]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/fs-writeback.c
writeback: fix time ordering of the per superblock dirty inode lists 7
[net-next-2.6.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
22#include <linux/writeback.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/buffer_head.h>
07f3f05c 26#include "internal.h"
1da177e4
LT
27
28/**
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
34 *
35 * Put the inode on the super block's dirty list.
36 *
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
41 *
42 * In short, make sure you hash any inodes _before_ you start marking
43 * them dirty.
44 *
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
47 *
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
53 * blockdev inode.
54 */
55void __mark_inode_dirty(struct inode *inode, int flags)
56{
57 struct super_block *sb = inode->i_sb;
58
59 /*
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
62 */
63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 if (sb->s_op->dirty_inode)
65 sb->s_op->dirty_inode(inode);
66 }
67
68 /*
69 * make sure that changes are seen by all cpus before we test i_state
70 * -- mikulas
71 */
72 smp_mb();
73
74 /* avoid the locking if we can */
75 if ((inode->i_state & flags) == flags)
76 return;
77
78 if (unlikely(block_dump)) {
79 struct dentry *dentry = NULL;
80 const char *name = "?";
81
82 if (!list_empty(&inode->i_dentry)) {
83 dentry = list_entry(inode->i_dentry.next,
84 struct dentry, d_alias);
85 if (dentry && dentry->d_name.name)
86 name = (const char *) dentry->d_name.name;
87 }
88
89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 printk(KERN_DEBUG
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
92 current->comm, current->pid, inode->i_ino,
93 name, inode->i_sb->s_id);
94 }
95
96 spin_lock(&inode_lock);
97 if ((inode->i_state & flags) != flags) {
98 const int was_dirty = inode->i_state & I_DIRTY;
99
100 inode->i_state |= flags;
101
102 /*
103 * If the inode is locked, just update its dirty state.
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
106 */
107 if (inode->i_state & I_LOCK)
108 goto out;
109
110 /*
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
113 */
114 if (!S_ISBLK(inode->i_mode)) {
115 if (hlist_unhashed(&inode->i_hash))
116 goto out;
117 }
118 if (inode->i_state & (I_FREEING|I_CLEAR))
119 goto out;
120
121 /*
122 * If the inode was already on s_dirty or s_io, don't
123 * reposition it (that would break s_dirty time-ordering).
124 */
125 if (!was_dirty) {
126 inode->dirtied_when = jiffies;
127 list_move(&inode->i_list, &sb->s_dirty);
128 }
129 }
130out:
131 spin_unlock(&inode_lock);
132}
133
134EXPORT_SYMBOL(__mark_inode_dirty);
135
136static int write_inode(struct inode *inode, int sync)
137{
138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 return inode->i_sb->s_op->write_inode(inode, sync);
140 return 0;
141}
142
6610a0bc
AM
143/*
144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
145 * furthest end of its superblock's dirty-inode list.
146 *
147 * Before stamping the inode's ->dirtied_when, we check to see whether it is
148 * already the most-recently-dirtied inode on the s_dirty list. If that is
149 * the case then the inode must have been redirtied while it was being written
150 * out and we don't reset its dirtied_when.
151 */
152static void redirty_tail(struct inode *inode)
153{
154 struct super_block *sb = inode->i_sb;
155
156 if (!list_empty(&sb->s_dirty)) {
157 struct inode *tail_inode;
158
159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
160 if (!time_after_eq(inode->dirtied_when,
161 tail_inode->dirtied_when))
162 inode->dirtied_when = jiffies;
163 }
164 list_move(&inode->i_list, &sb->s_dirty);
165}
166
c986d1e2
AM
167/*
168 * Redirty an inode, but mark it as the very next-to-be-written inode on its
169 * superblock's dirty-inode list.
170 * We need to preserve s_dirty's reverse-time-orderedness, so we cheat by
171 * setting this inode's dirtied_when to the same value as that of the inode
172 * which is presently head-of-list, if present head-of-list is newer than this
173 * inode. (head-of-list is the least-recently-dirtied inode: the oldest one).
