]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/jffs2/wbuf.c
[JFFS2] semaphore->mutex conversion
[net-next-2.6.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e
DW
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
1da177e4
LT
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
1da177e4
LT
12 */
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/mtd/mtd.h>
17#include <linux/crc32.h>
18#include <linux/mtd/nand.h>
4e57b681 19#include <linux/jiffies.h>
914e2637 20#include <linux/sched.h>
4e57b681 21
1da177e4
LT
22#include "nodelist.h"
23
24/* For testing write failures */
25#undef BREAKME
26#undef BREAKMEHEADER
27
28#ifdef BREAKME
29static unsigned char *brokenbuf;
30#endif
31
daba5cc4
AB
32#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
34
1da177e4
LT
35/* max. erase failures before we mark a block bad */
36#define MAX_ERASE_FAILURES 2
37
1da177e4
LT
38struct jffs2_inodirty {
39 uint32_t ino;
40 struct jffs2_inodirty *next;
41};
42
43static struct jffs2_inodirty inodirty_nomem;
44
45static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
46{
47 struct jffs2_inodirty *this = c->wbuf_inodes;
48
49 /* If a malloc failed, consider _everything_ dirty */
50 if (this == &inodirty_nomem)
51 return 1;
52
53 /* If ino == 0, _any_ non-GC writes mean 'yes' */
54 if (this && !ino)
55 return 1;
56
57 /* Look to see if the inode in question is pending in the wbuf */
58 while (this) {
59 if (this->ino == ino)
60 return 1;
61 this = this->next;
62 }
63 return 0;
64}
65
66static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
67{
68 struct jffs2_inodirty *this;
69
70 this = c->wbuf_inodes;
71
72 if (this != &inodirty_nomem) {
73 while (this) {
74 struct jffs2_inodirty *next = this->next;
75 kfree(this);
76 this = next;
77 }
78 }
79 c->wbuf_inodes = NULL;
80}
81
82static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
83{
84 struct jffs2_inodirty *new;
85
86 /* Mark the superblock dirty so that kupdated will flush... */
4d952709 87 jffs2_erase_pending_trigger(c);
1da177e4
LT
88
89 if (jffs2_wbuf_pending_for_ino(c, ino))
90 return;
91
92 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem;
97 return;
98 }
99 new->ino = ino;
100 new->next = c->wbuf_inodes;
101 c->wbuf_inodes = new;
102 return;
103}
104
105static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
106{
107 struct list_head *this, *next;
108 static int n;
109
110 if (list_empty(&c->erasable_pending_wbuf_list))
111 return;
112
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 list_del(this);
118 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++;
124 jffs2_erase_pending_trigger(c);
125 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 list_add_tail(&jeb->list, &c->erasable_list);
130 }
131 }
132}
133
7f716cf3
EH
134#define REFILE_NOTEMPTY 0
135#define REFILE_ANYWAY 1
136
137static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
138{
139 D1(printk("About to refile bad block at %08x\n", jeb->offset));
140
1da177e4
LT
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
9b88f473 150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
155 jffs2_erase_pending_trigger(c);
156 }
1da177e4 157
9bfeb691
DW
158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 uint32_t oldfree = jeb->free_size;
160
161 jffs2_link_node_ref(c, jeb,
162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 oldfree, NULL);
164 /* convert to wasted */
165 c->wasted_size += oldfree;
166 jeb->wasted_size += oldfree;
167 c->dirty_size -= oldfree;
168 jeb->dirty_size -= oldfree;
169 }
1da177e4 170
e0c8e42f
AB
171 jffs2_dbg_dump_block_lists_nolock(c);
172 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4
LT
174}
175
9bfeb691
DW
176static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 struct jffs2_inode_info *f,
178 struct jffs2_raw_node_ref *raw,
179 union jffs2_node_union *node)
180{
181 struct jffs2_node_frag *frag;
182 struct jffs2_full_dirent *fd;
183
184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
186
187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 je16_to_cpu(node->u.magic) != 0);
189
190 switch (je16_to_cpu(node->u.nodetype)) {
191 case JFFS2_NODETYPE_INODE:
ddc58bd6
DW
192 if (f->metadata && f->metadata->raw == raw) {
193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 return &f->metadata->raw;
195 }
9bfeb691
DW
196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 BUG_ON(!frag);
198 /* Find a frag which refers to the full_dnode we want to modify */
199 while (!frag->node || frag->node->raw != raw) {
200 frag = frag_next(frag);
201 BUG_ON(!frag);
202 }
203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 return &frag->node->raw;
9bfeb691
DW
205
206 case JFFS2_NODETYPE_DIRENT:
207 for (fd = f->dents; fd; fd = fd->next) {
208 if (fd->raw == raw) {
209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 return &fd->raw;
211 }
212 }
213 BUG();
ddc58bd6 214
9bfeb691
DW
215 default:
216 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 je16_to_cpu(node->u.nodetype));
218 break;
219 }
220 return NULL;
221}
222
a6bc432e
DW
223#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
224static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
225 uint32_t ofs)
226{
227 int ret;
228 size_t retlen;
229 char *eccstr;
230
