]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Add percpu dirty block accounting.
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
a1d6cc56
AK
44#define MPAGE_DA_EXTENT_TAIL 0x01
45
678aaf48
JK
46static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48{
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51}
52
64769240
AT
53static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
ac27a0ec
DK
55/*
56 * Test whether an inode is a fast symlink.
57 */
617ba13b 58static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 59{
617ba13b 60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64}
65
66/*
617ba13b 67 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
617ba13b
MC
75int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
77{
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
617ba13b
MC
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 96 if (bh) {
dab291af 97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 98 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
617ba13b
MC
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 108 if (err)
46e665e9 109 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113}
114
115/*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119static unsigned long blocks_for_truncate(struct inode *inode)
120{
725d26d3 121 ext4_lblk_t needed;
ac27a0ec
DK
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
617ba13b 128 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
617ba13b
MC
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 138
617ba13b 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
140}
141
142/*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152static handle_t *start_transaction(struct inode *inode)
153{
154 handle_t *result;
155
617ba13b 156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
157 if (!IS_ERR(result))
158 return result;
159
617ba13b 160 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
161 return result;
162}
163
164/*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171{
617ba13b 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 173 return 0;
617ba13b 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
175 return 0;
176 return 1;
177}
178
179/*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
617ba13b 184static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
185{
186 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
188}
189
190/*
191 * Called at the last iput() if i_nlink is zero.
192 */
af5bc92d 193void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
194{
195 handle_t *handle;
bc965ab3 196 int err;
ac27a0ec 197
678aaf48
JK
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
bc965ab3 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 206 if (IS_ERR(handle)) {
bc965ab3 207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
617ba13b 213 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
bc965ab3
TT
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
ac27a0ec 226 if (inode->i_blocks)
617ba13b 227 ext4_truncate(inode);
bc965ab3
TT
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
ac27a0ec 248 /*
617ba13b 249 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 250 * AKPM: I think this can be inside the above `if'.
617ba13b 251 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 252 * deletion of a non-existent orphan - this is because we don't
617ba13b 253 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
254 * (Well, we could do this if we need to, but heck - it works)
255 */
617ba13b
MC
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
617ba13b 266 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
617ba13b
MC
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
ac27a0ec
DK
272 return;
273no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275}
276
277typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281} Indirect;
282
283static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284{
285 p->key = *(p->p = v);
286 p->bh = bh;
287}
288
ac27a0ec 289/**
617ba13b 290 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
8c55e204
DK
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
ac27a0ec 296 *
617ba13b 297 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310/*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
617ba13b 320static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 323{
617ba13b
MC
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
af5bc92d 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
af5bc92d 337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 338 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 342 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 347 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
e2b46574 353 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 354 "block %lu > max",
e2b46574
ES
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
af5bc92d 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
af5bc92d 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
ac27a0ec
DK
417failure:
418 *err = -EIO;
419no_block:
420 return p;
421}
422
423/**
617ba13b 424 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
1cc8dcf5 428 * This function returns the preferred place for block allocation.
ac27a0ec
DK
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
617ba13b 443static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 444{
617ba13b 445 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 447 __le32 *p;
617ba13b 448 ext4_fsblk_t bg_start;
74d3487f 449 ext4_fsblk_t last_block;
617ba13b 450 ext4_grpblk_t colour;
ac27a0ec
DK
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
617ba13b 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
617ba13b 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
474 return bg_start + colour;
475}
476
477/**
1cc8dcf5 478 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
479 * @inode: owner
480 * @block: block we want
ac27a0ec 481 * @partial: pointer to the last triple within a chain
ac27a0ec 482 *
1cc8dcf5 483 * Normally this function find the preferred place for block allocation,
fb01bfda 484 * returns it.
ac27a0ec 485 */
725d26d3 486static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 487 Indirect *partial)
ac27a0ec 488{
617ba13b 489 struct ext4_block_alloc_info *block_i;
ac27a0ec 490
617ba13b 491 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
492
493 /*
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
496 */
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
500 }
501
617ba13b 502 return ext4_find_near(inode, partial);
ac27a0ec
DK
503}
504
505/**
617ba13b 506 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
617ba13b 517static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
518 int blocks_to_boundary)
519{
520 unsigned long count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541}
542
543/**
617ba13b 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
617ba13b 553static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
557{
558 int target, i;
7061eba7 559 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 560 int index = 0;
617ba13b 561 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
562 int ret = 0;
563
564 /*
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
571 */
7061eba7
AK
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
ac27a0ec
DK
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
ac27a0ec
DK
579 if (*err)
580 goto failed_out;
581
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
587 }
7061eba7
AK
588 if (count > 0) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
ac27a0ec 597 break;
7061eba7 598 }
ac27a0ec
DK
599 }
600
7061eba7
AK
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
654b4908 607 /* allocating blocks for data blocks */
7061eba7
AK
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
625 blk_allocated += count;
626 }
627allocated:
ac27a0ec 628 /* total number of blocks allocated for direct blocks */
7061eba7 629 ret = blk_allocated;
ac27a0ec
DK
630 *err = 0;
631 return ret;
632failed_out:
af5bc92d 633 for (i = 0; i < index; i++)
c9de560d 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
635 return ret;
636}
637
638/**
617ba13b 639 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
617ba13b 650 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 653 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
617ba13b 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
661 * as described above and return 0.
662 */
617ba13b 663static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
667{
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
617ba13b
MC
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
ac27a0ec 675
7061eba7 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 695 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
af5bc92d 706 if (n == indirect_blks) {
ac27a0ec
DK
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
617ba13b
MC
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
dab291af 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 731 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 732 }
af5bc92d 733 for (i = 0; i < indirect_blks; i++)
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 735
c9de560d 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
737
738 return err;
739}
740
741/**
617ba13b 742 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 746 * ext4_alloc_branch)
ac27a0ec
DK
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
617ba13b 755static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 756 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
757{
758 int i;
759 int err = 0;
617ba13b
MC
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
ac27a0ec 762
617ba13b 763 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
764 /*
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
768 */
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 771 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
772 if (err)
773 goto err_out;
774 }
775 /* That's it */
776
777 *where->p = where->key;
778
779 /*
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
782 */
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
af5bc92d 786 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
787 }
788
789 /*
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
793 */
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
798 }
799
800 /* We are done with atomic stuff, now do the rest of housekeeping */
801
ef7f3835 802 inode->i_ctime = ext4_current_time(inode);
617ba13b 803 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
804
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
807 /*
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
617ba13b 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
814 */
815 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
818 if (err)
819 goto err_out;
820 } else {
821 /*
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
824 */
825 jbd_debug(5, "splicing direct\n");
826 }
827 return err;
828
829err_out:
830 for (i = 1; i <= num; i++) {
dab291af 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 832 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 835 }
c9de560d 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
837
838 return err;
839}
840
841/*
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
852 *
853 * `handle' can be NULL if create == 0.
854 *
ac27a0ec
DK
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
c278bfec
AK
858 *
859 *
860 * Need to be called with
0e855ac8
AK
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 863 */
617ba13b 864int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 865 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
868{
869 int err = -EIO;
725d26d3 870 ext4_lblk_t offsets[4];
ac27a0ec
DK
871 Indirect chain[4];
872 Indirect *partial;
617ba13b 873 ext4_fsblk_t goal;
ac27a0ec
DK
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
617ba13b 877 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 878 int count = 0;
617ba13b 879 ext4_fsblk_t first_block = 0;
61628a3f 880 loff_t disksize;
ac27a0ec
DK
881
882
a86c6181 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 884 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
ac27a0ec
DK
887
888 if (depth == 0)
889 goto out;
890
617ba13b 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
892
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 900 ext4_fsblk_t blk;
ac27a0ec 901
ac27a0ec
DK
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
908 }
c278bfec 909 goto got_it;
ac27a0ec
DK
910 }
911
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
915
ac27a0ec
DK
916 /*
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
919 */
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 921 ext4_init_block_alloc_info(inode);
ac27a0ec 922
fb01bfda 923 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
924
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
927
928 /*
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
931 */
617ba13b 932 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
933 maxblocks, blocks_to_boundary);
934 /*
617ba13b 935 * Block out ext4_truncate while we alter the tree
ac27a0ec 936 */
7061eba7
AK
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
ac27a0ec
DK
940
941 /*
617ba13b 942 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
947 */
948 if (!err)
617ba13b 949 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
950 partial, indirect_blks, count);
951 /*
0e855ac8 952 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 953 * protect it if you're about to implement concurrent
617ba13b 954 * ext4_get_block() -bzzz
ac27a0ec 955 */
61628a3f
MC
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
962 }
ac27a0ec
DK
963 if (err)
964 goto cleanup;
965
966 set_buffer_new(bh_result);
967got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
979 }
980 BUFFER_TRACE(bh_result, "returned");
981out:
982 return err;
983}
984
12219aea
AK
985/*
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
988 */
989static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990{
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
993
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
996
997 dind_blks = (ind_blks + icap - 1) / icap;
998
999 tind_blks = 1;
1000
1001 return ind_blks + dind_blks + tind_blks;
1002}
1003
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1007 */
1008static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009{
cd213226
MC
1010 if (!blocks)
1011 return 0;
1012
12219aea
AK
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1017}
1018
1019static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020{
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1023
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1028
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
6bc6e63f
AK
1033 if (mdb_free) {
1034 /* Account for allocated meta_blocks */
1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037 /* update fs dirty blocks counter */
1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041 }
12219aea
AK
1042
1043 /* update per-inode reservations */
1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1045 EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
12219aea
AK
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048}
1049
f5ab0d1f 1050/*
2b2d6d01
TT
1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052 * and returns if the blocks are already mapped.
f5ab0d1f 1053 *
f5ab0d1f
MC
1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055 * and store the allocated blocks in the result buffer head and mark it
1056 * mapped.
1057 *
1058 * If file type is extents based, it will call ext4_ext_get_blocks(),
1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060 * based files
1061 *
1062 * On success, it returns the number of blocks being mapped or allocate.
1063 * if create==0 and the blocks are pre-allocated and uninitialized block,
1064 * the result buffer head is unmapped. If the create ==1, it will make sure
1065 * the buffer head is mapped.
1066 *
1067 * It returns 0 if plain look up failed (blocks have not been allocated), in
1068 * that casem, buffer head is unmapped
1069 *
1070 * It returns the error in case of allocation failure.
1071 */
0e855ac8
AK
1072int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1074 int create, int extend_disksize, int flag)
0e855ac8
AK
1075{
1076 int retval;
f5ab0d1f
MC
1077
1078 clear_buffer_mapped(bh);
1079
4df3d265
AK
1080 /*
1081 * Try to see if we can get the block without requesting
1082 * for new file system block.
1083 */
1084 down_read((&EXT4_I(inode)->i_data_sem));
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 bh, 0, 0);
0e855ac8 1088 } else {
4df3d265
AK
1089 retval = ext4_get_blocks_handle(handle,
1090 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1091 }
4df3d265 1092 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1093
1094 /* If it is only a block(s) look up */
1095 if (!create)
1096 return retval;
1097
1098 /*
1099 * Returns if the blocks have already allocated
1100 *
1101 * Note that if blocks have been preallocated
1102 * ext4_ext_get_block() returns th create = 0
1103 * with buffer head unmapped.
1104 */
1105 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1106 return retval;
1107
1108 /*
f5ab0d1f
MC
1109 * New blocks allocate and/or writing to uninitialized extent
1110 * will possibly result in updating i_data, so we take
1111 * the write lock of i_data_sem, and call get_blocks()
1112 * with create == 1 flag.
4df3d265
AK
1113 */
1114 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1115
1116 /*
1117 * if the caller is from delayed allocation writeout path
1118 * we have already reserved fs blocks for allocation
1119 * let the underlying get_block() function know to
1120 * avoid double accounting
1121 */
1122 if (flag)
1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1124 /*
1125 * We need to check for EXT4 here because migrate
1126 * could have changed the inode type in between
1127 */
0e855ac8
AK
1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 bh, create, extend_disksize);
1131 } else {
1132 retval = ext4_get_blocks_handle(handle, inode, block,
1133 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1134
1135 if (retval > 0 && buffer_new(bh)) {
1136 /*
1137 * We allocated new blocks which will result in
1138 * i_data's format changing. Force the migrate
1139 * to fail by clearing migrate flags
1140 */
1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 ~EXT4_EXT_MIGRATE;
1143 }
0e855ac8 1144 }
d2a17637
MC
1145
1146 if (flag) {
1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 /*
1149 * Update reserved blocks/metadata blocks
1150 * after successful block allocation
1151 * which were deferred till now
1152 */
1153 if ((retval > 0) && buffer_delay(bh))
12219aea 1154 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1155 }
1156
4df3d265 1157 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1158 return retval;
1159}
1160
f3bd1f3f
MC
1161/* Maximum number of blocks we map for direct IO at once. */
1162#define DIO_MAX_BLOCKS 4096
1163
617ba13b 1164static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1165 struct buffer_head *bh_result, int create)
1166{
3e4fdaf8 1167 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1168 int ret = 0, started = 0;
ac27a0ec 1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1170 int dio_credits;
ac27a0ec 1171
7fb5409d
JK
1172 if (create && !handle) {
1173 /* Direct IO write... */
1174 if (max_blocks > DIO_MAX_BLOCKS)
1175 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1178 if (IS_ERR(handle)) {
ac27a0ec 1179 ret = PTR_ERR(handle);
7fb5409d 1180 goto out;
ac27a0ec 1181 }
7fb5409d 1182 started = 1;
ac27a0ec
DK
1183 }
1184
7fb5409d 1185 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1186 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1187 if (ret > 0) {
1188 bh_result->b_size = (ret << inode->i_blkbits);
1189 ret = 0;
ac27a0ec 1190 }
7fb5409d
JK
1191 if (started)
1192 ext4_journal_stop(handle);
1193out:
ac27a0ec
DK
1194 return ret;
1195}
1196
1197/*
1198 * `handle' can be NULL if create is zero
1199 */
617ba13b 1200struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1201 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1202{
1203 struct buffer_head dummy;
1204 int fatal = 0, err;
1205
1206 J_ASSERT(handle != NULL || create == 0);
1207
1208 dummy.b_state = 0;
1209 dummy.b_blocknr = -1000;
1210 buffer_trace_init(&dummy.b_history);
a86c6181 1211 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1212 &dummy, create, 1, 0);
ac27a0ec 1213 /*
617ba13b 1214 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1215 * mapped. 0 in case of a HOLE.
1216 */
1217 if (err > 0) {
1218 if (err > 1)
1219 WARN_ON(1);
1220 err = 0;
1221 }
1222 *errp = err;
1223 if (!err && buffer_mapped(&dummy)) {
1224 struct buffer_head *bh;
1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 if (!bh) {
1227 *errp = -EIO;
1228 goto err;
1229 }
1230 if (buffer_new(&dummy)) {
1231 J_ASSERT(create != 0);
ac39849d 1232 J_ASSERT(handle != NULL);
ac27a0ec
DK
1233
1234 /*
1235 * Now that we do not always journal data, we should
1236 * keep in mind whether this should always journal the
1237 * new buffer as metadata. For now, regular file
617ba13b 1238 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1239 * problem.