174 */
175static void redirty_head(struct inode *inode)
176{
177 struct super_block *sb = inode->i_sb;
178
179 if (!list_empty(&sb->s_dirty)) {
180 struct inode *head_inode;
181
182 head_inode = list_entry(sb->s_dirty.prev, struct inode, i_list);
183 if (time_after(inode->dirtied_when, head_inode->dirtied_when))
184 inode->dirtied_when = head_inode->dirtied_when;
185 }
186 list_move_tail(&inode->i_list, &sb->s_dirty);
187}
188
1da177e4
LT
189/*
190 * Write a single inode's dirty pages and inode data out to disk.
191 * If `wait' is set, wait on the writeout.
192 *
193 * The whole writeout design is quite complex and fragile. We want to avoid
194 * starvation of particular inodes when others are being redirtied, prevent
195 * livelocks, etc.
196 *
197 * Called under inode_lock.
198 */
199static int
200__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
201{
202 unsigned dirty;
203 struct address_space *mapping = inode->i_mapping;
1da177e4
LT
204 int wait = wbc->sync_mode == WB_SYNC_ALL;
205 int ret;
206
207 BUG_ON(inode->i_state & I_LOCK);
208
209 /* Set I_LOCK, reset I_DIRTY */
210 dirty = inode->i_state & I_DIRTY;
211 inode->i_state |= I_LOCK;
212 inode->i_state &= ~I_DIRTY;
213
214 spin_unlock(&inode_lock);
215
216 ret = do_writepages(mapping, wbc);
217
218 /* Don't write the inode if only I_DIRTY_PAGES was set */
219 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
220 int err = write_inode(inode, wait);
221 if (ret == 0)
222 ret = err;
223 }
224
225 if (wait) {
226 int err = filemap_fdatawait(mapping);
227 if (ret == 0)
228 ret = err;
229 }
230
231 spin_lock(&inode_lock);
232 inode->i_state &= ~I_LOCK;
233 if (!(inode->i_state & I_FREEING)) {
234 if (!(inode->i_state & I_DIRTY) &&
235 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
236 /*
237 * We didn't write back all the pages. nfs_writepages()
238 * sometimes bales out without doing anything. Redirty
1b43ef91
AM
239 * the inode. It is moved from s_io onto s_dirty.
240 */
241 /*
242 * akpm: if the caller was the kupdate function we put
243 * this inode at the head of s_dirty so it gets first
244 * consideration. Otherwise, move it to the tail, for
245 * the reasons described there. I'm not really sure
246 * how much sense this makes. Presumably I had a good
247 * reasons for doing it this way, and I'd rather not
248 * muck with it at present.
1da177e4
LT
249 */
250 if (wbc->for_kupdate) {
251 /*
252 * For the kupdate function we leave the inode
253 * at the head of sb_dirty so it will get more
254 * writeout as soon as the queue becomes
255 * uncongested.
256 */
257 inode->i_state |= I_DIRTY_PAGES;
c986d1e2 258 redirty_head(inode);
1da177e4
LT
259 } else {
260 /*
261 * Otherwise fully redirty the inode so that
262 * other inodes on this superblock will get some
263 * writeout. Otherwise heavy writing to one
264 * file would indefinitely suspend writeout of
265 * all the other files.
266 */
267 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 268 redirty_tail(inode);
1da177e4
LT
269 }
270 } else if (inode->i_state & I_DIRTY) {
271 /*
272 * Someone redirtied the inode while were writing back
273 * the pages.
