]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext3/inode.c
[PATCH] Direct Migration V9: Avoid writeback / page_migrate() method
[net-next-2.6.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/pagemap.h>
33#include <linux/quotaops.h>
34#include <linux/string.h>
35#include <linux/buffer_head.h>
36#include <linux/writeback.h>
37#include <linux/mpage.h>
38#include <linux/uio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static inline int ext3_inode_is_fast_symlink(struct inode *inode)
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54}
55
56/* The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
64
65int ext3_forget(handle_t *handle, int is_metadata,
66 struct inode *inode, struct buffer_head *bh,
67 int blocknr)
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __FUNCTION__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
107 * Work out how many blocks we need to progress with the next chunk of a
108 * truncate transaction.
109 */
110
111static unsigned long blocks_for_truncate(struct inode *inode)
112{
113 unsigned long needed;
114
115 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116
117 /* Give ourselves just enough room to cope with inodes in which
118 * i_blocks is corrupt: we've seen disk corruptions in the past
119 * which resulted in random data in an inode which looked enough
120 * like a regular file for ext3 to try to delete it. Things
121 * will go a bit crazy if that happens, but at least we should
122 * try not to panic the whole kernel. */
123 if (needed < 2)
124 needed = 2;
125
126 /* But we need to bound the transaction so we don't overflow the
127 * journal. */
128 if (needed > EXT3_MAX_TRANS_DATA)
129 needed = EXT3_MAX_TRANS_DATA;
130
1f54587b 131 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
132}
133
134/*
135 * Truncate transactions can be complex and absolutely huge. So we need to
136 * be able to restart the transaction at a conventient checkpoint to make
137 * sure we don't overflow the journal.
138 *
139 * start_transaction gets us a new handle for a truncate transaction,
140 * and extend_transaction tries to extend the existing one a bit. If
141 * extend fails, we need to propagate the failure up and restart the
142 * transaction in the top-level truncate loop. --sct
143 */
144
145static handle_t *start_transaction(struct inode *inode)
146{
147 handle_t *result;
148
149 result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 if (!IS_ERR(result))
151 return result;
152
153 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 return result;
155}
156
157/*
158 * Try to extend this transaction for the purposes of truncation.
159 *
160 * Returns 0 if we managed to create more room. If we can't create more
161 * room, and the transaction must be restarted we return 1.
162 */
163static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164{
165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 return 0;
167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 return 0;
169 return 1;
170}
171
172/*
173 * Restart the transaction associated with *handle. This does a commit,
174 * so before we call here everything must be consistently dirtied against
175 * this transaction.
176 */
177static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
178{
179 jbd_debug(2, "restarting handle %p\n", handle);
180 return ext3_journal_restart(handle, blocks_for_truncate(inode));
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
186void ext3_delete_inode (struct inode * inode)
187{
188 handle_t *handle;
189
fef26658
MF
190 truncate_inode_pages(&inode->i_data, 0);
191
1da177e4
LT
192 if (is_bad_inode(inode))
193 goto no_delete;
194
195 handle = start_transaction(inode);
196 if (IS_ERR(handle)) {
197 /* If we're going to skip the normal cleanup, we still
198 * need to make sure that the in-core orphan linked list
199 * is properly cleaned up. */
200 ext3_orphan_del(NULL, inode);
201 goto no_delete;
202 }
203
204 if (IS_SYNC(inode))
205 handle->h_sync = 1;
206 inode->i_size = 0;
207 if (inode->i_blocks)
208 ext3_truncate(inode);
209 /*
210 * Kill off the orphan record which ext3_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext3_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext3_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
216 */
217 ext3_orphan_del(handle, inode);
218 EXT3_I(inode)->i_dtime = get_seconds();
219
220 /*
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
225 * fails.
226 */
227 if (ext3_mark_inode_dirty(handle, inode))
228 /* If that failed, just do the required in-core inode clear. */
229 clear_inode(inode);
230 else
231 ext3_free_inode(handle, inode);
232 ext3_journal_stop(handle);
233 return;
234no_delete:
235 clear_inode(inode); /* We must guarantee clearing of inode... */
236}
237
238static int ext3_alloc_block (handle_t *handle,
239 struct inode * inode, unsigned long goal, int *err)
240{
241 unsigned long result;
242
243 result = ext3_new_block(handle, inode, goal, err);
244 return result;
245}
246
247
248typedef struct {
249 __le32 *p;
250 __le32 key;
251 struct buffer_head *bh;
252} Indirect;
253
254static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
255{
256 p->key = *(p->p = v);
257 p->bh = bh;
258}
259
260static inline int verify_chain(Indirect *from, Indirect *to)
261{
262 while (from <= to && from->key == *from->p)
263 from++;
264 return (from > to);
265}
266
267/**
268 * ext3_block_to_path - parse the block number into array of offsets
269 * @inode: inode in question (we are only interested in its superblock)
270 * @i_block: block number to be parsed
271 * @offsets: array to store the offsets in
272 * @boundary: set this non-zero if the referred-to block is likely to be
273 * followed (on disk) by an indirect block.
274 *
275 * To store the locations of file's data ext3 uses a data structure common
276 * for UNIX filesystems - tree of pointers anchored in the inode, with
277 * data blocks at leaves and indirect blocks in intermediate nodes.
278 * This function translates the block number into path in that tree -
279 * return value is the path length and @offsets[n] is the offset of
280 * pointer to (n+1)th node in the nth one. If @block is out of range
281 * (negative or too large) warning is printed and zero returned.
282 *
283 * Note: function doesn't find node addresses, so no IO is needed. All
284 * we need to know is the capacity of indirect blocks (taken from the
285 * inode->i_sb).
286 */
287
288/*
289 * Portability note: the last comparison (check that we fit into triple
290 * indirect block) is spelled differently, because otherwise on an
291 * architecture with 32-bit longs and 8Kb pages we might get into trouble
292 * if our filesystem had 8Kb blocks. We might use long long, but that would
293 * kill us on x86. Oh, well, at least the sign propagation does not matter -
294 * i_block would have to be negative in the very beginning, so we would not
295 * get there at all.
296 */
297
298static int ext3_block_to_path(struct inode *inode,
299 long i_block, int offsets[4], int *boundary)
300{
301 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
302 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
303 const long direct_blocks = EXT3_NDIR_BLOCKS,
304 indirect_blocks = ptrs,
305 double_blocks = (1 << (ptrs_bits * 2));
306 int n = 0;
307 int final = 0;
308
309 if (i_block < 0) {
310 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
311 } else if (i_block < direct_blocks) {
312 offsets[n++] = i_block;
313 final = direct_blocks;
314 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
315 offsets[n++] = EXT3_IND_BLOCK;
316 offsets[n++] = i_block;
317 final = ptrs;
318 } else if ((i_block -= indirect_blocks) < double_blocks) {
319 offsets[n++] = EXT3_DIND_BLOCK;
320 offsets[n++] = i_block >> ptrs_bits;
321 offsets[n++] = i_block & (ptrs - 1);
322 final = ptrs;
323 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
324 offsets[n++] = EXT3_TIND_BLOCK;
325 offsets[n++] = i_block >> (ptrs_bits * 2);
326 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
327 offsets[n++] = i_block & (ptrs - 1);
328 final = ptrs;
329 } else {
330 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
331 }
332 if (boundary)
333 *boundary = (i_block & (ptrs - 1)) == (final - 1);
334 return n;
335}
336
337/**
338 * ext3_get_branch - read the chain of indirect blocks leading to data
339 * @inode: inode in question
340 * @depth: depth of the chain (1 - direct pointer, etc.)
341 * @offsets: offsets of pointers in inode/indirect blocks
342 * @chain: place to store the result
343 * @err: here we store the error value
344 *
345 * Function fills the array of triples <key, p, bh> and returns %NULL
346 * if everything went OK or the pointer to the last filled triple
347 * (incomplete one) otherwise. Upon the return chain[i].key contains
348 * the number of (i+1)-th block in the chain (as it is stored in memory,
349 * i.e. little-endian 32-bit), chain[i].p contains the address of that
350 * number (it points into struct inode for i==0 and into the bh->b_data
351 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
352 * block for i>0 and NULL for i==0. In other words, it holds the block
353 * numbers of the chain, addresses they were taken from (and where we can
354 * verify that chain did not change) and buffer_heads hosting these
355 * numbers.
356 *
357 * Function stops when it stumbles upon zero pointer (absent block)
358 * (pointer to last triple returned, *@err == 0)
359 * or when it gets an IO error reading an indirect block
360 * (ditto, *@err == -EIO)
361 * or when it notices that chain had been changed while it was reading
362 * (ditto, *@err == -EAGAIN)
363 * or when it reads all @depth-1 indirect blocks successfully and finds
364 * the whole chain, all way to the data (returns %NULL, *err == 0).
365 */
366static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
367 Indirect chain[4], int *err)
368{
369 struct super_block *sb = inode->i_sb;
370 Indirect *p = chain;
371 struct buffer_head *bh;
372
373 *err = 0;
374 /* i_data is not going away, no lock needed */
375 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
376 if (!p->key)
377 goto no_block;
378 while (--depth) {
379 bh = sb_bread(sb, le32_to_cpu(p->key));
380 if (!bh)
381 goto failure;
382 /* Reader: pointers */
383 if (!verify_chain(chain, p))
384 goto changed;
385 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
386 /* Reader: end */
387 if (!p->key)
388 goto no_block;
389 }
390 return NULL;
391
392changed:
393 brelse(bh);
394 *err = -EAGAIN;
395 goto no_block;
396failure:
397 *err = -EIO;
398no_block:
399 return p;
400}
401
402/**
403 * ext3_find_near - find a place for allocation with sufficient locality
404 * @inode: owner
405 * @ind: descriptor of indirect block.
406 *
407 * This function returns the prefered place for block allocation.
408 * It is used when heuristic for sequential allocation fails.
409 * Rules are:
410 * + if there is a block to the left of our position - allocate near it.
411 * + if pointer will live in indirect block - allocate near that block.
412 * + if pointer will live in inode - allocate in the same
413 * cylinder group.
414 *
415 * In the latter case we colour the starting block by the callers PID to
416 * prevent it from clashing with concurrent allocations for a different inode
417 * in the same block group. The PID is used here so that functionally related
418 * files will be close-by on-disk.
419 *
420 * Caller must make sure that @ind is valid and will stay that way.
421 */
422
423static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
424{
425 struct ext3_inode_info *ei = EXT3_I(inode);
426 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427 __le32 *p;
428 unsigned long bg_start;
429 unsigned long colour;
430
431 /* Try to find previous block */
432 for (p = ind->p - 1; p >= start; p--)
433 if (*p)
434 return le32_to_cpu(*p);
435
436 /* No such thing, so let's try location of indirect block */
437 if (ind->bh)
438 return ind->bh->b_blocknr;
439
440 /*
441 * It is going to be refered from inode itself? OK, just put it into
442 * the same cylinder group then.
443 */
444 bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
445 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
446 colour = (current->pid % 16) *
447 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448 return bg_start + colour;
449}
450
451/**
452 * ext3_find_goal - find a prefered place for allocation.
453 * @inode: owner
454 * @block: block we want
455 * @chain: chain of indirect blocks
456 * @partial: pointer to the last triple within a chain
457 * @goal: place to store the result.
458 *
459 * Normally this function find the prefered place for block allocation,
fe55c452 460 * stores it in *@goal and returns zero.
1da177e4
LT
461 */
462
fe55c452
MC
463static unsigned long ext3_find_goal(struct inode *inode, long block,
464 Indirect chain[4], Indirect *partial)
1da177e4
LT
465{
466 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
467
468 /*
469 * try the heuristic for sequential allocation,
470 * failing that at least try to get decent locality.
471 */
472 if (block_i && (block == block_i->last_alloc_logical_block + 1)
473 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 474 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
475 }
476
fe55c452 477 return ext3_find_near(inode, partial);
1da177e4
LT
478}
479
480/**
481 * ext3_alloc_branch - allocate and set up a chain of blocks.
482 * @inode: owner
483 * @num: depth of the chain (number of blocks to allocate)
484 * @offsets: offsets (in the blocks) to store the pointers to next.
485 * @branch: place to store the chain in.