231 ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
234 return ret;
235 } else if (retlen != c->wbuf_pagesize) {
236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
237 return -EIO;
238 }
239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
240 return 0;
241
242 if (ret == -EUCLEAN)
243 eccstr = "corrected";
244 else if (ret == -EBADMSG)
245 eccstr = "correction failed";
246 else
247 eccstr = "OK or unused";
248
249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
250 eccstr, c->wbuf_ofs);
251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
252 c->wbuf, c->wbuf_pagesize, 0);
253
254 printk(KERN_WARNING "Read back:\n");
255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
256 c->wbuf_verify, c->wbuf_pagesize, 0);
257
258 return -EIO;
259}
260#else
261#define jffs2_verify_write(c,b,o) (0)
262#endif
263
1da177e4
LT
264/* Recover from failure to write wbuf. Recover the nodes up to the
265 * wbuf, not the one which we were starting to try to write. */
266
267static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
268{
269 struct jffs2_eraseblock *jeb, *new_jeb;
9bfeb691 270 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
1da177e4
LT
271 size_t retlen;
272 int ret;
9bfeb691 273 int nr_refile = 0;
1da177e4
LT
274 unsigned char *buf;
275 uint32_t start, end, ofs, len;
276
046b8b98
DW
277 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
278
1da177e4 279 spin_lock(&c->erase_completion_lock);
180bfb31
VW
280 if (c->wbuf_ofs % c->mtd->erasesize)
281 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
282 else
283 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
9bfeb691
DW
284 spin_unlock(&c->erase_completion_lock);
285
286 BUG_ON(!ref_obsolete(jeb->last_node));
1da177e4
LT
287
288 /* Find the first node to be recovered, by skipping over every
289 node which ends before the wbuf starts, or which is obsolete. */
9bfeb691
DW
290 for (next = raw = jeb->first_node; next; raw = next) {
291 next = ref_next(raw);
292
293 if (ref_obsolete(raw) ||
294 (next && ref_offset(next) <= c->wbuf_ofs)) {
295 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
296 ref_offset(raw), ref_flags(raw),
297 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
298 c->wbuf_ofs);
299 continue;
300 }
301 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
302 ref_offset(raw), ref_flags(raw),
303 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
304
305 first_raw = raw;
306 break;
307 }
308
309 if (!first_raw) {
1da177e4
LT
310 /* All nodes were obsolete. Nothing to recover. */
311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
9bfeb691 312 c->wbuf_len = 0;
1da177e4
LT
313 return;
314 }
315
9bfeb691
DW
316 start = ref_offset(first_raw);
317 end = ref_offset(jeb->last_node);
318 nr_refile = 1;
1da177e4 319
9bfeb691
DW
320 /* Count the number of refs which need to be copied */
321 while ((raw = ref_next(raw)) != jeb->last_node)
322 nr_refile++;
1da177e4 323
9bfeb691
DW
324 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
1da177e4
LT
326
327 buf = NULL;
328 if (start < c->wbuf_ofs) {
329 /* First affected node was already partially written.
330 * Attempt to reread the old data into our buffer. */
331
332 buf = kmalloc(end - start, GFP_KERNEL);
333 if (!buf) {
334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
335
336 goto read_failed;
337 }
338
339 /* Do the read... */
9223a456 340 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
182ec4ee 341
9a1fcdfd
TG
342 /* ECC recovered ? */
343 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
344 (retlen == c->wbuf_ofs - start))
1da177e4 345 ret = 0;
9a1fcdfd 346
1da177e4
LT
347 if (ret || retlen != c->wbuf_ofs - start) {
348 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
349
350 kfree(buf);
351 buf = NULL;
352 read_failed:
9bfeb691
DW
353 first_raw = ref_next(first_raw);
354 nr_refile--;
355 while (first_raw && ref_obsolete(first_raw)) {
356 first_raw = ref_next(first_raw);
357 nr_refile--;
358 }
359
1da177e4 360 /* If this was the only node to be recovered, give up */
9bfeb691
DW
361 if (!first_raw) {
362 c->wbuf_len = 0;
1da177e4 363 return;
9bfeb691 364 }
1da177e4
LT
365
366 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
9bfeb691
DW
367 start = ref_offset(first_raw);
368 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
369 start, end, end - start, nr_refile);
370
1da177e4
LT
371 } else {
372 /* Read succeeded. Copy the remaining data from the wbuf */
373 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
374 }
375 }
376 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
377 Either 'buf' contains the data, or we find it in the wbuf */
378
1da177e4 379 /* ... and get an allocation of space from a shiny new block instead */
9fe4854c 380 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
1da177e4
LT
381 if (ret) {
382 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 383 kfree(buf);
1da177e4
LT
384 return;
385 }
9bfeb691 386
7f762ab2
AH
387 /* The summary is not recovered, so it must be disabled for this erase block */
388 jffs2_sum_disable_collecting(c->summary);
389
9bfeb691
DW
390 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
391 if (ret) {
392 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
393 kfree(buf);
