]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/jbd/transaction.c
ext3: add an option to control error handling on file data
[net-next-2.6.git] / fs / jbd / transaction.c
CommitLineData
1da177e4 1/*
58862699 2 * linux/fs/jbd/transaction.c
ae6ddcc5 3 *
1da177e4
LT
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
ae6ddcc5 13 * journaling system.
1da177e4
LT
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
22#include <linux/jbd.h>
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/highmem.h>
28
d394e122
AB
29static void __journal_temp_unlink_buffer(struct journal_head *jh);
30
1da177e4
LT
31/*
32 * get_transaction: obtain a new transaction_t object.
33 *
34 * Simply allocate and initialise a new transaction. Create it in
35 * RUNNING state and add it to the current journal (which should not
36 * have an existing running transaction: we only make a new transaction
37 * once we have started to commit the old one).
38 *
39 * Preconditions:
40 * The journal MUST be locked. We don't perform atomic mallocs on the
41 * new transaction and we can't block without protecting against other
42 * processes trying to touch the journal while it is in transition.
43 *
44 * Called under j_state_lock
45 */
46
47static transaction_t *
48get_transaction(journal_t *journal, transaction_t *transaction)
49{
50 transaction->t_journal = journal;
51 transaction->t_state = T_RUNNING;
52 transaction->t_tid = journal->j_transaction_sequence++;
53 transaction->t_expires = jiffies + journal->j_commit_interval;
54 spin_lock_init(&transaction->t_handle_lock);
55
56 /* Set up the commit timer for the new transaction. */
44d306e1 57 journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
e3df1898 58 add_timer(&journal->j_commit_timer);
1da177e4
LT
59
60 J_ASSERT(journal->j_running_transaction == NULL);
61 journal->j_running_transaction = transaction;
62
63 return transaction;
64}
65
66/*
67 * Handle management.
68 *
69 * A handle_t is an object which represents a single atomic update to a
70 * filesystem, and which tracks all of the modifications which form part
71 * of that one update.
72 */
73
74/*
75 * start_this_handle: Given a handle, deal with any locking or stalling
76 * needed to make sure that there is enough journal space for the handle
77 * to begin. Attach the handle to a transaction and set up the
ae6ddcc5 78 * transaction's buffer credits.
1da177e4
LT
79 */
80
81static int start_this_handle(journal_t *journal, handle_t *handle)
82{
83 transaction_t *transaction;
84 int needed;
85 int nblocks = handle->h_buffer_credits;
86 transaction_t *new_transaction = NULL;
87 int ret = 0;
88
89 if (nblocks > journal->j_max_transaction_buffers) {
90 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
91 current->comm, nblocks,
92 journal->j_max_transaction_buffers);
93 ret = -ENOSPC;
94 goto out;
95 }
96
97alloc_transaction:
98 if (!journal->j_running_transaction) {
8c3478a5 99 new_transaction = kzalloc(sizeof(*new_transaction),
a5005da2 100 GFP_NOFS|__GFP_NOFAIL);
1da177e4
LT
101 if (!new_transaction) {
102 ret = -ENOMEM;
103 goto out;
104 }
1da177e4
LT
105 }
106
107 jbd_debug(3, "New handle %p going live.\n", handle);
108
109repeat:
110
111 /*
112 * We need to hold j_state_lock until t_updates has been incremented,
113 * for proper journal barrier handling
114 */
115 spin_lock(&journal->j_state_lock);
116repeat_locked:
117 if (is_journal_aborted(journal) ||
118 (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
119 spin_unlock(&journal->j_state_lock);
ae6ddcc5 120 ret = -EROFS;
1da177e4
LT
121 goto out;
122 }
123
124 /* Wait on the journal's transaction barrier if necessary */
125 if (journal->j_barrier_count) {
126 spin_unlock(&journal->j_state_lock);
127 wait_event(journal->j_wait_transaction_locked,
128 journal->j_barrier_count == 0);
129 goto repeat;
130 }
131
132 if (!journal->j_running_transaction) {
133 if (!new_transaction) {
134 spin_unlock(&journal->j_state_lock);
135 goto alloc_transaction;
136 }
137 get_transaction(journal, new_transaction);
138 new_transaction = NULL;
139 }
140
141 transaction = journal->j_running_transaction;
142
143 /*
144 * If the current transaction is locked down for commit, wait for the
145 * lock to be released.
146 */
147 if (transaction->t_state == T_LOCKED) {
148 DEFINE_WAIT(wait);
149
150 prepare_to_wait(&journal->j_wait_transaction_locked,
151 &wait, TASK_UNINTERRUPTIBLE);
152 spin_unlock(&journal->j_state_lock);
153 schedule();
154 finish_wait(&journal->j_wait_transaction_locked, &wait);
155 goto repeat;
156 }
157
158 /*
159 * If there is not enough space left in the log to write all potential
160 * buffers requested by this operation, we need to stall pending a log
161 * checkpoint to free some more log space.
162 */
163 spin_lock(&transaction->t_handle_lock);
164 needed = transaction->t_outstanding_credits + nblocks;
165
166 if (needed > journal->j_max_transaction_buffers) {
167 /*
168 * If the current transaction is already too large, then start
169 * to commit it: we can then go back and attach this handle to
170 * a new transaction.
171 */
172 DEFINE_WAIT(wait);
173
174 jbd_debug(2, "Handle %p starting new commit...\n", handle);
175 spin_unlock(&transaction->t_handle_lock);
176 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177 TASK_UNINTERRUPTIBLE);
178 __log_start_commit(journal, transaction->t_tid);
179 spin_unlock(&journal->j_state_lock);
180 schedule();
181 finish_wait(&journal->j_wait_transaction_locked, &wait);
182 goto repeat;
183 }
184
ae6ddcc5 185 /*
1da177e4
LT
186 * The commit code assumes that it can get enough log space
187 * without forcing a checkpoint. This is *critical* for
188 * correctness: a checkpoint of a buffer which is also
189 * associated with a committing transaction creates a deadlock,
190 * so commit simply cannot force through checkpoints.
191 *
192 * We must therefore ensure the necessary space in the journal
193 * *before* starting to dirty potentially checkpointed buffers
ae6ddcc5 194 * in the new transaction.
1da177e4
LT
195 *
196 * The worst part is, any transaction currently committing can
197 * reduce the free space arbitrarily. Be careful to account for
198 * those buffers when checkpointing.
199 */
200
201 /*
202 * @@@ AKPM: This seems rather over-defensive. We're giving commit
203 * a _lot_ of headroom: 1/4 of the journal plus the size of
204 * the committing transaction. Really, we only need to give it
205 * committing_transaction->t_outstanding_credits plus "enough" for
206 * the log control blocks.
207 * Also, this test is inconsitent with the matching one in
208 * journal_extend().
209 */
210 if (__log_space_left(journal) < jbd_space_needed(journal)) {
211 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
212 spin_unlock(&transaction->t_handle_lock);
213 __log_wait_for_space(journal);
214 goto repeat_locked;
215 }
216
217 /* OK, account for the buffers that this operation expects to
218 * use and add the handle to the running transaction. */
219
220 handle->h_transaction = transaction;
221 transaction->t_outstanding_credits += nblocks;
222 transaction->t_updates++;
223 transaction->t_handle_count++;
224 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
225 handle, nblocks, transaction->t_outstanding_credits,
226 __log_space_left(journal));
227 spin_unlock(&transaction->t_handle_lock);
228 spin_unlock(&journal->j_state_lock);
229out:
304c4c84
AM
230 if (unlikely(new_transaction)) /* It's usually NULL */
231 kfree(new_transaction);
1da177e4
LT
232 return ret;
233}
234
34a3d1e8
PZ
235static struct lock_class_key jbd_handle_key;
236
1da177e4
LT
237/* Allocate a new handle. This should probably be in a slab... */
238static handle_t *new_handle(int nblocks)
239{
240 handle_t *handle = jbd_alloc_handle(GFP_NOFS);
241 if (!handle)
242 return NULL;
243 memset(handle, 0, sizeof(*handle));
244 handle->h_buffer_credits = nblocks;
245 handle->h_ref = 1;
246
34a3d1e8
PZ
247 lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
248
1da177e4
LT
249 return handle;
250}
251
252/**
ae6ddcc5 253 * handle_t *journal_start() - Obtain a new handle.
1da177e4
LT
254 * @journal: Journal to start transaction on.
255 * @nblocks: number of block buffer we might modify
256 *
257 * We make sure that the transaction can guarantee at least nblocks of
258 * modified buffers in the log. We block until the log can guarantee
ae6ddcc5 259 * that much space.
1da177e4
LT
260 *
261 * This function is visible to journal users (like ext3fs), so is not
262 * called with the journal already locked.
263 *
264 * Return a pointer to a newly allocated handle, or NULL on failure
265 */
266handle_t *journal_start(journal_t *journal, int nblocks)
267{
268 handle_t *handle = journal_current_handle();
269 int err;
270
271 if (!journal)
272 return ERR_PTR(-EROFS);
273
274 if (handle) {
275 J_ASSERT(handle->h_transaction->t_journal == journal);
276 handle->h_ref++;
277 return handle;
278 }
279
280 handle = new_handle(nblocks);
281 if (!handle)
282 return ERR_PTR(-ENOMEM);
283
284 current->journal_info = handle;
285
286 err = start_this_handle(journal, handle);
287 if (err < 0) {
288 jbd_free_handle(handle);
289 current->journal_info = NULL;
290 handle = ERR_PTR(err);
f63dcda1 291 goto out;
1da177e4 292 }
34a3d1e8 293
3295f0ef 294 lock_map_acquire(&handle->h_lockdep_map);
34a3d1e8 295
f63dcda1 296out:
1da177e4
LT
297 return handle;
298}
299
300/**
301 * int journal_extend() - extend buffer credits.
