]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/fs-writeback.c
[TCP]: Fix a bug in strategy_allowed_congestion_control
[net-next-2.6.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
22#include <linux/writeback.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/buffer_head.h>
07f3f05c 26#include "internal.h"
1da177e4
LT
27
28/**
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
34 *
35 * Put the inode on the super block's dirty list.
36 *
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
41 *
42 * In short, make sure you hash any inodes _before_ you start marking
43 * them dirty.
44 *
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
47 *
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
53 * blockdev inode.
54 */
55void __mark_inode_dirty(struct inode *inode, int flags)
56{
57 struct super_block *sb = inode->i_sb;
58
59 /*
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
62 */
63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 if (sb->s_op->dirty_inode)
65 sb->s_op->dirty_inode(inode);
66 }
67
68 /*
69 * make sure that changes are seen by all cpus before we test i_state
70 * -- mikulas
71 */
72 smp_mb();
73
74 /* avoid the locking if we can */
75 if ((inode->i_state & flags) == flags)
76 return;
77
78 if (unlikely(block_dump)) {
79 struct dentry *dentry = NULL;
80 const char *name = "?";
81
82 if (!list_empty(&inode->i_dentry)) {
83 dentry = list_entry(inode->i_dentry.next,
84 struct dentry, d_alias);
85 if (dentry && dentry->d_name.name)
86 name = (const char *) dentry->d_name.name;
87 }
88
89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 printk(KERN_DEBUG
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
ba25f9dc 92 current->comm, task_pid_nr(current), inode->i_ino,
1da177e4
LT
93 name, inode->i_sb->s_id);
94 }
95
96 spin_lock(&inode_lock);
97 if ((inode->i_state & flags) != flags) {
98 const int was_dirty = inode->i_state & I_DIRTY;
99
100 inode->i_state |= flags;
101
102 /*
1c0eeaf5 103 * If the inode is being synced, just update its dirty state.
1da177e4
LT
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
106 */
1c0eeaf5 107 if (inode->i_state & I_SYNC)
1da177e4
LT
108 goto out;
109
110 /*
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
113 */
114 if (!S_ISBLK(inode->i_mode)) {
115 if (hlist_unhashed(&inode->i_hash))
116 goto out;
117 }
118 if (inode->i_state & (I_FREEING|I_CLEAR))
119 goto out;
120
121 /*
2c136579 122 * If the inode was already on s_dirty/s_io/s_more_io, don't
1da177e4
LT
123 * reposition it (that would break s_dirty time-ordering).
124 */
125 if (!was_dirty) {
126 inode->dirtied_when = jiffies;
127 list_move(&inode->i_list, &sb->s_dirty);
128 }
129 }
130out:
131 spin_unlock(&inode_lock);
132}
133
134EXPORT_SYMBOL(__mark_inode_dirty);
135
136static int write_inode(struct inode *inode, int sync)
137{
138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 return inode->i_sb->s_op->write_inode(inode, sync);
140 return 0;
141}
142
6610a0bc
AM
143/*
144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
145 * furthest end of its superblock's dirty-inode list.
146 *
147 * Before stamping the inode's ->dirtied_when, we check to see whether it is
148 * already the most-recently-dirtied inode on the s_dirty list. If that is
149 * the case then the inode must have been redirtied while it was being written
150 * out and we don't reset its dirtied_when.
151 */
152static void redirty_tail(struct inode *inode)
153{
154 struct super_block *sb = inode->i_sb;
155
156 if (!list_empty(&sb->s_dirty)) {
157 struct inode *tail_inode;
158
159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
160 if (!time_after_eq(inode->dirtied_when,
161 tail_inode->dirtied_when))
162 inode->dirtied_when = jiffies;
163 }
164 list_move(&inode->i_list, &sb->s_dirty);
165}
166
c986d1e2 167/*
0e0f4fc2 168 * requeue inode for re-scanning after sb->s_io list is exhausted.
