]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
vfs: Move mark_inode_dirty() from under page lock in generic_write_end()
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
3dcf5451 38#include "ext4_jbd2.h"
ac27a0ec
DK
39#include "xattr.h"
40#include "acl.h"
41
ac27a0ec
DK
42/*
43 * Test whether an inode is a fast symlink.
44 */
617ba13b 45static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 46{
617ba13b 47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51}
52
53/*
617ba13b 54 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
617ba13b
MC
62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
64{
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
617ba13b
MC
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 83 if (bh) {
dab291af 84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 85 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
617ba13b
MC
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 95 if (err)
46e665e9 96 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100}
101
102/*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106static unsigned long blocks_for_truncate(struct inode *inode)
107{
725d26d3 108 ext4_lblk_t needed;
ac27a0ec
DK
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
617ba13b 115 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
617ba13b
MC
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 125
617ba13b 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
127}
128
129/*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139static handle_t *start_transaction(struct inode *inode)
140{
141 handle_t *result;
142
617ba13b 143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
144 if (!IS_ERR(result))
145 return result;
146
617ba13b 147 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
148 return result;
149}
150
151/*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158{
617ba13b 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 160 return 0;
617ba13b 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
162 return 0;
163 return 1;
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
617ba13b 171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
172{
173 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
617ba13b 180void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
181{
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
617ba13b 196 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
617ba13b 204 ext4_truncate(inode);
ac27a0ec 205 /*
617ba13b 206 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 207 * AKPM: I think this can be inside the above `if'.
617ba13b 208 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 209 * deletion of a non-existent orphan - this is because we don't
617ba13b 210 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
211 * (Well, we could do this if we need to, but heck - it works)
212 */
617ba13b
MC
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
617ba13b 223 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
617ba13b
MC
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
ac27a0ec
DK
229 return;
230no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232}
233
234typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238} Indirect;
239
240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241{
242 p->key = *(p->p = v);
243 p->bh = bh;
244}
245
ac27a0ec 246/**
617ba13b 247 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
8c55e204
DK
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
ac27a0ec 253 *
617ba13b 254 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267/*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
617ba13b 277static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 280{
617ba13b
MC
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
617ba13b 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 295 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 299 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 304 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
e2b46574 310 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 311 "block %lu > max",
e2b46574
ES
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
ac27a0ec
DK
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318}
319
320/**
617ba13b 321 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
ac27a0ec
DK
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
346 *
347 * Need to be called with
0e855ac8 348 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 349 */
725d26d3
AK
350static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
ac27a0ec
DK
352 Indirect chain[4], int *err)
353{
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
617ba13b 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
ac27a0ec
DK
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
ac27a0ec
DK
374failure:
375 *err = -EIO;
376no_block:
377 return p;
378}
379
380/**
617ba13b 381 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
1cc8dcf5 385 * This function returns the preferred place for block allocation.
ac27a0ec
DK
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
617ba13b 400static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 401{
617ba13b 402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
617ba13b 405 ext4_fsblk_t bg_start;
74d3487f 406 ext4_fsblk_t last_block;
617ba13b 407 ext4_grpblk_t colour;
ac27a0ec
DK
408
409 /* Try to find previous block */
410 for (p = ind->p - 1; p >= start; p--) {
411 if (*p)
412 return le32_to_cpu(*p);
413 }
414
415 /* No such thing, so let's try location of indirect block */
416 if (ind->bh)
417 return ind->bh->b_blocknr;
418
419 /*
420 * It is going to be referred to from the inode itself? OK, just put it
421 * into the same cylinder group then.
422 */
617ba13b 423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425
426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427 colour = (current->pid % 16) *
617ba13b 428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
429 else
430 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
431 return bg_start + colour;
432}
433
434/**
1cc8dcf5 435 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
436 * @inode: owner
437 * @block: block we want
ac27a0ec 438 * @partial: pointer to the last triple within a chain
ac27a0ec 439 *
1cc8dcf5 440 * Normally this function find the preferred place for block allocation,
fb01bfda 441 * returns it.
ac27a0ec 442 */
725d26d3 443static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 444 Indirect *partial)
ac27a0ec 445{
617ba13b 446 struct ext4_block_alloc_info *block_i;
ac27a0ec 447
617ba13b 448 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
449
450 /*
451 * try the heuristic for sequential allocation,
452 * failing that at least try to get decent locality.
453 */
454 if (block_i && (block == block_i->last_alloc_logical_block + 1)
455 && (block_i->last_alloc_physical_block != 0)) {
456 return block_i->last_alloc_physical_block + 1;
457 }
458
617ba13b 459 return ext4_find_near(inode, partial);
ac27a0ec
DK
460}
461
462/**
617ba13b 463 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
464 * of direct blocks need to be allocated for the given branch.
465 *
466 * @branch: chain of indirect blocks
467 * @k: number of blocks need for indirect blocks
468 * @blks: number of data blocks to be mapped.
469 * @blocks_to_boundary: the offset in the indirect block
470 *
471 * return the total number of blocks to be allocate, including the
472 * direct and indirect blocks.
473 */
617ba13b 474static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
475 int blocks_to_boundary)
476{
477 unsigned long count = 0;
478
479 /*
480 * Simple case, [t,d]Indirect block(s) has not allocated yet
481 * then it's clear blocks on that path have not allocated
482 */
483 if (k > 0) {
484 /* right now we don't handle cross boundary allocation */
485 if (blks < blocks_to_boundary + 1)
486 count += blks;
487 else
488 count += blocks_to_boundary + 1;
489 return count;
490 }
491
492 count++;
493 while (count < blks && count <= blocks_to_boundary &&
494 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 count++;
496 }
497 return count;
498}
499
500/**
617ba13b 501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
502 * @indirect_blks: the number of blocks need to allocate for indirect
503 * blocks
504 *
505 * @new_blocks: on return it will store the new block numbers for
506 * the indirect blocks(if needed) and the first direct block,
507 * @blks: on return it will store the total number of allocated
508 * direct blocks
509 */
617ba13b 510static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
511 ext4_lblk_t iblock, ext4_fsblk_t goal,
512 int indirect_blks, int blks,
513 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
514{
515 int target, i;
7061eba7 516 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 517 int index = 0;
617ba13b 518 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
519 int ret = 0;
520
521 /*
522 * Here we try to allocate the requested multiple blocks at once,
523 * on a best-effort basis.
524 * To build a branch, we should allocate blocks for
525 * the indirect blocks(if not allocated yet), and at least
526 * the first direct block of this branch. That's the
527 * minimum number of blocks need to allocate(required)
528 */
7061eba7
AK
529 /* first we try to allocate the indirect blocks */
530 target = indirect_blks;
531 while (target > 0) {
ac27a0ec
DK
532 count = target;
533 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
534 current_block = ext4_new_meta_blocks(handle, inode,
535 goal, &count, err);
ac27a0ec
DK
536 if (*err)
537 goto failed_out;
538
539 target -= count;
540 /* allocate blocks for indirect blocks */
541 while (index < indirect_blks && count) {
542 new_blocks[index++] = current_block++;
543 count--;
544 }
7061eba7
AK
545 if (count > 0) {
546 /*
547 * save the new block number
548 * for the first direct block
549 */
550 new_blocks[index] = current_block;
551 printk(KERN_INFO "%s returned more blocks than "
552 "requested\n", __func__);
553 WARN_ON(1);
ac27a0ec 554 break;
7061eba7 555 }
ac27a0ec
DK
556 }
557
7061eba7
AK
558 target = blks - count ;
559 blk_allocated = count;
560 if (!target)
561 goto allocated;
562 /* Now allocate data blocks */
563 count = target;
654b4908 564 /* allocating blocks for data blocks */
7061eba7
AK
565 current_block = ext4_new_blocks(handle, inode, iblock,
566 goal, &count, err);
567 if (*err && (target == blks)) {
568 /*
569 * if the allocation failed and we didn't allocate
570 * any blocks before
571 */
572 goto failed_out;
573 }
574 if (!*err) {
575 if (target == blks) {
576 /*
577 * save the new block number
578 * for the first direct block
579 */
580 new_blocks[index] = current_block;
581 }
582 blk_allocated += count;
583 }
584allocated:
ac27a0ec 585 /* total number of blocks allocated for direct blocks */
7061eba7 586 ret = blk_allocated;
ac27a0ec
DK
587 *err = 0;
588 return ret;
589failed_out:
590 for (i = 0; i <index; i++)
c9de560d 591 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
592 return ret;
593}
594
595/**
617ba13b 596 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
597 * @inode: owner
598 * @indirect_blks: number of allocated indirect blocks
599 * @blks: number of allocated direct blocks
600 * @offsets: offsets (in the blocks) to store the pointers to next.
601 * @branch: place to store the chain in.
602 *
603 * This function allocates blocks, zeroes out all but the last one,
604 * links them into chain and (if we are synchronous) writes them to disk.
605 * In other words, it prepares a branch that can be spliced onto the
606 * inode. It stores the information about that chain in the branch[], in
617ba13b 607 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
608 * we had read the existing part of chain and partial points to the last
609 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 610 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
611 * place chain is disconnected - *branch->p is still zero (we did not
612 * set the last link), but branch->key contains the number that should
613 * be placed into *branch->p to fill that gap.
614 *
615 * If allocation fails we free all blocks we've allocated (and forget
616 * their buffer_heads) and return the error value the from failed
617ba13b 617 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
618 * as described above and return 0.
619 */
617ba13b 620static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
621 ext4_lblk_t iblock, int indirect_blks,
622 int *blks, ext4_fsblk_t goal,
623 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
624{
625 int blocksize = inode->i_sb->s_blocksize;
626 int i, n = 0;
627 int err = 0;
628 struct buffer_head *bh;
629 int num;
617ba13b
MC
630 ext4_fsblk_t new_blocks[4];
631 ext4_fsblk_t current_block;
ac27a0ec 632
7061eba7 633 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
634 *blks, new_blocks, &err);
635 if (err)
636 return err;
637
638 branch[0].key = cpu_to_le32(new_blocks[0]);
639 /*
640 * metadata blocks and data blocks are allocated.
641 */
642 for (n = 1; n <= indirect_blks; n++) {
643 /*
644 * Get buffer_head for parent block, zero it out
645 * and set the pointer to new one, then send
646 * parent to disk.
647 */
648 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
649 branch[n].bh = bh;
650 lock_buffer(bh);
651 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 652 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
653 if (err) {
654 unlock_buffer(bh);
655 brelse(bh);
656 goto failed;
657 }
658
659 memset(bh->b_data, 0, blocksize);
660 branch[n].p = (__le32 *) bh->b_data + offsets[n];
661 branch[n].key = cpu_to_le32(new_blocks[n]);
662 *branch[n].p = branch[n].key;
663 if ( n == indirect_blks) {
664 current_block = new_blocks[n];
665 /*
666 * End of chain, update the last new metablock of
667 * the chain to point to the new allocated
668 * data blocks numbers
669 */
670 for (i=1; i < num; i++)
671 *(branch[n].p + i) = cpu_to_le32(++current_block);
672 }
673 BUFFER_TRACE(bh, "marking uptodate");
674 set_buffer_uptodate(bh);
675 unlock_buffer(bh);
676
617ba13b
MC
677 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
678 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
679 if (err)
680 goto failed;
681 }
682 *blks = num;
683 return err;
684failed:
685 /* Allocation failed, free what we already allocated */
686 for (i = 1; i <= n ; i++) {
dab291af 687 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 688 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
689 }
690 for (i = 0; i <indirect_blks; i++)
c9de560d 691 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 692
c9de560d 693 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
694
695 return err;
696}
697
698/**
617ba13b 699 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
700 * @inode: owner
701 * @block: (logical) number of block we are adding
702 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 703 * ext4_alloc_branch)
ac27a0ec
DK
704 * @where: location of missing link
705 * @num: number of indirect blocks we are adding
706 * @blks: number of direct blocks we are adding
707 *
708 * This function fills the missing link and does all housekeeping needed in
709 * inode (->i_blocks, etc.). In case of success we end up with the full
710 * chain to new block and return 0.
711 */
617ba13b 712static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 713 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
714{
715 int i;
716 int err = 0;
617ba13b
MC
717 struct ext4_block_alloc_info *block_i;
718 ext4_fsblk_t current_block;
ac27a0ec 719
617ba13b 720 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
721 /*
722 * If we're splicing into a [td]indirect block (as opposed to the
723 * inode) then we need to get write access to the [td]indirect block
724 * before the splice.
725 */
726 if (where->bh) {
727 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 728 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
729 if (err)
730 goto err_out;
731 }
732 /* That's it */
733
734 *where->p = where->key;
735
736 /*
737 * Update the host buffer_head or inode to point to more just allocated
738 * direct blocks blocks
739 */
740 if (num == 0 && blks > 1) {
741 current_block = le32_to_cpu(where->key) + 1;
742 for (i = 1; i < blks; i++)
743 *(where->p + i ) = cpu_to_le32(current_block++);
744 }
745
746 /*
747 * update the most recently allocated logical & physical block
748 * in i_block_alloc_info, to assist find the proper goal block for next
749 * allocation
750 */
751 if (block_i) {
752 block_i->last_alloc_logical_block = block + blks - 1;
753 block_i->last_alloc_physical_block =
754 le32_to_cpu(where[num].key) + blks - 1;
755 }
756
757 /* We are done with atomic stuff, now do the rest of housekeeping */
758
ef7f3835 759 inode->i_ctime = ext4_current_time(inode);
617ba13b 760 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
761
762 /* had we spliced it onto indirect block? */
763 if (where->bh) {
764 /*
765 * If we spliced it onto an indirect block, we haven't
766 * altered the inode. Note however that if it is being spliced
767 * onto an indirect block at the very end of the file (the
768 * file is growing) then we *will* alter the inode to reflect
769 * the new i_size. But that is not done here - it is done in
617ba13b 770 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
771 */
772 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
773 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
774 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
775 if (err)
776 goto err_out;
777 } else {
778 /*
779 * OK, we spliced it into the inode itself on a direct block.