302 * @handle: handle to 'extend'
303 * @nblocks: nr blocks to try to extend by.
ae6ddcc5 304 *
1da177e4
LT
305 * Some transactions, such as large extends and truncates, can be done
306 * atomically all at once or in several stages. The operation requests
307 * a credit for a number of buffer modications in advance, but can
ae6ddcc5 308 * extend its credit if it needs more.
1da177e4
LT
309 *
310 * journal_extend tries to give the running handle more buffer credits.
311 * It does not guarantee that allocation - this is a best-effort only.
312 * The calling process MUST be able to deal cleanly with a failure to
313 * extend here.
314 *
315 * Return 0 on success, non-zero on failure.
316 *
317 * return code < 0 implies an error
318 * return code > 0 implies normal transaction-full status.
319 */
320int journal_extend(handle_t *handle, int nblocks)
321{
322 transaction_t *transaction = handle->h_transaction;
323 journal_t *journal = transaction->t_journal;
324 int result;
325 int wanted;
326
327 result = -EIO;
328 if (is_handle_aborted(handle))
329 goto out;
330
331 result = 1;
332
333 spin_lock(&journal->j_state_lock);
334
335 /* Don't extend a locked-down transaction! */
336 if (handle->h_transaction->t_state != T_RUNNING) {
337 jbd_debug(3, "denied handle %p %d blocks: "
338 "transaction not running\n", handle, nblocks);
339 goto error_out;
340 }
341
342 spin_lock(&transaction->t_handle_lock);
343 wanted = transaction->t_outstanding_credits + nblocks;
344
345 if (wanted > journal->j_max_transaction_buffers) {
346 jbd_debug(3, "denied handle %p %d blocks: "
347 "transaction too large\n", handle, nblocks);
348 goto unlock;
349 }
350
351 if (wanted > __log_space_left(journal)) {
352 jbd_debug(3, "denied handle %p %d blocks: "
353 "insufficient log space\n", handle, nblocks);
354 goto unlock;
355 }
356
357 handle->h_buffer_credits += nblocks;
358 transaction->t_outstanding_credits += nblocks;
359 result = 0;
360
361 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
362unlock:
363 spin_unlock(&transaction->t_handle_lock);
364error_out:
365 spin_unlock(&journal->j_state_lock);
366out:
367 return result;
368}
369
370
371/**
78a4a50a 372 * int journal_restart() - restart a handle.
1da177e4
LT
373 * @handle: handle to restart
374 * @nblocks: nr credits requested
ae6ddcc5 375 *
1da177e4
LT
376 * Restart a handle for a multi-transaction filesystem
377 * operation.
378 *
379 * If the journal_extend() call above fails to grant new buffer credits
380 * to a running handle, a call to journal_restart will commit the
381 * handle's transaction so far and reattach the handle to a new
382 * transaction capabable of guaranteeing the requested number of
383 * credits.
384 */
385
386int journal_restart(handle_t *handle, int nblocks)
387{
388 transaction_t *transaction = handle->h_transaction;
389 journal_t *journal = transaction->t_journal;
390 int ret;
391
392 /* If we've had an abort of any type, don't even think about
393 * actually doing the restart! */
394 if (is_handle_aborted(handle))
395 return 0;
396
397 /*
398 * First unlink the handle from its current transaction, and start the
399 * commit on that.
400 */
401 J_ASSERT(transaction->t_updates > 0);
402 J_ASSERT(journal_current_handle() == handle);
403
404 spin_lock(&journal->j_state_lock);
405 spin_lock(&transaction->t_handle_lock);
406 transaction->t_outstanding_credits -= handle->h_buffer_credits;
407 transaction->t_updates--;
408
409 if (!transaction->t_updates)
410 wake_up(&journal->j_wait_updates);
411 spin_unlock(&transaction->t_handle_lock);
412
413 jbd_debug(2, "restarting handle %p\n", handle);
414 __log_start_commit(journal, transaction->t_tid);
415 spin_unlock(&journal->j_state_lock);
416
417 handle->h_buffer_credits = nblocks;
418 ret = start_this_handle(journal, handle);
419 return ret;
420}
421
422
423/**
424 * void journal_lock_updates () - establish a transaction barrier.
425 * @journal: Journal to establish a barrier on.
426 *
427 * This locks out any further updates from being started, and blocks
428 * until all existing updates have completed, returning only once the
429 * journal is in a quiescent state with no updates running.
430 *
431 * The journal lock should not be held on entry.
432 */
433void journal_lock_updates(journal_t *journal)
434{
435 DEFINE_WAIT(wait);
436
437 spin_lock(&journal->j_state_lock);
438 ++journal->j_barrier_count;
439
440 /* Wait until there are no running updates */
441 while (1) {
442 transaction_t *transaction = journal->j_running_transaction;
443
444 if (!transaction)
445 break;
446
447 spin_lock(&transaction->t_handle_lock);
448 if (!transaction->t_updates) {
449 spin_unlock(&transaction->t_handle_lock);
450 break;
451 }
452 prepare_to_wait(&journal->j_wait_updates, &wait,
453 TASK_UNINTERRUPTIBLE);
454 spin_unlock(&transaction->t_handle_lock);
455 spin_unlock(&journal->j_state_lock);
456 schedule();
457 finish_wait(&journal->j_wait_updates, &wait);
458 spin_lock(&journal->j_state_lock);
459 }
460 spin_unlock(&journal->j_state_lock);
461
462 /*
463 * We have now established a barrier against other normal updates, but
464 * we also need to barrier against other journal_lock_updates() calls
465 * to make sure that we serialise special journal-locked operations
466 * too.
467 */
2c68ee75 468 mutex_lock(&journal->j_barrier);
1da177e4
LT
469}
470
471/**
472 * void journal_unlock_updates (journal_t* journal) - release barrier
473 * @journal: Journal to release the barrier on.
ae6ddcc5 474 *
1da177e4
LT
475 * Release a transaction barrier obtained with journal_lock_updates().
476 *
477 * Should be called without the journal lock held.
478 */
479void journal_unlock_updates (journal_t *journal)
480{
481 J_ASSERT(journal->j_barrier_count != 0);
482
2c68ee75 483 mutex_unlock(&journal->j_barrier);
1da177e4
LT
484 spin_lock(&journal->j_state_lock);
485 --journal->j_barrier_count;
486 spin_unlock(&journal->j_state_lock);
487 wake_up(&journal->j_wait_transaction_locked);
488}
489
490/*
491 * Report any unexpected dirty buffers which turn up. Normally those
492 * indicate an error, but they can occur if the user is running (say)
493 * tune2fs to modify the live filesystem, so we need the option of
494 * continuing as gracefully as possible. #
495 *
496 * The caller should already hold the journal lock and
497 * j_list_lock spinlock: most callers will need those anyway
498 * in order to probe the buffer's journaling state safely.
499 */
500static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
501{
1da177e4
LT
502 int jlist;
503
4407c2b6
JK
504 /* If this buffer is one which might reasonably be dirty
505 * --- ie. data, or not part of this journal --- then
506 * we're OK to leave it alone, but otherwise we need to
507 * move the dirty bit to the journal's own internal
508 * JBDDirty bit. */
509 jlist = jh->b_jlist;
510
511 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
512 jlist == BJ_Shadow || jlist == BJ_Forget) {
513 struct buffer_head *bh = jh2bh(jh);
514
515 if (test_clear_buffer_dirty(bh))
516 set_buffer_jbddirty(bh);
1da177e4
LT
517 }
518}
519
520/*
521 * If the buffer is already part of the current transaction, then there
522 * is nothing we need to do. If it is already part of a prior
523 * transaction which we are still committing to disk, then we need to
524 * make sure that we do not overwrite the old copy: we do copy-out to
525 * preserve the copy going to disk. We also account the buffer against
526 * the handle's metadata buffer credits (unless the buffer is already
527 * part of the transaction, that is).
528 *
529 */
530static int
531do_get_write_access(handle_t *handle, struct journal_head *jh,
532 int force_copy)
533{
534 struct buffer_head *bh;
535 transaction_t *transaction;
536 journal_t *journal;
537 int error;
538 char *frozen_buffer = NULL;
539 int need_copy = 0;
540
541 if (is_handle_aborted(handle))
542 return -EROFS;
543
544 transaction = handle->h_transaction;
545 journal = transaction->t_journal;
546
547 jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
548
549 JBUFFER_TRACE(jh, "entry");
550repeat:
551 bh = jh2bh(jh);
552
553 /* @@@ Need to check for errors here at some point. */
554
555 lock_buffer(bh);
556 jbd_lock_bh_state(bh);
557
558 /* We now hold the buffer lock so it is safe to query the buffer
ae6ddcc5
MC
559 * state. Is the buffer dirty?
560 *
1da177e4
LT
561 * If so, there are two possibilities. The buffer may be
562 * non-journaled, and undergoing a quite legitimate writeback.
563 * Otherwise, it is journaled, and we don't expect dirty buffers
564 * in that state (the buffers should be marked JBD_Dirty
565 * instead.) So either the IO is being done under our own
566 * control and this is a bug, or it's a third party IO such as
567 * dump(8) (which may leave the buffer scheduled for read ---
568 * ie. locked but not dirty) or tune2fs (which may actually have
569 * the buffer dirtied, ugh.) */
570
571 if (buffer_dirty(bh)) {
572 /*
573 * First question: is this buffer already part of the current
574 * transaction or the existing committing transaction?
575 */
576 if (jh->b_transaction) {
577 J_ASSERT_JH(jh,
ae6ddcc5 578 jh->b_transaction == transaction ||
1da177e4
LT
579 jh->b_transaction ==
580 journal->j_committing_transaction);
581 if (jh->b_next_transaction)
582 J_ASSERT_JH(jh, jh->b_next_transaction ==
583 transaction);
4407c2b6
JK
584 }
585 /*
586 * In any case we need to clean the dirty flag and we must
587 * do it under the buffer lock to be sure we don't race
588 * with running write-out.