c986d1e2 169 */
0e0f4fc2 170static void requeue_io(struct inode *inode)
c986d1e2 171{
0e0f4fc2 172 list_move(&inode->i_list, &inode->i_sb->s_more_io);
c986d1e2
AM
173}
174
1c0eeaf5
JE
175static void inode_sync_complete(struct inode *inode)
176{
177 /*
178 * Prevent speculative execution through spin_unlock(&inode_lock);
179 */
180 smp_mb();
181 wake_up_bit(&inode->i_state, __I_SYNC);
182}
183
2c136579
FW
184/*
185 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
186 */
187static void move_expired_inodes(struct list_head *delaying_queue,
188 struct list_head *dispatch_queue,
189 unsigned long *older_than_this)
190{
191 while (!list_empty(delaying_queue)) {
192 struct inode *inode = list_entry(delaying_queue->prev,
193 struct inode, i_list);
194 if (older_than_this &&
195 time_after(inode->dirtied_when, *older_than_this))
196 break;
197 list_move(&inode->i_list, dispatch_queue);
198 }
199}
200
201/*
202 * Queue all expired dirty inodes for io, eldest first.
203 */
204static void queue_io(struct super_block *sb,
205 unsigned long *older_than_this)
206{
207 list_splice_init(&sb->s_more_io, sb->s_io.prev);
208 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
209}
210
08d8e974
FW
211int sb_has_dirty_inodes(struct super_block *sb)
212{
213 return !list_empty(&sb->s_dirty) ||
214 !list_empty(&sb->s_io) ||
215 !list_empty(&sb->s_more_io);
216}
217EXPORT_SYMBOL(sb_has_dirty_inodes);
218
1da177e4
LT
219/*
220 * Write a single inode's dirty pages and inode data out to disk.
221 * If `wait' is set, wait on the writeout.
222 *
223 * The whole writeout design is quite complex and fragile. We want to avoid
224 * starvation of particular inodes when others are being redirtied, prevent
225 * livelocks, etc.
226 *
227 * Called under inode_lock.
228 */
229static int
230__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
231{
232 unsigned dirty;
233 struct address_space *mapping = inode->i_mapping;
1da177e4
LT
234 int wait = wbc->sync_mode == WB_SYNC_ALL;
235 int ret;
236
1c0eeaf5 237 BUG_ON(inode->i_state & I_SYNC);
1da177e4 238
1c0eeaf5 239 /* Set I_SYNC, reset I_DIRTY */
1da177e4 240 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 241 inode->i_state |= I_SYNC;
1da177e4
LT
242 inode->i_state &= ~I_DIRTY;
243
244 spin_unlock(&inode_lock);
245
246 ret = do_writepages(mapping, wbc);
247
248 /* Don't write the inode if only I_DIRTY_PAGES was set */
249 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
250 int err = write_inode(inode, wait);
251 if (ret == 0)
252 ret = err;
253 }
254
255 if (wait) {
256 int err = filemap_fdatawait(mapping);
257 if (ret == 0)
258 ret = err;
259 }
260
261 spin_lock(&inode_lock);
1c0eeaf5 262 inode->i_state &= ~I_SYNC;
1da177e4
LT
263 if (!(inode->i_state & I_FREEING)) {
264 if (!(inode->i_state & I_DIRTY) &&
265 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
266 /*
267 * We didn't write back all the pages. nfs_writepages()
268 * sometimes bales out without doing anything. Redirty
2c136579 269 * the inode; Move it from s_io onto s_more_io/s_dirty.
1b43ef91
AM
270 */
271 /*
272 * akpm: if the caller was the kupdate function we put
273 * this inode at the head of s_dirty so it gets first
274 * consideration. Otherwise, move it to the tail, for
275 * the reasons described there. I'm not really sure
276 * how much sense this makes. Presumably I had a good
277 * reasons for doing it this way, and I'd rather not
278 * muck with it at present.
1da177e4
LT
279 */
280 if (wbc->for_kupdate) {
281 /*
2c136579
FW
282 * For the kupdate function we move the inode
283 * to s_more_io so it will get more writeout as
284 * soon as the queue becomes uncongested.
1da177e4
LT
285 */
286 inode->i_state |= I_DIRTY_PAGES;
0e0f4fc2 287 requeue_io(inode);
1da177e4
LT
288 } else {
289 /*
290 * Otherwise fully redirty the inode so that
291 * other inodes on this superblock will get some
292 * writeout. Otherwise heavy writing to one
293 * file would indefinitely suspend writeout of
294 * all the other files.
295 */
296 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 297 redirty_tail(inode);
1da177e4
LT
298 }
299 } else if (inode->i_state & I_DIRTY) {
300 /*
301 * Someone redirtied the inode while were writing back
302 * the pages.