780 * Inode was dirtied above.
781 */
782 jbd_debug(5, "splicing direct\n");
783 }
784 return err;
785
786err_out:
787 for (i = 1; i <= num; i++) {
dab291af 788 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 789 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
790 ext4_free_blocks(handle, inode,
791 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 792 }
c9de560d 793 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
794
795 return err;
796}
797
798/*
799 * Allocation strategy is simple: if we have to allocate something, we will
800 * have to go the whole way to leaf. So let's do it before attaching anything
801 * to tree, set linkage between the newborn blocks, write them if sync is
802 * required, recheck the path, free and repeat if check fails, otherwise
803 * set the last missing link (that will protect us from any truncate-generated
804 * removals - all blocks on the path are immune now) and possibly force the
805 * write on the parent block.
806 * That has a nice additional property: no special recovery from the failed
807 * allocations is needed - we simply release blocks and do not touch anything
808 * reachable from inode.
809 *
810 * `handle' can be NULL if create == 0.
811 *
ac27a0ec
DK
812 * return > 0, # of blocks mapped or allocated.
813 * return = 0, if plain lookup failed.
814 * return < 0, error case.
c278bfec
AK
815 *
816 *
817 * Need to be called with
0e855ac8
AK
818 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
819 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 820 */
617ba13b 821int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
823 struct buffer_head *bh_result,
824 int create, int extend_disksize)
825{
826 int err = -EIO;
725d26d3 827 ext4_lblk_t offsets[4];
ac27a0ec
DK
828 Indirect chain[4];
829 Indirect *partial;
617ba13b 830 ext4_fsblk_t goal;
ac27a0ec
DK
831 int indirect_blks;
832 int blocks_to_boundary = 0;
833 int depth;
617ba13b 834 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 835 int count = 0;
617ba13b 836 ext4_fsblk_t first_block = 0;
ac27a0ec
DK
837
838
a86c6181 839 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 840 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
841 depth = ext4_block_to_path(inode, iblock, offsets,
842 &blocks_to_boundary);
ac27a0ec
DK
843
844 if (depth == 0)
845 goto out;
846
617ba13b 847 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
848
849 /* Simplest case - block found, no allocation needed */
850 if (!partial) {
851 first_block = le32_to_cpu(chain[depth - 1].key);
852 clear_buffer_new(bh_result);
853 count++;
854 /*map more blocks*/
855 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 856 ext4_fsblk_t blk;
ac27a0ec 857
ac27a0ec
DK
858 blk = le32_to_cpu(*(chain[depth-1].p + count));
859
860 if (blk == first_block + count)
861 count++;
862 else
863 break;
864 }
c278bfec 865 goto got_it;
ac27a0ec
DK
866 }
867
868 /* Next simple case - plain lookup or failed read of indirect block */
869 if (!create || err == -EIO)
870 goto cleanup;
871
ac27a0ec
DK
872 /*
873 * Okay, we need to do block allocation. Lazily initialize the block
874 * allocation info here if necessary
875 */
876 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 877 ext4_init_block_alloc_info(inode);
ac27a0ec 878
fb01bfda 879 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
880
881 /* the number of blocks need to allocate for [d,t]indirect blocks */
882 indirect_blks = (chain + depth) - partial - 1;
883
884 /*
885 * Next look up the indirect map to count the totoal number of
886 * direct blocks to allocate for this branch.
887 */
617ba13b 888 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
889 maxblocks, blocks_to_boundary);
890 /*
617ba13b 891 * Block out ext4_truncate while we alter the tree
ac27a0ec 892 */
7061eba7
AK
893 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
894 &count, goal,
895 offsets + (partial - chain), partial);
ac27a0ec
DK
896
897 /*
617ba13b 898 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
899 * on the new chain if there is a failure, but that risks using
900 * up transaction credits, especially for bitmaps where the
901 * credits cannot be returned. Can we handle this somehow? We
902 * may need to return -EAGAIN upwards in the worst case. --sct
903 */
904 if (!err)
617ba13b 905 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
906 partial, indirect_blks, count);
907 /*
0e855ac8 908 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 909 * protect it if you're about to implement concurrent
617ba13b 910 * ext4_get_block() -bzzz
ac27a0ec
DK
911 */
912 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
913 ei->i_disksize = inode->i_size;
ac27a0ec
DK
914 if (err)
915 goto cleanup;
916
917 set_buffer_new(bh_result);
918got_it:
919 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
920 if (count > blocks_to_boundary)
921 set_buffer_boundary(bh_result);
922 err = count;
923 /* Clean up and exit */
924 partial = chain + depth - 1; /* the whole chain */
925cleanup:
926 while (partial > chain) {
927 BUFFER_TRACE(partial->bh, "call brelse");
928 brelse(partial->bh);
929 partial--;
930 }
931 BUFFER_TRACE(bh_result, "returned");
932out:
933 return err;
934}
935
7fb5409d
JK
936/* Maximum number of blocks we map for direct IO at once. */
937#define DIO_MAX_BLOCKS 4096
938/*
939 * Number of credits we need for writing DIO_MAX_BLOCKS:
940 * We need sb + group descriptor + bitmap + inode -> 4
941 * For B blocks with A block pointers per block we need:
942 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
943 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
944 */
945#define DIO_CREDITS 25
ac27a0ec 946
f5ab0d1f
MC
947
948/*
949 *
950 *
951 * ext4_ext4 get_block() wrapper function
952 * It will do a look up first, and returns if the blocks already mapped.
953 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
954 * and store the allocated blocks in the result buffer head and mark it
955 * mapped.
956 *
957 * If file type is extents based, it will call ext4_ext_get_blocks(),
958 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
959 * based files
960 *
961 * On success, it returns the number of blocks being mapped or allocate.
962 * if create==0 and the blocks are pre-allocated and uninitialized block,
963 * the result buffer head is unmapped. If the create ==1, it will make sure
964 * the buffer head is mapped.
965 *
966 * It returns 0 if plain look up failed (blocks have not been allocated), in
967 * that casem, buffer head is unmapped
968 *
969 * It returns the error in case of allocation failure.
970 */
0e855ac8
AK
971int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
972 unsigned long max_blocks, struct buffer_head *bh,
973 int create, int extend_disksize)
974{
975 int retval;
f5ab0d1f
MC
976
977 clear_buffer_mapped(bh);
978
4df3d265
AK
979 /*
980 * Try to see if we can get the block without requesting
981 * for new file system block.
982 */
983 down_read((&EXT4_I(inode)->i_data_sem));
984 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
985 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
986 bh, 0, 0);
0e855ac8 987 } else {
4df3d265
AK
988 retval = ext4_get_blocks_handle(handle,
989 inode, block, max_blocks, bh, 0, 0);
0e855ac8 990 }
4df3d265 991 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
992
993 /* If it is only a block(s) look up */
994 if (!create)
995 return retval;
996
997 /*
998 * Returns if the blocks have already allocated
999 *
1000 * Note that if blocks have been preallocated
1001 * ext4_ext_get_block() returns th create = 0
1002 * with buffer head unmapped.
1003 */
1004 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1005 return retval;
1006
1007 /*
f5ab0d1f
MC
1008 * New blocks allocate and/or writing to uninitialized extent
1009 * will possibly result in updating i_data, so we take
1010 * the write lock of i_data_sem, and call get_blocks()
1011 * with create == 1 flag.
4df3d265
AK
1012 */
1013 down_write((&EXT4_I(inode)->i_data_sem));
1014 /*
1015 * We need to check for EXT4 here because migrate
1016 * could have changed the inode type in between
1017 */
0e855ac8
AK
1018 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1019 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1020 bh, create, extend_disksize);
1021 } else {
1022 retval = ext4_get_blocks_handle(handle, inode, block,
1023 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1024
1025 if (retval > 0 && buffer_new(bh)) {
1026 /*
1027 * We allocated new blocks which will result in
1028 * i_data's format changing. Force the migrate
1029 * to fail by clearing migrate flags
1030 */
1031 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1032 ~EXT4_EXT_MIGRATE;
1033 }
0e855ac8 1034 }
4df3d265 1035 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1036 return retval;
1037}
1038
617ba13b 1039static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1040 struct buffer_head *bh_result, int create)
1041{
3e4fdaf8 1042 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1043 int ret = 0, started = 0;
ac27a0ec
DK
1044 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1045
7fb5409d
JK
1046 if (create && !handle) {
1047 /* Direct IO write... */
1048 if (max_blocks > DIO_MAX_BLOCKS)
1049 max_blocks = DIO_MAX_BLOCKS;
1050 handle = ext4_journal_start(inode, DIO_CREDITS +
1051 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1052 if (IS_ERR(handle)) {
ac27a0ec 1053 ret = PTR_ERR(handle);
7fb5409d 1054 goto out;
ac27a0ec 1055 }
7fb5409d 1056 started = 1;
ac27a0ec
DK
1057 }
1058
7fb5409d 1059 ret = ext4_get_blocks_wrap(handle, inode, iblock,
ac27a0ec 1060 max_blocks, bh_result, create, 0);
7fb5409d
JK
1061 if (ret > 0) {
1062 bh_result->b_size = (ret << inode->i_blkbits);
1063 ret = 0;
ac27a0ec 1064 }
7fb5409d
JK
1065 if (started)
1066 ext4_journal_stop(handle);
1067out:
ac27a0ec
DK
1068 return ret;
1069}
1070
1071/*
1072 * `handle' can be NULL if create is zero
1073 */
617ba13b 1074struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1075 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1076{
1077 struct buffer_head dummy;
1078 int fatal = 0, err;
1079
1080 J_ASSERT(handle != NULL || create == 0);
1081
1082 dummy.b_state = 0;
1083 dummy.b_blocknr = -1000;
1084 buffer_trace_init(&dummy.b_history);
a86c6181 1085 err = ext4_get_blocks_wrap(handle, inode, block, 1,
ac27a0ec
DK
1086 &dummy, create, 1);
1087 /*
617ba13b 1088 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1089 * mapped. 0 in case of a HOLE.
1090 */
1091 if (err > 0) {
1092 if (err > 1)
1093 WARN_ON(1);
1094 err = 0;
1095 }
1096 *errp = err;
1097 if (!err && buffer_mapped(&dummy)) {
1098 struct buffer_head *bh;
1099 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1100 if (!bh) {
1101 *errp = -EIO;
1102 goto err;
1103 }
1104 if (buffer_new(&dummy)) {
1105 J_ASSERT(create != 0);
ac39849d 1106 J_ASSERT(handle != NULL);
ac27a0ec
DK
1107
1108 /*
1109 * Now that we do not always journal data, we should
1110 * keep in mind whether this should always journal the
1111 * new buffer as metadata. For now, regular file
617ba13b 1112 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1113 * problem.
1114 */
1115 lock_buffer(bh);
1116 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1117 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1118 if (!fatal && !buffer_uptodate(bh)) {
1119 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1120 set_buffer_uptodate(bh);
1121 }
1122 unlock_buffer(bh);
617ba13b
MC
1123 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1124 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1125 if (!fatal)
1126 fatal = err;
1127 } else {
1128 BUFFER_TRACE(bh, "not a new buffer");
1129 }
1130 if (fatal) {
1131 *errp = fatal;
1132 brelse(bh);
1133 bh = NULL;
1134 }
1135 return bh;
1136 }
1137err:
1138 return NULL;
1139}
1140
617ba13b 1141struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1142 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1143{
1144 struct buffer_head * bh;
1145
617ba13b 1146 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1147 if (!bh)
1148 return bh;
1149 if (buffer_uptodate(bh))
1150 return bh;
1151 ll_rw_block(READ_META, 1, &bh);
1152 wait_on_buffer(bh);
1153 if (buffer_uptodate(bh))
1154 return bh;
1155 put_bh(bh);
1156 *err = -EIO;
1157 return NULL;
1158}
1159
1160static int walk_page_buffers( handle_t *handle,
1161 struct buffer_head *head,
1162 unsigned from,
1163 unsigned to,
1164 int *partial,
1165 int (*fn)( handle_t *handle,
1166 struct buffer_head *bh))
1167{
1168 struct buffer_head *bh;
1169 unsigned block_start, block_end;
1170 unsigned blocksize = head->b_size;
1171 int err, ret = 0;
1172 struct buffer_head *next;
1173
1174 for ( bh = head, block_start = 0;
1175 ret == 0 && (bh != head || !block_start);
1176 block_start = block_end, bh = next)
1177 {
1178 next = bh->b_this_page;
1179 block_end = block_start + blocksize;
1180 if (block_end <= from || block_start >= to) {
1181 if (partial && !buffer_uptodate(bh))
1182 *partial = 1;
1183 continue;
1184 }
1185 err = (*fn)(handle, bh);
1186 if (!ret)
1187 ret = err;
1188 }
1189 return ret;
1190}
1191
1192/*
1193 * To preserve ordering, it is essential that the hole instantiation and
1194 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1195 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1196 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1197 * prepare_write() is the right place.
