]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/nilfs2/page.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / fs / nilfs2 / page.c
CommitLineData
0bd49f94
RK
1/*
2 * page.c - buffer/page management specific to NILFS
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21 * Seiji Kihara <kihara@osrg.net>.
22 */
23
24#include <linux/pagemap.h>
25#include <linux/writeback.h>
26#include <linux/swap.h>
27#include <linux/bitops.h>
28#include <linux/page-flags.h>
29#include <linux/list.h>
30#include <linux/highmem.h>
31#include <linux/pagevec.h>
5a0e3ad6 32#include <linux/gfp.h>
0bd49f94
RK
33#include "nilfs.h"
34#include "page.h"
35#include "mdt.h"
36
37
38#define NILFS_BUFFER_INHERENT_BITS \
39 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated))
41
42static struct buffer_head *
43__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
44 int blkbits, unsigned long b_state)
45
46{
47 unsigned long first_block;
48 struct buffer_head *bh;
49
50 if (!page_has_buffers(page))
51 create_empty_buffers(page, 1 << blkbits, b_state);
52
53 first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
54 bh = nilfs_page_get_nth_block(page, block - first_block);
55
56 touch_buffer(bh);
57 wait_on_buffer(bh);
58 return bh;
59}
60
61/*
62 * Since the page cache of B-tree node pages or data page cache of pseudo
63 * inodes does not have a valid mapping->host pointer, calling
64 * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
65 * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
66 * To avoid this problem, the old style mark_buffer_dirty() is used instead.
67 */
68void nilfs_mark_buffer_dirty(struct buffer_head *bh)
69{
70 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
71 __set_page_dirty_nobuffers(bh->b_page);
72}
73
74struct buffer_head *nilfs_grab_buffer(struct inode *inode,
75 struct address_space *mapping,
76 unsigned long blkoff,
77 unsigned long b_state)
78{
79 int blkbits = inode->i_blkbits;
80 pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
81 struct page *page, *opage;
82 struct buffer_head *bh, *obh;
83
84 page = grab_cache_page(mapping, index);
85 if (unlikely(!page))
86 return NULL;
87
88 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
89 if (unlikely(!bh)) {
90 unlock_page(page);
91 page_cache_release(page);
92 return NULL;
93 }
94 if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
95 /*
96 * Shadow page cache uses assoc_mapping to point its original
97 * page cache. The following code tries the original cache
98 * if the given cache is a shadow and it didn't hit.
99 */
100 opage = find_lock_page(mapping->assoc_mapping, index);
101 if (!opage)
102 return bh;
103
104 obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
105 b_state);
106 if (buffer_uptodate(obh)) {
107 nilfs_copy_buffer(bh, obh);
108 if (buffer_dirty(obh)) {
109 nilfs_mark_buffer_dirty(bh);
110 if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
111 nilfs_mdt_mark_dirty(inode);
112 }
113 }
114 brelse(obh);
115 unlock_page(opage);
116 page_cache_release(opage);
117 }
118 return bh;
119}
120
121/**
122 * nilfs_forget_buffer - discard dirty state
123 * @inode: owner inode of the buffer
124 * @bh: buffer head of the buffer to be discarded
125 */
126void nilfs_forget_buffer(struct buffer_head *bh)
127{
128 struct page *page = bh->b_page;
129
130 lock_buffer(bh);
131 clear_buffer_nilfs_volatile(bh);
84338237
RK
132 clear_buffer_dirty(bh);
133 if (nilfs_page_buffers_clean(page))
0bd49f94
RK
134 __nilfs_clear_page_dirty(page);
135
136 clear_buffer_uptodate(bh);
137 clear_buffer_mapped(bh);
138 bh->b_blocknr = -1;
139 ClearPageUptodate(page);
140 ClearPageMappedToDisk(page);
141 unlock_buffer(bh);
142 brelse(bh);
143}
144
145/**
146 * nilfs_copy_buffer -- copy buffer data and flags
147 * @dbh: destination buffer
148 * @sbh: source buffer
149 */