1240 */
1241 lock_buffer(bh);
1242 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1243 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1244 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1246 set_buffer_uptodate(bh);
1247 }
1248 unlock_buffer(bh);
617ba13b
MC
1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1251 if (!fatal)
1252 fatal = err;
1253 } else {
1254 BUFFER_TRACE(bh, "not a new buffer");
1255 }
1256 if (fatal) {
1257 *errp = fatal;
1258 brelse(bh);
1259 bh = NULL;
1260 }
1261 return bh;
1262 }
1263err:
1264 return NULL;
1265}
1266
617ba13b 1267struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1268 ext4_lblk_t block, int create, int *err)
ac27a0ec 1269{
af5bc92d 1270 struct buffer_head *bh;
ac27a0ec 1271
617ba13b 1272 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1273 if (!bh)
1274 return bh;
1275 if (buffer_uptodate(bh))
1276 return bh;
1277 ll_rw_block(READ_META, 1, &bh);
1278 wait_on_buffer(bh);
1279 if (buffer_uptodate(bh))
1280 return bh;
1281 put_bh(bh);
1282 *err = -EIO;
1283 return NULL;
1284}
1285
af5bc92d
TT
1286static int walk_page_buffers(handle_t *handle,
1287 struct buffer_head *head,
1288 unsigned from,
1289 unsigned to,
1290 int *partial,
1291 int (*fn)(handle_t *handle,
1292 struct buffer_head *bh))
ac27a0ec
DK
1293{
1294 struct buffer_head *bh;
1295 unsigned block_start, block_end;
1296 unsigned blocksize = head->b_size;
1297 int err, ret = 0;
1298 struct buffer_head *next;
1299
af5bc92d
TT
1300 for (bh = head, block_start = 0;
1301 ret == 0 && (bh != head || !block_start);
1302 block_start = block_end, bh = next)
ac27a0ec
DK
1303 {
1304 next = bh->b_this_page;
1305 block_end = block_start + blocksize;
1306 if (block_end <= from || block_start >= to) {
1307 if (partial && !buffer_uptodate(bh))
1308 *partial = 1;
1309 continue;
1310 }
1311 err = (*fn)(handle, bh);
1312 if (!ret)
1313 ret = err;
1314 }
1315 return ret;
1316}
1317
1318/*
1319 * To preserve ordering, it is essential that the hole instantiation and
1320 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1321 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1322 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1323 * prepare_write() is the right place.
1324 *
617ba13b
MC
1325 * Also, this function can nest inside ext4_writepage() ->
1326 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1327 * has generated enough buffer credits to do the whole page. So we won't
1328 * block on the journal in that case, which is good, because the caller may
1329 * be PF_MEMALLOC.
1330 *
617ba13b 1331 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1332 * quota file writes. If we were to commit the transaction while thus
1333 * reentered, there can be a deadlock - we would be holding a quota
1334 * lock, and the commit would never complete if another thread had a
1335 * transaction open and was blocking on the quota lock - a ranking
1336 * violation.
1337 *
dab291af 1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1339 * will _not_ run commit under these circumstances because handle->h_ref
1340 * is elevated. We'll still have enough credits for the tiny quotafile
1341 * write.
1342 */
1343static int do_journal_get_write_access(handle_t *handle,
1344 struct buffer_head *bh)
1345{
1346 if (!buffer_mapped(bh) || buffer_freed(bh))
1347 return 0;
617ba13b 1348 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1349}
1350
bfc1af65
NP
1351static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned flags,
1353 struct page **pagep, void **fsdata)
ac27a0ec 1354{
af5bc92d 1355 struct inode *inode = mapping->host;
7479d2b9 1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1357 handle_t *handle;
1358 int retries = 0;
af5bc92d 1359 struct page *page;
bfc1af65 1360 pgoff_t index;
af5bc92d 1361 unsigned from, to;
bfc1af65
NP
1362
1363 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1364 from = pos & (PAGE_CACHE_SIZE - 1);
1365 to = from + len;
ac27a0ec
DK
1366
1367retry:
af5bc92d
TT
1368 handle = ext4_journal_start(inode, needed_blocks);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
7479d2b9 1372 }
ac27a0ec 1373
cf108bca
JK
1374 page = __grab_cache_page(mapping, index);
1375 if (!page) {
1376 ext4_journal_stop(handle);
1377 ret = -ENOMEM;
1378 goto out;
1379 }
1380 *pagep = page;
1381
bfc1af65
NP
1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 ext4_get_block);
1384
1385 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1386 ret = walk_page_buffers(handle, page_buffers(page),
1387 from, to, NULL, do_journal_get_write_access);
1388 }
bfc1af65
NP
1389
1390 if (ret) {
af5bc92d 1391 unlock_page(page);
cf108bca 1392 ext4_journal_stop(handle);
af5bc92d 1393 page_cache_release(page);
bfc1af65
NP
1394 }
1395
617ba13b 1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1397 goto retry;
7479d2b9 1398out:
ac27a0ec
DK
1399 return ret;
1400}
1401
bfc1af65
NP
1402/* For write_end() in data=journal mode */
1403static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1404{
1405 if (!buffer_mapped(bh) || buffer_freed(bh))
1406 return 0;
1407 set_buffer_uptodate(bh);
617ba13b 1408 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1409}
1410
1411/*
1412 * We need to pick up the new inode size which generic_commit_write gave us
1413 * `file' can be NULL - eg, when called from page_symlink().
1414 *
617ba13b 1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1416 * buffers are managed internally.
1417 */
bfc1af65
NP
1418static int ext4_ordered_write_end(struct file *file,
1419 struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
ac27a0ec 1422{
617ba13b 1423 handle_t *handle = ext4_journal_current_handle();
cf108bca 1424 struct inode *inode = mapping->host;
ac27a0ec
DK
1425 int ret = 0, ret2;
1426
678aaf48 1427 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1428
1429 if (ret == 0) {
1430 /*
bfc1af65 1431 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1432 * changes. So let's piggyback the i_disksize mark_inode_dirty
1433 * into that.
1434 */
1435 loff_t new_i_size;
1436
bfc1af65 1437 new_i_size = pos + copied;
617ba13b
MC
1438 if (new_i_size > EXT4_I(inode)->i_disksize)
1439 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1441 page, fsdata);
f8a87d89
RK
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
ac27a0ec 1445 }
617ba13b 1446 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1447 if (!ret)
1448 ret = ret2;
bfc1af65
NP
1449
1450 return ret ? ret : copied;
ac27a0ec
DK
1451}
1452
bfc1af65
NP
1453static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
ac27a0ec 1457{
617ba13b 1458 handle_t *handle = ext4_journal_current_handle();
cf108bca 1459 struct inode *inode = mapping->host;
ac27a0ec
DK
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1462
bfc1af65 1463 new_i_size = pos + copied;
617ba13b
MC
1464 if (new_i_size > EXT4_I(inode)->i_disksize)
1465 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1466
cf108bca 1467 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1468 page, fsdata);
f8a87d89
RK
1469 copied = ret2;
1470 if (ret2 < 0)
1471 ret = ret2;
ac27a0ec 1472
617ba13b 1473 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1474 if (!ret)
1475 ret = ret2;
bfc1af65
NP
1476
1477 return ret ? ret : copied;
ac27a0ec
DK
1478}
1479
bfc1af65
NP
1480static int ext4_journalled_write_end(struct file *file,
1481 struct address_space *mapping,
1482 loff_t pos, unsigned len, unsigned copied,
1483 struct page *page, void *fsdata)
ac27a0ec 1484{
617ba13b 1485 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1486 struct inode *inode = mapping->host;
ac27a0ec
DK
1487 int ret = 0, ret2;
1488 int partial = 0;
bfc1af65 1489 unsigned from, to;
ac27a0ec 1490
bfc1af65
NP
1491 from = pos & (PAGE_CACHE_SIZE - 1);
1492 to = from + len;
1493
1494 if (copied < len) {
1495 if (!PageUptodate(page))
1496 copied = 0;
1497 page_zero_new_buffers(page, from+copied, to);
1498 }
ac27a0ec
DK
1499
1500 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1501 to, &partial, write_end_fn);
ac27a0ec
DK
1502 if (!partial)
1503 SetPageUptodate(page);
bfc1af65
NP
1504 if (pos+copied > inode->i_size)
1505 i_size_write(inode, pos+copied);
617ba13b
MC
1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 EXT4_I(inode)->i_disksize = inode->i_size;
1509 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1510 if (!ret)
1511 ret = ret2;
1512 }
bfc1af65 1513
cf108bca 1514 unlock_page(page);
617ba13b 1515 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1516 if (!ret)
1517 ret = ret2;
bfc1af65
NP
1518 page_cache_release(page);
1519
1520 return ret ? ret : copied;
ac27a0ec 1521}
d2a17637
MC
1522
1523static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524{
030ba6bc 1525 int retries = 0;
d2a17637
MC
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1528
1529 /*
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1533 */
030ba6bc 1534repeat:
d2a17637
MC
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1542
a30d542a 1543 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1548 }
d2a17637
MC
1549 return -ENOSPC;
1550 }
d2a17637
MC
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1556}
1557
12219aea 1558static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1559{
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1562
cd213226
MC
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1565
d2a17637 1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1567
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569 /*
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1574 */
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1580 }
1581
d2a17637 1582 /* recalculate the number of metablocks still need to be reserved */
12219aea 1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1584 mdb = ext4_calc_metadata_amount(inode, total);
1585
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
d2a17637
MC
1590 release = to_free + mdb_free;
1591
6bc6e63f
AK
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1594
1595 /* update per-inode reservations */
12219aea
AK
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1598
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602}
1603
1604static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1606{
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1610
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1615
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1619 }
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
12219aea 1622 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1623}
ac27a0ec 1624
64769240
AT
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
a1d6cc56
AK
1635 int io_done;
1636 long pages_written;
64769240
AT
1637};
1638
1639/*
1640 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1641 * them with writepage() call back
64769240
AT
1642 *
1643 * @mpd->inode: inode
1644 * @mpd->first_page: first page of the extent
1645 * @mpd->next_page: page after the last page of the extent
1646 * @mpd->get_block: the filesystem's block mapper function
1647 *
1648 * By the time mpage_da_submit_io() is called we expect all blocks
1649 * to be allocated. this may be wrong if allocation failed.
1650 *
1651 * As pages are already locked by write_cache_pages(), we can't use it
1652 */
1653static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654{
1655 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1656 int ret = 0, err, nr_pages, i;
1657 unsigned long index, end;
1658 struct pagevec pvec;
1659
1660 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1661 pagevec_init(&pvec, 0);
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
1664
1665 while (index <= end) {
1666 /* XXX: optimize tail */
1667 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668 if (nr_pages == 0)
1669 break;
1670 for (i = 0; i < nr_pages; i++) {
1671 struct page *page = pvec.pages[i];
1672
1673 index = page->index;
1674 if (index > end)
1675 break;
1676 index++;
1677
a1d6cc56
AK
1678 err = mapping->a_ops->writepage(page, mpd->wbc);
1679 if (!err)
1680 mpd->pages_written++;
64769240
AT
1681 /*
1682 * In error case, we have to continue because
1683 * remaining pages are still locked
1684 * XXX: unlock and re-dirty them?
1685 */
1686 if (ret == 0)
1687 ret = err;
1688 }
1689 pagevec_release(&pvec);
1690 }
64769240
AT
1691 return ret;
1692}
1693
1694/*
1695 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696 *
1697 * @mpd->inode - inode to walk through
1698 * @exbh->b_blocknr - first block on a disk
1699 * @exbh->b_size - amount of space in bytes
1700 * @logical - first logical block to start assignment with
1701 *
1702 * the function goes through all passed space and put actual disk
1703 * block numbers into buffer heads, dropping BH_Delay
1704 */
1705static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706 struct buffer_head *exbh)
1707{
1708 struct inode *inode = mpd->inode;
1709 struct address_space *mapping = inode->i_mapping;
1710 int blocks = exbh->b_size >> inode->i_blkbits;
1711 sector_t pblock = exbh->b_blocknr, cur_logical;
1712 struct buffer_head *head, *bh;
a1d6cc56 1713 pgoff_t index, end;
64769240
AT
1714 struct pagevec pvec;
1715 int nr_pages, i;
1716
1717 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720
1721 pagevec_init(&pvec, 0);
1722
1723 while (index <= end) {
1724 /* XXX: optimize tail */
1725 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 if (nr_pages == 0)
1727 break;
1728 for (i = 0; i < nr_pages; i++) {
1729 struct page *page = pvec.pages[i];
1730
1731 index = page->index;
1732 if (index > end)
1733 break;
1734 index++;
1735
1736 BUG_ON(!PageLocked(page));
1737 BUG_ON(PageWriteback(page));
1738 BUG_ON(!page_has_buffers(page));
1739
1740 bh = page_buffers(page);
1741 head = bh;
1742
1743 /* skip blocks out of the range */
1744 do {
1745 if (cur_logical >= logical)
1746 break;
1747 cur_logical++;
1748 } while ((bh = bh->b_this_page) != head);
1749
1750 do {
1751 if (cur_logical >= logical + blocks)
1752 break;
64769240
AT
1753 if (buffer_delay(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_delay(bh);
bf068ee2
AK
1756 bh->b_bdev = inode->i_sb->s_bdev;
1757 } else if (buffer_unwritten(bh)) {
1758 bh->b_blocknr = pblock;
1759 clear_buffer_unwritten(bh);
1760 set_buffer_mapped(bh);
1761 set_buffer_new(bh);
1762 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1763 } else if (buffer_mapped(bh))
64769240 1764 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1765
1766 cur_logical++;
1767 pblock++;
1768 } while ((bh = bh->b_this_page) != head);
1769 }
1770 pagevec_release(&pvec);
1771 }
1772}
1773
1774
1775/*
1776 * __unmap_underlying_blocks - just a helper function to unmap
1777 * set of blocks described by @bh
1778 */
1779static inline void __unmap_underlying_blocks(struct inode *inode,
1780 struct buffer_head *bh)
1781{
1782 struct block_device *bdev = inode->i_sb->s_bdev;
1783 int blocks, i;
1784
1785 blocks = bh->b_size >> inode->i_blkbits;
1786 for (i = 0; i < blocks; i++)
1787 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788}
1789
c4a0c46e
AK
1790static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791 sector_t logical, long blk_cnt)
1792{
1793 int nr_pages, i;
1794 pgoff_t index, end;
1795 struct pagevec pvec;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
1798
1799 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800 end = (logical + blk_cnt - 1) >>
1801 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1802 while (index <= end) {
1803 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804 if (nr_pages == 0)
1805 break;
1806 for (i = 0; i < nr_pages; i++) {
1807 struct page *page = pvec.pages[i];
1808 index = page->index;
1809 if (index > end)
1810 break;
1811 index++;
1812
1813 BUG_ON(!PageLocked(page));
1814 BUG_ON(PageWriteback(page));
1815 block_invalidatepage(page, 0);
1816 ClearPageUptodate(page);
1817 unlock_page(page);
1818 }
1819 }
1820 return;
1821}
1822
64769240
AT
1823/*
1824 * mpage_da_map_blocks - go through given space
1825 *
1826 * @mpd->lbh - bh describing space
1827 * @mpd->get_block - the filesystem's block mapper function
1828 *
1829 * The function skips space we know is already mapped to disk blocks.
1830 *
64769240 1831 */
c4a0c46e 1832static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1833{
a1d6cc56 1834 int err = 0;
030ba6bc 1835 struct buffer_head new;
64769240 1836 struct buffer_head *lbh = &mpd->lbh;
64769240 1837 sector_t next = lbh->b_blocknr;
64769240
AT
1838
1839 /*
1840 * We consider only non-mapped and non-allocated blocks
1841 */
1842 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1843 return 0;
a1d6cc56
AK
1844 new.b_state = lbh->b_state;
1845 new.b_blocknr = 0;
1846 new.b_size = lbh->b_size;
a1d6cc56
AK
1847 /*
1848 * If we didn't accumulate anything
1849 * to write simply return
1850 */
1851 if (!new.b_size)
c4a0c46e 1852 return 0;
a1d6cc56 1853 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1854 if (err) {
1855
1856 /* If get block returns with error
1857 * we simply return. Later writepage
1858 * will redirty the page and writepages
1859 * will find the dirty page again
1860 */
1861 if (err == -EAGAIN)
1862 return 0;
1863 /*
1864 * get block failure will cause us
1865 * to loop in writepages. Because
1866 * a_ops->writepage won't be able to
1867 * make progress. The page will be redirtied
1868 * by writepage and writepages will again
1869 * try to write the same.
