]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/jffs2/gc.c
[JFFS2] Relax threshold for triggering GC due to dirty blocks.
[net-next-2.6.git] / fs / jffs2 / gc.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e 4 * Copyright © 2001-2007 Red Hat, Inc.
1da177e4
LT
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
1da177e4
LT
10 */
11
12#include <linux/kernel.h>
13#include <linux/mtd/mtd.h>
14#include <linux/slab.h>
15#include <linux/pagemap.h>
16#include <linux/crc32.h>
17#include <linux/compiler.h>
18#include <linux/stat.h>
19#include "nodelist.h"
20#include "compr.h"
21
182ec4ee 22static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
23 struct jffs2_inode_cache *ic,
24 struct jffs2_raw_node_ref *raw);
182ec4ee 25static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 26 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
182ec4ee 27static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 28 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
182ec4ee 29static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 uint32_t start, uint32_t end);
34static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 uint32_t start, uint32_t end);
37static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
38 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
39
40/* Called with erase_completion_lock held */
41static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
42{
43 struct jffs2_eraseblock *ret;
44 struct list_head *nextlist = NULL;
45 int n = jiffies % 128;
46
47 /* Pick an eraseblock to garbage collect next. This is where we'll
48 put the clever wear-levelling algorithms. Eventually. */
49 /* We possibly want to favour the dirtier blocks more when the
50 number of free blocks is low. */
a42163d7 51again:
1da177e4
LT
52 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 nextlist = &c->bad_used_list;
55 } else if (n < 50 && !list_empty(&c->erasable_list)) {
182ec4ee 56 /* Note that most of them will have gone directly to be erased.
1da177e4
LT
57 So don't favour the erasable_list _too_ much. */
58 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 nextlist = &c->erasable_list;
60 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 /* Most of the time, pick one off the very_dirty list */
62 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 nextlist = &c->very_dirty_list;
64 } else if (n < 126 && !list_empty(&c->dirty_list)) {
65 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 nextlist = &c->dirty_list;
67 } else if (!list_empty(&c->clean_list)) {
68 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 nextlist = &c->clean_list;
70 } else if (!list_empty(&c->dirty_list)) {
71 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
72
73 nextlist = &c->dirty_list;
74 } else if (!list_empty(&c->very_dirty_list)) {
75 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 nextlist = &c->very_dirty_list;
77 } else if (!list_empty(&c->erasable_list)) {
78 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
79
80 nextlist = &c->erasable_list;
a42163d7
AB
81 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 /* There are blocks are wating for the wbuf sync */
83 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
3cceb9f6 84 spin_unlock(&c->erase_completion_lock);
a42163d7 85 jffs2_flush_wbuf_pad(c);
3cceb9f6 86 spin_lock(&c->erase_completion_lock);
a42163d7 87 goto again;
1da177e4
LT
88 } else {
89 /* Eep. All were empty */
90 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 return NULL;
92 }
93
94 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 list_del(&ret->list);
96 c->gcblock = ret;
97 ret->gc_node = ret->first_node;
98 if (!ret->gc_node) {
99 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 BUG();
101 }
182ec4ee 102
1da177e4
LT
103 /* Have we accidentally picked a clean block with wasted space ? */
104 if (ret->wasted_size) {
105 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 ret->dirty_size += ret->wasted_size;
107 c->wasted_size -= ret->wasted_size;
108 c->dirty_size += ret->wasted_size;
109 ret->wasted_size = 0;
110 }
111
1da177e4
LT
112 return ret;
113}
114
115/* jffs2_garbage_collect_pass
116 * Make a single attempt to progress GC. Move one node, and possibly
117 * start erasing one eraseblock.