303 */
6610a0bc 304 redirty_tail(inode);
1da177e4
LT
305 } else if (atomic_read(&inode->i_count)) {
306 /*
307 * The inode is clean, inuse
308 */
309 list_move(&inode->i_list, &inode_in_use);
310 } else {
311 /*
312 * The inode is clean, unused
313 */
314 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
315 }
316 }
1c0eeaf5 317 inode_sync_complete(inode);
1da177e4
LT
318 return ret;
319}
320
321/*
7f04c26d
AA
322 * Write out an inode's dirty pages. Called under inode_lock. Either the
323 * caller has ref on the inode (either via __iget or via syscall against an fd)
324 * or the inode has I_WILL_FREE set (via generic_forget_inode)
1da177e4
LT
325 */
326static int
7f04c26d 327__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4
LT
328{
329 wait_queue_head_t *wqh;
330
7f04c26d 331 if (!atomic_read(&inode->i_count))
659603ef 332 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
7f04c26d
AA
333 else
334 WARN_ON(inode->i_state & I_WILL_FREE);
335
1c0eeaf5 336 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
4b89eed9
LT
337 struct address_space *mapping = inode->i_mapping;
338 int ret;
339
65cb9b47
AM
340 /*
341 * We're skipping this inode because it's locked, and we're not
2c136579
FW
342 * doing writeback-for-data-integrity. Move it to s_more_io so
343 * that writeback can proceed with the other inodes on s_io.
344 * We'll have another go at writing back this inode when we
345 * completed a full scan of s_io.
65cb9b47 346 */
0e0f4fc2 347 requeue_io(inode);
4b89eed9
LT
348
349 /*
350 * Even if we don't actually write the inode itself here,
351 * we can at least start some of the data writeout..
352 */
353 spin_unlock(&inode_lock);
354 ret = do_writepages(mapping, wbc);
355 spin_lock(&inode_lock);
356 return ret;
1da177e4
LT
357 }
358
359 /*
360 * It's a data-integrity sync. We must wait.
361 */
1c0eeaf5
JE
362 if (inode->i_state & I_SYNC) {
363 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1da177e4 364
1c0eeaf5 365 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1da177e4 366 do {
1da177e4
LT
367 spin_unlock(&inode_lock);
368 __wait_on_bit(wqh, &wq, inode_wait,
369 TASK_UNINTERRUPTIBLE);
1da177e4 370 spin_lock(&inode_lock);
1c0eeaf5 371 } while (inode->i_state & I_SYNC);
1da177e4
LT
372 }
373 return __sync_single_inode(inode, wbc);
374}
375
376/*
377 * Write out a superblock's list of dirty inodes. A wait will be performed
378 * upon no inodes, all inodes or the final one, depending upon sync_mode.
379 *
380 * If older_than_this is non-NULL, then only write out inodes which
381 * had their first dirtying at a time earlier than *older_than_this.
382 *
383 * If we're a pdlfush thread, then implement pdflush collision avoidance
384 * against the entire list.
385 *
386 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
387 * that it can be located for waiting on in __writeback_single_inode().
388 *
389 * Called under inode_lock.
390 *
391 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
392 * This function assumes that the blockdev superblock's inodes are backed by
393 * a variety of queues, so all inodes are searched. For other superblocks,
394 * assume that all inodes are backed by the same queue.
395 *
396 * FIXME: this linear search could get expensive with many fileystems. But
397 * how to fix? We need to go from an address_space to all inodes which share
398 * a queue with that address_space. (Easy: have a global "dirty superblocks"
399 * list).
400 *
401 * The inodes to be written are parked on sb->s_io. They are moved back onto
402 * sb->s_dirty as they are selected for writing. This way, none can be missed
403 * on the writer throttling path, and we get decent balancing between many
1c0eeaf5 404 * throttled threads: we don't want them all piling up on inode_sync_wait.