1870 */
1871 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872 "at logical offset %llu with max blocks "
1873 "%zd with error %d\n",
1874 __func__, mpd->inode->i_ino,
1875 (unsigned long long)next,
1876 lbh->b_size >> mpd->inode->i_blkbits, err);
1877 printk(KERN_EMERG "This should not happen.!! "
1878 "Data will be lost\n");
030ba6bc
AK
1879 if (err == -ENOSPC) {
1880 printk(KERN_CRIT "Total free blocks count %lld\n",
1881 ext4_count_free_blocks(mpd->inode->i_sb));
1882 }
c4a0c46e
AK
1883 /* invlaidate all the pages */
1884 ext4_da_block_invalidatepages(mpd, next,
1885 lbh->b_size >> mpd->inode->i_blkbits);
1886 return err;
1887 }
a1d6cc56 1888 BUG_ON(new.b_size == 0);
64769240 1889
a1d6cc56
AK
1890 if (buffer_new(&new))
1891 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1892
a1d6cc56
AK
1893 /*
1894 * If blocks are delayed marked, we need to
1895 * put actual blocknr and drop delayed bit
1896 */
1897 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1899
c4a0c46e 1900 return 0;
64769240
AT
1901}
1902
bf068ee2
AK
1903#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1905
1906/*
1907 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908 *
1909 * @mpd->lbh - extent of blocks
1910 * @logical - logical number of the block in the file
1911 * @bh - bh of the block (used to access block's state)
1912 *
1913 * the function is used to collect contig. blocks in same state
1914 */
1915static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916 sector_t logical, struct buffer_head *bh)
1917{
64769240 1918 sector_t next;
525f4ed8
MC
1919 size_t b_size = bh->b_size;
1920 struct buffer_head *lbh = &mpd->lbh;
1921 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1922
525f4ed8
MC
1923 /* check if thereserved journal credits might overflow */
1924 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926 /*
1927 * With non-extent format we are limited by the journal
1928 * credit available. Total credit needed to insert
1929 * nrblocks contiguous blocks is dependent on the
1930 * nrblocks. So limit nrblocks.
1931 */
1932 goto flush_it;
1933 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934 EXT4_MAX_TRANS_DATA) {
1935 /*
1936 * Adding the new buffer_head would make it cross the
1937 * allowed limit for which we have journal credit
1938 * reserved. So limit the new bh->b_size
1939 */
1940 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941 mpd->inode->i_blkbits;
1942 /* we will do mpage_da_submit_io in the next loop */
1943 }
1944 }
64769240
AT
1945 /*
1946 * First block in the extent
1947 */
1948 if (lbh->b_size == 0) {
1949 lbh->b_blocknr = logical;
525f4ed8 1950 lbh->b_size = b_size;
64769240
AT
1951 lbh->b_state = bh->b_state & BH_FLAGS;
1952 return;
1953 }
1954
525f4ed8 1955 next = lbh->b_blocknr + nrblocks;
64769240
AT
1956 /*
1957 * Can we merge the block to our big extent?
1958 */
1959 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 1960 lbh->b_size += b_size;
64769240
AT
1961 return;
1962 }
1963
525f4ed8 1964flush_it:
64769240
AT
1965 /*
1966 * We couldn't merge the block to our extent, so we
1967 * need to flush current extent and start new one
1968 */
c4a0c46e
AK
1969 if (mpage_da_map_blocks(mpd) == 0)
1970 mpage_da_submit_io(mpd);
a1d6cc56
AK
1971 mpd->io_done = 1;
1972 return;
64769240
AT
1973}
1974
1975/*
1976 * __mpage_da_writepage - finds extent of pages and blocks
1977 *
1978 * @page: page to consider
1979 * @wbc: not used, we just follow rules
1980 * @data: context
1981 *
1982 * The function finds extents of pages and scan them for all blocks.
1983 */
1984static int __mpage_da_writepage(struct page *page,
1985 struct writeback_control *wbc, void *data)
1986{
1987 struct mpage_da_data *mpd = data;
1988 struct inode *inode = mpd->inode;
1989 struct buffer_head *bh, *head, fake;
1990 sector_t logical;
1991
a1d6cc56
AK
1992 if (mpd->io_done) {
1993 /*
1994 * Rest of the page in the page_vec
1995 * redirty then and skip then. We will
1996 * try to to write them again after
1997 * starting a new transaction
1998 */
1999 redirty_page_for_writepage(wbc, page);
2000 unlock_page(page);
2001 return MPAGE_DA_EXTENT_TAIL;
2002 }
64769240
AT
2003 /*
2004 * Can we merge this page to current extent?
2005 */
2006 if (mpd->next_page != page->index) {
2007 /*
2008 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2009 * and start IO on them using writepage()
64769240
AT
2010 */
2011 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2012 if (mpage_da_map_blocks(mpd) == 0)
2013 mpage_da_submit_io(mpd);
a1d6cc56
AK
2014 /*
2015 * skip rest of the page in the page_vec
2016 */
2017 mpd->io_done = 1;
2018 redirty_page_for_writepage(wbc, page);
2019 unlock_page(page);
2020 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2021 }
2022
2023 /*
2024 * Start next extent of pages ...
2025 */
2026 mpd->first_page = page->index;
2027
2028 /*
2029 * ... and blocks
2030 */
2031 mpd->lbh.b_size = 0;
2032 mpd->lbh.b_state = 0;
2033 mpd->lbh.b_blocknr = 0;
2034 }
2035
2036 mpd->next_page = page->index + 1;
2037 logical = (sector_t) page->index <<
2038 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039
2040 if (!page_has_buffers(page)) {
2041 /*
2042 * There is no attached buffer heads yet (mmap?)
2043 * we treat the page asfull of dirty blocks
2044 */
2045 bh = &fake;
2046 bh->b_size = PAGE_CACHE_SIZE;
2047 bh->b_state = 0;
2048 set_buffer_dirty(bh);
2049 set_buffer_uptodate(bh);
2050 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2051 if (mpd->io_done)
2052 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2053 } else {
2054 /*
2055 * Page with regular buffer heads, just add all dirty ones
2056 */
2057 head = page_buffers(page);
2058 bh = head;
2059 do {
2060 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
2061 if (buffer_dirty(bh) &&
2062 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2063 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2064 if (mpd->io_done)
2065 return MPAGE_DA_EXTENT_TAIL;
2066 }
64769240
AT
2067 logical++;
2068 } while ((bh = bh->b_this_page) != head);
2069 }
2070
2071 return 0;
2072}
2073
2074/*
2075 * mpage_da_writepages - walk the list of dirty pages of the given
2076 * address space, allocates non-allocated blocks, maps newly-allocated
2077 * blocks to existing bhs and issue IO them
2078 *
2079 * @mapping: address space structure to write
2080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081 * @get_block: the filesystem's block mapper function.
2082 *
2083 * This is a library function, which implements the writepages()
2084 * address_space_operation.
64769240
AT
2085 */
2086static int mpage_da_writepages(struct address_space *mapping,
2087 struct writeback_control *wbc,
2088 get_block_t get_block)
2089{
2090 struct mpage_da_data mpd;
a1d6cc56 2091 long to_write;
64769240
AT
2092 int ret;
2093
2094 if (!get_block)
2095 return generic_writepages(mapping, wbc);
2096
2097 mpd.wbc = wbc;
2098 mpd.inode = mapping->host;
2099 mpd.lbh.b_size = 0;
2100 mpd.lbh.b_state = 0;
2101 mpd.lbh.b_blocknr = 0;
2102 mpd.first_page = 0;
2103 mpd.next_page = 0;
2104 mpd.get_block = get_block;
a1d6cc56
AK
2105 mpd.io_done = 0;
2106 mpd.pages_written = 0;
2107
2108 to_write = wbc->nr_to_write;
64769240
AT
2109
2110 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111
2112 /*
2113 * Handle last extent of pages
2114 */
a1d6cc56 2115 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
c4a0c46e
AK
2116 if (mpage_da_map_blocks(&mpd) == 0)
2117 mpage_da_submit_io(&mpd);
64769240
AT
2118 }
2119
a1d6cc56 2120 wbc->nr_to_write = to_write - mpd.pages_written;
64769240
AT
2121 return ret;
2122}
2123
2124/*
2125 * this is a special callback for ->write_begin() only
2126 * it's intention is to return mapped block or reserve space
2127 */
2128static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129 struct buffer_head *bh_result, int create)
2130{
2131 int ret = 0;
2132
2133 BUG_ON(create == 0);
2134 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135
2136 /*
2137 * first, we need to know whether the block is allocated already
2138 * preallocated blocks are unmapped but should treated
2139 * the same as allocated blocks.
2140 */
d2a17637
MC
2141 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2142 if ((ret == 0) && !buffer_delay(bh_result)) {
2143 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2144 /*
2145 * XXX: __block_prepare_write() unmaps passed block,
2146 * is it OK?
2147 */
d2a17637
MC
2148 ret = ext4_da_reserve_space(inode, 1);
2149 if (ret)
2150 /* not enough space to reserve */
2151 return ret;
2152
64769240
AT
2153 map_bh(bh_result, inode->i_sb, 0);
2154 set_buffer_new(bh_result);
2155 set_buffer_delay(bh_result);
2156 } else if (ret > 0) {
2157 bh_result->b_size = (ret << inode->i_blkbits);
2158 ret = 0;
2159 }
2160
2161 return ret;
2162}
d2a17637 2163#define EXT4_DELALLOC_RSVED 1
64769240
AT
2164static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165 struct buffer_head *bh_result, int create)
2166{
61628a3f 2167 int ret;
64769240
AT
2168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169 loff_t disksize = EXT4_I(inode)->i_disksize;
2170 handle_t *handle = NULL;
2171
61628a3f 2172 handle = ext4_journal_current_handle();
f0e6c985
AK
2173 if (!handle) {
2174 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175 bh_result, 0, 0, 0);
2176 BUG_ON(!ret);
2177 } else {
2178 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
d2a17637 2179 bh_result, create, 0, EXT4_DELALLOC_RSVED);
f0e6c985
AK
2180 }
2181
64769240
AT
2182 if (ret > 0) {
2183 bh_result->b_size = (ret << inode->i_blkbits);
2184
2185 /*
2186 * Update on-disk size along with block allocation
2187 * we don't use 'extend_disksize' as size may change
2188 * within already allocated block -bzzz
2189 */
2190 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2191 if (disksize > i_size_read(inode))
2192 disksize = i_size_read(inode);
2193 if (disksize > EXT4_I(inode)->i_disksize) {
2194 /*
2195 * XXX: replace with spinlock if seen contended -bzzz
2196 */
2197 down_write(&EXT4_I(inode)->i_data_sem);
2198 if (disksize > EXT4_I(inode)->i_disksize)
2199 EXT4_I(inode)->i_disksize = disksize;
2200 up_write(&EXT4_I(inode)->i_data_sem);
2201
2202 if (EXT4_I(inode)->i_disksize == disksize) {
61628a3f
MC
2203 ret = ext4_mark_inode_dirty(handle, inode);
2204 return ret;
64769240
AT
2205 }
2206 }
64769240
AT
2207 ret = 0;
2208 }
64769240
AT
2209 return ret;
2210}
61628a3f
MC
2211
2212static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2213{
f0e6c985
AK
2214 /*
2215 * unmapped buffer is possible for holes.
2216 * delay buffer is possible with delayed allocation
2217 */
2218 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2219}
2220
2221static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2222 struct buffer_head *bh_result, int create)
2223{
2224 int ret = 0;
2225 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2226
2227 /*
2228 * we don't want to do block allocation in writepage
2229 * so call get_block_wrap with create = 0
2230 */
2231 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2232 bh_result, 0, 0, 0);
2233 if (ret > 0) {
2234 bh_result->b_size = (ret << inode->i_blkbits);
2235 ret = 0;
2236 }
2237 return ret;
61628a3f
MC
2238}
2239
61628a3f 2240/*
f0e6c985
AK
2241 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2242 * get called via journal_submit_inode_data_buffers (no journal handle)
2243 * get called via shrink_page_list via pdflush (no journal handle)
2244 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2245 */
64769240
AT
2246static int ext4_da_writepage(struct page *page,
2247 struct writeback_control *wbc)
2248{
64769240 2249 int ret = 0;
61628a3f
MC
2250 loff_t size;
2251 unsigned long len;
61628a3f
MC
2252 struct buffer_head *page_bufs;
2253 struct inode *inode = page->mapping->host;
2254
f0e6c985
AK
2255 size = i_size_read(inode);
2256 if (page->index == size >> PAGE_CACHE_SHIFT)
2257 len = size & ~PAGE_CACHE_MASK;
2258 else
2259 len = PAGE_CACHE_SIZE;
64769240 2260
f0e6c985 2261 if (page_has_buffers(page)) {
61628a3f 2262 page_bufs = page_buffers(page);
f0e6c985
AK
2263 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2264 ext4_bh_unmapped_or_delay)) {
61628a3f 2265 /*
f0e6c985
AK
2266 * We don't want to do block allocation
2267 * So redirty the page and return
cd1aac32
AK
2268 * We may reach here when we do a journal commit
2269 * via journal_submit_inode_data_buffers.
2270 * If we don't have mapping block we just ignore
f0e6c985
AK
2271 * them. We can also reach here via shrink_page_list
2272 */
2273 redirty_page_for_writepage(wbc, page);
2274 unlock_page(page);
2275 return 0;
2276 }
2277 } else {
2278 /*
2279 * The test for page_has_buffers() is subtle:
2280 * We know the page is dirty but it lost buffers. That means
2281 * that at some moment in time after write_begin()/write_end()
2282 * has been called all buffers have been clean and thus they
2283 * must have been written at least once. So they are all
2284 * mapped and we can happily proceed with mapping them
2285 * and writing the page.
2286 *
2287 * Try to initialize the buffer_heads and check whether
2288 * all are mapped and non delay. We don't want to
2289 * do block allocation here.
2290 */
2291 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2292 ext4_normal_get_block_write);
2293 if (!ret) {
2294 page_bufs = page_buffers(page);
2295 /* check whether all are mapped and non delay */
2296 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2297 ext4_bh_unmapped_or_delay)) {
2298 redirty_page_for_writepage(wbc, page);
2299 unlock_page(page);
2300 return 0;
2301 }
2302 } else {
2303 /*
2304 * We can't do block allocation here
2305 * so just redity the page and unlock
2306 * and return
61628a3f 2307 */
61628a3f
MC
2308 redirty_page_for_writepage(wbc, page);
2309 unlock_page(page);
2310 return 0;
2311 }
64769240
AT
2312 }
2313
2314 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2315 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2316 else
f0e6c985
AK
2317 ret = block_write_full_page(page,
2318 ext4_normal_get_block_write,
2319 wbc);
64769240 2320
64769240
AT
2321 return ret;
2322}
2323
61628a3f 2324/*
525f4ed8
MC
2325 * This is called via ext4_da_writepages() to
2326 * calulate the total number of credits to reserve to fit
2327 * a single extent allocation into a single transaction,
2328 * ext4_da_writpeages() will loop calling this before
2329 * the block allocation.
61628a3f 2330 */
525f4ed8
MC
2331
2332static int ext4_da_writepages_trans_blocks(struct inode *inode)
2333{
2334 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2335
2336 /*
2337 * With non-extent format the journal credit needed to
2338 * insert nrblocks contiguous block is dependent on
2339 * number of contiguous block. So we will limit
2340 * number of contiguous block to a sane value
2341 */
2342 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2343 (max_blocks > EXT4_MAX_TRANS_DATA))
2344 max_blocks = EXT4_MAX_TRANS_DATA;
2345
2346 return ext4_chunk_trans_blocks(inode, max_blocks);
2347}
61628a3f 2348
64769240 2349static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2350 struct writeback_control *wbc)
64769240 2351{
61628a3f 2352 handle_t *handle = NULL;
61628a3f 2353 loff_t range_start = 0;
5e745b04
AK
2354 struct inode *inode = mapping->host;
2355 int needed_blocks, ret = 0, nr_to_writebump = 0;
2356 long to_write, pages_skipped = 0;
2357 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2358
2359 /*
2360 * No pages to write? This is mainly a kludge to avoid starting
2361 * a transaction for special inodes like journal inode on last iput()
2362 * because that could violate lock ordering on umount
2363 */
a1d6cc56 2364 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2365 return 0;
5e745b04
AK
2366 /*
2367 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2368 * This make sure small files blocks are allocated in
2369 * single attempt. This ensure that small files
2370 * get less fragmented.
2371 */
2372 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2373 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2374 wbc->nr_to_write = sbi->s_mb_stream_request;
2375 }
61628a3f 2376
a1d6cc56 2377 if (!wbc->range_cyclic)
61628a3f
MC
2378 /*
2379 * If range_cyclic is not set force range_cont
2380 * and save the old writeback_index
2381 */
2382 wbc->range_cont = 1;
61628a3f 2383
a1d6cc56
AK
2384 range_start = wbc->range_start;
2385 pages_skipped = wbc->pages_skipped;
2386
2387restart_loop:
2388 to_write = wbc->nr_to_write;
2389 while (!ret && to_write > 0) {
2390
2391 /*
2392 * we insert one extent at a time. So we need
2393 * credit needed for single extent allocation.