486 *
487 * This function allocates @num blocks, zeroes out all but the last one,
488 * links them into chain and (if we are synchronous) writes them to disk.
489 * In other words, it prepares a branch that can be spliced onto the
490 * inode. It stores the information about that chain in the branch[], in
491 * the same format as ext3_get_branch() would do. We are calling it after
492 * we had read the existing part of chain and partial points to the last
493 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 494 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
495 * place chain is disconnected - *branch->p is still zero (we did not
496 * set the last link), but branch->key contains the number that should
497 * be placed into *branch->p to fill that gap.
498 *
499 * If allocation fails we free all blocks we've allocated (and forget
500 * their buffer_heads) and return the error value the from failed
501 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
502 * as described above and return 0.
503 */
504
505static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
506 int num,
507 unsigned long goal,
508 int *offsets,
509 Indirect *branch)
510{
511 int blocksize = inode->i_sb->s_blocksize;
512 int n = 0, keys = 0;
513 int err = 0;
514 int i;
515 int parent = ext3_alloc_block(handle, inode, goal, &err);
516
517 branch[0].key = cpu_to_le32(parent);
518 if (parent) {
519 for (n = 1; n < num; n++) {
520 struct buffer_head *bh;
521 /* Allocate the next block */
522 int nr = ext3_alloc_block(handle, inode, parent, &err);
523 if (!nr)
524 break;
525 branch[n].key = cpu_to_le32(nr);
1da177e4
LT
526
527 /*
528 * Get buffer_head for parent block, zero it out
529 * and set the pointer to new one, then send
530 * parent to disk.
531 */
532 bh = sb_getblk(inode->i_sb, parent);
2973dfdb
GOC
533 if (!bh)
534 break;
535 keys = n+1;
1da177e4
LT
536 branch[n].bh = bh;
537 lock_buffer(bh);
538 BUFFER_TRACE(bh, "call get_create_access");
539 err = ext3_journal_get_create_access(handle, bh);
540 if (err) {
541 unlock_buffer(bh);
542 brelse(bh);
543 break;
544 }
545
546 memset(bh->b_data, 0, blocksize);
547 branch[n].p = (__le32*) bh->b_data + offsets[n];
548 *branch[n].p = branch[n].key;
549 BUFFER_TRACE(bh, "marking uptodate");
550 set_buffer_uptodate(bh);
551 unlock_buffer(bh);
552
553 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
554 err = ext3_journal_dirty_metadata(handle, bh);
555 if (err)
556 break;
557
558 parent = nr;
559 }
560 }
561 if (n == num)
562 return 0;
563
564 /* Allocation failed, free what we already allocated */
565 for (i = 1; i < keys; i++) {
566 BUFFER_TRACE(branch[i].bh, "call journal_forget");
567 ext3_journal_forget(handle, branch[i].bh);
568 }
569 for (i = 0; i < keys; i++)
570 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
571 return err;
572}
573
574/**
575 * ext3_splice_branch - splice the allocated branch onto inode.
576 * @inode: owner
577 * @block: (logical) number of block we are adding
578 * @chain: chain of indirect blocks (with a missing link - see
579 * ext3_alloc_branch)
580 * @where: location of missing link
581 * @num: number of blocks we are adding
582 *
fe55c452 583 * This function fills the missing link and does all housekeeping needed in
1da177e4 584 * inode (->i_blocks, etc.). In case of success we end up with the full
fe55c452 585 * chain to new block and return 0.
1da177e4
LT
586 */
587
588static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
589 Indirect chain[4], Indirect *where, int num)
590{
591 int i;
592 int err = 0;
593 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
594
595 /*
596 * If we're splicing into a [td]indirect block (as opposed to the
597 * inode) then we need to get write access to the [td]indirect block
598 * before the splice.
599 */
600 if (where->bh) {
601 BUFFER_TRACE(where->bh, "get_write_access");
602 err = ext3_journal_get_write_access(handle, where->bh);
603 if (err)
604 goto err_out;
605 }
1da177e4
LT
606 /* That's it */
607
608 *where->p = where->key;
609
610 /*
611 * update the most recently allocated logical & physical block
612 * in i_block_alloc_info, to assist find the proper goal block for next
613 * allocation
614 */
615 if (block_i) {
616 block_i->last_alloc_logical_block = block;
617 block_i->last_alloc_physical_block = le32_to_cpu(where[num-1].key);
618 }
619
620 /* We are done with atomic stuff, now do the rest of housekeeping */
621
622 inode->i_ctime = CURRENT_TIME_SEC;
623 ext3_mark_inode_dirty(handle, inode);
624
625 /* had we spliced it onto indirect block? */
626 if (where->bh) {
627 /*
628 * akpm: If we spliced it onto an indirect block, we haven't
629 * altered the inode. Note however that if it is being spliced
630 * onto an indirect block at the very end of the file (the
631 * file is growing) then we *will* alter the inode to reflect
632 * the new i_size. But that is not done here - it is done in
633 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
634 */
635 jbd_debug(5, "splicing indirect only\n");
636 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
637 err = ext3_journal_dirty_metadata(handle, where->bh);
638 if (err)
639 goto err_out;
640 } else {
641 /*
642 * OK, we spliced it into the inode itself on a direct block.
643 * Inode was dirtied above.
644 */
645 jbd_debug(5, "splicing direct\n");
646 }
647 return err;
648
1da177e4
LT
649err_out:
650 for (i = 1; i < num; i++) {
651 BUFFER_TRACE(where[i].bh, "call journal_forget");
652 ext3_journal_forget(handle, where[i].bh);
653 }
1da177e4
LT
654 return err;
655}
656
657/*
658 * Allocation strategy is simple: if we have to allocate something, we will
659 * have to go the whole way to leaf. So let's do it before attaching anything
660 * to tree, set linkage between the newborn blocks, write them if sync is
661 * required, recheck the path, free and repeat if check fails, otherwise
662 * set the last missing link (that will protect us from any truncate-generated
663 * removals - all blocks on the path are immune now) and possibly force the
664 * write on the parent block.
665 * That has a nice additional property: no special recovery from the failed
666 * allocations is needed - we simply release blocks and do not touch anything
667 * reachable from inode.
668 *
669 * akpm: `handle' can be NULL if create == 0.
670 *
671 * The BKL may not be held on entry here. Be sure to take it early.
672 */
673
674static int
675ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
676 struct buffer_head *bh_result, int create, int extend_disksize)
677{
678 int err = -EIO;
679 int offsets[4];
680 Indirect chain[4];
681 Indirect *partial;
682 unsigned long goal;
683 int left;
684 int boundary = 0;
fe55c452 685 const int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
1da177e4
LT
686 struct ext3_inode_info *ei = EXT3_I(inode);
687
688 J_ASSERT(handle != NULL || create == 0);
689
690 if (depth == 0)
691 goto out;
692
1da177e4
LT
693 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
694
695 /* Simplest case - block found, no allocation needed */
696 if (!partial) {
697 clear_buffer_new(bh_result);
fe55c452 698 goto got_it;
1da177e4
LT
699 }
700
701 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
702 if (!create || err == -EIO)
703 goto cleanup;
704
705 down(&ei->truncate_sem);
706
707 /*
708 * If the indirect block is missing while we are reading
709 * the chain(ext3_get_branch() returns -EAGAIN err), or
710 * if the chain has been changed after we grab the semaphore,
711 * (either because another process truncated this branch, or
712 * another get_block allocated this branch) re-grab the chain to see if
713 * the request block has been allocated or not.
714 *
715 * Since we already block the truncate/other get_block
716 * at this point, we will have the current copy of the chain when we
717 * splice the branch into the tree.
718 */
719 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 720 while (partial > chain) {
1da177e4
LT
721 brelse(partial->bh);
722 partial--;
723 }
fe55c452
MC
724 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
725 if (!partial) {
726 up(&ei->truncate_sem);
727 if (err)
728 goto cleanup;
729 clear_buffer_new(bh_result);
730 goto got_it;
731 }
1da177e4
LT
732 }
733
734 /*
fe55c452
MC
735 * Okay, we need to do block allocation. Lazily initialize the block
736 * allocation info here if necessary
737 */
738 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 739 ext3_init_block_alloc_info(inode);
1da177e4 740
fe55c452 741 goal = ext3_find_goal(inode, iblock, chain, partial);
1da177e4
LT
742
743 left = (chain + depth) - partial;
744
745 /*
746 * Block out ext3_truncate while we alter the tree
747 */
748 err = ext3_alloc_branch(handle, inode, left, goal,
fe55c452 749 offsets + (partial - chain), partial);
1da177e4 750
fe55c452
MC
751 /*
752 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
753 * on the new chain if there is a failure, but that risks using
754 * up transaction credits, especially for bitmaps where the
755 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
756 * may need to return -EAGAIN upwards in the worst case. --sct
757 */
1da177e4
LT
758 if (!err)
759 err = ext3_splice_branch(handle, inode, iblock, chain,
760 partial, left);
fe55c452
MC
761 /*
762 * i_disksize growing is protected by truncate_sem. Don't forget to
763 * protect it if you're about to implement concurrent
764 * ext3_get_block() -bzzz
765 */
1da177e4
LT
766 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
767 ei->i_disksize = inode->i_size;
768 up(&ei->truncate_sem);
1da177e4
LT
769 if (err)
770 goto cleanup;
771
772 set_buffer_new(bh_result);
fe55c452
MC
773got_it:
774 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
775 if (boundary)
776 set_buffer_boundary(bh_result);
777 /* Clean up and exit */
778 partial = chain + depth - 1; /* the whole chain */
779cleanup:
1da177e4 780 while (partial > chain) {
fe55c452 781 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
782 brelse(partial->bh);
783 partial--;
784 }
fe55c452
MC
785 BUFFER_TRACE(bh_result, "returned");
786out:
787 return err;
1da177e4
LT
788}
789
790static int ext3_get_block(struct inode *inode, sector_t iblock,
791 struct buffer_head *bh_result, int create)
792{
793 handle_t *handle = NULL;
794 int ret;
795
796 if (create) {
797 handle = ext3_journal_current_handle();
798 J_ASSERT(handle != 0);
799 }
800 ret = ext3_get_block_handle(handle, inode, iblock,
801 bh_result, create, 1);
802 return ret;
803}
804
805#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
806
807static int
808ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
809 unsigned long max_blocks, struct buffer_head *bh_result,
810 int create)
811{
812 handle_t *handle = journal_current_handle();
813 int ret = 0;
814
815 if (!handle)
816 goto get_block; /* A read */
817
818 if (handle->h_transaction->t_state == T_LOCKED) {
819 /*
820 * Huge direct-io writes can hold off commits for long
821 * periods of time. Let this commit run.
822 */
823 ext3_journal_stop(handle);
824 handle = ext3_journal_start(inode, DIO_CREDITS);
825 if (IS_ERR(handle))
826 ret = PTR_ERR(handle);
827 goto get_block;
828 }
829
830 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
831 /*
832 * Getting low on buffer credits...
833 */
834 ret = ext3_journal_extend(handle, DIO_CREDITS);
835 if (ret > 0) {
836 /*
837 * Couldn't extend the transaction. Start a new one.
838 */
839 ret = ext3_journal_restart(handle, DIO_CREDITS);
840 }
841 }
842
843get_block:
844 if (ret == 0)
845 ret = ext3_get_block_handle(handle, inode, iblock,
846 bh_result, create, 0);
847 bh_result->b_size = (1 << inode->i_blkbits);
848 return ret;
849}
850
1da177e4
LT
851/*
852 * `handle' can be NULL if create is zero
853 */
854struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
855 long block, int create, int * errp)
856{
857 struct buffer_head dummy;
858 int fatal = 0, err;
859
860 J_ASSERT(handle != NULL || create == 0);
861
862 dummy.b_state = 0;
863 dummy.b_blocknr = -1000;
864 buffer_trace_init(&dummy.b_history);
865 *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
866 if (!*errp && buffer_mapped(&dummy)) {
867 struct buffer_head *bh;
868 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
869 if (!bh) {
870 *errp = -EIO;
871 goto err;
872 }
1da177e4
LT
873 if (buffer_new(&dummy)) {
874 J_ASSERT(create != 0);
875 J_ASSERT(handle != 0);
876
877 /* Now that we do not always journal data, we
878 should keep in mind whether this should
879 always journal the new buffer as metadata.