118 */
119int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
120{
121 struct jffs2_inode_info *f;
122 struct jffs2_inode_cache *ic;
123 struct jffs2_eraseblock *jeb;
124 struct jffs2_raw_node_ref *raw;
125 int ret = 0, inum, nlink;
aa98d7cf 126 int xattr = 0;
1da177e4
LT
127
128 if (down_interruptible(&c->alloc_sem))
129 return -EINTR;
130
131 for (;;) {
132 spin_lock(&c->erase_completion_lock);
133 if (!c->unchecked_size)
134 break;
135
136 /* We can't start doing GC yet. We haven't finished checking
137 the node CRCs etc. Do it now. */
182ec4ee 138
1da177e4 139 /* checked_ino is protected by the alloc_sem */
aa98d7cf 140 if (c->checked_ino > c->highest_ino && xattr) {
1da177e4
LT
141 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
142 c->unchecked_size);
e0c8e42f 143 jffs2_dbg_dump_block_lists_nolock(c);
1da177e4 144 spin_unlock(&c->erase_completion_lock);
44b998e1
DW
145 up(&c->alloc_sem);
146 return -ENOSPC;
1da177e4
LT
147 }
148
149 spin_unlock(&c->erase_completion_lock);
150
aa98d7cf
KK
151 if (!xattr)
152 xattr = jffs2_verify_xattr(c);
153
1da177e4
LT
154 spin_lock(&c->inocache_lock);
155
156 ic = jffs2_get_ino_cache(c, c->checked_ino++);
157
158 if (!ic) {
159 spin_unlock(&c->inocache_lock);
160 continue;
161 }
162
163 if (!ic->nlink) {
164 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
165 ic->ino));
166 spin_unlock(&c->inocache_lock);
355ed4e1 167 jffs2_xattr_delete_inode(c, ic);
1da177e4
LT
168 continue;
169 }
170 switch(ic->state) {
171 case INO_STATE_CHECKEDABSENT:
172 case INO_STATE_PRESENT:
173 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
174 spin_unlock(&c->inocache_lock);
175 continue;
176
177 case INO_STATE_GC:
178 case INO_STATE_CHECKING:
179 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
180 spin_unlock(&c->inocache_lock);
181 BUG();
182
183 case INO_STATE_READING:
184 /* We need to wait for it to finish, lest we move on
182ec4ee 185 and trigger the BUG() above while we haven't yet
1da177e4
LT
186 finished checking all its nodes */
187 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
d96fb997
DW
188 /* We need to come back again for the _same_ inode. We've
189 made no progress in this case, but that should be OK */
190 c->checked_ino--;
191
1da177e4
LT
192 up(&c->alloc_sem);
193 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
194 return 0;
195
196 default:
197 BUG();
198
199 case INO_STATE_UNCHECKED:
200 ;
201 }
202 ic->state = INO_STATE_CHECKING;
203 spin_unlock(&c->inocache_lock);
204
205 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
206
207 ret = jffs2_do_crccheck_inode(c, ic);
208 if (ret)
209 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
210
211 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
212 up(&c->alloc_sem);
213 return ret;
214 }
215
216 /* First, work out which block we're garbage-collecting */
217 jeb = c->gcblock;
218
219 if (!jeb)
220 jeb = jffs2_find_gc_block(c);
221
222 if (!jeb) {
223 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
224 spin_unlock(&c->erase_completion_lock);
225 up(&c->alloc_sem);
226 return -EIO;
227 }
228
229 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
230 D1(if (c->nextblock)
231 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
232
233 if (!jeb->used_size) {
234 up(&c->alloc_sem);
235 goto eraseit;
236 }
237
238 raw = jeb->gc_node;
182ec4ee 239
1da177e4
LT
240 while(ref_obsolete(raw)) {
241 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
99988f7b 242 raw = ref_next(raw);
1da177e4
LT
243 if (unlikely(!raw)) {
244 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
182ec4ee 245 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
1da177e4
LT
246 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
247 jeb->gc_node = raw;
248 spin_unlock(&c->erase_completion_lock);
249 up(&c->alloc_sem);
250 BUG();
251 }
252 }
253 jeb->gc_node = raw;
254
255 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
256
257 if (!raw->next_in_ino) {
258 /* Inode-less node. Clean marker, snapshot or something like that */
1da177e4 259 spin_unlock(&c->erase_completion_lock);
6171586a
DW
260 if (ref_flags(raw) == REF_PRISTINE) {
261 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
262 jffs2_garbage_collect_pristine(c, NULL, raw);
263 } else {
264 /* Just mark it obsolete */
265 jffs2_mark_node_obsolete(c, raw);
266 }
1da177e4
LT
267 up(&c->alloc_sem);
268 goto eraseit_lock;
269 }
270
271 ic = jffs2_raw_ref_to_ic(raw);
272
084702e0 273#ifdef CONFIG_JFFS2_FS_XATTR
aa98d7cf 274 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
084702e0
KK
275 * We can decide whether this node is inode or xattr by ic->class. */
276 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
277 || ic->class == RAWNODE_CLASS_XATTR_REF) {
084702e0
KK
278 spin_unlock(&c->erase_completion_lock);
279
280 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
c9f700f8 281 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
084702e0 282 } else {
c9f700f8 283 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
084702e0 284 }
aa98d7cf 285 goto release_sem;
084702e0
KK
286 }
287#endif
aa98d7cf 288
1da177e4 289 /* We need to hold the inocache. Either the erase_completion_lock or
182ec4ee 290 the inocache_lock are sufficient; we trade down since the inocache_lock
1da177e4
LT
291 causes less contention. */
292 spin_lock(&c->inocache_lock);
293
294 spin_unlock(&c->erase_completion_lock);
295
296 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
297
298 /* Three possibilities:
299 1. Inode is already in-core. We must iget it and do proper
300 updating to its fragtree, etc.
301 2. Inode is not in-core, node is REF_PRISTINE. We lock the
302 inocache to prevent a read_inode(), copy the node intact.
303 3. Inode is not in-core, node is not pristine. We must iget()
304 and take the slow path.
