]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Fix whitespace checkpatch warnings/errors
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
a1d6cc56
AK
44#define MPAGE_DA_EXTENT_TAIL 0x01
45
678aaf48
JK
46static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48{
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51}
52
64769240
AT
53static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
ac27a0ec
DK
55/*
56 * Test whether an inode is a fast symlink.
57 */
617ba13b 58static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 59{
617ba13b 60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64}
65
66/*
617ba13b 67 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
617ba13b
MC
75int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
77{
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
617ba13b
MC
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 96 if (bh) {
dab291af 97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 98 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
617ba13b
MC
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 108 if (err)
46e665e9 109 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113}
114
115/*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119static unsigned long blocks_for_truncate(struct inode *inode)
120{
725d26d3 121 ext4_lblk_t needed;
ac27a0ec
DK
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
617ba13b 128 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
617ba13b
MC
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 138
617ba13b 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
140}
141
142/*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152static handle_t *start_transaction(struct inode *inode)
153{
154 handle_t *result;
155
617ba13b 156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
157 if (!IS_ERR(result))
158 return result;
159
617ba13b 160 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
161 return result;
162}
163
164/*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171{
617ba13b 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 173 return 0;
617ba13b 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
175 return 0;
176 return 1;
177}
178
179/*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
617ba13b 184static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
185{
186 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
188}
189
190/*
191 * Called at the last iput() if i_nlink is zero.
192 */
af5bc92d 193void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
194{
195 handle_t *handle;
bc965ab3 196 int err;
ac27a0ec 197
678aaf48
JK
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
bc965ab3 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 206 if (IS_ERR(handle)) {
bc965ab3 207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
617ba13b 213 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
bc965ab3
TT
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
ac27a0ec 226 if (inode->i_blocks)
617ba13b 227 ext4_truncate(inode);
bc965ab3
TT
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
ac27a0ec 248 /*
617ba13b 249 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 250 * AKPM: I think this can be inside the above `if'.
617ba13b 251 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 252 * deletion of a non-existent orphan - this is because we don't
617ba13b 253 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
254 * (Well, we could do this if we need to, but heck - it works)
255 */
617ba13b
MC
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
617ba13b 266 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
617ba13b
MC
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
ac27a0ec
DK
272 return;
273no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275}
276
277typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281} Indirect;
282
283static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284{
285 p->key = *(p->p = v);
286 p->bh = bh;
287}
288
ac27a0ec 289/**
617ba13b 290 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
8c55e204
DK
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
ac27a0ec 296 *
617ba13b 297 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310/*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
617ba13b 320static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 323{
617ba13b
MC
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
af5bc92d 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
af5bc92d 337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 338 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 342 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 347 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
e2b46574 353 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 354 "block %lu > max",
e2b46574
ES
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
af5bc92d 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
af5bc92d 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
ac27a0ec
DK
417failure:
418 *err = -EIO;
419no_block:
420 return p;
421}
422
423/**
617ba13b 424 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
1cc8dcf5 428 * This function returns the preferred place for block allocation.
ac27a0ec
DK
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
617ba13b 443static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 444{
617ba13b 445 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 447 __le32 *p;
617ba13b 448 ext4_fsblk_t bg_start;
74d3487f 449 ext4_fsblk_t last_block;
617ba13b 450 ext4_grpblk_t colour;
ac27a0ec
DK
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
617ba13b 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
617ba13b 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
474 return bg_start + colour;
475}
476
477/**
1cc8dcf5 478 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
479 * @inode: owner
480 * @block: block we want
ac27a0ec 481 * @partial: pointer to the last triple within a chain
ac27a0ec 482 *
1cc8dcf5 483 * Normally this function find the preferred place for block allocation,
fb01bfda 484 * returns it.
ac27a0ec 485 */
725d26d3 486static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 487 Indirect *partial)
ac27a0ec 488{
617ba13b 489 struct ext4_block_alloc_info *block_i;
ac27a0ec 490
617ba13b 491 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
492
493 /*
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
496 */
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
500 }
501
617ba13b 502 return ext4_find_near(inode, partial);
ac27a0ec
DK
503}
504
505/**
617ba13b 506 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
617ba13b 517static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
518 int blocks_to_boundary)
519{
520 unsigned long count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541}
542
543/**
617ba13b 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
617ba13b 553static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
557{
558 int target, i;
7061eba7 559 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 560 int index = 0;
617ba13b 561 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
562 int ret = 0;
563
564 /*
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
571 */
7061eba7
AK
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
ac27a0ec
DK
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
ac27a0ec
DK
579 if (*err)
580 goto failed_out;
581
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
587 }
7061eba7
AK
588 if (count > 0) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
ac27a0ec 597 break;
7061eba7 598 }
ac27a0ec
DK
599 }
600
7061eba7
AK
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
654b4908 607 /* allocating blocks for data blocks */
7061eba7
AK
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
625 blk_allocated += count;
626 }
627allocated:
ac27a0ec 628 /* total number of blocks allocated for direct blocks */
7061eba7 629 ret = blk_allocated;
ac27a0ec
DK
630 *err = 0;
631 return ret;
632failed_out:
af5bc92d 633 for (i = 0; i < index; i++)
c9de560d 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
635 return ret;
636}
637
638/**
617ba13b 639 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
617ba13b 650 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 653 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
617ba13b 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
661 * as described above and return 0.
662 */
617ba13b 663static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
667{
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
617ba13b
MC
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
ac27a0ec 675
7061eba7 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 695 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
af5bc92d 706 if (n == indirect_blks) {
ac27a0ec
DK
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
617ba13b
MC
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
dab291af 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 731 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 732 }
af5bc92d 733 for (i = 0; i < indirect_blks; i++)
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 735
c9de560d 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
737
738 return err;
739}
740
741/**
617ba13b 742 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 746 * ext4_alloc_branch)
ac27a0ec
DK
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
617ba13b 755static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 756 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
757{
758 int i;
759 int err = 0;
617ba13b
MC
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
ac27a0ec 762
617ba13b 763 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
764 /*
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
768 */
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 771 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
772 if (err)
773 goto err_out;
774 }
775 /* That's it */
776
777 *where->p = where->key;
778
779 /*
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
782 */
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
af5bc92d 786 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
787 }
788
789 /*
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
793 */
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
798 }
799
800 /* We are done with atomic stuff, now do the rest of housekeeping */
801
ef7f3835 802 inode->i_ctime = ext4_current_time(inode);
617ba13b 803 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
804
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
807 /*
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
617ba13b 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
814 */
815 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
818 if (err)
819 goto err_out;
820 } else {
821 /*
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
824 */
825 jbd_debug(5, "splicing direct\n");
826 }
827 return err;
828
829err_out:
830 for (i = 1; i <= num; i++) {
dab291af 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 832 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 835 }
c9de560d 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
837
838 return err;
839}
840
841/*
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
852 *
853 * `handle' can be NULL if create == 0.
854 *
ac27a0ec
DK
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
c278bfec
AK
858 *
859 *
860 * Need to be called with
0e855ac8
AK
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 863 */
617ba13b 864int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 865 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
868{
869 int err = -EIO;
725d26d3 870 ext4_lblk_t offsets[4];
ac27a0ec
DK
871 Indirect chain[4];
872 Indirect *partial;
617ba13b 873 ext4_fsblk_t goal;
ac27a0ec
DK
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
617ba13b 877 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 878 int count = 0;
617ba13b 879 ext4_fsblk_t first_block = 0;
61628a3f 880 loff_t disksize;
ac27a0ec
DK
881
882
a86c6181 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 884 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
ac27a0ec
DK
887
888 if (depth == 0)
889 goto out;
890
617ba13b 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
892
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 900 ext4_fsblk_t blk;
ac27a0ec 901
ac27a0ec
DK
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
908 }
c278bfec 909 goto got_it;
ac27a0ec
DK
910 }
911
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
915
ac27a0ec
DK
916 /*
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
919 */
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 921 ext4_init_block_alloc_info(inode);
ac27a0ec 922
fb01bfda 923 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
924
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
927
928 /*
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
931 */
617ba13b 932 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
933 maxblocks, blocks_to_boundary);
934 /*
617ba13b 935 * Block out ext4_truncate while we alter the tree
ac27a0ec 936 */
7061eba7
AK
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
ac27a0ec
DK
940
941 /*
617ba13b 942 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
947 */
948 if (!err)
617ba13b 949 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
950 partial, indirect_blks, count);
951 /*
0e855ac8 952 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 953 * protect it if you're about to implement concurrent
617ba13b 954 * ext4_get_block() -bzzz
ac27a0ec 955 */
61628a3f
MC
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
962 }
ac27a0ec
DK
963 if (err)
964 goto cleanup;
965
966 set_buffer_new(bh_result);
967got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
979 }
980 BUFFER_TRACE(bh_result, "returned");
981out:
982 return err;
983}
984
12219aea
AK
985/*
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
988 */
989static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990{
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
993
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
996
997 dind_blks = (ind_blks + icap - 1) / icap;
998
999 tind_blks = 1;
1000
1001 return ind_blks + dind_blks + tind_blks;
1002}
1003
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1007 */
1008static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009{
cd213226
MC
1010 if (!blocks)
1011 return 0;
1012
12219aea
AK
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1017}
1018
1019static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020{
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1023
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1028
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033 /* Account for allocated meta_blocks */
1034 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1035
1036 /* update fs free blocks counter for truncate case */
1037 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1038
1039 /* update per-inode reservations */
1040 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1041 EXT4_I(inode)->i_reserved_data_blocks -= used;
1042
1043 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047}
1048
f5ab0d1f 1049/*
2b2d6d01
TT
1050 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051 * and returns if the blocks are already mapped.
f5ab0d1f 1052 *
f5ab0d1f
MC
1053 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054 * and store the allocated blocks in the result buffer head and mark it
1055 * mapped.
1056 *
1057 * If file type is extents based, it will call ext4_ext_get_blocks(),
1058 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059 * based files
1060 *
1061 * On success, it returns the number of blocks being mapped or allocate.
1062 * if create==0 and the blocks are pre-allocated and uninitialized block,
1063 * the result buffer head is unmapped. If the create ==1, it will make sure
1064 * the buffer head is mapped.
1065 *
1066 * It returns 0 if plain look up failed (blocks have not been allocated), in
1067 * that casem, buffer head is unmapped
1068 *
1069 * It returns the error in case of allocation failure.
1070 */
0e855ac8
AK
1071int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1073 int create, int extend_disksize, int flag)
0e855ac8
AK
1074{
1075 int retval;
f5ab0d1f
MC
1076
1077 clear_buffer_mapped(bh);
1078
4df3d265
AK
1079 /*
1080 * Try to see if we can get the block without requesting
1081 * for new file system block.
1082 */
1083 down_read((&EXT4_I(inode)->i_data_sem));
1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086 bh, 0, 0);
0e855ac8 1087 } else {
4df3d265
AK
1088 retval = ext4_get_blocks_handle(handle,
1089 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1090 }
4df3d265 1091 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1092
1093 /* If it is only a block(s) look up */
1094 if (!create)
1095 return retval;
1096
1097 /*
1098 * Returns if the blocks have already allocated
1099 *
1100 * Note that if blocks have been preallocated
1101 * ext4_ext_get_block() returns th create = 0
1102 * with buffer head unmapped.
1103 */
1104 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1105 return retval;
1106
1107 /*
f5ab0d1f
MC
1108 * New blocks allocate and/or writing to uninitialized extent
1109 * will possibly result in updating i_data, so we take
1110 * the write lock of i_data_sem, and call get_blocks()
1111 * with create == 1 flag.
4df3d265
AK
1112 */
1113 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1114
1115 /*
1116 * if the caller is from delayed allocation writeout path
1117 * we have already reserved fs blocks for allocation
1118 * let the underlying get_block() function know to
1119 * avoid double accounting
1120 */
1121 if (flag)
1122 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1123 /*
1124 * We need to check for EXT4 here because migrate
1125 * could have changed the inode type in between
1126 */
0e855ac8
AK
1127 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129 bh, create, extend_disksize);
1130 } else {
1131 retval = ext4_get_blocks_handle(handle, inode, block,
1132 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1133
1134 if (retval > 0 && buffer_new(bh)) {
1135 /*
1136 * We allocated new blocks which will result in
1137 * i_data's format changing. Force the migrate
1138 * to fail by clearing migrate flags
1139 */
1140 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141 ~EXT4_EXT_MIGRATE;
1142 }
0e855ac8 1143 }
d2a17637
MC
1144
1145 if (flag) {
1146 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1147 /*
1148 * Update reserved blocks/metadata blocks
1149 * after successful block allocation
1150 * which were deferred till now
1151 */
1152 if ((retval > 0) && buffer_delay(bh))
12219aea 1153 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1154 }
1155
4df3d265 1156 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1157 return retval;
1158}
1159
f3bd1f3f
MC
1160/* Maximum number of blocks we map for direct IO at once. */
1161#define DIO_MAX_BLOCKS 4096
1162
617ba13b 1163static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1164 struct buffer_head *bh_result, int create)
1165{
3e4fdaf8 1166 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1167 int ret = 0, started = 0;
ac27a0ec 1168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1169 int dio_credits;
ac27a0ec 1170
7fb5409d
JK
1171 if (create && !handle) {
1172 /* Direct IO write... */
1173 if (max_blocks > DIO_MAX_BLOCKS)
1174 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1175 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1177 if (IS_ERR(handle)) {
ac27a0ec 1178 ret = PTR_ERR(handle);
7fb5409d 1179 goto out;
ac27a0ec 1180 }
7fb5409d 1181 started = 1;
ac27a0ec
DK
1182 }
1183
7fb5409d 1184 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1185 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1186 if (ret > 0) {
1187 bh_result->b_size = (ret << inode->i_blkbits);
1188 ret = 0;
ac27a0ec 1189 }
7fb5409d
JK
1190 if (started)
1191 ext4_journal_stop(handle);
1192out:
ac27a0ec
DK
1193 return ret;
1194}
1195
1196/*
1197 * `handle' can be NULL if create is zero
1198 */
617ba13b 1199struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1200 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1201{
1202 struct buffer_head dummy;
1203 int fatal = 0, err;
1204
1205 J_ASSERT(handle != NULL || create == 0);
1206
1207 dummy.b_state = 0;
1208 dummy.b_blocknr = -1000;
1209 buffer_trace_init(&dummy.b_history);
a86c6181 1210 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1211 &dummy, create, 1, 0);
ac27a0ec 1212 /*
617ba13b 1213 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1214 * mapped. 0 in case of a HOLE.
1215 */
1216 if (err > 0) {
1217 if (err > 1)
1218 WARN_ON(1);
1219 err = 0;
1220 }
1221 *errp = err;
1222 if (!err && buffer_mapped(&dummy)) {
1223 struct buffer_head *bh;
1224 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225 if (!bh) {
1226 *errp = -EIO;
1227 goto err;
1228 }
1229 if (buffer_new(&dummy)) {
1230 J_ASSERT(create != 0);
ac39849d 1231 J_ASSERT(handle != NULL);
ac27a0ec
DK
1232
1233 /*
1234 * Now that we do not always journal data, we should
1235 * keep in mind whether this should always journal the
1236 * new buffer as metadata. For now, regular file
617ba13b 1237 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1238 * problem.