589 */
590 JBUFFER_TRACE(jh, "Unexpected dirty buffer");
591 jbd_unexpected_dirty_buffer(jh);
e9ad5620 592 }
1da177e4
LT
593
594 unlock_buffer(bh);
595
596 error = -EROFS;
597 if (is_handle_aborted(handle)) {
598 jbd_unlock_bh_state(bh);
599 goto out;
600 }
601 error = 0;
602
603 /*
604 * The buffer is already part of this transaction if b_transaction or
605 * b_next_transaction points to it
606 */
607 if (jh->b_transaction == transaction ||
608 jh->b_next_transaction == transaction)
609 goto done;
610
5bc833fe
JB
611 /*
612 * this is the first time this transaction is touching this buffer,
613 * reset the modified flag
614 */
615 jh->b_modified = 0;
616
1da177e4
LT
617 /*
618 * If there is already a copy-out version of this buffer, then we don't
619 * need to make another one
620 */
621 if (jh->b_frozen_data) {
622 JBUFFER_TRACE(jh, "has frozen data");
623 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
624 jh->b_next_transaction = transaction;
625 goto done;
626 }
627
628 /* Is there data here we need to preserve? */
629
630 if (jh->b_transaction && jh->b_transaction != transaction) {
631 JBUFFER_TRACE(jh, "owned by older transaction");
632 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
633 J_ASSERT_JH(jh, jh->b_transaction ==
634 journal->j_committing_transaction);
635
636 /* There is one case we have to be very careful about.
637 * If the committing transaction is currently writing
638 * this buffer out to disk and has NOT made a copy-out,
639 * then we cannot modify the buffer contents at all
640 * right now. The essence of copy-out is that it is the
641 * extra copy, not the primary copy, which gets
642 * journaled. If the primary copy is already going to
643 * disk then we cannot do copy-out here. */
644
645 if (jh->b_jlist == BJ_Shadow) {
646 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
647 wait_queue_head_t *wqh;
648
649 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
650
651 JBUFFER_TRACE(jh, "on shadow: sleep");
652 jbd_unlock_bh_state(bh);
653 /* commit wakes up all shadow buffers after IO */
654 for ( ; ; ) {
655 prepare_to_wait(wqh, &wait.wait,
656 TASK_UNINTERRUPTIBLE);
657 if (jh->b_jlist != BJ_Shadow)
658 break;
659 schedule();
660 }
661 finish_wait(wqh, &wait.wait);
662 goto repeat;
663 }
664
665 /* Only do the copy if the currently-owning transaction
666 * still needs it. If it is on the Forget list, the
667 * committing transaction is past that stage. The
668 * buffer had better remain locked during the kmalloc,
669 * but that should be true --- we hold the journal lock
670 * still and the buffer is already on the BUF_JOURNAL
ae6ddcc5 671 * list so won't be flushed.
1da177e4
LT
672 *
673 * Subtle point, though: if this is a get_undo_access,
674 * then we will be relying on the frozen_data to contain
675 * the new value of the committed_data record after the
676 * transaction, so we HAVE to force the frozen_data copy
677 * in that case. */
678
679 if (jh->b_jlist != BJ_Forget || force_copy) {
680 JBUFFER_TRACE(jh, "generate frozen data");
681 if (!frozen_buffer) {
682 JBUFFER_TRACE(jh, "allocate memory for buffer");
683 jbd_unlock_bh_state(bh);
ea817398 684 frozen_buffer =
c089d490 685 jbd_alloc(jh2bh(jh)->b_size,
ea817398 686 GFP_NOFS);
1da177e4
LT
687 if (!frozen_buffer) {
688 printk(KERN_EMERG
689 "%s: OOM for frozen_buffer\n",
08fc99bf 690 __func__);
1da177e4
LT
691 JBUFFER_TRACE(jh, "oom!");
692 error = -ENOMEM;
693 jbd_lock_bh_state(bh);
694 goto done;
695 }
696 goto repeat;
697 }
698 jh->b_frozen_data = frozen_buffer;
699 frozen_buffer = NULL;
700 need_copy = 1;
701 }
702 jh->b_next_transaction = transaction;
703 }
704
705
706 /*
707 * Finally, if the buffer is not journaled right now, we need to make
708 * sure it doesn't get written to disk before the caller actually
709 * commits the new data
710 */
711 if (!jh->b_transaction) {
712 JBUFFER_TRACE(jh, "no transaction");
713 J_ASSERT_JH(jh, !jh->b_next_transaction);
714 jh->b_transaction = transaction;
715 JBUFFER_TRACE(jh, "file as BJ_Reserved");
716 spin_lock(&journal->j_list_lock);
717 __journal_file_buffer(jh, transaction, BJ_Reserved);
718 spin_unlock(&journal->j_list_lock);
719 }
720
721done:
722 if (need_copy) {
723 struct page *page;
724 int offset;
725 char *source;
726
727 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
728 "Possible IO failure.\n");
729 page = jh2bh(jh)->b_page;
730 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
731 source = kmap_atomic(page, KM_USER0);
732 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
733 kunmap_atomic(source, KM_USER0);
734 }
735 jbd_unlock_bh_state(bh);
736
737 /*
738 * If we are about to journal a buffer, then any revoke pending on it is
739 * no longer valid
740 */
741 journal_cancel_revoke(handle, jh);
742
743out:
304c4c84 744 if (unlikely(frozen_buffer)) /* It's usually NULL */
c089d490 745 jbd_free(frozen_buffer, bh->b_size);
1da177e4
LT
746
747 JBUFFER_TRACE(jh, "exit");
748 return error;
749}
750
751/**
752 * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
753 * @handle: transaction to add buffer modifications to
754 * @bh: bh to be used for metadata writes
755 * @credits: variable that will receive credits for the buffer
756 *
757 * Returns an error code or 0 on success.
758 *
759 * In full data journalling mode the buffer may be of type BJ_AsyncData,
760 * because we're write()ing a buffer which is also part of a shared mapping.
761 */
762
763int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
764{
765 struct journal_head *jh = journal_add_journal_head(bh);
766 int rc;
767
768 /* We do not want to get caught playing with fields which the
769 * log thread also manipulates. Make sure that the buffer
770 * completes any outstanding IO before proceeding. */
771 rc = do_get_write_access(handle, jh, 0);
772 journal_put_journal_head(jh);
773 return rc;
774}
775
776
777/*
778 * When the user wants to journal a newly created buffer_head
779 * (ie. getblk() returned a new buffer and we are going to populate it
780 * manually rather than reading off disk), then we need to keep the
781 * buffer_head locked until it has been completely filled with new
782 * data. In this case, we should be able to make the assertion that
ae6ddcc5
MC
783 * the bh is not already part of an existing transaction.
784 *
1da177e4
LT
785 * The buffer should already be locked by the caller by this point.
786 * There is no lock ranking violation: it was a newly created,
787 * unlocked buffer beforehand. */
788
789/**
790 * int journal_get_create_access () - notify intent to use newly created bh
791 * @handle: transaction to new buffer to
792 * @bh: new buffer.
793 *
794 * Call this if you create a new bh.
795 */
ae6ddcc5 796int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
797{
798 transaction_t *transaction = handle->h_transaction;
799 journal_t *journal = transaction->t_journal;
800 struct journal_head *jh = journal_add_journal_head(bh);
801 int err;
802
803 jbd_debug(5, "journal_head %p\n", jh);
804 err = -EROFS;
805 if (is_handle_aborted(handle))
806 goto out;
807 err = 0;
808
809 JBUFFER_TRACE(jh, "entry");
810 /*
811 * The buffer may already belong to this transaction due to pre-zeroing
812 * in the filesystem's new_block code. It may also be on the previous,
813 * committing transaction's lists, but it HAS to be in Forget state in
814 * that case: the transaction must have deleted the buffer for it to be
815 * reused here.
816 */
817 jbd_lock_bh_state(bh);
818 spin_lock(&journal->j_list_lock);
819 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
820 jh->b_transaction == NULL ||
821 (jh->b_transaction == journal->j_committing_transaction &&
822 jh->b_jlist == BJ_Forget)));
823
824 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
825 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
826
827 if (jh->b_transaction == NULL) {
828 jh->b_transaction = transaction;
5bc833fe
JB
829
830 /* first access by this transaction */
831 jh->b_modified = 0;
832
1da177e4
LT
833 JBUFFER_TRACE(jh, "file as BJ_Reserved");
834 __journal_file_buffer(jh, transaction, BJ_Reserved);
835 } else if (jh->b_transaction == journal->j_committing_transaction) {
5bc833fe
JB
836 /* first access by this transaction */
837 jh->b_modified = 0;
838
1da177e4
LT
839 JBUFFER_TRACE(jh, "set next transaction");
840 jh->b_next_transaction = transaction;
841 }
842 spin_unlock(&journal->j_list_lock);
843 jbd_unlock_bh_state(bh);
844
845 /*
846 * akpm: I added this. ext3_alloc_branch can pick up new indirect
847 * blocks which contain freed but then revoked metadata. We need
848 * to cancel the revoke in case we end up freeing it yet again
849 * and the reallocating as data - this would cause a second revoke,
850 * which hits an assertion error.