274 */
6610a0bc 275 redirty_tail(inode);
1da177e4
LT
276 } else if (atomic_read(&inode->i_count)) {
277 /*
278 * The inode is clean, inuse
279 */
280 list_move(&inode->i_list, &inode_in_use);
281 } else {
282 /*
283 * The inode is clean, unused
284 */
285 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
286 }
287 }
288 wake_up_inode(inode);
289 return ret;
290}
291
292/*
7f04c26d
AA
293 * Write out an inode's dirty pages. Called under inode_lock. Either the
294 * caller has ref on the inode (either via __iget or via syscall against an fd)
295 * or the inode has I_WILL_FREE set (via generic_forget_inode)
1da177e4
LT
296 */
297static int
7f04c26d 298__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4
LT
299{
300 wait_queue_head_t *wqh;
301
7f04c26d 302 if (!atomic_read(&inode->i_count))
659603ef 303 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
7f04c26d
AA
304 else
305 WARN_ON(inode->i_state & I_WILL_FREE);
306
1da177e4 307 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
4b89eed9
LT
308 struct address_space *mapping = inode->i_mapping;
309 int ret;
310
65cb9b47
AM
311 /*
312 * We're skipping this inode because it's locked, and we're not
313 * doing writeback-for-data-integrity. Move it to the head of
314 * s_dirty so that writeback can proceed with the other inodes
315 * on s_io. We'll have another go at writing back this inode
316 * when the s_dirty iodes get moved back onto s_io.
317 */
318 redirty_head(inode);
4b89eed9
LT
319
320 /*
321 * Even if we don't actually write the inode itself here,
322 * we can at least start some of the data writeout..
323 */
324 spin_unlock(&inode_lock);
325 ret = do_writepages(mapping, wbc);
326 spin_lock(&inode_lock);
327 return ret;
1da177e4
LT
328 }
329
330 /*
331 * It's a data-integrity sync. We must wait.
332 */
333 if (inode->i_state & I_LOCK) {
334 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
335
336 wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
337 do {
1da177e4
LT
338 spin_unlock(&inode_lock);
339 __wait_on_bit(wqh, &wq, inode_wait,
340 TASK_UNINTERRUPTIBLE);
1da177e4
LT
341 spin_lock(&inode_lock);
342 } while (inode->i_state & I_LOCK);
343 }
344 return __sync_single_inode(inode, wbc);
345}
346
347/*
348 * Write out a superblock's list of dirty inodes. A wait will be performed
349 * upon no inodes, all inodes or the final one, depending upon sync_mode.
350 *
351 * If older_than_this is non-NULL, then only write out inodes which
352 * had their first dirtying at a time earlier than *older_than_this.
353 *
354 * If we're a pdlfush thread, then implement pdflush collision avoidance
355 * against the entire list.
356 *
357 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
358 * that it can be located for waiting on in __writeback_single_inode().
359 *
360 * Called under inode_lock.
361 *
362 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
363 * This function assumes that the blockdev superblock's inodes are backed by
364 * a variety of queues, so all inodes are searched. For other superblocks,
365 * assume that all inodes are backed by the same queue.
366 *
367 * FIXME: this linear search could get expensive with many fileystems. But
368 * how to fix? We need to go from an address_space to all inodes which share
369 * a queue with that address_space. (Easy: have a global "dirty superblocks"
370 * list).
371 *
372 * The inodes to be written are parked on sb->s_io. They are moved back onto
373 * sb->s_dirty as they are selected for writing. This way, none can be missed
374 * on the writer throttling path, and we get decent balancing between many
375 * throttled threads: we don't want them all piling up on __wait_on_inode.
376 */
377static void
378sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
379{
380 const unsigned long start = jiffies; /* livelock avoidance */
381
382 if (!wbc->for_kupdate || list_empty(&sb->s_io))
383 list_splice_init(&sb->s_dirty, &sb->s_io);
384
385 while (!list_empty(&sb->s_io)) {
386 struct inode *inode = list_entry(sb->s_io.prev,
387 struct inode, i_list);
388 struct address_space *mapping = inode->i_mapping;
389 struct backing_dev_info *bdi = mapping->backing_dev_info;
390 long pages_skipped;
391
392 if (!bdi_cap_writeback_dirty(bdi)) {
9852a0e7 393 redirty_tail(inode);
7b0de42d 394 if (sb_is_blkdev_sb(sb)) {
1da177e4
LT
395 /*
396 * Dirty memory-backed blockdev: the ramdisk
397 * driver does this. Skip just this inode
398 */
399 continue;
400 }
401 /*
402 * Dirty memory-backed inode against a filesystem other
403 * than the kernel-internal bdev filesystem. Skip the
404 * entire superblock.