1239 */
1240 lock_buffer(bh);
1241 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1242 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1243 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1244 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1245 set_buffer_uptodate(bh);
1246 }
1247 unlock_buffer(bh);
617ba13b
MC
1248 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1250 if (!fatal)
1251 fatal = err;
1252 } else {
1253 BUFFER_TRACE(bh, "not a new buffer");
1254 }
1255 if (fatal) {
1256 *errp = fatal;
1257 brelse(bh);
1258 bh = NULL;
1259 }
1260 return bh;
1261 }
1262err:
1263 return NULL;
1264}
1265
617ba13b 1266struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1267 ext4_lblk_t block, int create, int *err)
ac27a0ec 1268{
af5bc92d 1269 struct buffer_head *bh;
ac27a0ec 1270
617ba13b 1271 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1272 if (!bh)
1273 return bh;
1274 if (buffer_uptodate(bh))
1275 return bh;
1276 ll_rw_block(READ_META, 1, &bh);
1277 wait_on_buffer(bh);
1278 if (buffer_uptodate(bh))
1279 return bh;
1280 put_bh(bh);
1281 *err = -EIO;
1282 return NULL;
1283}
1284
af5bc92d
TT
1285static int walk_page_buffers(handle_t *handle,
1286 struct buffer_head *head,
1287 unsigned from,
1288 unsigned to,
1289 int *partial,
1290 int (*fn)(handle_t *handle,
1291 struct buffer_head *bh))
ac27a0ec
DK
1292{
1293 struct buffer_head *bh;
1294 unsigned block_start, block_end;
1295 unsigned blocksize = head->b_size;
1296 int err, ret = 0;
1297 struct buffer_head *next;
1298
af5bc92d
TT
1299 for (bh = head, block_start = 0;
1300 ret == 0 && (bh != head || !block_start);
1301 block_start = block_end, bh = next)
ac27a0ec
DK
1302 {
1303 next = bh->b_this_page;
1304 block_end = block_start + blocksize;
1305 if (block_end <= from || block_start >= to) {
1306 if (partial && !buffer_uptodate(bh))
1307 *partial = 1;
1308 continue;
1309 }
1310 err = (*fn)(handle, bh);
1311 if (!ret)
1312 ret = err;
1313 }
1314 return ret;
1315}
1316
1317/*
1318 * To preserve ordering, it is essential that the hole instantiation and
1319 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1320 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1321 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1322 * prepare_write() is the right place.
1323 *
617ba13b
MC
1324 * Also, this function can nest inside ext4_writepage() ->
1325 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1326 * has generated enough buffer credits to do the whole page. So we won't
1327 * block on the journal in that case, which is good, because the caller may
1328 * be PF_MEMALLOC.
1329 *
617ba13b 1330 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1331 * quota file writes. If we were to commit the transaction while thus
1332 * reentered, there can be a deadlock - we would be holding a quota
1333 * lock, and the commit would never complete if another thread had a
1334 * transaction open and was blocking on the quota lock - a ranking
1335 * violation.
1336 *
dab291af 1337 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1338 * will _not_ run commit under these circumstances because handle->h_ref
1339 * is elevated. We'll still have enough credits for the tiny quotafile
1340 * write.
1341 */
1342static int do_journal_get_write_access(handle_t *handle,
1343 struct buffer_head *bh)
1344{
1345 if (!buffer_mapped(bh) || buffer_freed(bh))
1346 return 0;
617ba13b 1347 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1348}
1349
bfc1af65
NP
1350static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351 loff_t pos, unsigned len, unsigned flags,
1352 struct page **pagep, void **fsdata)
ac27a0ec 1353{
af5bc92d 1354 struct inode *inode = mapping->host;
7479d2b9 1355 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1356 handle_t *handle;
1357 int retries = 0;
af5bc92d 1358 struct page *page;
bfc1af65 1359 pgoff_t index;
af5bc92d 1360 unsigned from, to;
bfc1af65
NP
1361
1362 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1363 from = pos & (PAGE_CACHE_SIZE - 1);
1364 to = from + len;
ac27a0ec
DK
1365
1366retry:
af5bc92d
TT
1367 handle = ext4_journal_start(inode, needed_blocks);
1368 if (IS_ERR(handle)) {
1369 ret = PTR_ERR(handle);
1370 goto out;
7479d2b9 1371 }
ac27a0ec 1372
cf108bca
JK
1373 page = __grab_cache_page(mapping, index);
1374 if (!page) {
1375 ext4_journal_stop(handle);
1376 ret = -ENOMEM;
1377 goto out;
1378 }
1379 *pagep = page;
1380
bfc1af65
NP
1381 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382 ext4_get_block);
1383
1384 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1385 ret = walk_page_buffers(handle, page_buffers(page),
1386 from, to, NULL, do_journal_get_write_access);
1387 }
bfc1af65
NP
1388
1389 if (ret) {
af5bc92d 1390 unlock_page(page);
cf108bca 1391 ext4_journal_stop(handle);
af5bc92d 1392 page_cache_release(page);
bfc1af65
NP
1393 }
1394
617ba13b 1395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1396 goto retry;
7479d2b9 1397out:
ac27a0ec
DK
1398 return ret;
1399}
1400
bfc1af65
NP
1401/* For write_end() in data=journal mode */
1402static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1403{
1404 if (!buffer_mapped(bh) || buffer_freed(bh))
1405 return 0;
1406 set_buffer_uptodate(bh);
617ba13b 1407 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1408}
1409
1410/*
1411 * We need to pick up the new inode size which generic_commit_write gave us
1412 * `file' can be NULL - eg, when called from page_symlink().
1413 *
617ba13b 1414 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1415 * buffers are managed internally.
1416 */
bfc1af65
NP
1417static int ext4_ordered_write_end(struct file *file,
1418 struct address_space *mapping,
1419 loff_t pos, unsigned len, unsigned copied,
1420 struct page *page, void *fsdata)
ac27a0ec 1421{
617ba13b 1422 handle_t *handle = ext4_journal_current_handle();
cf108bca 1423 struct inode *inode = mapping->host;
ac27a0ec
DK
1424 int ret = 0, ret2;
1425
678aaf48 1426 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1427
1428 if (ret == 0) {
1429 /*
bfc1af65 1430 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1431 * changes. So let's piggyback the i_disksize mark_inode_dirty
1432 * into that.
1433 */
1434 loff_t new_i_size;
1435
bfc1af65 1436 new_i_size = pos + copied;
617ba13b
MC
1437 if (new_i_size > EXT4_I(inode)->i_disksize)
1438 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1439 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1440 page, fsdata);
f8a87d89
RK
1441 copied = ret2;
1442 if (ret2 < 0)
1443 ret = ret2;
ac27a0ec 1444 }
617ba13b 1445 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1446 if (!ret)
1447 ret = ret2;
bfc1af65
NP
1448
1449 return ret ? ret : copied;
ac27a0ec
DK
1450}
1451
bfc1af65
NP
1452static int ext4_writeback_write_end(struct file *file,
1453 struct address_space *mapping,
1454 loff_t pos, unsigned len, unsigned copied,
1455 struct page *page, void *fsdata)
ac27a0ec 1456{
617ba13b 1457 handle_t *handle = ext4_journal_current_handle();
cf108bca 1458 struct inode *inode = mapping->host;
ac27a0ec
DK
1459 int ret = 0, ret2;
1460 loff_t new_i_size;
1461
bfc1af65 1462 new_i_size = pos + copied;
617ba13b
MC
1463 if (new_i_size > EXT4_I(inode)->i_disksize)
1464 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1465
cf108bca 1466 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1467 page, fsdata);
f8a87d89
RK
1468 copied = ret2;
1469 if (ret2 < 0)
1470 ret = ret2;
ac27a0ec 1471
617ba13b 1472 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1473 if (!ret)
1474 ret = ret2;
bfc1af65
NP
1475
1476 return ret ? ret : copied;
ac27a0ec
DK
1477}
1478
bfc1af65
NP
1479static int ext4_journalled_write_end(struct file *file,
1480 struct address_space *mapping,
1481 loff_t pos, unsigned len, unsigned copied,
1482 struct page *page, void *fsdata)
ac27a0ec 1483{
617ba13b 1484 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1485 struct inode *inode = mapping->host;
ac27a0ec
DK
1486 int ret = 0, ret2;
1487 int partial = 0;
bfc1af65 1488 unsigned from, to;
ac27a0ec 1489
bfc1af65
NP
1490 from = pos & (PAGE_CACHE_SIZE - 1);
1491 to = from + len;
1492
1493 if (copied < len) {
1494 if (!PageUptodate(page))
1495 copied = 0;
1496 page_zero_new_buffers(page, from+copied, to);
1497 }
ac27a0ec
DK
1498
1499 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1500 to, &partial, write_end_fn);
ac27a0ec
DK
1501 if (!partial)
1502 SetPageUptodate(page);
bfc1af65
NP
1503 if (pos+copied > inode->i_size)
1504 i_size_write(inode, pos+copied);
617ba13b
MC
1505 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507 EXT4_I(inode)->i_disksize = inode->i_size;
1508 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1509 if (!ret)
1510 ret = ret2;
1511 }
bfc1af65 1512
cf108bca 1513 unlock_page(page);
617ba13b 1514 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1515 if (!ret)
1516 ret = ret2;
bfc1af65
NP
1517 page_cache_release(page);
1518
1519 return ret ? ret : copied;
ac27a0ec 1520}
d2a17637
MC
1521
1522static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1523{
1524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525 unsigned long md_needed, mdblocks, total = 0;
1526
1527 /*
1528 * recalculate the amount of metadata blocks to reserve
1529 * in order to allocate nrblocks
1530 * worse case is one extent per block
1531 */
1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1534 mdblocks = ext4_calc_metadata_amount(inode, total);
1535 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1536
1537 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1538 total = md_needed + nrblocks;
1539
1540 if (ext4_has_free_blocks(sbi, total) < total) {
1541 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1542 return -ENOSPC;
1543 }
d2a17637
MC
1544 /* reduce fs free blocks counter */
1545 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1546
1547 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1548 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1549
1550 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1551 return 0; /* success */
1552}
1553
12219aea 1554static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1555{
1556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 int total, mdb, mdb_free, release;
1558
cd213226
MC
1559 if (!to_free)
1560 return; /* Nothing to release, exit */
1561
d2a17637 1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1563
1564 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1565 /*
1566 * if there is no reserved blocks, but we try to free some
1567 * then the counter is messed up somewhere.
1568 * but since this function is called from invalidate
1569 * page, it's harmless to return without any action
1570 */
1571 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1572 "blocks for inode %lu, but there is no reserved "
1573 "data blocks\n", to_free, inode->i_ino);
1574 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1575 return;
1576 }
1577
d2a17637 1578 /* recalculate the number of metablocks still need to be reserved */
12219aea 1579 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1580 mdb = ext4_calc_metadata_amount(inode, total);
1581
1582 /* figure out how many metablocks to release */
1583 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1584 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1585
d2a17637
MC
1586 release = to_free + mdb_free;
1587
1588 /* update fs free blocks counter for truncate case */
1589 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1590
1591 /* update per-inode reservations */
12219aea
AK
1592 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1593 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1594
1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1598}
1599
1600static void ext4_da_page_release_reservation(struct page *page,
1601 unsigned long offset)
1602{
1603 int to_release = 0;
1604 struct buffer_head *head, *bh;
1605 unsigned int curr_off = 0;
1606
1607 head = page_buffers(page);
1608 bh = head;
1609 do {
1610 unsigned int next_off = curr_off + bh->b_size;
1611
1612 if ((offset <= curr_off) && (buffer_delay(bh))) {
1613 to_release++;
1614 clear_buffer_delay(bh);
1615 }
1616 curr_off = next_off;
1617 } while ((bh = bh->b_this_page) != head);
12219aea 1618 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1619}
ac27a0ec 1620
64769240
AT
1621/*
1622 * Delayed allocation stuff
1623 */
1624
1625struct mpage_da_data {
1626 struct inode *inode;
1627 struct buffer_head lbh; /* extent of blocks */
1628 unsigned long first_page, next_page; /* extent of pages */
1629 get_block_t *get_block;
1630 struct writeback_control *wbc;
a1d6cc56
AK
1631 int io_done;
1632 long pages_written;
64769240
AT
1633};
1634
1635/*
1636 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1637 * them with writepage() call back
64769240
AT
1638 *
1639 * @mpd->inode: inode
1640 * @mpd->first_page: first page of the extent
1641 * @mpd->next_page: page after the last page of the extent
1642 * @mpd->get_block: the filesystem's block mapper function
1643 *
1644 * By the time mpage_da_submit_io() is called we expect all blocks
1645 * to be allocated. this may be wrong if allocation failed.
1646 *
1647 * As pages are already locked by write_cache_pages(), we can't use it
1648 */
1649static int mpage_da_submit_io(struct mpage_da_data *mpd)
1650{
1651 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1652 int ret = 0, err, nr_pages, i;
1653 unsigned long index, end;
1654 struct pagevec pvec;
1655
1656 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1657 pagevec_init(&pvec, 0);
1658 index = mpd->first_page;
1659 end = mpd->next_page - 1;
1660
1661 while (index <= end) {
1662 /* XXX: optimize tail */
1663 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1664 if (nr_pages == 0)
1665 break;
1666 for (i = 0; i < nr_pages; i++) {
1667 struct page *page = pvec.pages[i];
1668
1669 index = page->index;
1670 if (index > end)
1671 break;
1672 index++;
1673
a1d6cc56
AK
1674 err = mapping->a_ops->writepage(page, mpd->wbc);
1675 if (!err)
1676 mpd->pages_written++;
64769240
AT
1677 /*
1678 * In error case, we have to continue because
1679 * remaining pages are still locked
1680 * XXX: unlock and re-dirty them?
1681 */
1682 if (ret == 0)
1683 ret = err;
1684 }
1685 pagevec_release(&pvec);
1686 }
64769240
AT
1687 return ret;
1688}
1689
1690/*
1691 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1692 *
1693 * @mpd->inode - inode to walk through
1694 * @exbh->b_blocknr - first block on a disk
1695 * @exbh->b_size - amount of space in bytes
1696 * @logical - first logical block to start assignment with
1697 *
1698 * the function goes through all passed space and put actual disk
1699 * block numbers into buffer heads, dropping BH_Delay
1700 */
1701static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1702 struct buffer_head *exbh)
1703{
1704 struct inode *inode = mpd->inode;
1705 struct address_space *mapping = inode->i_mapping;
1706 int blocks = exbh->b_size >> inode->i_blkbits;
1707 sector_t pblock = exbh->b_blocknr, cur_logical;
1708 struct buffer_head *head, *bh;
a1d6cc56 1709 pgoff_t index, end;
64769240
AT
1710 struct pagevec pvec;
1711 int nr_pages, i;
1712
1713 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1714 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1715 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1716
1717 pagevec_init(&pvec, 0);
1718
1719 while (index <= end) {
1720 /* XXX: optimize tail */
1721 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1726
1727 index = page->index;
1728 if (index > end)
1729 break;
1730 index++;
1731
1732 BUG_ON(!PageLocked(page));
1733 BUG_ON(PageWriteback(page));
1734 BUG_ON(!page_has_buffers(page));
1735
1736 bh = page_buffers(page);
1737 head = bh;
1738
1739 /* skip blocks out of the range */
1740 do {
1741 if (cur_logical >= logical)
1742 break;
1743 cur_logical++;
1744 } while ((bh = bh->b_this_page) != head);
1745
1746 do {
1747 if (cur_logical >= logical + blocks)
1748 break;
64769240
AT
1749 if (buffer_delay(bh)) {
1750 bh->b_blocknr = pblock;
1751 clear_buffer_delay(bh);
bf068ee2
AK
1752 bh->b_bdev = inode->i_sb->s_bdev;
1753 } else if (buffer_unwritten(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_unwritten(bh);
1756 set_buffer_mapped(bh);
1757 set_buffer_new(bh);
1758 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1759 } else if (buffer_mapped(bh))
64769240 1760 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1761
1762 cur_logical++;
1763 pblock++;
1764 } while ((bh = bh->b_this_page) != head);
1765 }
1766 pagevec_release(&pvec);
1767 }
1768}
1769
1770
1771/*
1772 * __unmap_underlying_blocks - just a helper function to unmap
1773 * set of blocks described by @bh
1774 */
1775static inline void __unmap_underlying_blocks(struct inode *inode,
1776 struct buffer_head *bh)
1777{
1778 struct block_device *bdev = inode->i_sb->s_bdev;
1779 int blocks, i;
1780
1781 blocks = bh->b_size >> inode->i_blkbits;
1782 for (i = 0; i < blocks; i++)
1783 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1784}
1785
1786/*
1787 * mpage_da_map_blocks - go through given space
1788 *
1789 * @mpd->lbh - bh describing space
1790 * @mpd->get_block - the filesystem's block mapper function
1791 *
1792 * The function skips space we know is already mapped to disk blocks.