851 */
852 JBUFFER_TRACE(jh, "cancelling revoke");
853 journal_cancel_revoke(handle, jh);
854 journal_put_journal_head(jh);
855out:
856 return err;
857}
858
859/**
78a4a50a 860 * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
1da177e4
LT
861 * @handle: transaction
862 * @bh: buffer to undo
863 * @credits: store the number of taken credits here (if not NULL)
864 *
865 * Sometimes there is a need to distinguish between metadata which has
866 * been committed to disk and that which has not. The ext3fs code uses
867 * this for freeing and allocating space, we have to make sure that we
868 * do not reuse freed space until the deallocation has been committed,
869 * since if we overwrote that space we would make the delete
870 * un-rewindable in case of a crash.
ae6ddcc5 871 *
1da177e4
LT
872 * To deal with that, journal_get_undo_access requests write access to a
873 * buffer for parts of non-rewindable operations such as delete
874 * operations on the bitmaps. The journaling code must keep a copy of
875 * the buffer's contents prior to the undo_access call until such time
876 * as we know that the buffer has definitely been committed to disk.
ae6ddcc5 877 *
1da177e4
LT
878 * We never need to know which transaction the committed data is part
879 * of, buffers touched here are guaranteed to be dirtied later and so
880 * will be committed to a new transaction in due course, at which point
881 * we can discard the old committed data pointer.
882 *
883 * Returns error number or 0 on success.
884 */
885int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
886{
887 int err;
888 struct journal_head *jh = journal_add_journal_head(bh);
889 char *committed_data = NULL;
890
891 JBUFFER_TRACE(jh, "entry");
892
893 /*
894 * Do this first --- it can drop the journal lock, so we want to
895 * make sure that obtaining the committed_data is done
896 * atomically wrt. completion of any outstanding commits.
897 */
898 err = do_get_write_access(handle, jh, 1);
899 if (err)
900 goto out;
901
902repeat:
903 if (!jh->b_committed_data) {
c089d490 904 committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1da177e4
LT
905 if (!committed_data) {
906 printk(KERN_EMERG "%s: No memory for committed data\n",
08fc99bf 907 __func__);
1da177e4
LT
908 err = -ENOMEM;
909 goto out;
910 }
911 }
912
913 jbd_lock_bh_state(bh);
914 if (!jh->b_committed_data) {
915 /* Copy out the current buffer contents into the
916 * preserved, committed copy. */
917 JBUFFER_TRACE(jh, "generate b_committed data");
918 if (!committed_data) {
919 jbd_unlock_bh_state(bh);
920 goto repeat;
921 }
922
923 jh->b_committed_data = committed_data;
924 committed_data = NULL;
925 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
926 }
927 jbd_unlock_bh_state(bh);
928out:
929 journal_put_journal_head(jh);
304c4c84 930 if (unlikely(committed_data))
c089d490 931 jbd_free(committed_data, bh->b_size);
1da177e4
LT
932 return err;
933}
934
ae6ddcc5 935/**
78a4a50a 936 * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
1da177e4
LT
937 * @handle: transaction
938 * @bh: bufferhead to mark
ae6ddcc5 939 *
78a4a50a
RD
940 * Description:
941 * Mark a buffer as containing dirty data which needs to be flushed before
942 * we can commit the current transaction.
943 *
1da177e4
LT
944 * The buffer is placed on the transaction's data list and is marked as
945 * belonging to the transaction.
946 *
947 * Returns error number or 0 on success.
948 *
949 * journal_dirty_data() can be called via page_launder->ext3_writepage
950 * by kswapd.
951 */
952int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
953{
954 journal_t *journal = handle->h_transaction->t_journal;
955 int need_brelse = 0;
956 struct journal_head *jh;
957
958 if (is_handle_aborted(handle))
959 return 0;
960
961 jh = journal_add_journal_head(bh);
962 JBUFFER_TRACE(jh, "entry");
963
964 /*
965 * The buffer could *already* be dirty. Writeout can start
966 * at any time.
967 */
968 jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
969
970 /*
971 * What if the buffer is already part of a running transaction?
ae6ddcc5 972 *
1da177e4
LT
973 * There are two cases:
974 * 1) It is part of the current running transaction. Refile it,
975 * just in case we have allocated it as metadata, deallocated
ae6ddcc5 976 * it, then reallocated it as data.
1da177e4
LT
977 * 2) It is part of the previous, still-committing transaction.
978 * If all we want to do is to guarantee that the buffer will be
979 * written to disk before this new transaction commits, then
ae6ddcc5 980 * being sure that the *previous* transaction has this same
1da177e4
LT
981 * property is sufficient for us! Just leave it on its old
982 * transaction.
983 *
984 * In case (2), the buffer must not already exist as metadata
985 * --- that would violate write ordering (a transaction is free
986 * to write its data at any point, even before the previous
987 * committing transaction has committed). The caller must
988 * never, ever allow this to happen: there's nothing we can do
989 * about it in this layer.
990 */
991 jbd_lock_bh_state(bh);
992 spin_lock(&journal->j_list_lock);
f58a74dc
ES
993
994 /* Now that we have bh_state locked, are we really still mapped? */
995 if (!buffer_mapped(bh)) {
996 JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
997 goto no_journal;
998 }
999
1da177e4
LT
1000 if (jh->b_transaction) {
1001 JBUFFER_TRACE(jh, "has transaction");
1002 if (jh->b_transaction != handle->h_transaction) {
1003 JBUFFER_TRACE(jh, "belongs to older transaction");
1004 J_ASSERT_JH(jh, jh->b_transaction ==
1005 journal->j_committing_transaction);
1006
1007 /* @@@ IS THIS TRUE ? */
1008 /*
1009 * Not any more. Scenario: someone does a write()
1010 * in data=journal mode. The buffer's transaction has
1011 * moved into commit. Then someone does another
1012 * write() to the file. We do the frozen data copyout
1013 * and set b_next_transaction to point to j_running_t.
1014 * And while we're in that state, someone does a
1015 * writepage() in an attempt to pageout the same area
1016 * of the file via a shared mapping. At present that
1017 * calls journal_dirty_data(), and we get right here.
1018 * It may be too late to journal the data. Simply
1019 * falling through to the next test will suffice: the
1020 * data will be dirty and wil be checkpointed. The
1021 * ordering comments in the next comment block still
1022 * apply.
1023 */
1024 //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1025
1026 /*
1027 * If we're journalling data, and this buffer was
1028 * subject to a write(), it could be metadata, forget
1029 * or shadow against the committing transaction. Now,
1030 * someone has dirtied the same darn page via a mapping
1031 * and it is being writepage()'d.
1032 * We *could* just steal the page from commit, with some
1033 * fancy locking there. Instead, we just skip it -
1034 * don't tie the page's buffers to the new transaction
1035 * at all.
1036 * Implication: if we crash before the writepage() data
1037 * is written into the filesystem, recovery will replay
1038 * the write() data.
1039 */
1040 if (jh->b_jlist != BJ_None &&
1041 jh->b_jlist != BJ_SyncData &&
1042 jh->b_jlist != BJ_Locked) {
1043 JBUFFER_TRACE(jh, "Not stealing");
1044 goto no_journal;
1045 }
1046
1047 /*
1048 * This buffer may be undergoing writeout in commit. We
1049 * can't return from here and let the caller dirty it
1050 * again because that can cause the write-out loop in
1051 * commit to never terminate.
1052 */
1053 if (buffer_dirty(bh)) {
1054 get_bh(bh);
1055 spin_unlock(&journal->j_list_lock);
1056 jbd_unlock_bh_state(bh);
1057 need_brelse = 1;
1058 sync_dirty_buffer(bh);
1059 jbd_lock_bh_state(bh);
1060 spin_lock(&journal->j_list_lock);
f58a74dc
ES
1061 /* Since we dropped the lock... */
1062 if (!buffer_mapped(bh)) {
1063 JBUFFER_TRACE(jh, "buffer got unmapped");
1064 goto no_journal;
1065 }
1da177e4
LT
1066 /* The buffer may become locked again at any
1067 time if it is redirtied */
1068 }
1069
1070 /* journal_clean_data_list() may have got there first */
1071 if (jh->b_transaction != NULL) {
1072 JBUFFER_TRACE(jh, "unfile from commit");
1073 __journal_temp_unlink_buffer(jh);
1074 /* It still points to the committing
1075 * transaction; move it to this one so
1076 * that the refile assert checks are
1077 * happy. */
1078 jh->b_transaction = handle->h_transaction;
1079 }
1080 /* The buffer will be refiled below */
1081
1082 }
1083 /*
1084 * Special case --- the buffer might actually have been
1085 * allocated and then immediately deallocated in the previous,
1086 * committing transaction, so might still be left on that
1087 * transaction's metadata lists.
1088 */
1089 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1090 JBUFFER_TRACE(jh, "not on correct data list: unfile");
1091 J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1092 __journal_temp_unlink_buffer(jh);
1093 jh->b_transaction = handle->h_transaction;
1094 JBUFFER_TRACE(jh, "file as data");
1095 __journal_file_buffer(jh, handle->h_transaction,
1096 BJ_SyncData);
1097 }
1098 } else {
1099 JBUFFER_TRACE(jh, "not on a transaction");
1100 __journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1101 }
1102no_journal:
1103 spin_unlock(&journal->j_list_lock);
1104 jbd_unlock_bh_state(bh);
1105 if (need_brelse) {
1106 BUFFER_TRACE(bh, "brelse");
1107 __brelse(bh);
1108 }
1109 JBUFFER_TRACE(jh, "exit");
1110 journal_put_journal_head(jh);
1111 return 0;
1112}
1113
ae6ddcc5 1114/**
78a4a50a 1115 * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1da177e4 1116 * @handle: transaction to add buffer to.
ae6ddcc5
MC
1117 * @bh: buffer to mark
1118 *
78a4a50a 1119 * Mark dirty metadata which needs to be journaled as part of the current
1da177e4
LT
1120 * transaction.
1121 *
1122 * The buffer is placed on the transaction's metadata list and is marked
ae6ddcc5 1123 * as belonging to the transaction.
1da177e4 1124 *
ae6ddcc5 1125 * Returns error number or 0 on success.
1da177e4
LT
1126 *
1127 * Special care needs to be taken if the buffer already belongs to the
1128 * current committing transaction (in which case we should have frozen
1129 * data present for that commit). In that case, we don't relink the
1130 * buffer: that only gets done when the old transaction finally
1131 * completes its commit.