1198 *
617ba13b
MC
1199 * Also, this function can nest inside ext4_writepage() ->
1200 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1201 * has generated enough buffer credits to do the whole page. So we won't
1202 * block on the journal in that case, which is good, because the caller may
1203 * be PF_MEMALLOC.
1204 *
617ba13b 1205 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1206 * quota file writes. If we were to commit the transaction while thus
1207 * reentered, there can be a deadlock - we would be holding a quota
1208 * lock, and the commit would never complete if another thread had a
1209 * transaction open and was blocking on the quota lock - a ranking
1210 * violation.
1211 *
dab291af 1212 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1213 * will _not_ run commit under these circumstances because handle->h_ref
1214 * is elevated. We'll still have enough credits for the tiny quotafile
1215 * write.
1216 */
1217static int do_journal_get_write_access(handle_t *handle,
1218 struct buffer_head *bh)
1219{
1220 if (!buffer_mapped(bh) || buffer_freed(bh))
1221 return 0;
617ba13b 1222 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1223}
1224
bfc1af65
NP
1225static int ext4_write_begin(struct file *file, struct address_space *mapping,
1226 loff_t pos, unsigned len, unsigned flags,
1227 struct page **pagep, void **fsdata)
ac27a0ec 1228{
bfc1af65 1229 struct inode *inode = mapping->host;
7479d2b9 1230 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1231 handle_t *handle;
1232 int retries = 0;
bfc1af65
NP
1233 struct page *page;
1234 pgoff_t index;
1235 unsigned from, to;
1236
1237 index = pos >> PAGE_CACHE_SHIFT;
1238 from = pos & (PAGE_CACHE_SIZE - 1);
1239 to = from + len;
ac27a0ec
DK
1240
1241retry:
bfc1af65
NP
1242 page = __grab_cache_page(mapping, index);
1243 if (!page)
1244 return -ENOMEM;
1245 *pagep = page;
1246
1247 handle = ext4_journal_start(inode, needed_blocks);
1248 if (IS_ERR(handle)) {
1249 unlock_page(page);
1250 page_cache_release(page);
1251 ret = PTR_ERR(handle);
1252 goto out;
7479d2b9 1253 }
ac27a0ec 1254
bfc1af65
NP
1255 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1256 ext4_get_block);
1257
1258 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1259 ret = walk_page_buffers(handle, page_buffers(page),
1260 from, to, NULL, do_journal_get_write_access);
1261 }
bfc1af65
NP
1262
1263 if (ret) {
7479d2b9 1264 ext4_journal_stop(handle);
bfc1af65
NP
1265 unlock_page(page);
1266 page_cache_release(page);
1267 }
1268
617ba13b 1269 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1270 goto retry;
7479d2b9 1271out:
ac27a0ec
DK
1272 return ret;
1273}
1274
617ba13b 1275int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1276{
dab291af 1277 int err = jbd2_journal_dirty_data(handle, bh);
ac27a0ec 1278 if (err)
46e665e9 1279 ext4_journal_abort_handle(__func__, __func__,
bfc1af65 1280 bh, handle, err);
ac27a0ec
DK
1281 return err;
1282}
1283
bfc1af65
NP
1284/* For write_end() in data=journal mode */
1285static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1286{
1287 if (!buffer_mapped(bh) || buffer_freed(bh))
1288 return 0;
1289 set_buffer_uptodate(bh);
617ba13b 1290 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1291}
1292
bfc1af65
NP
1293/*
1294 * Generic write_end handler for ordered and writeback ext4 journal modes.
1295 * We can't use generic_write_end, because that unlocks the page and we need to
1296 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1297 * after block_write_end.
1298 */
1299static int ext4_generic_write_end(struct file *file,
1300 struct address_space *mapping,
1301 loff_t pos, unsigned len, unsigned copied,
1302 struct page *page, void *fsdata)
1303{
1304 struct inode *inode = file->f_mapping->host;
1305
1306 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1307
1308 if (pos+copied > inode->i_size) {
1309 i_size_write(inode, pos+copied);
1310 mark_inode_dirty(inode);
1311 }
1312
1313 return copied;
1314}
1315
ac27a0ec
DK
1316/*
1317 * We need to pick up the new inode size which generic_commit_write gave us
1318 * `file' can be NULL - eg, when called from page_symlink().
1319 *
617ba13b 1320 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1321 * buffers are managed internally.
1322 */
bfc1af65
NP
1323static int ext4_ordered_write_end(struct file *file,
1324 struct address_space *mapping,
1325 loff_t pos, unsigned len, unsigned copied,
1326 struct page *page, void *fsdata)
ac27a0ec 1327{
617ba13b 1328 handle_t *handle = ext4_journal_current_handle();
bfc1af65
NP
1329 struct inode *inode = file->f_mapping->host;
1330 unsigned from, to;
ac27a0ec
DK
1331 int ret = 0, ret2;
1332
bfc1af65
NP
1333 from = pos & (PAGE_CACHE_SIZE - 1);
1334 to = from + len;
1335
ac27a0ec 1336 ret = walk_page_buffers(handle, page_buffers(page),
617ba13b 1337 from, to, NULL, ext4_journal_dirty_data);
ac27a0ec
DK
1338
1339 if (ret == 0) {
1340 /*
bfc1af65 1341 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1342 * changes. So let's piggyback the i_disksize mark_inode_dirty
1343 * into that.
1344 */
1345 loff_t new_i_size;
1346
bfc1af65 1347 new_i_size = pos + copied;
617ba13b
MC
1348 if (new_i_size > EXT4_I(inode)->i_disksize)
1349 EXT4_I(inode)->i_disksize = new_i_size;
f8a87d89 1350 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1351 page, fsdata);
f8a87d89
RK
1352 copied = ret2;
1353 if (ret2 < 0)
1354 ret = ret2;
ac27a0ec 1355 }
617ba13b 1356 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1357 if (!ret)
1358 ret = ret2;
bfc1af65
NP
1359 unlock_page(page);
1360 page_cache_release(page);
1361
1362 return ret ? ret : copied;
ac27a0ec
DK
1363}
1364
bfc1af65
NP
1365static int ext4_writeback_write_end(struct file *file,
1366 struct address_space *mapping,
1367 loff_t pos, unsigned len, unsigned copied,
1368 struct page *page, void *fsdata)
ac27a0ec 1369{
617ba13b 1370 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1371 struct inode *inode = file->f_mapping->host;
ac27a0ec
DK
1372 int ret = 0, ret2;
1373 loff_t new_i_size;
1374
bfc1af65 1375 new_i_size = pos + copied;
617ba13b
MC
1376 if (new_i_size > EXT4_I(inode)->i_disksize)
1377 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1378
f8a87d89 1379 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1380 page, fsdata);
f8a87d89
RK
1381 copied = ret2;
1382 if (ret2 < 0)
1383 ret = ret2;
ac27a0ec 1384
617ba13b 1385 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1386 if (!ret)
1387 ret = ret2;
bfc1af65
NP
1388 unlock_page(page);
1389 page_cache_release(page);
1390
1391 return ret ? ret : copied;
ac27a0ec
DK
1392}
1393
bfc1af65
NP
1394static int ext4_journalled_write_end(struct file *file,
1395 struct address_space *mapping,
1396 loff_t pos, unsigned len, unsigned copied,
1397 struct page *page, void *fsdata)
ac27a0ec 1398{
617ba13b 1399 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1400 struct inode *inode = mapping->host;
ac27a0ec
DK
1401 int ret = 0, ret2;
1402 int partial = 0;
bfc1af65 1403 unsigned from, to;
ac27a0ec 1404
bfc1af65
NP
1405 from = pos & (PAGE_CACHE_SIZE - 1);
1406 to = from + len;
1407
1408 if (copied < len) {
1409 if (!PageUptodate(page))
1410 copied = 0;
1411 page_zero_new_buffers(page, from+copied, to);
1412 }
ac27a0ec
DK
1413
1414 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1415 to, &partial, write_end_fn);
ac27a0ec
DK
1416 if (!partial)
1417 SetPageUptodate(page);
bfc1af65
NP
1418 if (pos+copied > inode->i_size)
1419 i_size_write(inode, pos+copied);
617ba13b
MC
1420 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1421 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1422 EXT4_I(inode)->i_disksize = inode->i_size;
1423 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1424 if (!ret)
1425 ret = ret2;
1426 }
bfc1af65 1427
617ba13b 1428 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1429 if (!ret)
1430 ret = ret2;
bfc1af65
NP
1431 unlock_page(page);
1432 page_cache_release(page);
1433
1434 return ret ? ret : copied;
ac27a0ec
DK
1435}
1436
1437/*
1438 * bmap() is special. It gets used by applications such as lilo and by
1439 * the swapper to find the on-disk block of a specific piece of data.
1440 *
1441 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 1442 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
1443 * filesystem and enables swap, then they may get a nasty shock when the
1444 * data getting swapped to that swapfile suddenly gets overwritten by
1445 * the original zero's written out previously to the journal and
1446 * awaiting writeback in the kernel's buffer cache.
1447 *
1448 * So, if we see any bmap calls here on a modified, data-journaled file,
1449 * take extra steps to flush any blocks which might be in the cache.
1450 */
617ba13b 1451static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
1452{
1453 struct inode *inode = mapping->host;
1454 journal_t *journal;
1455 int err;
1456
617ba13b 1457 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
1458 /*
1459 * This is a REALLY heavyweight approach, but the use of
1460 * bmap on dirty files is expected to be extremely rare:
1461 * only if we run lilo or swapon on a freshly made file
1462 * do we expect this to happen.
1463 *
1464 * (bmap requires CAP_SYS_RAWIO so this does not
1465 * represent an unprivileged user DOS attack --- we'd be
1466 * in trouble if mortal users could trigger this path at
1467 * will.)
1468 *
617ba13b 1469 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
1470 * regular files. If somebody wants to bmap a directory
1471 * or symlink and gets confused because the buffer
1472 * hasn't yet been flushed to disk, they deserve
1473 * everything they get.
1474 */
1475
617ba13b
MC
1476 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1477 journal = EXT4_JOURNAL(inode);
dab291af
MC
1478 jbd2_journal_lock_updates(journal);
1479 err = jbd2_journal_flush(journal);
1480 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
1481
1482 if (err)
1483 return 0;
1484 }
1485
617ba13b 1486 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
1487}
1488
1489static int bget_one(handle_t *handle, struct buffer_head *bh)
1490{
1491 get_bh(bh);
1492 return 0;
1493}
1494
1495static int bput_one(handle_t *handle, struct buffer_head *bh)
1496{
1497 put_bh(bh);
1498 return 0;
1499}
1500
dab291af 1501static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1502{
1503 if (buffer_mapped(bh))
617ba13b 1504 return ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1505 return 0;
1506}
1507
1508/*
1509 * Note that we always start a transaction even if we're not journalling
1510 * data. This is to preserve ordering: any hole instantiation within
617ba13b 1511 * __block_write_full_page -> ext4_get_block() should be journalled
ac27a0ec
DK
1512 * along with the data so we don't crash and then get metadata which
1513 * refers to old data.
1514 *
1515 * In all journalling modes block_write_full_page() will start the I/O.
1516 *
1517 * Problem:
1518 *
617ba13b
MC
1519 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1520 * ext4_writepage()
ac27a0ec
DK
1521 *
1522 * Similar for:
1523 *
617ba13b 1524 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 1525 *
617ba13b 1526 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 1527 * lock_journal and i_data_sem
ac27a0ec
DK
1528 *
1529 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1530 * allocations fail.
1531 *
1532 * 16May01: If we're reentered then journal_current_handle() will be
1533 * non-zero. We simply *return*.
1534 *
1535 * 1 July 2001: @@@ FIXME:
1536 * In journalled data mode, a data buffer may be metadata against the
1537 * current transaction. But the same file is part of a shared mapping
1538 * and someone does a writepage() on it.
1539 *
1540 * We will move the buffer onto the async_data list, but *after* it has
1541 * been dirtied. So there's a small window where we have dirty data on
1542 * BJ_Metadata.
1543 *
1544 * Note that this only applies to the last partial page in the file. The
1545 * bit which block_write_full_page() uses prepare/commit for. (That's
1546 * broken code anyway: it's wrong for msync()).
1547 *
1548 * It's a rare case: affects the final partial page, for journalled data
1549 * where the file is subject to bith write() and writepage() in the same
1550 * transction. To fix it we'll need a custom block_write_full_page().
1551 * We'll probably need that anyway for journalling writepage() output.
1552 *
1553 * We don't honour synchronous mounts for writepage(). That would be
1554 * disastrous. Any write() or metadata operation will sync the fs for
1555 * us.
1556 *
1557 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1558 * we don't need to open a transaction here.
1559 */
617ba13b 1560static int ext4_ordered_writepage(struct page *page,
ac27a0ec
DK
1561 struct writeback_control *wbc)
1562{
1563 struct inode *inode = page->mapping->host;
1564 struct buffer_head *page_bufs;
1565 handle_t *handle = NULL;
1566 int ret = 0;
1567 int err;
1568
1569 J_ASSERT(PageLocked(page));
1570
1571 /*
1572 * We give up here if we're reentered, because it might be for a
1573 * different filesystem.