1793 *
64769240
AT
1794 */
1795static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1796{
a1d6cc56 1797 int err = 0;
64769240 1798 struct buffer_head *lbh = &mpd->lbh;
64769240
AT
1799 sector_t next = lbh->b_blocknr;
1800 struct buffer_head new;
1801
1802 /*
1803 * We consider only non-mapped and non-allocated blocks
1804 */
1805 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1806 return;
1807
a1d6cc56
AK
1808 new.b_state = lbh->b_state;
1809 new.b_blocknr = 0;
1810 new.b_size = lbh->b_size;
1811
1812 /*
1813 * If we didn't accumulate anything
1814 * to write simply return
1815 */
1816 if (!new.b_size)
1817 return;
1818 err = mpd->get_block(mpd->inode, next, &new, 1);
1819 if (err)
1820 return;
1821 BUG_ON(new.b_size == 0);
64769240 1822
a1d6cc56
AK
1823 if (buffer_new(&new))
1824 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1825
a1d6cc56
AK
1826 /*
1827 * If blocks are delayed marked, we need to
1828 * put actual blocknr and drop delayed bit
1829 */
1830 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1831 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1832
a1d6cc56 1833 return;
64769240
AT
1834}
1835
bf068ee2
AK
1836#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1837 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1838
1839/*
1840 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1841 *
1842 * @mpd->lbh - extent of blocks
1843 * @logical - logical number of the block in the file
1844 * @bh - bh of the block (used to access block's state)
1845 *
1846 * the function is used to collect contig. blocks in same state
1847 */
1848static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1849 sector_t logical, struct buffer_head *bh)
1850{
64769240 1851 sector_t next;
525f4ed8
MC
1852 size_t b_size = bh->b_size;
1853 struct buffer_head *lbh = &mpd->lbh;
1854 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1855
525f4ed8
MC
1856 /* check if thereserved journal credits might overflow */
1857 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1858 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1859 /*
1860 * With non-extent format we are limited by the journal
1861 * credit available. Total credit needed to insert
1862 * nrblocks contiguous blocks is dependent on the
1863 * nrblocks. So limit nrblocks.
1864 */
1865 goto flush_it;
1866 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1867 EXT4_MAX_TRANS_DATA) {
1868 /*
1869 * Adding the new buffer_head would make it cross the
1870 * allowed limit for which we have journal credit
1871 * reserved. So limit the new bh->b_size
1872 */
1873 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1874 mpd->inode->i_blkbits;
1875 /* we will do mpage_da_submit_io in the next loop */
1876 }
1877 }
64769240
AT
1878 /*
1879 * First block in the extent
1880 */
1881 if (lbh->b_size == 0) {
1882 lbh->b_blocknr = logical;
525f4ed8 1883 lbh->b_size = b_size;
64769240
AT
1884 lbh->b_state = bh->b_state & BH_FLAGS;
1885 return;
1886 }
1887
525f4ed8 1888 next = lbh->b_blocknr + nrblocks;
64769240
AT
1889 /*
1890 * Can we merge the block to our big extent?
1891 */
1892 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 1893 lbh->b_size += b_size;
64769240
AT
1894 return;
1895 }
1896
525f4ed8 1897flush_it:
64769240
AT
1898 /*
1899 * We couldn't merge the block to our extent, so we
1900 * need to flush current extent and start new one
1901 */
1902 mpage_da_map_blocks(mpd);
a1d6cc56
AK
1903 mpage_da_submit_io(mpd);
1904 mpd->io_done = 1;
1905 return;
64769240
AT
1906}
1907
1908/*
1909 * __mpage_da_writepage - finds extent of pages and blocks
1910 *
1911 * @page: page to consider
1912 * @wbc: not used, we just follow rules
1913 * @data: context
1914 *
1915 * The function finds extents of pages and scan them for all blocks.
1916 */
1917static int __mpage_da_writepage(struct page *page,
1918 struct writeback_control *wbc, void *data)
1919{
1920 struct mpage_da_data *mpd = data;
1921 struct inode *inode = mpd->inode;
1922 struct buffer_head *bh, *head, fake;
1923 sector_t logical;
1924
a1d6cc56
AK
1925 if (mpd->io_done) {
1926 /*
1927 * Rest of the page in the page_vec
1928 * redirty then and skip then. We will
1929 * try to to write them again after
1930 * starting a new transaction
1931 */
1932 redirty_page_for_writepage(wbc, page);
1933 unlock_page(page);
1934 return MPAGE_DA_EXTENT_TAIL;
1935 }
64769240
AT
1936 /*
1937 * Can we merge this page to current extent?
1938 */
1939 if (mpd->next_page != page->index) {
1940 /*
1941 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 1942 * and start IO on them using writepage()
64769240
AT
1943 */
1944 if (mpd->next_page != mpd->first_page) {
1945 mpage_da_map_blocks(mpd);
1946 mpage_da_submit_io(mpd);
a1d6cc56
AK
1947 /*
1948 * skip rest of the page in the page_vec
1949 */
1950 mpd->io_done = 1;
1951 redirty_page_for_writepage(wbc, page);
1952 unlock_page(page);
1953 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
1954 }
1955
1956 /*
1957 * Start next extent of pages ...
1958 */
1959 mpd->first_page = page->index;
1960
1961 /*
1962 * ... and blocks
1963 */
1964 mpd->lbh.b_size = 0;
1965 mpd->lbh.b_state = 0;
1966 mpd->lbh.b_blocknr = 0;
1967 }
1968
1969 mpd->next_page = page->index + 1;
1970 logical = (sector_t) page->index <<
1971 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972
1973 if (!page_has_buffers(page)) {
1974 /*
1975 * There is no attached buffer heads yet (mmap?)
1976 * we treat the page asfull of dirty blocks
1977 */
1978 bh = &fake;
1979 bh->b_size = PAGE_CACHE_SIZE;
1980 bh->b_state = 0;
1981 set_buffer_dirty(bh);
1982 set_buffer_uptodate(bh);
1983 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
1984 if (mpd->io_done)
1985 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
1986 } else {
1987 /*
1988 * Page with regular buffer heads, just add all dirty ones
1989 */
1990 head = page_buffers(page);
1991 bh = head;
1992 do {
1993 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
1994 if (buffer_dirty(bh) &&
1995 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 1996 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
1997 if (mpd->io_done)
1998 return MPAGE_DA_EXTENT_TAIL;
1999 }
64769240
AT
2000 logical++;
2001 } while ((bh = bh->b_this_page) != head);
2002 }
2003
2004 return 0;
2005}
2006
2007/*
2008 * mpage_da_writepages - walk the list of dirty pages of the given
2009 * address space, allocates non-allocated blocks, maps newly-allocated
2010 * blocks to existing bhs and issue IO them
2011 *
2012 * @mapping: address space structure to write
2013 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2014 * @get_block: the filesystem's block mapper function.
2015 *
2016 * This is a library function, which implements the writepages()
2017 * address_space_operation.
64769240
AT
2018 */
2019static int mpage_da_writepages(struct address_space *mapping,
2020 struct writeback_control *wbc,
2021 get_block_t get_block)
2022{
2023 struct mpage_da_data mpd;
a1d6cc56 2024 long to_write;
64769240
AT
2025 int ret;
2026
2027 if (!get_block)
2028 return generic_writepages(mapping, wbc);
2029
2030 mpd.wbc = wbc;
2031 mpd.inode = mapping->host;
2032 mpd.lbh.b_size = 0;
2033 mpd.lbh.b_state = 0;
2034 mpd.lbh.b_blocknr = 0;
2035 mpd.first_page = 0;
2036 mpd.next_page = 0;
2037 mpd.get_block = get_block;
a1d6cc56
AK
2038 mpd.io_done = 0;
2039 mpd.pages_written = 0;
2040
2041 to_write = wbc->nr_to_write;
64769240
AT
2042
2043 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2044
2045 /*
2046 * Handle last extent of pages
2047 */
a1d6cc56 2048 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
64769240
AT
2049 mpage_da_map_blocks(&mpd);
2050 mpage_da_submit_io(&mpd);
2051 }
2052
a1d6cc56 2053 wbc->nr_to_write = to_write - mpd.pages_written;
64769240
AT
2054 return ret;
2055}
2056
2057/*
2058 * this is a special callback for ->write_begin() only
2059 * it's intention is to return mapped block or reserve space
2060 */
2061static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2062 struct buffer_head *bh_result, int create)
2063{
2064 int ret = 0;
2065
2066 BUG_ON(create == 0);
2067 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2068
2069 /*
2070 * first, we need to know whether the block is allocated already
2071 * preallocated blocks are unmapped but should treated
2072 * the same as allocated blocks.
2073 */
d2a17637
MC
2074 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2075 if ((ret == 0) && !buffer_delay(bh_result)) {
2076 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2077 /*
2078 * XXX: __block_prepare_write() unmaps passed block,
2079 * is it OK?
2080 */
d2a17637
MC
2081 ret = ext4_da_reserve_space(inode, 1);
2082 if (ret)
2083 /* not enough space to reserve */
2084 return ret;
2085
64769240
AT
2086 map_bh(bh_result, inode->i_sb, 0);
2087 set_buffer_new(bh_result);
2088 set_buffer_delay(bh_result);
2089 } else if (ret > 0) {
2090 bh_result->b_size = (ret << inode->i_blkbits);
2091 ret = 0;
2092 }
2093
2094 return ret;
2095}
d2a17637 2096#define EXT4_DELALLOC_RSVED 1
64769240
AT
2097static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2098 struct buffer_head *bh_result, int create)
2099{
61628a3f 2100 int ret;
64769240
AT
2101 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2102 loff_t disksize = EXT4_I(inode)->i_disksize;
2103 handle_t *handle = NULL;
2104
61628a3f 2105 handle = ext4_journal_current_handle();
f0e6c985
AK
2106 if (!handle) {
2107 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2108 bh_result, 0, 0, 0);
2109 BUG_ON(!ret);
2110 } else {
2111 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
d2a17637 2112 bh_result, create, 0, EXT4_DELALLOC_RSVED);
f0e6c985
AK
2113 }
2114
64769240
AT
2115 if (ret > 0) {
2116 bh_result->b_size = (ret << inode->i_blkbits);
2117
2118 /*
2119 * Update on-disk size along with block allocation
2120 * we don't use 'extend_disksize' as size may change
2121 * within already allocated block -bzzz
2122 */
2123 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2124 if (disksize > i_size_read(inode))
2125 disksize = i_size_read(inode);
2126 if (disksize > EXT4_I(inode)->i_disksize) {
2127 /*
2128 * XXX: replace with spinlock if seen contended -bzzz
2129 */
2130 down_write(&EXT4_I(inode)->i_data_sem);
2131 if (disksize > EXT4_I(inode)->i_disksize)
2132 EXT4_I(inode)->i_disksize = disksize;
2133 up_write(&EXT4_I(inode)->i_data_sem);
2134
2135 if (EXT4_I(inode)->i_disksize == disksize) {
61628a3f
MC
2136 ret = ext4_mark_inode_dirty(handle, inode);
2137 return ret;
64769240
AT
2138 }
2139 }
64769240
AT
2140 ret = 0;
2141 }
64769240
AT
2142 return ret;
2143}
61628a3f
MC
2144
2145static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2146{
f0e6c985
AK
2147 /*
2148 * unmapped buffer is possible for holes.
2149 * delay buffer is possible with delayed allocation
2150 */
2151 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2152}
2153
2154static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2155 struct buffer_head *bh_result, int create)
2156{
2157 int ret = 0;
2158 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2159
2160 /*
2161 * we don't want to do block allocation in writepage
2162 * so call get_block_wrap with create = 0
2163 */
2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2165 bh_result, 0, 0, 0);
2166 if (ret > 0) {
2167 bh_result->b_size = (ret << inode->i_blkbits);
2168 ret = 0;
2169 }
2170 return ret;
61628a3f
MC
2171}
2172
61628a3f 2173/*
f0e6c985
AK
2174 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2175 * get called via journal_submit_inode_data_buffers (no journal handle)
2176 * get called via shrink_page_list via pdflush (no journal handle)
2177 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2178 */
64769240
AT
2179static int ext4_da_writepage(struct page *page,
2180 struct writeback_control *wbc)
2181{
64769240 2182 int ret = 0;
61628a3f
MC
2183 loff_t size;
2184 unsigned long len;
61628a3f
MC
2185 struct buffer_head *page_bufs;
2186 struct inode *inode = page->mapping->host;
2187
f0e6c985
AK
2188 size = i_size_read(inode);
2189 if (page->index == size >> PAGE_CACHE_SHIFT)
2190 len = size & ~PAGE_CACHE_MASK;
2191 else
2192 len = PAGE_CACHE_SIZE;
64769240 2193
f0e6c985 2194 if (page_has_buffers(page)) {
61628a3f 2195 page_bufs = page_buffers(page);
f0e6c985
AK
2196 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2197 ext4_bh_unmapped_or_delay)) {
61628a3f 2198 /*
f0e6c985
AK
2199 * We don't want to do block allocation
2200 * So redirty the page and return
cd1aac32
AK
2201 * We may reach here when we do a journal commit
2202 * via journal_submit_inode_data_buffers.
2203 * If we don't have mapping block we just ignore
f0e6c985
AK
2204 * them. We can also reach here via shrink_page_list
2205 */
2206 redirty_page_for_writepage(wbc, page);
2207 unlock_page(page);
2208 return 0;
2209 }
2210 } else {
2211 /*
2212 * The test for page_has_buffers() is subtle:
2213 * We know the page is dirty but it lost buffers. That means
2214 * that at some moment in time after write_begin()/write_end()
2215 * has been called all buffers have been clean and thus they
2216 * must have been written at least once. So they are all
2217 * mapped and we can happily proceed with mapping them
2218 * and writing the page.
2219 *
2220 * Try to initialize the buffer_heads and check whether
2221 * all are mapped and non delay. We don't want to
2222 * do block allocation here.
2223 */
2224 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2225 ext4_normal_get_block_write);
2226 if (!ret) {
2227 page_bufs = page_buffers(page);
2228 /* check whether all are mapped and non delay */
2229 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2230 ext4_bh_unmapped_or_delay)) {
2231 redirty_page_for_writepage(wbc, page);
2232 unlock_page(page);
2233 return 0;
2234 }
2235 } else {
2236 /*
2237 * We can't do block allocation here
2238 * so just redity the page and unlock
2239 * and return
61628a3f 2240 */
61628a3f
MC
2241 redirty_page_for_writepage(wbc, page);
2242 unlock_page(page);
2243 return 0;
2244 }
64769240
AT
2245 }
2246
2247 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2248 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2249 else
f0e6c985
AK
2250 ret = block_write_full_page(page,
2251 ext4_normal_get_block_write,
2252 wbc);
64769240 2253
64769240
AT
2254 return ret;
2255}
2256
61628a3f 2257/*
525f4ed8
MC
2258 * This is called via ext4_da_writepages() to
2259 * calulate the total number of credits to reserve to fit
2260 * a single extent allocation into a single transaction,
2261 * ext4_da_writpeages() will loop calling this before
2262 * the block allocation.
61628a3f 2263 */
525f4ed8
MC
2264
2265static int ext4_da_writepages_trans_blocks(struct inode *inode)
2266{
2267 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2268
2269 /*
2270 * With non-extent format the journal credit needed to
2271 * insert nrblocks contiguous block is dependent on
2272 * number of contiguous block. So we will limit
2273 * number of contiguous block to a sane value
2274 */
2275 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2276 (max_blocks > EXT4_MAX_TRANS_DATA))
2277 max_blocks = EXT4_MAX_TRANS_DATA;
2278
2279 return ext4_chunk_trans_blocks(inode, max_blocks);
2280}
61628a3f 2281
64769240 2282static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2283 struct writeback_control *wbc)
64769240 2284{
61628a3f 2285 handle_t *handle = NULL;
61628a3f 2286 loff_t range_start = 0;
5e745b04
AK
2287 struct inode *inode = mapping->host;
2288 int needed_blocks, ret = 0, nr_to_writebump = 0;
2289 long to_write, pages_skipped = 0;
2290 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2291
2292 /*
2293 * No pages to write? This is mainly a kludge to avoid starting
2294 * a transaction for special inodes like journal inode on last iput()
2295 * because that could violate lock ordering on umount
2296 */
a1d6cc56 2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2298 return 0;
5e745b04
AK
2299 /*
2300 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2301 * This make sure small files blocks are allocated in
2302 * single attempt. This ensure that small files
2303 * get less fragmented.