1132 */
1133int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1134{
1135 transaction_t *transaction = handle->h_transaction;
1136 journal_t *journal = transaction->t_journal;
1137 struct journal_head *jh = bh2jh(bh);
1138
1139 jbd_debug(5, "journal_head %p\n", jh);
1140 JBUFFER_TRACE(jh, "entry");
1141 if (is_handle_aborted(handle))
1142 goto out;
1143
1144 jbd_lock_bh_state(bh);
1145
1146 if (jh->b_modified == 0) {
1147 /*
1148 * This buffer's got modified and becoming part
1149 * of the transaction. This needs to be done
1150 * once a transaction -bzzz
1151 */
1152 jh->b_modified = 1;
1153 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1154 handle->h_buffer_credits--;
1155 }
1156
1157 /*
1158 * fastpath, to avoid expensive locking. If this buffer is already
1159 * on the running transaction's metadata list there is nothing to do.
1160 * Nobody can take it off again because there is a handle open.
1161 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1162 * result in this test being false, so we go in and take the locks.
1163 */
1164 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1165 JBUFFER_TRACE(jh, "fastpath");
1166 J_ASSERT_JH(jh, jh->b_transaction ==
1167 journal->j_running_transaction);
1168 goto out_unlock_bh;
1169 }
1170
1171 set_buffer_jbddirty(bh);
1172
ae6ddcc5 1173 /*
1da177e4
LT
1174 * Metadata already on the current transaction list doesn't
1175 * need to be filed. Metadata on another transaction's list must
1176 * be committing, and will be refiled once the commit completes:
ae6ddcc5 1177 * leave it alone for now.
1da177e4
LT
1178 */
1179 if (jh->b_transaction != transaction) {
1180 JBUFFER_TRACE(jh, "already on other transaction");
1181 J_ASSERT_JH(jh, jh->b_transaction ==
1182 journal->j_committing_transaction);
1183 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1184 /* And this case is illegal: we can't reuse another
1185 * transaction's data buffer, ever. */
1186 goto out_unlock_bh;
1187 }
1188
1189 /* That test should have eliminated the following case: */
c80544dc 1190 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1da177e4
LT
1191
1192 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1193 spin_lock(&journal->j_list_lock);
1194 __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1195 spin_unlock(&journal->j_list_lock);
1196out_unlock_bh:
1197 jbd_unlock_bh_state(bh);
1198out:
1199 JBUFFER_TRACE(jh, "exit");
1200 return 0;
1201}
1202
ae6ddcc5 1203/*
1da177e4
LT
1204 * journal_release_buffer: undo a get_write_access without any buffer
1205 * updates, if the update decided in the end that it didn't need access.
1206 *
1207 */
1208void
1209journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1210{
1211 BUFFER_TRACE(bh, "entry");
1212}
1213
ae6ddcc5 1214/**
1da177e4
LT
1215 * void journal_forget() - bforget() for potentially-journaled buffers.
1216 * @handle: transaction handle
1217 * @bh: bh to 'forget'
1218 *
1219 * We can only do the bforget if there are no commits pending against the
1220 * buffer. If the buffer is dirty in the current running transaction we
ae6ddcc5 1221 * can safely unlink it.
1da177e4
LT
1222 *
1223 * bh may not be a journalled buffer at all - it may be a non-JBD
1224 * buffer which came off the hashtable. Check for this.
1225 *
1226 * Decrements bh->b_count by one.
ae6ddcc5 1227 *
1da177e4
LT
1228 * Allow this call even if the handle has aborted --- it may be part of
1229 * the caller's cleanup after an abort.
1230 */
1231int journal_forget (handle_t *handle, struct buffer_head *bh)
1232{
1233 transaction_t *transaction = handle->h_transaction;
1234 journal_t *journal = transaction->t_journal;
1235 struct journal_head *jh;
1236 int drop_reserve = 0;
1237 int err = 0;
5b9a499d 1238 int was_modified = 0;
1da177e4
LT
1239
1240 BUFFER_TRACE(bh, "entry");
1241
1242 jbd_lock_bh_state(bh);
1243 spin_lock(&journal->j_list_lock);
1244
1245 if (!buffer_jbd(bh))
1246 goto not_jbd;
1247 jh = bh2jh(bh);
1248
1249 /* Critical error: attempting to delete a bitmap buffer, maybe?
1250 * Don't do any jbd operations, and return an error. */
1251 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1252 "inconsistent data on disk")) {
1253 err = -EIO;
1254 goto not_jbd;
1255 }
1256
5b9a499d
JB
1257 /* keep track of wether or not this transaction modified us */
1258 was_modified = jh->b_modified;
1259
1da177e4
LT
1260 /*
1261 * The buffer's going from the transaction, we must drop
1262 * all references -bzzz
1263 */
1264 jh->b_modified = 0;
1265
1266 if (jh->b_transaction == handle->h_transaction) {
1267 J_ASSERT_JH(jh, !jh->b_frozen_data);
1268
1269 /* If we are forgetting a buffer which is already part
1270 * of this transaction, then we can just drop it from
1271 * the transaction immediately. */
1272 clear_buffer_dirty(bh);
1273 clear_buffer_jbddirty(bh);
1274
1275 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1276
5b9a499d
JB
1277 /*
1278 * we only want to drop a reference if this transaction
1279 * modified the buffer
1280 */
1281 if (was_modified)
1282 drop_reserve = 1;
1da177e4 1283
ae6ddcc5 1284 /*
1da177e4
LT
1285 * We are no longer going to journal this buffer.
1286 * However, the commit of this transaction is still
1287 * important to the buffer: the delete that we are now
1288 * processing might obsolete an old log entry, so by
1289 * committing, we can satisfy the buffer's checkpoint.
1290 *
1291 * So, if we have a checkpoint on the buffer, we should
1292 * now refile the buffer on our BJ_Forget list so that
ae6ddcc5 1293 * we know to remove the checkpoint after we commit.
1da177e4
LT
1294 */
1295
1296 if (jh->b_cp_transaction) {
1297 __journal_temp_unlink_buffer(jh);
1298 __journal_file_buffer(jh, transaction, BJ_Forget);
1299 } else {
1300 __journal_unfile_buffer(jh);
1301 journal_remove_journal_head(bh);
1302 __brelse(bh);
1303 if (!buffer_jbd(bh)) {
1304 spin_unlock(&journal->j_list_lock);
1305 jbd_unlock_bh_state(bh);
1306 __bforget(bh);
1307 goto drop;
1308 }
1309 }
1310 } else if (jh->b_transaction) {
ae6ddcc5 1311 J_ASSERT_JH(jh, (jh->b_transaction ==
1da177e4
LT
1312 journal->j_committing_transaction));
1313 /* However, if the buffer is still owned by a prior
1314 * (committing) transaction, we can't drop it yet... */
1315 JBUFFER_TRACE(jh, "belongs to older transaction");
1316 /* ... but we CAN drop it from the new transaction if we
1317 * have also modified it since the original commit. */
1318
1319 if (jh->b_next_transaction) {
1320 J_ASSERT(jh->b_next_transaction == transaction);
1321 jh->b_next_transaction = NULL;
5b9a499d
JB
1322
1323 /*
1324 * only drop a reference if this transaction modified
1325 * the buffer
1326 */
1327 if (was_modified)
1328 drop_reserve = 1;
1da177e4
LT
1329 }
1330 }
1331
1332not_jbd:
1333 spin_unlock(&journal->j_list_lock);
1334 jbd_unlock_bh_state(bh);
1335 __brelse(bh);
1336drop:
1337 if (drop_reserve) {
1338 /* no need to reserve log space for this block -bzzz */
1339 handle->h_buffer_credits++;
1340 }
1341 return err;
1342}
1343
1344/**
1345 * int journal_stop() - complete a transaction
1346 * @handle: tranaction to complete.
ae6ddcc5 1347 *
1da177e4
LT
1348 * All done for a particular handle.
1349 *
1350 * There is not much action needed here. We just return any remaining
1351 * buffer credits to the transaction and remove the handle. The only
1352 * complication is that we need to start a commit operation if the
1353 * filesystem is marked for synchronous update.
1354 *
1355 * journal_stop itself will not usually return an error, but it may
ae6ddcc5 1356 * do so in unusual circumstances. In particular, expect it to
1da177e4
LT
1357 * return -EIO if a journal_abort has been executed since the
1358 * transaction began.
1359 */
1360int journal_stop(handle_t *handle)
1361{
1362 transaction_t *transaction = handle->h_transaction;
1363 journal_t *journal = transaction->t_journal;
1364 int old_handle_count, err;
fe1dcbc4 1365 pid_t pid;
1da177e4 1366
1da177e4
LT
1367 J_ASSERT(journal_current_handle() == handle);
1368
1369 if (is_handle_aborted(handle))
1370 err = -EIO;
3e2a532b
OH
1371 else {
1372 J_ASSERT(transaction->t_updates > 0);
1da177e4 1373 err = 0;
3e2a532b 1374 }
1da177e4
LT
1375
1376 if (--handle->h_ref > 0) {
1377 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1378 handle->h_ref);
1379 return err;
1380 }
1381
1382 jbd_debug(4, "Handle %p going down\n", handle);
1383
1384 /*
1385 * Implement synchronous transaction batching. If the handle
1386 * was synchronous, don't force a commit immediately. Let's
1387 * yield and let another thread piggyback onto this transaction.
1388 * Keep doing that while new threads continue to arrive.
1389 * It doesn't cost much - we're about to run a commit and sleep
1390 * on IO anyway. Speeds up many-threaded, many-dir operations
1391 * by 30x or more...
fe1dcbc4
AM
1392 *
1393 * But don't do this if this process was the most recent one to
1394 * perform a synchronous write. We do this to detect the case where a
1395 * single process is doing a stream of sync writes. No point in waiting
1396 * for joiners in that case.