305 */
306
307 switch(ic->state) {
308 case INO_STATE_CHECKEDABSENT:
182ec4ee 309 /* It's been checked, but it's not currently in-core.
1da177e4
LT
310 We can just copy any pristine nodes, but have
311 to prevent anyone else from doing read_inode() while
312 we're at it, so we set the state accordingly */
313 if (ref_flags(raw) == REF_PRISTINE)
314 ic->state = INO_STATE_GC;
315 else {
182ec4ee 316 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
1da177e4
LT
317 ic->ino));
318 }
319 break;
320
321 case INO_STATE_PRESENT:
322 /* It's in-core. GC must iget() it. */
323 break;
324
325 case INO_STATE_UNCHECKED:
326 case INO_STATE_CHECKING:
327 case INO_STATE_GC:
328 /* Should never happen. We should have finished checking
182ec4ee
TG
329 by the time we actually start doing any GC, and since
330 we're holding the alloc_sem, no other garbage collection
1da177e4
LT
331 can happen.
332 */
333 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
334 ic->ino, ic->state);
335 up(&c->alloc_sem);
336 spin_unlock(&c->inocache_lock);
337 BUG();
338
339 case INO_STATE_READING:
340 /* Someone's currently trying to read it. We must wait for
341 them to finish and then go through the full iget() route
342 to do the GC. However, sometimes read_inode() needs to get
343 the alloc_sem() (for marking nodes invalid) so we must
344 drop the alloc_sem before sleeping. */
345
346 up(&c->alloc_sem);
347 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
348 ic->ino, ic->state));
349 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
182ec4ee 350 /* And because we dropped the alloc_sem we must start again from the
1da177e4
LT
351 beginning. Ponder chance of livelock here -- we're returning success
352 without actually making any progress.
353
182ec4ee 354 Q: What are the chances that the inode is back in INO_STATE_READING
1da177e4
LT
355 again by the time we next enter this function? And that this happens
356 enough times to cause a real delay?
357
182ec4ee 358 A: Small enough that I don't care :)
1da177e4
LT
359 */
360 return 0;
361 }
362
363 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
182ec4ee 364 node intact, and we don't have to muck about with the fragtree etc.
1da177e4
LT
365 because we know it's not in-core. If it _was_ in-core, we go through
366 all the iget() crap anyway */
367
368 if (ic->state == INO_STATE_GC) {
369 spin_unlock(&c->inocache_lock);
370
371 ret = jffs2_garbage_collect_pristine(c, ic, raw);
372
373 spin_lock(&c->inocache_lock);
374 ic->state = INO_STATE_CHECKEDABSENT;
375 wake_up(&c->inocache_wq);
376
377 if (ret != -EBADFD) {
378 spin_unlock(&c->inocache_lock);
379 goto release_sem;
380 }
381
382 /* Fall through if it wanted us to, with inocache_lock held */
383 }
384
385 /* Prevent the fairly unlikely race where the gcblock is
386 entirely obsoleted by the final close of a file which had
387 the only valid nodes in the block, followed by erasure,
388 followed by freeing of the ic because the erased block(s)
389 held _all_ the nodes of that inode.... never been seen but
390 it's vaguely possible. */
391
392 inum = ic->ino;
393 nlink = ic->nlink;
394 spin_unlock(&c->inocache_lock);
395
396 f = jffs2_gc_fetch_inode(c, inum, nlink);
397 if (IS_ERR(f)) {
398 ret = PTR_ERR(f);
399 goto release_sem;
400 }
401 if (!f) {
402 ret = 0;
403 goto release_sem;
404 }
405
406 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
407
408 jffs2_gc_release_inode(c, f);
409
410 release_sem:
411 up(&c->alloc_sem);
412
413 eraseit_lock:
414 /* If we've finished this block, start it erasing */
415 spin_lock(&c->erase_completion_lock);
416
417 eraseit:
418 if (c->gcblock && !c->gcblock->used_size) {
419 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
420 /* We're GC'ing an empty block? */
421 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
422 c->gcblock = NULL;
423 c->nr_erasing_blocks++;
424 jffs2_erase_pending_trigger(c);
425 }
426 spin_unlock(&c->erase_completion_lock);
427
428 return ret;
429}
430
431static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
432 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
433{
434 struct jffs2_node_frag *frag;
435 struct jffs2_full_dnode *fn = NULL;
436 struct jffs2_full_dirent *fd;
437 uint32_t start = 0, end = 0, nrfrags = 0;
438 int ret = 0;
439
440 down(&f->sem);
441
442 /* Now we have the lock for this inode. Check that it's still the one at the head
443 of the list. */
444
445 spin_lock(&c->erase_completion_lock);
446
447 if (c->gcblock != jeb) {
448 spin_unlock(&c->erase_completion_lock);
449 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
450 goto upnout;
451 }
452 if (ref_obsolete(raw)) {
453 spin_unlock(&c->erase_completion_lock);
454 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
455 /* They'll call again */
456 goto upnout;
457 }
458 spin_unlock(&c->erase_completion_lock);
459
460 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
461 if (f->metadata && f->metadata->raw == raw) {
462 fn = f->metadata;
463 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
464 goto upnout;
465 }
466
467 /* FIXME. Read node and do lookup? */
468 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
469 if (frag->node && frag->node->raw == raw) {
470 fn = frag->node;
471 end = frag->ofs + frag->size;
472 if (!nrfrags++)
473 start = frag->ofs;
474 if (nrfrags == frag->node->frags)
475 break; /* We've found them all */
476 }
477 }
478 if (fn) {
479 if (ref_flags(raw) == REF_PRISTINE) {
480 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