1574 */
617ba13b 1575 if (ext4_journal_current_handle())
ac27a0ec
DK
1576 goto out_fail;
1577
617ba13b 1578 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1579
1580 if (IS_ERR(handle)) {
1581 ret = PTR_ERR(handle);
1582 goto out_fail;
1583 }
1584
1585 if (!page_has_buffers(page)) {
1586 create_empty_buffers(page, inode->i_sb->s_blocksize,
1587 (1 << BH_Dirty)|(1 << BH_Uptodate));
1588 }
1589 page_bufs = page_buffers(page);
1590 walk_page_buffers(handle, page_bufs, 0,
1591 PAGE_CACHE_SIZE, NULL, bget_one);
1592
617ba13b 1593 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec
DK
1594
1595 /*
1596 * The page can become unlocked at any point now, and
1597 * truncate can then come in and change things. So we
1598 * can't touch *page from now on. But *page_bufs is
1599 * safe due to elevated refcount.
1600 */
1601
1602 /*
1603 * And attach them to the current transaction. But only if
1604 * block_write_full_page() succeeded. Otherwise they are unmapped,
1605 * and generally junk.
1606 */
1607 if (ret == 0) {
1608 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
dab291af 1609 NULL, jbd2_journal_dirty_data_fn);
ac27a0ec
DK
1610 if (!ret)
1611 ret = err;
1612 }
1613 walk_page_buffers(handle, page_bufs, 0,
1614 PAGE_CACHE_SIZE, NULL, bput_one);
617ba13b 1615 err = ext4_journal_stop(handle);
ac27a0ec
DK
1616 if (!ret)
1617 ret = err;
1618 return ret;
1619
1620out_fail:
1621 redirty_page_for_writepage(wbc, page);
1622 unlock_page(page);
1623 return ret;
1624}
1625
617ba13b 1626static int ext4_writeback_writepage(struct page *page,
ac27a0ec
DK
1627 struct writeback_control *wbc)
1628{
1629 struct inode *inode = page->mapping->host;
1630 handle_t *handle = NULL;
1631 int ret = 0;
1632 int err;
1633
617ba13b 1634 if (ext4_journal_current_handle())
ac27a0ec
DK
1635 goto out_fail;
1636
617ba13b 1637 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1638 if (IS_ERR(handle)) {
1639 ret = PTR_ERR(handle);
1640 goto out_fail;
1641 }
1642
617ba13b
MC
1643 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1644 ret = nobh_writepage(page, ext4_get_block, wbc);
ac27a0ec 1645 else
617ba13b 1646 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1647
617ba13b 1648 err = ext4_journal_stop(handle);
ac27a0ec
DK
1649 if (!ret)
1650 ret = err;
1651 return ret;
1652
1653out_fail:
1654 redirty_page_for_writepage(wbc, page);
1655 unlock_page(page);
1656 return ret;
1657}
1658
617ba13b 1659static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
1660 struct writeback_control *wbc)
1661{
1662 struct inode *inode = page->mapping->host;
1663 handle_t *handle = NULL;
1664 int ret = 0;
1665 int err;
1666
617ba13b 1667 if (ext4_journal_current_handle())
ac27a0ec
DK
1668 goto no_write;
1669
617ba13b 1670 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1671 if (IS_ERR(handle)) {
1672 ret = PTR_ERR(handle);
1673 goto no_write;
1674 }
1675
1676 if (!page_has_buffers(page) || PageChecked(page)) {
1677 /*
1678 * It's mmapped pagecache. Add buffers and journal it. There
1679 * doesn't seem much point in redirtying the page here.
1680 */
1681 ClearPageChecked(page);
1682 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
617ba13b 1683 ext4_get_block);
ac27a0ec 1684 if (ret != 0) {
617ba13b 1685 ext4_journal_stop(handle);
ac27a0ec
DK
1686 goto out_unlock;
1687 }
1688 ret = walk_page_buffers(handle, page_buffers(page), 0,
1689 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1690
1691 err = walk_page_buffers(handle, page_buffers(page), 0,
bfc1af65 1692 PAGE_CACHE_SIZE, NULL, write_end_fn);
ac27a0ec
DK
1693 if (ret == 0)
1694 ret = err;
617ba13b 1695 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
ac27a0ec
DK
1696 unlock_page(page);
1697 } else {
1698 /*
1699 * It may be a page full of checkpoint-mode buffers. We don't
1700 * really know unless we go poke around in the buffer_heads.
1701 * But block_write_full_page will do the right thing.
1702 */
617ba13b 1703 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1704 }
617ba13b 1705 err = ext4_journal_stop(handle);
ac27a0ec
DK
1706 if (!ret)
1707 ret = err;
1708out:
1709 return ret;
1710
1711no_write:
1712 redirty_page_for_writepage(wbc, page);
1713out_unlock:
1714 unlock_page(page);
1715 goto out;
1716}
1717
617ba13b 1718static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 1719{
617ba13b 1720 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
1721}
1722
1723static int
617ba13b 1724ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
1725 struct list_head *pages, unsigned nr_pages)
1726{
617ba13b 1727 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
1728}
1729
617ba13b 1730static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 1731{
617ba13b 1732 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1733
1734 /*
1735 * If it's a full truncate we just forget about the pending dirtying
1736 */
1737 if (offset == 0)
1738 ClearPageChecked(page);
1739
dab291af 1740 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
1741}
1742
617ba13b 1743static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 1744{
617ba13b 1745 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1746
1747 WARN_ON(PageChecked(page));
1748 if (!page_has_buffers(page))
1749 return 0;
dab291af 1750 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
1751}
1752
1753/*
1754 * If the O_DIRECT write will extend the file then add this inode to the
1755 * orphan list. So recovery will truncate it back to the original size
1756 * if the machine crashes during the write.
1757 *
1758 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
1759 * crashes then stale disk data _may_ be exposed inside the file. But current
1760 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 1761 */
617ba13b 1762static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
1763 const struct iovec *iov, loff_t offset,
1764 unsigned long nr_segs)
1765{
1766 struct file *file = iocb->ki_filp;
1767 struct inode *inode = file->f_mapping->host;
617ba13b 1768 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 1769 handle_t *handle;
ac27a0ec
DK
1770 ssize_t ret;
1771 int orphan = 0;
1772 size_t count = iov_length(iov, nr_segs);
1773
1774 if (rw == WRITE) {
1775 loff_t final_size = offset + count;
1776
ac27a0ec 1777 if (final_size > inode->i_size) {
7fb5409d
JK
1778 /* Credits for sb + inode write */
1779 handle = ext4_journal_start(inode, 2);
1780 if (IS_ERR(handle)) {
1781 ret = PTR_ERR(handle);
1782 goto out;
1783 }
617ba13b 1784 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
1785 if (ret) {
1786 ext4_journal_stop(handle);
1787 goto out;
1788 }
ac27a0ec
DK
1789 orphan = 1;
1790 ei->i_disksize = inode->i_size;
7fb5409d 1791 ext4_journal_stop(handle);
ac27a0ec
DK
1792 }
1793 }
1794
1795 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1796 offset, nr_segs,
617ba13b 1797 ext4_get_block, NULL);
ac27a0ec 1798
7fb5409d 1799 if (orphan) {
ac27a0ec
DK
1800 int err;
1801
7fb5409d
JK
1802 /* Credits for sb + inode write */
1803 handle = ext4_journal_start(inode, 2);
1804 if (IS_ERR(handle)) {
1805 /* This is really bad luck. We've written the data
1806 * but cannot extend i_size. Bail out and pretend
1807 * the write failed... */
1808 ret = PTR_ERR(handle);
1809 goto out;
1810 }
1811 if (inode->i_nlink)
617ba13b 1812 ext4_orphan_del(handle, inode);
7fb5409d 1813 if (ret > 0) {
ac27a0ec
DK
1814 loff_t end = offset + ret;
1815 if (end > inode->i_size) {
1816 ei->i_disksize = end;
1817 i_size_write(inode, end);
1818 /*
1819 * We're going to return a positive `ret'
1820 * here due to non-zero-length I/O, so there's
1821 * no way of reporting error returns from
617ba13b 1822 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
1823 * ignore it.
1824 */
617ba13b 1825 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1826 }
1827 }
617ba13b 1828 err = ext4_journal_stop(handle);
ac27a0ec
DK
1829 if (ret == 0)
1830 ret = err;
1831 }
1832out:
1833 return ret;
1834}
1835
1836/*
617ba13b 1837 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
1838 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1839 * much here because ->set_page_dirty is called under VFS locks. The page is
1840 * not necessarily locked.
1841 *
1842 * We cannot just dirty the page and leave attached buffers clean, because the
1843 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1844 * or jbddirty because all the journalling code will explode.
1845 *
1846 * So what we do is to mark the page "pending dirty" and next time writepage
1847 * is called, propagate that into the buffers appropriately.
1848 */
617ba13b 1849static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
1850{
1851 SetPageChecked(page);
1852 return __set_page_dirty_nobuffers(page);
1853}
1854
617ba13b
MC
1855static const struct address_space_operations ext4_ordered_aops = {
1856 .readpage = ext4_readpage,
1857 .readpages = ext4_readpages,
1858 .writepage = ext4_ordered_writepage,
ac27a0ec 1859 .sync_page = block_sync_page,
bfc1af65
NP
1860 .write_begin = ext4_write_begin,
1861 .write_end = ext4_ordered_write_end,
617ba13b
MC
1862 .bmap = ext4_bmap,
1863 .invalidatepage = ext4_invalidatepage,
1864 .releasepage = ext4_releasepage,
1865 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1866 .migratepage = buffer_migrate_page,
1867};
1868
617ba13b
MC
1869static const struct address_space_operations ext4_writeback_aops = {
1870 .readpage = ext4_readpage,
1871 .readpages = ext4_readpages,
1872 .writepage = ext4_writeback_writepage,
ac27a0ec 1873 .sync_page = block_sync_page,
bfc1af65
NP
1874 .write_begin = ext4_write_begin,
1875 .write_end = ext4_writeback_write_end,
617ba13b
MC
1876 .bmap = ext4_bmap,
1877 .invalidatepage = ext4_invalidatepage,
1878 .releasepage = ext4_releasepage,
1879 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1880 .migratepage = buffer_migrate_page,
1881};
1882
617ba13b
MC
1883static const struct address_space_operations ext4_journalled_aops = {
1884 .readpage = ext4_readpage,
1885 .readpages = ext4_readpages,
1886 .writepage = ext4_journalled_writepage,
ac27a0ec 1887 .sync_page = block_sync_page,
bfc1af65
NP
1888 .write_begin = ext4_write_begin,
1889 .write_end = ext4_journalled_write_end,
617ba13b
MC
1890 .set_page_dirty = ext4_journalled_set_page_dirty,
1891 .bmap = ext4_bmap,
1892 .invalidatepage = ext4_invalidatepage,
1893 .releasepage = ext4_releasepage,
ac27a0ec
DK
1894};
1895
617ba13b 1896void ext4_set_aops(struct inode *inode)
ac27a0ec 1897{
617ba13b
MC
1898 if (ext4_should_order_data(inode))
1899 inode->i_mapping->a_ops = &ext4_ordered_aops;
1900 else if (ext4_should_writeback_data(inode))
1901 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 1902 else
617ba13b 1903 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
1904}
1905
1906/*
617ba13b 1907 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
1908 * up to the end of the block which corresponds to `from'.
1909 * This required during truncate. We need to physically zero the tail end
1910 * of that block so it doesn't yield old data if the file is later grown.
1911 */
a86c6181 1912int ext4_block_truncate_page(handle_t *handle, struct page *page,
ac27a0ec
DK
1913 struct address_space *mapping, loff_t from)
1914{
617ba13b 1915 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 1916 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
1917 unsigned blocksize, length, pos;
1918 ext4_lblk_t iblock;
ac27a0ec
DK
1919 struct inode *inode = mapping->host;
1920 struct buffer_head *bh;
1921 int err = 0;
ac27a0ec
DK
1922
1923 blocksize = inode->i_sb->s_blocksize;
1924 length = blocksize - (offset & (blocksize - 1));
1925 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1926
1927 /*
1928 * For "nobh" option, we can only work if we don't need to
1929 * read-in the page - otherwise we create buffers to do the IO.