394 return;
395 }
396
9fe4854c
DW
397 ofs = write_ofs(c);
398
1da177e4 399 if (end-start >= c->wbuf_pagesize) {
7f716cf3 400 /* Need to do another write immediately, but it's possible
9b88f473 401 that this is just because the wbuf itself is completely
182ec4ee
TG
402 full, and there's nothing earlier read back from the
403 flash. Hence 'buf' isn't necessarily what we're writing
9b88f473 404 from. */
7f716cf3 405 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
406 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
407
408 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
409 towrite, ofs));
182ec4ee 410
1da177e4
LT
411#ifdef BREAKMEHEADER
412 static int breakme;
413 if (breakme++ == 20) {
414 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
415 breakme = 0;
9223a456
TG
416 c->mtd->write(c->mtd, ofs, towrite, &retlen,
417 brokenbuf);
1da177e4
LT
418 ret = -EIO;
419 } else
420#endif
9223a456
TG
421 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
422 rewrite_buf);
1da177e4 423
a6bc432e 424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
1da177e4
LT
425 /* Argh. We tried. Really we did. */
426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 427 kfree(buf);
1da177e4 428
2f785402 429 if (retlen)
9bfeb691 430 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
1da177e4 431
1da177e4
LT
432 return;
433 }
434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
435
436 c->wbuf_len = (end - start) - towrite;
437 c->wbuf_ofs = ofs + towrite;
7f716cf3 438 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 439 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
1da177e4
LT
440 } else {
441 /* OK, now we're left with the dregs in whichever buffer we're using */
442 if (buf) {
443 memcpy(c->wbuf, buf, end-start);
1da177e4
LT
444 } else {
445 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
446 }
447 c->wbuf_ofs = ofs;
448 c->wbuf_len = end - start;
449 }
450
451 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
452 new_jeb = &c->blocks[ofs / c->sector_size];
453
454 spin_lock(&c->erase_completion_lock);
9bfeb691
DW
455 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
456 uint32_t rawlen = ref_totlen(c, jeb, raw);
457 struct jffs2_inode_cache *ic;
458 struct jffs2_raw_node_ref *new_ref;
459 struct jffs2_raw_node_ref **adjust_ref = NULL;
460 struct jffs2_inode_info *f = NULL;
1da177e4
LT
461
462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
9bfeb691
DW
463 rawlen, ref_offset(raw), ref_flags(raw), ofs));
464
465 ic = jffs2_raw_ref_to_ic(raw);
466
467 /* Ick. This XATTR mess should be fixed shortly... */
468 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
469 struct jffs2_xattr_datum *xd = (void *)ic;
470 BUG_ON(xd->node != raw);
471 adjust_ref = &xd->node;
472 raw->next_in_ino = NULL;
473 ic = NULL;
474 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
475 struct jffs2_xattr_datum *xr = (void *)ic;
476 BUG_ON(xr->node != raw);
477 adjust_ref = &xr->node;
478 raw->next_in_ino = NULL;
479 ic = NULL;
480 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
481 struct jffs2_raw_node_ref **p = &ic->nodes;
482
483 /* Remove the old node from the per-inode list */
484 while (*p && *p != (void *)ic) {
485 if (*p == raw) {
486 (*p) = (raw->next_in_ino);
487 raw->next_in_ino = NULL;
488 break;
489 }
490 p = &((*p)->next_in_ino);
491 }
1da177e4 492
9bfeb691
DW
493 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
494 /* If it's an in-core inode, then we have to adjust any
495 full_dirent or full_dnode structure to point to the
496 new version instead of the old */
497 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
498 if (IS_ERR(f)) {
499 /* Should never happen; it _must_ be present */
500 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
501 ic->ino, PTR_ERR(f));
502 BUG();
503 }
504 /* We don't lock f->sem. There's a number of ways we could
505 end up in here with it already being locked, and nobody's
506 going to modify it on us anyway because we hold the
507 alloc_sem. We're only changing one ->raw pointer too,
508 which we can get away with without upsetting readers. */
509 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
510 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
511 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
512 ic->state != INO_STATE_CHECKEDABSENT &&
513 ic->state != INO_STATE_GC)) {
514 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
515 BUG();
516 }
517 }
518
519 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
520
521 if (adjust_ref) {
522 BUG_ON(*adjust_ref != raw);
523 *adjust_ref = new_ref;
524 }
525 if (f)
526 jffs2_gc_release_inode(c, f);
527
528 if (!ref_obsolete(raw)) {
1da177e4
LT
529 jeb->dirty_size += rawlen;
530 jeb->used_size -= rawlen;
531 c->dirty_size += rawlen;
9bfeb691
DW
532 c->used_size -= rawlen;
533 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
534 BUG_ON(raw->next_in_ino);
1da177e4 535 }
1da177e4 536 ofs += rawlen;
1da177e4
LT
537 }
538
9bfeb691
DW
539 kfree(buf);
540
1da177e4 541 /* Fix up the original jeb now it's on the bad_list */
9bfeb691 542 if (first_raw == jeb->first_node) {
1da177e4 543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
f116629d 544 list_move(&jeb->list, &c->erase_pending_list);