481 if (!ret) {
482 /* Urgh. Return it sensibly. */
483 frag->node->raw = f->inocache->nodes;
182ec4ee 484 }
1da177e4
LT
485 if (ret != -EBADFD)
486 goto upnout;
487 }
488 /* We found a datanode. Do the GC */
489 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
490 /* It crosses a page boundary. Therefore, it must be a hole. */
491 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
492 } else {
493 /* It could still be a hole. But we GC the page this way anyway */
494 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
495 }
496 goto upnout;
497 }
182ec4ee 498
1da177e4
LT
499 /* Wasn't a dnode. Try dirent */
500 for (fd = f->dents; fd; fd=fd->next) {
501 if (fd->raw == raw)
502 break;
503 }
504
505 if (fd && fd->ino) {
506 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
507 } else if (fd) {
508 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
509 } else {
510 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
511 ref_offset(raw), f->inocache->ino);
512 if (ref_obsolete(raw)) {
513 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
514 } else {
e0c8e42f
AB
515 jffs2_dbg_dump_node(c, ref_offset(raw));
516 BUG();
1da177e4
LT
517 }
518 }
519 upnout:
520 up(&f->sem);
521
522 return ret;
523}
524
182ec4ee 525static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
526 struct jffs2_inode_cache *ic,
527 struct jffs2_raw_node_ref *raw)
528{
529 union jffs2_node_union *node;
1da177e4
LT
530 size_t retlen;
531 int ret;
532 uint32_t phys_ofs, alloclen;
533 uint32_t crc, rawlen;
534 int retried = 0;
535
536 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
537
6171586a 538 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
1da177e4
LT
539
540 /* Ask for a small amount of space (or the totlen if smaller) because we
541 don't want to force wastage of the end of a block if splitting would
542 work. */
6171586a
DW
543 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
544 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
545
9fe4854c 546 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
6171586a 547 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
e631ddba 548
1da177e4
LT
549 if (ret)
550 return ret;
551
552 if (alloclen < rawlen) {
553 /* Doesn't fit untouched. We'll go the old route and split it */
554 return -EBADFD;
555 }
556
557 node = kmalloc(rawlen, GFP_KERNEL);
558 if (!node)
ef53cb02 559 return -ENOMEM;
1da177e4
LT
560
561 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
562 if (!ret && retlen != rawlen)
563 ret = -EIO;
564 if (ret)
565 goto out_node;
566
567 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
568 if (je32_to_cpu(node->u.hdr_crc) != crc) {
569 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
570 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
571 goto bail;
572 }
573
574 switch(je16_to_cpu(node->u.nodetype)) {
575 case JFFS2_NODETYPE_INODE:
576 crc = crc32(0, node, sizeof(node->i)-8);
577 if (je32_to_cpu(node->i.node_crc) != crc) {
578 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
579 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
580 goto bail;
581 }
582
583 if (je32_to_cpu(node->i.dsize)) {
584 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
585 if (je32_to_cpu(node->i.data_crc) != crc) {
586 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
587 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
588 goto bail;
589 }
590 }
591 break;
592
593 case JFFS2_NODETYPE_DIRENT:
594 crc = crc32(0, node, sizeof(node->d)-8);
595 if (je32_to_cpu(node->d.node_crc) != crc) {
596 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
597 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
598 goto bail;
599 }
600
601 if (node->d.nsize) {
602 crc = crc32(0, node->d.name, node->d.nsize);
603 if (je32_to_cpu(node->d.name_crc) != crc) {
604 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
605 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
606 goto bail;
607 }
608 }
609 break;
610 default:
6171586a
DW
611 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
612 if (ic) {
613 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
614 ref_offset(raw), je16_to_cpu(node->u.nodetype));
615 goto bail;
616 }
1da177e4
LT
617 }
618
1da177e4
LT
619 /* OK, all the CRCs are good; this node can just be copied as-is. */
620 retry:
2f785402 621 phys_ofs = write_ofs(c);
1da177e4
LT
622
623 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
624
625 if (ret || (retlen != rawlen)) {
626 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
ef53cb02 627 rawlen, phys_ofs, ret, retlen);
1da177e4 628 if (retlen) {
2f785402 629 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
1da177e4 630 } else {
2f785402 631 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
1da177e4 632 }
2f785402 633 if (!retried) {
1da177e4
LT
634 /* Try to reallocate space and retry */
635 uint32_t dummy;
636 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
637
638 retried = 1;
639
640 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
182ec4ee 641
730554d9
AB
642 jffs2_dbg_acct_sanity_check(c,jeb);
643 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4 644
9fe4854c 645 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
e631ddba
FH
646 /* this is not the exact summary size of it,
647 it is only an upper estimation */
1da177e4
LT
648
649 if (!ret) {
650 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
651
730554d9
AB
652 jffs2_dbg_acct_sanity_check(c,jeb);
653 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4
LT
654