1da177e4 1397 */
fe1dcbc4
AM
1398 pid = current->pid;
1399 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1400 journal->j_last_sync_writer = pid;
1da177e4
LT
1401 do {
1402 old_handle_count = transaction->t_handle_count;
041e0e3b 1403 schedule_timeout_uninterruptible(1);
1da177e4
LT
1404 } while (old_handle_count != transaction->t_handle_count);
1405 }
1406
1407 current->journal_info = NULL;
1408 spin_lock(&journal->j_state_lock);
1409 spin_lock(&transaction->t_handle_lock);
1410 transaction->t_outstanding_credits -= handle->h_buffer_credits;
1411 transaction->t_updates--;
1412 if (!transaction->t_updates) {
1413 wake_up(&journal->j_wait_updates);
1414 if (journal->j_barrier_count)
1415 wake_up(&journal->j_wait_transaction_locked);
1416 }
1417
1418 /*
1419 * If the handle is marked SYNC, we need to set another commit
1420 * going! We also want to force a commit if the current
1421 * transaction is occupying too much of the log, or if the
1422 * transaction is too old now.
1423 */
1424 if (handle->h_sync ||
1425 transaction->t_outstanding_credits >
1426 journal->j_max_transaction_buffers ||
e9ad5620 1427 time_after_eq(jiffies, transaction->t_expires)) {
1da177e4
LT
1428 /* Do this even for aborted journals: an abort still
1429 * completes the commit thread, it just doesn't write
1430 * anything to disk. */
1431 tid_t tid = transaction->t_tid;
1432
1433 spin_unlock(&transaction->t_handle_lock);
1434 jbd_debug(2, "transaction too old, requesting commit for "
1435 "handle %p\n", handle);
1436 /* This is non-blocking */
1437 __log_start_commit(journal, transaction->t_tid);
1438 spin_unlock(&journal->j_state_lock);
1439
1440 /*
1441 * Special case: JFS_SYNC synchronous updates require us
ae6ddcc5 1442 * to wait for the commit to complete.
1da177e4
LT
1443 */
1444 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1445 err = log_wait_commit(journal, tid);
1446 } else {
1447 spin_unlock(&transaction->t_handle_lock);
1448 spin_unlock(&journal->j_state_lock);
1449 }
1450
3295f0ef 1451 lock_map_release(&handle->h_lockdep_map);
34a3d1e8 1452
1da177e4
LT
1453 jbd_free_handle(handle);
1454 return err;
1455}
1456
0cf01f66
RD
1457/**
1458 * int journal_force_commit() - force any uncommitted transactions
1da177e4
LT
1459 * @journal: journal to force
1460 *
1461 * For synchronous operations: force any uncommitted transactions
1462 * to disk. May seem kludgy, but it reuses all the handle batching
1463 * code in a very simple manner.
1464 */
1465int journal_force_commit(journal_t *journal)
1466{
1467 handle_t *handle;
1468 int ret;
1469
1470 handle = journal_start(journal, 1);
1471 if (IS_ERR(handle)) {
1472 ret = PTR_ERR(handle);
1473 } else {
1474 handle->h_sync = 1;
1475 ret = journal_stop(handle);
1476 }
1477 return ret;
1478}
1479
1480/*
1481 *
1482 * List management code snippets: various functions for manipulating the
1483 * transaction buffer lists.
1484 *
1485 */
1486
1487/*
1488 * Append a buffer to a transaction list, given the transaction's list head
1489 * pointer.
1490 *
1491 * j_list_lock is held.
1492 *
1493 * jbd_lock_bh_state(jh2bh(jh)) is held.
1494 */
1495
ae6ddcc5 1496static inline void
1da177e4
LT
1497__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1498{
1499 if (!*list) {
1500 jh->b_tnext = jh->b_tprev = jh;
1501 *list = jh;
1502 } else {
1503 /* Insert at the tail of the list to preserve order */
1504 struct journal_head *first = *list, *last = first->b_tprev;
1505 jh->b_tprev = last;
1506 jh->b_tnext = first;
1507 last->b_tnext = first->b_tprev = jh;
1508 }
1509}
1510
ae6ddcc5 1511/*
1da177e4
LT
1512 * Remove a buffer from a transaction list, given the transaction's list
1513 * head pointer.
1514 *
1515 * Called with j_list_lock held, and the journal may not be locked.
1516 *
1517 * jbd_lock_bh_state(jh2bh(jh)) is held.
1518 */
1519
1520static inline void
1521__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1522{
1523 if (*list == jh) {
1524 *list = jh->b_tnext;
1525 if (*list == jh)
1526 *list = NULL;
1527 }
1528 jh->b_tprev->b_tnext = jh->b_tnext;
1529 jh->b_tnext->b_tprev = jh->b_tprev;
1530}
1531
ae6ddcc5 1532/*
1da177e4
LT
1533 * Remove a buffer from the appropriate transaction list.
1534 *
1535 * Note that this function can *change* the value of
1536 * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1537 * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list. If the caller
1538 * is holding onto a copy of one of thee pointers, it could go bad.
1539 * Generally the caller needs to re-read the pointer from the transaction_t.
1540 *
1541 * Called under j_list_lock. The journal may not be locked.
1542 */
d394e122 1543static void __journal_temp_unlink_buffer(struct journal_head *jh)
1da177e4
LT
1544{
1545 struct journal_head **list = NULL;
1546 transaction_t *transaction;
1547 struct buffer_head *bh = jh2bh(jh);
1548
1549 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1550 transaction = jh->b_transaction;
1551 if (transaction)
1552 assert_spin_locked(&transaction->t_journal->j_list_lock);
1553
1554 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1555 if (jh->b_jlist != BJ_None)
c80544dc 1556 J_ASSERT_JH(jh, transaction != NULL);
1da177e4
LT
1557
1558 switch (jh->b_jlist) {
1559 case BJ_None:
1560 return;
1561 case BJ_SyncData:
1562 list = &transaction->t_sync_datalist;
1563 break;
1564 case BJ_Metadata:
1565 transaction->t_nr_buffers--;
1566 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1567 list = &transaction->t_buffers;
1568 break;
1569 case BJ_Forget:
1570 list = &transaction->t_forget;
1571 break;
1572 case BJ_IO:
1573 list = &transaction->t_iobuf_list;
1574 break;
1575 case BJ_Shadow:
1576 list = &transaction->t_shadow_list;
1577 break;
1578 case BJ_LogCtl:
1579 list = &transaction->t_log_list;
1580 break;
1581 case BJ_Reserved:
1582 list = &transaction->t_reserved_list;
1583 break;
1584 case BJ_Locked:
1585 list = &transaction->t_locked_list;
1586 break;
1587 }
1588
1589 __blist_del_buffer(list, jh);
1590 jh->b_jlist = BJ_None;
1591 if (test_clear_buffer_jbddirty(bh))
1592 mark_buffer_dirty(bh); /* Expose it to the VM */
1593}
1594
1595void __journal_unfile_buffer(struct journal_head *jh)
1596{
1597 __journal_temp_unlink_buffer(jh);
1598 jh->b_transaction = NULL;
1599}
1600
1601void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1602{
1603 jbd_lock_bh_state(jh2bh(jh));
1604 spin_lock(&journal->j_list_lock);
1605 __journal_unfile_buffer(jh);
1606 spin_unlock(&journal->j_list_lock);
1607 jbd_unlock_bh_state(jh2bh(jh));
1608}
1609
1610/*
1611 * Called from journal_try_to_free_buffers().
1612 *
1613 * Called under jbd_lock_bh_state(bh)
1614 */
1615static void
1616__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1617{
1618 struct journal_head *jh;
1619
1620 jh = bh2jh(bh);
1621
1622 if (buffer_locked(bh) || buffer_dirty(bh))
1623 goto out;
1624
c80544dc 1625 if (jh->b_next_transaction != NULL)
1da177e4
LT
1626 goto out;
1627
1628 spin_lock(&journal->j_list_lock);
c80544dc 1629 if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1da177e4
LT
1630 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1631 /* A written-back ordered data buffer */
1632 JBUFFER_TRACE(jh, "release data");
1633 __journal_unfile_buffer(jh);
1634 journal_remove_journal_head(bh);
1635 __brelse(bh);
1636 }
c80544dc 1637 } else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1da177e4
LT
1638 /* written-back checkpointed metadata buffer */
1639 if (jh->b_jlist == BJ_None) {
1640 JBUFFER_TRACE(jh, "remove from checkpoint list");
1641 __journal_remove_checkpoint(jh);
1642 journal_remove_journal_head(bh);
1643 __brelse(bh);
1644 }
1645 }
1646 spin_unlock(&journal->j_list_lock);
1647out:
1648 return;
1649}
1650
3f31fddf
MC
1651/*
1652 * journal_try_to_free_buffers() could race with journal_commit_transaction()
1653 * The latter might still hold the a count on buffers when inspecting
1654 * them on t_syncdata_list or t_locked_list.
1655 *
1656 * journal_try_to_free_buffers() will call this function to
1657 * wait for the current transaction to finish syncing data buffers, before
1658 * tryinf to free that buffer.
1659 *
1660 * Called with journal->j_state_lock held.
1661 */
1662static void journal_wait_for_transaction_sync_data(journal_t *journal)
1663{
1664 transaction_t *transaction = NULL;
1665 tid_t tid;
1666
1667 spin_lock(&journal->j_state_lock);
1668 transaction = journal->j_committing_transaction;
1669
1670 if (!transaction) {
1671 spin_unlock(&journal->j_state_lock);
1672 return;
1673 }
1674
1675 tid = transaction->t_tid;
1676 spin_unlock(&journal->j_state_lock);
1677 log_wait_commit(journal, tid);
1678}
1da177e4 1679
ae6ddcc5 1680/**
1da177e4
LT
1681 * int journal_try_to_free_buffers() - try to free page buffers.