150void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
151{
152 void *kaddr0, *kaddr1;
153 unsigned long bits;
154 struct page *spage = sbh->b_page, *dpage = dbh->b_page;
155 struct buffer_head *bh;
156
157 kaddr0 = kmap_atomic(spage, KM_USER0);
158 kaddr1 = kmap_atomic(dpage, KM_USER1);
159 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
160 kunmap_atomic(kaddr1, KM_USER1);
161 kunmap_atomic(kaddr0, KM_USER0);
162
163 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
164 dbh->b_blocknr = sbh->b_blocknr;
165 dbh->b_bdev = sbh->b_bdev;
166
167 bh = dbh;
168 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
169 while ((bh = bh->b_this_page) != dbh) {
170 lock_buffer(bh);
171 bits &= bh->b_state;
172 unlock_buffer(bh);
173 }
174 if (bits & (1UL << BH_Uptodate))
175 SetPageUptodate(dpage);
176 else
177 ClearPageUptodate(dpage);
178 if (bits & (1UL << BH_Mapped))
179 SetPageMappedToDisk(dpage);
180 else
181 ClearPageMappedToDisk(dpage);
182}
183
184/**
185 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
186 * @page: page to be checked
187 *
188 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
189 * Otherwise, it returns non-zero value.
190 */
191int nilfs_page_buffers_clean(struct page *page)
192{
193 struct buffer_head *bh, *head;
194
195 bh = head = page_buffers(page);
196 do {
197 if (buffer_dirty(bh))
198 return 0;
199 bh = bh->b_this_page;
200 } while (bh != head);
201 return 1;
202}
203
204void nilfs_page_bug(struct page *page)
205{
206 struct address_space *m;
207 unsigned long ino = 0;
208
209 if (unlikely(!page)) {
210 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
211 return;
212 }
213
214 m = page->mapping;
215 if (m) {
216 struct inode *inode = NILFS_AS_I(m);
217 if (inode != NULL)
218 ino = inode->i_ino;
219 }
220 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
221 "mapping=%p ino=%lu\n",
222 page, atomic_read(&page->_count),
223 (unsigned long long)page->index, page->flags, m, ino);
224
225 if (page_has_buffers(page)) {
226 struct buffer_head *bh, *head;
227 int i = 0;
228
229 bh = head = page_buffers(page);
230 do {
231 printk(KERN_CRIT
232 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
233 i++, bh, atomic_read(&bh->b_count),
234 (unsigned long long)bh->b_blocknr, bh->b_state);
235 bh = bh->b_this_page;
236 } while (bh != head);
237 }
238}
239
240/**
241 * nilfs_alloc_private_page - allocate a private page with buffer heads
242 *
243 * Return Value: On success, a pointer to the allocated page is returned.
244 * On error, NULL is returned.
245 */
246struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
247 unsigned long state)
248{
249 struct buffer_head *bh, *head, *tail;
250 struct page *page;
251
252 page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
253 if (unlikely(!page))
254 return NULL;
255
256 lock_page(page);
257 head = alloc_page_buffers(page, size, 0);
258 if (unlikely(!head)) {
259 unlock_page(page);
260 __free_page(page);
261 return NULL;
262 }
263
264 bh = head;
265 do {
266 bh->b_state = (1UL << BH_NILFS_Allocated) | state;
267 tail = bh;
268 bh->b_bdev = bdev;
269 bh = bh->b_this_page;
270 } while (bh);
271
272 tail->b_this_page = head;
273 attach_page_buffers(page, head);
274
275 return page;
276}
277
278void nilfs_free_private_page(struct page *page)
279{
280 BUG_ON(!PageLocked(page));
281 BUG_ON(page->mapping);
282
283 if (page_has_buffers(page) && !try_to_free_buffers(page))
284 NILFS_PAGE_BUG(page, "failed to free page");
285
286 unlock_page(page);
287 __free_page(page);
288}
289
290/**
291 * nilfs_copy_page -- copy the page with buffers
292 * @dst: destination page
293 * @src: source page
294 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
295 *
7a65004b 296 * This function is for both data pages and btnode pages. The dirty flag
0bd49f94
RK
297 * should be treated by caller. The page must not be under i/o.