405 */
406 break;
407 }
408
409 if (wbc->nonblocking && bdi_write_congested(bdi)) {
410 wbc->encountered_congestion = 1;
7b0de42d 411 if (!sb_is_blkdev_sb(sb))
1da177e4 412 break; /* Skip a congested fs */
670e4def 413 redirty_head(inode);
1da177e4
LT
414 continue; /* Skip a congested blockdev */
415 }
416
417 if (wbc->bdi && bdi != wbc->bdi) {
7b0de42d 418 if (!sb_is_blkdev_sb(sb))
1da177e4 419 break; /* fs has the wrong queue */
670e4def 420 redirty_head(inode);
1da177e4
LT
421 continue; /* blockdev has wrong queue */
422 }
423
424 /* Was this inode dirtied after sync_sb_inodes was called? */
425 if (time_after(inode->dirtied_when, start))
426 break;
427
428 /* Was this inode dirtied too recently? */
429 if (wbc->older_than_this && time_after(inode->dirtied_when,
430 *wbc->older_than_this))
431 break;
432
433 /* Is another pdflush already flushing this queue? */
434 if (current_is_pdflush() && !writeback_acquire(bdi))
435 break;
436
437 BUG_ON(inode->i_state & I_FREEING);
438 __iget(inode);
439 pages_skipped = wbc->pages_skipped;
440 __writeback_single_inode(inode, wbc);
441 if (wbc->sync_mode == WB_SYNC_HOLD) {
442 inode->dirtied_when = jiffies;
443 list_move(&inode->i_list, &sb->s_dirty);
444 }
445 if (current_is_pdflush())
446 writeback_release(bdi);
447 if (wbc->pages_skipped != pages_skipped) {
448 /*
449 * writeback is not making progress due to locked
450 * buffers. Skip this inode for now.
451 */
f57b9b7b 452 redirty_tail(inode);
1da177e4
LT
453 }
454 spin_unlock(&inode_lock);
1da177e4 455 iput(inode);
4ffc8444 456 cond_resched();
1da177e4
LT
457 spin_lock(&inode_lock);
458 if (wbc->nr_to_write <= 0)
459 break;
460 }
461 return; /* Leave any unwritten inodes on s_io */
462}
463
464/*
465 * Start writeback of dirty pagecache data against all unlocked inodes.
466 *
467 * Note:
468 * We don't need to grab a reference to superblock here. If it has non-empty
469 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
470 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
471 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
472 * inode from superblock lists we are OK.
473 *
474 * If `older_than_this' is non-zero then only flush inodes which have a
475 * flushtime older than *older_than_this.
476 *
477 * If `bdi' is non-zero then we will scan the first inode against each
478 * superblock until we find the matching ones. One group will be the dirty
479 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
480 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
481 * super-efficient but we're about to do a ton of I/O...
482 */
483void
484writeback_inodes(struct writeback_control *wbc)
485{
486 struct super_block *sb;
487
488 might_sleep();
489 spin_lock(&sb_lock);
490restart:
491 sb = sb_entry(super_blocks.prev);
492 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
493 if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
494 /* we're making our own get_super here */
495 sb->s_count++;
496 spin_unlock(&sb_lock);
497 /*
498 * If we can't get the readlock, there's no sense in
499 * waiting around, most of the time the FS is going to
500 * be unmounted by the time it is released.
501 */
502 if (down_read_trylock(&sb->s_umount)) {
503 if (sb->s_root) {
504 spin_lock(&inode_lock);
505 sync_sb_inodes(sb, wbc);
506 spin_unlock(&inode_lock);
507 }
508 up_read(&sb->s_umount);
509 }
510 spin_lock(&sb_lock);
511 if (__put_super_and_need_restart(sb))
512 goto restart;
513 }
514 if (wbc->nr_to_write <= 0)
515 break;
516 }
517 spin_unlock(&sb_lock);
518}
519
520/*
521 * writeback and wait upon the filesystem's dirty inodes. The caller will
522 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
523 * used to park the written inodes on sb->s_dirty for the wait pass.