1da177e4
LT
405 */
406static void
407sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
408{
409 const unsigned long start = jiffies; /* livelock avoidance */
410
411 if (!wbc->for_kupdate || list_empty(&sb->s_io))
2c136579 412 queue_io(sb, wbc->older_than_this);
1da177e4
LT
413
414 while (!list_empty(&sb->s_io)) {
415 struct inode *inode = list_entry(sb->s_io.prev,
416 struct inode, i_list);
417 struct address_space *mapping = inode->i_mapping;
418 struct backing_dev_info *bdi = mapping->backing_dev_info;
419 long pages_skipped;
420
421 if (!bdi_cap_writeback_dirty(bdi)) {
9852a0e7 422 redirty_tail(inode);
7b0de42d 423 if (sb_is_blkdev_sb(sb)) {
1da177e4
LT
424 /*
425 * Dirty memory-backed blockdev: the ramdisk
426 * driver does this. Skip just this inode
427 */
428 continue;
429 }
430 /*
431 * Dirty memory-backed inode against a filesystem other
432 * than the kernel-internal bdev filesystem. Skip the
433 * entire superblock.
434 */
435 break;
436 }
437
438 if (wbc->nonblocking && bdi_write_congested(bdi)) {
439 wbc->encountered_congestion = 1;
7b0de42d 440 if (!sb_is_blkdev_sb(sb))
1da177e4 441 break; /* Skip a congested fs */
0e0f4fc2 442 requeue_io(inode);
1da177e4
LT
443 continue; /* Skip a congested blockdev */
444 }
445
446 if (wbc->bdi && bdi != wbc->bdi) {
7b0de42d 447 if (!sb_is_blkdev_sb(sb))
1da177e4 448 break; /* fs has the wrong queue */
0e0f4fc2 449 requeue_io(inode);
1da177e4
LT
450 continue; /* blockdev has wrong queue */
451 }
452
453 /* Was this inode dirtied after sync_sb_inodes was called? */
454 if (time_after(inode->dirtied_when, start))
455 break;
456
1da177e4
LT
457 /* Is another pdflush already flushing this queue? */
458 if (current_is_pdflush() && !writeback_acquire(bdi))
459 break;
460
461 BUG_ON(inode->i_state & I_FREEING);
462 __iget(inode);
463 pages_skipped = wbc->pages_skipped;
464 __writeback_single_inode(inode, wbc);
465 if (wbc->sync_mode == WB_SYNC_HOLD) {
466 inode->dirtied_when = jiffies;
467 list_move(&inode->i_list, &sb->s_dirty);
468 }
469 if (current_is_pdflush())
470 writeback_release(bdi);
471 if (wbc->pages_skipped != pages_skipped) {
472 /*
473 * writeback is not making progress due to locked
474 * buffers. Skip this inode for now.
475 */
f57b9b7b 476 redirty_tail(inode);
1da177e4
LT
477 }
478 spin_unlock(&inode_lock);
1da177e4 479 iput(inode);
4ffc8444 480 cond_resched();
1da177e4
LT
481 spin_lock(&inode_lock);
482 if (wbc->nr_to_write <= 0)
483 break;
484 }
485 return; /* Leave any unwritten inodes on s_io */
486}
487
488/*
489 * Start writeback of dirty pagecache data against all unlocked inodes.
490 *
491 * Note:
492 * We don't need to grab a reference to superblock here. If it has non-empty
493 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
2c136579 494 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
1da177e4
LT
495 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
496 * inode from superblock lists we are OK.
497 *
498 * If `older_than_this' is non-zero then only flush inodes which have a
499 * flushtime older than *older_than_this.
500 *
501 * If `bdi' is non-zero then we will scan the first inode against each
502 * superblock until we find the matching ones. One group will be the dirty
503 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
504 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
505 * super-efficient but we're about to do a ton of I/O...
506 */
507void
508writeback_inodes(struct writeback_control *wbc)
509{
510 struct super_block *sb;
511
512 might_sleep();
513 spin_lock(&sb_lock);
514restart:
515 sb = sb_entry(super_blocks.prev);
516 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
08d8e974 517 if (sb_has_dirty_inodes(sb)) {
1da177e4
LT
518 /* we're making our own get_super here */
519 sb->s_count++;
520 spin_unlock(&sb_lock);
521 /*
522 * If we can't get the readlock, there's no sense in
523 * waiting around, most of the time the FS is going to
524 * be unmounted by the time it is released.