2394 * journalled mode is currently not supported
2395 * by delalloc
2396 */
2397 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2398 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2399
61628a3f
MC
2400 /* start a new transaction*/
2401 handle = ext4_journal_start(inode, needed_blocks);
2402 if (IS_ERR(handle)) {
2403 ret = PTR_ERR(handle);
a1d6cc56
AK
2404 printk(KERN_EMERG "%s: jbd2_start: "
2405 "%ld pages, ino %lu; err %d\n", __func__,
2406 wbc->nr_to_write, inode->i_ino, ret);
2407 dump_stack();
61628a3f
MC
2408 goto out_writepages;
2409 }
cd1aac32
AK
2410 if (ext4_should_order_data(inode)) {
2411 /*
2412 * With ordered mode we need to add
a1d6cc56 2413 * the inode to the journal handl
cd1aac32
AK
2414 * when we do block allocation.
2415 */
2416 ret = ext4_jbd2_file_inode(handle, inode);
2417 if (ret) {
2418 ext4_journal_stop(handle);
2419 goto out_writepages;
2420 }
cd1aac32 2421 }
61628a3f
MC
2422
2423 to_write -= wbc->nr_to_write;
2424 ret = mpage_da_writepages(mapping, wbc,
a1d6cc56 2425 ext4_da_get_block_write);
61628a3f 2426 ext4_journal_stop(handle);
a1d6cc56
AK
2427 if (ret == MPAGE_DA_EXTENT_TAIL) {
2428 /*
2429 * got one extent now try with
2430 * rest of the pages
2431 */
2432 to_write += wbc->nr_to_write;
2433 ret = 0;
2434 } else if (wbc->nr_to_write) {
61628a3f
MC
2435 /*
2436 * There is no more writeout needed
2437 * or we requested for a noblocking writeout
2438 * and we found the device congested
2439 */
2440 to_write += wbc->nr_to_write;
2441 break;
2442 }
2443 wbc->nr_to_write = to_write;
2444 }
2445
a1d6cc56
AK
2446 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2447 /* We skipped pages in this loop */
2448 wbc->range_start = range_start;
2449 wbc->nr_to_write = to_write +
2450 wbc->pages_skipped - pages_skipped;
2451 wbc->pages_skipped = pages_skipped;
2452 goto restart_loop;
2453 }
2454
61628a3f 2455out_writepages:
5e745b04 2456 wbc->nr_to_write = to_write - nr_to_writebump;
a1d6cc56 2457 wbc->range_start = range_start;
61628a3f 2458 return ret;
64769240
AT
2459}
2460
2461static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2462 loff_t pos, unsigned len, unsigned flags,
2463 struct page **pagep, void **fsdata)
2464{
d2a17637 2465 int ret, retries = 0;
64769240
AT
2466 struct page *page;
2467 pgoff_t index;
2468 unsigned from, to;
2469 struct inode *inode = mapping->host;
2470 handle_t *handle;
2471
2472 index = pos >> PAGE_CACHE_SHIFT;
2473 from = pos & (PAGE_CACHE_SIZE - 1);
2474 to = from + len;
d2a17637 2475retry:
64769240
AT
2476 /*
2477 * With delayed allocation, we don't log the i_disksize update
2478 * if there is delayed block allocation. But we still need
2479 * to journalling the i_disksize update if writes to the end
2480 * of file which has an already mapped buffer.
2481 */
2482 handle = ext4_journal_start(inode, 1);
2483 if (IS_ERR(handle)) {
2484 ret = PTR_ERR(handle);
2485 goto out;
2486 }
2487
2488 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2489 if (!page) {
2490 ext4_journal_stop(handle);
2491 ret = -ENOMEM;
2492 goto out;
2493 }
64769240
AT
2494 *pagep = page;
2495
2496 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2497 ext4_da_get_block_prep);
2498 if (ret < 0) {
2499 unlock_page(page);
2500 ext4_journal_stop(handle);
2501 page_cache_release(page);
2502 }
2503
d2a17637
MC
2504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2505 goto retry;
64769240
AT
2506out:
2507 return ret;
2508}
2509
632eaeab
MC
2510/*
2511 * Check if we should update i_disksize
2512 * when write to the end of file but not require block allocation
2513 */
2514static int ext4_da_should_update_i_disksize(struct page *page,
2515 unsigned long offset)
2516{
2517 struct buffer_head *bh;
2518 struct inode *inode = page->mapping->host;
2519 unsigned int idx;
2520 int i;
2521
2522 bh = page_buffers(page);
2523 idx = offset >> inode->i_blkbits;
2524
af5bc92d 2525 for (i = 0; i < idx; i++)
632eaeab
MC
2526 bh = bh->b_this_page;
2527
2528 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2529 return 0;
2530 return 1;
2531}
2532
64769240
AT
2533static int ext4_da_write_end(struct file *file,
2534 struct address_space *mapping,
2535 loff_t pos, unsigned len, unsigned copied,
2536 struct page *page, void *fsdata)
2537{
2538 struct inode *inode = mapping->host;
2539 int ret = 0, ret2;
2540 handle_t *handle = ext4_journal_current_handle();
2541 loff_t new_i_size;
632eaeab
MC
2542 unsigned long start, end;
2543
2544 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2545 end = start + copied - 1;
64769240
AT
2546
2547 /*
2548 * generic_write_end() will run mark_inode_dirty() if i_size
2549 * changes. So let's piggyback the i_disksize mark_inode_dirty
2550 * into that.
2551 */
2552
2553 new_i_size = pos + copied;
632eaeab
MC
2554 if (new_i_size > EXT4_I(inode)->i_disksize) {
2555 if (ext4_da_should_update_i_disksize(page, end)) {
2556 down_write(&EXT4_I(inode)->i_data_sem);
2557 if (new_i_size > EXT4_I(inode)->i_disksize) {
2558 /*
2559 * Updating i_disksize when extending file
2560 * without needing block allocation
2561 */
2562 if (ext4_should_order_data(inode))
2563 ret = ext4_jbd2_file_inode(handle,
2564 inode);
64769240 2565
632eaeab
MC
2566 EXT4_I(inode)->i_disksize = new_i_size;
2567 }
2568 up_write(&EXT4_I(inode)->i_data_sem);
64769240 2569 }
632eaeab 2570 }
64769240
AT
2571 ret2 = generic_write_end(file, mapping, pos, len, copied,
2572 page, fsdata);
2573 copied = ret2;
2574 if (ret2 < 0)
2575 ret = ret2;
2576 ret2 = ext4_journal_stop(handle);
2577 if (!ret)
2578 ret = ret2;
2579
2580 return ret ? ret : copied;
2581}
2582
2583static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2584{
64769240
AT
2585 /*
2586 * Drop reserved blocks
2587 */
2588 BUG_ON(!PageLocked(page));
2589 if (!page_has_buffers(page))
2590 goto out;
2591
d2a17637 2592 ext4_da_page_release_reservation(page, offset);
64769240
AT
2593
2594out:
2595 ext4_invalidatepage(page, offset);
2596
2597 return;
2598}
2599
2600
ac27a0ec
DK
2601/*
2602 * bmap() is special. It gets used by applications such as lilo and by
2603 * the swapper to find the on-disk block of a specific piece of data.
2604 *
2605 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2606 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2607 * filesystem and enables swap, then they may get a nasty shock when the
2608 * data getting swapped to that swapfile suddenly gets overwritten by
2609 * the original zero's written out previously to the journal and
2610 * awaiting writeback in the kernel's buffer cache.
2611 *
2612 * So, if we see any bmap calls here on a modified, data-journaled file,
2613 * take extra steps to flush any blocks which might be in the cache.
2614 */
617ba13b 2615static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2616{
2617 struct inode *inode = mapping->host;
2618 journal_t *journal;
2619 int err;
2620
64769240
AT
2621 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2622 test_opt(inode->i_sb, DELALLOC)) {
2623 /*
2624 * With delalloc we want to sync the file
2625 * so that we can make sure we allocate
2626 * blocks for file
2627 */
2628 filemap_write_and_wait(mapping);
2629 }
2630
617ba13b 2631 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2632 /*
2633 * This is a REALLY heavyweight approach, but the use of
2634 * bmap on dirty files is expected to be extremely rare:
2635 * only if we run lilo or swapon on a freshly made file
2636 * do we expect this to happen.
2637 *
2638 * (bmap requires CAP_SYS_RAWIO so this does not
2639 * represent an unprivileged user DOS attack --- we'd be
2640 * in trouble if mortal users could trigger this path at
2641 * will.)
2642 *
617ba13b 2643 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2644 * regular files. If somebody wants to bmap a directory
2645 * or symlink and gets confused because the buffer
2646 * hasn't yet been flushed to disk, they deserve
2647 * everything they get.
2648 */
2649
617ba13b
MC
2650 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2651 journal = EXT4_JOURNAL(inode);
dab291af
MC
2652 jbd2_journal_lock_updates(journal);
2653 err = jbd2_journal_flush(journal);
2654 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2655
2656 if (err)
2657 return 0;
2658 }
2659
af5bc92d 2660 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2661}
2662
2663static int bget_one(handle_t *handle, struct buffer_head *bh)
2664{
2665 get_bh(bh);
2666 return 0;
2667}
2668
2669static int bput_one(handle_t *handle, struct buffer_head *bh)
2670{
2671 put_bh(bh);
2672 return 0;
2673}
2674
ac27a0ec 2675/*
678aaf48
JK
2676 * Note that we don't need to start a transaction unless we're journaling data
2677 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2678 * need to file the inode to the transaction's list in ordered mode because if
2679 * we are writing back data added by write(), the inode is already there and if
2680 * we are writing back data modified via mmap(), noone guarantees in which
2681 * transaction the data will hit the disk. In case we are journaling data, we
2682 * cannot start transaction directly because transaction start ranks above page
2683 * lock so we have to do some magic.
ac27a0ec 2684 *
678aaf48 2685 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2686 *
2687 * Problem:
2688 *
617ba13b
MC
2689 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2690 * ext4_writepage()
ac27a0ec
DK
2691 *
2692 * Similar for:
2693 *
617ba13b 2694 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2695 *
617ba13b 2696 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2697 * lock_journal and i_data_sem
ac27a0ec
DK
2698 *
2699 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2700 * allocations fail.
2701 *
2702 * 16May01: If we're reentered then journal_current_handle() will be
2703 * non-zero. We simply *return*.
2704 *
2705 * 1 July 2001: @@@ FIXME:
2706 * In journalled data mode, a data buffer may be metadata against the
2707 * current transaction. But the same file is part of a shared mapping
2708 * and someone does a writepage() on it.
2709 *
2710 * We will move the buffer onto the async_data list, but *after* it has
2711 * been dirtied. So there's a small window where we have dirty data on
2712 * BJ_Metadata.
2713 *
2714 * Note that this only applies to the last partial page in the file. The
2715 * bit which block_write_full_page() uses prepare/commit for. (That's
2716 * broken code anyway: it's wrong for msync()).
2717 *
2718 * It's a rare case: affects the final partial page, for journalled data
2719 * where the file is subject to bith write() and writepage() in the same
2720 * transction. To fix it we'll need a custom block_write_full_page().
2721 * We'll probably need that anyway for journalling writepage() output.
2722 *
2723 * We don't honour synchronous mounts for writepage(). That would be
2724 * disastrous. Any write() or metadata operation will sync the fs for
2725 * us.
2726 *
ac27a0ec 2727 */
678aaf48 2728static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2729 struct writeback_control *wbc)
2730{
2731 struct inode *inode = page->mapping->host;
2732
2733 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2734 return nobh_writepage(page,
2735 ext4_normal_get_block_write, wbc);
cf108bca 2736 else
f0e6c985
AK
2737 return block_write_full_page(page,
2738 ext4_normal_get_block_write,
2739 wbc);
cf108bca
JK
2740}
2741
678aaf48 2742static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2743 struct writeback_control *wbc)
2744{
2745 struct inode *inode = page->mapping->host;
cf108bca
JK
2746 loff_t size = i_size_read(inode);
2747 loff_t len;
2748
2749 J_ASSERT(PageLocked(page));
cf108bca
JK
2750 if (page->index == size >> PAGE_CACHE_SHIFT)
2751 len = size & ~PAGE_CACHE_MASK;
2752 else
2753 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2754
2755 if (page_has_buffers(page)) {
2756 /* if page has buffers it should all be mapped
2757 * and allocated. If there are not buffers attached
2758 * to the page we know the page is dirty but it lost
2759 * buffers. That means that at some moment in time
2760 * after write_begin() / write_end() has been called
2761 * all buffers have been clean and thus they must have been
2762 * written at least once. So they are all mapped and we can
2763 * happily proceed with mapping them and writing the page.
2764 */
2765 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2766 ext4_bh_unmapped_or_delay));
2767 }
cf108bca
JK
2768
2769 if (!ext4_journal_current_handle())
678aaf48 2770 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2771
2772 redirty_page_for_writepage(wbc, page);
2773 unlock_page(page);
2774 return 0;
2775}
2776
2777static int __ext4_journalled_writepage(struct page *page,
2778 struct writeback_control *wbc)
2779{
2780 struct address_space *mapping = page->mapping;
2781 struct inode *inode = mapping->host;
2782 struct buffer_head *page_bufs;
ac27a0ec
DK
2783 handle_t *handle = NULL;
2784 int ret = 0;
2785 int err;
2786
f0e6c985
AK
2787 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2788 ext4_normal_get_block_write);
cf108bca
JK
2789 if (ret != 0)
2790 goto out_unlock;
2791
2792 page_bufs = page_buffers(page);
2793 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2794 bget_one);
2795 /* As soon as we unlock the page, it can go away, but we have
2796 * references to buffers so we are safe */
2797 unlock_page(page);
ac27a0ec 2798
617ba13b 2799 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2800 if (IS_ERR(handle)) {
2801 ret = PTR_ERR(handle);
cf108bca 2802 goto out;
ac27a0ec
DK
2803 }
2804
cf108bca
JK
2805 ret = walk_page_buffers(handle, page_bufs, 0,
2806 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2807
cf108bca
JK
2808 err = walk_page_buffers(handle, page_bufs, 0,
2809 PAGE_CACHE_SIZE, NULL, write_end_fn);
2810 if (ret == 0)
2811 ret = err;
617ba13b 2812 err = ext4_journal_stop(handle);
ac27a0ec
DK
2813 if (!ret)
2814 ret = err;
ac27a0ec 2815
cf108bca
JK
2816 walk_page_buffers(handle, page_bufs, 0,
2817 PAGE_CACHE_SIZE, NULL, bput_one);
2818 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2819 goto out;
2820
2821out_unlock:
ac27a0ec 2822 unlock_page(page);
cf108bca 2823out:
ac27a0ec
DK
2824 return ret;
2825}
2826
617ba13b 2827static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2828 struct writeback_control *wbc)
2829{
2830 struct inode *inode = page->mapping->host;
cf108bca
JK
2831 loff_t size = i_size_read(inode);
2832 loff_t len;
ac27a0ec 2833
cf108bca 2834 J_ASSERT(PageLocked(page));
cf108bca
JK
2835 if (page->index == size >> PAGE_CACHE_SHIFT)
2836 len = size & ~PAGE_CACHE_MASK;
2837 else
2838 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2839
2840 if (page_has_buffers(page)) {
2841 /* if page has buffers it should all be mapped
2842 * and allocated. If there are not buffers attached
2843 * to the page we know the page is dirty but it lost
2844 * buffers. That means that at some moment in time
2845 * after write_begin() / write_end() has been called
2846 * all buffers have been clean and thus they must have been
2847 * written at least once. So they are all mapped and we can
2848 * happily proceed with mapping them and writing the page.
2849 */
2850 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2851 ext4_bh_unmapped_or_delay));
2852 }
ac27a0ec 2853
cf108bca 2854 if (ext4_journal_current_handle())
ac27a0ec 2855 goto no_write;
ac27a0ec 2856
cf108bca 2857 if (PageChecked(page)) {
ac27a0ec
DK
2858 /*
2859 * It's mmapped pagecache. Add buffers and journal it. There
2860 * doesn't seem much point in redirtying the page here.