524 *
525 * A finite limit is set on the number of pages which will be written.
526 * To prevent infinite livelock of sys_sync().
527 *
528 * We add in the number of potentially dirty inodes, because each inode write
529 * can dirty pagecache in the underlying blockdev.
530 */
531void sync_inodes_sb(struct super_block *sb, int wait)
532{
533 struct writeback_control wbc = {
534 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
111ebb6e
OH
535 .range_start = 0,
536 .range_end = LLONG_MAX,
1da177e4 537 };
b1e7a8fd 538 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
fd39fc85 539 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
540
541 wbc.nr_to_write = nr_dirty + nr_unstable +
542 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
543 nr_dirty + nr_unstable;
544 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
545 spin_lock(&inode_lock);
546 sync_sb_inodes(sb, &wbc);
547 spin_unlock(&inode_lock);
548}
549
550/*
551 * Rather lame livelock avoidance.
552 */
553static void set_sb_syncing(int val)
554{
555 struct super_block *sb;
556 spin_lock(&sb_lock);
557 sb = sb_entry(super_blocks.prev);
558 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
559 sb->s_syncing = val;
560 }
561 spin_unlock(&sb_lock);
562}
563
1da177e4 564/**
67be2dd1
MW
565 * sync_inodes - writes all inodes to disk
566 * @wait: wait for completion
1da177e4
LT
567 *
568 * sync_inodes() goes through each super block's dirty inode list, writes the
569 * inodes out, waits on the writeout and puts the inodes back on the normal
570 * list.
571 *
572 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
573 * part of the sync functions is that the blockdev "superblock" is processed
574 * last. This is because the write_inode() function of a typical fs will
575 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
576 * What we want to do is to perform all that dirtying first, and then write
577 * back all those inode blocks via the blockdev mapping in one sweep. So the
578 * additional (somewhat redundant) sync_blockdev() calls here are to make
579 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
580 * outstanding dirty inodes, the writeback goes block-at-a-time within the
581 * filesystem's write_inode(). This is extremely slow.
582 */
618f0636 583static void __sync_inodes(int wait)
1da177e4
LT
584{
585 struct super_block *sb;
586
618f0636
KK
587 spin_lock(&sb_lock);
588restart:
589 list_for_each_entry(sb, &super_blocks, s_list) {
590 if (sb->s_syncing)
591 continue;
592 sb->s_syncing = 1;
593 sb->s_count++;
594 spin_unlock(&sb_lock);
595 down_read(&sb->s_umount);
596 if (sb->s_root) {
597 sync_inodes_sb(sb, wait);
598 sync_blockdev(sb->s_bdev);
599 }
600 up_read(&sb->s_umount);
601 spin_lock(&sb_lock);
602 if (__put_super_and_need_restart(sb))
603 goto restart;
1da177e4 604 }
618f0636
KK
605 spin_unlock(&sb_lock);
606}
607
608void sync_inodes(int wait)
609{
610 set_sb_syncing(0);
611 __sync_inodes(0);
612
1da177e4
LT
613 if (wait) {
614 set_sb_syncing(0);
618f0636 615 __sync_inodes(1);
1da177e4
LT
616 }
617}
618
619/**
7f04c26d
AA
620 * write_inode_now - write an inode to disk
621 * @inode: inode to write to disk
622 * @sync: whether the write should be synchronous or not
623 *
624 * This function commits an inode to disk immediately if it is dirty. This is
625 * primarily needed by knfsd.
1da177e4 626 *
7f04c26d 627 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 628 */
1da177e4
LT
629int write_inode_now(struct inode *inode, int sync)
630{
631 int ret;
632 struct writeback_control wbc = {
633 .nr_to_write = LONG_MAX,
634 .sync_mode = WB_SYNC_ALL,
111ebb6e
OH
635 .range_start = 0,
636 .range_end = LLONG_MAX,
1da177e4
LT
637 };
638
639 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 640 wbc.nr_to_write = 0;
1da177e4
LT
641
642 might_sleep();
643 spin_lock(&inode_lock);
644 ret = __writeback_single_inode(inode, &wbc);
645 spin_unlock(&inode_lock);
646 if (sync)
647 wait_on_inode(inode);
648 return ret;
649}
650EXPORT_SYMBOL(write_inode_now);
651
652/**
653 * sync_inode - write an inode and its pages to disk.