1da177e4
LT
545 c->nr_erasing_blocks++;
546 jffs2_erase_pending_trigger(c);
547 }
1da177e4 548
e0c8e42f 549 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
9bfeb691 550 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4 551
e0c8e42f 552 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
9bfeb691 553 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
1da177e4
LT
554
555 spin_unlock(&c->erase_completion_lock);
556
9bfeb691
DW
557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
558
1da177e4
LT
559}
560
561/* Meaning of pad argument:
562 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
563 1: Pad, do not adjust nextblock free_size
564 2: Pad, adjust nextblock free_size
565*/
566#define NOPAD 0
567#define PAD_NOACCOUNT 1
568#define PAD_ACCOUNTING 2
569
570static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
571{
9bfeb691 572 struct jffs2_eraseblock *wbuf_jeb;
1da177e4
LT
573 int ret;
574 size_t retlen;
575
3be36675 576 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
1da177e4 577 del_timer() the timer we never initialised. */
3be36675 578 if (!jffs2_is_writebuffered(c))
1da177e4
LT
579 return 0;
580
ced22070
DW
581 if (mutex_trylock(&c->alloc_sem)) {
582 mutex_unlock(&c->alloc_sem);
1da177e4
LT
583 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
584 BUG();
585 }
586
3be36675 587 if (!c->wbuf_len) /* already checked c->wbuf above */
1da177e4
LT
588 return 0;
589
9bfeb691
DW
590 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
591 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
2f785402
DW
592 return -ENOMEM;
593
1da177e4
LT
594 /* claim remaining space on the page
595 this happens, if we have a change to a new block,
596 or if fsync forces us to flush the writebuffer.
597 if we have a switch to next page, we will not have
182ec4ee 598 enough remaining space for this.
1da177e4 599 */
daba5cc4 600 if (pad ) {
1da177e4
LT
601 c->wbuf_len = PAD(c->wbuf_len);
602
603 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
604 with 8 byte page size */
605 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
182ec4ee 606
1da177e4
LT
607 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
608 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
609 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
610 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
611 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
612 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
613 }
614 }
615 /* else jffs2_flash_writev has actually filled in the rest of the
616 buffer for us, and will deal with the node refs etc. later. */
182ec4ee 617
1da177e4
LT
618#ifdef BREAKME
619 static int breakme;
620 if (breakme++ == 20) {
621 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
622 breakme = 0;
9223a456
TG
623 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
624 brokenbuf);
1da177e4 625 ret = -EIO;
182ec4ee 626 } else
1da177e4 627#endif
182ec4ee 628
1da177e4
LT
629 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
630
a6bc432e
DW
631 if (ret) {
632 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
633 goto wfail;
634 } else if (retlen != c->wbuf_pagesize) {
635 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
636 retlen, c->wbuf_pagesize);
637 ret = -EIO;
638 goto wfail;
639 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
640 wfail:
1da177e4
LT
641 jffs2_wbuf_recover(c);
642
643 return ret;
644 }
645
1da177e4 646 /* Adjust free size of the block if we padded. */
daba5cc4 647 if (pad) {
0bcc099d 648 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
1da177e4 649
1da177e4 650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
9bfeb691 651 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
1da177e4 652
182ec4ee 653 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
1da177e4
LT
654 padded. If there is less free space in the block than that,
655 something screwed up */
9bfeb691 656 if (wbuf_jeb->free_size < waste) {
1da177e4 657 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
0bcc099d 658 c->wbuf_ofs, c->wbuf_len, waste);
1da177e4 659 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
9bfeb691 660 wbuf_jeb->offset, wbuf_jeb->free_size);
1da177e4
LT
661 BUG();
662 }
0bcc099d
DW
663
664 spin_lock(&c->erase_completion_lock);
665
9bfeb691 666 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
0bcc099d 667 /* FIXME: that made it count as dirty. Convert to wasted */
9bfeb691 668 wbuf_jeb->dirty_size -= waste;
0bcc099d 669 c->dirty_size -= waste;
9bfeb691 670 wbuf_jeb->wasted_size += waste;
0bcc099d
DW
671 c->wasted_size += waste;
672 } else
673 spin_lock(&c->erase_completion_lock);
1da177e4
LT
674
675 /* Stick any now-obsoleted blocks on the erase_pending_list */
676 jffs2_refile_wbuf_blocks(c);
677 jffs2_clear_wbuf_ino_list(c);
678 spin_unlock(&c->erase_completion_lock);
679
680 memset(c->wbuf,0xff,c->wbuf_pagesize);
681 /* adjust write buffer offset, else we get a non contiguous write bug */
3fddb6c9
DW
682 if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize))
683 c->wbuf_ofs += c->wbuf_pagesize;
684 else
685 c->wbuf_ofs = 0xffffffff;
1da177e4
LT
686 c->wbuf_len = 0;
687 return 0;
688}
689
182ec4ee 690/* Trigger garbage collection to flush the write-buffer.