2304 */
2305 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2306 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2307 wbc->nr_to_write = sbi->s_mb_stream_request;
2308 }
61628a3f 2309
a1d6cc56 2310 if (!wbc->range_cyclic)
61628a3f
MC
2311 /*
2312 * If range_cyclic is not set force range_cont
2313 * and save the old writeback_index
2314 */
2315 wbc->range_cont = 1;
61628a3f 2316
a1d6cc56
AK
2317 range_start = wbc->range_start;
2318 pages_skipped = wbc->pages_skipped;
2319
2320restart_loop:
2321 to_write = wbc->nr_to_write;
2322 while (!ret && to_write > 0) {
2323
2324 /*
2325 * we insert one extent at a time. So we need
2326 * credit needed for single extent allocation.
2327 * journalled mode is currently not supported
2328 * by delalloc
2329 */
2330 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2331 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2332
61628a3f
MC
2333 /* start a new transaction*/
2334 handle = ext4_journal_start(inode, needed_blocks);
2335 if (IS_ERR(handle)) {
2336 ret = PTR_ERR(handle);
a1d6cc56
AK
2337 printk(KERN_EMERG "%s: jbd2_start: "
2338 "%ld pages, ino %lu; err %d\n", __func__,
2339 wbc->nr_to_write, inode->i_ino, ret);
2340 dump_stack();
61628a3f
MC
2341 goto out_writepages;
2342 }
cd1aac32
AK
2343 if (ext4_should_order_data(inode)) {
2344 /*
2345 * With ordered mode we need to add
a1d6cc56 2346 * the inode to the journal handl
cd1aac32
AK
2347 * when we do block allocation.
2348 */
2349 ret = ext4_jbd2_file_inode(handle, inode);
2350 if (ret) {
2351 ext4_journal_stop(handle);
2352 goto out_writepages;
2353 }
cd1aac32 2354 }
61628a3f
MC
2355
2356 to_write -= wbc->nr_to_write;
2357 ret = mpage_da_writepages(mapping, wbc,
a1d6cc56 2358 ext4_da_get_block_write);
61628a3f 2359 ext4_journal_stop(handle);
a1d6cc56
AK
2360 if (ret == MPAGE_DA_EXTENT_TAIL) {
2361 /*
2362 * got one extent now try with
2363 * rest of the pages
2364 */
2365 to_write += wbc->nr_to_write;
2366 ret = 0;
2367 } else if (wbc->nr_to_write) {
61628a3f
MC
2368 /*
2369 * There is no more writeout needed
2370 * or we requested for a noblocking writeout
2371 * and we found the device congested
2372 */
2373 to_write += wbc->nr_to_write;
2374 break;
2375 }
2376 wbc->nr_to_write = to_write;
2377 }
2378
a1d6cc56
AK
2379 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2380 /* We skipped pages in this loop */
2381 wbc->range_start = range_start;
2382 wbc->nr_to_write = to_write +
2383 wbc->pages_skipped - pages_skipped;
2384 wbc->pages_skipped = pages_skipped;
2385 goto restart_loop;
2386 }
2387
61628a3f 2388out_writepages:
5e745b04 2389 wbc->nr_to_write = to_write - nr_to_writebump;
a1d6cc56 2390 wbc->range_start = range_start;
61628a3f 2391 return ret;
64769240
AT
2392}
2393
2394static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2395 loff_t pos, unsigned len, unsigned flags,
2396 struct page **pagep, void **fsdata)
2397{
d2a17637 2398 int ret, retries = 0;
64769240
AT
2399 struct page *page;
2400 pgoff_t index;
2401 unsigned from, to;
2402 struct inode *inode = mapping->host;
2403 handle_t *handle;
2404
2405 index = pos >> PAGE_CACHE_SHIFT;
2406 from = pos & (PAGE_CACHE_SIZE - 1);
2407 to = from + len;
2408
d2a17637 2409retry:
64769240
AT
2410 /*
2411 * With delayed allocation, we don't log the i_disksize update
2412 * if there is delayed block allocation. But we still need
2413 * to journalling the i_disksize update if writes to the end
2414 * of file which has an already mapped buffer.
2415 */
2416 handle = ext4_journal_start(inode, 1);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
2419 goto out;
2420 }
2421
2422 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2423 if (!page) {
2424 ext4_journal_stop(handle);
2425 ret = -ENOMEM;
2426 goto out;
2427 }
64769240
AT
2428 *pagep = page;
2429
2430 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2431 ext4_da_get_block_prep);
2432 if (ret < 0) {
2433 unlock_page(page);
2434 ext4_journal_stop(handle);
2435 page_cache_release(page);
2436 }
2437
d2a17637
MC
2438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2439 goto retry;
64769240
AT
2440out:
2441 return ret;
2442}
2443
632eaeab
MC
2444/*
2445 * Check if we should update i_disksize
2446 * when write to the end of file but not require block allocation
2447 */
2448static int ext4_da_should_update_i_disksize(struct page *page,
2449 unsigned long offset)
2450{
2451 struct buffer_head *bh;
2452 struct inode *inode = page->mapping->host;
2453 unsigned int idx;
2454 int i;
2455
2456 bh = page_buffers(page);
2457 idx = offset >> inode->i_blkbits;
2458
af5bc92d 2459 for (i = 0; i < idx; i++)
632eaeab
MC
2460 bh = bh->b_this_page;
2461
2462 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2463 return 0;
2464 return 1;
2465}
2466
64769240
AT
2467static int ext4_da_write_end(struct file *file,
2468 struct address_space *mapping,
2469 loff_t pos, unsigned len, unsigned copied,
2470 struct page *page, void *fsdata)
2471{
2472 struct inode *inode = mapping->host;
2473 int ret = 0, ret2;
2474 handle_t *handle = ext4_journal_current_handle();
2475 loff_t new_i_size;
632eaeab
MC
2476 unsigned long start, end;
2477
2478 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2479 end = start + copied - 1;
64769240
AT
2480
2481 /*
2482 * generic_write_end() will run mark_inode_dirty() if i_size
2483 * changes. So let's piggyback the i_disksize mark_inode_dirty
2484 * into that.
2485 */
2486
2487 new_i_size = pos + copied;
632eaeab
MC
2488 if (new_i_size > EXT4_I(inode)->i_disksize) {
2489 if (ext4_da_should_update_i_disksize(page, end)) {
2490 down_write(&EXT4_I(inode)->i_data_sem);
2491 if (new_i_size > EXT4_I(inode)->i_disksize) {
2492 /*
2493 * Updating i_disksize when extending file
2494 * without needing block allocation
2495 */
2496 if (ext4_should_order_data(inode))
2497 ret = ext4_jbd2_file_inode(handle,
2498 inode);
64769240 2499
632eaeab
MC
2500 EXT4_I(inode)->i_disksize = new_i_size;
2501 }
2502 up_write(&EXT4_I(inode)->i_data_sem);
64769240 2503 }
632eaeab 2504 }
64769240
AT
2505 ret2 = generic_write_end(file, mapping, pos, len, copied,
2506 page, fsdata);
2507 copied = ret2;
2508 if (ret2 < 0)
2509 ret = ret2;
2510 ret2 = ext4_journal_stop(handle);
2511 if (!ret)
2512 ret = ret2;
2513
2514 return ret ? ret : copied;
2515}
2516
2517static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2518{
64769240
AT
2519 /*
2520 * Drop reserved blocks
2521 */
2522 BUG_ON(!PageLocked(page));
2523 if (!page_has_buffers(page))
2524 goto out;
2525
d2a17637 2526 ext4_da_page_release_reservation(page, offset);
64769240
AT
2527
2528out:
2529 ext4_invalidatepage(page, offset);
2530
2531 return;
2532}
2533
2534
ac27a0ec
DK
2535/*
2536 * bmap() is special. It gets used by applications such as lilo and by
2537 * the swapper to find the on-disk block of a specific piece of data.
2538 *
2539 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2540 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2541 * filesystem and enables swap, then they may get a nasty shock when the
2542 * data getting swapped to that swapfile suddenly gets overwritten by
2543 * the original zero's written out previously to the journal and
2544 * awaiting writeback in the kernel's buffer cache.
2545 *
2546 * So, if we see any bmap calls here on a modified, data-journaled file,
2547 * take extra steps to flush any blocks which might be in the cache.
2548 */
617ba13b 2549static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2550{
2551 struct inode *inode = mapping->host;
2552 journal_t *journal;
2553 int err;
2554
64769240
AT
2555 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2556 test_opt(inode->i_sb, DELALLOC)) {
2557 /*
2558 * With delalloc we want to sync the file
2559 * so that we can make sure we allocate
2560 * blocks for file
2561 */
2562 filemap_write_and_wait(mapping);
2563 }
2564
617ba13b 2565 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2566 /*
2567 * This is a REALLY heavyweight approach, but the use of
2568 * bmap on dirty files is expected to be extremely rare:
2569 * only if we run lilo or swapon on a freshly made file
2570 * do we expect this to happen.
2571 *
2572 * (bmap requires CAP_SYS_RAWIO so this does not
2573 * represent an unprivileged user DOS attack --- we'd be
2574 * in trouble if mortal users could trigger this path at
2575 * will.)
2576 *
617ba13b 2577 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2578 * regular files. If somebody wants to bmap a directory
2579 * or symlink and gets confused because the buffer
2580 * hasn't yet been flushed to disk, they deserve
2581 * everything they get.
2582 */
2583
617ba13b
MC
2584 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2585 journal = EXT4_JOURNAL(inode);
dab291af
MC
2586 jbd2_journal_lock_updates(journal);
2587 err = jbd2_journal_flush(journal);
2588 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2589
2590 if (err)
2591 return 0;
2592 }
2593
af5bc92d 2594 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2595}
2596
2597static int bget_one(handle_t *handle, struct buffer_head *bh)
2598{
2599 get_bh(bh);
2600 return 0;
2601}
2602
2603static int bput_one(handle_t *handle, struct buffer_head *bh)
2604{
2605 put_bh(bh);
2606 return 0;
2607}
2608
ac27a0ec 2609/*
678aaf48
JK
2610 * Note that we don't need to start a transaction unless we're journaling data
2611 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2612 * need to file the inode to the transaction's list in ordered mode because if
2613 * we are writing back data added by write(), the inode is already there and if
2614 * we are writing back data modified via mmap(), noone guarantees in which
2615 * transaction the data will hit the disk. In case we are journaling data, we
2616 * cannot start transaction directly because transaction start ranks above page
2617 * lock so we have to do some magic.
ac27a0ec 2618 *
678aaf48 2619 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2620 *
2621 * Problem:
2622 *
617ba13b
MC
2623 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2624 * ext4_writepage()
ac27a0ec
DK
2625 *
2626 * Similar for:
2627 *
617ba13b 2628 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2629 *
617ba13b 2630 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2631 * lock_journal and i_data_sem
ac27a0ec
DK
2632 *
2633 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2634 * allocations fail.
2635 *
2636 * 16May01: If we're reentered then journal_current_handle() will be
2637 * non-zero. We simply *return*.
2638 *
2639 * 1 July 2001: @@@ FIXME:
2640 * In journalled data mode, a data buffer may be metadata against the
2641 * current transaction. But the same file is part of a shared mapping
2642 * and someone does a writepage() on it.
2643 *
2644 * We will move the buffer onto the async_data list, but *after* it has
2645 * been dirtied. So there's a small window where we have dirty data on
2646 * BJ_Metadata.
2647 *
2648 * Note that this only applies to the last partial page in the file. The
2649 * bit which block_write_full_page() uses prepare/commit for. (That's
2650 * broken code anyway: it's wrong for msync()).
2651 *
2652 * It's a rare case: affects the final partial page, for journalled data
2653 * where the file is subject to bith write() and writepage() in the same
2654 * transction. To fix it we'll need a custom block_write_full_page().
2655 * We'll probably need that anyway for journalling writepage() output.
2656 *
2657 * We don't honour synchronous mounts for writepage(). That would be
2658 * disastrous. Any write() or metadata operation will sync the fs for
2659 * us.
2660 *
ac27a0ec 2661 */
678aaf48 2662static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2663 struct writeback_control *wbc)
2664{
2665 struct inode *inode = page->mapping->host;
2666
2667 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2668 return nobh_writepage(page,
2669 ext4_normal_get_block_write, wbc);
cf108bca 2670 else
f0e6c985
AK
2671 return block_write_full_page(page,
2672 ext4_normal_get_block_write,
2673 wbc);
cf108bca
JK
2674}
2675
678aaf48 2676static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2677 struct writeback_control *wbc)
2678{
2679 struct inode *inode = page->mapping->host;
cf108bca
JK
2680 loff_t size = i_size_read(inode);
2681 loff_t len;
2682
2683 J_ASSERT(PageLocked(page));
cf108bca
JK
2684 if (page->index == size >> PAGE_CACHE_SHIFT)
2685 len = size & ~PAGE_CACHE_MASK;
2686 else
2687 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2688
2689 if (page_has_buffers(page)) {
2690 /* if page has buffers it should all be mapped
2691 * and allocated. If there are not buffers attached
2692 * to the page we know the page is dirty but it lost
2693 * buffers. That means that at some moment in time
2694 * after write_begin() / write_end() has been called
2695 * all buffers have been clean and thus they must have been
2696 * written at least once. So they are all mapped and we can
2697 * happily proceed with mapping them and writing the page.
2698 */
2699 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2700 ext4_bh_unmapped_or_delay));
2701 }
cf108bca
JK
2702
2703 if (!ext4_journal_current_handle())
678aaf48 2704 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2705
2706 redirty_page_for_writepage(wbc, page);
2707 unlock_page(page);
2708 return 0;
2709}
2710
2711static int __ext4_journalled_writepage(struct page *page,
2712 struct writeback_control *wbc)
2713{
2714 struct address_space *mapping = page->mapping;
2715 struct inode *inode = mapping->host;
2716 struct buffer_head *page_bufs;
ac27a0ec
DK
2717 handle_t *handle = NULL;
2718 int ret = 0;
2719 int err;
2720
f0e6c985
AK
2721 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2722 ext4_normal_get_block_write);
cf108bca
JK
2723 if (ret != 0)
2724 goto out_unlock;
2725
2726 page_bufs = page_buffers(page);
2727 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2728 bget_one);
2729 /* As soon as we unlock the page, it can go away, but we have
2730 * references to buffers so we are safe */
2731 unlock_page(page);
ac27a0ec 2732
617ba13b 2733 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2734 if (IS_ERR(handle)) {
2735 ret = PTR_ERR(handle);
cf108bca 2736 goto out;
ac27a0ec
DK
2737 }
2738
cf108bca
JK
2739 ret = walk_page_buffers(handle, page_bufs, 0,
2740 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2741
cf108bca
JK
2742 err = walk_page_buffers(handle, page_bufs, 0,
2743 PAGE_CACHE_SIZE, NULL, write_end_fn);
2744 if (ret == 0)
2745 ret = err;
617ba13b 2746 err = ext4_journal_stop(handle);
ac27a0ec
DK
2747 if (!ret)
2748 ret = err;
ac27a0ec 2749
cf108bca
JK
2750 walk_page_buffers(handle, page_bufs, 0,
2751 PAGE_CACHE_SIZE, NULL, bput_one);
2752 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2753 goto out;
2754
2755out_unlock:
ac27a0ec 2756 unlock_page(page);
cf108bca 2757out:
ac27a0ec
DK
2758 return ret;
2759}
2760
617ba13b 2761static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2762 struct writeback_control *wbc)
2763{
2764 struct inode *inode = page->mapping->host;
cf108bca
JK
2765 loff_t size = i_size_read(inode);
2766 loff_t len;
ac27a0ec 2767
cf108bca 2768 J_ASSERT(PageLocked(page));
cf108bca
JK
2769 if (page->index == size >> PAGE_CACHE_SHIFT)
2770 len = size & ~PAGE_CACHE_MASK;
2771 else
2772 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2773
2774 if (page_has_buffers(page)) {
2775 /* if page has buffers it should all be mapped
2776 * and allocated. If there are not buffers attached
2777 * to the page we know the page is dirty but it lost
2778 * buffers. That means that at some moment in time
2779 * after write_begin() / write_end() has been called
2780 * all buffers have been clean and thus they must have been
2781 * written at least once. So they are all mapped and we can
2782 * happily proceed with mapping them and writing the page.