1682 * @journal: journal for operation
1683 * @page: to try and free
3f31fddf
MC
1684 * @gfp_mask: we use the mask to detect how hard should we try to release
1685 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1686 * release the buffers.
1da177e4 1687 *
ae6ddcc5 1688 *
1da177e4
LT
1689 * For all the buffers on this page,
1690 * if they are fully written out ordered data, move them onto BUF_CLEAN
1691 * so try_to_free_buffers() can reap them.
ae6ddcc5 1692 *
1da177e4
LT
1693 * This function returns non-zero if we wish try_to_free_buffers()
1694 * to be called. We do this if the page is releasable by try_to_free_buffers().
1695 * We also do it if the page has locked or dirty buffers and the caller wants
1696 * us to perform sync or async writeout.
1697 *
1698 * This complicates JBD locking somewhat. We aren't protected by the
1699 * BKL here. We wish to remove the buffer from its committing or
1700 * running transaction's ->t_datalist via __journal_unfile_buffer.
1701 *
1702 * This may *change* the value of transaction_t->t_datalist, so anyone
1703 * who looks at t_datalist needs to lock against this function.
1704 *
1705 * Even worse, someone may be doing a journal_dirty_data on this
1706 * buffer. So we need to lock against that. journal_dirty_data()
1707 * will come out of the lock with the buffer dirty, which makes it
1708 * ineligible for release here.
1709 *
1710 * Who else is affected by this? hmm... Really the only contender
1711 * is do_get_write_access() - it could be looking at the buffer while
1712 * journal_try_to_free_buffer() is changing its state. But that
1713 * cannot happen because we never reallocate freed data as metadata
1714 * while the data is part of a transaction. Yes?
3f31fddf
MC
1715 *
1716 * Return 0 on failure, 1 on success
1da177e4 1717 */
ae6ddcc5 1718int journal_try_to_free_buffers(journal_t *journal,
3f31fddf 1719 struct page *page, gfp_t gfp_mask)
1da177e4
LT
1720{
1721 struct buffer_head *head;
1722 struct buffer_head *bh;
1723 int ret = 0;
1724
1725 J_ASSERT(PageLocked(page));
1726
1727 head = page_buffers(page);
1728 bh = head;
1729 do {
1730 struct journal_head *jh;
1731
1732 /*
1733 * We take our own ref against the journal_head here to avoid
1734 * having to add tons of locking around each instance of
1735 * journal_remove_journal_head() and journal_put_journal_head().
1736 */
1737 jh = journal_grab_journal_head(bh);
1738 if (!jh)
1739 continue;
1740
1741 jbd_lock_bh_state(bh);
1742 __journal_try_to_free_buffer(journal, bh);
1743 journal_put_journal_head(jh);
1744 jbd_unlock_bh_state(bh);
1745 if (buffer_jbd(bh))
1746 goto busy;
1747 } while ((bh = bh->b_this_page) != head);
3f31fddf 1748
1da177e4 1749 ret = try_to_free_buffers(page);
3f31fddf
MC
1750
1751 /*
1752 * There are a number of places where journal_try_to_free_buffers()
1753 * could race with journal_commit_transaction(), the later still
1754 * holds the reference to the buffers to free while processing them.
1755 * try_to_free_buffers() failed to free those buffers. Some of the
1756 * caller of releasepage() request page buffers to be dropped, otherwise
1757 * treat the fail-to-free as errors (such as generic_file_direct_IO())
1758 *
1759 * So, if the caller of try_to_release_page() wants the synchronous
1760 * behaviour(i.e make sure buffers are dropped upon return),
1761 * let's wait for the current transaction to finish flush of
1762 * dirty data buffers, then try to free those buffers again,
1763 * with the journal locked.
1764 */
1765 if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1766 journal_wait_for_transaction_sync_data(journal);
1767 ret = try_to_free_buffers(page);
1768 }
1769
1da177e4
LT
1770busy:
1771 return ret;
1772}
1773
1774/*
1775 * This buffer is no longer needed. If it is on an older transaction's
1776 * checkpoint list we need to record it on this transaction's forget list
1777 * to pin this buffer (and hence its checkpointing transaction) down until
1778 * this transaction commits. If the buffer isn't on a checkpoint list, we
1779 * release it.
1780 * Returns non-zero if JBD no longer has an interest in the buffer.
1781 *
1782 * Called under j_list_lock.
1783 *
1784 * Called under jbd_lock_bh_state(bh).
1785 */
1786static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1787{
1788 int may_free = 1;
1789 struct buffer_head *bh = jh2bh(jh);
1790
1791 __journal_unfile_buffer(jh);
1792
1793 if (jh->b_cp_transaction) {
1794 JBUFFER_TRACE(jh, "on running+cp transaction");
1795 __journal_file_buffer(jh, transaction, BJ_Forget);
1796 clear_buffer_jbddirty(bh);
1797 may_free = 0;
1798 } else {
1799 JBUFFER_TRACE(jh, "on running transaction");
1800 journal_remove_journal_head(bh);
1801 __brelse(bh);
1802 }
1803 return may_free;
1804}
1805
1806/*
ae6ddcc5 1807 * journal_invalidatepage
1da177e4
LT
1808 *
1809 * This code is tricky. It has a number of cases to deal with.
1810 *
1811 * There are two invariants which this code relies on:
1812 *
1813 * i_size must be updated on disk before we start calling invalidatepage on the
1814 * data.
ae6ddcc5 1815 *
1da177e4
LT
1816 * This is done in ext3 by defining an ext3_setattr method which
1817 * updates i_size before truncate gets going. By maintaining this
1818 * invariant, we can be sure that it is safe to throw away any buffers
1819 * attached to the current transaction: once the transaction commits,
1820 * we know that the data will not be needed.
ae6ddcc5 1821 *
1da177e4 1822 * Note however that we can *not* throw away data belonging to the
ae6ddcc5 1823 * previous, committing transaction!
1da177e4
LT
1824 *
1825 * Any disk blocks which *are* part of the previous, committing
1826 * transaction (and which therefore cannot be discarded immediately) are
1827 * not going to be reused in the new running transaction
1828 *
1829 * The bitmap committed_data images guarantee this: any block which is
1830 * allocated in one transaction and removed in the next will be marked
1831 * as in-use in the committed_data bitmap, so cannot be reused until
1832 * the next transaction to delete the block commits. This means that
1833 * leaving committing buffers dirty is quite safe: the disk blocks
1834 * cannot be reallocated to a different file and so buffer aliasing is
1835 * not possible.
1836 *
1837 *
1838 * The above applies mainly to ordered data mode. In writeback mode we
1839 * don't make guarantees about the order in which data hits disk --- in
1840 * particular we don't guarantee that new dirty data is flushed before
1841 * transaction commit --- so it is always safe just to discard data
ae6ddcc5 1842 * immediately in that mode. --sct
1da177e4
LT
1843 */
1844
1845/*
1846 * The journal_unmap_buffer helper function returns zero if the buffer
1847 * concerned remains pinned as an anonymous buffer belonging to an older
1848 * transaction.
1849 *
1850 * We're outside-transaction here. Either or both of j_running_transaction
1851 * and j_committing_transaction may be NULL.
1852 */
1853static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1854{
1855 transaction_t *transaction;
1856 struct journal_head *jh;
1857 int may_free = 1;
1858 int ret;
1859
1860 BUFFER_TRACE(bh, "entry");
1861
1862 /*
1863 * It is safe to proceed here without the j_list_lock because the
1864 * buffers cannot be stolen by try_to_free_buffers as long as we are
1865 * holding the page lock. --sct
1866 */
1867
1868 if (!buffer_jbd(bh))
1869 goto zap_buffer_unlocked;
1870
1871 spin_lock(&journal->j_state_lock);
1872 jbd_lock_bh_state(bh);
1873 spin_lock(&journal->j_list_lock);
1874
1875 jh = journal_grab_journal_head(bh);
1876 if (!jh)
1877 goto zap_buffer_no_jh;
1878
1879 transaction = jh->b_transaction;
1880 if (transaction == NULL) {
1881 /* First case: not on any transaction. If it
1882 * has no checkpoint link, then we can zap it:
1883 * it's a writeback-mode buffer so we don't care
1884 * if it hits disk safely. */
1885 if (!jh->b_cp_transaction) {
1886 JBUFFER_TRACE(jh, "not on any transaction: zap");
1887 goto zap_buffer;
1888 }
1889
1890 if (!buffer_dirty(bh)) {
1891 /* bdflush has written it. We can drop it now */
1892 goto zap_buffer;
1893 }
1894
1895 /* OK, it must be in the journal but still not
1896 * written fully to disk: it's metadata or
1897 * journaled data... */
1898
1899 if (journal->j_running_transaction) {
1900 /* ... and once the current transaction has
1901 * committed, the buffer won't be needed any
1902 * longer. */
1903 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1904 ret = __dispose_buffer(jh,
1905 journal->j_running_transaction);
1906 journal_put_journal_head(jh);
1907 spin_unlock(&journal->j_list_lock);
1908 jbd_unlock_bh_state(bh);
1909 spin_unlock(&journal->j_state_lock);
1910 return ret;
1911 } else {
1912 /* There is no currently-running transaction. So the
1913 * orphan record which we wrote for this file must have
1914 * passed into commit. We must attach this buffer to
1915 * the committing transaction, if it exists. */
1916 if (journal->j_committing_transaction) {
1917 JBUFFER_TRACE(jh, "give to committing trans");
1918 ret = __dispose_buffer(jh,
1919 journal->j_committing_transaction);
1920 journal_put_journal_head(jh);
1921 spin_unlock(&journal->j_list_lock);
1922 jbd_unlock_bh_state(bh);
1923 spin_unlock(&journal->j_state_lock);
1924 return ret;
1925 } else {
1926 /* The orphan record's transaction has
1927 * committed. We can cleanse this buffer */
1928 clear_buffer_jbddirty(bh);
1929 goto zap_buffer;
1930 }
1931 }
1932 } else if (transaction == journal->j_committing_transaction) {
f58a74dc 1933 JBUFFER_TRACE(jh, "on committing transaction");
d13df84f
AM
1934 if (jh->b_jlist == BJ_Locked) {
1935 /*
1936 * The buffer is on the committing transaction's locked
1937 * list. We have the buffer locked, so I/O has
1938 * completed. So we can nail the buffer now.