2861 */
2862 ClearPageChecked(page);
cf108bca 2863 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2864 } else {
2865 /*
2866 * It may be a page full of checkpoint-mode buffers. We don't
2867 * really know unless we go poke around in the buffer_heads.
2868 * But block_write_full_page will do the right thing.
2869 */
f0e6c985
AK
2870 return block_write_full_page(page,
2871 ext4_normal_get_block_write,
2872 wbc);
ac27a0ec 2873 }
ac27a0ec
DK
2874no_write:
2875 redirty_page_for_writepage(wbc, page);
ac27a0ec 2876 unlock_page(page);
cf108bca 2877 return 0;
ac27a0ec
DK
2878}
2879
617ba13b 2880static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2881{
617ba13b 2882 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2883}
2884
2885static int
617ba13b 2886ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2887 struct list_head *pages, unsigned nr_pages)
2888{
617ba13b 2889 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2890}
2891
617ba13b 2892static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2893{
617ba13b 2894 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2895
2896 /*
2897 * If it's a full truncate we just forget about the pending dirtying
2898 */
2899 if (offset == 0)
2900 ClearPageChecked(page);
2901
dab291af 2902 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2903}
2904
617ba13b 2905static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2906{
617ba13b 2907 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2908
2909 WARN_ON(PageChecked(page));
2910 if (!page_has_buffers(page))
2911 return 0;
dab291af 2912 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2913}
2914
2915/*
2916 * If the O_DIRECT write will extend the file then add this inode to the
2917 * orphan list. So recovery will truncate it back to the original size
2918 * if the machine crashes during the write.
2919 *
2920 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2921 * crashes then stale disk data _may_ be exposed inside the file. But current
2922 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2923 */
617ba13b 2924static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2925 const struct iovec *iov, loff_t offset,
2926 unsigned long nr_segs)
2927{
2928 struct file *file = iocb->ki_filp;
2929 struct inode *inode = file->f_mapping->host;
617ba13b 2930 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2931 handle_t *handle;
ac27a0ec
DK
2932 ssize_t ret;
2933 int orphan = 0;
2934 size_t count = iov_length(iov, nr_segs);
2935
2936 if (rw == WRITE) {
2937 loff_t final_size = offset + count;
2938
ac27a0ec 2939 if (final_size > inode->i_size) {
7fb5409d
JK
2940 /* Credits for sb + inode write */
2941 handle = ext4_journal_start(inode, 2);
2942 if (IS_ERR(handle)) {
2943 ret = PTR_ERR(handle);
2944 goto out;
2945 }
617ba13b 2946 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2947 if (ret) {
2948 ext4_journal_stop(handle);
2949 goto out;
2950 }
ac27a0ec
DK
2951 orphan = 1;
2952 ei->i_disksize = inode->i_size;
7fb5409d 2953 ext4_journal_stop(handle);
ac27a0ec
DK
2954 }
2955 }
2956
2957 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2958 offset, nr_segs,
617ba13b 2959 ext4_get_block, NULL);
ac27a0ec 2960
7fb5409d 2961 if (orphan) {
ac27a0ec
DK
2962 int err;
2963
7fb5409d
JK
2964 /* Credits for sb + inode write */
2965 handle = ext4_journal_start(inode, 2);
2966 if (IS_ERR(handle)) {
2967 /* This is really bad luck. We've written the data
2968 * but cannot extend i_size. Bail out and pretend
2969 * the write failed... */
2970 ret = PTR_ERR(handle);
2971 goto out;
2972 }
2973 if (inode->i_nlink)
617ba13b 2974 ext4_orphan_del(handle, inode);
7fb5409d 2975 if (ret > 0) {
ac27a0ec
DK
2976 loff_t end = offset + ret;
2977 if (end > inode->i_size) {
2978 ei->i_disksize = end;
2979 i_size_write(inode, end);
2980 /*
2981 * We're going to return a positive `ret'
2982 * here due to non-zero-length I/O, so there's
2983 * no way of reporting error returns from
617ba13b 2984 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2985 * ignore it.
2986 */
617ba13b 2987 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2988 }
2989 }
617ba13b 2990 err = ext4_journal_stop(handle);
ac27a0ec
DK
2991 if (ret == 0)
2992 ret = err;
2993 }
2994out:
2995 return ret;
2996}
2997
2998/*
617ba13b 2999 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3000 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3001 * much here because ->set_page_dirty is called under VFS locks. The page is
3002 * not necessarily locked.
3003 *
3004 * We cannot just dirty the page and leave attached buffers clean, because the
3005 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3006 * or jbddirty because all the journalling code will explode.
3007 *
3008 * So what we do is to mark the page "pending dirty" and next time writepage
3009 * is called, propagate that into the buffers appropriately.
3010 */
617ba13b 3011static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3012{
3013 SetPageChecked(page);
3014 return __set_page_dirty_nobuffers(page);
3015}
3016
617ba13b 3017static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3018 .readpage = ext4_readpage,
3019 .readpages = ext4_readpages,
3020 .writepage = ext4_normal_writepage,
3021 .sync_page = block_sync_page,
3022 .write_begin = ext4_write_begin,
3023 .write_end = ext4_ordered_write_end,
3024 .bmap = ext4_bmap,
3025 .invalidatepage = ext4_invalidatepage,
3026 .releasepage = ext4_releasepage,
3027 .direct_IO = ext4_direct_IO,
3028 .migratepage = buffer_migrate_page,
3029 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3030};
3031
617ba13b 3032static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3033 .readpage = ext4_readpage,
3034 .readpages = ext4_readpages,
3035 .writepage = ext4_normal_writepage,
3036 .sync_page = block_sync_page,
3037 .write_begin = ext4_write_begin,
3038 .write_end = ext4_writeback_write_end,
3039 .bmap = ext4_bmap,
3040 .invalidatepage = ext4_invalidatepage,
3041 .releasepage = ext4_releasepage,
3042 .direct_IO = ext4_direct_IO,
3043 .migratepage = buffer_migrate_page,
3044 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3045};
3046
617ba13b 3047static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3048 .readpage = ext4_readpage,
3049 .readpages = ext4_readpages,
3050 .writepage = ext4_journalled_writepage,
3051 .sync_page = block_sync_page,
3052 .write_begin = ext4_write_begin,
3053 .write_end = ext4_journalled_write_end,
3054 .set_page_dirty = ext4_journalled_set_page_dirty,
3055 .bmap = ext4_bmap,
3056 .invalidatepage = ext4_invalidatepage,
3057 .releasepage = ext4_releasepage,
3058 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3059};
3060
64769240 3061static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3062 .readpage = ext4_readpage,
3063 .readpages = ext4_readpages,
3064 .writepage = ext4_da_writepage,
3065 .writepages = ext4_da_writepages,
3066 .sync_page = block_sync_page,
3067 .write_begin = ext4_da_write_begin,
3068 .write_end = ext4_da_write_end,
3069 .bmap = ext4_bmap,
3070 .invalidatepage = ext4_da_invalidatepage,
3071 .releasepage = ext4_releasepage,
3072 .direct_IO = ext4_direct_IO,
3073 .migratepage = buffer_migrate_page,
3074 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3075};
3076
617ba13b 3077void ext4_set_aops(struct inode *inode)
ac27a0ec 3078{
cd1aac32
AK
3079 if (ext4_should_order_data(inode) &&
3080 test_opt(inode->i_sb, DELALLOC))
3081 inode->i_mapping->a_ops = &ext4_da_aops;
3082 else if (ext4_should_order_data(inode))
617ba13b 3083 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3084 else if (ext4_should_writeback_data(inode) &&
3085 test_opt(inode->i_sb, DELALLOC))
3086 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3087 else if (ext4_should_writeback_data(inode))
3088 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3089 else
617ba13b 3090 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3091}
3092
3093/*
617ba13b 3094 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3095 * up to the end of the block which corresponds to `from'.
3096 * This required during truncate. We need to physically zero the tail end
3097 * of that block so it doesn't yield old data if the file is later grown.
3098 */
cf108bca 3099int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3100 struct address_space *mapping, loff_t from)
3101{
617ba13b 3102 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3103 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3104 unsigned blocksize, length, pos;
3105 ext4_lblk_t iblock;
ac27a0ec
DK
3106 struct inode *inode = mapping->host;
3107 struct buffer_head *bh;
cf108bca 3108 struct page *page;
ac27a0ec 3109 int err = 0;
ac27a0ec 3110
cf108bca
JK
3111 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3112 if (!page)
3113 return -EINVAL;
3114
ac27a0ec
DK
3115 blocksize = inode->i_sb->s_blocksize;
3116 length = blocksize - (offset & (blocksize - 1));
3117 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3118
3119 /*
3120 * For "nobh" option, we can only work if we don't need to
3121 * read-in the page - otherwise we create buffers to do the IO.
3122 */
3123 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3124 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3125 zero_user(page, offset, length);
ac27a0ec
DK
3126 set_page_dirty(page);
3127 goto unlock;
3128 }
3129
3130 if (!page_has_buffers(page))
3131 create_empty_buffers(page, blocksize, 0);
3132
3133 /* Find the buffer that contains "offset" */
3134 bh = page_buffers(page);
3135 pos = blocksize;
3136 while (offset >= pos) {
3137 bh = bh->b_this_page;
3138 iblock++;
3139 pos += blocksize;
3140 }
3141
3142 err = 0;
3143 if (buffer_freed(bh)) {
3144 BUFFER_TRACE(bh, "freed: skip");
3145 goto unlock;
3146 }
3147
3148 if (!buffer_mapped(bh)) {
3149 BUFFER_TRACE(bh, "unmapped");
617ba13b 3150 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3151 /* unmapped? It's a hole - nothing to do */
3152 if (!buffer_mapped(bh)) {
3153 BUFFER_TRACE(bh, "still unmapped");
3154 goto unlock;
3155 }
3156 }
3157
3158 /* Ok, it's mapped. Make sure it's up-to-date */
3159 if (PageUptodate(page))
3160 set_buffer_uptodate(bh);
3161
3162 if (!buffer_uptodate(bh)) {
3163 err = -EIO;
3164 ll_rw_block(READ, 1, &bh);
3165 wait_on_buffer(bh);
3166 /* Uhhuh. Read error. Complain and punt. */
3167 if (!buffer_uptodate(bh))
3168 goto unlock;
3169 }
3170
617ba13b 3171 if (ext4_should_journal_data(inode)) {
ac27a0ec 3172 BUFFER_TRACE(bh, "get write access");
617ba13b 3173 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3174 if (err)
3175 goto unlock;
3176 }
3177
eebd2aa3 3178 zero_user(page, offset, length);
ac27a0ec
DK
3179
3180 BUFFER_TRACE(bh, "zeroed end of block");
3181
3182 err = 0;
617ba13b
MC
3183 if (ext4_should_journal_data(inode)) {
3184 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3185 } else {
617ba13b 3186 if (ext4_should_order_data(inode))
678aaf48 3187 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3188 mark_buffer_dirty(bh);
3189 }
3190
3191unlock:
3192 unlock_page(page);
3193 page_cache_release(page);
3194 return err;
3195}
3196
3197/*
3198 * Probably it should be a library function... search for first non-zero word
3199 * or memcmp with zero_page, whatever is better for particular architecture.
3200 * Linus?
3201 */
3202static inline int all_zeroes(__le32 *p, __le32 *q)
3203{
3204 while (p < q)
3205 if (*p++)
3206 return 0;
3207 return 1;
3208}
3209
3210/**
617ba13b 3211 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3212 * @inode: inode in question
3213 * @depth: depth of the affected branch
617ba13b 3214 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3215 * @chain: place to store the pointers to partial indirect blocks
3216 * @top: place to the (detached) top of branch
3217 *
617ba13b 3218 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3219 *
3220 * When we do truncate() we may have to clean the ends of several
3221 * indirect blocks but leave the blocks themselves alive. Block is
3222 * partially truncated if some data below the new i_size is refered
3223 * from it (and it is on the path to the first completely truncated
3224 * data block, indeed). We have to free the top of that path along
3225 * with everything to the right of the path. Since no allocation
617ba13b 3226 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3227 * finishes, we may safely do the latter, but top of branch may
3228 * require special attention - pageout below the truncation point
3229 * might try to populate it.
3230 *
3231 * We atomically detach the top of branch from the tree, store the
3232 * block number of its root in *@top, pointers to buffer_heads of
3233 * partially truncated blocks - in @chain[].bh and pointers to
3234 * their last elements that should not be removed - in
3235 * @chain[].p. Return value is the pointer to last filled element
3236 * of @chain.
3237 *
3238 * The work left to caller to do the actual freeing of subtrees:
3239 * a) free the subtree starting from *@top
3240 * b) free the subtrees whose roots are stored in
3241 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3242 * c) free the subtrees growing from the inode past the @chain[0].
3243 * (no partially truncated stuff there). */
3244
617ba13b 3245static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3246 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3247{
3248 Indirect *partial, *p;
3249 int k, err;
3250
3251 *top = 0;
3252 /* Make k index the deepest non-null offest + 1 */
3253 for (k = depth; k > 1 && !offsets[k-1]; k--)
3254 ;
617ba13b 3255 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3256 /* Writer: pointers */
3257 if (!partial)
3258 partial = chain + k-1;
3259 /*
3260 * If the branch acquired continuation since we've looked at it -
3261 * fine, it should all survive and (new) top doesn't belong to us.
3262 */
3263 if (!partial->key && *partial->p)
3264 /* Writer: end */
3265 goto no_top;
af5bc92d 3266 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3267 ;
3268 /*
3269 * OK, we've found the last block that must survive. The rest of our
3270 * branch should be detached before unlocking. However, if that rest
3271 * of branch is all ours and does not grow immediately from the inode
3272 * it's easier to cheat and just decrement partial->p.
3273 */
3274 if (p == chain + k - 1 && p > chain) {
3275 p->p--;
3276 } else {
3277 *top = *p->p;
617ba13b 3278 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3279#if 0
3280 *p->p = 0;
3281#endif
3282 }
3283 /* Writer: end */
3284
af5bc92d 3285 while (partial > p) {
ac27a0ec
DK
3286 brelse(partial->bh);
3287 partial--;
3288 }
3289no_top:
3290 return partial;
3291}
3292
3293/*
3294 * Zero a number of block pointers in either an inode or an indirect block.
3295 * If we restart the transaction we must again get write access to the
3296 * indirect block for further modification.
3297 *
3298 * We release `count' blocks on disk, but (last - first) may be greater
3299 * than `count' because there can be holes in there.
3300 */
617ba13b
MC
3301static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3302 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3303 unsigned long count, __le32 *first, __le32 *last)
3304{
3305 __le32 *p;
3306 if (try_to_extend_transaction(handle, inode)) {
3307 if (bh) {
617ba13b
MC
3308 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3309 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3310 }
617ba13b
MC
3311 ext4_mark_inode_dirty(handle, inode);
3312 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3313 if (bh) {
3314 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3315 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3316 }
3317 }
3318
3319 /*
3320 * Any buffers which are on the journal will be in memory. We find
dab291af 3321 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3322 * on them. We've already detached each block from the file, so
dab291af 3323 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3324 *
dab291af 3325 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3326 */
3327 for (p = first; p < last; p++) {
3328 u32 nr = le32_to_cpu(*p);
3329 if (nr) {
1d03ec98 3330 struct buffer_head *tbh;
ac27a0ec
DK
3331
3332 *p = 0;
1d03ec98
AK
3333 tbh = sb_find_get_block(inode->i_sb, nr);
3334 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3335 }
3336 }
3337
c9de560d 3338 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3339}
3340
3341/**
617ba13b 3342 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3343 * @handle: handle for this transaction
3344 * @inode: inode we are dealing with
3345 * @this_bh: indirect buffer_head which contains *@first and *@last
3346 * @first: array of block numbers
3347 * @last: points immediately past the end of array
3348 *
3349 * We are freeing all blocks refered from that array (numbers are stored as
3350 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3351 *
3352 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3353 * blocks are contiguous then releasing them at one time will only affect one
3354 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3355 * actually use a lot of journal space.