2783 */
2784 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2785 ext4_bh_unmapped_or_delay));
2786 }
ac27a0ec 2787
cf108bca 2788 if (ext4_journal_current_handle())
ac27a0ec 2789 goto no_write;
ac27a0ec 2790
cf108bca 2791 if (PageChecked(page)) {
ac27a0ec
DK
2792 /*
2793 * It's mmapped pagecache. Add buffers and journal it. There
2794 * doesn't seem much point in redirtying the page here.
2795 */
2796 ClearPageChecked(page);
cf108bca 2797 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2798 } else {
2799 /*
2800 * It may be a page full of checkpoint-mode buffers. We don't
2801 * really know unless we go poke around in the buffer_heads.
2802 * But block_write_full_page will do the right thing.
2803 */
f0e6c985
AK
2804 return block_write_full_page(page,
2805 ext4_normal_get_block_write,
2806 wbc);
ac27a0ec 2807 }
ac27a0ec
DK
2808no_write:
2809 redirty_page_for_writepage(wbc, page);
ac27a0ec 2810 unlock_page(page);
cf108bca 2811 return 0;
ac27a0ec
DK
2812}
2813
617ba13b 2814static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2815{
617ba13b 2816 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2817}
2818
2819static int
617ba13b 2820ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2821 struct list_head *pages, unsigned nr_pages)
2822{
617ba13b 2823 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2824}
2825
617ba13b 2826static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2827{
617ba13b 2828 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2829
2830 /*
2831 * If it's a full truncate we just forget about the pending dirtying
2832 */
2833 if (offset == 0)
2834 ClearPageChecked(page);
2835
dab291af 2836 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2837}
2838
617ba13b 2839static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2840{
617ba13b 2841 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2842
2843 WARN_ON(PageChecked(page));
2844 if (!page_has_buffers(page))
2845 return 0;
dab291af 2846 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2847}
2848
2849/*
2850 * If the O_DIRECT write will extend the file then add this inode to the
2851 * orphan list. So recovery will truncate it back to the original size
2852 * if the machine crashes during the write.
2853 *
2854 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2855 * crashes then stale disk data _may_ be exposed inside the file. But current
2856 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2857 */
617ba13b 2858static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2859 const struct iovec *iov, loff_t offset,
2860 unsigned long nr_segs)
2861{
2862 struct file *file = iocb->ki_filp;
2863 struct inode *inode = file->f_mapping->host;
617ba13b 2864 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2865 handle_t *handle;
ac27a0ec
DK
2866 ssize_t ret;
2867 int orphan = 0;
2868 size_t count = iov_length(iov, nr_segs);
2869
2870 if (rw == WRITE) {
2871 loff_t final_size = offset + count;
2872
ac27a0ec 2873 if (final_size > inode->i_size) {
7fb5409d
JK
2874 /* Credits for sb + inode write */
2875 handle = ext4_journal_start(inode, 2);
2876 if (IS_ERR(handle)) {
2877 ret = PTR_ERR(handle);
2878 goto out;
2879 }
617ba13b 2880 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2881 if (ret) {
2882 ext4_journal_stop(handle);
2883 goto out;
2884 }
ac27a0ec
DK
2885 orphan = 1;
2886 ei->i_disksize = inode->i_size;
7fb5409d 2887 ext4_journal_stop(handle);
ac27a0ec
DK
2888 }
2889 }
2890
2891 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2892 offset, nr_segs,
617ba13b 2893 ext4_get_block, NULL);
ac27a0ec 2894
7fb5409d 2895 if (orphan) {
ac27a0ec
DK
2896 int err;
2897
7fb5409d
JK
2898 /* Credits for sb + inode write */
2899 handle = ext4_journal_start(inode, 2);
2900 if (IS_ERR(handle)) {
2901 /* This is really bad luck. We've written the data
2902 * but cannot extend i_size. Bail out and pretend
2903 * the write failed... */
2904 ret = PTR_ERR(handle);
2905 goto out;
2906 }
2907 if (inode->i_nlink)
617ba13b 2908 ext4_orphan_del(handle, inode);
7fb5409d 2909 if (ret > 0) {
ac27a0ec
DK
2910 loff_t end = offset + ret;
2911 if (end > inode->i_size) {
2912 ei->i_disksize = end;
2913 i_size_write(inode, end);
2914 /*
2915 * We're going to return a positive `ret'
2916 * here due to non-zero-length I/O, so there's
2917 * no way of reporting error returns from
617ba13b 2918 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2919 * ignore it.
2920 */
617ba13b 2921 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2922 }
2923 }
617ba13b 2924 err = ext4_journal_stop(handle);
ac27a0ec
DK
2925 if (ret == 0)
2926 ret = err;
2927 }
2928out:
2929 return ret;
2930}
2931
2932/*
617ba13b 2933 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2934 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2935 * much here because ->set_page_dirty is called under VFS locks. The page is
2936 * not necessarily locked.
2937 *
2938 * We cannot just dirty the page and leave attached buffers clean, because the
2939 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2940 * or jbddirty because all the journalling code will explode.
2941 *
2942 * So what we do is to mark the page "pending dirty" and next time writepage
2943 * is called, propagate that into the buffers appropriately.
2944 */
617ba13b 2945static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2946{
2947 SetPageChecked(page);
2948 return __set_page_dirty_nobuffers(page);
2949}
2950
617ba13b 2951static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2952 .readpage = ext4_readpage,
2953 .readpages = ext4_readpages,
2954 .writepage = ext4_normal_writepage,
2955 .sync_page = block_sync_page,
2956 .write_begin = ext4_write_begin,
2957 .write_end = ext4_ordered_write_end,
2958 .bmap = ext4_bmap,
2959 .invalidatepage = ext4_invalidatepage,
2960 .releasepage = ext4_releasepage,
2961 .direct_IO = ext4_direct_IO,
2962 .migratepage = buffer_migrate_page,
2963 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2964};
2965
617ba13b 2966static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2967 .readpage = ext4_readpage,
2968 .readpages = ext4_readpages,
2969 .writepage = ext4_normal_writepage,
2970 .sync_page = block_sync_page,
2971 .write_begin = ext4_write_begin,
2972 .write_end = ext4_writeback_write_end,
2973 .bmap = ext4_bmap,
2974 .invalidatepage = ext4_invalidatepage,
2975 .releasepage = ext4_releasepage,
2976 .direct_IO = ext4_direct_IO,
2977 .migratepage = buffer_migrate_page,
2978 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2979};
2980
617ba13b 2981static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2982 .readpage = ext4_readpage,
2983 .readpages = ext4_readpages,
2984 .writepage = ext4_journalled_writepage,
2985 .sync_page = block_sync_page,
2986 .write_begin = ext4_write_begin,
2987 .write_end = ext4_journalled_write_end,
2988 .set_page_dirty = ext4_journalled_set_page_dirty,
2989 .bmap = ext4_bmap,
2990 .invalidatepage = ext4_invalidatepage,
2991 .releasepage = ext4_releasepage,
2992 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2993};
2994
64769240 2995static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2996 .readpage = ext4_readpage,
2997 .readpages = ext4_readpages,
2998 .writepage = ext4_da_writepage,
2999 .writepages = ext4_da_writepages,
3000 .sync_page = block_sync_page,
3001 .write_begin = ext4_da_write_begin,
3002 .write_end = ext4_da_write_end,
3003 .bmap = ext4_bmap,
3004 .invalidatepage = ext4_da_invalidatepage,
3005 .releasepage = ext4_releasepage,
3006 .direct_IO = ext4_direct_IO,
3007 .migratepage = buffer_migrate_page,
3008 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3009};
3010
617ba13b 3011void ext4_set_aops(struct inode *inode)
ac27a0ec 3012{
cd1aac32
AK
3013 if (ext4_should_order_data(inode) &&
3014 test_opt(inode->i_sb, DELALLOC))
3015 inode->i_mapping->a_ops = &ext4_da_aops;
3016 else if (ext4_should_order_data(inode))
617ba13b 3017 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3018 else if (ext4_should_writeback_data(inode) &&
3019 test_opt(inode->i_sb, DELALLOC))
3020 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3021 else if (ext4_should_writeback_data(inode))
3022 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3023 else
617ba13b 3024 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3025}
3026
3027/*
617ba13b 3028 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3029 * up to the end of the block which corresponds to `from'.
3030 * This required during truncate. We need to physically zero the tail end
3031 * of that block so it doesn't yield old data if the file is later grown.
3032 */
cf108bca 3033int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3034 struct address_space *mapping, loff_t from)
3035{
617ba13b 3036 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3037 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3038 unsigned blocksize, length, pos;
3039 ext4_lblk_t iblock;
ac27a0ec
DK
3040 struct inode *inode = mapping->host;
3041 struct buffer_head *bh;
cf108bca 3042 struct page *page;
ac27a0ec 3043 int err = 0;
ac27a0ec 3044
cf108bca
JK
3045 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3046 if (!page)
3047 return -EINVAL;
3048
ac27a0ec
DK
3049 blocksize = inode->i_sb->s_blocksize;
3050 length = blocksize - (offset & (blocksize - 1));
3051 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3052
3053 /*
3054 * For "nobh" option, we can only work if we don't need to
3055 * read-in the page - otherwise we create buffers to do the IO.
3056 */
3057 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3058 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3059 zero_user(page, offset, length);
ac27a0ec
DK
3060 set_page_dirty(page);
3061 goto unlock;
3062 }
3063
3064 if (!page_has_buffers(page))
3065 create_empty_buffers(page, blocksize, 0);
3066
3067 /* Find the buffer that contains "offset" */
3068 bh = page_buffers(page);
3069 pos = blocksize;
3070 while (offset >= pos) {
3071 bh = bh->b_this_page;
3072 iblock++;
3073 pos += blocksize;
3074 }
3075
3076 err = 0;
3077 if (buffer_freed(bh)) {
3078 BUFFER_TRACE(bh, "freed: skip");
3079 goto unlock;
3080 }
3081
3082 if (!buffer_mapped(bh)) {
3083 BUFFER_TRACE(bh, "unmapped");
617ba13b 3084 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3085 /* unmapped? It's a hole - nothing to do */
3086 if (!buffer_mapped(bh)) {
3087 BUFFER_TRACE(bh, "still unmapped");
3088 goto unlock;
3089 }
3090 }
3091
3092 /* Ok, it's mapped. Make sure it's up-to-date */
3093 if (PageUptodate(page))
3094 set_buffer_uptodate(bh);
3095
3096 if (!buffer_uptodate(bh)) {
3097 err = -EIO;
3098 ll_rw_block(READ, 1, &bh);
3099 wait_on_buffer(bh);
3100 /* Uhhuh. Read error. Complain and punt. */
3101 if (!buffer_uptodate(bh))
3102 goto unlock;
3103 }
3104
617ba13b 3105 if (ext4_should_journal_data(inode)) {
ac27a0ec 3106 BUFFER_TRACE(bh, "get write access");
617ba13b 3107 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3108 if (err)
3109 goto unlock;
3110 }
3111
eebd2aa3 3112 zero_user(page, offset, length);
ac27a0ec
DK
3113
3114 BUFFER_TRACE(bh, "zeroed end of block");
3115
3116 err = 0;
617ba13b
MC
3117 if (ext4_should_journal_data(inode)) {
3118 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3119 } else {
617ba13b 3120 if (ext4_should_order_data(inode))
678aaf48 3121 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3122 mark_buffer_dirty(bh);
3123 }
3124
3125unlock:
3126 unlock_page(page);
3127 page_cache_release(page);
3128 return err;
3129}
3130
3131/*
3132 * Probably it should be a library function... search for first non-zero word
3133 * or memcmp with zero_page, whatever is better for particular architecture.
3134 * Linus?
3135 */
3136static inline int all_zeroes(__le32 *p, __le32 *q)
3137{
3138 while (p < q)
3139 if (*p++)
3140 return 0;
3141 return 1;
3142}
3143
3144/**
617ba13b 3145 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3146 * @inode: inode in question
3147 * @depth: depth of the affected branch
617ba13b 3148 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3149 * @chain: place to store the pointers to partial indirect blocks
3150 * @top: place to the (detached) top of branch
3151 *
617ba13b 3152 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3153 *
3154 * When we do truncate() we may have to clean the ends of several
3155 * indirect blocks but leave the blocks themselves alive. Block is
3156 * partially truncated if some data below the new i_size is refered
3157 * from it (and it is on the path to the first completely truncated
3158 * data block, indeed). We have to free the top of that path along
3159 * with everything to the right of the path. Since no allocation
617ba13b 3160 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3161 * finishes, we may safely do the latter, but top of branch may
3162 * require special attention - pageout below the truncation point
3163 * might try to populate it.
3164 *
3165 * We atomically detach the top of branch from the tree, store the
3166 * block number of its root in *@top, pointers to buffer_heads of
3167 * partially truncated blocks - in @chain[].bh and pointers to
3168 * their last elements that should not be removed - in
3169 * @chain[].p. Return value is the pointer to last filled element
3170 * of @chain.
3171 *
3172 * The work left to caller to do the actual freeing of subtrees:
3173 * a) free the subtree starting from *@top
3174 * b) free the subtrees whose roots are stored in
3175 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3176 * c) free the subtrees growing from the inode past the @chain[0].
3177 * (no partially truncated stuff there). */
3178
617ba13b 3179static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3180 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3181{
3182 Indirect *partial, *p;
3183 int k, err;
3184
3185 *top = 0;
3186 /* Make k index the deepest non-null offest + 1 */
3187 for (k = depth; k > 1 && !offsets[k-1]; k--)
3188 ;
617ba13b 3189 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3190 /* Writer: pointers */
3191 if (!partial)
3192 partial = chain + k-1;
3193 /*
3194 * If the branch acquired continuation since we've looked at it -
3195 * fine, it should all survive and (new) top doesn't belong to us.
3196 */
3197 if (!partial->key && *partial->p)
3198 /* Writer: end */
3199 goto no_top;
af5bc92d 3200 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3201 ;
3202 /*
3203 * OK, we've found the last block that must survive. The rest of our
3204 * branch should be detached before unlocking. However, if that rest
3205 * of branch is all ours and does not grow immediately from the inode
3206 * it's easier to cheat and just decrement partial->p.
3207 */
3208 if (p == chain + k - 1 && p > chain) {
3209 p->p--;
3210 } else {
3211 *top = *p->p;
617ba13b 3212 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3213#if 0
3214 *p->p = 0;
3215#endif
3216 }
3217 /* Writer: end */
3218
af5bc92d 3219 while (partial > p) {
ac27a0ec
DK
3220 brelse(partial->bh);
3221 partial--;
3222 }
3223no_top:
3224 return partial;
3225}
3226
3227/*
3228 * Zero a number of block pointers in either an inode or an indirect block.
3229 * If we restart the transaction we must again get write access to the
3230 * indirect block for further modification.
3231 *
3232 * We release `count' blocks on disk, but (last - first) may be greater
3233 * than `count' because there can be holes in there.
3234 */
617ba13b
MC
3235static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3236 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3237 unsigned long count, __le32 *first, __le32 *last)
3238{
3239 __le32 *p;
3240 if (try_to_extend_transaction(handle, inode)) {
3241 if (bh) {
617ba13b
MC
3242 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3243 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3244 }
617ba13b
MC
3245 ext4_mark_inode_dirty(handle, inode);
3246 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3247 if (bh) {
3248 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3249 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3250 }
3251 }
3252
3253 /*
3254 * Any buffers which are on the journal will be in memory. We find
dab291af 3255 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3256 * on them. We've already detached each block from the file, so
dab291af 3257 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3258 *
dab291af 3259 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3260 */
3261 for (p = first; p < last; p++) {
3262 u32 nr = le32_to_cpu(*p);
3263 if (nr) {
1d03ec98 3264 struct buffer_head *tbh;
ac27a0ec
DK
3265
3266 *p = 0;
1d03ec98
AK
3267 tbh = sb_find_get_block(inode->i_sb, nr);
3268 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3269 }
3270 }
3271
c9de560d 3272 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3273}
3274
3275/**
617ba13b 3276 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3277 * @handle: handle for this transaction
3278 * @inode: inode we are dealing with
3279 * @this_bh: indirect buffer_head which contains *@first and *@last
3280 * @first: array of block numbers
3281 * @last: points immediately past the end of array
3282 *
3283 * We are freeing all blocks refered from that array (numbers are stored as
3284 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3285 *
3286 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3287 * blocks are contiguous then releasing them at one time will only affect one
3288 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3289 * actually use a lot of journal space.