1939 */
1940 may_free = __dispose_buffer(jh, transaction);
1941 goto zap_buffer;
1942 }
1943 /*
1944 * If it is committing, we simply cannot touch it. We
1da177e4
LT
1945 * can remove it's next_transaction pointer from the
1946 * running transaction if that is set, but nothing
1947 * else. */
1da177e4
LT
1948 set_buffer_freed(bh);
1949 if (jh->b_next_transaction) {
1950 J_ASSERT(jh->b_next_transaction ==
1951 journal->j_running_transaction);
1952 jh->b_next_transaction = NULL;
1953 }
1954 journal_put_journal_head(jh);
1955 spin_unlock(&journal->j_list_lock);
1956 jbd_unlock_bh_state(bh);
1957 spin_unlock(&journal->j_state_lock);
1958 return 0;
1959 } else {
1960 /* Good, the buffer belongs to the running transaction.
1961 * We are writing our own transaction's data, not any
1962 * previous one's, so it is safe to throw it away
1963 * (remember that we expect the filesystem to have set
1964 * i_size already for this truncate so recovery will not
1965 * expose the disk blocks we are discarding here.) */
1966 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
f58a74dc 1967 JBUFFER_TRACE(jh, "on running transaction");
1da177e4
LT
1968 may_free = __dispose_buffer(jh, transaction);
1969 }
1970
1971zap_buffer:
1972 journal_put_journal_head(jh);
1973zap_buffer_no_jh:
1974 spin_unlock(&journal->j_list_lock);
1975 jbd_unlock_bh_state(bh);
1976 spin_unlock(&journal->j_state_lock);
1977zap_buffer_unlocked:
1978 clear_buffer_dirty(bh);
1979 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1980 clear_buffer_mapped(bh);
1981 clear_buffer_req(bh);
1982 clear_buffer_new(bh);
1983 bh->b_bdev = NULL;
1984 return may_free;
1985}
1986
ae6ddcc5 1987/**
a6b91919
RD
1988 * void journal_invalidatepage() - invalidate a journal page
1989 * @journal: journal to use for flush
1da177e4
LT
1990 * @page: page to flush
1991 * @offset: length of page to invalidate.
1992 *
1993 * Reap page buffers containing data after offset in page.
1da177e4 1994 */
2ff28e22 1995void journal_invalidatepage(journal_t *journal,
ae6ddcc5 1996 struct page *page,
1da177e4
LT
1997 unsigned long offset)
1998{
1999 struct buffer_head *head, *bh, *next;
2000 unsigned int curr_off = 0;
2001 int may_free = 1;
2002
2003 if (!PageLocked(page))
2004 BUG();
2005 if (!page_has_buffers(page))
2ff28e22 2006 return;
1da177e4
LT
2007
2008 /* We will potentially be playing with lists other than just the
2009 * data lists (especially for journaled data mode), so be
2010 * cautious in our locking. */
2011
2012 head = bh = page_buffers(page);
2013 do {
2014 unsigned int next_off = curr_off + bh->b_size;
2015 next = bh->b_this_page;
2016
1da177e4 2017 if (offset <= curr_off) {
e9ad5620 2018 /* This block is wholly outside the truncation point */
1da177e4
LT
2019 lock_buffer(bh);
2020 may_free &= journal_unmap_buffer(journal, bh);
2021 unlock_buffer(bh);
2022 }
2023 curr_off = next_off;
2024 bh = next;
2025
2026 } while (bh != head);
2027
2028 if (!offset) {
2ff28e22
N
2029 if (may_free && try_to_free_buffers(page))
2030 J_ASSERT(!page_has_buffers(page));
1da177e4 2031 }
1da177e4
LT
2032}
2033
ae6ddcc5
MC
2034/*
2035 * File a buffer on the given transaction list.
1da177e4
LT
2036 */
2037void __journal_file_buffer(struct journal_head *jh,
2038 transaction_t *transaction, int jlist)
2039{
2040 struct journal_head **list = NULL;
2041 int was_dirty = 0;
2042 struct buffer_head *bh = jh2bh(jh);
2043
2044 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2045 assert_spin_locked(&transaction->t_journal->j_list_lock);
2046
2047 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2048 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
c80544dc 2049 jh->b_transaction == NULL);
1da177e4
LT
2050
2051 if (jh->b_transaction && jh->b_jlist == jlist)
2052 return;
2053
2054 /* The following list of buffer states needs to be consistent
2055 * with __jbd_unexpected_dirty_buffer()'s handling of dirty
2056 * state. */
2057
ae6ddcc5 2058 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1da177e4
LT
2059 jlist == BJ_Shadow || jlist == BJ_Forget) {
2060 if (test_clear_buffer_dirty(bh) ||
2061 test_clear_buffer_jbddirty(bh))
2062 was_dirty = 1;
2063 }
2064
2065 if (jh->b_transaction)
2066 __journal_temp_unlink_buffer(jh);
2067 jh->b_transaction = transaction;
2068
2069 switch (jlist) {
2070 case BJ_None:
2071 J_ASSERT_JH(jh, !jh->b_committed_data);
2072 J_ASSERT_JH(jh, !jh->b_frozen_data);
2073 return;
2074 case BJ_SyncData:
2075 list = &transaction->t_sync_datalist;
2076 break;
2077 case BJ_Metadata:
2078 transaction->t_nr_buffers++;
2079 list = &transaction->t_buffers;
2080 break;
2081 case BJ_Forget:
2082 list = &transaction->t_forget;
2083 break;
2084 case BJ_IO:
2085 list = &transaction->t_iobuf_list;
2086 break;
2087 case BJ_Shadow:
2088 list = &transaction->t_shadow_list;
2089 break;
2090 case BJ_LogCtl:
2091 list = &transaction->t_log_list;
2092 break;
2093 case BJ_Reserved:
2094 list = &transaction->t_reserved_list;
2095 break;
2096 case BJ_Locked:
2097 list = &transaction->t_locked_list;
2098 break;
2099 }
2100
2101 __blist_add_buffer(list, jh);
2102 jh->b_jlist = jlist;
2103
2104 if (was_dirty)
2105 set_buffer_jbddirty(bh);
2106}
2107
2108void journal_file_buffer(struct journal_head *jh,
2109 transaction_t *transaction, int jlist)
2110{
2111 jbd_lock_bh_state(jh2bh(jh));
2112 spin_lock(&transaction->t_journal->j_list_lock);
2113 __journal_file_buffer(jh, transaction, jlist);
2114 spin_unlock(&transaction->t_journal->j_list_lock);
2115 jbd_unlock_bh_state(jh2bh(jh));
2116}
2117
ae6ddcc5 2118/*
1da177e4
LT
2119 * Remove a buffer from its current buffer list in preparation for
2120 * dropping it from its current transaction entirely. If the buffer has
2121 * already started to be used by a subsequent transaction, refile the
2122 * buffer on that transaction's metadata list.
2123 *
2124 * Called under journal->j_list_lock
2125 *
2126 * Called under jbd_lock_bh_state(jh2bh(jh))
2127 */
2128void __journal_refile_buffer(struct journal_head *jh)
2129{
2130 int was_dirty;
2131 struct buffer_head *bh = jh2bh(jh);
2132
2133 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2134 if (jh->b_transaction)
2135 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2136
2137 /* If the buffer is now unused, just drop it. */
2138 if (jh->b_next_transaction == NULL) {
2139 __journal_unfile_buffer(jh);
2140 return;
2141 }
2142
2143 /*
2144 * It has been modified by a later transaction: add it to the new
2145 * transaction's metadata list.
2146 */
2147
2148 was_dirty = test_clear_buffer_jbddirty(bh);
2149 __journal_temp_unlink_buffer(jh);
2150 jh->b_transaction = jh->b_next_transaction;
2151 jh->b_next_transaction = NULL;
9ada7340 2152 __journal_file_buffer(jh, jh->b_transaction,
5b9a499d 2153 jh->b_modified ? BJ_Metadata : BJ_Reserved);
1da177e4
LT
2154 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2155
2156 if (was_dirty)
2157 set_buffer_jbddirty(bh);
2158}
2159
2160/*
2161 * For the unlocked version of this call, also make sure that any
2162 * hanging journal_head is cleaned up if necessary.
2163 *
2164 * __journal_refile_buffer is usually called as part of a single locked
2165 * operation on a buffer_head, in which the caller is probably going to
2166 * be hooking the journal_head onto other lists. In that case it is up
2167 * to the caller to remove the journal_head if necessary. For the
2168 * unlocked journal_refile_buffer call, the caller isn't going to be
2169 * doing anything else to the buffer so we need to do the cleanup
ae6ddcc5 2170 * ourselves to avoid a jh leak.
1da177e4
LT
2171 *
2172 * *** The journal_head may be freed by this call! ***
2173 */
2174void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2175{
2176 struct buffer_head *bh = jh2bh(jh);
2177
2178 jbd_lock_bh_state(bh);
2179 spin_lock(&journal->j_list_lock);
2180
2181 __journal_refile_buffer(jh);
2182 jbd_unlock_bh_state(bh);
2183 journal_remove_journal_head(bh);
2184
2185 spin_unlock(&journal->j_list_lock);
2186 __brelse(bh);
2187}