3356 *
3357 * @this_bh will be %NULL if @first and @last point into the inode's direct
3358 * block pointers.
3359 */
617ba13b 3360static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3361 struct buffer_head *this_bh,
3362 __le32 *first, __le32 *last)
3363{
617ba13b 3364 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3365 unsigned long count = 0; /* Number of blocks in the run */
3366 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3367 corresponding to
3368 block_to_free */
617ba13b 3369 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3370 __le32 *p; /* Pointer into inode/ind
3371 for current block */
3372 int err;
3373
3374 if (this_bh) { /* For indirect block */
3375 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3376 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3377 /* Important: if we can't update the indirect pointers
3378 * to the blocks, we can't free them. */
3379 if (err)
3380 return;
3381 }
3382
3383 for (p = first; p < last; p++) {
3384 nr = le32_to_cpu(*p);
3385 if (nr) {
3386 /* accumulate blocks to free if they're contiguous */
3387 if (count == 0) {
3388 block_to_free = nr;
3389 block_to_free_p = p;
3390 count = 1;
3391 } else if (nr == block_to_free + count) {
3392 count++;
3393 } else {
617ba13b 3394 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3395 block_to_free,
3396 count, block_to_free_p, p);
3397 block_to_free = nr;
3398 block_to_free_p = p;
3399 count = 1;
3400 }
3401 }
3402 }
3403
3404 if (count > 0)
617ba13b 3405 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3406 count, block_to_free_p, p);
3407
3408 if (this_bh) {
617ba13b 3409 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3410
3411 /*
3412 * The buffer head should have an attached journal head at this
3413 * point. However, if the data is corrupted and an indirect
3414 * block pointed to itself, it would have been detached when
3415 * the block was cleared. Check for this instead of OOPSing.
3416 */
3417 if (bh2jh(this_bh))
3418 ext4_journal_dirty_metadata(handle, this_bh);
3419 else
3420 ext4_error(inode->i_sb, __func__,
3421 "circular indirect block detected, "
3422 "inode=%lu, block=%llu",
3423 inode->i_ino,
3424 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3425 }
3426}
3427
3428/**
617ba13b 3429 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3430 * @handle: JBD handle for this transaction
3431 * @inode: inode we are dealing with
3432 * @parent_bh: the buffer_head which contains *@first and *@last
3433 * @first: array of block numbers
3434 * @last: pointer immediately past the end of array
3435 * @depth: depth of the branches to free
3436 *
3437 * We are freeing all blocks refered from these branches (numbers are
3438 * stored as little-endian 32-bit) and updating @inode->i_blocks
3439 * appropriately.
3440 */
617ba13b 3441static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3442 struct buffer_head *parent_bh,
3443 __le32 *first, __le32 *last, int depth)
3444{
617ba13b 3445 ext4_fsblk_t nr;
ac27a0ec
DK
3446 __le32 *p;
3447
3448 if (is_handle_aborted(handle))
3449 return;
3450
3451 if (depth--) {
3452 struct buffer_head *bh;
617ba13b 3453 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3454 p = last;
3455 while (--p >= first) {
3456 nr = le32_to_cpu(*p);
3457 if (!nr)
3458 continue; /* A hole */
3459
3460 /* Go read the buffer for the next level down */
3461 bh = sb_bread(inode->i_sb, nr);
3462
3463 /*
3464 * A read failure? Report error and clear slot
3465 * (should be rare).
3466 */
3467 if (!bh) {
617ba13b 3468 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3469 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3470 inode->i_ino, nr);
3471 continue;
3472 }
3473
3474 /* This zaps the entire block. Bottom up. */
3475 BUFFER_TRACE(bh, "free child branches");
617ba13b 3476 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3477 (__le32 *) bh->b_data,
3478 (__le32 *) bh->b_data + addr_per_block,
3479 depth);
ac27a0ec
DK
3480
3481 /*
3482 * We've probably journalled the indirect block several
3483 * times during the truncate. But it's no longer
3484 * needed and we now drop it from the transaction via
dab291af 3485 * jbd2_journal_revoke().
ac27a0ec
DK
3486 *
3487 * That's easy if it's exclusively part of this
3488 * transaction. But if it's part of the committing
dab291af 3489 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3490 * brelse() it. That means that if the underlying
617ba13b 3491 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3492 * unmap_underlying_metadata() will find this block
3493 * and will try to get rid of it. damn, damn.
3494 *
3495 * If this block has already been committed to the
3496 * journal, a revoke record will be written. And
3497 * revoke records must be emitted *before* clearing
3498 * this block's bit in the bitmaps.
3499 */
617ba13b 3500 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3501
3502 /*
3503 * Everything below this this pointer has been
3504 * released. Now let this top-of-subtree go.
3505 *
3506 * We want the freeing of this indirect block to be
3507 * atomic in the journal with the updating of the
3508 * bitmap block which owns it. So make some room in
3509 * the journal.
3510 *
3511 * We zero the parent pointer *after* freeing its
3512 * pointee in the bitmaps, so if extend_transaction()
3513 * for some reason fails to put the bitmap changes and
3514 * the release into the same transaction, recovery
3515 * will merely complain about releasing a free block,
3516 * rather than leaking blocks.
3517 */
3518 if (is_handle_aborted(handle))
3519 return;
3520 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3521 ext4_mark_inode_dirty(handle, inode);
3522 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3523 }
3524
c9de560d 3525 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3526
3527 if (parent_bh) {
3528 /*
3529 * The block which we have just freed is
3530 * pointed to by an indirect block: journal it
3531 */
3532 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3533 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3534 parent_bh)){
3535 *p = 0;
3536 BUFFER_TRACE(parent_bh,
617ba13b
MC
3537 "call ext4_journal_dirty_metadata");
3538 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3539 parent_bh);
3540 }
3541 }
3542 }
3543 } else {
3544 /* We have reached the bottom of the tree. */
3545 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3546 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3547 }
3548}
3549
91ef4caf
DG
3550int ext4_can_truncate(struct inode *inode)
3551{
3552 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3553 return 0;
3554 if (S_ISREG(inode->i_mode))
3555 return 1;
3556 if (S_ISDIR(inode->i_mode))
3557 return 1;
3558 if (S_ISLNK(inode->i_mode))
3559 return !ext4_inode_is_fast_symlink(inode);
3560 return 0;
3561}
3562
ac27a0ec 3563/*
617ba13b 3564 * ext4_truncate()
ac27a0ec 3565 *
617ba13b
MC
3566 * We block out ext4_get_block() block instantiations across the entire
3567 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3568 * simultaneously on behalf of the same inode.
3569 *
3570 * As we work through the truncate and commmit bits of it to the journal there
3571 * is one core, guiding principle: the file's tree must always be consistent on
3572 * disk. We must be able to restart the truncate after a crash.
3573 *
3574 * The file's tree may be transiently inconsistent in memory (although it
3575 * probably isn't), but whenever we close off and commit a journal transaction,
3576 * the contents of (the filesystem + the journal) must be consistent and
3577 * restartable. It's pretty simple, really: bottom up, right to left (although
3578 * left-to-right works OK too).
3579 *
3580 * Note that at recovery time, journal replay occurs *before* the restart of
3581 * truncate against the orphan inode list.
3582 *
3583 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3584 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3585 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3586 * ext4_truncate() to have another go. So there will be instantiated blocks
3587 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3588 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3589 * ext4_truncate() run will find them and release them.
ac27a0ec 3590 */
617ba13b 3591void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3592{
3593 handle_t *handle;
617ba13b 3594 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3595 __le32 *i_data = ei->i_data;
617ba13b 3596 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3597 struct address_space *mapping = inode->i_mapping;
725d26d3 3598 ext4_lblk_t offsets[4];
ac27a0ec
DK
3599 Indirect chain[4];
3600 Indirect *partial;
3601 __le32 nr = 0;
3602 int n;
725d26d3 3603 ext4_lblk_t last_block;
ac27a0ec 3604 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3605
91ef4caf 3606 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3607 return;
3608
1d03ec98 3609 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3610 ext4_ext_truncate(inode);
1d03ec98
AK
3611 return;
3612 }
a86c6181 3613
ac27a0ec 3614 handle = start_transaction(inode);
cf108bca 3615 if (IS_ERR(handle))
ac27a0ec 3616 return; /* AKPM: return what? */
ac27a0ec
DK
3617
3618 last_block = (inode->i_size + blocksize-1)
617ba13b 3619 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3620
cf108bca
JK
3621 if (inode->i_size & (blocksize - 1))
3622 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3623 goto out_stop;
ac27a0ec 3624
617ba13b 3625 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3626 if (n == 0)
3627 goto out_stop; /* error */
3628
3629 /*
3630 * OK. This truncate is going to happen. We add the inode to the
3631 * orphan list, so that if this truncate spans multiple transactions,
3632 * and we crash, we will resume the truncate when the filesystem
3633 * recovers. It also marks the inode dirty, to catch the new size.
3634 *
3635 * Implication: the file must always be in a sane, consistent
3636 * truncatable state while each transaction commits.
3637 */
617ba13b 3638 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3639 goto out_stop;
3640
632eaeab
MC
3641 /*
3642 * From here we block out all ext4_get_block() callers who want to
3643 * modify the block allocation tree.
3644 */
3645 down_write(&ei->i_data_sem);
b4df2030
TT
3646
3647 ext4_discard_reservation(inode);
3648
ac27a0ec
DK
3649 /*
3650 * The orphan list entry will now protect us from any crash which
3651 * occurs before the truncate completes, so it is now safe to propagate
3652 * the new, shorter inode size (held for now in i_size) into the
3653 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3654 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3655 */
3656 ei->i_disksize = inode->i_size;
3657
ac27a0ec 3658 if (n == 1) { /* direct blocks */
617ba13b
MC
3659 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3660 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3661 goto do_indirects;
3662 }
3663
617ba13b 3664 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3665 /* Kill the top of shared branch (not detached) */
3666 if (nr) {
3667 if (partial == chain) {
3668 /* Shared branch grows from the inode */
617ba13b 3669 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3670 &nr, &nr+1, (chain+n-1) - partial);
3671 *partial->p = 0;
3672 /*
3673 * We mark the inode dirty prior to restart,
3674 * and prior to stop. No need for it here.
3675 */
3676 } else {
3677 /* Shared branch grows from an indirect block */
3678 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3679 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3680 partial->p,
3681 partial->p+1, (chain+n-1) - partial);
3682 }
3683 }
3684 /* Clear the ends of indirect blocks on the shared branch */
3685 while (partial > chain) {
617ba13b 3686 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3687 (__le32*)partial->bh->b_data+addr_per_block,
3688 (chain+n-1) - partial);
3689 BUFFER_TRACE(partial->bh, "call brelse");
3690 brelse (partial->bh);
3691 partial--;
3692 }
3693do_indirects:
3694 /* Kill the remaining (whole) subtrees */
3695 switch (offsets[0]) {
3696 default:
617ba13b 3697 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3698 if (nr) {
617ba13b
MC
3699 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3700 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3701 }
617ba13b
MC
3702 case EXT4_IND_BLOCK:
3703 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3704 if (nr) {
617ba13b
MC
3705 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3706 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3707 }
617ba13b
MC
3708 case EXT4_DIND_BLOCK:
3709 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3710 if (nr) {
617ba13b
MC
3711 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3712 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3713 }
617ba13b 3714 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3715 ;
3716 }
3717
0e855ac8 3718 up_write(&ei->i_data_sem);
ef7f3835 3719 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3720 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3721
3722 /*
3723 * In a multi-transaction truncate, we only make the final transaction
3724 * synchronous
3725 */
3726 if (IS_SYNC(inode))
3727 handle->h_sync = 1;
3728out_stop:
3729 /*
3730 * If this was a simple ftruncate(), and the file will remain alive
3731 * then we need to clear up the orphan record which we created above.
3732 * However, if this was a real unlink then we were called by
617ba13b 3733 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3734 * orphan info for us.
3735 */
3736 if (inode->i_nlink)
617ba13b 3737 ext4_orphan_del(handle, inode);
ac27a0ec 3738
617ba13b 3739 ext4_journal_stop(handle);
ac27a0ec
DK
3740}
3741
617ba13b
MC
3742static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3743 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3744{
fd2d4291 3745 ext4_group_t block_group;
ac27a0ec 3746 unsigned long offset;
617ba13b 3747 ext4_fsblk_t block;
c0a4ef38 3748 struct ext4_group_desc *gdp;
ac27a0ec 3749
617ba13b 3750 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3751 /*
3752 * This error is already checked for in namei.c unless we are
3753 * looking at an NFS filehandle, in which case no error
3754 * report is needed
3755 */
3756 return 0;
3757 }
3758
617ba13b 3759 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3760 gdp = ext4_get_group_desc(sb, block_group, NULL);
3761 if (!gdp)
ac27a0ec 3762 return 0;
ac27a0ec 3763
ac27a0ec
DK
3764 /*
3765 * Figure out the offset within the block group inode table
3766 */
617ba13b
MC
3767 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3768 EXT4_INODE_SIZE(sb);
8fadc143
AR
3769 block = ext4_inode_table(sb, gdp) +
3770 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3771
3772 iloc->block_group = block_group;
617ba13b 3773 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3774 return block;
3775}
3776
3777/*
617ba13b 3778 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3779 * underlying buffer_head on success. If 'in_mem' is true, we have all
3780 * data in memory that is needed to recreate the on-disk version of this
3781 * inode.
3782 */
617ba13b
MC
3783static int __ext4_get_inode_loc(struct inode *inode,
3784 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3785{
617ba13b 3786 ext4_fsblk_t block;
ac27a0ec
DK
3787 struct buffer_head *bh;
3788
617ba13b 3789 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3790 if (!block)
3791 return -EIO;
3792
3793 bh = sb_getblk(inode->i_sb, block);
3794 if (!bh) {
617ba13b 3795 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3796 "unable to read inode block - "
2ae02107 3797 "inode=%lu, block=%llu",
ac27a0ec
DK
3798 inode->i_ino, block);
3799 return -EIO;
3800 }
3801 if (!buffer_uptodate(bh)) {
3802 lock_buffer(bh);
9c83a923
HK
3803
3804 /*
3805 * If the buffer has the write error flag, we have failed
3806 * to write out another inode in the same block. In this
3807 * case, we don't have to read the block because we may
3808 * read the old inode data successfully.
3809 */
3810 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3811 set_buffer_uptodate(bh);
3812
ac27a0ec
DK
3813 if (buffer_uptodate(bh)) {
3814 /* someone brought it uptodate while we waited */
3815 unlock_buffer(bh);
3816 goto has_buffer;
3817 }
3818
3819 /*
3820 * If we have all information of the inode in memory and this
3821 * is the only valid inode in the block, we need not read the
3822 * block.
3823 */
3824 if (in_mem) {
3825 struct buffer_head *bitmap_bh;
617ba13b 3826 struct ext4_group_desc *desc;
ac27a0ec
DK
3827 int inodes_per_buffer;
3828 int inode_offset, i;
fd2d4291 3829 ext4_group_t block_group;
ac27a0ec
DK
3830 int start;
3831
3832 block_group = (inode->i_ino - 1) /
617ba13b 3833 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3834 inodes_per_buffer = bh->b_size /
617ba13b 3835 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3836 inode_offset = ((inode->i_ino - 1) %
617ba13b 3837 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3838 start = inode_offset & ~(inodes_per_buffer - 1);
3839
3840 /* Is the inode bitmap in cache? */
617ba13b 3841 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3842 block_group, NULL);
3843 if (!desc)
3844 goto make_io;
3845
3846 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3847 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3848 if (!bitmap_bh)
3849 goto make_io;
3850
3851 /*
3852 * If the inode bitmap isn't in cache then the
3853 * optimisation may end up performing two reads instead
3854 * of one, so skip it.
3855 */
3856 if (!buffer_uptodate(bitmap_bh)) {
3857 brelse(bitmap_bh);
3858 goto make_io;
3859 }
3860 for (i = start; i < start + inodes_per_buffer; i++) {
3861 if (i == inode_offset)
3862 continue;
617ba13b 3863 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3864 break;
3865 }
3866 brelse(bitmap_bh);
3867 if (i == start + inodes_per_buffer) {
3868 /* all other inodes are free, so skip I/O */
3869 memset(bh->b_data, 0, bh->b_size);
3870 set_buffer_uptodate(bh);
3871 unlock_buffer(bh);
3872 goto has_buffer;
3873 }
3874 }
3875
3876make_io:
3877 /*
3878 * There are other valid inodes in the buffer, this inode
3879 * has in-inode xattrs, or we don't have this inode in memory.