298 * Both src and dst page must be locked
299 */
300static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
301{
302 struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
303 unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
304
305 BUG_ON(PageWriteback(dst));
306
307 sbh = sbufs = page_buffers(src);
308 if (!page_has_buffers(dst))
309 create_empty_buffers(dst, sbh->b_size, 0);
310
311 if (copy_dirty)
312 mask |= (1UL << BH_Dirty);
313
314 dbh = dbufs = page_buffers(dst);
315 do {
316 lock_buffer(sbh);
317 lock_buffer(dbh);
318 dbh->b_state = sbh->b_state & mask;
319 dbh->b_blocknr = sbh->b_blocknr;
320 dbh->b_bdev = sbh->b_bdev;
321 sbh = sbh->b_this_page;
322 dbh = dbh->b_this_page;
323 } while (dbh != dbufs);
324
325 copy_highpage(dst, src);
326
327 if (PageUptodate(src) && !PageUptodate(dst))
328 SetPageUptodate(dst);
329 else if (!PageUptodate(src) && PageUptodate(dst))
330 ClearPageUptodate(dst);
331 if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
332 SetPageMappedToDisk(dst);
333 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
334 ClearPageMappedToDisk(dst);
335
336 do {
337 unlock_buffer(sbh);
338 unlock_buffer(dbh);
339 sbh = sbh->b_this_page;
340 dbh = dbh->b_this_page;
341 } while (dbh != dbufs);
342}
343
344int nilfs_copy_dirty_pages(struct address_space *dmap,
345 struct address_space *smap)
346{
347 struct pagevec pvec;
348 unsigned int i;
349 pgoff_t index = 0;
350 int err = 0;
351
352 pagevec_init(&pvec, 0);
353repeat:
354 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
355 PAGEVEC_SIZE))
356 return 0;
357
358 for (i = 0; i < pagevec_count(&pvec); i++) {
359 struct page *page = pvec.pages[i], *dpage;
360
361 lock_page(page);
362 if (unlikely(!PageDirty(page)))
363 NILFS_PAGE_BUG(page, "inconsistent dirty state");
364
365 dpage = grab_cache_page(dmap, page->index);
366 if (unlikely(!dpage)) {
367 /* No empty page is added to the page cache */
368 err = -ENOMEM;
369 unlock_page(page);
370 break;
371 }
372 if (unlikely(!page_has_buffers(page)))
373 NILFS_PAGE_BUG(page,
374 "found empty page in dat page cache");
375
376 nilfs_copy_page(dpage, page, 1);
377 __set_page_dirty_nobuffers(dpage);
378
379 unlock_page(dpage);
380 page_cache_release(dpage);
381 unlock_page(page);
382 }
383 pagevec_release(&pvec);
384 cond_resched();
385
386 if (likely(!err))
387 goto repeat;
388 return err;
389}
390
391/**
7a65004b 392 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
0bd49f94
RK
393 * @dmap: destination page cache
394 * @smap: source page cache
395 *
396 * No pages must no be added to the cache during this process.
397 * This must be ensured by the caller.
