEB into the GC head LEB.
1051 *
1052 * This function also runs the commit which causes the TNC updates from
1053 * size-recovery and orphans to be written to the flash. That is important to
1054 * ensure correct replay order for subsequent mounts.
1055 *
1056 * This function returns %0 on success and a negative error code on failure.
1057 */
1058int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1059{
1060 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1061 struct ubifs_lprops lp;
1062 int lnum, err;
1063
1064 c->gc_lnum = -1;
1065 if (wbuf->lnum == -1) {
1066 dbg_rcvry("no GC head LEB");
1067 goto find_free;
1068 }
1069 /*
1070 * See whether the used space in the dirtiest LEB fits in the GC head
1071 * LEB.
1072 */
1073 if (wbuf->offs == c->leb_size) {
1074 dbg_rcvry("no room in GC head LEB");
1075 goto find_free;
1076 }
1077 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1078 if (err) {
1079 if (err == -ENOSPC)
1080 dbg_err("could not find a dirty LEB");
1081 return err;
1082 }
1083 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1084 lnum = lp.lnum;
1085 if (lp.free + lp.dirty == c->leb_size) {
1086 /* An empty LEB was returned */
1087 if (lp.free != c->leb_size) {
1088 err = ubifs_change_one_lp(c, lnum, c->leb_size,
1089 0, 0, 0, 0);
1090 if (err)
1091 return err;
1092 }
1093 err = ubifs_leb_unmap(c, lnum);
1094 if (err)
1095 return err;
1096 c->gc_lnum = lnum;
1097 dbg_rcvry("allocated LEB %d for GC", lnum);
1098 /* Run the commit */
1099 dbg_rcvry("committing");
1100 return ubifs_run_commit(c);
1101 }
1102 /*
1103 * There was no empty LEB so the used space in the dirtiest LEB must fit
1104 * in the GC head LEB.
1105 */
1106 if (lp.free + lp.dirty < wbuf->offs) {
1107 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1108 lnum, wbuf->lnum, wbuf->offs);
1109 err = ubifs_return_leb(c, lnum);
1110 if (err)
1111 return err;
1112 goto find_free;
1113 }
1114 /*
1115 * We run the commit before garbage collection otherwise subsequent
1116 * mounts will see the GC and orphan deletion in a different order.
1117 */
1118 dbg_rcvry("committing");
1119 err = ubifs_run_commit(c);
1120 if (err)
1121 return err;
1122 /*
1123 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1124 * - use locking to keep 'ubifs_assert()' happy.
1125 */
1126 dbg_rcvry("GC'ing LEB %d", lnum);
1127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1128 err = ubifs_garbage_collect_leb(c, &lp);
1129 if (err >= 0) {
1130 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1131
1132 if (err2)
1133 err = err2;
1134 }
1135 mutex_unlock(&wbuf->io_mutex);
1136 if (err < 0) {
1137 dbg_err("GC failed, error %d", err);
1138 if (err == -EAGAIN)
1139 err = -EINVAL;
1140 return err;
1141 }
1142 if (err != LEB_RETAINED) {
1143 dbg_err("GC returned %d", err);
1144 return -EINVAL;
1145 }
1146 err = ubifs_leb_unmap(c, c->gc_lnum);
1147 if (err)
1148 return err;
1149 dbg_rcvry("allocated LEB %d for GC", lnum);
1150 return 0;
1151
1152find_free:
1153 /*
1154 * There is no GC head LEB or the free space in the GC head LEB is too
1155 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1156 * GC is not run.
1157 */
1158 lnum = ubifs_find_free_leb_for_idx(c);
1159 if (lnum < 0) {
1160 dbg_err("could not find an empty LEB");
1161 return lnum;
1162 }
1163 /* And reset the index flag */
1164 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1165 LPROPS_INDEX, 0);
1166 if (err)
1167 return err;
1168 c->gc_lnum = lnum;
1169 dbg_rcvry("allocated LEB %d for GC", lnum);
1170 /* Run the commit */
1171 dbg_rcvry("committing");
1172 return ubifs_run_commit(c);
1173}
1174
1175/**
1176 * struct size_entry - inode size information for recovery.
1177 * @rb: link in the RB-tree of sizes
1178 * @inum: inode number
1179 * @i_size: size on inode
1180 * @d_size: maximum size based on data nodes
1181 * @exists: indicates whether the inode exists
1182 * @inode: inode if pinned in memory awaiting rw mode to fix it
1183 */
1184struct size_entry {
1185 struct rb_node rb;
1186 ino_t inum;
1187 loff_t i_size;
1188 loff_t d_size;
1189 int exists;
1190 struct inode *inode;
1191};
1192
1193/**
1194 * add_ino - add an entry to the size tree.