654 * @inode: the inode to sync
655 * @wbc: controls the writeback mode
656 *
657 * sync_inode() will write an inode and its pages to disk. It will also
658 * correctly update the inode on its superblock's dirty inode lists and will
659 * update inode->i_state.
660 *
661 * The caller must have a ref on the inode.
662 */
663int sync_inode(struct inode *inode, struct writeback_control *wbc)
664{
665 int ret;
666
667 spin_lock(&inode_lock);
668 ret = __writeback_single_inode(inode, wbc);
669 spin_unlock(&inode_lock);
670 return ret;
671}
672EXPORT_SYMBOL(sync_inode);
673
674/**
675 * generic_osync_inode - flush all dirty data for a given inode to disk
676 * @inode: inode to write
67be2dd1 677 * @mapping: the address_space that should be flushed
1da177e4
LT
678 * @what: what to write and wait upon
679 *
680 * This can be called by file_write functions for files which have the
681 * O_SYNC flag set, to flush dirty writes to disk.
682 *
683 * @what is a bitmask, specifying which part of the inode's data should be
b8887e6e 684 * written and waited upon.
1da177e4
LT
685 *
686 * OSYNC_DATA: i_mapping's dirty data
687 * OSYNC_METADATA: the buffers at i_mapping->private_list
688 * OSYNC_INODE: the inode itself
689 */
690
691int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
692{
693 int err = 0;
694 int need_write_inode_now = 0;
695 int err2;
696
1da177e4
LT
697 if (what & OSYNC_DATA)
698 err = filemap_fdatawrite(mapping);
699 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
700 err2 = sync_mapping_buffers(mapping);
701 if (!err)
702 err = err2;
703 }
704 if (what & OSYNC_DATA) {
705 err2 = filemap_fdatawait(mapping);
706 if (!err)
707 err = err2;
708 }
1da177e4
LT
709
710 spin_lock(&inode_lock);
711 if ((inode->i_state & I_DIRTY) &&
712 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
713 need_write_inode_now = 1;
714 spin_unlock(&inode_lock);
715
716 if (need_write_inode_now) {
717 err2 = write_inode_now(inode, 1);
718 if (!err)
719 err = err2;
720 }
721 else
722 wait_on_inode(inode);
723
724 return err;
725}
726
727EXPORT_SYMBOL(generic_osync_inode);
728
729/**
730 * writeback_acquire: attempt to get exclusive writeback access to a device
731 * @bdi: the device's backing_dev_info structure
732 *
733 * It is a waste of resources to have more than one pdflush thread blocked on
734 * a single request queue. Exclusion at the request_queue level is obtained
735 * via a flag in the request_queue's backing_dev_info.state.
736 *
737 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
738 * unless they implement their own. Which is somewhat inefficient, as this
739 * may prevent concurrent writeback against multiple devices.
740 */
741int writeback_acquire(struct backing_dev_info *bdi)
742{
743 return !test_and_set_bit(BDI_pdflush, &bdi->state);
744}
745
746/**
747 * writeback_in_progress: determine whether there is writeback in progress
1da177e4 748 * @bdi: the device's backing_dev_info structure.
b8887e6e
RD
749 *
750 * Determine whether there is writeback in progress against a backing device.
1da177e4
LT
751 */
752int writeback_in_progress(struct backing_dev_info *bdi)
753{
754 return test_bit(BDI_pdflush, &bdi->state);
755}
756
757/**
758 * writeback_release: relinquish exclusive writeback access against a device.
759 * @bdi: the device's backing_dev_info structure
760 */
761void writeback_release(struct backing_dev_info *bdi)
762{
763 BUG_ON(!writeback_in_progress(bdi));
764 clear_bit(BDI_pdflush, &bdi->state);
765}