880 For now, regular file writes use
881 ext3_get_block instead, so it's not a
882 problem. */
883 lock_buffer(bh);
884 BUFFER_TRACE(bh, "call get_create_access");
885 fatal = ext3_journal_get_create_access(handle, bh);
886 if (!fatal && !buffer_uptodate(bh)) {
887 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
888 set_buffer_uptodate(bh);
889 }
890 unlock_buffer(bh);
891 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
892 err = ext3_journal_dirty_metadata(handle, bh);
893 if (!fatal)
894 fatal = err;
895 } else {
896 BUFFER_TRACE(bh, "not a new buffer");
897 }
898 if (fatal) {
899 *errp = fatal;
900 brelse(bh);
901 bh = NULL;
902 }
903 return bh;
904 }
2973dfdb 905err:
1da177e4
LT
906 return NULL;
907}
908
909struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
910 int block, int create, int *err)
911{
912 struct buffer_head * bh;
913
914 bh = ext3_getblk(handle, inode, block, create, err);
915 if (!bh)
916 return bh;
917 if (buffer_uptodate(bh))
918 return bh;
919 ll_rw_block(READ, 1, &bh);
920 wait_on_buffer(bh);
921 if (buffer_uptodate(bh))
922 return bh;
923 put_bh(bh);
924 *err = -EIO;
925 return NULL;
926}
927
928static int walk_page_buffers( handle_t *handle,
929 struct buffer_head *head,
930 unsigned from,
931 unsigned to,
932 int *partial,
933 int (*fn)( handle_t *handle,
934 struct buffer_head *bh))
935{
936 struct buffer_head *bh;
937 unsigned block_start, block_end;
938 unsigned blocksize = head->b_size;
939 int err, ret = 0;
940 struct buffer_head *next;
941
942 for ( bh = head, block_start = 0;
943 ret == 0 && (bh != head || !block_start);
944 block_start = block_end, bh = next)
945 {
946 next = bh->b_this_page;
947 block_end = block_start + blocksize;
948 if (block_end <= from || block_start >= to) {
949 if (partial && !buffer_uptodate(bh))
950 *partial = 1;
951 continue;
952 }
953 err = (*fn)(handle, bh);
954 if (!ret)
955 ret = err;
956 }
957 return ret;
958}
959
960/*
961 * To preserve ordering, it is essential that the hole instantiation and
962 * the data write be encapsulated in a single transaction. We cannot
963 * close off a transaction and start a new one between the ext3_get_block()
964 * and the commit_write(). So doing the journal_start at the start of
965 * prepare_write() is the right place.
966 *
967 * Also, this function can nest inside ext3_writepage() ->
968 * block_write_full_page(). In that case, we *know* that ext3_writepage()
969 * has generated enough buffer credits to do the whole page. So we won't
970 * block on the journal in that case, which is good, because the caller may
971 * be PF_MEMALLOC.
972 *
973 * By accident, ext3 can be reentered when a transaction is open via
974 * quota file writes. If we were to commit the transaction while thus
975 * reentered, there can be a deadlock - we would be holding a quota
976 * lock, and the commit would never complete if another thread had a
977 * transaction open and was blocking on the quota lock - a ranking
978 * violation.
979 *
980 * So what we do is to rely on the fact that journal_stop/journal_start
981 * will _not_ run commit under these circumstances because handle->h_ref
982 * is elevated. We'll still have enough credits for the tiny quotafile
983 * write.
984 */
985
986static int do_journal_get_write_access(handle_t *handle,
987 struct buffer_head *bh)
988{
989 if (!buffer_mapped(bh) || buffer_freed(bh))
990 return 0;
991 return ext3_journal_get_write_access(handle, bh);
992}
993
994static int ext3_prepare_write(struct file *file, struct page *page,
995 unsigned from, unsigned to)
996{
997 struct inode *inode = page->mapping->host;
998 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
999 handle_t *handle;
1000 int retries = 0;
1001
1002retry:
1003 handle = ext3_journal_start(inode, needed_blocks);
1004 if (IS_ERR(handle)) {
1005 ret = PTR_ERR(handle);
1006 goto out;
1007 }
1008 if (test_opt(inode->i_sb, NOBH))
1009 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1010 else
1011 ret = block_prepare_write(page, from, to, ext3_get_block);
1012 if (ret)
1013 goto prepare_write_failed;
1014
1015 if (ext3_should_journal_data(inode)) {
1016 ret = walk_page_buffers(handle, page_buffers(page),
1017 from, to, NULL, do_journal_get_write_access);
1018 }
1019prepare_write_failed:
1020 if (ret)
1021 ext3_journal_stop(handle);
1022 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1023 goto retry;
1024out:
1025 return ret;
1026}
1027
1028int
1029ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1030{
1031 int err = journal_dirty_data(handle, bh);
1032 if (err)
1033 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1034 bh, handle,err);
1035 return err;
1036}
1037
1038/* For commit_write() in data=journal mode */
1039static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1040{
1041 if (!buffer_mapped(bh) || buffer_freed(bh))
1042 return 0;
1043 set_buffer_uptodate(bh);
1044 return ext3_journal_dirty_metadata(handle, bh);
1045}
1046
1047/*
1048 * We need to pick up the new inode size which generic_commit_write gave us
1049 * `file' can be NULL - eg, when called from page_symlink().
1050 *
1051 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1052 * buffers are managed internally.
1053 */
1054
1055static int ext3_ordered_commit_write(struct file *file, struct page *page,
1056 unsigned from, unsigned to)
1057{
1058 handle_t *handle = ext3_journal_current_handle();
1059 struct inode *inode = page->mapping->host;
1060 int ret = 0, ret2;
1061
1062 ret = walk_page_buffers(handle, page_buffers(page),
1063 from, to, NULL, ext3_journal_dirty_data);
1064
1065 if (ret == 0) {
1066 /*
1067 * generic_commit_write() will run mark_inode_dirty() if i_size
1068 * changes. So let's piggyback the i_disksize mark_inode_dirty
1069 * into that.
1070 */
1071 loff_t new_i_size;
1072
1073 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1074 if (new_i_size > EXT3_I(inode)->i_disksize)
1075 EXT3_I(inode)->i_disksize = new_i_size;
1076 ret = generic_commit_write(file, page, from, to);
1077 }
1078 ret2 = ext3_journal_stop(handle);
1079 if (!ret)
1080 ret = ret2;
1081 return ret;
1082}
1083
1084static int ext3_writeback_commit_write(struct file *file, struct page *page,
1085 unsigned from, unsigned to)
1086{
1087 handle_t *handle = ext3_journal_current_handle();
1088 struct inode *inode = page->mapping->host;
1089 int ret = 0, ret2;
1090 loff_t new_i_size;
1091
1092 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1093 if (new_i_size > EXT3_I(inode)->i_disksize)
1094 EXT3_I(inode)->i_disksize = new_i_size;
1095
1096 if (test_opt(inode->i_sb, NOBH))
1097 ret = nobh_commit_write(file, page, from, to);
1098 else
1099 ret = generic_commit_write(file, page, from, to);
1100
1101 ret2 = ext3_journal_stop(handle);
1102 if (!ret)
1103 ret = ret2;
1104 return ret;
1105}
1106
1107static int ext3_journalled_commit_write(struct file *file,
1108 struct page *page, unsigned from, unsigned to)
1109{
1110 handle_t *handle = ext3_journal_current_handle();
1111 struct inode *inode = page->mapping->host;
1112 int ret = 0, ret2;
1113 int partial = 0;
1114 loff_t pos;
1115
1116 /*
1117 * Here we duplicate the generic_commit_write() functionality
1118 */
1119 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1120
1121 ret = walk_page_buffers(handle, page_buffers(page), from,
1122 to, &partial, commit_write_fn);
1123 if (!partial)
1124 SetPageUptodate(page);
1125 if (pos > inode->i_size)
1126 i_size_write(inode, pos);
1127 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1128 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1129 EXT3_I(inode)->i_disksize = inode->i_size;
1130 ret2 = ext3_mark_inode_dirty(handle, inode);
1131 if (!ret)
1132 ret = ret2;
1133 }
1134 ret2 = ext3_journal_stop(handle);
1135 if (!ret)
1136 ret = ret2;
1137 return ret;
1138}
1139
1140/*
1141 * bmap() is special. It gets used by applications such as lilo and by
1142 * the swapper to find the on-disk block of a specific piece of data.
1143 *
1144 * Naturally, this is dangerous if the block concerned is still in the
1145 * journal. If somebody makes a swapfile on an ext3 data-journaling
1146 * filesystem and enables swap, then they may get a nasty shock when the
1147 * data getting swapped to that swapfile suddenly gets overwritten by
1148 * the original zero's written out previously to the journal and
1149 * awaiting writeback in the kernel's buffer cache.
1150 *
1151 * So, if we see any bmap calls here on a modified, data-journaled file,
1152 * take extra steps to flush any blocks which might be in the cache.
1153 */
1154static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1155{
1156 struct inode *inode = mapping->host;
1157 journal_t *journal;
1158 int err;
1159
1160 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1161 /*
1162 * This is a REALLY heavyweight approach, but the use of
1163 * bmap on dirty files is expected to be extremely rare:
1164 * only if we run lilo or swapon on a freshly made file
1165 * do we expect this to happen.
1166 *
1167 * (bmap requires CAP_SYS_RAWIO so this does not
1168 * represent an unprivileged user DOS attack --- we'd be
1169 * in trouble if mortal users could trigger this path at
1170 * will.)
1171 *
1172 * NB. EXT3_STATE_JDATA is not set on files other than
1173 * regular files. If somebody wants to bmap a directory
1174 * or symlink and gets confused because the buffer
1175 * hasn't yet been flushed to disk, they deserve
1176 * everything they get.
1177 */
1178
1179 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1180 journal = EXT3_JOURNAL(inode);
1181 journal_lock_updates(journal);
1182 err = journal_flush(journal);
1183 journal_unlock_updates(journal);
1184
1185 if (err)
1186 return 0;
1187 }
1188
1189 return generic_block_bmap(mapping,block,ext3_get_block);
1190}
1191
1192static int bget_one(handle_t *handle, struct buffer_head *bh)
1193{
1194 get_bh(bh);
1195 return 0;
1196}
1197
1198static int bput_one(handle_t *handle, struct buffer_head *bh)
1199{
1200 put_bh(bh);
1201 return 0;
1202}
1203
1204static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1205{
1206 if (buffer_mapped(bh))
1207 return ext3_journal_dirty_data(handle, bh);
1208 return 0;
1209}
1210
1211/*
1212 * Note that we always start a transaction even if we're not journalling
1213 * data. This is to preserve ordering: any hole instantiation within
1214 * __block_write_full_page -> ext3_get_block() should be journalled
1215 * along with the data so we don't crash and then get metadata which
1216 * refers to old data.
1217 *
1218 * In all journalling modes block_write_full_page() will start the I/O.
1219 *
1220 * Problem:
1221 *
1222 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1223 * ext3_writepage()
1224 *
1225 * Similar for:
1226 *
1227 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1228 *
1229 * Same applies to ext3_get_block(). We will deadlock on various things like
1230 * lock_journal and i_truncate_sem.
1231 *
1232 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1233 * allocations fail.
1234 *
1235 * 16May01: If we're reentered then journal_current_handle() will be
1236 * non-zero. We simply *return*.
1237 *
1238 * 1 July 2001: @@@ FIXME:
1239 * In journalled data mode, a data buffer may be metadata against the
1240 * current transaction. But the same file is part of a shared mapping
1241 * and someone does a writepage() on it.
1242 *
1243 * We will move the buffer onto the async_data list, but *after* it has
1244 * been dirtied. So there's a small window where we have dirty data on
1245 * BJ_Metadata.
1246 *
1247 * Note that this only applies to the last partial page in the file. The
1248 * bit which block_write_full_page() uses prepare/commit for. (That's
1249 * broken code anyway: it's wrong for msync()).
1250 *
1251 * It's a rare case: affects the final partial page, for journalled data
1252 * where the file is subject to bith write() and writepage() in the same
1253 * transction. To fix it we'll need a custom block_write_full_page().