1195 * @c: UBIFS file-system description object
1196 * @inum: inode number
1197 * @i_size: size on inode
1198 * @d_size: maximum size based on data nodes
1199 * @exists: indicates whether the inode exists
1200 */
1201static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1202 loff_t d_size, int exists)
1203{
1204 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1205 struct size_entry *e;
1206
1207 while (*p) {
1208 parent = *p;
1209 e = rb_entry(parent, struct size_entry, rb);
1210 if (inum < e->inum)
1211 p = &(*p)->rb_left;
1212 else
1213 p = &(*p)->rb_right;
1214 }
1215
1216 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1217 if (!e)
1218 return -ENOMEM;
1219
1220 e->inum = inum;
1221 e->i_size = i_size;
1222 e->d_size = d_size;
1223 e->exists = exists;
1224
1225 rb_link_node(&e->rb, parent, p);
1226 rb_insert_color(&e->rb, &c->size_tree);
1227
1228 return 0;
1229}
1230
1231/**
1232 * find_ino - find an entry on the size tree.
1233 * @c: UBIFS file-system description object
1234 * @inum: inode number
1235 */
1236static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1237{
1238 struct rb_node *p = c->size_tree.rb_node;
1239 struct size_entry *e;
1240
1241 while (p) {
1242 e = rb_entry(p, struct size_entry, rb);
1243 if (inum < e->inum)
1244 p = p->rb_left;
1245 else if (inum > e->inum)
1246 p = p->rb_right;
1247 else
1248 return e;
1249 }
1250 return NULL;
1251}
1252
1253/**
1254 * remove_ino - remove an entry from the size tree.
1255 * @c: UBIFS file-system description object
1256 * @inum: inode number
1257 */
1258static void remove_ino(struct ubifs_info *c, ino_t inum)
1259{
1260 struct size_entry *e = find_ino(c, inum);
1261
1262 if (!e)
1263 return;
1264 rb_erase(&e->rb, &c->size_tree);
1265 kfree(e);
1266}
1267
1268/**
1269 * ubifs_destroy_size_tree - free resources related to the size tree.
1270 * @c: UBIFS file-system description object
1271 */
1272void ubifs_destroy_size_tree(struct ubifs_info *c)
1273{
1274 struct rb_node *this = c->size_tree.rb_node;
1275 struct size_entry *e;
1276
1277 while (this) {
1278 if (this->rb_left) {
1279 this = this->rb_left;
1280 continue;
1281 } else if (this->rb_right) {
1282 this = this->rb_right;
1283 continue;
1284 }
1285 e = rb_entry(this, struct size_entry, rb);
1286 if (e->inode)
1287 iput(e->inode);
1288 this = rb_parent(this);
1289 if (this) {
1290 if (this->rb_left == &e->rb)
1291 this->rb_left = NULL;
1292 else
1293 this->rb_right = NULL;
1294 }
1295 kfree(e);
1296 }
1297 c->size_tree = RB_ROOT;
1298}
1299
1300/**
1301 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1302 * @c: UBIFS file-system description object
1303 * @key: node key
1304 * @deletion: node is for a deletion
1305 * @new_size: inode size
1306 *
1307 * This function has two purposes:
1308 * 1) to ensure there are no data nodes that fall outside the inode size
1309 * 2) to ensure there are no data nodes for inodes that do not exist
1310 * To accomplish those purposes, a rb-tree is constructed containing an entry
1311 * for each inode number in the journal that has not been deleted, and recording
1312 * the size from the inode node, the maximum size of any data node (also altered
1313 * by truncations) and a flag indicating a inode number for which no inode node
1314 * was present in the journal.
1315 *
1316 * Note that there is still the possibility that there are data nodes that have
1317 * been committed that are beyond the inode size, however the only way to find
1318 * them would be to scan the entire index. Alternatively, some provision could
1319 * be made to record the size of inodes at the start of commit, which would seem
1320 * very cumbersome for a scenario that is quite unlikely and the only negative
1321 * consequence of which is wasted space.
1322 *
1323 * This functions returns %0 on success and a negative error code on failure.
1324 */
1325int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1326 int deletion, loff_t new_size)
1327{
1328 ino_t inum = key_inum(c, key);
1329 struct size_entry *e;
1330 int err;
1331
1332 switch (key_type(c, key)) {
1333 case UBIFS_INO_KEY:
1334 if (deletion)
1335 remove_ino(c, inum);
1336 else {
1337 e = find_ino(c, inum);
1338 if (e) {
1339 e->i_size = new_size;
1340 e->exists = 1;
1341 } else {
1342 err = add_ino(c, inum, new_size, 0, 1);
1343 if (err)
1344 return err;
1345 }
1346 }
1347 break;
1348 case UBIFS_DATA_KEY:
1349 e = find_ino(c, inum);
1350 if (e) {
1351 if (new_size > e->d_size)
1352 e->d_size = new_size;
1353 } else {
1354 err = add_ino(c, inum, 0, new_size, 0);
1355 if (err)
1356 return err;
1357 }
1358 break;
1359 case UBIFS_TRUN_KEY:
1360 e = find_ino(c, inum);
1361 if (e)
1362 e->d_size = new_size;
1363 break;
1364 }
1365 return 0;
1366}
1367
1368/**
1369 * fix_size_in_place - fix inode size in place on flash.