398 */
399void nilfs_copy_back_pages(struct address_space *dmap,
400 struct address_space *smap)
401{
402 struct pagevec pvec;
403 unsigned int i, n;
404 pgoff_t index = 0;
405 int err;
406
407 pagevec_init(&pvec, 0);
408repeat:
409 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
410 if (!n)
411 return;
412 index = pvec.pages[n - 1]->index + 1;
413
414 for (i = 0; i < pagevec_count(&pvec); i++) {
415 struct page *page = pvec.pages[i], *dpage;
416 pgoff_t offset = page->index;
417
418 lock_page(page);
419 dpage = find_lock_page(dmap, offset);
420 if (dpage) {
421 /* override existing page on the destination cache */
1f5abe7e 422 WARN_ON(PageDirty(dpage));
0bd49f94
RK
423 nilfs_copy_page(dpage, page, 0);
424 unlock_page(dpage);
425 page_cache_release(dpage);
426 } else {
427 struct page *page2;
428
429 /* move the page to the destination cache */
430 spin_lock_irq(&smap->tree_lock);
431 page2 = radix_tree_delete(&smap->page_tree, offset);
1f5abe7e
RK
432 WARN_ON(page2 != page);
433
0bd49f94
RK
434 smap->nrpages--;
435 spin_unlock_irq(&smap->tree_lock);
436
437 spin_lock_irq(&dmap->tree_lock);
438 err = radix_tree_insert(&dmap->page_tree, offset, page);
439 if (unlikely(err < 0)) {
1f5abe7e 440 WARN_ON(err == -EEXIST);
0bd49f94
RK
441 page->mapping = NULL;
442 page_cache_release(page); /* for cache */
443 } else {
444 page->mapping = dmap;
445 dmap->nrpages++;
446 if (PageDirty(page))
447 radix_tree_tag_set(&dmap->page_tree,
448 offset,
449 PAGECACHE_TAG_DIRTY);
450 }
451 spin_unlock_irq(&dmap->tree_lock);
452 }
453 unlock_page(page);
454 }
455 pagevec_release(&pvec);
456 cond_resched();
457
458 goto repeat;
459}
460
461void nilfs_clear_dirty_pages(struct address_space *mapping)
462{
463 struct pagevec pvec;
464 unsigned int i;
465 pgoff_t index = 0;
466
467 pagevec_init(&pvec, 0);
468
469 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
470 PAGEVEC_SIZE)) {
471 for (i = 0; i < pagevec_count(&pvec); i++) {
472 struct page *page = pvec.pages[i];
473 struct buffer_head *bh, *head;
474
475 lock_page(page);
476 ClearPageUptodate(page);
477 ClearPageMappedToDisk(page);
478 bh = head = page_buffers(page);
479 do {
480 lock_buffer(bh);
481 clear_buffer_dirty(bh);
482 clear_buffer_nilfs_volatile(bh);
483 clear_buffer_uptodate(bh);
484 clear_buffer_mapped(bh);
485 unlock_buffer(bh);
486 bh = bh->b_this_page;
487 } while (bh != head);
488
489 __nilfs_clear_page_dirty(page);
490 unlock_page(page);
491 }
492 pagevec_release(&pvec);
493 cond_resched();
494 }
495}
496
497unsigned nilfs_page_count_clean_buffers(struct page *page,
498 unsigned from, unsigned to)
499{
500 unsigned block_start, block_end;
501 struct buffer_head *bh, *head;
502 unsigned nc = 0;
503
504 for (bh = head = page_buffers(page), block_start = 0;
505 bh != head || !block_start;
506 block_start = block_end, bh = bh->b_this_page) {
507 block_end = block_start + bh->b_size;
508 if (block_end > from && block_start < to && !buffer_dirty(bh))
509 nc++;
510 }
511 return nc;
512}
513
514/*
515 * NILFS2 needs clear_page_dirty() in the following two cases:
516 *
517 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
518 * page dirty flags when it copies back pages from the shadow cache
519 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache
520 * (dat->{i_mapping,i_btnode_cache}).
521 *
522 * 2) Some B-tree operations like insertion or deletion may dispose buffers
523 * in dirty state, and this needs to cancel the dirty state of their pages.
524 */
525int __nilfs_clear_page_dirty(struct page *page)
526{
527 struct address_space *mapping = page->mapping;
528
529 if (mapping) {
530 spin_lock_irq(&mapping->tree_lock);
531 if (test_bit(PG_dirty, &page->flags)) {
532 radix_tree_tag_clear(&mapping->page_tree,
533 page_index(page),
534 PAGECACHE_TAG_DIRTY);
535 spin_unlock_irq(&mapping->tree_lock);
536 return clear_page_dirty_for_io(page);
537 }
538 spin_unlock_irq(&mapping->tree_lock);
539 return 0;
540 }
541 return TestClearPageDirty(page);
542}