3880 * Read the block from disk.
3881 */
3882 get_bh(bh);
3883 bh->b_end_io = end_buffer_read_sync;
3884 submit_bh(READ_META, bh);
3885 wait_on_buffer(bh);
3886 if (!buffer_uptodate(bh)) {
617ba13b 3887 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3888 "unable to read inode block - "
2ae02107 3889 "inode=%lu, block=%llu",
ac27a0ec
DK
3890 inode->i_ino, block);
3891 brelse(bh);
3892 return -EIO;
3893 }
3894 }
3895has_buffer:
3896 iloc->bh = bh;
3897 return 0;
3898}
3899
617ba13b 3900int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3901{
3902 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3903 return __ext4_get_inode_loc(inode, iloc,
3904 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3905}
3906
617ba13b 3907void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3908{
617ba13b 3909 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3910
3911 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3912 if (flags & EXT4_SYNC_FL)
ac27a0ec 3913 inode->i_flags |= S_SYNC;
617ba13b 3914 if (flags & EXT4_APPEND_FL)
ac27a0ec 3915 inode->i_flags |= S_APPEND;
617ba13b 3916 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3917 inode->i_flags |= S_IMMUTABLE;
617ba13b 3918 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3919 inode->i_flags |= S_NOATIME;
617ba13b 3920 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3921 inode->i_flags |= S_DIRSYNC;
3922}
3923
ff9ddf7e
JK
3924/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3925void ext4_get_inode_flags(struct ext4_inode_info *ei)
3926{
3927 unsigned int flags = ei->vfs_inode.i_flags;
3928
3929 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3930 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3931 if (flags & S_SYNC)
3932 ei->i_flags |= EXT4_SYNC_FL;
3933 if (flags & S_APPEND)
3934 ei->i_flags |= EXT4_APPEND_FL;
3935 if (flags & S_IMMUTABLE)
3936 ei->i_flags |= EXT4_IMMUTABLE_FL;
3937 if (flags & S_NOATIME)
3938 ei->i_flags |= EXT4_NOATIME_FL;
3939 if (flags & S_DIRSYNC)
3940 ei->i_flags |= EXT4_DIRSYNC_FL;
3941}
0fc1b451
AK
3942static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3943 struct ext4_inode_info *ei)
3944{
3945 blkcnt_t i_blocks ;
8180a562
AK
3946 struct inode *inode = &(ei->vfs_inode);
3947 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3948
3949 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3950 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3951 /* we are using combined 48 bit field */
3952 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3953 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3954 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3955 /* i_blocks represent file system block size */
3956 return i_blocks << (inode->i_blkbits - 9);
3957 } else {
3958 return i_blocks;
3959 }
0fc1b451
AK
3960 } else {
3961 return le32_to_cpu(raw_inode->i_blocks_lo);
3962 }
3963}
ff9ddf7e 3964
1d1fe1ee 3965struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3966{
617ba13b
MC
3967 struct ext4_iloc iloc;
3968 struct ext4_inode *raw_inode;
1d1fe1ee 3969 struct ext4_inode_info *ei;
ac27a0ec 3970 struct buffer_head *bh;
1d1fe1ee
DH
3971 struct inode *inode;
3972 long ret;
ac27a0ec
DK
3973 int block;
3974
1d1fe1ee
DH
3975 inode = iget_locked(sb, ino);
3976 if (!inode)
3977 return ERR_PTR(-ENOMEM);
3978 if (!(inode->i_state & I_NEW))
3979 return inode;
3980
3981 ei = EXT4_I(inode);
617ba13b
MC
3982#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3983 ei->i_acl = EXT4_ACL_NOT_CACHED;
3984 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3985#endif
3986 ei->i_block_alloc_info = NULL;
3987
1d1fe1ee
DH
3988 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3989 if (ret < 0)
ac27a0ec
DK
3990 goto bad_inode;
3991 bh = iloc.bh;
617ba13b 3992 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3993 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3994 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3995 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3996 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3997 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3998 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3999 }
4000 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4001
4002 ei->i_state = 0;
4003 ei->i_dir_start_lookup = 0;
4004 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4005 /* We now have enough fields to check if the inode was active or not.
4006 * This is needed because nfsd might try to access dead inodes
4007 * the test is that same one that e2fsck uses
4008 * NeilBrown 1999oct15
4009 */
4010 if (inode->i_nlink == 0) {
4011 if (inode->i_mode == 0 ||
617ba13b 4012 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4013 /* this inode is deleted */
af5bc92d 4014 brelse(bh);
1d1fe1ee 4015 ret = -ESTALE;
ac27a0ec
DK
4016 goto bad_inode;
4017 }
4018 /* The only unlinked inodes we let through here have
4019 * valid i_mode and are being read by the orphan
4020 * recovery code: that's fine, we're about to complete
4021 * the process of deleting those. */
4022 }
ac27a0ec 4023 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4024 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4025 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4026 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4027 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4028 ei->i_file_acl |=
4029 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4030 }
a48380f7 4031 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4032 ei->i_disksize = inode->i_size;
4033 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4034 ei->i_block_group = iloc.block_group;
4035 /*
4036 * NOTE! The in-memory inode i_data array is in little-endian order
4037 * even on big-endian machines: we do NOT byteswap the block numbers!
4038 */
617ba13b 4039 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4040 ei->i_data[block] = raw_inode->i_block[block];
4041 INIT_LIST_HEAD(&ei->i_orphan);
4042
0040d987 4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4044 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4045 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4046 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4047 brelse(bh);
1d1fe1ee 4048 ret = -EIO;
ac27a0ec 4049 goto bad_inode;
e5d2861f 4050 }
ac27a0ec
DK
4051 if (ei->i_extra_isize == 0) {
4052 /* The extra space is currently unused. Use it. */
617ba13b
MC
4053 ei->i_extra_isize = sizeof(struct ext4_inode) -
4054 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4055 } else {
4056 __le32 *magic = (void *)raw_inode +
617ba13b 4057 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4058 ei->i_extra_isize;
617ba13b
MC
4059 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4060 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4061 }
4062 } else
4063 ei->i_extra_isize = 0;
4064
ef7f3835
KS
4065 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4066 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4067 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4068 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4069
25ec56b5
JNC
4070 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4071 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4073 inode->i_version |=
4074 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4075 }
4076
ac27a0ec 4077 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4078 inode->i_op = &ext4_file_inode_operations;
4079 inode->i_fop = &ext4_file_operations;
4080 ext4_set_aops(inode);
ac27a0ec 4081 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4082 inode->i_op = &ext4_dir_inode_operations;
4083 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4084 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
4085 if (ext4_inode_is_fast_symlink(inode))
4086 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 4087 else {
617ba13b
MC
4088 inode->i_op = &ext4_symlink_inode_operations;
4089 ext4_set_aops(inode);
ac27a0ec
DK
4090 }
4091 } else {
617ba13b 4092 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4093 if (raw_inode->i_block[0])
4094 init_special_inode(inode, inode->i_mode,
4095 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4096 else
4097 init_special_inode(inode, inode->i_mode,
4098 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4099 }
af5bc92d 4100 brelse(iloc.bh);
617ba13b 4101 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4102 unlock_new_inode(inode);
4103 return inode;
ac27a0ec
DK
4104
4105bad_inode:
1d1fe1ee
DH
4106 iget_failed(inode);
4107 return ERR_PTR(ret);
ac27a0ec
DK
4108}
4109
0fc1b451
AK
4110static int ext4_inode_blocks_set(handle_t *handle,
4111 struct ext4_inode *raw_inode,
4112 struct ext4_inode_info *ei)
4113{
4114 struct inode *inode = &(ei->vfs_inode);
4115 u64 i_blocks = inode->i_blocks;
4116 struct super_block *sb = inode->i_sb;
4117 int err = 0;
4118
4119 if (i_blocks <= ~0U) {
4120 /*
4121 * i_blocks can be represnted in a 32 bit variable
4122 * as multiple of 512 bytes
4123 */
8180a562 4124 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4125 raw_inode->i_blocks_high = 0;
8180a562 4126 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
4127 } else if (i_blocks <= 0xffffffffffffULL) {
4128 /*
4129 * i_blocks can be represented in a 48 bit variable
4130 * as multiple of 512 bytes
4131 */
4132 err = ext4_update_rocompat_feature(handle, sb,
4133 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4134 if (err)
4135 goto err_out;
4136 /* i_block is stored in the split 48 bit fields */
8180a562 4137 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4138 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4139 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4140 } else {
8180a562
AK
4141 /*
4142 * i_blocks should be represented in a 48 bit variable
4143 * as multiple of file system block size
4144 */
4145 err = ext4_update_rocompat_feature(handle, sb,
4146 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4147 if (err)
4148 goto err_out;
4149 ei->i_flags |= EXT4_HUGE_FILE_FL;
4150 /* i_block is stored in file system block size */
4151 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4152 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4153 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4154 }
4155err_out:
4156 return err;
4157}
4158
ac27a0ec
DK
4159/*
4160 * Post the struct inode info into an on-disk inode location in the
4161 * buffer-cache. This gobbles the caller's reference to the
4162 * buffer_head in the inode location struct.
4163 *
4164 * The caller must have write access to iloc->bh.
4165 */
617ba13b 4166static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4167 struct inode *inode,
617ba13b 4168 struct ext4_iloc *iloc)
ac27a0ec 4169{
617ba13b
MC
4170 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4171 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4172 struct buffer_head *bh = iloc->bh;
4173 int err = 0, rc, block;
4174
4175 /* For fields not not tracking in the in-memory inode,
4176 * initialise them to zero for new inodes. */
617ba13b
MC
4177 if (ei->i_state & EXT4_STATE_NEW)
4178 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4179
ff9ddf7e 4180 ext4_get_inode_flags(ei);
ac27a0ec 4181 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4182 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4183 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4184 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4185/*
4186 * Fix up interoperability with old kernels. Otherwise, old inodes get
4187 * re-used with the upper 16 bits of the uid/gid intact
4188 */
af5bc92d 4189 if (!ei->i_dtime) {
ac27a0ec
DK
4190 raw_inode->i_uid_high =
4191 cpu_to_le16(high_16_bits(inode->i_uid));
4192 raw_inode->i_gid_high =
4193 cpu_to_le16(high_16_bits(inode->i_gid));
4194 } else {
4195 raw_inode->i_uid_high = 0;
4196 raw_inode->i_gid_high = 0;
4197 }
4198 } else {
4199 raw_inode->i_uid_low =
4200 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4201 raw_inode->i_gid_low =
4202 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4203 raw_inode->i_uid_high = 0;
4204 raw_inode->i_gid_high = 0;
4205 }
4206 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4207
4208 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4209 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4210 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4211 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4212
0fc1b451
AK
4213 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4214 goto out_brelse;
ac27a0ec 4215 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4216 /* clear the migrate flag in the raw_inode */
4217 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4218 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4219 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4220 raw_inode->i_file_acl_high =
4221 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4222 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4223 ext4_isize_set(raw_inode, ei->i_disksize);
4224 if (ei->i_disksize > 0x7fffffffULL) {
4225 struct super_block *sb = inode->i_sb;
4226 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4227 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4228 EXT4_SB(sb)->s_es->s_rev_level ==
4229 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4230 /* If this is the first large file
4231 * created, add a flag to the superblock.
4232 */
4233 err = ext4_journal_get_write_access(handle,
4234 EXT4_SB(sb)->s_sbh);
4235 if (err)
4236 goto out_brelse;
4237 ext4_update_dynamic_rev(sb);
4238 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4239 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4240 sb->s_dirt = 1;
4241 handle->h_sync = 1;
4242 err = ext4_journal_dirty_metadata(handle,
4243 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4244 }
4245 }
4246 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4247 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4248 if (old_valid_dev(inode->i_rdev)) {
4249 raw_inode->i_block[0] =
4250 cpu_to_le32(old_encode_dev(inode->i_rdev));
4251 raw_inode->i_block[1] = 0;
4252 } else {
4253 raw_inode->i_block[0] = 0;
4254 raw_inode->i_block[1] =
4255 cpu_to_le32(new_encode_dev(inode->i_rdev));
4256 raw_inode->i_block[2] = 0;
4257 }
617ba13b 4258 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4259 raw_inode->i_block[block] = ei->i_data[block];
4260
25ec56b5
JNC
4261 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4262 if (ei->i_extra_isize) {
4263 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4264 raw_inode->i_version_hi =
4265 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4266 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4267 }
4268
ac27a0ec 4269
617ba13b
MC
4270 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4271 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4272 if (!err)
4273 err = rc;
617ba13b 4274 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4275
4276out_brelse:
af5bc92d 4277 brelse(bh);
617ba13b 4278 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4279 return err;
4280}
4281
4282/*
617ba13b 4283 * ext4_write_inode()
ac27a0ec
DK
4284 *
4285 * We are called from a few places:
4286 *
4287 * - Within generic_file_write() for O_SYNC files.
4288 * Here, there will be no transaction running. We wait for any running
4289 * trasnaction to commit.
4290 *
4291 * - Within sys_sync(), kupdate and such.
4292 * We wait on commit, if tol to.
4293 *
4294 * - Within prune_icache() (PF_MEMALLOC == true)
4295 * Here we simply return. We can't afford to block kswapd on the
4296 * journal commit.
4297 *
4298 * In all cases it is actually safe for us to return without doing anything,
4299 * because the inode has been copied into a raw inode buffer in
617ba13b 4300 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4301 * knfsd.
4302 *
4303 * Note that we are absolutely dependent upon all inode dirtiers doing the
4304 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4305 * which we are interested.
4306 *
4307 * It would be a bug for them to not do this. The code:
4308 *
4309 * mark_inode_dirty(inode)
4310 * stuff();
4311 * inode->i_size = expr;
4312 *
4313 * is in error because a kswapd-driven write_inode() could occur while
4314 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4315 * will no longer be on the superblock's dirty inode list.
4316 */
617ba13b 4317int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4318{
4319 if (current->flags & PF_MEMALLOC)
4320 return 0;
4321
617ba13b 4322 if (ext4_journal_current_handle()) {
b38bd33a 4323 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4324 dump_stack();
4325 return -EIO;
4326 }
4327
4328 if (!wait)
4329 return 0;
4330
617ba13b 4331 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4332}
4333
4334/*
617ba13b 4335 * ext4_setattr()
ac27a0ec
DK
4336 *
4337 * Called from notify_change.
4338 *
4339 * We want to trap VFS attempts to truncate the file as soon as
4340 * possible. In particular, we want to make sure that when the VFS
4341 * shrinks i_size, we put the inode on the orphan list and modify
4342 * i_disksize immediately, so that during the subsequent flushing of
4343 * dirty pages and freeing of disk blocks, we can guarantee that any
4344 * commit will leave the blocks being flushed in an unused state on
4345 * disk. (On recovery, the inode will get truncated and the blocks will
4346 * be freed, so we have a strong guarantee that no future commit will
4347 * leave these blocks visible to the user.)
4348 *
678aaf48
JK
4349 * Another thing we have to assure is that if we are in ordered mode
4350 * and inode is still attached to the committing transaction, we must
4351 * we start writeout of all the dirty pages which are being truncated.
4352 * This way we are sure that all the data written in the previous
4353 * transaction are already on disk (truncate waits for pages under
4354 * writeback).