1254 * We'll probably need that anyway for journalling writepage() output.
1255 *
1256 * We don't honour synchronous mounts for writepage(). That would be
1257 * disastrous. Any write() or metadata operation will sync the fs for
1258 * us.
1259 *
1260 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1261 * we don't need to open a transaction here.
1262 */
1263static int ext3_ordered_writepage(struct page *page,
1264 struct writeback_control *wbc)
1265{
1266 struct inode *inode = page->mapping->host;
1267 struct buffer_head *page_bufs;
1268 handle_t *handle = NULL;
1269 int ret = 0;
1270 int err;
1271
1272 J_ASSERT(PageLocked(page));
1273
1274 /*
1275 * We give up here if we're reentered, because it might be for a
1276 * different filesystem.
1277 */
1278 if (ext3_journal_current_handle())
1279 goto out_fail;
1280
1281 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1282
1283 if (IS_ERR(handle)) {
1284 ret = PTR_ERR(handle);
1285 goto out_fail;
1286 }
1287
1288 if (!page_has_buffers(page)) {
1289 create_empty_buffers(page, inode->i_sb->s_blocksize,
1290 (1 << BH_Dirty)|(1 << BH_Uptodate));
1291 }
1292 page_bufs = page_buffers(page);
1293 walk_page_buffers(handle, page_bufs, 0,
1294 PAGE_CACHE_SIZE, NULL, bget_one);
1295
1296 ret = block_write_full_page(page, ext3_get_block, wbc);
1297
1298 /*
1299 * The page can become unlocked at any point now, and
1300 * truncate can then come in and change things. So we
1301 * can't touch *page from now on. But *page_bufs is
1302 * safe due to elevated refcount.
1303 */
1304
1305 /*
1306 * And attach them to the current transaction. But only if
1307 * block_write_full_page() succeeded. Otherwise they are unmapped,
1308 * and generally junk.
1309 */
1310 if (ret == 0) {
1311 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1312 NULL, journal_dirty_data_fn);
1313 if (!ret)
1314 ret = err;
1315 }
1316 walk_page_buffers(handle, page_bufs, 0,
1317 PAGE_CACHE_SIZE, NULL, bput_one);
1318 err = ext3_journal_stop(handle);
1319 if (!ret)
1320 ret = err;
1321 return ret;
1322
1323out_fail:
1324 redirty_page_for_writepage(wbc, page);
1325 unlock_page(page);
1326 return ret;
1327}
1328
1da177e4
LT
1329static int ext3_writeback_writepage(struct page *page,
1330 struct writeback_control *wbc)
1331{
1332 struct inode *inode = page->mapping->host;
1333 handle_t *handle = NULL;
1334 int ret = 0;
1335 int err;
1336
1337 if (ext3_journal_current_handle())
1338 goto out_fail;
1339
1340 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1341 if (IS_ERR(handle)) {
1342 ret = PTR_ERR(handle);
1343 goto out_fail;
1344 }
1345
1346 if (test_opt(inode->i_sb, NOBH))
1347 ret = nobh_writepage(page, ext3_get_block, wbc);
1348 else
1349 ret = block_write_full_page(page, ext3_get_block, wbc);
1350
1351 err = ext3_journal_stop(handle);
1352 if (!ret)
1353 ret = err;
1354 return ret;
1355
1356out_fail:
1357 redirty_page_for_writepage(wbc, page);
1358 unlock_page(page);
1359 return ret;
1360}
1361
1362static int ext3_journalled_writepage(struct page *page,
1363 struct writeback_control *wbc)
1364{
1365 struct inode *inode = page->mapping->host;
1366 handle_t *handle = NULL;
1367 int ret = 0;
1368 int err;
1369
1370 if (ext3_journal_current_handle())
1371 goto no_write;
1372
1373 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1374 if (IS_ERR(handle)) {
1375 ret = PTR_ERR(handle);
1376 goto no_write;
1377 }
1378
1379 if (!page_has_buffers(page) || PageChecked(page)) {
1380 /*
1381 * It's mmapped pagecache. Add buffers and journal it. There
1382 * doesn't seem much point in redirtying the page here.
1383 */
1384 ClearPageChecked(page);
1385 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1386 ext3_get_block);
ab4eb43c
DL
1387 if (ret != 0) {
1388 ext3_journal_stop(handle);
1da177e4 1389 goto out_unlock;
ab4eb43c 1390 }
1da177e4
LT
1391 ret = walk_page_buffers(handle, page_buffers(page), 0,
1392 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1393
1394 err = walk_page_buffers(handle, page_buffers(page), 0,
1395 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1396 if (ret == 0)
1397 ret = err;
1398 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1399 unlock_page(page);
1400 } else {
1401 /*
1402 * It may be a page full of checkpoint-mode buffers. We don't
1403 * really know unless we go poke around in the buffer_heads.
1404 * But block_write_full_page will do the right thing.
1405 */
1406 ret = block_write_full_page(page, ext3_get_block, wbc);
1407 }
1408 err = ext3_journal_stop(handle);
1409 if (!ret)
1410 ret = err;
1411out:
1412 return ret;
1413
1414no_write:
1415 redirty_page_for_writepage(wbc, page);
1416out_unlock:
1417 unlock_page(page);
1418 goto out;
1419}
1420
1421static int ext3_readpage(struct file *file, struct page *page)
1422{
1423 return mpage_readpage(page, ext3_get_block);
1424}
1425
1426static int
1427ext3_readpages(struct file *file, struct address_space *mapping,
1428 struct list_head *pages, unsigned nr_pages)
1429{
1430 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1431}
1432
1433static int ext3_invalidatepage(struct page *page, unsigned long offset)
1434{
1435 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1436
1437 /*
1438 * If it's a full truncate we just forget about the pending dirtying
1439 */
1440 if (offset == 0)
1441 ClearPageChecked(page);
1442
1443 return journal_invalidatepage(journal, page, offset);
1444}
1445
27496a8c 1446static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1447{
1448 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1449
1450 WARN_ON(PageChecked(page));
1451 if (!page_has_buffers(page))
1452 return 0;
1453 return journal_try_to_free_buffers(journal, page, wait);
1454}
1455
1456/*
1457 * If the O_DIRECT write will extend the file then add this inode to the
1458 * orphan list. So recovery will truncate it back to the original size
1459 * if the machine crashes during the write.
1460 *
1461 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1462 * crashes then stale disk data _may_ be exposed inside the file.
1463 */
1464static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1465 const struct iovec *iov, loff_t offset,
1466 unsigned long nr_segs)
1467{
1468 struct file *file = iocb->ki_filp;
1469 struct inode *inode = file->f_mapping->host;
1470 struct ext3_inode_info *ei = EXT3_I(inode);
1471 handle_t *handle = NULL;
1472 ssize_t ret;
1473 int orphan = 0;
1474 size_t count = iov_length(iov, nr_segs);
1475
1476 if (rw == WRITE) {
1477 loff_t final_size = offset + count;
1478
1479 handle = ext3_journal_start(inode, DIO_CREDITS);
1480 if (IS_ERR(handle)) {
1481 ret = PTR_ERR(handle);
1482 goto out;
1483 }
1484 if (final_size > inode->i_size) {
1485 ret = ext3_orphan_add(handle, inode);
1486 if (ret)
1487 goto out_stop;
1488 orphan = 1;
1489 ei->i_disksize = inode->i_size;
1490 }
1491 }
1492
1493 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1494 offset, nr_segs,
1495 ext3_direct_io_get_blocks, NULL);
1496
1497 /*
1498 * Reacquire the handle: ext3_direct_io_get_block() can restart the
1499 * transaction
1500 */
1501 handle = journal_current_handle();
1502
1503out_stop:
1504 if (handle) {
1505 int err;
1506
1507 if (orphan && inode->i_nlink)
1508 ext3_orphan_del(handle, inode);
1509 if (orphan && ret > 0) {
1510 loff_t end = offset + ret;
1511 if (end > inode->i_size) {
1512 ei->i_disksize = end;
1513 i_size_write(inode, end);
1514 /*
1515 * We're going to return a positive `ret'
1516 * here due to non-zero-length I/O, so there's
1517 * no way of reporting error returns from
1518 * ext3_mark_inode_dirty() to userspace. So
1519 * ignore it.
1520 */
1521 ext3_mark_inode_dirty(handle, inode);
1522 }
1523 }
1524 err = ext3_journal_stop(handle);
1525 if (ret == 0)
1526 ret = err;
1527 }
1528out:
1529 return ret;
1530}
1531
1532/*
1533 * Pages can be marked dirty completely asynchronously from ext3's journalling
1534 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1535 * much here because ->set_page_dirty is called under VFS locks. The page is
1536 * not necessarily locked.
1537 *
1538 * We cannot just dirty the page and leave attached buffers clean, because the
1539 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1540 * or jbddirty because all the journalling code will explode.
1541 *
1542 * So what we do is to mark the page "pending dirty" and next time writepage
1543 * is called, propagate that into the buffers appropriately.
1544 */
1545static int ext3_journalled_set_page_dirty(struct page *page)
1546{
1547 SetPageChecked(page);
1548 return __set_page_dirty_nobuffers(page);
1549}
1550
1551static struct address_space_operations ext3_ordered_aops = {
1552 .readpage = ext3_readpage,
1553 .readpages = ext3_readpages,
1554 .writepage = ext3_ordered_writepage,
1555 .sync_page = block_sync_page,
1556 .prepare_write = ext3_prepare_write,
1557 .commit_write = ext3_ordered_commit_write,
1558 .bmap = ext3_bmap,
1559 .invalidatepage = ext3_invalidatepage,
1560 .releasepage = ext3_releasepage,
1561 .direct_IO = ext3_direct_IO,
e965f963 1562 .migratepage = buffer_migrate_page,
1da177e4
LT
1563};
1564
1565static struct address_space_operations ext3_writeback_aops = {
1566 .readpage = ext3_readpage,
1567 .readpages = ext3_readpages,
1568 .writepage = ext3_writeback_writepage,
1da177e4
LT
1569 .sync_page = block_sync_page,
1570 .prepare_write = ext3_prepare_write,
1571 .commit_write = ext3_writeback_commit_write,
1572 .bmap = ext3_bmap,
1573 .invalidatepage = ext3_invalidatepage,
1574 .releasepage = ext3_releasepage,
1575 .direct_IO = ext3_direct_IO,
e965f963 1576 .migratepage = buffer_migrate_page,
1da177e4
LT
1577};
1578
1579static struct address_space_operations ext3_journalled_aops = {
1580 .readpage = ext3_readpage,
1581 .readpages = ext3_readpages,
1582 .writepage = ext3_journalled_writepage,
1583 .sync_page = block_sync_page,
1584 .prepare_write = ext3_prepare_write,
1585 .commit_write = ext3_journalled_commit_write,
1586 .set_page_dirty = ext3_journalled_set_page_dirty,
1587 .bmap = ext3_bmap,
1588 .invalidatepage = ext3_invalidatepage,
1589 .releasepage = ext3_releasepage,
1590};
1591
1592void ext3_set_aops(struct inode *inode)
1593{
1594 if (ext3_should_order_data(inode))
1595 inode->i_mapping->a_ops = &ext3_ordered_aops;
1596 else if (ext3_should_writeback_data(inode))
1597 inode->i_mapping->a_ops = &ext3_writeback_aops;
1598 else
1599 inode->i_mapping->a_ops = &ext3_journalled_aops;
1600}
1601
1602/*
1603 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1604 * up to the end of the block which corresponds to `from'.
1605 * This required during truncate. We need to physically zero the tail end
1606 * of that block so it doesn't yield old data if the file is later grown.
1607 */
1608static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1609 struct address_space *mapping, loff_t from)
1610{
1611 unsigned long index = from >> PAGE_CACHE_SHIFT;
1612 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1613 unsigned blocksize, iblock, length, pos;
1614 struct inode *inode = mapping->host;
1615 struct buffer_head *bh;
1616 int err = 0;
1617 void *kaddr;
1618
1619 blocksize = inode->i_sb->s_blocksize;
1620 length = blocksize - (offset & (blocksize - 1));
1621 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1622
1623 /*
1624 * For "nobh" option, we can only work if we don't need to
1625 * read-in the page - otherwise we create buffers to do the IO.