655 goto retry;
656 }
657 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
1da177e4
LT
658 }
659
1da177e4
LT
660 if (!ret)
661 ret = -EIO;
662 goto out_node;
663 }
2f785402 664 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
1da177e4 665
1da177e4
LT
666 jffs2_mark_node_obsolete(c, raw);
667 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
668
669 out_node:
670 kfree(node);
671 return ret;
672 bail:
673 ret = -EBADFD;
674 goto out_node;
675}
676
182ec4ee 677static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
678 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
679{
680 struct jffs2_full_dnode *new_fn;
681 struct jffs2_raw_inode ri;
8557fd51 682 struct jffs2_node_frag *last_frag;
aef9ab47 683 union jffs2_device_node dev;
1da177e4 684 char *mdata = NULL, mdatalen = 0;
9fe4854c 685 uint32_t alloclen, ilen;
1da177e4
LT
686 int ret;
687
688 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
689 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
690 /* For these, we don't actually need to read the old node */
aef9ab47 691 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
1da177e4 692 mdata = (char *)&dev;
1da177e4
LT
693 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
694 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
695 mdatalen = fn->size;
696 mdata = kmalloc(fn->size, GFP_KERNEL);
697 if (!mdata) {
698 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
699 return -ENOMEM;
700 }
701 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
702 if (ret) {
703 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
704 kfree(mdata);
705 return ret;
706 }
707 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
708
709 }
182ec4ee 710
9fe4854c 711 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
e631ddba 712 JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
713 if (ret) {
714 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
715 sizeof(ri)+ mdatalen, ret);
716 goto out;
717 }
182ec4ee 718
8557fd51
AB
719 last_frag = frag_last(&f->fragtree);
720 if (last_frag)
721 /* Fetch the inode length from the fragtree rather then
722 * from i_size since i_size may have not been updated yet */
723 ilen = last_frag->ofs + last_frag->size;
724 else
725 ilen = JFFS2_F_I_SIZE(f);
182ec4ee 726
1da177e4
LT
727 memset(&ri, 0, sizeof(ri));
728 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
729 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
730 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
731 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
732
733 ri.ino = cpu_to_je32(f->inocache->ino);
734 ri.version = cpu_to_je32(++f->highest_version);
735 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
736 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
737 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 738 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
739 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
740 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
741 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
742 ri.offset = cpu_to_je32(0);
743 ri.csize = cpu_to_je32(mdatalen);
744 ri.dsize = cpu_to_je32(mdatalen);
745 ri.compr = JFFS2_COMPR_NONE;
746 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
747 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
748
9fe4854c 749 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
1da177e4
LT
750
751 if (IS_ERR(new_fn)) {
752 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
753 ret = PTR_ERR(new_fn);
754 goto out;
755 }
756 jffs2_mark_node_obsolete(c, fn->raw);
757 jffs2_free_full_dnode(fn);
758 f->metadata = new_fn;
759 out:
760 if (S_ISLNK(JFFS2_F_I_MODE(f)))
761 kfree(mdata);
762 return ret;
763}
764
182ec4ee 765static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
766 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
767{
768 struct jffs2_full_dirent *new_fd;
769 struct jffs2_raw_dirent rd;
9fe4854c 770 uint32_t alloclen;
1da177e4
LT
771 int ret;
772
773 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
774 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
775 rd.nsize = strlen(fd->name);
776 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
777 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
778
779 rd.pino = cpu_to_je32(f->inocache->ino);
780 rd.version = cpu_to_je32(++f->highest_version);
781 rd.ino = cpu_to_je32(fd->ino);
3a69e0cd
AB
782 /* If the times on this inode were set by explicit utime() they can be different,
783 so refrain from splatting them. */
784 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
785 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
182ec4ee 786 else
3a69e0cd 787 rd.mctime = cpu_to_je32(0);
1da177e4
LT
788 rd.type = fd->type;
789 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
790 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
182ec4ee 791
9fe4854c 792 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
e631ddba 793 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
1da177e4
LT
794 if (ret) {
795 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
796 sizeof(rd)+rd.nsize, ret);
797 return ret;
798 }
9fe4854c 799 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
1da177e4
LT
800
801 if (IS_ERR(new_fd)) {
802 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
803 return PTR_ERR(new_fd);
804 }
805 jffs2_add_fd_to_list(c, new_fd, &f->dents);
806 return 0;
807}
808
182ec4ee 809static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
810 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