1370 * @c: UBIFS file-system description object
1371 * @e: inode size information for recovery
1372 */
1373static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1374{
1375 struct ubifs_ino_node *ino = c->sbuf;
1376 unsigned char *p;
1377 union ubifs_key key;
1378 int err, lnum, offs, len;
1379 loff_t i_size;
1380 uint32_t crc;
1381
1382 /* Locate the inode node LEB number and offset */
1383 ino_key_init(c, &key, e->inum);
1384 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1385 if (err)
1386 goto out;
1387 /*
1388 * If the size recorded on the inode node is greater than the size that
1389 * was calculated from nodes in the journal then don't change the inode.
1390 */
1391 i_size = le64_to_cpu(ino->size);
1392 if (i_size >= e->d_size)
1393 return 0;
1394 /* Read the LEB */
1395 err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1396 if (err)
1397 goto out;
1398 /* Change the size field and recalculate the CRC */
1399 ino = c->sbuf + offs;
1400 ino->size = cpu_to_le64(e->d_size);
1401 len = le32_to_cpu(ino->ch.len);
1402 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1403 ino->ch.crc = cpu_to_le32(crc);
1404 /* Work out where data in the LEB ends and free space begins */
1405 p = c->sbuf;
1406 len = c->leb_size - 1;
1407 while (p[len] == 0xff)
1408 len -= 1;
1409 len = ALIGN(len + 1, c->min_io_size);
1410 /* Atomically write the fixed LEB back again */
1411 err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1412 if (err)
1413 goto out;
e84461ad
AB
1414 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1415 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1e51764a
AB
1416 return 0;
1417
1418out:
1419 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
e84461ad 1420 (unsigned long)e->inum, e->i_size, e->d_size, err);
1e51764a
AB
1421 return err;
1422}
1423
1424/**
1425 * ubifs_recover_size - recover inode size.
1426 * @c: UBIFS file-system description object
1427 *
1428 * This function attempts to fix inode size discrepancies identified by the
1429 * 'ubifs_recover_size_accum()' function.
1430 *
1431 * This functions returns %0 on success and a negative error code on failure.
1432 */
1433int ubifs_recover_size(struct ubifs_info *c)
1434{
1435 struct rb_node *this = rb_first(&c->size_tree);
1436
1437 while (this) {
1438 struct size_entry *e;
1439 int err;
1440
1441 e = rb_entry(this, struct size_entry, rb);
1442 if (!e->exists) {
1443 union ubifs_key key;
1444
1445 ino_key_init(c, &key, e->inum);
1446 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1447 if (err && err != -ENOENT)
1448 return err;
1449 if (err == -ENOENT) {
1450 /* Remove data nodes that have no inode */
e84461ad
AB
1451 dbg_rcvry("removing ino %lu",
1452 (unsigned long)e->inum);
1e51764a
AB
1453 err = ubifs_tnc_remove_ino(c, e->inum);
1454 if (err)
1455 return err;
1456 } else {
1457 struct ubifs_ino_node *ino = c->sbuf;
1458
1459 e->exists = 1;
1460 e->i_size = le64_to_cpu(ino->size);
1461 }
1462 }
1463 if (e->exists && e->i_size < e->d_size) {
1464 if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1465 /* Fix the inode size and pin it in memory */
1466 struct inode *inode;
1467
1468 inode = ubifs_iget(c->vfs_sb, e->inum);
1469 if (IS_ERR(inode))
1470 return PTR_ERR(inode);
1471 if (inode->i_size < e->d_size) {
1472 dbg_rcvry("ino %lu size %lld -> %lld",
e84461ad
AB
1473 (unsigned long)e->inum,
1474 e->d_size, inode->i_size);
1e51764a
AB
1475 inode->i_size = e->d_size;
1476 ubifs_inode(inode)->ui_size = e->d_size;
1477 e->inode = inode;
1478 this = rb_next(this);
1479 continue;
1480 }
1481 iput(inode);
1482 } else {
1483 /* Fix the size in place */
1484 err = fix_size_in_place(c, e);
1485 if (err)
1486 return err;
1487 if (e->inode)
1488 iput(e->inode);
1489 }
1490 }
1491 this = rb_next(this);
1492 rb_erase(&e->rb, &c->size_tree);
1493 kfree(e);
1494 }
1495 return 0;
1496}