1626 */
1627 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH)) {
1628 if (PageUptodate(page)) {
1629 kaddr = kmap_atomic(page, KM_USER0);
1630 memset(kaddr + offset, 0, length);
1631 flush_dcache_page(page);
1632 kunmap_atomic(kaddr, KM_USER0);
1633 set_page_dirty(page);
1634 goto unlock;
1635 }
1636 }
1637
1638 if (!page_has_buffers(page))
1639 create_empty_buffers(page, blocksize, 0);
1640
1641 /* Find the buffer that contains "offset" */
1642 bh = page_buffers(page);
1643 pos = blocksize;
1644 while (offset >= pos) {
1645 bh = bh->b_this_page;
1646 iblock++;
1647 pos += blocksize;
1648 }
1649
1650 err = 0;
1651 if (buffer_freed(bh)) {
1652 BUFFER_TRACE(bh, "freed: skip");
1653 goto unlock;
1654 }
1655
1656 if (!buffer_mapped(bh)) {
1657 BUFFER_TRACE(bh, "unmapped");
1658 ext3_get_block(inode, iblock, bh, 0);
1659 /* unmapped? It's a hole - nothing to do */
1660 if (!buffer_mapped(bh)) {
1661 BUFFER_TRACE(bh, "still unmapped");
1662 goto unlock;
1663 }
1664 }
1665
1666 /* Ok, it's mapped. Make sure it's up-to-date */
1667 if (PageUptodate(page))
1668 set_buffer_uptodate(bh);
1669
1670 if (!buffer_uptodate(bh)) {
1671 err = -EIO;
1672 ll_rw_block(READ, 1, &bh);
1673 wait_on_buffer(bh);
1674 /* Uhhuh. Read error. Complain and punt. */
1675 if (!buffer_uptodate(bh))
1676 goto unlock;
1677 }
1678
1679 if (ext3_should_journal_data(inode)) {
1680 BUFFER_TRACE(bh, "get write access");
1681 err = ext3_journal_get_write_access(handle, bh);
1682 if (err)
1683 goto unlock;
1684 }
1685
1686 kaddr = kmap_atomic(page, KM_USER0);
1687 memset(kaddr + offset, 0, length);
1688 flush_dcache_page(page);
1689 kunmap_atomic(kaddr, KM_USER0);
1690
1691 BUFFER_TRACE(bh, "zeroed end of block");
1692
1693 err = 0;
1694 if (ext3_should_journal_data(inode)) {
1695 err = ext3_journal_dirty_metadata(handle, bh);
1696 } else {
1697 if (ext3_should_order_data(inode))
1698 err = ext3_journal_dirty_data(handle, bh);
1699 mark_buffer_dirty(bh);
1700 }
1701
1702unlock:
1703 unlock_page(page);
1704 page_cache_release(page);
1705 return err;
1706}
1707
1708/*
1709 * Probably it should be a library function... search for first non-zero word
1710 * or memcmp with zero_page, whatever is better for particular architecture.
1711 * Linus?
1712 */
1713static inline int all_zeroes(__le32 *p, __le32 *q)
1714{
1715 while (p < q)
1716 if (*p++)
1717 return 0;
1718 return 1;
1719}
1720
1721/**
1722 * ext3_find_shared - find the indirect blocks for partial truncation.
1723 * @inode: inode in question
1724 * @depth: depth of the affected branch
1725 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1726 * @chain: place to store the pointers to partial indirect blocks
1727 * @top: place to the (detached) top of branch
1728 *
1729 * This is a helper function used by ext3_truncate().
1730 *
1731 * When we do truncate() we may have to clean the ends of several
1732 * indirect blocks but leave the blocks themselves alive. Block is
1733 * partially truncated if some data below the new i_size is refered
1734 * from it (and it is on the path to the first completely truncated
1735 * data block, indeed). We have to free the top of that path along
1736 * with everything to the right of the path. Since no allocation
1737 * past the truncation point is possible until ext3_truncate()
1738 * finishes, we may safely do the latter, but top of branch may
1739 * require special attention - pageout below the truncation point
1740 * might try to populate it.
1741 *
1742 * We atomically detach the top of branch from the tree, store the
1743 * block number of its root in *@top, pointers to buffer_heads of
1744 * partially truncated blocks - in @chain[].bh and pointers to
1745 * their last elements that should not be removed - in
1746 * @chain[].p. Return value is the pointer to last filled element
1747 * of @chain.
1748 *
1749 * The work left to caller to do the actual freeing of subtrees:
1750 * a) free the subtree starting from *@top
1751 * b) free the subtrees whose roots are stored in
1752 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1753 * c) free the subtrees growing from the inode past the @chain[0].
1754 * (no partially truncated stuff there). */
1755
1756static Indirect *ext3_find_shared(struct inode *inode,
1757 int depth,
1758 int offsets[4],
1759 Indirect chain[4],
1760 __le32 *top)
1761{
1762 Indirect *partial, *p;
1763 int k, err;
1764
1765 *top = 0;
1766 /* Make k index the deepest non-null offest + 1 */
1767 for (k = depth; k > 1 && !offsets[k-1]; k--)
1768 ;
1769 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1770 /* Writer: pointers */
1771 if (!partial)
1772 partial = chain + k-1;
1773 /*
1774 * If the branch acquired continuation since we've looked at it -
1775 * fine, it should all survive and (new) top doesn't belong to us.
1776 */
1777 if (!partial->key && *partial->p)
1778 /* Writer: end */
1779 goto no_top;
1780 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1781 ;
1782 /*
1783 * OK, we've found the last block that must survive. The rest of our
1784 * branch should be detached before unlocking. However, if that rest
1785 * of branch is all ours and does not grow immediately from the inode
1786 * it's easier to cheat and just decrement partial->p.
1787 */
1788 if (p == chain + k - 1 && p > chain) {
1789 p->p--;
1790 } else {
1791 *top = *p->p;
1792 /* Nope, don't do this in ext3. Must leave the tree intact */
1793#if 0
1794 *p->p = 0;
1795#endif
1796 }
1797 /* Writer: end */
1798
1799 while(partial > p)
1800 {
1801 brelse(partial->bh);
1802 partial--;
1803 }
1804no_top:
1805 return partial;
1806}
1807
1808/*
1809 * Zero a number of block pointers in either an inode or an indirect block.
1810 * If we restart the transaction we must again get write access to the
1811 * indirect block for further modification.
1812 *
1813 * We release `count' blocks on disk, but (last - first) may be greater
1814 * than `count' because there can be holes in there.
1815 */
1816static void
1817ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1818 unsigned long block_to_free, unsigned long count,
1819 __le32 *first, __le32 *last)
1820{
1821 __le32 *p;
1822 if (try_to_extend_transaction(handle, inode)) {
1823 if (bh) {
1824 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1825 ext3_journal_dirty_metadata(handle, bh);
1826 }
1827 ext3_mark_inode_dirty(handle, inode);
1828 ext3_journal_test_restart(handle, inode);
1829 if (bh) {
1830 BUFFER_TRACE(bh, "retaking write access");
1831 ext3_journal_get_write_access(handle, bh);
1832 }
1833 }
1834
1835 /*
1836 * Any buffers which are on the journal will be in memory. We find
1837 * them on the hash table so journal_revoke() will run journal_forget()
1838 * on them. We've already detached each block from the file, so
1839 * bforget() in journal_forget() should be safe.
1840 *
1841 * AKPM: turn on bforget in journal_forget()!!!
1842 */
1843 for (p = first; p < last; p++) {
1844 u32 nr = le32_to_cpu(*p);
1845 if (nr) {
1846 struct buffer_head *bh;
1847
1848 *p = 0;
1849 bh = sb_find_get_block(inode->i_sb, nr);
1850 ext3_forget(handle, 0, inode, bh, nr);
1851 }
1852 }
1853
1854 ext3_free_blocks(handle, inode, block_to_free, count);
1855}
1856
1857/**
1858 * ext3_free_data - free a list of data blocks
1859 * @handle: handle for this transaction
1860 * @inode: inode we are dealing with
1861 * @this_bh: indirect buffer_head which contains *@first and *@last
1862 * @first: array of block numbers
1863 * @last: points immediately past the end of array
1864 *
1865 * We are freeing all blocks refered from that array (numbers are stored as
1866 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1867 *
1868 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1869 * blocks are contiguous then releasing them at one time will only affect one
1870 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1871 * actually use a lot of journal space.
1872 *
1873 * @this_bh will be %NULL if @first and @last point into the inode's direct
1874 * block pointers.
1875 */
1876static void ext3_free_data(handle_t *handle, struct inode *inode,
1877 struct buffer_head *this_bh,
1878 __le32 *first, __le32 *last)
1879{
1880 unsigned long block_to_free = 0; /* Starting block # of a run */
1881 unsigned long count = 0; /* Number of blocks in the run */
1882 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1883 corresponding to
1884 block_to_free */
1885 unsigned long nr; /* Current block # */
1886 __le32 *p; /* Pointer into inode/ind
1887 for current block */
1888 int err;
1889
1890 if (this_bh) { /* For indirect block */
1891 BUFFER_TRACE(this_bh, "get_write_access");
1892 err = ext3_journal_get_write_access(handle, this_bh);
1893 /* Important: if we can't update the indirect pointers
1894 * to the blocks, we can't free them. */
1895 if (err)
1896 return;
1897 }
1898
1899 for (p = first; p < last; p++) {
1900 nr = le32_to_cpu(*p);
1901 if (nr) {
1902 /* accumulate blocks to free if they're contiguous */
1903 if (count == 0) {
1904 block_to_free = nr;
1905 block_to_free_p = p;
1906 count = 1;
1907 } else if (nr == block_to_free + count) {
1908 count++;
1909 } else {
1910 ext3_clear_blocks(handle, inode, this_bh,
1911 block_to_free,
1912 count, block_to_free_p, p);
1913 block_to_free = nr;
1914 block_to_free_p = p;
1915 count = 1;
1916 }
1917 }
1918 }
1919
1920 if (count > 0)
1921 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1922 count, block_to_free_p, p);
1923
1924 if (this_bh) {
1925 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1926 ext3_journal_dirty_metadata(handle, this_bh);
1927 }
1928}
1929
1930/**
1931 * ext3_free_branches - free an array of branches
1932 * @handle: JBD handle for this transaction
1933 * @inode: inode we are dealing with
1934 * @parent_bh: the buffer_head which contains *@first and *@last
1935 * @first: array of block numbers
1936 * @last: pointer immediately past the end of array
1937 * @depth: depth of the branches to free
1938 *
1939 * We are freeing all blocks refered from these branches (numbers are
1940 * stored as little-endian 32-bit) and updating @inode->i_blocks
1941 * appropriately.
1942 */
1943static void ext3_free_branches(handle_t *handle, struct inode *inode,
1944 struct buffer_head *parent_bh,
1945 __le32 *first, __le32 *last, int depth)
1946{
1947 unsigned long nr;
1948 __le32 *p;
1949
1950 if (is_handle_aborted(handle))
1951 return;
1952
1953 if (depth--) {
1954 struct buffer_head *bh;
1955 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1956 p = last;
1957 while (--p >= first) {
1958 nr = le32_to_cpu(*p);
1959 if (!nr)
1960 continue; /* A hole */
1961
1962 /* Go read the buffer for the next level down */
1963 bh = sb_bread(inode->i_sb, nr);
1964
1965 /*
1966 * A read failure? Report error and clear slot
1967 * (should be rare).
1968 */
1969 if (!bh) {
1970 ext3_error(inode->i_sb, "ext3_free_branches",
1971 "Read failure, inode=%ld, block=%ld",
1972 inode->i_ino, nr);
1973 continue;
1974 }
1975
1976 /* This zaps the entire block. Bottom up. */
1977 BUFFER_TRACE(bh, "free child branches");
1978 ext3_free_branches(handle, inode, bh,
1979 (__le32*)bh->b_data,
1980 (__le32*)bh->b_data + addr_per_block,
1981 depth);
1982
1983 /*
1984 * We've probably journalled the indirect block several
1985 * times during the truncate. But it's no longer
1986 * needed and we now drop it from the transaction via
1987 * journal_revoke().