1930 */
1931 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 1932 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1933 zero_user(page, offset, length);
ac27a0ec
DK
1934 set_page_dirty(page);
1935 goto unlock;
1936 }
1937
1938 if (!page_has_buffers(page))
1939 create_empty_buffers(page, blocksize, 0);
1940
1941 /* Find the buffer that contains "offset" */
1942 bh = page_buffers(page);
1943 pos = blocksize;
1944 while (offset >= pos) {
1945 bh = bh->b_this_page;
1946 iblock++;
1947 pos += blocksize;
1948 }
1949
1950 err = 0;
1951 if (buffer_freed(bh)) {
1952 BUFFER_TRACE(bh, "freed: skip");
1953 goto unlock;
1954 }
1955
1956 if (!buffer_mapped(bh)) {
1957 BUFFER_TRACE(bh, "unmapped");
617ba13b 1958 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
1959 /* unmapped? It's a hole - nothing to do */
1960 if (!buffer_mapped(bh)) {
1961 BUFFER_TRACE(bh, "still unmapped");
1962 goto unlock;
1963 }
1964 }
1965
1966 /* Ok, it's mapped. Make sure it's up-to-date */
1967 if (PageUptodate(page))
1968 set_buffer_uptodate(bh);
1969
1970 if (!buffer_uptodate(bh)) {
1971 err = -EIO;
1972 ll_rw_block(READ, 1, &bh);
1973 wait_on_buffer(bh);
1974 /* Uhhuh. Read error. Complain and punt. */
1975 if (!buffer_uptodate(bh))
1976 goto unlock;
1977 }
1978
617ba13b 1979 if (ext4_should_journal_data(inode)) {
ac27a0ec 1980 BUFFER_TRACE(bh, "get write access");
617ba13b 1981 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1982 if (err)
1983 goto unlock;
1984 }
1985
eebd2aa3 1986 zero_user(page, offset, length);
ac27a0ec
DK
1987
1988 BUFFER_TRACE(bh, "zeroed end of block");
1989
1990 err = 0;
617ba13b
MC
1991 if (ext4_should_journal_data(inode)) {
1992 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 1993 } else {
617ba13b
MC
1994 if (ext4_should_order_data(inode))
1995 err = ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1996 mark_buffer_dirty(bh);
1997 }
1998
1999unlock:
2000 unlock_page(page);
2001 page_cache_release(page);
2002 return err;
2003}
2004
2005/*
2006 * Probably it should be a library function... search for first non-zero word
2007 * or memcmp with zero_page, whatever is better for particular architecture.
2008 * Linus?
2009 */
2010static inline int all_zeroes(__le32 *p, __le32 *q)
2011{
2012 while (p < q)
2013 if (*p++)
2014 return 0;
2015 return 1;
2016}
2017
2018/**
617ba13b 2019 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
2020 * @inode: inode in question
2021 * @depth: depth of the affected branch
617ba13b 2022 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
2023 * @chain: place to store the pointers to partial indirect blocks
2024 * @top: place to the (detached) top of branch
2025 *
617ba13b 2026 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
2027 *
2028 * When we do truncate() we may have to clean the ends of several
2029 * indirect blocks but leave the blocks themselves alive. Block is
2030 * partially truncated if some data below the new i_size is refered
2031 * from it (and it is on the path to the first completely truncated
2032 * data block, indeed). We have to free the top of that path along
2033 * with everything to the right of the path. Since no allocation
617ba13b 2034 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
2035 * finishes, we may safely do the latter, but top of branch may
2036 * require special attention - pageout below the truncation point
2037 * might try to populate it.
2038 *
2039 * We atomically detach the top of branch from the tree, store the
2040 * block number of its root in *@top, pointers to buffer_heads of
2041 * partially truncated blocks - in @chain[].bh and pointers to
2042 * their last elements that should not be removed - in
2043 * @chain[].p. Return value is the pointer to last filled element
2044 * of @chain.
2045 *
2046 * The work left to caller to do the actual freeing of subtrees:
2047 * a) free the subtree starting from *@top
2048 * b) free the subtrees whose roots are stored in
2049 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2050 * c) free the subtrees growing from the inode past the @chain[0].
2051 * (no partially truncated stuff there). */
2052
617ba13b 2053static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 2054 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
2055{
2056 Indirect *partial, *p;
2057 int k, err;
2058
2059 *top = 0;
2060 /* Make k index the deepest non-null offest + 1 */
2061 for (k = depth; k > 1 && !offsets[k-1]; k--)
2062 ;
617ba13b 2063 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
2064 /* Writer: pointers */
2065 if (!partial)
2066 partial = chain + k-1;
2067 /*
2068 * If the branch acquired continuation since we've looked at it -
2069 * fine, it should all survive and (new) top doesn't belong to us.
2070 */
2071 if (!partial->key && *partial->p)
2072 /* Writer: end */
2073 goto no_top;
2074 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2075 ;
2076 /*
2077 * OK, we've found the last block that must survive. The rest of our
2078 * branch should be detached before unlocking. However, if that rest
2079 * of branch is all ours and does not grow immediately from the inode
2080 * it's easier to cheat and just decrement partial->p.
2081 */
2082 if (p == chain + k - 1 && p > chain) {
2083 p->p--;
2084 } else {
2085 *top = *p->p;
617ba13b 2086 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
2087#if 0
2088 *p->p = 0;
2089#endif
2090 }
2091 /* Writer: end */
2092
2093 while(partial > p) {
2094 brelse(partial->bh);
2095 partial--;
2096 }
2097no_top:
2098 return partial;
2099}
2100
2101/*
2102 * Zero a number of block pointers in either an inode or an indirect block.
2103 * If we restart the transaction we must again get write access to the
2104 * indirect block for further modification.
2105 *
2106 * We release `count' blocks on disk, but (last - first) may be greater
2107 * than `count' because there can be holes in there.
2108 */
617ba13b
MC
2109static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2110 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
2111 unsigned long count, __le32 *first, __le32 *last)
2112{
2113 __le32 *p;
2114 if (try_to_extend_transaction(handle, inode)) {
2115 if (bh) {
617ba13b
MC
2116 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2117 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2118 }
617ba13b
MC
2119 ext4_mark_inode_dirty(handle, inode);
2120 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2121 if (bh) {
2122 BUFFER_TRACE(bh, "retaking write access");
617ba13b 2123 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2124 }
2125 }
2126
2127 /*
2128 * Any buffers which are on the journal will be in memory. We find
dab291af 2129 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 2130 * on them. We've already detached each block from the file, so
dab291af 2131 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 2132 *
dab291af 2133 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
2134 */
2135 for (p = first; p < last; p++) {
2136 u32 nr = le32_to_cpu(*p);
2137 if (nr) {
1d03ec98 2138 struct buffer_head *tbh;
ac27a0ec
DK
2139
2140 *p = 0;
1d03ec98
AK
2141 tbh = sb_find_get_block(inode->i_sb, nr);
2142 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
2143 }
2144 }
2145
c9de560d 2146 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
2147}
2148
2149/**
617ba13b 2150 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
2151 * @handle: handle for this transaction
2152 * @inode: inode we are dealing with
2153 * @this_bh: indirect buffer_head which contains *@first and *@last
2154 * @first: array of block numbers
2155 * @last: points immediately past the end of array
2156 *
2157 * We are freeing all blocks refered from that array (numbers are stored as
2158 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2159 *
2160 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2161 * blocks are contiguous then releasing them at one time will only affect one
2162 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2163 * actually use a lot of journal space.
2164 *
2165 * @this_bh will be %NULL if @first and @last point into the inode's direct
2166 * block pointers.
2167 */
617ba13b 2168static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2169 struct buffer_head *this_bh,
2170 __le32 *first, __le32 *last)
2171{
617ba13b 2172 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
2173 unsigned long count = 0; /* Number of blocks in the run */
2174 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2175 corresponding to
2176 block_to_free */
617ba13b 2177 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
2178 __le32 *p; /* Pointer into inode/ind
2179 for current block */
2180 int err;
2181
2182 if (this_bh) { /* For indirect block */
2183 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 2184 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
2185 /* Important: if we can't update the indirect pointers
2186 * to the blocks, we can't free them. */
2187 if (err)
2188 return;
2189 }
2190
2191 for (p = first; p < last; p++) {
2192 nr = le32_to_cpu(*p);
2193 if (nr) {
2194 /* accumulate blocks to free if they're contiguous */
2195 if (count == 0) {
2196 block_to_free = nr;
2197 block_to_free_p = p;
2198 count = 1;
2199 } else if (nr == block_to_free + count) {
2200 count++;
2201 } else {
617ba13b 2202 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
2203 block_to_free,
2204 count, block_to_free_p, p);
2205 block_to_free = nr;
2206 block_to_free_p = p;
2207 count = 1;
2208 }
2209 }
2210 }
2211
2212 if (count > 0)
617ba13b 2213 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
2214 count, block_to_free_p, p);
2215
2216 if (this_bh) {
617ba13b 2217 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
2218
2219 /*
2220 * The buffer head should have an attached journal head at this
2221 * point. However, if the data is corrupted and an indirect
2222 * block pointed to itself, it would have been detached when
2223 * the block was cleared. Check for this instead of OOPSing.
2224 */
2225 if (bh2jh(this_bh))
2226 ext4_journal_dirty_metadata(handle, this_bh);
2227 else
2228 ext4_error(inode->i_sb, __func__,
2229 "circular indirect block detected, "
2230 "inode=%lu, block=%llu",
2231 inode->i_ino,
2232 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
2233 }
2234}
2235
2236/**
617ba13b 2237 * ext4_free_branches - free an array of branches
ac27a0ec
DK
2238 * @handle: JBD handle for this transaction
2239 * @inode: inode we are dealing with
2240 * @parent_bh: the buffer_head which contains *@first and *@last
2241 * @first: array of block numbers
2242 * @last: pointer immediately past the end of array
2243 * @depth: depth of the branches to free
2244 *
2245 * We are freeing all blocks refered from these branches (numbers are
2246 * stored as little-endian 32-bit) and updating @inode->i_blocks
2247 * appropriately.
2248 */
617ba13b 2249static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2250 struct buffer_head *parent_bh,
2251 __le32 *first, __le32 *last, int depth)
2252{
617ba13b 2253 ext4_fsblk_t nr;
ac27a0ec
DK
2254 __le32 *p;
2255
2256 if (is_handle_aborted(handle))
2257 return;
2258
2259 if (depth--) {
2260 struct buffer_head *bh;
617ba13b 2261 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
2262 p = last;
2263 while (--p >= first) {
2264 nr = le32_to_cpu(*p);
2265 if (!nr)
2266 continue; /* A hole */
2267
2268 /* Go read the buffer for the next level down */
2269 bh = sb_bread(inode->i_sb, nr);
2270
2271 /*
2272 * A read failure? Report error and clear slot
2273 * (should be rare).
2274 */
2275 if (!bh) {
617ba13b 2276 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 2277 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
2278 inode->i_ino, nr);
2279 continue;
2280 }
2281
2282 /* This zaps the entire block. Bottom up. */
2283 BUFFER_TRACE(bh, "free child branches");
617ba13b 2284 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
2285 (__le32*)bh->b_data,
2286 (__le32*)bh->b_data + addr_per_block,
2287 depth);
2288
2289 /*
2290 * We've probably journalled the indirect block several
2291 * times during the truncate. But it's no longer
2292 * needed and we now drop it from the transaction via
dab291af 2293 * jbd2_journal_revoke().
ac27a0ec
DK
2294 *
2295 * That's easy if it's exclusively part of this
2296 * transaction. But if it's part of the committing
dab291af 2297 * transaction then jbd2_journal_forget() will simply
ac27a0ec 2298 * brelse() it. That means that if the underlying
617ba13b 2299 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
2300 * unmap_underlying_metadata() will find this block
2301 * and will try to get rid of it. damn, damn.
2302 *
2303 * If this block has already been committed to the
2304 * journal, a revoke record will be written. And
2305 * revoke records must be emitted *before* clearing
2306 * this block's bit in the bitmaps.
2307 */
617ba13b 2308 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
2309
2310 /*
2311 * Everything below this this pointer has been
2312 * released. Now let this top-of-subtree go.
2313 *
2314 * We want the freeing of this indirect block to be
2315 * atomic in the journal with the updating of the
2316 * bitmap block which owns it. So make some room in
2317 * the journal.
2318 *
2319 * We zero the parent pointer *after* freeing its
2320 * pointee in the bitmaps, so if extend_transaction()
2321 * for some reason fails to put the bitmap changes and
2322 * the release into the same transaction, recovery
2323 * will merely complain about releasing a free block,
2324 * rather than leaking blocks.
2325 */
2326 if (is_handle_aborted(handle))
2327 return;
2328 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
2329 ext4_mark_inode_dirty(handle, inode);
2330 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2331 }
2332
c9de560d 2333 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
2334
2335 if (parent_bh) {
2336 /*
2337 * The block which we have just freed is
2338 * pointed to by an indirect block: journal it
2339 */
2340 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 2341 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
2342 parent_bh)){
2343 *p = 0;
2344 BUFFER_TRACE(parent_bh,
617ba13b
MC
2345 "call ext4_journal_dirty_metadata");
2346 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
2347 parent_bh);
2348 }
2349 }
2350 }
2351 } else {
2352 /* We have reached the bottom of the tree. */
2353 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 2354 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
2355 }
2356}
2357
91ef4caf
DG
2358int ext4_can_truncate(struct inode *inode)
2359{
2360 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2361 return 0;
2362 if (S_ISREG(inode->i_mode))
2363 return 1;
2364 if (S_ISDIR(inode->i_mode))
2365 return 1;
2366 if (S_ISLNK(inode->i_mode))
2367 return !ext4_inode_is_fast_symlink(inode);
2368 return 0;
2369}
2370
ac27a0ec 2371/*
617ba13b 2372 * ext4_truncate()
ac27a0ec 2373 *
617ba13b
MC
2374 * We block out ext4_get_block() block instantiations across the entire
2375 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
2376 * simultaneously on behalf of the same inode.
2377 *
2378 * As we work through the truncate and commmit bits of it to the journal there
2379 * is one core, guiding principle: the file's tree must always be consistent on
2380 * disk. We must be able to restart the truncate after a crash.
2381 *
2382 * The file's tree may be transiently inconsistent in memory (although it
2383 * probably isn't), but whenever we close off and commit a journal transaction,
2384 * the contents of (the filesystem + the journal) must be consistent and
2385 * restartable. It's pretty simple, really: bottom up, right to left (although
2386 * left-to-right works OK too).