525 */
526 if (down_read_trylock(&sb->s_umount)) {
527 if (sb->s_root) {
528 spin_lock(&inode_lock);
529 sync_sb_inodes(sb, wbc);
530 spin_unlock(&inode_lock);
531 }
532 up_read(&sb->s_umount);
533 }
534 spin_lock(&sb_lock);
535 if (__put_super_and_need_restart(sb))
536 goto restart;
537 }
538 if (wbc->nr_to_write <= 0)
539 break;
540 }
541 spin_unlock(&sb_lock);
542}
543
544/*
545 * writeback and wait upon the filesystem's dirty inodes. The caller will
546 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
547 * used to park the written inodes on sb->s_dirty for the wait pass.
548 *
549 * A finite limit is set on the number of pages which will be written.
550 * To prevent infinite livelock of sys_sync().
551 *
552 * We add in the number of potentially dirty inodes, because each inode write
553 * can dirty pagecache in the underlying blockdev.
554 */
555void sync_inodes_sb(struct super_block *sb, int wait)
556{
557 struct writeback_control wbc = {
558 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
111ebb6e
OH
559 .range_start = 0,
560 .range_end = LLONG_MAX,
1da177e4 561 };
b1e7a8fd 562 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
fd39fc85 563 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
564
565 wbc.nr_to_write = nr_dirty + nr_unstable +
566 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
567 nr_dirty + nr_unstable;
568 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
569 spin_lock(&inode_lock);
570 sync_sb_inodes(sb, &wbc);
571 spin_unlock(&inode_lock);
572}
573
574/*
575 * Rather lame livelock avoidance.
576 */
577static void set_sb_syncing(int val)
578{
579 struct super_block *sb;
580 spin_lock(&sb_lock);
581 sb = sb_entry(super_blocks.prev);
582 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
583 sb->s_syncing = val;
584 }
585 spin_unlock(&sb_lock);
586}
587
1da177e4 588/**
67be2dd1
MW
589 * sync_inodes - writes all inodes to disk
590 * @wait: wait for completion
1da177e4
LT
591 *
592 * sync_inodes() goes through each super block's dirty inode list, writes the
593 * inodes out, waits on the writeout and puts the inodes back on the normal
594 * list.
595 *
596 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
597 * part of the sync functions is that the blockdev "superblock" is processed
598 * last. This is because the write_inode() function of a typical fs will
599 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
600 * What we want to do is to perform all that dirtying first, and then write
601 * back all those inode blocks via the blockdev mapping in one sweep. So the
602 * additional (somewhat redundant) sync_blockdev() calls here are to make
603 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
604 * outstanding dirty inodes, the writeback goes block-at-a-time within the
605 * filesystem's write_inode(). This is extremely slow.
606 */
618f0636 607static void __sync_inodes(int wait)
1da177e4
LT
608{
609 struct super_block *sb;
610
618f0636
KK
611 spin_lock(&sb_lock);
612restart:
613 list_for_each_entry(sb, &super_blocks, s_list) {
614 if (sb->s_syncing)
615 continue;
616 sb->s_syncing = 1;
617 sb->s_count++;
618 spin_unlock(&sb_lock);
619 down_read(&sb->s_umount);
620 if (sb->s_root) {
621 sync_inodes_sb(sb, wait);
622 sync_blockdev(sb->s_bdev);
623 }
624 up_read(&sb->s_umount);
625 spin_lock(&sb_lock);
626 if (__put_super_and_need_restart(sb))
627 goto restart;
1da177e4 628 }
618f0636
KK
629 spin_unlock(&sb_lock);
630}
631
632void sync_inodes(int wait)
633{
634 set_sb_syncing(0);
635 __sync_inodes(0);
636
1da177e4
LT
637 if (wait) {
638 set_sb_syncing(0);
618f0636 639 __sync_inodes(1);
1da177e4
LT
640 }
641}
642
643/**
7f04c26d
AA
644 * write_inode_now - write an inode to disk
645 * @inode: inode to write to disk
646 * @sync: whether the write should be synchronous or not
647 *
648 * This function commits an inode to disk immediately if it is dirty. This is
649 * primarily needed by knfsd.