1988 *
1989 * That's easy if it's exclusively part of this
1990 * transaction. But if it's part of the committing
1991 * transaction then journal_forget() will simply
1992 * brelse() it. That means that if the underlying
1993 * block is reallocated in ext3_get_block(),
1994 * unmap_underlying_metadata() will find this block
1995 * and will try to get rid of it. damn, damn.
1996 *
1997 * If this block has already been committed to the
1998 * journal, a revoke record will be written. And
1999 * revoke records must be emitted *before* clearing
2000 * this block's bit in the bitmaps.
2001 */
2002 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2003
2004 /*
2005 * Everything below this this pointer has been
2006 * released. Now let this top-of-subtree go.
2007 *
2008 * We want the freeing of this indirect block to be
2009 * atomic in the journal with the updating of the
2010 * bitmap block which owns it. So make some room in
2011 * the journal.
2012 *
2013 * We zero the parent pointer *after* freeing its
2014 * pointee in the bitmaps, so if extend_transaction()
2015 * for some reason fails to put the bitmap changes and
2016 * the release into the same transaction, recovery
2017 * will merely complain about releasing a free block,
2018 * rather than leaking blocks.
2019 */
2020 if (is_handle_aborted(handle))
2021 return;
2022 if (try_to_extend_transaction(handle, inode)) {
2023 ext3_mark_inode_dirty(handle, inode);
2024 ext3_journal_test_restart(handle, inode);
2025 }
2026
2027 ext3_free_blocks(handle, inode, nr, 1);
2028
2029 if (parent_bh) {
2030 /*
2031 * The block which we have just freed is
2032 * pointed to by an indirect block: journal it
2033 */
2034 BUFFER_TRACE(parent_bh, "get_write_access");
2035 if (!ext3_journal_get_write_access(handle,
2036 parent_bh)){
2037 *p = 0;
2038 BUFFER_TRACE(parent_bh,
2039 "call ext3_journal_dirty_metadata");
2040 ext3_journal_dirty_metadata(handle,
2041 parent_bh);
2042 }
2043 }
2044 }
2045 } else {
2046 /* We have reached the bottom of the tree. */
2047 BUFFER_TRACE(parent_bh, "free data blocks");
2048 ext3_free_data(handle, inode, parent_bh, first, last);
2049 }
2050}
2051
2052/*
2053 * ext3_truncate()
2054 *
2055 * We block out ext3_get_block() block instantiations across the entire
2056 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2057 * simultaneously on behalf of the same inode.
2058 *
2059 * As we work through the truncate and commmit bits of it to the journal there
2060 * is one core, guiding principle: the file's tree must always be consistent on
2061 * disk. We must be able to restart the truncate after a crash.
2062 *
2063 * The file's tree may be transiently inconsistent in memory (although it
2064 * probably isn't), but whenever we close off and commit a journal transaction,
2065 * the contents of (the filesystem + the journal) must be consistent and
2066 * restartable. It's pretty simple, really: bottom up, right to left (although
2067 * left-to-right works OK too).
2068 *
2069 * Note that at recovery time, journal replay occurs *before* the restart of
2070 * truncate against the orphan inode list.
2071 *
2072 * The committed inode has the new, desired i_size (which is the same as
2073 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2074 * that this inode's truncate did not complete and it will again call
2075 * ext3_truncate() to have another go. So there will be instantiated blocks
2076 * to the right of the truncation point in a crashed ext3 filesystem. But
2077 * that's fine - as long as they are linked from the inode, the post-crash
2078 * ext3_truncate() run will find them and release them.
2079 */
2080
2081void ext3_truncate(struct inode * inode)
2082{
2083 handle_t *handle;
2084 struct ext3_inode_info *ei = EXT3_I(inode);
2085 __le32 *i_data = ei->i_data;
2086 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2087 struct address_space *mapping = inode->i_mapping;
2088 int offsets[4];
2089 Indirect chain[4];
2090 Indirect *partial;
2091 __le32 nr = 0;
2092 int n;
2093 long last_block;
2094 unsigned blocksize = inode->i_sb->s_blocksize;
2095 struct page *page;
2096
2097 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2098 S_ISLNK(inode->i_mode)))
2099 return;
2100 if (ext3_inode_is_fast_symlink(inode))
2101 return;
2102 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2103 return;
2104
2105 /*
2106 * We have to lock the EOF page here, because lock_page() nests
2107 * outside journal_start().
2108 */
2109 if ((inode->i_size & (blocksize - 1)) == 0) {
2110 /* Block boundary? Nothing to do */
2111 page = NULL;
2112 } else {
2113 page = grab_cache_page(mapping,
2114 inode->i_size >> PAGE_CACHE_SHIFT);
2115 if (!page)
2116 return;
2117 }
2118
2119 handle = start_transaction(inode);
2120 if (IS_ERR(handle)) {
2121 if (page) {
2122 clear_highpage(page);
2123 flush_dcache_page(page);
2124 unlock_page(page);
2125 page_cache_release(page);
2126 }
2127 return; /* AKPM: return what? */
2128 }
2129
2130 last_block = (inode->i_size + blocksize-1)
2131 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2132
2133 if (page)
2134 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2135
2136 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2137 if (n == 0)
2138 goto out_stop; /* error */
2139
2140 /*
2141 * OK. This truncate is going to happen. We add the inode to the
2142 * orphan list, so that if this truncate spans multiple transactions,
2143 * and we crash, we will resume the truncate when the filesystem
2144 * recovers. It also marks the inode dirty, to catch the new size.
2145 *
2146 * Implication: the file must always be in a sane, consistent
2147 * truncatable state while each transaction commits.
2148 */
2149 if (ext3_orphan_add(handle, inode))
2150 goto out_stop;
2151
2152 /*
2153 * The orphan list entry will now protect us from any crash which
2154 * occurs before the truncate completes, so it is now safe to propagate
2155 * the new, shorter inode size (held for now in i_size) into the
2156 * on-disk inode. We do this via i_disksize, which is the value which
2157 * ext3 *really* writes onto the disk inode.
2158 */
2159 ei->i_disksize = inode->i_size;
2160
2161 /*
2162 * From here we block out all ext3_get_block() callers who want to
2163 * modify the block allocation tree.
2164 */
2165 down(&ei->truncate_sem);
2166
2167 if (n == 1) { /* direct blocks */
2168 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2169 i_data + EXT3_NDIR_BLOCKS);
2170 goto do_indirects;
2171 }
2172
2173 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2174 /* Kill the top of shared branch (not detached) */
2175 if (nr) {
2176 if (partial == chain) {
2177 /* Shared branch grows from the inode */
2178 ext3_free_branches(handle, inode, NULL,
2179 &nr, &nr+1, (chain+n-1) - partial);
2180 *partial->p = 0;
2181 /*
2182 * We mark the inode dirty prior to restart,
2183 * and prior to stop. No need for it here.
2184 */
2185 } else {
2186 /* Shared branch grows from an indirect block */
2187 BUFFER_TRACE(partial->bh, "get_write_access");
2188 ext3_free_branches(handle, inode, partial->bh,
2189 partial->p,
2190 partial->p+1, (chain+n-1) - partial);
2191 }
2192 }
2193 /* Clear the ends of indirect blocks on the shared branch */
2194 while (partial > chain) {
2195 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2196 (__le32*)partial->bh->b_data+addr_per_block,
2197 (chain+n-1) - partial);
2198 BUFFER_TRACE(partial->bh, "call brelse");
2199 brelse (partial->bh);
2200 partial--;
2201 }
2202do_indirects:
2203 /* Kill the remaining (whole) subtrees */
2204 switch (offsets[0]) {
2205 default:
2206 nr = i_data[EXT3_IND_BLOCK];
2207 if (nr) {
2208 ext3_free_branches(handle, inode, NULL,
2209 &nr, &nr+1, 1);
2210 i_data[EXT3_IND_BLOCK] = 0;
2211 }
2212 case EXT3_IND_BLOCK:
2213 nr = i_data[EXT3_DIND_BLOCK];
2214 if (nr) {
2215 ext3_free_branches(handle, inode, NULL,
2216 &nr, &nr+1, 2);
2217 i_data[EXT3_DIND_BLOCK] = 0;
2218 }
2219 case EXT3_DIND_BLOCK:
2220 nr = i_data[EXT3_TIND_BLOCK];
2221 if (nr) {
2222 ext3_free_branches(handle, inode, NULL,
2223 &nr, &nr+1, 3);
2224 i_data[EXT3_TIND_BLOCK] = 0;
2225 }
2226 case EXT3_TIND_BLOCK:
2227 ;
2228 }
2229
2230 ext3_discard_reservation(inode);
2231
2232 up(&ei->truncate_sem);
2233 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2234 ext3_mark_inode_dirty(handle, inode);
2235
2236 /* In a multi-transaction truncate, we only make the final
2237 * transaction synchronous */
2238 if (IS_SYNC(inode))
2239 handle->h_sync = 1;
2240out_stop:
2241 /*
2242 * If this was a simple ftruncate(), and the file will remain alive
2243 * then we need to clear up the orphan record which we created above.
2244 * However, if this was a real unlink then we were called by
2245 * ext3_delete_inode(), and we allow that function to clean up the
2246 * orphan info for us.
2247 */
2248 if (inode->i_nlink)
2249 ext3_orphan_del(handle, inode);
2250
2251 ext3_journal_stop(handle);
2252}
2253
2254static unsigned long ext3_get_inode_block(struct super_block *sb,
2255 unsigned long ino, struct ext3_iloc *iloc)
2256{
2257 unsigned long desc, group_desc, block_group;
2258 unsigned long offset, block;
2259 struct buffer_head *bh;
2260 struct ext3_group_desc * gdp;
2261
2262
2263 if ((ino != EXT3_ROOT_INO &&
2264 ino != EXT3_JOURNAL_INO &&
2265 ino != EXT3_RESIZE_INO &&
2266 ino < EXT3_FIRST_INO(sb)) ||
2267 ino > le32_to_cpu(
2268 EXT3_SB(sb)->s_es->s_inodes_count)) {
2269 ext3_error (sb, "ext3_get_inode_block",
2270 "bad inode number: %lu", ino);
2271 return 0;
2272 }
2273 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2274 if (block_group >= EXT3_SB(sb)->s_groups_count) {
2275 ext3_error (sb, "ext3_get_inode_block",
2276 "group >= groups count");
2277 return 0;
2278 }
2279 smp_rmb();
2280 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2281 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2282 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2283 if (!bh) {
2284 ext3_error (sb, "ext3_get_inode_block",
2285 "Descriptor not loaded");
2286 return 0;
2287 }
2288
2289 gdp = (struct ext3_group_desc *) bh->b_data;
2290 /*
2291 * Figure out the offset within the block group inode table
2292 */
2293 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2294 EXT3_INODE_SIZE(sb);
2295 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2296 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2297
2298 iloc->block_group = block_group;
2299 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2300 return block;
2301}
2302
2303/*
2304 * ext3_get_inode_loc returns with an extra refcount against the inode's
2305 * underlying buffer_head on success. If 'in_mem' is true, we have all
2306 * data in memory that is needed to recreate the on-disk version of this
2307 * inode.
2308 */
2309static int __ext3_get_inode_loc(struct inode *inode,
2310 struct ext3_iloc *iloc, int in_mem)
2311{
2312 unsigned long block;
2313 struct buffer_head *bh;
2314
2315 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2316 if (!block)
2317 return -EIO;
2318
2319 bh = sb_getblk(inode->i_sb, block);
2320 if (!bh) {
2321 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2322 "unable to read inode block - "
2323 "inode=%lu, block=%lu", inode->i_ino, block);
2324 return -EIO;
2325 }
2326 if (!buffer_uptodate(bh)) {
2327 lock_buffer(bh);
2328 if (buffer_uptodate(bh)) {
2329 /* someone brought it uptodate while we waited */
2330 unlock_buffer(bh);
2331 goto has_buffer;
2332 }
2333
2334 /*
2335 * If we have all information of the inode in memory and this
2336 * is the only valid inode in the block, we need not read the
2337 * block.