2387 *
2388 * Note that at recovery time, journal replay occurs *before* the restart of
2389 * truncate against the orphan inode list.
2390 *
2391 * The committed inode has the new, desired i_size (which is the same as
617ba13b 2392 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 2393 * that this inode's truncate did not complete and it will again call
617ba13b
MC
2394 * ext4_truncate() to have another go. So there will be instantiated blocks
2395 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 2396 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 2397 * ext4_truncate() run will find them and release them.
ac27a0ec 2398 */
617ba13b 2399void ext4_truncate(struct inode *inode)
ac27a0ec
DK
2400{
2401 handle_t *handle;
617ba13b 2402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 2403 __le32 *i_data = ei->i_data;
617ba13b 2404 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 2405 struct address_space *mapping = inode->i_mapping;
725d26d3 2406 ext4_lblk_t offsets[4];
ac27a0ec
DK
2407 Indirect chain[4];
2408 Indirect *partial;
2409 __le32 nr = 0;
2410 int n;
725d26d3 2411 ext4_lblk_t last_block;
ac27a0ec
DK
2412 unsigned blocksize = inode->i_sb->s_blocksize;
2413 struct page *page;
2414
91ef4caf 2415 if (!ext4_can_truncate(inode))
ac27a0ec
DK
2416 return;
2417
2418 /*
2419 * We have to lock the EOF page here, because lock_page() nests
dab291af 2420 * outside jbd2_journal_start().
ac27a0ec
DK
2421 */
2422 if ((inode->i_size & (blocksize - 1)) == 0) {
2423 /* Block boundary? Nothing to do */
2424 page = NULL;
2425 } else {
2426 page = grab_cache_page(mapping,
2427 inode->i_size >> PAGE_CACHE_SHIFT);
2428 if (!page)
2429 return;
2430 }
2431
1d03ec98
AK
2432 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2433 ext4_ext_truncate(inode, page);
2434 return;
2435 }
a86c6181 2436
ac27a0ec
DK
2437 handle = start_transaction(inode);
2438 if (IS_ERR(handle)) {
2439 if (page) {
2440 clear_highpage(page);
2441 flush_dcache_page(page);
2442 unlock_page(page);
2443 page_cache_release(page);
2444 }
2445 return; /* AKPM: return what? */
2446 }
2447
2448 last_block = (inode->i_size + blocksize-1)
617ba13b 2449 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec
DK
2450
2451 if (page)
617ba13b 2452 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
ac27a0ec 2453
617ba13b 2454 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
2455 if (n == 0)
2456 goto out_stop; /* error */
2457
2458 /*
2459 * OK. This truncate is going to happen. We add the inode to the
2460 * orphan list, so that if this truncate spans multiple transactions,
2461 * and we crash, we will resume the truncate when the filesystem
2462 * recovers. It also marks the inode dirty, to catch the new size.
2463 *
2464 * Implication: the file must always be in a sane, consistent
2465 * truncatable state while each transaction commits.
2466 */
617ba13b 2467 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
2468 goto out_stop;
2469
2470 /*
2471 * The orphan list entry will now protect us from any crash which
2472 * occurs before the truncate completes, so it is now safe to propagate
2473 * the new, shorter inode size (held for now in i_size) into the
2474 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 2475 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
2476 */
2477 ei->i_disksize = inode->i_size;
2478
2479 /*
617ba13b 2480 * From here we block out all ext4_get_block() callers who want to
ac27a0ec
DK
2481 * modify the block allocation tree.
2482 */
0e855ac8 2483 down_write(&ei->i_data_sem);
ac27a0ec
DK
2484
2485 if (n == 1) { /* direct blocks */
617ba13b
MC
2486 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2487 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
2488 goto do_indirects;
2489 }
2490
617ba13b 2491 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
2492 /* Kill the top of shared branch (not detached) */
2493 if (nr) {
2494 if (partial == chain) {
2495 /* Shared branch grows from the inode */
617ba13b 2496 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
2497 &nr, &nr+1, (chain+n-1) - partial);
2498 *partial->p = 0;
2499 /*
2500 * We mark the inode dirty prior to restart,
2501 * and prior to stop. No need for it here.
2502 */
2503 } else {
2504 /* Shared branch grows from an indirect block */
2505 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 2506 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
2507 partial->p,
2508 partial->p+1, (chain+n-1) - partial);
2509 }
2510 }
2511 /* Clear the ends of indirect blocks on the shared branch */
2512 while (partial > chain) {
617ba13b 2513 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
2514 (__le32*)partial->bh->b_data+addr_per_block,
2515 (chain+n-1) - partial);
2516 BUFFER_TRACE(partial->bh, "call brelse");
2517 brelse (partial->bh);
2518 partial--;
2519 }
2520do_indirects:
2521 /* Kill the remaining (whole) subtrees */
2522 switch (offsets[0]) {
2523 default:
617ba13b 2524 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 2525 if (nr) {
617ba13b
MC
2526 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2527 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 2528 }
617ba13b
MC
2529 case EXT4_IND_BLOCK:
2530 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 2531 if (nr) {
617ba13b
MC
2532 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2533 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 2534 }
617ba13b
MC
2535 case EXT4_DIND_BLOCK:
2536 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 2537 if (nr) {
617ba13b
MC
2538 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2539 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 2540 }
617ba13b 2541 case EXT4_TIND_BLOCK:
ac27a0ec
DK
2542 ;
2543 }
2544
617ba13b 2545 ext4_discard_reservation(inode);
ac27a0ec 2546
0e855ac8 2547 up_write(&ei->i_data_sem);
ef7f3835 2548 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 2549 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2550
2551 /*
2552 * In a multi-transaction truncate, we only make the final transaction
2553 * synchronous
2554 */
2555 if (IS_SYNC(inode))
2556 handle->h_sync = 1;
2557out_stop:
2558 /*
2559 * If this was a simple ftruncate(), and the file will remain alive
2560 * then we need to clear up the orphan record which we created above.
2561 * However, if this was a real unlink then we were called by
617ba13b 2562 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
2563 * orphan info for us.
2564 */
2565 if (inode->i_nlink)
617ba13b 2566 ext4_orphan_del(handle, inode);
ac27a0ec 2567
617ba13b 2568 ext4_journal_stop(handle);
ac27a0ec
DK
2569}
2570
617ba13b
MC
2571static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2572 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 2573{
fd2d4291 2574 ext4_group_t block_group;
ac27a0ec 2575 unsigned long offset;
617ba13b 2576 ext4_fsblk_t block;
c0a4ef38 2577 struct ext4_group_desc *gdp;
ac27a0ec 2578
617ba13b 2579 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
2580 /*
2581 * This error is already checked for in namei.c unless we are
2582 * looking at an NFS filehandle, in which case no error
2583 * report is needed
2584 */
2585 return 0;
2586 }
2587
617ba13b 2588 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
2589 gdp = ext4_get_group_desc(sb, block_group, NULL);
2590 if (!gdp)
ac27a0ec 2591 return 0;
ac27a0ec 2592
ac27a0ec
DK
2593 /*
2594 * Figure out the offset within the block group inode table
2595 */
617ba13b
MC
2596 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2597 EXT4_INODE_SIZE(sb);
8fadc143
AR
2598 block = ext4_inode_table(sb, gdp) +
2599 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
2600
2601 iloc->block_group = block_group;
617ba13b 2602 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
2603 return block;
2604}
2605
2606/*
617ba13b 2607 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
2608 * underlying buffer_head on success. If 'in_mem' is true, we have all
2609 * data in memory that is needed to recreate the on-disk version of this
2610 * inode.
2611 */
617ba13b
MC
2612static int __ext4_get_inode_loc(struct inode *inode,
2613 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 2614{
617ba13b 2615 ext4_fsblk_t block;
ac27a0ec
DK
2616 struct buffer_head *bh;
2617
617ba13b 2618 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
2619 if (!block)
2620 return -EIO;
2621
2622 bh = sb_getblk(inode->i_sb, block);
2623 if (!bh) {
617ba13b 2624 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2625 "unable to read inode block - "
2ae02107 2626 "inode=%lu, block=%llu",
ac27a0ec
DK
2627 inode->i_ino, block);
2628 return -EIO;
2629 }
2630 if (!buffer_uptodate(bh)) {
2631 lock_buffer(bh);
2632 if (buffer_uptodate(bh)) {
2633 /* someone brought it uptodate while we waited */
2634 unlock_buffer(bh);
2635 goto has_buffer;
2636 }
2637
2638 /*
2639 * If we have all information of the inode in memory and this
2640 * is the only valid inode in the block, we need not read the
2641 * block.
2642 */
2643 if (in_mem) {
2644 struct buffer_head *bitmap_bh;
617ba13b 2645 struct ext4_group_desc *desc;
ac27a0ec
DK
2646 int inodes_per_buffer;
2647 int inode_offset, i;
fd2d4291 2648 ext4_group_t block_group;
ac27a0ec
DK
2649 int start;
2650
2651 block_group = (inode->i_ino - 1) /
617ba13b 2652 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 2653 inodes_per_buffer = bh->b_size /
617ba13b 2654 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 2655 inode_offset = ((inode->i_ino - 1) %
617ba13b 2656 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
2657 start = inode_offset & ~(inodes_per_buffer - 1);
2658
2659 /* Is the inode bitmap in cache? */
617ba13b 2660 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
2661 block_group, NULL);
2662 if (!desc)
2663 goto make_io;
2664
2665 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 2666 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
2667 if (!bitmap_bh)
2668 goto make_io;
2669
2670 /*
2671 * If the inode bitmap isn't in cache then the
2672 * optimisation may end up performing two reads instead
2673 * of one, so skip it.
2674 */
2675 if (!buffer_uptodate(bitmap_bh)) {
2676 brelse(bitmap_bh);
2677 goto make_io;
2678 }
2679 for (i = start; i < start + inodes_per_buffer; i++) {
2680 if (i == inode_offset)
2681 continue;
617ba13b 2682 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
2683 break;
2684 }
2685 brelse(bitmap_bh);
2686 if (i == start + inodes_per_buffer) {
2687 /* all other inodes are free, so skip I/O */
2688 memset(bh->b_data, 0, bh->b_size);
2689 set_buffer_uptodate(bh);
2690 unlock_buffer(bh);
2691 goto has_buffer;
2692 }
2693 }
2694
2695make_io:
2696 /*
2697 * There are other valid inodes in the buffer, this inode
2698 * has in-inode xattrs, or we don't have this inode in memory.
2699 * Read the block from disk.
2700 */
2701 get_bh(bh);
2702 bh->b_end_io = end_buffer_read_sync;
2703 submit_bh(READ_META, bh);
2704 wait_on_buffer(bh);
2705 if (!buffer_uptodate(bh)) {
617ba13b 2706 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2707 "unable to read inode block - "
2ae02107 2708 "inode=%lu, block=%llu",
ac27a0ec
DK
2709 inode->i_ino, block);
2710 brelse(bh);
2711 return -EIO;
2712 }
2713 }
2714has_buffer:
2715 iloc->bh = bh;
2716 return 0;
2717}
2718
617ba13b 2719int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
2720{
2721 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
2722 return __ext4_get_inode_loc(inode, iloc,
2723 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
2724}
2725
617ba13b 2726void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 2727{
617ba13b 2728 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
2729
2730 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 2731 if (flags & EXT4_SYNC_FL)
ac27a0ec 2732 inode->i_flags |= S_SYNC;
617ba13b 2733 if (flags & EXT4_APPEND_FL)
ac27a0ec 2734 inode->i_flags |= S_APPEND;
617ba13b 2735 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 2736 inode->i_flags |= S_IMMUTABLE;
617ba13b 2737 if (flags & EXT4_NOATIME_FL)
ac27a0ec 2738 inode->i_flags |= S_NOATIME;
617ba13b 2739 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
2740 inode->i_flags |= S_DIRSYNC;
2741}
2742
ff9ddf7e
JK
2743/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2744void ext4_get_inode_flags(struct ext4_inode_info *ei)
2745{
2746 unsigned int flags = ei->vfs_inode.i_flags;
2747
2748 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2749 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2750 if (flags & S_SYNC)
2751 ei->i_flags |= EXT4_SYNC_FL;
2752 if (flags & S_APPEND)
2753 ei->i_flags |= EXT4_APPEND_FL;
2754 if (flags & S_IMMUTABLE)
2755 ei->i_flags |= EXT4_IMMUTABLE_FL;
2756 if (flags & S_NOATIME)
2757 ei->i_flags |= EXT4_NOATIME_FL;
2758 if (flags & S_DIRSYNC)
2759 ei->i_flags |= EXT4_DIRSYNC_FL;
2760}
0fc1b451
AK
2761static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2762 struct ext4_inode_info *ei)
2763{
2764 blkcnt_t i_blocks ;
8180a562
AK
2765 struct inode *inode = &(ei->vfs_inode);
2766 struct super_block *sb = inode->i_sb;
0fc1b451
AK
2767
2768 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2769 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2770 /* we are using combined 48 bit field */
2771 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2772 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
2773 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2774 /* i_blocks represent file system block size */
2775 return i_blocks << (inode->i_blkbits - 9);
2776 } else {
2777 return i_blocks;
2778 }
0fc1b451
AK
2779 } else {
2780 return le32_to_cpu(raw_inode->i_blocks_lo);
2781 }
2782}
ff9ddf7e 2783
1d1fe1ee 2784struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 2785{
617ba13b
MC
2786 struct ext4_iloc iloc;
2787 struct ext4_inode *raw_inode;
1d1fe1ee 2788 struct ext4_inode_info *ei;
ac27a0ec 2789 struct buffer_head *bh;
1d1fe1ee
DH
2790 struct inode *inode;
2791 long ret;
ac27a0ec
DK
2792 int block;
2793
1d1fe1ee
DH
2794 inode = iget_locked(sb, ino);
2795 if (!inode)
2796 return ERR_PTR(-ENOMEM);
2797 if (!(inode->i_state & I_NEW))
2798 return inode;
2799
2800 ei = EXT4_I(inode);
617ba13b
MC
2801#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2802 ei->i_acl = EXT4_ACL_NOT_CACHED;
2803 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
2804#endif
2805 ei->i_block_alloc_info = NULL;
2806
1d1fe1ee
DH
2807 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2808 if (ret < 0)
ac27a0ec
DK
2809 goto bad_inode;
2810 bh = iloc.bh;
617ba13b 2811 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
2812 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2813 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2814 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2815 if(!(test_opt (inode->i_sb, NO_UID32))) {
2816 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2817 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2818 }
2819 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
2820
2821 ei->i_state = 0;
2822 ei->i_dir_start_lookup = 0;
2823 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2824 /* We now have enough fields to check if the inode was active or not.