811{
812 struct jffs2_full_dirent **fdp = &f->dents;
813 int found = 0;
814
815 /* On a medium where we can't actually mark nodes obsolete
816 pernamently, such as NAND flash, we need to work out
817 whether this deletion dirent is still needed to actively
818 delete a 'real' dirent with the same name that's still
819 somewhere else on the flash. */
820 if (!jffs2_can_mark_obsolete(c)) {
821 struct jffs2_raw_dirent *rd;
822 struct jffs2_raw_node_ref *raw;
823 int ret;
824 size_t retlen;
825 int name_len = strlen(fd->name);
826 uint32_t name_crc = crc32(0, fd->name, name_len);
827 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
828
829 rd = kmalloc(rawlen, GFP_KERNEL);
830 if (!rd)
831 return -ENOMEM;
832
833 /* Prevent the erase code from nicking the obsolete node refs while
834 we're looking at them. I really don't like this extra lock but
835 can't see any alternative. Suggestions on a postcard to... */
836 down(&c->erase_free_sem);
837
838 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
839
aba54da3
AB
840 cond_resched();
841
1da177e4
LT
842 /* We only care about obsolete ones */
843 if (!(ref_obsolete(raw)))
844 continue;
845
846 /* Any dirent with the same name is going to have the same length... */
847 if (ref_totlen(c, NULL, raw) != rawlen)
848 continue;
849
182ec4ee 850 /* Doesn't matter if there's one in the same erase block. We're going to
1da177e4 851 delete it too at the same time. */
3be36675 852 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
1da177e4
LT
853 continue;
854
855 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
856
857 /* This is an obsolete node belonging to the same directory, and it's of the right
858 length. We need to take a closer look...*/
859 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
860 if (ret) {
861 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
862 /* If we can't read it, we don't need to continue to obsolete it. Continue */
863 continue;
864 }
865 if (retlen != rawlen) {
866 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
867 retlen, rawlen, ref_offset(raw));
868 continue;
869 }
870
871 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
872 continue;
873
874 /* If the name CRC doesn't match, skip */
875 if (je32_to_cpu(rd->name_crc) != name_crc)
876 continue;
877
878 /* If the name length doesn't match, or it's another deletion dirent, skip */
879 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
880 continue;
881
882 /* OK, check the actual name now */
883 if (memcmp(rd->name, fd->name, name_len))
884 continue;
885
886 /* OK. The name really does match. There really is still an older node on
887 the flash which our deletion dirent obsoletes. So we have to write out
888 a new deletion dirent to replace it */
889 up(&c->erase_free_sem);
890
891 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
892 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
893 kfree(rd);
894
895 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
896 }
897
898 up(&c->erase_free_sem);
899 kfree(rd);
900 }
901
182ec4ee 902 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
3a69e0cd
AB
903 we should update the metadata node with those times accordingly */
904
1da177e4
LT
905 /* No need for it any more. Just mark it obsolete and remove it from the list */
906 while (*fdp) {
907 if ((*fdp) == fd) {
908 found = 1;
909 *fdp = fd->next;
910 break;
911 }
912 fdp = &(*fdp)->next;
913 }
914 if (!found) {
915 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
916 }
917 jffs2_mark_node_obsolete(c, fd->raw);
918 jffs2_free_full_dirent(fd);
919 return 0;
920}
921
922static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
923 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
924 uint32_t start, uint32_t end)
925{
926 struct jffs2_raw_inode ri;
927 struct jffs2_node_frag *frag;
928 struct jffs2_full_dnode *new_fn;
9fe4854c 929 uint32_t alloclen, ilen;
1da177e4
LT
930 int ret;
931
932 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
933 f->inocache->ino, start, end));
182ec4ee 934
1da177e4
LT
935 memset(&ri, 0, sizeof(ri));
936
937 if(fn->frags > 1) {
938 size_t readlen;
939 uint32_t crc;
182ec4ee 940 /* It's partially obsoleted by a later write. So we have to
1da177e4
LT
941 write it out again with the _same_ version as before */
942 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
943 if (readlen != sizeof(ri) || ret) {
944 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
945 goto fill;
946 }
947 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
948 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
949 ref_offset(fn->raw),
950 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
951 return -EIO;
952 }
953 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
954 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
955 ref_offset(fn->raw),
956 je32_to_cpu(ri.totlen), sizeof(ri));
957 return -EIO;
958 }
959 crc = crc32(0, &ri, sizeof(ri)-8);
960 if (crc != je32_to_cpu(ri.node_crc)) {
961 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
182ec4ee 962 ref_offset(fn->raw),
1da177e4
LT
963 je32_to_cpu(ri.node_crc), crc);
964 /* FIXME: We could possibly deal with this by writing new holes for each frag */
182ec4ee 965 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1da177e4
LT
966 start, end, f->inocache->ino);
967 goto fill;
968 }
969 if (ri.compr != JFFS2_COMPR_ZERO) {
970 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
182ec4ee 971 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1da177e4