2338 */
2339 if (in_mem) {
2340 struct buffer_head *bitmap_bh;
2341 struct ext3_group_desc *desc;
2342 int inodes_per_buffer;
2343 int inode_offset, i;
2344 int block_group;
2345 int start;
2346
2347 block_group = (inode->i_ino - 1) /
2348 EXT3_INODES_PER_GROUP(inode->i_sb);
2349 inodes_per_buffer = bh->b_size /
2350 EXT3_INODE_SIZE(inode->i_sb);
2351 inode_offset = ((inode->i_ino - 1) %
2352 EXT3_INODES_PER_GROUP(inode->i_sb));
2353 start = inode_offset & ~(inodes_per_buffer - 1);
2354
2355 /* Is the inode bitmap in cache? */
2356 desc = ext3_get_group_desc(inode->i_sb,
2357 block_group, NULL);
2358 if (!desc)
2359 goto make_io;
2360
2361 bitmap_bh = sb_getblk(inode->i_sb,
2362 le32_to_cpu(desc->bg_inode_bitmap));
2363 if (!bitmap_bh)
2364 goto make_io;
2365
2366 /*
2367 * If the inode bitmap isn't in cache then the
2368 * optimisation may end up performing two reads instead
2369 * of one, so skip it.
2370 */
2371 if (!buffer_uptodate(bitmap_bh)) {
2372 brelse(bitmap_bh);
2373 goto make_io;
2374 }
2375 for (i = start; i < start + inodes_per_buffer; i++) {
2376 if (i == inode_offset)
2377 continue;
2378 if (ext3_test_bit(i, bitmap_bh->b_data))
2379 break;
2380 }
2381 brelse(bitmap_bh);
2382 if (i == start + inodes_per_buffer) {
2383 /* all other inodes are free, so skip I/O */
2384 memset(bh->b_data, 0, bh->b_size);
2385 set_buffer_uptodate(bh);
2386 unlock_buffer(bh);
2387 goto has_buffer;
2388 }
2389 }
2390
2391make_io:
2392 /*
2393 * There are other valid inodes in the buffer, this inode
2394 * has in-inode xattrs, or we don't have this inode in memory.
2395 * Read the block from disk.
2396 */
2397 get_bh(bh);
2398 bh->b_end_io = end_buffer_read_sync;
2399 submit_bh(READ, bh);
2400 wait_on_buffer(bh);
2401 if (!buffer_uptodate(bh)) {
2402 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2403 "unable to read inode block - "
2404 "inode=%lu, block=%lu",
2405 inode->i_ino, block);
2406 brelse(bh);
2407 return -EIO;
2408 }
2409 }
2410has_buffer:
2411 iloc->bh = bh;
2412 return 0;
2413}
2414
2415int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2416{
2417 /* We have all inode data except xattrs in memory here. */
2418 return __ext3_get_inode_loc(inode, iloc,
2419 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2420}
2421
2422void ext3_set_inode_flags(struct inode *inode)
2423{
2424 unsigned int flags = EXT3_I(inode)->i_flags;
2425
2426 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2427 if (flags & EXT3_SYNC_FL)
2428 inode->i_flags |= S_SYNC;
2429 if (flags & EXT3_APPEND_FL)
2430 inode->i_flags |= S_APPEND;
2431 if (flags & EXT3_IMMUTABLE_FL)
2432 inode->i_flags |= S_IMMUTABLE;
2433 if (flags & EXT3_NOATIME_FL)
2434 inode->i_flags |= S_NOATIME;
2435 if (flags & EXT3_DIRSYNC_FL)
2436 inode->i_flags |= S_DIRSYNC;
2437}
2438
2439void ext3_read_inode(struct inode * inode)
2440{
2441 struct ext3_iloc iloc;
2442 struct ext3_inode *raw_inode;
2443 struct ext3_inode_info *ei = EXT3_I(inode);
2444 struct buffer_head *bh;
2445 int block;
2446
2447#ifdef CONFIG_EXT3_FS_POSIX_ACL
2448 ei->i_acl = EXT3_ACL_NOT_CACHED;
2449 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2450#endif
2451 ei->i_block_alloc_info = NULL;
2452
2453 if (__ext3_get_inode_loc(inode, &iloc, 0))
2454 goto bad_inode;
2455 bh = iloc.bh;
2456 raw_inode = ext3_raw_inode(&iloc);
2457 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2458 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2459 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2460 if(!(test_opt (inode->i_sb, NO_UID32))) {
2461 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2462 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2463 }
2464 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2465 inode->i_size = le32_to_cpu(raw_inode->i_size);
2466 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2467 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2468 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2469 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2470
2471 ei->i_state = 0;
2472 ei->i_dir_start_lookup = 0;
2473 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2474 /* We now have enough fields to check if the inode was active or not.
2475 * This is needed because nfsd might try to access dead inodes
2476 * the test is that same one that e2fsck uses
2477 * NeilBrown 1999oct15
2478 */
2479 if (inode->i_nlink == 0) {
2480 if (inode->i_mode == 0 ||
2481 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2482 /* this inode is deleted */
2483 brelse (bh);
2484 goto bad_inode;
2485 }
2486 /* The only unlinked inodes we let through here have
2487 * valid i_mode and are being read by the orphan
2488 * recovery code: that's fine, we're about to complete
2489 * the process of deleting those. */
2490 }
2491 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2492 * (for stat), not the fs block
2493 * size */
2494 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2495 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2496#ifdef EXT3_FRAGMENTS
2497 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2498 ei->i_frag_no = raw_inode->i_frag;
2499 ei->i_frag_size = raw_inode->i_fsize;
2500#endif
2501 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2502 if (!S_ISREG(inode->i_mode)) {
2503 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2504 } else {
2505 inode->i_size |=
2506 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2507 }
2508 ei->i_disksize = inode->i_size;
2509 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2510 ei->i_block_group = iloc.block_group;
2511 /*
2512 * NOTE! The in-memory inode i_data array is in little-endian order
2513 * even on big-endian machines: we do NOT byteswap the block numbers!
2514 */
2515 for (block = 0; block < EXT3_N_BLOCKS; block++)
2516 ei->i_data[block] = raw_inode->i_block[block];
2517 INIT_LIST_HEAD(&ei->i_orphan);
2518
2519 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2520 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2521 /*
2522 * When mke2fs creates big inodes it does not zero out
2523 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2524 * so ignore those first few inodes.
2525 */
2526 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2527 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2528 EXT3_INODE_SIZE(inode->i_sb))
2529 goto bad_inode;
2530 if (ei->i_extra_isize == 0) {
2531 /* The extra space is currently unused. Use it. */
2532 ei->i_extra_isize = sizeof(struct ext3_inode) -
2533 EXT3_GOOD_OLD_INODE_SIZE;
2534 } else {
2535 __le32 *magic = (void *)raw_inode +
2536 EXT3_GOOD_OLD_INODE_SIZE +
2537 ei->i_extra_isize;
2538 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2539 ei->i_state |= EXT3_STATE_XATTR;
2540 }
2541 } else
2542 ei->i_extra_isize = 0;
2543
2544 if (S_ISREG(inode->i_mode)) {
2545 inode->i_op = &ext3_file_inode_operations;
2546 inode->i_fop = &ext3_file_operations;
2547 ext3_set_aops(inode);
2548 } else if (S_ISDIR(inode->i_mode)) {
2549 inode->i_op = &ext3_dir_inode_operations;
2550 inode->i_fop = &ext3_dir_operations;
2551 } else if (S_ISLNK(inode->i_mode)) {
2552 if (ext3_inode_is_fast_symlink(inode))
2553 inode->i_op = &ext3_fast_symlink_inode_operations;
2554 else {
2555 inode->i_op = &ext3_symlink_inode_operations;
2556 ext3_set_aops(inode);
2557 }
2558 } else {
2559 inode->i_op = &ext3_special_inode_operations;
2560 if (raw_inode->i_block[0])
2561 init_special_inode(inode, inode->i_mode,
2562 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2563 else
2564 init_special_inode(inode, inode->i_mode,
2565 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2566 }
2567 brelse (iloc.bh);
2568 ext3_set_inode_flags(inode);
2569 return;
2570
2571bad_inode:
2572 make_bad_inode(inode);
2573 return;
2574}
2575
2576/*
2577 * Post the struct inode info into an on-disk inode location in the
2578 * buffer-cache. This gobbles the caller's reference to the
2579 * buffer_head in the inode location struct.
2580 *
2581 * The caller must have write access to iloc->bh.
2582 */
2583static int ext3_do_update_inode(handle_t *handle,
2584 struct inode *inode,
2585 struct ext3_iloc *iloc)
2586{
2587 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2588 struct ext3_inode_info *ei = EXT3_I(inode);
2589 struct buffer_head *bh = iloc->bh;
2590 int err = 0, rc, block;
2591
2592 /* For fields not not tracking in the in-memory inode,
2593 * initialise them to zero for new inodes. */
2594 if (ei->i_state & EXT3_STATE_NEW)
2595 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2596
2597 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2598 if(!(test_opt(inode->i_sb, NO_UID32))) {
2599 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2600 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2601/*
2602 * Fix up interoperability with old kernels. Otherwise, old inodes get
2603 * re-used with the upper 16 bits of the uid/gid intact
2604 */
2605 if(!ei->i_dtime) {
2606 raw_inode->i_uid_high =
2607 cpu_to_le16(high_16_bits(inode->i_uid));
2608 raw_inode->i_gid_high =
2609 cpu_to_le16(high_16_bits(inode->i_gid));
2610 } else {
2611 raw_inode->i_uid_high = 0;
2612 raw_inode->i_gid_high = 0;
2613 }
2614 } else {
2615 raw_inode->i_uid_low =
2616 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2617 raw_inode->i_gid_low =
2618 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2619 raw_inode->i_uid_high = 0;
2620 raw_inode->i_gid_high = 0;
2621 }
2622 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2623 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2624 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2625 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2626 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2627 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2628 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2629 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2630#ifdef EXT3_FRAGMENTS
2631 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2632 raw_inode->i_frag = ei->i_frag_no;
2633 raw_inode->i_fsize = ei->i_frag_size;
2634#endif
2635 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2636 if (!S_ISREG(inode->i_mode)) {
2637 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2638 } else {
2639 raw_inode->i_size_high =
2640 cpu_to_le32(ei->i_disksize >> 32);
2641 if (ei->i_disksize > 0x7fffffffULL) {
2642 struct super_block *sb = inode->i_sb;
2643 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2644 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2645 EXT3_SB(sb)->s_es->s_rev_level ==
2646 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2647 /* If this is the first large file
2648 * created, add a flag to the superblock.
2649 */
2650 err = ext3_journal_get_write_access(handle,
2651 EXT3_SB(sb)->s_sbh);
2652 if (err)
2653 goto out_brelse;
2654 ext3_update_dynamic_rev(sb);
2655 EXT3_SET_RO_COMPAT_FEATURE(sb,
2656 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2657 sb->s_dirt = 1;
2658 handle->h_sync = 1;
2659 err = ext3_journal_dirty_metadata(handle,
2660 EXT3_SB(sb)->s_sbh);
2661 }
2662 }
2663 }
2664 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2665 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2666 if (old_valid_dev(inode->i_rdev)) {
2667 raw_inode->i_block[0] =
2668 cpu_to_le32(old_encode_dev(inode->i_rdev));
2669 raw_inode->i_block[1] = 0;
2670 } else {
2671 raw_inode->i_block[0] = 0;
2672 raw_inode->i_block[1] =
2673 cpu_to_le32(new_encode_dev(inode->i_rdev));
2674 raw_inode->i_block[2] = 0;
2675 }
2676 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2677 raw_inode->i_block[block] = ei->i_data[block];
2678
ff87b37d 2679 if (ei->i_extra_isize)
1da177e4
LT
2680 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2681
2682 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2683 rc = ext3_journal_dirty_metadata(handle, bh);
2684 if (!err)
2685 err = rc;
2686 ei->i_state &= ~EXT3_STATE_NEW;
2687
2688out_brelse:
2689 brelse (bh);
2690 ext3_std_error(inode->i_sb, err);
2691 return err;
2692}
2693
2694/*
2695 * ext3_write_inode()
2696 *
2697 * We are called from a few places:
2698 *
2699 * - Within generic_file_write() for O_SYNC files.
2700 * Here, there will be no transaction running. We wait for any running
2701 * trasnaction to commit.
2702 *
2703 * - Within sys_sync(), kupdate and such.
2704 * We wait on commit, if tol to.