2825 * This is needed because nfsd might try to access dead inodes
2826 * the test is that same one that e2fsck uses
2827 * NeilBrown 1999oct15
2828 */
2829 if (inode->i_nlink == 0) {
2830 if (inode->i_mode == 0 ||
617ba13b 2831 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
2832 /* this inode is deleted */
2833 brelse (bh);
1d1fe1ee 2834 ret = -ESTALE;
ac27a0ec
DK
2835 goto bad_inode;
2836 }
2837 /* The only unlinked inodes we let through here have
2838 * valid i_mode and are being read by the orphan
2839 * recovery code: that's fine, we're about to complete
2840 * the process of deleting those. */
2841 }
ac27a0ec 2842 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 2843 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 2844 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 2845 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 2846 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
2847 ei->i_file_acl |=
2848 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 2849 }
a48380f7 2850 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
2851 ei->i_disksize = inode->i_size;
2852 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2853 ei->i_block_group = iloc.block_group;
2854 /*
2855 * NOTE! The in-memory inode i_data array is in little-endian order
2856 * even on big-endian machines: we do NOT byteswap the block numbers!
2857 */
617ba13b 2858 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2859 ei->i_data[block] = raw_inode->i_block[block];
2860 INIT_LIST_HEAD(&ei->i_orphan);
2861
0040d987 2862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 2863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 2864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
2865 EXT4_INODE_SIZE(inode->i_sb)) {
2866 brelse (bh);
1d1fe1ee 2867 ret = -EIO;
ac27a0ec 2868 goto bad_inode;
e5d2861f 2869 }
ac27a0ec
DK
2870 if (ei->i_extra_isize == 0) {
2871 /* The extra space is currently unused. Use it. */
617ba13b
MC
2872 ei->i_extra_isize = sizeof(struct ext4_inode) -
2873 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
2874 } else {
2875 __le32 *magic = (void *)raw_inode +
617ba13b 2876 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 2877 ei->i_extra_isize;
617ba13b
MC
2878 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2879 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
2880 }
2881 } else
2882 ei->i_extra_isize = 0;
2883
ef7f3835
KS
2884 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2885 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2886 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2887 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2888
25ec56b5
JNC
2889 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2890 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2891 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2892 inode->i_version |=
2893 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2894 }
2895
ac27a0ec 2896 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
2897 inode->i_op = &ext4_file_inode_operations;
2898 inode->i_fop = &ext4_file_operations;
2899 ext4_set_aops(inode);
ac27a0ec 2900 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
2901 inode->i_op = &ext4_dir_inode_operations;
2902 inode->i_fop = &ext4_dir_operations;
ac27a0ec 2903 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
2904 if (ext4_inode_is_fast_symlink(inode))
2905 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 2906 else {
617ba13b
MC
2907 inode->i_op = &ext4_symlink_inode_operations;
2908 ext4_set_aops(inode);
ac27a0ec
DK
2909 }
2910 } else {
617ba13b 2911 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
2912 if (raw_inode->i_block[0])
2913 init_special_inode(inode, inode->i_mode,
2914 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2915 else
2916 init_special_inode(inode, inode->i_mode,
2917 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2918 }
2919 brelse (iloc.bh);
617ba13b 2920 ext4_set_inode_flags(inode);
1d1fe1ee
DH
2921 unlock_new_inode(inode);
2922 return inode;
ac27a0ec
DK
2923
2924bad_inode:
1d1fe1ee
DH
2925 iget_failed(inode);
2926 return ERR_PTR(ret);
ac27a0ec
DK
2927}
2928
0fc1b451
AK
2929static int ext4_inode_blocks_set(handle_t *handle,
2930 struct ext4_inode *raw_inode,
2931 struct ext4_inode_info *ei)
2932{
2933 struct inode *inode = &(ei->vfs_inode);
2934 u64 i_blocks = inode->i_blocks;
2935 struct super_block *sb = inode->i_sb;
2936 int err = 0;
2937
2938 if (i_blocks <= ~0U) {
2939 /*
2940 * i_blocks can be represnted in a 32 bit variable
2941 * as multiple of 512 bytes
2942 */
8180a562 2943 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2944 raw_inode->i_blocks_high = 0;
8180a562 2945 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
2946 } else if (i_blocks <= 0xffffffffffffULL) {
2947 /*
2948 * i_blocks can be represented in a 48 bit variable
2949 * as multiple of 512 bytes
2950 */
2951 err = ext4_update_rocompat_feature(handle, sb,
2952 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2953 if (err)
2954 goto err_out;
2955 /* i_block is stored in the split 48 bit fields */
8180a562 2956 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2957 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 2958 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 2959 } else {
8180a562
AK
2960 /*
2961 * i_blocks should be represented in a 48 bit variable
2962 * as multiple of file system block size
2963 */
2964 err = ext4_update_rocompat_feature(handle, sb,
2965 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2966 if (err)
2967 goto err_out;
2968 ei->i_flags |= EXT4_HUGE_FILE_FL;
2969 /* i_block is stored in file system block size */
2970 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2971 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2972 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
2973 }
2974err_out:
2975 return err;
2976}
2977
ac27a0ec
DK
2978/*
2979 * Post the struct inode info into an on-disk inode location in the
2980 * buffer-cache. This gobbles the caller's reference to the
2981 * buffer_head in the inode location struct.
2982 *
2983 * The caller must have write access to iloc->bh.
2984 */
617ba13b 2985static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 2986 struct inode *inode,
617ba13b 2987 struct ext4_iloc *iloc)
ac27a0ec 2988{
617ba13b
MC
2989 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2990 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
2991 struct buffer_head *bh = iloc->bh;
2992 int err = 0, rc, block;
2993
2994 /* For fields not not tracking in the in-memory inode,
2995 * initialise them to zero for new inodes. */
617ba13b
MC
2996 if (ei->i_state & EXT4_STATE_NEW)
2997 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 2998
ff9ddf7e 2999 ext4_get_inode_flags(ei);
ac27a0ec
DK
3000 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3001 if(!(test_opt(inode->i_sb, NO_UID32))) {
3002 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3003 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3004/*
3005 * Fix up interoperability with old kernels. Otherwise, old inodes get
3006 * re-used with the upper 16 bits of the uid/gid intact
3007 */
3008 if(!ei->i_dtime) {
3009 raw_inode->i_uid_high =
3010 cpu_to_le16(high_16_bits(inode->i_uid));
3011 raw_inode->i_gid_high =
3012 cpu_to_le16(high_16_bits(inode->i_gid));
3013 } else {
3014 raw_inode->i_uid_high = 0;
3015 raw_inode->i_gid_high = 0;
3016 }
3017 } else {
3018 raw_inode->i_uid_low =
3019 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3020 raw_inode->i_gid_low =
3021 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3022 raw_inode->i_uid_high = 0;
3023 raw_inode->i_gid_high = 0;
3024 }
3025 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
3026
3027 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3028 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3029 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3030 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3031
0fc1b451
AK
3032 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3033 goto out_brelse;
ac27a0ec 3034 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
3035 /* clear the migrate flag in the raw_inode */
3036 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
3037 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3038 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
3039 raw_inode->i_file_acl_high =
3040 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 3041 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
3042 ext4_isize_set(raw_inode, ei->i_disksize);
3043 if (ei->i_disksize > 0x7fffffffULL) {
3044 struct super_block *sb = inode->i_sb;
3045 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3046 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3047 EXT4_SB(sb)->s_es->s_rev_level ==
3048 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3049 /* If this is the first large file
3050 * created, add a flag to the superblock.
3051 */
3052 err = ext4_journal_get_write_access(handle,
3053 EXT4_SB(sb)->s_sbh);
3054 if (err)
3055 goto out_brelse;
3056 ext4_update_dynamic_rev(sb);
3057 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 3058 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
3059 sb->s_dirt = 1;
3060 handle->h_sync = 1;
3061 err = ext4_journal_dirty_metadata(handle,
3062 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
3063 }
3064 }
3065 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3066 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3067 if (old_valid_dev(inode->i_rdev)) {
3068 raw_inode->i_block[0] =
3069 cpu_to_le32(old_encode_dev(inode->i_rdev));
3070 raw_inode->i_block[1] = 0;
3071 } else {
3072 raw_inode->i_block[0] = 0;
3073 raw_inode->i_block[1] =
3074 cpu_to_le32(new_encode_dev(inode->i_rdev));
3075 raw_inode->i_block[2] = 0;
3076 }
617ba13b 3077 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3078 raw_inode->i_block[block] = ei->i_data[block];
3079
25ec56b5
JNC
3080 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3081 if (ei->i_extra_isize) {
3082 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3083 raw_inode->i_version_hi =
3084 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 3085 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
3086 }
3087
ac27a0ec 3088
617ba13b
MC
3089 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3090 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
3091 if (!err)
3092 err = rc;
617ba13b 3093 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
3094
3095out_brelse:
3096 brelse (bh);
617ba13b 3097 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3098 return err;
3099}
3100
3101/*
617ba13b 3102 * ext4_write_inode()
ac27a0ec
DK
3103 *
3104 * We are called from a few places:
3105 *
3106 * - Within generic_file_write() for O_SYNC files.
3107 * Here, there will be no transaction running. We wait for any running
3108 * trasnaction to commit.
3109 *
3110 * - Within sys_sync(), kupdate and such.
3111 * We wait on commit, if tol to.
3112 *
3113 * - Within prune_icache() (PF_MEMALLOC == true)
3114 * Here we simply return. We can't afford to block kswapd on the
3115 * journal commit.
3116 *
3117 * In all cases it is actually safe for us to return without doing anything,
3118 * because the inode has been copied into a raw inode buffer in
617ba13b 3119 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3120 * knfsd.
3121 *
3122 * Note that we are absolutely dependent upon all inode dirtiers doing the
3123 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3124 * which we are interested.
3125 *
3126 * It would be a bug for them to not do this. The code:
3127 *
3128 * mark_inode_dirty(inode)
3129 * stuff();
3130 * inode->i_size = expr;
3131 *
3132 * is in error because a kswapd-driven write_inode() could occur while
3133 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3134 * will no longer be on the superblock's dirty inode list.
3135 */
617ba13b 3136int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
3137{
3138 if (current->flags & PF_MEMALLOC)
3139 return 0;
3140
617ba13b 3141 if (ext4_journal_current_handle()) {
b38bd33a 3142 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
3143 dump_stack();
3144 return -EIO;
3145 }
3146
3147 if (!wait)
3148 return 0;
3149
617ba13b 3150 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
3151}
3152
3153/*
617ba13b 3154 * ext4_setattr()
ac27a0ec
DK
3155 *
3156 * Called from notify_change.
3157 *
3158 * We want to trap VFS attempts to truncate the file as soon as
3159 * possible. In particular, we want to make sure that when the VFS
3160 * shrinks i_size, we put the inode on the orphan list and modify
3161 * i_disksize immediately, so that during the subsequent flushing of
3162 * dirty pages and freeing of disk blocks, we can guarantee that any
3163 * commit will leave the blocks being flushed in an unused state on
3164 * disk. (On recovery, the inode will get truncated and the blocks will
3165 * be freed, so we have a strong guarantee that no future commit will
3166 * leave these blocks visible to the user.)
3167 *
3168 * Called with inode->sem down.