1da177e4 691 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
182ec4ee 692 outstanding. If ino arg non-zero, do it only if a write for the
1da177e4
LT
693 given inode is outstanding. */
694int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
695{
696 uint32_t old_wbuf_ofs;
697 uint32_t old_wbuf_len;
698 int ret = 0;
699
700 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
701
8aee6ac1
DW
702 if (!c->wbuf)
703 return 0;
704
ced22070 705 mutex_lock(&c->alloc_sem);
1da177e4
LT
706 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
707 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
ced22070 708 mutex_unlock(&c->alloc_sem);
1da177e4
LT
709 return 0;
710 }
711
712 old_wbuf_ofs = c->wbuf_ofs;
713 old_wbuf_len = c->wbuf_len;
714
715 if (c->unchecked_size) {
716 /* GC won't make any progress for a while */
717 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
718 down_write(&c->wbuf_sem);
719 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
720 /* retry flushing wbuf in case jffs2_wbuf_recover
721 left some data in the wbuf */
722 if (ret)
7f716cf3 723 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
724 up_write(&c->wbuf_sem);
725 } else while (old_wbuf_len &&
726 old_wbuf_ofs == c->wbuf_ofs) {
727
ced22070 728 mutex_unlock(&c->alloc_sem);
1da177e4
LT
729
730 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
731
732 ret = jffs2_garbage_collect_pass(c);
733 if (ret) {
734 /* GC failed. Flush it with padding instead */
ced22070 735 mutex_lock(&c->alloc_sem);
1da177e4
LT
736 down_write(&c->wbuf_sem);
737 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
738 /* retry flushing wbuf in case jffs2_wbuf_recover
739 left some data in the wbuf */
740 if (ret)
7f716cf3 741 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
742 up_write(&c->wbuf_sem);
743 break;
744 }
ced22070 745 mutex_lock(&c->alloc_sem);
1da177e4
LT
746 }
747
748 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
749
ced22070 750 mutex_unlock(&c->alloc_sem);
1da177e4
LT
751 return ret;
752}
753
754/* Pad write-buffer to end and write it, wasting space. */
755int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
756{
757 int ret;
758
8aee6ac1
DW
759 if (!c->wbuf)
760 return 0;
761
1da177e4
LT
762 down_write(&c->wbuf_sem);
763 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
764 /* retry - maybe wbuf recover left some data in wbuf. */
765 if (ret)
766 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
767 up_write(&c->wbuf_sem);
768
769 return ret;
770}
dcb09328
TG
771
772static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
773 size_t len)
1da177e4 774{
dcb09328
TG
775 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
776 return 0;
777
778 if (len > (c->wbuf_pagesize - c->wbuf_len))
779 len = c->wbuf_pagesize - c->wbuf_len;
780 memcpy(c->wbuf + c->wbuf_len, buf, len);
781 c->wbuf_len += (uint32_t) len;
782 return len;
783}
784
785int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
786 unsigned long count, loff_t to, size_t *retlen,
787 uint32_t ino)
788{
789 struct jffs2_eraseblock *jeb;
790 size_t wbuf_retlen, donelen = 0;
1da177e4 791 uint32_t outvec_to = to;
dcb09328 792 int ret, invec;
1da177e4 793
dcb09328 794 /* If not writebuffered flash, don't bother */
3be36675 795 if (!jffs2_is_writebuffered(c))
1da177e4 796 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
182ec4ee 797
1da177e4
LT
798 down_write(&c->wbuf_sem);
799
800 /* If wbuf_ofs is not initialized, set it to target address */
801 if (c->wbuf_ofs == 0xFFFFFFFF) {
802 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee 803 c->wbuf_len = PAGE_MOD(to);
1da177e4
LT
804 memset(c->wbuf,0xff,c->wbuf_pagesize);
805 }
806
dcb09328
TG
807 /*
808 * Sanity checks on target address. It's permitted to write
809 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
810 * write at the beginning of a new erase block. Anything else,
811 * and you die. New block starts at xxx000c (0-b = block
812 * header)
813 */
3be36675 814 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
1da177e4
LT
815 /* It's a write to a new block */
816 if (c->wbuf_len) {
dcb09328
TG
817 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
818 "causes flush of wbuf at 0x%08x\n",
819 (unsigned long)to, c->wbuf_ofs));
1da177e4 820 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
dcb09328
TG
821 if (ret)
822 goto outerr;
1da177e4
LT
823 }
824 /* set pointer to new block */
825 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee
TG
826 c->wbuf_len = PAGE_MOD(to);
827 }
1da177e4
LT
828
829 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
830 /* We're not writing immediately after the writebuffer. Bad. */
dcb09328
TG
831 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
832 "to %08lx\n", (unsigned long)to);
1da177e4
LT
833 if (c->wbuf_len)
834 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
dcb09328 835 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
1da177e4
LT
836 BUG();
837 }
838
dcb09328
TG
839 /* adjust alignment offset */
840 if (c->wbuf_len != PAGE_MOD(to)) {
841 c->wbuf_len = PAGE_MOD(to);
842 /* take care of alignment to next page */
843 if (!c->wbuf_len) {
844 c->wbuf_len = c->wbuf_pagesize;
845 ret = __jffs2_flush_wbuf(c, NOPAD);
846 if (ret)
847 goto outerr;
1da177e4
LT
848 }
849 }
850
dcb09328
TG
851 for (invec = 0; invec < count; invec++) {
852 int vlen = invecs[invec].iov_len;
853 uint8_t *v = invecs[invec].iov_base;
7f716cf3 854