2705 *
2706 * - Within prune_icache() (PF_MEMALLOC == true)
2707 * Here we simply return. We can't afford to block kswapd on the
2708 * journal commit.
2709 *
2710 * In all cases it is actually safe for us to return without doing anything,
2711 * because the inode has been copied into a raw inode buffer in
2712 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2713 * knfsd.
2714 *
2715 * Note that we are absolutely dependent upon all inode dirtiers doing the
2716 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2717 * which we are interested.
2718 *
2719 * It would be a bug for them to not do this. The code:
2720 *
2721 * mark_inode_dirty(inode)
2722 * stuff();
2723 * inode->i_size = expr;
2724 *
2725 * is in error because a kswapd-driven write_inode() could occur while
2726 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2727 * will no longer be on the superblock's dirty inode list.
2728 */
2729int ext3_write_inode(struct inode *inode, int wait)
2730{
2731 if (current->flags & PF_MEMALLOC)
2732 return 0;
2733
2734 if (ext3_journal_current_handle()) {
2735 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2736 dump_stack();
2737 return -EIO;
2738 }
2739
2740 if (!wait)
2741 return 0;
2742
2743 return ext3_force_commit(inode->i_sb);
2744}
2745
2746/*
2747 * ext3_setattr()
2748 *
2749 * Called from notify_change.
2750 *
2751 * We want to trap VFS attempts to truncate the file as soon as
2752 * possible. In particular, we want to make sure that when the VFS
2753 * shrinks i_size, we put the inode on the orphan list and modify
2754 * i_disksize immediately, so that during the subsequent flushing of
2755 * dirty pages and freeing of disk blocks, we can guarantee that any
2756 * commit will leave the blocks being flushed in an unused state on
2757 * disk. (On recovery, the inode will get truncated and the blocks will
2758 * be freed, so we have a strong guarantee that no future commit will
2759 * leave these blocks visible to the user.)
2760 *
2761 * Called with inode->sem down.
2762 */
2763int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2764{
2765 struct inode *inode = dentry->d_inode;
2766 int error, rc = 0;
2767 const unsigned int ia_valid = attr->ia_valid;
2768
2769 error = inode_change_ok(inode, attr);
2770 if (error)
2771 return error;
2772
2773 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2774 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2775 handle_t *handle;
2776
2777 /* (user+group)*(old+new) structure, inode write (sb,
2778 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
2779 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2780 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
2781 if (IS_ERR(handle)) {
2782 error = PTR_ERR(handle);
2783 goto err_out;
2784 }
2785 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2786 if (error) {
2787 ext3_journal_stop(handle);
2788 return error;
2789 }
2790 /* Update corresponding info in inode so that everything is in
2791 * one transaction */
2792 if (attr->ia_valid & ATTR_UID)
2793 inode->i_uid = attr->ia_uid;
2794 if (attr->ia_valid & ATTR_GID)
2795 inode->i_gid = attr->ia_gid;
2796 error = ext3_mark_inode_dirty(handle, inode);
2797 ext3_journal_stop(handle);
2798 }
2799
2800 if (S_ISREG(inode->i_mode) &&
2801 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2802 handle_t *handle;
2803
2804 handle = ext3_journal_start(inode, 3);
2805 if (IS_ERR(handle)) {
2806 error = PTR_ERR(handle);
2807 goto err_out;
2808 }
2809
2810 error = ext3_orphan_add(handle, inode);
2811 EXT3_I(inode)->i_disksize = attr->ia_size;
2812 rc = ext3_mark_inode_dirty(handle, inode);
2813 if (!error)
2814 error = rc;
2815 ext3_journal_stop(handle);
2816 }
2817
2818 rc = inode_setattr(inode, attr);
2819
2820 /* If inode_setattr's call to ext3_truncate failed to get a
2821 * transaction handle at all, we need to clean up the in-core
2822 * orphan list manually. */
2823 if (inode->i_nlink)
2824 ext3_orphan_del(NULL, inode);
2825
2826 if (!rc && (ia_valid & ATTR_MODE))
2827 rc = ext3_acl_chmod(inode);
2828
2829err_out:
2830 ext3_std_error(inode->i_sb, error);
2831 if (!error)
2832 error = rc;
2833 return error;
2834}
2835
2836
2837/*
2838 * akpm: how many blocks doth make a writepage()?
2839 *
2840 * With N blocks per page, it may be:
2841 * N data blocks
2842 * 2 indirect block
2843 * 2 dindirect
2844 * 1 tindirect
2845 * N+5 bitmap blocks (from the above)
2846 * N+5 group descriptor summary blocks
2847 * 1 inode block
2848 * 1 superblock.
2849 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2850 *
2851 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2852 *
2853 * With ordered or writeback data it's the same, less the N data blocks.
2854 *
2855 * If the inode's direct blocks can hold an integral number of pages then a
2856 * page cannot straddle two indirect blocks, and we can only touch one indirect
2857 * and dindirect block, and the "5" above becomes "3".
2858 *
2859 * This still overestimates under most circumstances. If we were to pass the
2860 * start and end offsets in here as well we could do block_to_path() on each
2861 * block and work out the exact number of indirects which are touched. Pah.
2862 */
2863
2864static int ext3_writepage_trans_blocks(struct inode *inode)
2865{
2866 int bpp = ext3_journal_blocks_per_page(inode);
2867 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2868 int ret;
2869
2870 if (ext3_should_journal_data(inode))
2871 ret = 3 * (bpp + indirects) + 2;
2872 else
2873 ret = 2 * (bpp + indirects) + 2;
2874
2875#ifdef CONFIG_QUOTA
2876 /* We know that structure was already allocated during DQUOT_INIT so
2877 * we will be updating only the data blocks + inodes */
1f54587b 2878 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
2879#endif
2880
2881 return ret;
2882}
2883
2884/*
2885 * The caller must have previously called ext3_reserve_inode_write().
2886 * Give this, we know that the caller already has write access to iloc->bh.
2887 */
2888int ext3_mark_iloc_dirty(handle_t *handle,
2889 struct inode *inode, struct ext3_iloc *iloc)
2890{
2891 int err = 0;
2892
2893 /* the do_update_inode consumes one bh->b_count */
2894 get_bh(iloc->bh);
2895
2896 /* ext3_do_update_inode() does journal_dirty_metadata */
2897 err = ext3_do_update_inode(handle, inode, iloc);
2898 put_bh(iloc->bh);
2899 return err;
2900}
2901
2902/*
2903 * On success, We end up with an outstanding reference count against
2904 * iloc->bh. This _must_ be cleaned up later.
2905 */
2906
2907int
2908ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2909 struct ext3_iloc *iloc)
2910{
2911 int err = 0;
2912 if (handle) {
2913 err = ext3_get_inode_loc(inode, iloc);
2914 if (!err) {
2915 BUFFER_TRACE(iloc->bh, "get_write_access");
2916 err = ext3_journal_get_write_access(handle, iloc->bh);
2917 if (err) {
2918 brelse(iloc->bh);
2919 iloc->bh = NULL;
2920 }
2921 }
2922 }
2923 ext3_std_error(inode->i_sb, err);
2924 return err;
2925}
2926
2927/*
2928 * akpm: What we do here is to mark the in-core inode as clean
2929 * with respect to inode dirtiness (it may still be data-dirty).
2930 * This means that the in-core inode may be reaped by prune_icache
2931 * without having to perform any I/O. This is a very good thing,
2932 * because *any* task may call prune_icache - even ones which
2933 * have a transaction open against a different journal.
2934 *
2935 * Is this cheating? Not really. Sure, we haven't written the
2936 * inode out, but prune_icache isn't a user-visible syncing function.
2937 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2938 * we start and wait on commits.
2939 *
2940 * Is this efficient/effective? Well, we're being nice to the system
2941 * by cleaning up our inodes proactively so they can be reaped
2942 * without I/O. But we are potentially leaving up to five seconds'
2943 * worth of inodes floating about which prune_icache wants us to
2944 * write out. One way to fix that would be to get prune_icache()
2945 * to do a write_super() to free up some memory. It has the desired
2946 * effect.
2947 */
2948int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2949{
2950 struct ext3_iloc iloc;
2951 int err;
2952
2953 might_sleep();
2954 err = ext3_reserve_inode_write(handle, inode, &iloc);
2955 if (!err)
2956 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2957 return err;
2958}
2959
2960/*
2961 * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2962 *
2963 * We're really interested in the case where a file is being extended.
2964 * i_size has been changed by generic_commit_write() and we thus need
2965 * to include the updated inode in the current transaction.
2966 *
2967 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2968 * are allocated to the file.
2969 *
2970 * If the inode is marked synchronous, we don't honour that here - doing
2971 * so would cause a commit on atime updates, which we don't bother doing.
2972 * We handle synchronous inodes at the highest possible level.
2973 */
2974void ext3_dirty_inode(struct inode *inode)
2975{
2976 handle_t *current_handle = ext3_journal_current_handle();
2977 handle_t *handle;
2978
2979 handle = ext3_journal_start(inode, 2);
2980 if (IS_ERR(handle))
2981 goto out;
2982 if (current_handle &&
2983 current_handle->h_transaction != handle->h_transaction) {
2984 /* This task has a transaction open against a different fs */
2985 printk(KERN_EMERG "%s: transactions do not match!\n",
2986 __FUNCTION__);
2987 } else {
2988 jbd_debug(5, "marking dirty. outer handle=%p\n",
2989 current_handle);
2990 ext3_mark_inode_dirty(handle, inode);
2991 }
2992 ext3_journal_stop(handle);
2993out:
2994 return;
2995}
2996
2997#ifdef AKPM
2998/*
2999 * Bind an inode's backing buffer_head into this transaction, to prevent
3000 * it from being flushed to disk early. Unlike
3001 * ext3_reserve_inode_write, this leaves behind no bh reference and
3002 * returns no iloc structure, so the caller needs to repeat the iloc
3003 * lookup to mark the inode dirty later.
3004 */
3005static inline int
3006ext3_pin_inode(handle_t *handle, struct inode *inode)
3007{
3008 struct ext3_iloc iloc;
3009
3010 int err = 0;
3011 if (handle) {
3012 err = ext3_get_inode_loc(inode, &iloc);
3013 if (!err) {
3014 BUFFER_TRACE(iloc.bh, "get_write_access");
3015 err = journal_get_write_access(handle, iloc.bh);
3016 if (!err)
3017 err = ext3_journal_dirty_metadata(handle,
3018 iloc.bh);
3019 brelse(iloc.bh);
3020 }
3021 }
3022 ext3_std_error(inode->i_sb, err);
3023 return err;
3024}
3025#endif
3026
3027int ext3_change_inode_journal_flag(struct inode *inode, int val)
3028{
3029 journal_t *journal;
3030 handle_t *handle;
3031 int err;
3032
3033 /*
3034 * We have to be very careful here: changing a data block's
3035 * journaling status dynamically is dangerous. If we write a
3036 * data block to the journal, change the status and then delete
3037 * that block, we risk forgetting to revoke the old log record
3038 * from the journal and so a subsequent replay can corrupt data.
3039 * So, first we make sure that the journal is empty and that
3040 * nobody is changing anything.
3041 */
3042
3043 journal = EXT3_JOURNAL(inode);
3044 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3045 return -EROFS;
3046
3047 journal_lock_updates(journal);
3048 journal_flush(journal);
3049
3050 /*
3051 * OK, there are no updates running now, and all cached data is
3052 * synced to disk. We are now in a completely consistent state
3053 * which doesn't have anything in the journal, and we know that
3054 * no filesystem updates are running, so it is safe to modify
3055 * the inode's in-core data-journaling state flag now.
3056 */
3057
3058 if (val)
3059 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3060 else
3061 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3062 ext3_set_aops(inode);
3063
3064 journal_unlock_updates(journal);
3065
3066 /* Finally we can mark the inode as dirty. */
3067
3068 handle = ext3_journal_start(inode, 1);
3069 if (IS_ERR(handle))
3070 return PTR_ERR(handle);
3071
3072 err = ext3_mark_inode_dirty(handle, inode);
3073 handle->h_sync = 1;
3074 ext3_journal_stop(handle);
3075 ext3_std_error(inode->i_sb, err);
3076
3077 return err;
3078}