3169 */
617ba13b 3170int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3171{
3172 struct inode *inode = dentry->d_inode;
3173 int error, rc = 0;
3174 const unsigned int ia_valid = attr->ia_valid;
3175
3176 error = inode_change_ok(inode, attr);
3177 if (error)
3178 return error;
3179
3180 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3181 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3182 handle_t *handle;
3183
3184 /* (user+group)*(old+new) structure, inode write (sb,
3185 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
3186 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3187 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3188 if (IS_ERR(handle)) {
3189 error = PTR_ERR(handle);
3190 goto err_out;
3191 }
3192 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3193 if (error) {
617ba13b 3194 ext4_journal_stop(handle);
ac27a0ec
DK
3195 return error;
3196 }
3197 /* Update corresponding info in inode so that everything is in
3198 * one transaction */
3199 if (attr->ia_valid & ATTR_UID)
3200 inode->i_uid = attr->ia_uid;
3201 if (attr->ia_valid & ATTR_GID)
3202 inode->i_gid = attr->ia_gid;
617ba13b
MC
3203 error = ext4_mark_inode_dirty(handle, inode);
3204 ext4_journal_stop(handle);
ac27a0ec
DK
3205 }
3206
e2b46574
ES
3207 if (attr->ia_valid & ATTR_SIZE) {
3208 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3210
3211 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3212 error = -EFBIG;
3213 goto err_out;
3214 }
3215 }
3216 }
3217
ac27a0ec
DK
3218 if (S_ISREG(inode->i_mode) &&
3219 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3220 handle_t *handle;
3221
617ba13b 3222 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3223 if (IS_ERR(handle)) {
3224 error = PTR_ERR(handle);
3225 goto err_out;
3226 }
3227
617ba13b
MC
3228 error = ext4_orphan_add(handle, inode);
3229 EXT4_I(inode)->i_disksize = attr->ia_size;
3230 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3231 if (!error)
3232 error = rc;
617ba13b 3233 ext4_journal_stop(handle);
ac27a0ec
DK
3234 }
3235
3236 rc = inode_setattr(inode, attr);
3237
617ba13b 3238 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
3239 * transaction handle at all, we need to clean up the in-core
3240 * orphan list manually. */
3241 if (inode->i_nlink)
617ba13b 3242 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3243
3244 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3245 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3246
3247err_out:
617ba13b 3248 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3249 if (!error)
3250 error = rc;
3251 return error;
3252}
3253
3254
3255/*
3256 * How many blocks doth make a writepage()?
3257 *
3258 * With N blocks per page, it may be:
3259 * N data blocks
3260 * 2 indirect block
3261 * 2 dindirect
3262 * 1 tindirect
3263 * N+5 bitmap blocks (from the above)
3264 * N+5 group descriptor summary blocks
3265 * 1 inode block
3266 * 1 superblock.
617ba13b 3267 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 3268 *
617ba13b 3269 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
3270 *
3271 * With ordered or writeback data it's the same, less the N data blocks.
3272 *
3273 * If the inode's direct blocks can hold an integral number of pages then a
3274 * page cannot straddle two indirect blocks, and we can only touch one indirect
3275 * and dindirect block, and the "5" above becomes "3".
3276 *
3277 * This still overestimates under most circumstances. If we were to pass the
3278 * start and end offsets in here as well we could do block_to_path() on each
3279 * block and work out the exact number of indirects which are touched. Pah.
3280 */
3281
a86c6181 3282int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 3283{
617ba13b
MC
3284 int bpp = ext4_journal_blocks_per_page(inode);
3285 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
3286 int ret;
3287
a86c6181
AT
3288 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3289 return ext4_ext_writepage_trans_blocks(inode, bpp);
3290
617ba13b 3291 if (ext4_should_journal_data(inode))
ac27a0ec
DK
3292 ret = 3 * (bpp + indirects) + 2;
3293 else
3294 ret = 2 * (bpp + indirects) + 2;
3295
3296#ifdef CONFIG_QUOTA
3297 /* We know that structure was already allocated during DQUOT_INIT so
3298 * we will be updating only the data blocks + inodes */
617ba13b 3299 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
3300#endif
3301
3302 return ret;
3303}
3304
3305/*
617ba13b 3306 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
3307 * Give this, we know that the caller already has write access to iloc->bh.
3308 */
617ba13b
MC
3309int ext4_mark_iloc_dirty(handle_t *handle,
3310 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3311{
3312 int err = 0;
3313
25ec56b5
JNC
3314 if (test_opt(inode->i_sb, I_VERSION))
3315 inode_inc_iversion(inode);
3316
ac27a0ec
DK
3317 /* the do_update_inode consumes one bh->b_count */
3318 get_bh(iloc->bh);
3319
dab291af 3320 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 3321 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
3322 put_bh(iloc->bh);
3323 return err;
3324}
3325
3326/*
3327 * On success, We end up with an outstanding reference count against
3328 * iloc->bh. This _must_ be cleaned up later.
3329 */
3330
3331int
617ba13b
MC
3332ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3333 struct ext4_iloc *iloc)
ac27a0ec
DK
3334{
3335 int err = 0;
3336 if (handle) {
617ba13b 3337 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
3338 if (!err) {
3339 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 3340 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
3341 if (err) {
3342 brelse(iloc->bh);
3343 iloc->bh = NULL;
3344 }
3345 }
3346 }
617ba13b 3347 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3348 return err;
3349}
3350
6dd4ee7c
KS
3351/*
3352 * Expand an inode by new_extra_isize bytes.
3353 * Returns 0 on success or negative error number on failure.
3354 */
1d03ec98
AK
3355static int ext4_expand_extra_isize(struct inode *inode,
3356 unsigned int new_extra_isize,
3357 struct ext4_iloc iloc,
3358 handle_t *handle)
6dd4ee7c
KS
3359{
3360 struct ext4_inode *raw_inode;
3361 struct ext4_xattr_ibody_header *header;
3362 struct ext4_xattr_entry *entry;
3363
3364 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3365 return 0;
3366
3367 raw_inode = ext4_raw_inode(&iloc);
3368
3369 header = IHDR(inode, raw_inode);
3370 entry = IFIRST(header);
3371
3372 /* No extended attributes present */
3373 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3374 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3375 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3376 new_extra_isize);
3377 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3378 return 0;
3379 }
3380
3381 /* try to expand with EAs present */
3382 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3383 raw_inode, handle);
3384}
3385
ac27a0ec
DK
3386/*
3387 * What we do here is to mark the in-core inode as clean with respect to inode
3388 * dirtiness (it may still be data-dirty).
3389 * This means that the in-core inode may be reaped by prune_icache
3390 * without having to perform any I/O. This is a very good thing,
3391 * because *any* task may call prune_icache - even ones which
3392 * have a transaction open against a different journal.
3393 *
3394 * Is this cheating? Not really. Sure, we haven't written the
3395 * inode out, but prune_icache isn't a user-visible syncing function.
3396 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3397 * we start and wait on commits.
3398 *
3399 * Is this efficient/effective? Well, we're being nice to the system
3400 * by cleaning up our inodes proactively so they can be reaped
3401 * without I/O. But we are potentially leaving up to five seconds'
3402 * worth of inodes floating about which prune_icache wants us to
3403 * write out. One way to fix that would be to get prune_icache()
3404 * to do a write_super() to free up some memory. It has the desired
3405 * effect.
3406 */
617ba13b 3407int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 3408{
617ba13b 3409 struct ext4_iloc iloc;
6dd4ee7c
KS
3410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3411 static unsigned int mnt_count;
3412 int err, ret;
ac27a0ec
DK
3413
3414 might_sleep();
617ba13b 3415 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
3416 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3417 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3418 /*
3419 * We need extra buffer credits since we may write into EA block
3420 * with this same handle. If journal_extend fails, then it will
3421 * only result in a minor loss of functionality for that inode.
3422 * If this is felt to be critical, then e2fsck should be run to
3423 * force a large enough s_min_extra_isize.
3424 */
3425 if ((jbd2_journal_extend(handle,
3426 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3427 ret = ext4_expand_extra_isize(inode,
3428 sbi->s_want_extra_isize,
3429 iloc, handle);
3430 if (ret) {
3431 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
3432 if (mnt_count !=
3433 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 3434 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
3435 "Unable to expand inode %lu. Delete"
3436 " some EAs or run e2fsck.",
3437 inode->i_ino);
c1bddad9
AK
3438 mnt_count =
3439 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
3440 }
3441 }
3442 }
3443 }
ac27a0ec 3444 if (!err)
617ba13b 3445 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
3446 return err;
3447}
3448
3449/*
617ba13b 3450 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
3451 *
3452 * We're really interested in the case where a file is being extended.
3453 * i_size has been changed by generic_commit_write() and we thus need
3454 * to include the updated inode in the current transaction.
3455 *
3456 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3457 * are allocated to the file.
3458 *
3459 * If the inode is marked synchronous, we don't honour that here - doing
3460 * so would cause a commit on atime updates, which we don't bother doing.
3461 * We handle synchronous inodes at the highest possible level.
3462 */
617ba13b 3463void ext4_dirty_inode(struct inode *inode)
ac27a0ec 3464{
617ba13b 3465 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
3466 handle_t *handle;
3467
617ba13b 3468 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
3469 if (IS_ERR(handle))
3470 goto out;
3471 if (current_handle &&
3472 current_handle->h_transaction != handle->h_transaction) {
3473 /* This task has a transaction open against a different fs */
3474 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 3475 __func__);
ac27a0ec
DK
3476 } else {
3477 jbd_debug(5, "marking dirty. outer handle=%p\n",
3478 current_handle);
617ba13b 3479 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3480 }
617ba13b 3481 ext4_journal_stop(handle);
ac27a0ec
DK
3482out:
3483 return;
3484}
3485
3486#if 0
3487/*
3488 * Bind an inode's backing buffer_head into this transaction, to prevent
3489 * it from being flushed to disk early. Unlike
617ba13b 3490 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
3491 * returns no iloc structure, so the caller needs to repeat the iloc
3492 * lookup to mark the inode dirty later.
3493 */
617ba13b 3494static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 3495{
617ba13b 3496 struct ext4_iloc iloc;
ac27a0ec
DK
3497
3498 int err = 0;
3499 if (handle) {
617ba13b 3500 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
3501 if (!err) {
3502 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 3503 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 3504 if (!err)
617ba13b 3505 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3506 iloc.bh);
3507 brelse(iloc.bh);
3508 }
3509 }
617ba13b 3510 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3511 return err;
3512}
3513#endif
3514
617ba13b 3515int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
3516{
3517 journal_t *journal;
3518 handle_t *handle;
3519 int err;
3520
3521 /*
3522 * We have to be very careful here: changing a data block's
3523 * journaling status dynamically is dangerous. If we write a
3524 * data block to the journal, change the status and then delete
3525 * that block, we risk forgetting to revoke the old log record
3526 * from the journal and so a subsequent replay can corrupt data.
3527 * So, first we make sure that the journal is empty and that
3528 * nobody is changing anything.
3529 */
3530
617ba13b 3531 journal = EXT4_JOURNAL(inode);
d699594d 3532 if (is_journal_aborted(journal))
ac27a0ec
DK
3533 return -EROFS;
3534
dab291af
MC
3535 jbd2_journal_lock_updates(journal);
3536 jbd2_journal_flush(journal);
ac27a0ec
DK
3537
3538 /*
3539 * OK, there are no updates running now, and all cached data is
3540 * synced to disk. We are now in a completely consistent state
3541 * which doesn't have anything in the journal, and we know that
3542 * no filesystem updates are running, so it is safe to modify
3543 * the inode's in-core data-journaling state flag now.
3544 */
3545
3546 if (val)
617ba13b 3547 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 3548 else
617ba13b
MC
3549 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3550 ext4_set_aops(inode);
ac27a0ec 3551
dab291af 3552 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3553
3554 /* Finally we can mark the inode as dirty. */
3555
617ba13b 3556 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
3557 if (IS_ERR(handle))
3558 return PTR_ERR(handle);
3559
617ba13b 3560 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3561 handle->h_sync = 1;
617ba13b
MC
3562 ext4_journal_stop(handle);
3563 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3564
3565 return err;
3566}
2e9ee850
AK
3567
3568static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
3569{
3570 return !buffer_mapped(bh);
3571}
3572
3573int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3574{
3575 loff_t size;
3576 unsigned long len;
3577 int ret = -EINVAL;
3578 struct file *file = vma->vm_file;
3579 struct inode *inode = file->f_path.dentry->d_inode;
3580 struct address_space *mapping = inode->i_mapping;
3581
3582 /*
3583 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
3584 * get i_mutex because we are already holding mmap_sem.
3585 */
3586 down_read(&inode->i_alloc_sem);
3587 size = i_size_read(inode);
3588 if (page->mapping != mapping || size <= page_offset(page)
3589 || !PageUptodate(page)) {
3590 /* page got truncated from under us? */
3591 goto out_unlock;
3592 }
3593 ret = 0;
3594 if (PageMappedToDisk(page))
3595 goto out_unlock;
3596
3597 if (page->index == size >> PAGE_CACHE_SHIFT)
3598 len = size & ~PAGE_CACHE_MASK;
3599 else
3600 len = PAGE_CACHE_SIZE;
3601
3602 if (page_has_buffers(page)) {
3603 /* return if we have all the buffers mapped */
3604 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3605 ext4_bh_unmapped))
3606 goto out_unlock;
3607 }
3608 /*
3609 * OK, we need to fill the hole... Do write_begin write_end
3610 * to do block allocation/reservation.We are not holding
3611 * inode.i__mutex here. That allow * parallel write_begin,
3612 * write_end call. lock_page prevent this from happening
3613 * on the same page though
3614 */
3615 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
3616 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
3617 if (ret < 0)
3618 goto out_unlock;
3619 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
3620 len, len, page, NULL);
3621 if (ret < 0)
3622 goto out_unlock;
3623 ret = 0;
3624out_unlock:
3625 up_read(&inode->i_alloc_sem);
3626 return ret;
3627}