dcb09328 855 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
7f716cf3 856
dcb09328
TG
857 if (c->wbuf_len == c->wbuf_pagesize) {
858 ret = __jffs2_flush_wbuf(c, NOPAD);
859 if (ret)
860 goto outerr;
1da177e4 861 }
dcb09328
TG
862 vlen -= wbuf_retlen;
863 outvec_to += wbuf_retlen;
1da177e4 864 donelen += wbuf_retlen;
dcb09328
TG
865 v += wbuf_retlen;
866
867 if (vlen >= c->wbuf_pagesize) {
868 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
869 &wbuf_retlen, v);
870 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
871 goto outfile;
872
873 vlen -= wbuf_retlen;
874 outvec_to += wbuf_retlen;
875 c->wbuf_ofs = outvec_to;
876 donelen += wbuf_retlen;
877 v += wbuf_retlen;
1da177e4
LT
878 }
879
dcb09328
TG
880 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
881 if (c->wbuf_len == c->wbuf_pagesize) {
882 ret = __jffs2_flush_wbuf(c, NOPAD);
883 if (ret)
884 goto outerr;
885 }
1da177e4 886
dcb09328
TG
887 outvec_to += wbuf_retlen;
888 donelen += wbuf_retlen;
1da177e4 889 }
1da177e4 890
dcb09328
TG
891 /*
892 * If there's a remainder in the wbuf and it's a non-GC write,
893 * remember that the wbuf affects this ino
894 */
1da177e4
LT
895 *retlen = donelen;
896
e631ddba
FH
897 if (jffs2_sum_active()) {
898 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
899 if (res)
900 return res;
901 }
902
1da177e4
LT
903 if (c->wbuf_len && ino)
904 jffs2_wbuf_dirties_inode(c, ino);
905
906 ret = 0;
dcb09328
TG
907 up_write(&c->wbuf_sem);
908 return ret;
909
910outfile:
911 /*
912 * At this point we have no problem, c->wbuf is empty. However
913 * refile nextblock to avoid writing again to same address.
914 */
915
916 spin_lock(&c->erase_completion_lock);
917
918 jeb = &c->blocks[outvec_to / c->sector_size];
919 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
920
921 spin_unlock(&c->erase_completion_lock);
182ec4ee 922
dcb09328
TG
923outerr:
924 *retlen = 0;
1da177e4
LT
925 up_write(&c->wbuf_sem);
926 return ret;
927}
928
929/*
930 * This is the entry for flash write.
931 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
932*/
9bfeb691
DW
933int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
934 size_t *retlen, const u_char *buf)
1da177e4
LT
935{
936 struct kvec vecs[1];
937
3be36675 938 if (!jffs2_is_writebuffered(c))
e631ddba 939 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
1da177e4
LT
940
941 vecs[0].iov_base = (unsigned char *) buf;
942 vecs[0].iov_len = len;
943 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
944}
945
946/*
947 Handle readback from writebuffer and ECC failure return
948*/
949int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
950{
951 loff_t orbf = 0, owbf = 0, lwbf = 0;
952 int ret;
953
3be36675 954 if (!jffs2_is_writebuffered(c))
1da177e4
LT
955 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
956
3be36675 957 /* Read flash */
894214d1 958 down_read(&c->wbuf_sem);
9223a456 959 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
3be36675 960
9a1fcdfd
TG
961 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
962 if (ret == -EBADMSG)
963 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
964 " returned ECC error\n", len, ofs);
182ec4ee 965 /*
9a1fcdfd
TG
966 * We have the raw data without ECC correction in the buffer,
967 * maybe we are lucky and all data or parts are correct. We
968 * check the node. If data are corrupted node check will sort
969 * it out. We keep this block, it will fail on write or erase
970 * and the we mark it bad. Or should we do that now? But we
971 * should give him a chance. Maybe we had a system crash or
972 * power loss before the ecc write or a erase was completed.
3be36675
AV
973 * So we return success. :)
974 */
9a1fcdfd 975 ret = 0;
182ec4ee 976 }
3be36675 977
1da177e4
LT
978 /* if no writebuffer available or write buffer empty, return */
979 if (!c->wbuf_pagesize || !c->wbuf_len)
894214d1 980 goto exit;
1da177e4
LT
981
982 /* if we read in a different block, return */
3be36675 983 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
894214d1 984 goto exit;
1da177e4
LT
985
986 if (ofs >= c->wbuf_ofs) {
987 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
988 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
989 goto exit;
990 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
182ec4ee 991 if (lwbf > len)
1da177e4 992 lwbf = len;
182ec4ee 993 } else {
1da177e4
LT
994 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
995 if (orbf > len) /* is write beyond write buffer ? */
996 goto exit;
9a1fcdfd 997 lwbf = len - orbf; /* number of bytes to copy */
182ec4ee 998 if (lwbf > c->wbuf_len)
1da177e4 999 lwbf = c->wbuf_len;
182ec4ee 1000 }
1da177e4
LT
1001 if (lwbf > 0)
1002 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1003
1004exit:
1005 up_read(&c->wbuf_sem);
1006 return ret;
1007}
1008
a7a6ace1
AB
1009#define NR_OOB_SCAN_PAGES 4
1010
09b3fba5
DW
1011/* For historical reasons we use only 8 bytes for OOB clean marker */
1012#define OOB_CM_SIZE 8
a7a6ace1
AB
1013
1014static const struct jffs2_unknown_node oob_cleanmarker =
1015{
566865a2
DW
1016 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1017 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1018 .totlen = constant_cpu_to_je32(8)
a7a6ace1 1019};
8593fbc6 1020
1da177e4 1021/*
a7a6ace1
AB
1022 * Check, if the out of band area is empty. This function knows about the clean
1023 * marker and if it is present in OOB, treats the OOB as empty anyway.