4355 *
4356 * Called with inode->i_mutex down.
ac27a0ec 4357 */
617ba13b 4358int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4359{
4360 struct inode *inode = dentry->d_inode;
4361 int error, rc = 0;
4362 const unsigned int ia_valid = attr->ia_valid;
4363
4364 error = inode_change_ok(inode, attr);
4365 if (error)
4366 return error;
4367
4368 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4369 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4370 handle_t *handle;
4371
4372 /* (user+group)*(old+new) structure, inode write (sb,
4373 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4374 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4375 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4376 if (IS_ERR(handle)) {
4377 error = PTR_ERR(handle);
4378 goto err_out;
4379 }
4380 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4381 if (error) {
617ba13b 4382 ext4_journal_stop(handle);
ac27a0ec
DK
4383 return error;
4384 }
4385 /* Update corresponding info in inode so that everything is in
4386 * one transaction */
4387 if (attr->ia_valid & ATTR_UID)
4388 inode->i_uid = attr->ia_uid;
4389 if (attr->ia_valid & ATTR_GID)
4390 inode->i_gid = attr->ia_gid;
617ba13b
MC
4391 error = ext4_mark_inode_dirty(handle, inode);
4392 ext4_journal_stop(handle);
ac27a0ec
DK
4393 }
4394
e2b46574
ES
4395 if (attr->ia_valid & ATTR_SIZE) {
4396 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4397 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4398
4399 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4400 error = -EFBIG;
4401 goto err_out;
4402 }
4403 }
4404 }
4405
ac27a0ec
DK
4406 if (S_ISREG(inode->i_mode) &&
4407 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4408 handle_t *handle;
4409
617ba13b 4410 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4411 if (IS_ERR(handle)) {
4412 error = PTR_ERR(handle);
4413 goto err_out;
4414 }
4415
617ba13b
MC
4416 error = ext4_orphan_add(handle, inode);
4417 EXT4_I(inode)->i_disksize = attr->ia_size;
4418 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4419 if (!error)
4420 error = rc;
617ba13b 4421 ext4_journal_stop(handle);
678aaf48
JK
4422
4423 if (ext4_should_order_data(inode)) {
4424 error = ext4_begin_ordered_truncate(inode,
4425 attr->ia_size);
4426 if (error) {
4427 /* Do as much error cleanup as possible */
4428 handle = ext4_journal_start(inode, 3);
4429 if (IS_ERR(handle)) {
4430 ext4_orphan_del(NULL, inode);
4431 goto err_out;
4432 }
4433 ext4_orphan_del(handle, inode);
4434 ext4_journal_stop(handle);
4435 goto err_out;
4436 }
4437 }
ac27a0ec
DK
4438 }
4439
4440 rc = inode_setattr(inode, attr);
4441
617ba13b 4442 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4443 * transaction handle at all, we need to clean up the in-core
4444 * orphan list manually. */
4445 if (inode->i_nlink)
617ba13b 4446 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4447
4448 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4449 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4450
4451err_out:
617ba13b 4452 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4453 if (!error)
4454 error = rc;
4455 return error;
4456}
4457
3e3398a0
MC
4458int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4459 struct kstat *stat)
4460{
4461 struct inode *inode;
4462 unsigned long delalloc_blocks;
4463
4464 inode = dentry->d_inode;
4465 generic_fillattr(inode, stat);
4466
4467 /*
4468 * We can't update i_blocks if the block allocation is delayed
4469 * otherwise in the case of system crash before the real block
4470 * allocation is done, we will have i_blocks inconsistent with
4471 * on-disk file blocks.
4472 * We always keep i_blocks updated together with real
4473 * allocation. But to not confuse with user, stat
4474 * will return the blocks that include the delayed allocation
4475 * blocks for this file.
4476 */
4477 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4478 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4479 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4480
4481 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4482 return 0;
4483}
ac27a0ec 4484
a02908f1
MC
4485static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4486 int chunk)
4487{
4488 int indirects;
4489
4490 /* if nrblocks are contiguous */
4491 if (chunk) {
4492 /*
4493 * With N contiguous data blocks, it need at most
4494 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4495 * 2 dindirect blocks
4496 * 1 tindirect block
4497 */
4498 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4499 return indirects + 3;
4500 }
4501 /*
4502 * if nrblocks are not contiguous, worse case, each block touch
4503 * a indirect block, and each indirect block touch a double indirect
4504 * block, plus a triple indirect block
4505 */
4506 indirects = nrblocks * 2 + 1;
4507 return indirects;
4508}
4509
4510static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4511{
4512 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4513 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4514 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4515}
ac27a0ec 4516/*
a02908f1
MC
4517 * Account for index blocks, block groups bitmaps and block group
4518 * descriptor blocks if modify datablocks and index blocks
4519 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4520 *
a02908f1
MC
4521 * If datablocks are discontiguous, they are possible to spread over
4522 * different block groups too. If they are contiugous, with flexbg,
4523 * they could still across block group boundary.
ac27a0ec 4524 *
a02908f1
MC
4525 * Also account for superblock, inode, quota and xattr blocks
4526 */
4527int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4528{
4529 int groups, gdpblocks;
4530 int idxblocks;
4531 int ret = 0;
4532
4533 /*
4534 * How many index blocks need to touch to modify nrblocks?
4535 * The "Chunk" flag indicating whether the nrblocks is
4536 * physically contiguous on disk
4537 *
4538 * For Direct IO and fallocate, they calls get_block to allocate
4539 * one single extent at a time, so they could set the "Chunk" flag
4540 */
4541 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4542
4543 ret = idxblocks;
4544
4545 /*
4546 * Now let's see how many group bitmaps and group descriptors need
4547 * to account
4548 */
4549 groups = idxblocks;
4550 if (chunk)
4551 groups += 1;
4552 else
4553 groups += nrblocks;
4554
4555 gdpblocks = groups;
4556 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4557 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4558 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4559 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4560
4561 /* bitmaps and block group descriptor blocks */
4562 ret += groups + gdpblocks;
4563
4564 /* Blocks for super block, inode, quota and xattr blocks */
4565 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4566
4567 return ret;
4568}
4569
4570/*
4571 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4572 * the modification of a single pages into a single transaction,
4573 * which may include multiple chunks of block allocations.
ac27a0ec 4574 *
525f4ed8 4575 * This could be called via ext4_write_begin()
ac27a0ec 4576 *
525f4ed8 4577 * We need to consider the worse case, when
a02908f1 4578 * one new block per extent.
ac27a0ec 4579 */
a86c6181 4580int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4581{
617ba13b 4582 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4583 int ret;
4584
a02908f1 4585 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4586
a02908f1 4587 /* Account for data blocks for journalled mode */
617ba13b 4588 if (ext4_should_journal_data(inode))
a02908f1 4589 ret += bpp;
ac27a0ec
DK
4590 return ret;
4591}
f3bd1f3f
MC
4592
4593/*
4594 * Calculate the journal credits for a chunk of data modification.
4595 *
4596 * This is called from DIO, fallocate or whoever calling
4597 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4598 *
4599 * journal buffers for data blocks are not included here, as DIO
4600 * and fallocate do no need to journal data buffers.
4601 */
4602int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4603{
4604 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4605}
4606
ac27a0ec 4607/*
617ba13b 4608 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4609 * Give this, we know that the caller already has write access to iloc->bh.
4610 */
617ba13b
MC
4611int ext4_mark_iloc_dirty(handle_t *handle,
4612 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4613{
4614 int err = 0;
4615
25ec56b5
JNC
4616 if (test_opt(inode->i_sb, I_VERSION))
4617 inode_inc_iversion(inode);
4618
ac27a0ec
DK
4619 /* the do_update_inode consumes one bh->b_count */
4620 get_bh(iloc->bh);
4621
dab291af 4622 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4623 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4624 put_bh(iloc->bh);
4625 return err;
4626}
4627
4628/*
4629 * On success, We end up with an outstanding reference count against
4630 * iloc->bh. This _must_ be cleaned up later.
4631 */
4632
4633int
617ba13b
MC
4634ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4635 struct ext4_iloc *iloc)
ac27a0ec
DK
4636{
4637 int err = 0;
4638 if (handle) {
617ba13b 4639 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4640 if (!err) {
4641 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4642 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4643 if (err) {
4644 brelse(iloc->bh);
4645 iloc->bh = NULL;
4646 }
4647 }
4648 }
617ba13b 4649 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4650 return err;
4651}
4652
6dd4ee7c
KS
4653/*
4654 * Expand an inode by new_extra_isize bytes.
4655 * Returns 0 on success or negative error number on failure.
4656 */
1d03ec98
AK
4657static int ext4_expand_extra_isize(struct inode *inode,
4658 unsigned int new_extra_isize,
4659 struct ext4_iloc iloc,
4660 handle_t *handle)
6dd4ee7c
KS
4661{
4662 struct ext4_inode *raw_inode;
4663 struct ext4_xattr_ibody_header *header;
4664 struct ext4_xattr_entry *entry;
4665
4666 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4667 return 0;
4668
4669 raw_inode = ext4_raw_inode(&iloc);
4670
4671 header = IHDR(inode, raw_inode);
4672 entry = IFIRST(header);
4673
4674 /* No extended attributes present */
4675 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4676 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4677 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4678 new_extra_isize);
4679 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4680 return 0;
4681 }
4682
4683 /* try to expand with EAs present */
4684 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4685 raw_inode, handle);
4686}
4687
ac27a0ec
DK
4688/*
4689 * What we do here is to mark the in-core inode as clean with respect to inode
4690 * dirtiness (it may still be data-dirty).
4691 * This means that the in-core inode may be reaped by prune_icache
4692 * without having to perform any I/O. This is a very good thing,
4693 * because *any* task may call prune_icache - even ones which
4694 * have a transaction open against a different journal.
4695 *
4696 * Is this cheating? Not really. Sure, we haven't written the
4697 * inode out, but prune_icache isn't a user-visible syncing function.
4698 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4699 * we start and wait on commits.
4700 *
4701 * Is this efficient/effective? Well, we're being nice to the system
4702 * by cleaning up our inodes proactively so they can be reaped
4703 * without I/O. But we are potentially leaving up to five seconds'
4704 * worth of inodes floating about which prune_icache wants us to
4705 * write out. One way to fix that would be to get prune_icache()
4706 * to do a write_super() to free up some memory. It has the desired
4707 * effect.
4708 */
617ba13b 4709int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4710{
617ba13b 4711 struct ext4_iloc iloc;
6dd4ee7c
KS
4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713 static unsigned int mnt_count;
4714 int err, ret;
ac27a0ec
DK
4715
4716 might_sleep();
617ba13b 4717 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4718 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4719 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4720 /*
4721 * We need extra buffer credits since we may write into EA block
4722 * with this same handle. If journal_extend fails, then it will
4723 * only result in a minor loss of functionality for that inode.
4724 * If this is felt to be critical, then e2fsck should be run to
4725 * force a large enough s_min_extra_isize.
4726 */
4727 if ((jbd2_journal_extend(handle,
4728 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4729 ret = ext4_expand_extra_isize(inode,
4730 sbi->s_want_extra_isize,
4731 iloc, handle);
4732 if (ret) {
4733 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4734 if (mnt_count !=
4735 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4736 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4737 "Unable to expand inode %lu. Delete"
4738 " some EAs or run e2fsck.",
4739 inode->i_ino);
c1bddad9
AK
4740 mnt_count =
4741 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4742 }
4743 }
4744 }
4745 }
ac27a0ec 4746 if (!err)
617ba13b 4747 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4748 return err;
4749}
4750
4751/*
617ba13b 4752 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4753 *
4754 * We're really interested in the case where a file is being extended.
4755 * i_size has been changed by generic_commit_write() and we thus need
4756 * to include the updated inode in the current transaction.
4757 *
4758 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4759 * are allocated to the file.
4760 *
4761 * If the inode is marked synchronous, we don't honour that here - doing
4762 * so would cause a commit on atime updates, which we don't bother doing.
4763 * We handle synchronous inodes at the highest possible level.
4764 */
617ba13b 4765void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4766{
617ba13b 4767 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4768 handle_t *handle;
4769
617ba13b 4770 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4771 if (IS_ERR(handle))
4772 goto out;
4773 if (current_handle &&
4774 current_handle->h_transaction != handle->h_transaction) {
4775 /* This task has a transaction open against a different fs */
4776 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4777 __func__);
ac27a0ec
DK
4778 } else {
4779 jbd_debug(5, "marking dirty. outer handle=%p\n",
4780 current_handle);
617ba13b 4781 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4782 }
617ba13b 4783 ext4_journal_stop(handle);
ac27a0ec
DK
4784out:
4785 return;
4786}
4787
4788#if 0
4789/*
4790 * Bind an inode's backing buffer_head into this transaction, to prevent
4791 * it from being flushed to disk early. Unlike
617ba13b 4792 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4793 * returns no iloc structure, so the caller needs to repeat the iloc
4794 * lookup to mark the inode dirty later.
4795 */
617ba13b 4796static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4797{
617ba13b 4798 struct ext4_iloc iloc;
ac27a0ec
DK
4799
4800 int err = 0;
4801 if (handle) {
617ba13b 4802 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4803 if (!err) {
4804 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4805 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4806 if (!err)
617ba13b 4807 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4808 iloc.bh);
4809 brelse(iloc.bh);
4810 }
4811 }
617ba13b 4812 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4813 return err;
4814}
4815#endif
4816
617ba13b 4817int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4818{
4819 journal_t *journal;
4820 handle_t *handle;
4821 int err;
4822
4823 /*
4824 * We have to be very careful here: changing a data block's
4825 * journaling status dynamically is dangerous. If we write a
4826 * data block to the journal, change the status and then delete
4827 * that block, we risk forgetting to revoke the old log record
4828 * from the journal and so a subsequent replay can corrupt data.
4829 * So, first we make sure that the journal is empty and that
4830 * nobody is changing anything.
4831 */
4832
617ba13b 4833 journal = EXT4_JOURNAL(inode);
d699594d 4834 if (is_journal_aborted(journal))
ac27a0ec
DK
4835 return -EROFS;
4836
dab291af
MC
4837 jbd2_journal_lock_updates(journal);
4838 jbd2_journal_flush(journal);
ac27a0ec
DK
4839
4840 /*
4841 * OK, there are no updates running now, and all cached data is
4842 * synced to disk. We are now in a completely consistent state
4843 * which doesn't have anything in the journal, and we know that
4844 * no filesystem updates are running, so it is safe to modify
4845 * the inode's in-core data-journaling state flag now.
4846 */
4847
4848 if (val)
617ba13b 4849 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4850 else
617ba13b
MC
4851 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4852 ext4_set_aops(inode);
ac27a0ec 4853
dab291af 4854 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4855
4856 /* Finally we can mark the inode as dirty. */
4857
617ba13b 4858 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4859 if (IS_ERR(handle))
4860 return PTR_ERR(handle);
4861
617ba13b 4862 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4863 handle->h_sync = 1;
617ba13b
MC
4864 ext4_journal_stop(handle);
4865 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4866
4867 return err;
4868}
2e9ee850
AK
4869
4870static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4871{
4872 return !buffer_mapped(bh);
4873}
4874
4875int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4876{
4877 loff_t size;
4878 unsigned long len;
4879 int ret = -EINVAL;
4880 struct file *file = vma->vm_file;
4881 struct inode *inode = file->f_path.dentry->d_inode;
4882 struct address_space *mapping = inode->i_mapping;
4883
4884 /*
4885 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4886 * get i_mutex because we are already holding mmap_sem.
4887 */
4888 down_read(&inode->i_alloc_sem);
4889 size = i_size_read(inode);
4890 if (page->mapping != mapping || size <= page_offset(page)
4891 || !PageUptodate(page)) {
4892 /* page got truncated from under us? */
4893 goto out_unlock;
4894 }
4895 ret = 0;
4896 if (PageMappedToDisk(page))
4897 goto out_unlock;
4898
4899 if (page->index == size >> PAGE_CACHE_SHIFT)
4900 len = size & ~PAGE_CACHE_MASK;
4901 else
4902 len = PAGE_CACHE_SIZE;
4903
4904 if (page_has_buffers(page)) {
4905 /* return if we have all the buffers mapped */
4906 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4907 ext4_bh_unmapped))
4908 goto out_unlock;
4909 }
4910 /*
4911 * OK, we need to fill the hole... Do write_begin write_end
4912 * to do block allocation/reservation.We are not holding
4913 * inode.i__mutex here. That allow * parallel write_begin,
4914 * write_end call. lock_page prevent this from happening
4915 * on the same page though
4916 */
4917 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4918 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4919 if (ret < 0)
4920 goto out_unlock;
4921 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4922 len, len, page, NULL);
4923 if (ret < 0)
4924 goto out_unlock;
4925 ret = 0;
4926out_unlock:
4927 up_read(&inode->i_alloc_sem);
4928 return ret;
4929}