3290 *
3291 * @this_bh will be %NULL if @first and @last point into the inode's direct
3292 * block pointers.
3293 */
617ba13b 3294static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3295 struct buffer_head *this_bh,
3296 __le32 *first, __le32 *last)
3297{
617ba13b 3298 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3299 unsigned long count = 0; /* Number of blocks in the run */
3300 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3301 corresponding to
3302 block_to_free */
617ba13b 3303 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3304 __le32 *p; /* Pointer into inode/ind
3305 for current block */
3306 int err;
3307
3308 if (this_bh) { /* For indirect block */
3309 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3310 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3311 /* Important: if we can't update the indirect pointers
3312 * to the blocks, we can't free them. */
3313 if (err)
3314 return;
3315 }
3316
3317 for (p = first; p < last; p++) {
3318 nr = le32_to_cpu(*p);
3319 if (nr) {
3320 /* accumulate blocks to free if they're contiguous */
3321 if (count == 0) {
3322 block_to_free = nr;
3323 block_to_free_p = p;
3324 count = 1;
3325 } else if (nr == block_to_free + count) {
3326 count++;
3327 } else {
617ba13b 3328 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3329 block_to_free,
3330 count, block_to_free_p, p);
3331 block_to_free = nr;
3332 block_to_free_p = p;
3333 count = 1;
3334 }
3335 }
3336 }
3337
3338 if (count > 0)
617ba13b 3339 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3340 count, block_to_free_p, p);
3341
3342 if (this_bh) {
617ba13b 3343 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3344
3345 /*
3346 * The buffer head should have an attached journal head at this
3347 * point. However, if the data is corrupted and an indirect
3348 * block pointed to itself, it would have been detached when
3349 * the block was cleared. Check for this instead of OOPSing.
3350 */
3351 if (bh2jh(this_bh))
3352 ext4_journal_dirty_metadata(handle, this_bh);
3353 else
3354 ext4_error(inode->i_sb, __func__,
3355 "circular indirect block detected, "
3356 "inode=%lu, block=%llu",
3357 inode->i_ino,
3358 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3359 }
3360}
3361
3362/**
617ba13b 3363 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3364 * @handle: JBD handle for this transaction
3365 * @inode: inode we are dealing with
3366 * @parent_bh: the buffer_head which contains *@first and *@last
3367 * @first: array of block numbers
3368 * @last: pointer immediately past the end of array
3369 * @depth: depth of the branches to free
3370 *
3371 * We are freeing all blocks refered from these branches (numbers are
3372 * stored as little-endian 32-bit) and updating @inode->i_blocks
3373 * appropriately.
3374 */
617ba13b 3375static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3376 struct buffer_head *parent_bh,
3377 __le32 *first, __le32 *last, int depth)
3378{
617ba13b 3379 ext4_fsblk_t nr;
ac27a0ec
DK
3380 __le32 *p;
3381
3382 if (is_handle_aborted(handle))
3383 return;
3384
3385 if (depth--) {
3386 struct buffer_head *bh;
617ba13b 3387 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3388 p = last;
3389 while (--p >= first) {
3390 nr = le32_to_cpu(*p);
3391 if (!nr)
3392 continue; /* A hole */
3393
3394 /* Go read the buffer for the next level down */
3395 bh = sb_bread(inode->i_sb, nr);
3396
3397 /*
3398 * A read failure? Report error and clear slot
3399 * (should be rare).
3400 */
3401 if (!bh) {
617ba13b 3402 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3403 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3404 inode->i_ino, nr);
3405 continue;
3406 }
3407
3408 /* This zaps the entire block. Bottom up. */
3409 BUFFER_TRACE(bh, "free child branches");
617ba13b 3410 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3411 (__le32 *) bh->b_data,
3412 (__le32 *) bh->b_data + addr_per_block,
3413 depth);
ac27a0ec
DK
3414
3415 /*
3416 * We've probably journalled the indirect block several
3417 * times during the truncate. But it's no longer
3418 * needed and we now drop it from the transaction via
dab291af 3419 * jbd2_journal_revoke().
ac27a0ec
DK
3420 *
3421 * That's easy if it's exclusively part of this
3422 * transaction. But if it's part of the committing
dab291af 3423 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3424 * brelse() it. That means that if the underlying
617ba13b 3425 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3426 * unmap_underlying_metadata() will find this block
3427 * and will try to get rid of it. damn, damn.
3428 *
3429 * If this block has already been committed to the
3430 * journal, a revoke record will be written. And
3431 * revoke records must be emitted *before* clearing
3432 * this block's bit in the bitmaps.
3433 */
617ba13b 3434 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3435
3436 /*
3437 * Everything below this this pointer has been
3438 * released. Now let this top-of-subtree go.
3439 *
3440 * We want the freeing of this indirect block to be
3441 * atomic in the journal with the updating of the
3442 * bitmap block which owns it. So make some room in
3443 * the journal.
3444 *
3445 * We zero the parent pointer *after* freeing its
3446 * pointee in the bitmaps, so if extend_transaction()
3447 * for some reason fails to put the bitmap changes and
3448 * the release into the same transaction, recovery
3449 * will merely complain about releasing a free block,
3450 * rather than leaking blocks.
3451 */
3452 if (is_handle_aborted(handle))
3453 return;
3454 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3455 ext4_mark_inode_dirty(handle, inode);
3456 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3457 }
3458
c9de560d 3459 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3460
3461 if (parent_bh) {
3462 /*
3463 * The block which we have just freed is
3464 * pointed to by an indirect block: journal it
3465 */
3466 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3467 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3468 parent_bh)){
3469 *p = 0;
3470 BUFFER_TRACE(parent_bh,
617ba13b
MC
3471 "call ext4_journal_dirty_metadata");
3472 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3473 parent_bh);
3474 }
3475 }
3476 }
3477 } else {
3478 /* We have reached the bottom of the tree. */
3479 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3480 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3481 }
3482}
3483
91ef4caf
DG
3484int ext4_can_truncate(struct inode *inode)
3485{
3486 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3487 return 0;
3488 if (S_ISREG(inode->i_mode))
3489 return 1;
3490 if (S_ISDIR(inode->i_mode))
3491 return 1;
3492 if (S_ISLNK(inode->i_mode))
3493 return !ext4_inode_is_fast_symlink(inode);
3494 return 0;
3495}
3496
ac27a0ec 3497/*
617ba13b 3498 * ext4_truncate()
ac27a0ec 3499 *
617ba13b
MC
3500 * We block out ext4_get_block() block instantiations across the entire
3501 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3502 * simultaneously on behalf of the same inode.
3503 *
3504 * As we work through the truncate and commmit bits of it to the journal there
3505 * is one core, guiding principle: the file's tree must always be consistent on
3506 * disk. We must be able to restart the truncate after a crash.
3507 *
3508 * The file's tree may be transiently inconsistent in memory (although it
3509 * probably isn't), but whenever we close off and commit a journal transaction,
3510 * the contents of (the filesystem + the journal) must be consistent and
3511 * restartable. It's pretty simple, really: bottom up, right to left (although
3512 * left-to-right works OK too).
3513 *
3514 * Note that at recovery time, journal replay occurs *before* the restart of
3515 * truncate against the orphan inode list.
3516 *
3517 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3518 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3519 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3520 * ext4_truncate() to have another go. So there will be instantiated blocks
3521 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3522 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3523 * ext4_truncate() run will find them and release them.
ac27a0ec 3524 */
617ba13b 3525void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3526{
3527 handle_t *handle;
617ba13b 3528 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3529 __le32 *i_data = ei->i_data;
617ba13b 3530 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3531 struct address_space *mapping = inode->i_mapping;
725d26d3 3532 ext4_lblk_t offsets[4];
ac27a0ec
DK
3533 Indirect chain[4];
3534 Indirect *partial;
3535 __le32 nr = 0;
3536 int n;
725d26d3 3537 ext4_lblk_t last_block;
ac27a0ec 3538 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3539
91ef4caf 3540 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3541 return;
3542
1d03ec98 3543 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3544 ext4_ext_truncate(inode);
1d03ec98
AK
3545 return;
3546 }
a86c6181 3547
ac27a0ec 3548 handle = start_transaction(inode);
cf108bca 3549 if (IS_ERR(handle))
ac27a0ec 3550 return; /* AKPM: return what? */
ac27a0ec
DK
3551
3552 last_block = (inode->i_size + blocksize-1)
617ba13b 3553 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3554
cf108bca
JK
3555 if (inode->i_size & (blocksize - 1))
3556 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3557 goto out_stop;
ac27a0ec 3558
617ba13b 3559 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3560 if (n == 0)
3561 goto out_stop; /* error */
3562
3563 /*
3564 * OK. This truncate is going to happen. We add the inode to the
3565 * orphan list, so that if this truncate spans multiple transactions,
3566 * and we crash, we will resume the truncate when the filesystem
3567 * recovers. It also marks the inode dirty, to catch the new size.
3568 *
3569 * Implication: the file must always be in a sane, consistent
3570 * truncatable state while each transaction commits.
3571 */
617ba13b 3572 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3573 goto out_stop;
3574
632eaeab
MC
3575 /*
3576 * From here we block out all ext4_get_block() callers who want to
3577 * modify the block allocation tree.
3578 */
3579 down_write(&ei->i_data_sem);
b4df2030
TT
3580
3581 ext4_discard_reservation(inode);
3582
ac27a0ec
DK
3583 /*
3584 * The orphan list entry will now protect us from any crash which
3585 * occurs before the truncate completes, so it is now safe to propagate
3586 * the new, shorter inode size (held for now in i_size) into the
3587 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3588 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3589 */
3590 ei->i_disksize = inode->i_size;
3591
ac27a0ec 3592 if (n == 1) { /* direct blocks */
617ba13b
MC
3593 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3594 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3595 goto do_indirects;
3596 }
3597
617ba13b 3598 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3599 /* Kill the top of shared branch (not detached) */
3600 if (nr) {
3601 if (partial == chain) {
3602 /* Shared branch grows from the inode */
617ba13b 3603 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3604 &nr, &nr+1, (chain+n-1) - partial);
3605 *partial->p = 0;
3606 /*
3607 * We mark the inode dirty prior to restart,
3608 * and prior to stop. No need for it here.
3609 */
3610 } else {
3611 /* Shared branch grows from an indirect block */
3612 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3613 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3614 partial->p,
3615 partial->p+1, (chain+n-1) - partial);
3616 }
3617 }
3618 /* Clear the ends of indirect blocks on the shared branch */
3619 while (partial > chain) {
617ba13b 3620 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3621 (__le32*)partial->bh->b_data+addr_per_block,
3622 (chain+n-1) - partial);
3623 BUFFER_TRACE(partial->bh, "call brelse");
3624 brelse (partial->bh);
3625 partial--;
3626 }
3627do_indirects:
3628 /* Kill the remaining (whole) subtrees */
3629 switch (offsets[0]) {
3630 default:
617ba13b 3631 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3632 if (nr) {
617ba13b
MC
3633 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3634 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3635 }
617ba13b
MC
3636 case EXT4_IND_BLOCK:
3637 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3638 if (nr) {
617ba13b
MC
3639 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3640 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3641 }
617ba13b
MC
3642 case EXT4_DIND_BLOCK:
3643 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3644 if (nr) {
617ba13b
MC
3645 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3646 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3647 }
617ba13b 3648 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3649 ;
3650 }
3651
0e855ac8 3652 up_write(&ei->i_data_sem);
ef7f3835 3653 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3654 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3655
3656 /*
3657 * In a multi-transaction truncate, we only make the final transaction
3658 * synchronous
3659 */
3660 if (IS_SYNC(inode))
3661 handle->h_sync = 1;
3662out_stop:
3663 /*
3664 * If this was a simple ftruncate(), and the file will remain alive
3665 * then we need to clear up the orphan record which we created above.
3666 * However, if this was a real unlink then we were called by
617ba13b 3667 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3668 * orphan info for us.
3669 */
3670 if (inode->i_nlink)
617ba13b 3671 ext4_orphan_del(handle, inode);
ac27a0ec 3672
617ba13b 3673 ext4_journal_stop(handle);
ac27a0ec
DK
3674}
3675
617ba13b
MC
3676static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3677 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3678{
fd2d4291 3679 ext4_group_t block_group;
ac27a0ec 3680 unsigned long offset;
617ba13b 3681 ext4_fsblk_t block;
c0a4ef38 3682 struct ext4_group_desc *gdp;
ac27a0ec 3683
617ba13b 3684 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3685 /*
3686 * This error is already checked for in namei.c unless we are
3687 * looking at an NFS filehandle, in which case no error
3688 * report is needed
3689 */
3690 return 0;
3691 }
3692
617ba13b 3693 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3694 gdp = ext4_get_group_desc(sb, block_group, NULL);
3695 if (!gdp)
ac27a0ec 3696 return 0;
ac27a0ec 3697
ac27a0ec
DK
3698 /*
3699 * Figure out the offset within the block group inode table
3700 */
617ba13b
MC
3701 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3702 EXT4_INODE_SIZE(sb);
8fadc143
AR
3703 block = ext4_inode_table(sb, gdp) +
3704 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3705
3706 iloc->block_group = block_group;
617ba13b 3707 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3708 return block;
3709}
3710
3711/*
617ba13b 3712 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3713 * underlying buffer_head on success. If 'in_mem' is true, we have all
3714 * data in memory that is needed to recreate the on-disk version of this
3715 * inode.
3716 */
617ba13b
MC
3717static int __ext4_get_inode_loc(struct inode *inode,
3718 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3719{
617ba13b 3720 ext4_fsblk_t block;
ac27a0ec
DK
3721 struct buffer_head *bh;
3722
617ba13b 3723 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3724 if (!block)
3725 return -EIO;
3726
3727 bh = sb_getblk(inode->i_sb, block);
3728 if (!bh) {
617ba13b 3729 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3730 "unable to read inode block - "
2ae02107 3731 "inode=%lu, block=%llu",
ac27a0ec
DK
3732 inode->i_ino, block);
3733 return -EIO;
3734 }
3735 if (!buffer_uptodate(bh)) {
3736 lock_buffer(bh);
9c83a923
HK
3737
3738 /*
3739 * If the buffer has the write error flag, we have failed
3740 * to write out another inode in the same block. In this
3741 * case, we don't have to read the block because we may
3742 * read the old inode data successfully.
3743 */
3744 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3745 set_buffer_uptodate(bh);
3746
ac27a0ec
DK
3747 if (buffer_uptodate(bh)) {
3748 /* someone brought it uptodate while we waited */
3749 unlock_buffer(bh);
3750 goto has_buffer;
3751 }
3752
3753 /*
3754 * If we have all information of the inode in memory and this
3755 * is the only valid inode in the block, we need not read the
3756 * block.
3757 */
3758 if (in_mem) {
3759 struct buffer_head *bitmap_bh;
617ba13b 3760 struct ext4_group_desc *desc;
ac27a0ec
DK
3761 int inodes_per_buffer;
3762 int inode_offset, i;
fd2d4291 3763 ext4_group_t block_group;
ac27a0ec
DK
3764 int start;
3765
3766 block_group = (inode->i_ino - 1) /
617ba13b 3767 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3768 inodes_per_buffer = bh->b_size /
617ba13b 3769 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3770 inode_offset = ((inode->i_ino - 1) %
617ba13b 3771 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3772 start = inode_offset & ~(inodes_per_buffer - 1);
3773
3774 /* Is the inode bitmap in cache? */
617ba13b 3775 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3776 block_group, NULL);
3777 if (!desc)
3778 goto make_io;
3779
3780 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3781 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3782 if (!bitmap_bh)
3783 goto make_io;
3784
3785 /*
3786 * If the inode bitmap isn't in cache then the
3787 * optimisation may end up performing two reads instead
3788 * of one, so skip it.