1da177e4 1024 */
8593fbc6
TG
1025int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1026 struct jffs2_eraseblock *jeb, int mode)
1da177e4 1027{
a7a6ace1
AB
1028 int i, ret;
1029 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
8593fbc6
TG
1030 struct mtd_oob_ops ops;
1031
a7a6ace1
AB
1032 ops.mode = MTD_OOB_AUTO;
1033 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
8593fbc6 1034 ops.oobbuf = c->oobbuf;
a7a6ace1 1035 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1036 ops.datbuf = NULL;
8593fbc6
TG
1037
1038 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1039 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1040 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1041 " bytes, read %zd bytes, error %d\n",
1042 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1043 if (!ret)
1044 ret = -EIO;
8593fbc6 1045 return ret;
1da177e4 1046 }
182ec4ee 1047
a7a6ace1
AB
1048 for(i = 0; i < ops.ooblen; i++) {
1049 if (mode && i < cmlen)
1050 /* Yeah, we know about the cleanmarker */
1da177e4
LT
1051 continue;
1052
8593fbc6
TG
1053 if (ops.oobbuf[i] != 0xFF) {
1054 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1055 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1056 return 1;
1da177e4
LT
1057 }
1058 }
1059
8593fbc6 1060 return 0;
1da177e4
LT
1061}
1062
1063/*
a7a6ace1
AB
1064 * Check for a valid cleanmarker.
1065 * Returns: 0 if a valid cleanmarker was found
ef53cb02
DW
1066 * 1 if no cleanmarker was found
1067 * negative error code if an error occurred
8593fbc6 1068 */
a7a6ace1
AB
1069int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1070 struct jffs2_eraseblock *jeb)
1da177e4 1071{
8593fbc6 1072 struct mtd_oob_ops ops;
a7a6ace1 1073 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1074
a7a6ace1
AB
1075 ops.mode = MTD_OOB_AUTO;
1076 ops.ooblen = cmlen;
8593fbc6 1077 ops.oobbuf = c->oobbuf;
a7a6ace1 1078 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1079 ops.datbuf = NULL;
1da177e4 1080
a7a6ace1
AB
1081 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1082 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1083 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1084 " bytes, read %zd bytes, error %d\n",
1085 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1086 if (!ret)
1087 ret = -EIO;
8593fbc6
TG
1088 return ret;
1089 }
1da177e4 1090
a7a6ace1 1091 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1da177e4
LT
1092}
1093
8593fbc6
TG
1094int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1095 struct jffs2_eraseblock *jeb)
1da177e4 1096{
a7a6ace1 1097 int ret;
8593fbc6 1098 struct mtd_oob_ops ops;
a7a6ace1 1099 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1100
a7a6ace1
AB
1101 ops.mode = MTD_OOB_AUTO;
1102 ops.ooblen = cmlen;
1103 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1104 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1105 ops.datbuf = NULL;
8593fbc6
TG
1106
1107 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1108 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1109 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1110 " bytes, read %zd bytes, error %d\n",
1111 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1112 if (!ret)
1113 ret = -EIO;
1da177e4
LT
1114 return ret;
1115 }
a7a6ace1 1116
1da177e4
LT
1117 return 0;
1118}
1119
182ec4ee 1120/*
1da177e4
LT
1121 * On NAND we try to mark this block bad. If the block was erased more
1122 * than MAX_ERASE_FAILURES we mark it finaly bad.
1123 * Don't care about failures. This block remains on the erase-pending
1124 * or badblock list as long as nobody manipulates the flash with
1125 * a bootloader or something like that.
1126 */
1127
1128int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1129{
1130 int ret;
1131
1132 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1133 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1134 return 0;
1135
1136 if (!c->mtd->block_markbad)
1137 return 1; // What else can we do?