LT
972 start, end, f->inocache->ino);
973 goto fill;
974 }
975 } else {
976 fill:
977 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
978 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
979 ri.totlen = cpu_to_je32(sizeof(ri));
980 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
981
982 ri.ino = cpu_to_je32(f->inocache->ino);
983 ri.version = cpu_to_je32(++f->highest_version);
984 ri.offset = cpu_to_je32(start);
985 ri.dsize = cpu_to_je32(end - start);
986 ri.csize = cpu_to_je32(0);
987 ri.compr = JFFS2_COMPR_ZERO;
988 }
182ec4ee 989
8557fd51
AB
990 frag = frag_last(&f->fragtree);
991 if (frag)
992 /* Fetch the inode length from the fragtree rather then
993 * from i_size since i_size may have not been updated yet */
994 ilen = frag->ofs + frag->size;
995 else
996 ilen = JFFS2_F_I_SIZE(f);
997
1da177e4
LT
998 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
999 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1000 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 1001 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
1002 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1003 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1004 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1005 ri.data_crc = cpu_to_je32(0);
1006 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1007
9fe4854c
DW
1008 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1009 JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
1010 if (ret) {
1011 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1012 sizeof(ri), ret);
1013 return ret;
1014 }
9fe4854c 1015 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1da177e4
LT
1016
1017 if (IS_ERR(new_fn)) {
1018 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1019 return PTR_ERR(new_fn);
1020 }
1021 if (je32_to_cpu(ri.version) == f->highest_version) {
1022 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1023 if (f->metadata) {
1024 jffs2_mark_node_obsolete(c, f->metadata->raw);
1025 jffs2_free_full_dnode(f->metadata);
1026 f->metadata = NULL;
1027 }
1028 return 0;
1029 }
1030
182ec4ee 1031 /*
1da177e4
LT
1032 * We should only get here in the case where the node we are
1033 * replacing had more than one frag, so we kept the same version
182ec4ee 1034 * number as before. (Except in case of error -- see 'goto fill;'
1da177e4
LT
1035 * above.)
1036 */
1037 D1(if(unlikely(fn->frags <= 1)) {
1038 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1039 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1040 je32_to_cpu(ri.ino));
1041 });
1042
1043 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1044 mark_ref_normal(new_fn->raw);
1045
182ec4ee 1046 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1da177e4
LT
1047 frag; frag = frag_next(frag)) {
1048 if (frag->ofs > fn->size + fn->ofs)
1049 break;
1050 if (frag->node == fn) {
1051 frag->node = new_fn;
1052 new_fn->frags++;
1053 fn->frags--;
1054 }
1055 }
1056 if (fn->frags) {
1057 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1058 BUG();
1059 }
1060 if (!new_fn->frags) {
1061 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1062 BUG();
1063 }
182ec4ee 1064
1da177e4
LT
1065 jffs2_mark_node_obsolete(c, fn->raw);
1066 jffs2_free_full_dnode(fn);
182ec4ee 1067
1da177e4
LT
1068 return 0;
1069}
1070
1071static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1072 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1073 uint32_t start, uint32_t end)
1074{
1075 struct jffs2_full_dnode *new_fn;
1076 struct jffs2_raw_inode ri;
9fe4854c 1077 uint32_t alloclen, offset, orig_end, orig_start;
1da177e4
LT
1078 int ret = 0;
1079 unsigned char *comprbuf = NULL, *writebuf;
1080 unsigned long pg;
1081 unsigned char *pg_ptr;
182ec4ee 1082
1da177e4
LT
1083 memset(&ri, 0, sizeof(ri));
1084
1085 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1086 f->inocache->ino, start, end));
1087
1088 orig_end = end;
1089 orig_start = start;
1090
1091 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1092 /* Attempt to do some merging. But only expand to cover logically
1093 adjacent frags if the block containing them is already considered
182ec4ee
TG
1094 to be dirty. Otherwise we end up with GC just going round in
1095 circles dirtying the nodes it already wrote out, especially
1da177e4
LT
1096 on NAND where we have small eraseblocks and hence a much higher
1097 chance of nodes having to be split to cross boundaries. */
1098
1099 struct jffs2_node_frag *frag;
1100 uint32_t min, max;
1101
1102 min = start & ~(PAGE_CACHE_SIZE-1);
1103 max = min + PAGE_CACHE_SIZE;
1104
1105 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1106
1107 /* BUG_ON(!frag) but that'll happen anyway... */
1108
1109 BUG_ON(frag->ofs != start);
1110
1111 /* First grow down... */
1112 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1113
1114 /* If the previous frag doesn't even reach the beginning, there's
1115 excessive fragmentation. Just merge. */
1116 if (frag->ofs > min) {
1117 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1118 frag->ofs, frag->ofs+frag->size));
1119 start = frag->ofs;
1120 continue;
1121 }
1122 /* OK. This frag holds the first byte of the page. */
1123 if (!frag->node || !frag->node->raw) {
1124 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1125 frag->ofs, frag->ofs+frag->size));
1126 break;
1127 } else {
1128
182ec4ee 1129 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1130 in a block which is still considered clean? If so, don't obsolete it.