3789 */
3790 if (!buffer_uptodate(bitmap_bh)) {
3791 brelse(bitmap_bh);
3792 goto make_io;
3793 }
3794 for (i = start; i < start + inodes_per_buffer; i++) {
3795 if (i == inode_offset)
3796 continue;
617ba13b 3797 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3798 break;
3799 }
3800 brelse(bitmap_bh);
3801 if (i == start + inodes_per_buffer) {
3802 /* all other inodes are free, so skip I/O */
3803 memset(bh->b_data, 0, bh->b_size);
3804 set_buffer_uptodate(bh);
3805 unlock_buffer(bh);
3806 goto has_buffer;
3807 }
3808 }
3809
3810make_io:
3811 /*
3812 * There are other valid inodes in the buffer, this inode
3813 * has in-inode xattrs, or we don't have this inode in memory.
3814 * Read the block from disk.
3815 */
3816 get_bh(bh);
3817 bh->b_end_io = end_buffer_read_sync;
3818 submit_bh(READ_META, bh);
3819 wait_on_buffer(bh);
3820 if (!buffer_uptodate(bh)) {
617ba13b 3821 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3822 "unable to read inode block - "
2ae02107 3823 "inode=%lu, block=%llu",
ac27a0ec
DK
3824 inode->i_ino, block);
3825 brelse(bh);
3826 return -EIO;
3827 }
3828 }
3829has_buffer:
3830 iloc->bh = bh;
3831 return 0;
3832}
3833
617ba13b 3834int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3835{
3836 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3837 return __ext4_get_inode_loc(inode, iloc,
3838 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3839}
3840
617ba13b 3841void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3842{
617ba13b 3843 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3844
3845 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3846 if (flags & EXT4_SYNC_FL)
ac27a0ec 3847 inode->i_flags |= S_SYNC;
617ba13b 3848 if (flags & EXT4_APPEND_FL)
ac27a0ec 3849 inode->i_flags |= S_APPEND;
617ba13b 3850 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3851 inode->i_flags |= S_IMMUTABLE;
617ba13b 3852 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3853 inode->i_flags |= S_NOATIME;
617ba13b 3854 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3855 inode->i_flags |= S_DIRSYNC;
3856}
3857
ff9ddf7e
JK
3858/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3859void ext4_get_inode_flags(struct ext4_inode_info *ei)
3860{
3861 unsigned int flags = ei->vfs_inode.i_flags;
3862
3863 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3864 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3865 if (flags & S_SYNC)
3866 ei->i_flags |= EXT4_SYNC_FL;
3867 if (flags & S_APPEND)
3868 ei->i_flags |= EXT4_APPEND_FL;
3869 if (flags & S_IMMUTABLE)
3870 ei->i_flags |= EXT4_IMMUTABLE_FL;
3871 if (flags & S_NOATIME)
3872 ei->i_flags |= EXT4_NOATIME_FL;
3873 if (flags & S_DIRSYNC)
3874 ei->i_flags |= EXT4_DIRSYNC_FL;
3875}
0fc1b451
AK
3876static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3877 struct ext4_inode_info *ei)
3878{
3879 blkcnt_t i_blocks ;
8180a562
AK
3880 struct inode *inode = &(ei->vfs_inode);
3881 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3882
3883 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3884 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3885 /* we are using combined 48 bit field */
3886 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3887 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3888 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3889 /* i_blocks represent file system block size */
3890 return i_blocks << (inode->i_blkbits - 9);
3891 } else {
3892 return i_blocks;
3893 }
0fc1b451
AK
3894 } else {
3895 return le32_to_cpu(raw_inode->i_blocks_lo);
3896 }
3897}
ff9ddf7e 3898
1d1fe1ee 3899struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3900{
617ba13b
MC
3901 struct ext4_iloc iloc;
3902 struct ext4_inode *raw_inode;
1d1fe1ee 3903 struct ext4_inode_info *ei;
ac27a0ec 3904 struct buffer_head *bh;
1d1fe1ee
DH
3905 struct inode *inode;
3906 long ret;
ac27a0ec
DK
3907 int block;
3908
1d1fe1ee
DH
3909 inode = iget_locked(sb, ino);
3910 if (!inode)
3911 return ERR_PTR(-ENOMEM);
3912 if (!(inode->i_state & I_NEW))
3913 return inode;
3914
3915 ei = EXT4_I(inode);
617ba13b
MC
3916#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3917 ei->i_acl = EXT4_ACL_NOT_CACHED;
3918 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3919#endif
3920 ei->i_block_alloc_info = NULL;
3921
1d1fe1ee
DH
3922 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3923 if (ret < 0)
ac27a0ec
DK
3924 goto bad_inode;
3925 bh = iloc.bh;
617ba13b 3926 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3927 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3928 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3929 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3930 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3931 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3932 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3933 }
3934 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
3935
3936 ei->i_state = 0;
3937 ei->i_dir_start_lookup = 0;
3938 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3939 /* We now have enough fields to check if the inode was active or not.
3940 * This is needed because nfsd might try to access dead inodes
3941 * the test is that same one that e2fsck uses
3942 * NeilBrown 1999oct15
3943 */
3944 if (inode->i_nlink == 0) {
3945 if (inode->i_mode == 0 ||
617ba13b 3946 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3947 /* this inode is deleted */
af5bc92d 3948 brelse(bh);
1d1fe1ee 3949 ret = -ESTALE;
ac27a0ec
DK
3950 goto bad_inode;
3951 }
3952 /* The only unlinked inodes we let through here have
3953 * valid i_mode and are being read by the orphan
3954 * recovery code: that's fine, we're about to complete
3955 * the process of deleting those. */
3956 }
ac27a0ec 3957 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3958 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3959 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 3960 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 3961 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
3962 ei->i_file_acl |=
3963 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 3964 }
a48380f7 3965 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
3966 ei->i_disksize = inode->i_size;
3967 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3968 ei->i_block_group = iloc.block_group;
3969 /*
3970 * NOTE! The in-memory inode i_data array is in little-endian order
3971 * even on big-endian machines: we do NOT byteswap the block numbers!
3972 */
617ba13b 3973 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3974 ei->i_data[block] = raw_inode->i_block[block];
3975 INIT_LIST_HEAD(&ei->i_orphan);
3976
0040d987 3977 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3978 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3979 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3980 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 3981 brelse(bh);
1d1fe1ee 3982 ret = -EIO;
ac27a0ec 3983 goto bad_inode;
e5d2861f 3984 }
ac27a0ec
DK
3985 if (ei->i_extra_isize == 0) {
3986 /* The extra space is currently unused. Use it. */
617ba13b
MC
3987 ei->i_extra_isize = sizeof(struct ext4_inode) -
3988 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3989 } else {
3990 __le32 *magic = (void *)raw_inode +
617ba13b 3991 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3992 ei->i_extra_isize;
617ba13b
MC
3993 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3994 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
3995 }
3996 } else
3997 ei->i_extra_isize = 0;
3998
ef7f3835
KS
3999 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4000 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4001 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4002 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4003
25ec56b5
JNC
4004 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4007 inode->i_version |=
4008 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4009 }
4010
ac27a0ec 4011 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4012 inode->i_op = &ext4_file_inode_operations;
4013 inode->i_fop = &ext4_file_operations;
4014 ext4_set_aops(inode);
ac27a0ec 4015 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4016 inode->i_op = &ext4_dir_inode_operations;
4017 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4018 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
4019 if (ext4_inode_is_fast_symlink(inode))
4020 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 4021 else {
617ba13b
MC
4022 inode->i_op = &ext4_symlink_inode_operations;
4023 ext4_set_aops(inode);
ac27a0ec
DK
4024 }
4025 } else {
617ba13b 4026 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4027 if (raw_inode->i_block[0])
4028 init_special_inode(inode, inode->i_mode,
4029 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4030 else
4031 init_special_inode(inode, inode->i_mode,
4032 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4033 }
af5bc92d 4034 brelse(iloc.bh);
617ba13b 4035 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4036 unlock_new_inode(inode);
4037 return inode;
ac27a0ec
DK
4038
4039bad_inode:
1d1fe1ee
DH
4040 iget_failed(inode);
4041 return ERR_PTR(ret);
ac27a0ec
DK
4042}
4043
0fc1b451
AK
4044static int ext4_inode_blocks_set(handle_t *handle,
4045 struct ext4_inode *raw_inode,
4046 struct ext4_inode_info *ei)
4047{
4048 struct inode *inode = &(ei->vfs_inode);
4049 u64 i_blocks = inode->i_blocks;
4050 struct super_block *sb = inode->i_sb;
4051 int err = 0;
4052
4053 if (i_blocks <= ~0U) {
4054 /*
4055 * i_blocks can be represnted in a 32 bit variable
4056 * as multiple of 512 bytes
4057 */
8180a562 4058 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4059 raw_inode->i_blocks_high = 0;
8180a562 4060 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
4061 } else if (i_blocks <= 0xffffffffffffULL) {
4062 /*
4063 * i_blocks can be represented in a 48 bit variable
4064 * as multiple of 512 bytes
4065 */
4066 err = ext4_update_rocompat_feature(handle, sb,
4067 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4068 if (err)
4069 goto err_out;
4070 /* i_block is stored in the split 48 bit fields */
8180a562 4071 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4072 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4073 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4074 } else {
8180a562
AK
4075 /*
4076 * i_blocks should be represented in a 48 bit variable
4077 * as multiple of file system block size
4078 */
4079 err = ext4_update_rocompat_feature(handle, sb,
4080 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4081 if (err)
4082 goto err_out;
4083 ei->i_flags |= EXT4_HUGE_FILE_FL;
4084 /* i_block is stored in file system block size */
4085 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4086 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4087 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4088 }
4089err_out:
4090 return err;
4091}
4092
ac27a0ec
DK
4093/*
4094 * Post the struct inode info into an on-disk inode location in the
4095 * buffer-cache. This gobbles the caller's reference to the
4096 * buffer_head in the inode location struct.
4097 *
4098 * The caller must have write access to iloc->bh.
4099 */
617ba13b 4100static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4101 struct inode *inode,
617ba13b 4102 struct ext4_iloc *iloc)
ac27a0ec 4103{
617ba13b
MC
4104 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4105 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4106 struct buffer_head *bh = iloc->bh;
4107 int err = 0, rc, block;
4108
4109 /* For fields not not tracking in the in-memory inode,
4110 * initialise them to zero for new inodes. */
617ba13b
MC
4111 if (ei->i_state & EXT4_STATE_NEW)
4112 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4113
ff9ddf7e 4114 ext4_get_inode_flags(ei);
ac27a0ec 4115 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4116 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4117 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4118 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4119/*
4120 * Fix up interoperability with old kernels. Otherwise, old inodes get
4121 * re-used with the upper 16 bits of the uid/gid intact
4122 */
af5bc92d 4123 if (!ei->i_dtime) {
ac27a0ec
DK
4124 raw_inode->i_uid_high =
4125 cpu_to_le16(high_16_bits(inode->i_uid));
4126 raw_inode->i_gid_high =
4127 cpu_to_le16(high_16_bits(inode->i_gid));
4128 } else {
4129 raw_inode->i_uid_high = 0;
4130 raw_inode->i_gid_high = 0;
4131 }
4132 } else {
4133 raw_inode->i_uid_low =
4134 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4135 raw_inode->i_gid_low =
4136 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4137 raw_inode->i_uid_high = 0;
4138 raw_inode->i_gid_high = 0;
4139 }
4140 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4141
4142 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4143 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4144 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4145 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4146
0fc1b451
AK
4147 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4148 goto out_brelse;
ac27a0ec 4149 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4150 /* clear the migrate flag in the raw_inode */
4151 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4152 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4153 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4154 raw_inode->i_file_acl_high =
4155 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4156 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4157 ext4_isize_set(raw_inode, ei->i_disksize);
4158 if (ei->i_disksize > 0x7fffffffULL) {
4159 struct super_block *sb = inode->i_sb;
4160 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4161 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4162 EXT4_SB(sb)->s_es->s_rev_level ==
4163 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4164 /* If this is the first large file
4165 * created, add a flag to the superblock.
4166 */
4167 err = ext4_journal_get_write_access(handle,
4168 EXT4_SB(sb)->s_sbh);
4169 if (err)
4170 goto out_brelse;
4171 ext4_update_dynamic_rev(sb);
4172 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4173 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4174 sb->s_dirt = 1;
4175 handle->h_sync = 1;
4176 err = ext4_journal_dirty_metadata(handle,
4177 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4178 }
4179 }
4180 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4181 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4182 if (old_valid_dev(inode->i_rdev)) {
4183 raw_inode->i_block[0] =
4184 cpu_to_le32(old_encode_dev(inode->i_rdev));
4185 raw_inode->i_block[1] = 0;
4186 } else {
4187 raw_inode->i_block[0] = 0;
4188 raw_inode->i_block[1] =
4189 cpu_to_le32(new_encode_dev(inode->i_rdev));
4190 raw_inode->i_block[2] = 0;
4191 }
617ba13b 4192 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4193 raw_inode->i_block[block] = ei->i_data[block];
4194
25ec56b5
JNC
4195 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4196 if (ei->i_extra_isize) {
4197 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4198 raw_inode->i_version_hi =
4199 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4200 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4201 }
4202
ac27a0ec 4203
617ba13b
MC
4204 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4205 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4206 if (!err)
4207 err = rc;
617ba13b 4208 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4209
4210out_brelse:
af5bc92d 4211 brelse(bh);
617ba13b 4212 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4213 return err;
4214}
4215
4216/*
617ba13b 4217 * ext4_write_inode()
ac27a0ec
DK
4218 *
4219 * We are called from a few places:
4220 *
4221 * - Within generic_file_write() for O_SYNC files.
4222 * Here, there will be no transaction running. We wait for any running
4223 * trasnaction to commit.
4224 *
4225 * - Within sys_sync(), kupdate and such.
4226 * We wait on commit, if tol to.
4227 *
4228 * - Within prune_icache() (PF_MEMALLOC == true)
4229 * Here we simply return. We can't afford to block kswapd on the
4230 * journal commit.
4231 *
4232 * In all cases it is actually safe for us to return without doing anything,
4233 * because the inode has been copied into a raw inode buffer in
617ba13b 4234 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4235 * knfsd.
4236 *
4237 * Note that we are absolutely dependent upon all inode dirtiers doing the
4238 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4239 * which we are interested.
4240 *
4241 * It would be a bug for them to not do this. The code:
4242 *
4243 * mark_inode_dirty(inode)
4244 * stuff();
4245 * inode->i_size = expr;
4246 *
4247 * is in error because a kswapd-driven write_inode() could occur while
4248 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4249 * will no longer be on the superblock's dirty inode list.
4250 */
617ba13b 4251int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4252{
4253 if (current->flags & PF_MEMALLOC)
4254 return 0;
4255
617ba13b 4256 if (ext4_journal_current_handle()) {
b38bd33a 4257 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4258 dump_stack();
4259 return -EIO;
4260 }
4261
4262 if (!wait)
4263 return 0;
4264
617ba13b 4265 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4266}
4267
4268/*
617ba13b 4269 * ext4_setattr()
ac27a0ec
DK
4270 *
4271 * Called from notify_change.
4272 *
4273 * We want to trap VFS attempts to truncate the file as soon as
4274 * possible. In particular, we want to make sure that when the VFS
4275 * shrinks i_size, we put the inode on the orphan list and modify
4276 * i_disksize immediately, so that during the subsequent flushing of
4277 * dirty pages and freeing of disk blocks, we can guarantee that any
4278 * commit will leave the blocks being flushed in an unused state on
4279 * disk. (On recovery, the inode will get truncated and the blocks will
4280 * be freed, so we have a strong guarantee that no future commit will
4281 * leave these blocks visible to the user.)
4282 *
678aaf48
JK
4283 * Another thing we have to assure is that if we are in ordered mode
4284 * and inode is still attached to the committing transaction, we must
4285 * we start writeout of all the dirty pages which are being truncated.
4286 * This way we are sure that all the data written in the previous
4287 * transaction are already on disk (truncate waits for pages under
4288 * writeback).