1da177e4 650 *
7f04c26d 651 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 652 */
1da177e4
LT
653int write_inode_now(struct inode *inode, int sync)
654{
655 int ret;
656 struct writeback_control wbc = {
657 .nr_to_write = LONG_MAX,
658 .sync_mode = WB_SYNC_ALL,
111ebb6e
OH
659 .range_start = 0,
660 .range_end = LLONG_MAX,
1da177e4
LT
661 };
662
663 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 664 wbc.nr_to_write = 0;
1da177e4
LT
665
666 might_sleep();
667 spin_lock(&inode_lock);
668 ret = __writeback_single_inode(inode, &wbc);
669 spin_unlock(&inode_lock);
670 if (sync)
1c0eeaf5 671 inode_sync_wait(inode);
1da177e4
LT
672 return ret;
673}
674EXPORT_SYMBOL(write_inode_now);
675
676/**
677 * sync_inode - write an inode and its pages to disk.
678 * @inode: the inode to sync
679 * @wbc: controls the writeback mode
680 *
681 * sync_inode() will write an inode and its pages to disk. It will also
682 * correctly update the inode on its superblock's dirty inode lists and will
683 * update inode->i_state.
684 *
685 * The caller must have a ref on the inode.
686 */
687int sync_inode(struct inode *inode, struct writeback_control *wbc)
688{
689 int ret;
690
691 spin_lock(&inode_lock);
692 ret = __writeback_single_inode(inode, wbc);
693 spin_unlock(&inode_lock);
694 return ret;
695}
696EXPORT_SYMBOL(sync_inode);
697
698/**
699 * generic_osync_inode - flush all dirty data for a given inode to disk
700 * @inode: inode to write
67be2dd1 701 * @mapping: the address_space that should be flushed
1da177e4
LT
702 * @what: what to write and wait upon
703 *
704 * This can be called by file_write functions for files which have the
705 * O_SYNC flag set, to flush dirty writes to disk.
706 *
707 * @what is a bitmask, specifying which part of the inode's data should be
b8887e6e 708 * written and waited upon.
1da177e4
LT
709 *
710 * OSYNC_DATA: i_mapping's dirty data
711 * OSYNC_METADATA: the buffers at i_mapping->private_list
712 * OSYNC_INODE: the inode itself
713 */
714
715int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
716{
717 int err = 0;
718 int need_write_inode_now = 0;
719 int err2;
720
1da177e4
LT
721 if (what & OSYNC_DATA)
722 err = filemap_fdatawrite(mapping);
723 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
724 err2 = sync_mapping_buffers(mapping);
725 if (!err)
726 err = err2;
727 }
728 if (what & OSYNC_DATA) {
729 err2 = filemap_fdatawait(mapping);
730 if (!err)
731 err = err2;
732 }
1da177e4
LT
733
734 spin_lock(&inode_lock);
735 if ((inode->i_state & I_DIRTY) &&
736 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
737 need_write_inode_now = 1;
738 spin_unlock(&inode_lock);
739
740 if (need_write_inode_now) {
741 err2 = write_inode_now(inode, 1);
742 if (!err)
743 err = err2;
744 }
745 else
1c0eeaf5 746 inode_sync_wait(inode);
1da177e4
LT
747
748 return err;
749}
750
751EXPORT_SYMBOL(generic_osync_inode);
752
753/**
754 * writeback_acquire: attempt to get exclusive writeback access to a device
755 * @bdi: the device's backing_dev_info structure
756 *
757 * It is a waste of resources to have more than one pdflush thread blocked on
758 * a single request queue. Exclusion at the request_queue level is obtained
759 * via a flag in the request_queue's backing_dev_info.state.
760 *
761 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
762 * unless they implement their own. Which is somewhat inefficient, as this
763 * may prevent concurrent writeback against multiple devices.
764 */
765int writeback_acquire(struct backing_dev_info *bdi)
766{
767 return !test_and_set_bit(BDI_pdflush, &bdi->state);
768}
769
770/**
771 * writeback_in_progress: determine whether there is writeback in progress
1da177e4 772 * @bdi: the device's backing_dev_info structure.
b8887e6e
RD
773 *
774 * Determine whether there is writeback in progress against a backing device.
1da177e4
LT
775 */
776int writeback_in_progress(struct backing_dev_info *bdi)
777{
778 return test_bit(BDI_pdflush, &bdi->state);
779}
780
781/**
782 * writeback_release: relinquish exclusive writeback access against a device.
783 * @bdi: the device's backing_dev_info structure
784 */
785void writeback_release(struct backing_dev_info *bdi)
786{
787 BUG_ON(!writeback_in_progress(bdi));
788 clear_bit(BDI_pdflush, &bdi->state);
789}