1131 If not, cover it anyway. */
1132
1133 struct jffs2_raw_node_ref *raw = frag->node->raw;
1134 struct jffs2_eraseblock *jeb;
1135
1136 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1137
1138 if (jeb == c->gcblock) {
1139 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1140 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1141 start = frag->ofs;
1142 break;
1143 }
1144 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1145 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1146 frag->ofs, frag->ofs+frag->size, jeb->offset));
1147 break;
1148 }
1149
1150 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1151 frag->ofs, frag->ofs+frag->size, jeb->offset));
1152 start = frag->ofs;
1153 break;
1154 }
1155 }
1156
1157 /* ... then up */
1158
1159 /* Find last frag which is actually part of the node we're to GC. */
1160 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1161
1162 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1163
1164 /* If the previous frag doesn't even reach the beginning, there's lots
1165 of fragmentation. Just merge. */
1166 if (frag->ofs+frag->size < max) {
1167 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1168 frag->ofs, frag->ofs+frag->size));
1169 end = frag->ofs + frag->size;
1170 continue;
1171 }
1172
1173 if (!frag->node || !frag->node->raw) {
1174 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1175 frag->ofs, frag->ofs+frag->size));
1176 break;
1177 } else {
1178
182ec4ee 1179 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1180 in a block which is still considered clean? If so, don't obsolete it.
1181 If not, cover it anyway. */
1182
1183 struct jffs2_raw_node_ref *raw = frag->node->raw;
1184 struct jffs2_eraseblock *jeb;
1185
1186 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1187
1188 if (jeb == c->gcblock) {
1189 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1190 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1191 end = frag->ofs + frag->size;
1192 break;
1193 }
1194 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1195 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1196 frag->ofs, frag->ofs+frag->size, jeb->offset));
1197 break;
1198 }
1199
1200 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1201 frag->ofs, frag->ofs+frag->size, jeb->offset));
1202 end = frag->ofs + frag->size;
1203 break;
1204 }
1205 }
182ec4ee 1206 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1da177e4
LT
1207 orig_start, orig_end, start, end));
1208
8557fd51 1209 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1da177e4
LT
1210 BUG_ON(end < orig_end);
1211 BUG_ON(start > orig_start);
1212 }
182ec4ee 1213
1da177e4
LT
1214 /* First, use readpage() to read the appropriate page into the page cache */
1215 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1216 * triggered garbage collection in the first place?
1217 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1218 * page OK. We'll actually write it out again in commit_write, which is a little
1219 * suboptimal, but at least we're correct.
1220 */
1221 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1222
1223 if (IS_ERR(pg_ptr)) {
1224 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1225 return PTR_ERR(pg_ptr);
1226 }
1227
1228 offset = start;
1229 while(offset < orig_end) {
1230 uint32_t datalen;
1231 uint32_t cdatalen;
1232 uint16_t comprtype = JFFS2_COMPR_NONE;
1233
9fe4854c 1234 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
e631ddba 1235 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
1236
1237 if (ret) {
1238 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1239 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1240 break;
1241 }
1242 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1243 datalen = end - offset;
1244
1245 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1246
1247 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1248
1249 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1250 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1251 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1252 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1253
1254 ri.ino = cpu_to_je32(f->inocache->ino);
1255 ri.version = cpu_to_je32(++f->highest_version);
1256 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1257 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1258 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1259 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1260 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1261 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1262 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1263 ri.offset = cpu_to_je32(offset);
1264 ri.csize = cpu_to_je32(cdatalen);
1265 ri.dsize = cpu_to_je32(datalen);
1266 ri.compr = comprtype & 0xff;
1267 ri.usercompr = (comprtype >> 8) & 0xff;
1268 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1269 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
182ec4ee 1270
9fe4854c 1271 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1da177e4
LT
1272
1273 jffs2_free_comprbuf(comprbuf, writebuf);
1274
1275 if (IS_ERR(new_fn)) {
1276 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1277 ret = PTR_ERR(new_fn);
1278 break;
1279 }
1280 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1281 offset += datalen;
1282 if (f->metadata) {
1283 jffs2_mark_node_obsolete(c, f->metadata->raw);
1284 jffs2_free_full_dnode(f->metadata);
1285 f->metadata = NULL;
1286 }
1287 }
1288
1289 jffs2_gc_release_page(c, pg_ptr, &pg);
1290 return ret;
1291}