4289 *
4290 * Called with inode->i_mutex down.
ac27a0ec 4291 */
617ba13b 4292int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4293{
4294 struct inode *inode = dentry->d_inode;
4295 int error, rc = 0;
4296 const unsigned int ia_valid = attr->ia_valid;
4297
4298 error = inode_change_ok(inode, attr);
4299 if (error)
4300 return error;
4301
4302 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4303 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4304 handle_t *handle;
4305
4306 /* (user+group)*(old+new) structure, inode write (sb,
4307 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4308 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4309 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4310 if (IS_ERR(handle)) {
4311 error = PTR_ERR(handle);
4312 goto err_out;
4313 }
4314 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4315 if (error) {
617ba13b 4316 ext4_journal_stop(handle);
ac27a0ec
DK
4317 return error;
4318 }
4319 /* Update corresponding info in inode so that everything is in
4320 * one transaction */
4321 if (attr->ia_valid & ATTR_UID)
4322 inode->i_uid = attr->ia_uid;
4323 if (attr->ia_valid & ATTR_GID)
4324 inode->i_gid = attr->ia_gid;
617ba13b
MC
4325 error = ext4_mark_inode_dirty(handle, inode);
4326 ext4_journal_stop(handle);
ac27a0ec
DK
4327 }
4328
e2b46574
ES
4329 if (attr->ia_valid & ATTR_SIZE) {
4330 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4332
4333 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4334 error = -EFBIG;
4335 goto err_out;
4336 }
4337 }
4338 }
4339
ac27a0ec
DK
4340 if (S_ISREG(inode->i_mode) &&
4341 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4342 handle_t *handle;
4343
617ba13b 4344 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4345 if (IS_ERR(handle)) {
4346 error = PTR_ERR(handle);
4347 goto err_out;
4348 }
4349
617ba13b
MC
4350 error = ext4_orphan_add(handle, inode);
4351 EXT4_I(inode)->i_disksize = attr->ia_size;
4352 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4353 if (!error)
4354 error = rc;
617ba13b 4355 ext4_journal_stop(handle);
678aaf48
JK
4356
4357 if (ext4_should_order_data(inode)) {
4358 error = ext4_begin_ordered_truncate(inode,
4359 attr->ia_size);
4360 if (error) {
4361 /* Do as much error cleanup as possible */
4362 handle = ext4_journal_start(inode, 3);
4363 if (IS_ERR(handle)) {
4364 ext4_orphan_del(NULL, inode);
4365 goto err_out;
4366 }
4367 ext4_orphan_del(handle, inode);
4368 ext4_journal_stop(handle);
4369 goto err_out;
4370 }
4371 }
ac27a0ec
DK
4372 }
4373
4374 rc = inode_setattr(inode, attr);
4375
617ba13b 4376 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4377 * transaction handle at all, we need to clean up the in-core
4378 * orphan list manually. */
4379 if (inode->i_nlink)
617ba13b 4380 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4381
4382 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4383 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4384
4385err_out:
617ba13b 4386 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4387 if (!error)
4388 error = rc;
4389 return error;
4390}
4391
3e3398a0
MC
4392int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4393 struct kstat *stat)
4394{
4395 struct inode *inode;
4396 unsigned long delalloc_blocks;
4397
4398 inode = dentry->d_inode;
4399 generic_fillattr(inode, stat);
4400
4401 /*
4402 * We can't update i_blocks if the block allocation is delayed
4403 * otherwise in the case of system crash before the real block
4404 * allocation is done, we will have i_blocks inconsistent with
4405 * on-disk file blocks.
4406 * We always keep i_blocks updated together with real
4407 * allocation. But to not confuse with user, stat
4408 * will return the blocks that include the delayed allocation
4409 * blocks for this file.
4410 */
4411 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4412 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4414
4415 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4416 return 0;
4417}
ac27a0ec 4418
a02908f1
MC
4419static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4420 int chunk)
4421{
4422 int indirects;
4423
4424 /* if nrblocks are contiguous */
4425 if (chunk) {
4426 /*
4427 * With N contiguous data blocks, it need at most
4428 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4429 * 2 dindirect blocks
4430 * 1 tindirect block
4431 */
4432 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4433 return indirects + 3;
4434 }
4435 /*
4436 * if nrblocks are not contiguous, worse case, each block touch
4437 * a indirect block, and each indirect block touch a double indirect
4438 * block, plus a triple indirect block
4439 */
4440 indirects = nrblocks * 2 + 1;
4441 return indirects;
4442}
4443
4444static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4445{
4446 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4447 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4448 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4449}
ac27a0ec 4450/*
a02908f1
MC
4451 * Account for index blocks, block groups bitmaps and block group
4452 * descriptor blocks if modify datablocks and index blocks
4453 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4454 *
a02908f1
MC
4455 * If datablocks are discontiguous, they are possible to spread over
4456 * different block groups too. If they are contiugous, with flexbg,
4457 * they could still across block group boundary.
ac27a0ec 4458 *
a02908f1
MC
4459 * Also account for superblock, inode, quota and xattr blocks
4460 */
4461int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4462{
4463 int groups, gdpblocks;
4464 int idxblocks;
4465 int ret = 0;
4466
4467 /*
4468 * How many index blocks need to touch to modify nrblocks?
4469 * The "Chunk" flag indicating whether the nrblocks is
4470 * physically contiguous on disk
4471 *
4472 * For Direct IO and fallocate, they calls get_block to allocate
4473 * one single extent at a time, so they could set the "Chunk" flag
4474 */
4475 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4476
4477 ret = idxblocks;
4478
4479 /*
4480 * Now let's see how many group bitmaps and group descriptors need
4481 * to account
4482 */
4483 groups = idxblocks;
4484 if (chunk)
4485 groups += 1;
4486 else
4487 groups += nrblocks;
4488
4489 gdpblocks = groups;
4490 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4491 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4492 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4493 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4494
4495 /* bitmaps and block group descriptor blocks */
4496 ret += groups + gdpblocks;
4497
4498 /* Blocks for super block, inode, quota and xattr blocks */
4499 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4500
4501 return ret;
4502}
4503
4504/*
4505 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4506 * the modification of a single pages into a single transaction,
4507 * which may include multiple chunks of block allocations.
ac27a0ec 4508 *
525f4ed8 4509 * This could be called via ext4_write_begin()
ac27a0ec 4510 *
525f4ed8 4511 * We need to consider the worse case, when
a02908f1 4512 * one new block per extent.
ac27a0ec 4513 */
a86c6181 4514int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4515{
617ba13b 4516 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4517 int ret;
4518
a02908f1 4519 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4520
a02908f1 4521 /* Account for data blocks for journalled mode */
617ba13b 4522 if (ext4_should_journal_data(inode))
a02908f1 4523 ret += bpp;
ac27a0ec
DK
4524 return ret;
4525}
f3bd1f3f
MC
4526
4527/*
4528 * Calculate the journal credits for a chunk of data modification.
4529 *
4530 * This is called from DIO, fallocate or whoever calling
4531 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4532 *
4533 * journal buffers for data blocks are not included here, as DIO
4534 * and fallocate do no need to journal data buffers.
4535 */
4536int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4537{
4538 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4539}
4540
ac27a0ec 4541/*
617ba13b 4542 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4543 * Give this, we know that the caller already has write access to iloc->bh.
4544 */
617ba13b
MC
4545int ext4_mark_iloc_dirty(handle_t *handle,
4546 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4547{
4548 int err = 0;
4549
25ec56b5
JNC
4550 if (test_opt(inode->i_sb, I_VERSION))
4551 inode_inc_iversion(inode);
4552
ac27a0ec
DK
4553 /* the do_update_inode consumes one bh->b_count */
4554 get_bh(iloc->bh);
4555
dab291af 4556 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4557 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4558 put_bh(iloc->bh);
4559 return err;
4560}
4561
4562/*
4563 * On success, We end up with an outstanding reference count against
4564 * iloc->bh. This _must_ be cleaned up later.
4565 */
4566
4567int
617ba13b
MC
4568ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4569 struct ext4_iloc *iloc)
ac27a0ec
DK
4570{
4571 int err = 0;
4572 if (handle) {
617ba13b 4573 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4574 if (!err) {
4575 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4576 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4577 if (err) {
4578 brelse(iloc->bh);
4579 iloc->bh = NULL;
4580 }
4581 }
4582 }
617ba13b 4583 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4584 return err;
4585}
4586
6dd4ee7c
KS
4587/*
4588 * Expand an inode by new_extra_isize bytes.
4589 * Returns 0 on success or negative error number on failure.
4590 */
1d03ec98
AK
4591static int ext4_expand_extra_isize(struct inode *inode,
4592 unsigned int new_extra_isize,
4593 struct ext4_iloc iloc,
4594 handle_t *handle)
6dd4ee7c
KS
4595{
4596 struct ext4_inode *raw_inode;
4597 struct ext4_xattr_ibody_header *header;
4598 struct ext4_xattr_entry *entry;
4599
4600 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4601 return 0;
4602
4603 raw_inode = ext4_raw_inode(&iloc);
4604
4605 header = IHDR(inode, raw_inode);
4606 entry = IFIRST(header);
4607
4608 /* No extended attributes present */
4609 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4610 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4611 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4612 new_extra_isize);
4613 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4614 return 0;
4615 }
4616
4617 /* try to expand with EAs present */
4618 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4619 raw_inode, handle);
4620}
4621
ac27a0ec
DK
4622/*
4623 * What we do here is to mark the in-core inode as clean with respect to inode
4624 * dirtiness (it may still be data-dirty).
4625 * This means that the in-core inode may be reaped by prune_icache
4626 * without having to perform any I/O. This is a very good thing,
4627 * because *any* task may call prune_icache - even ones which
4628 * have a transaction open against a different journal.
4629 *
4630 * Is this cheating? Not really. Sure, we haven't written the
4631 * inode out, but prune_icache isn't a user-visible syncing function.
4632 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4633 * we start and wait on commits.
4634 *
4635 * Is this efficient/effective? Well, we're being nice to the system
4636 * by cleaning up our inodes proactively so they can be reaped
4637 * without I/O. But we are potentially leaving up to five seconds'
4638 * worth of inodes floating about which prune_icache wants us to
4639 * write out. One way to fix that would be to get prune_icache()
4640 * to do a write_super() to free up some memory. It has the desired
4641 * effect.
4642 */
617ba13b 4643int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4644{
617ba13b 4645 struct ext4_iloc iloc;
6dd4ee7c
KS
4646 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4647 static unsigned int mnt_count;
4648 int err, ret;
ac27a0ec
DK
4649
4650 might_sleep();
617ba13b 4651 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4652 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4653 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4654 /*
4655 * We need extra buffer credits since we may write into EA block
4656 * with this same handle. If journal_extend fails, then it will
4657 * only result in a minor loss of functionality for that inode.
4658 * If this is felt to be critical, then e2fsck should be run to
4659 * force a large enough s_min_extra_isize.
4660 */
4661 if ((jbd2_journal_extend(handle,
4662 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4663 ret = ext4_expand_extra_isize(inode,
4664 sbi->s_want_extra_isize,
4665 iloc, handle);
4666 if (ret) {
4667 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4668 if (mnt_count !=
4669 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4670 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4671 "Unable to expand inode %lu. Delete"
4672 " some EAs or run e2fsck.",
4673 inode->i_ino);
c1bddad9
AK
4674 mnt_count =
4675 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4676 }
4677 }
4678 }
4679 }
ac27a0ec 4680 if (!err)
617ba13b 4681 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4682 return err;
4683}
4684
4685/*
617ba13b 4686 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4687 *
4688 * We're really interested in the case where a file is being extended.
4689 * i_size has been changed by generic_commit_write() and we thus need
4690 * to include the updated inode in the current transaction.
4691 *
4692 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4693 * are allocated to the file.
4694 *
4695 * If the inode is marked synchronous, we don't honour that here - doing
4696 * so would cause a commit on atime updates, which we don't bother doing.
4697 * We handle synchronous inodes at the highest possible level.
4698 */
617ba13b 4699void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4700{
617ba13b 4701 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4702 handle_t *handle;
4703
617ba13b 4704 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4705 if (IS_ERR(handle))
4706 goto out;
4707 if (current_handle &&
4708 current_handle->h_transaction != handle->h_transaction) {
4709 /* This task has a transaction open against a different fs */
4710 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4711 __func__);
ac27a0ec
DK
4712 } else {
4713 jbd_debug(5, "marking dirty. outer handle=%p\n",
4714 current_handle);
617ba13b 4715 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4716 }
617ba13b 4717 ext4_journal_stop(handle);
ac27a0ec
DK
4718out:
4719 return;
4720}
4721
4722#if 0
4723/*
4724 * Bind an inode's backing buffer_head into this transaction, to prevent
4725 * it from being flushed to disk early. Unlike
617ba13b 4726 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4727 * returns no iloc structure, so the caller needs to repeat the iloc
4728 * lookup to mark the inode dirty later.
4729 */
617ba13b 4730static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4731{
617ba13b 4732 struct ext4_iloc iloc;
ac27a0ec
DK
4733
4734 int err = 0;
4735 if (handle) {
617ba13b 4736 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4737 if (!err) {
4738 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4739 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4740 if (!err)
617ba13b 4741 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4742 iloc.bh);
4743 brelse(iloc.bh);
4744 }
4745 }
617ba13b 4746 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4747 return err;
4748}
4749#endif
4750
617ba13b 4751int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4752{
4753 journal_t *journal;
4754 handle_t *handle;
4755 int err;
4756
4757 /*
4758 * We have to be very careful here: changing a data block's
4759 * journaling status dynamically is dangerous. If we write a
4760 * data block to the journal, change the status and then delete
4761 * that block, we risk forgetting to revoke the old log record
4762 * from the journal and so a subsequent replay can corrupt data.
4763 * So, first we make sure that the journal is empty and that
4764 * nobody is changing anything.
4765 */
4766
617ba13b 4767 journal = EXT4_JOURNAL(inode);
d699594d 4768 if (is_journal_aborted(journal))
ac27a0ec
DK
4769 return -EROFS;
4770
dab291af
MC
4771 jbd2_journal_lock_updates(journal);
4772 jbd2_journal_flush(journal);
ac27a0ec
DK
4773
4774 /*
4775 * OK, there are no updates running now, and all cached data is
4776 * synced to disk. We are now in a completely consistent state
4777 * which doesn't have anything in the journal, and we know that
4778 * no filesystem updates are running, so it is safe to modify
4779 * the inode's in-core data-journaling state flag now.
4780 */
4781
4782 if (val)
617ba13b 4783 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4784 else
617ba13b
MC
4785 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4786 ext4_set_aops(inode);
ac27a0ec 4787
dab291af 4788 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4789
4790 /* Finally we can mark the inode as dirty. */
4791
617ba13b 4792 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4793 if (IS_ERR(handle))
4794 return PTR_ERR(handle);
4795
617ba13b 4796 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4797 handle->h_sync = 1;
617ba13b
MC
4798 ext4_journal_stop(handle);
4799 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4800
4801 return err;
4802}
2e9ee850
AK
4803
4804static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4805{
4806 return !buffer_mapped(bh);
4807}
4808
4809int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4810{
4811 loff_t size;
4812 unsigned long len;
4813 int ret = -EINVAL;
4814 struct file *file = vma->vm_file;
4815 struct inode *inode = file->f_path.dentry->d_inode;
4816 struct address_space *mapping = inode->i_mapping;
4817
4818 /*
4819 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4820 * get i_mutex because we are already holding mmap_sem.
4821 */
4822 down_read(&inode->i_alloc_sem);
4823 size = i_size_read(inode);
4824 if (page->mapping != mapping || size <= page_offset(page)
4825 || !PageUptodate(page)) {
4826 /* page got truncated from under us? */
4827 goto out_unlock;
4828 }
4829 ret = 0;
4830 if (PageMappedToDisk(page))
4831 goto out_unlock;
4832
4833 if (page->index == size >> PAGE_CACHE_SHIFT)
4834 len = size & ~PAGE_CACHE_MASK;
4835 else
4836 len = PAGE_CACHE_SIZE;
4837
4838 if (page_has_buffers(page)) {
4839 /* return if we have all the buffers mapped */
4840 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4841 ext4_bh_unmapped))
4842 goto out_unlock;
4843 }
4844 /*
4845 * OK, we need to fill the hole... Do write_begin write_end
4846 * to do block allocation/reservation.We are not holding
4847 * inode.i__mutex here. That allow * parallel write_begin,
4848 * write_end call. lock_page prevent this from happening
4849 * on the same page though
4850 */
4851 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4852 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4853 if (ret < 0)
4854 goto out_unlock;
4855 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4856 len, len, page, NULL);
4857 if (ret < 0)
4858 goto out_unlock;
4859 ret = 0;
4860out_unlock:
4861 up_read(&inode->i_alloc_sem);
4862 return ret;
4863}