1138
0feba829 1139 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1da177e4 1140 ret = c->mtd->block_markbad(c->mtd, bad_offset);
182ec4ee 1141
1da177e4
LT
1142 if (ret) {
1143 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1144 return ret;
1145 }
1146 return 1;
1147}
1148
a7a6ace1 1149int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1da177e4 1150{
5bd34c09 1151 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1da177e4 1152
1da177e4
LT
1153 if (!c->mtd->oobsize)
1154 return 0;
182ec4ee 1155
1da177e4
LT
1156 /* Cleanmarker is out-of-band, so inline size zero */
1157 c->cleanmarker_size = 0;
1158
a7a6ace1
AB
1159 if (!oinfo || oinfo->oobavail == 0) {
1160 printk(KERN_ERR "inconsistent device description\n");
5bd34c09
TG
1161 return -EINVAL;
1162 }
182ec4ee 1163
a7a6ace1 1164 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
5bd34c09 1165
a7a6ace1 1166 c->oobavail = oinfo->oobavail;
1da177e4
LT
1167
1168 /* Initialise write buffer */
1169 init_rwsem(&c->wbuf_sem);
28318776 1170 c->wbuf_pagesize = c->mtd->writesize;
1da177e4 1171 c->wbuf_ofs = 0xFFFFFFFF;
182ec4ee 1172
1da177e4
LT
1173 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1174 if (!c->wbuf)
1175 return -ENOMEM;
1176
a7a6ace1
AB
1177 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1178 if (!c->oobbuf) {
1da177e4
LT
1179 kfree(c->wbuf);
1180 return -ENOMEM;
1181 }
a7a6ace1 1182
a6bc432e
DW
1183#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1184 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1185 if (!c->wbuf_verify) {
1186 kfree(c->oobbuf);
1187 kfree(c->wbuf);
1188 return -ENOMEM;
1189 }
1190#endif
a7a6ace1 1191 return 0;
1da177e4
LT
1192}
1193
1194void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1195{
a6bc432e
DW
1196#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1197 kfree(c->wbuf_verify);
1198#endif
1da177e4 1199 kfree(c->wbuf);
8593fbc6 1200 kfree(c->oobbuf);
1da177e4
LT
1201}
1202
8f15fd55
AV
1203int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1204 c->cleanmarker_size = 0; /* No cleanmarkers needed */
182ec4ee 1205
8f15fd55
AV
1206 /* Initialize write buffer */
1207 init_rwsem(&c->wbuf_sem);
8f15fd55 1208
182ec4ee 1209
daba5cc4 1210 c->wbuf_pagesize = c->mtd->erasesize;
182ec4ee 1211
daba5cc4
AB
1212 /* Find a suitable c->sector_size
1213 * - Not too much sectors
1214 * - Sectors have to be at least 4 K + some bytes
1215 * - All known dataflashes have erase sizes of 528 or 1056
1216 * - we take at least 8 eraseblocks and want to have at least 8K size
1217 * - The concatenation should be a power of 2
1218 */
1219
1220 c->sector_size = 8 * c->mtd->erasesize;
182ec4ee 1221
daba5cc4
AB
1222 while (c->sector_size < 8192) {
1223 c->sector_size *= 2;
1224 }
182ec4ee 1225
daba5cc4
AB
1226 /* It may be necessary to adjust the flash size */
1227 c->flash_size = c->mtd->size;
8f15fd55 1228
daba5cc4
AB
1229 if ((c->flash_size % c->sector_size) != 0) {
1230 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1231 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1232 };
182ec4ee 1233
daba5cc4 1234 c->wbuf_ofs = 0xFFFFFFFF;
8f15fd55
AV
1235 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1236 if (!c->wbuf)
1237 return -ENOMEM;
1238
cca15841 1239#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1240 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1241 if (!c->wbuf_verify) {
1242 kfree(c->oobbuf);
1243 kfree(c->wbuf);
1244 return -ENOMEM;
1245 }
1246#endif
1247
daba5cc4 1248 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
8f15fd55
AV
1249
1250 return 0;
1251}
1252
1253void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
cca15841 1254#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1255 kfree(c->wbuf_verify);
1256#endif
8f15fd55
AV
1257 kfree(c->wbuf);
1258}
8f15fd55 1259
59da721a 1260int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
c8b229de
JE
1261 /* Cleanmarker currently occupies whole programming regions,
1262 * either one or 2 for 8Byte STMicro flashes. */
1263 c->cleanmarker_size = max(16u, c->mtd->writesize);
59da721a
NP
1264
1265 /* Initialize write buffer */
1266 init_rwsem(&c->wbuf_sem);
28318776 1267 c->wbuf_pagesize = c->mtd->writesize;
59da721a
NP
1268 c->wbuf_ofs = 0xFFFFFFFF;
1269
1270 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1271 if (!c->wbuf)
1272 return -ENOMEM;
1273
1274 return 0;
1275}
1276
1277void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1278 kfree(c->wbuf);
1279}
0029da3b
AB
1280
1281int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1282 c->cleanmarker_size = 0;
1283
1284 if (c->mtd->writesize == 1)
1285 /* We do not need write-buffer */
1286 return 0;
1287
1288 init_rwsem(&c->wbuf_sem);
1289
1290 c->wbuf_pagesize = c->mtd->writesize;
1291 c->wbuf_ofs = 0xFFFFFFFF;
1292 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1293 if (!c->wbuf)
1294 return -ENOMEM;
1295
1296 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1297
1298 return 0;
1299}
1300
1301void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1302 kfree(c->wbuf);
1303}