]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext3/inode.c
[PATCH] x86: do_IRQ(): check irq number
[net-next-2.6.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/pagemap.h>
33#include <linux/quotaops.h>
34#include <linux/string.h>
35#include <linux/buffer_head.h>
36#include <linux/writeback.h>
37#include <linux/mpage.h>
38#include <linux/uio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
d6859bfc 47static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
d6859bfc 52 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
53}
54
d6859bfc
AM
55/*
56 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4
LT
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
d6859bfc 64int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 65 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
66{
67 int err;
68
69 might_sleep();
70
71 BUFFER_TRACE(bh, "enter");
72
73 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
74 "data mode %lx\n",
75 bh, is_metadata, inode->i_mode,
76 test_opt(inode->i_sb, DATA_FLAGS));
77
78 /* Never use the revoke function if we are doing full data
79 * journaling: there is no need to, and a V1 superblock won't
80 * support it. Otherwise, only skip the revoke on un-journaled
81 * data blocks. */
82
83 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84 (!is_metadata && !ext3_should_journal_data(inode))) {
85 if (bh) {
86 BUFFER_TRACE(bh, "call journal_forget");
87 return ext3_journal_forget(handle, bh);
88 }
89 return 0;
90 }
91
92 /*
93 * data!=journal && (is_metadata || should_journal_data(inode))
94 */
95 BUFFER_TRACE(bh, "call ext3_journal_revoke");
96 err = ext3_journal_revoke(handle, blocknr, bh);
97 if (err)
98 ext3_abort(inode->i_sb, __FUNCTION__,
99 "error %d when attempting revoke", err);
100 BUFFER_TRACE(bh, "exit");
101 return err;
102}
103
104/*
d6859bfc 105 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
106 * truncate transaction.
107 */
1da177e4
LT
108static unsigned long blocks_for_truncate(struct inode *inode)
109{
110 unsigned long needed;
111
112 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
114 /* Give ourselves just enough room to cope with inodes in which
115 * i_blocks is corrupt: we've seen disk corruptions in the past
116 * which resulted in random data in an inode which looked enough
117 * like a regular file for ext3 to try to delete it. Things
118 * will go a bit crazy if that happens, but at least we should
119 * try not to panic the whole kernel. */
120 if (needed < 2)
121 needed = 2;
122
123 /* But we need to bound the transaction so we don't overflow the
124 * journal. */
125 if (needed > EXT3_MAX_TRANS_DATA)
126 needed = EXT3_MAX_TRANS_DATA;
127
1f54587b 128 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
129}
130
131/*
132 * Truncate transactions can be complex and absolutely huge. So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
135 *
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit. If
138 * extend fails, we need to propagate the failure up and restart the
139 * transaction in the top-level truncate loop. --sct
140 */
1da177e4
LT
141static handle_t *start_transaction(struct inode *inode)
142{
143 handle_t *result;
144
145 result = ext3_journal_start(inode, blocks_for_truncate(inode));
146 if (!IS_ERR(result))
147 return result;
148
149 ext3_std_error(inode->i_sb, PTR_ERR(result));
150 return result;
151}
152
153/*
154 * Try to extend this transaction for the purposes of truncation.
155 *
156 * Returns 0 if we managed to create more room. If we can't create more
157 * room, and the transaction must be restarted we return 1.
158 */
159static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160{
161 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162 return 0;
163 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164 return 0;
165 return 1;
166}
167
168/*
169 * Restart the transaction associated with *handle. This does a commit,
170 * so before we call here everything must be consistently dirtied against
171 * this transaction.
172 */
173static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174{
175 jbd_debug(2, "restarting handle %p\n", handle);
176 return ext3_journal_restart(handle, blocks_for_truncate(inode));
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
182void ext3_delete_inode (struct inode * inode)
183{
184 handle_t *handle;
185
fef26658
MF
186 truncate_inode_pages(&inode->i_data, 0);
187
1da177e4
LT
188 if (is_bad_inode(inode))
189 goto no_delete;
190
191 handle = start_transaction(inode);
192 if (IS_ERR(handle)) {
d6859bfc
AM
193 /*
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
196 * cleaned up.
197 */
1da177e4
LT
198 ext3_orphan_del(NULL, inode);
199 goto no_delete;
200 }
201
202 if (IS_SYNC(inode))
203 handle->h_sync = 1;
204 inode->i_size = 0;
205 if (inode->i_blocks)
206 ext3_truncate(inode);
207 /*
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
214 */
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
217
218 /*
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
223 * fails.
224 */
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
227 clear_inode(inode);
228 else
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
231 return;
232no_delete:
233 clear_inode(inode); /* We must guarantee clearing of inode... */
234}
235
1da177e4
LT
236typedef struct {
237 __le32 *p;
238 __le32 key;
239 struct buffer_head *bh;
240} Indirect;
241
242static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
243{
244 p->key = *(p->p = v);
245 p->bh = bh;
246}
247
d6859bfc 248static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
249{
250 while (from <= to && from->key == *from->p)
251 from++;
252 return (from > to);
253}
254
255/**
256 * ext3_block_to_path - parse the block number into array of offsets
257 * @inode: inode in question (we are only interested in its superblock)
258 * @i_block: block number to be parsed
259 * @offsets: array to store the offsets in
260 * @boundary: set this non-zero if the referred-to block is likely to be
261 * followed (on disk) by an indirect block.
262 *
263 * To store the locations of file's data ext3 uses a data structure common
264 * for UNIX filesystems - tree of pointers anchored in the inode, with
265 * data blocks at leaves and indirect blocks in intermediate nodes.
266 * This function translates the block number into path in that tree -
267 * return value is the path length and @offsets[n] is the offset of
268 * pointer to (n+1)th node in the nth one. If @block is out of range
269 * (negative or too large) warning is printed and zero returned.
270 *
271 * Note: function doesn't find node addresses, so no IO is needed. All
272 * we need to know is the capacity of indirect blocks (taken from the
273 * inode->i_sb).
274 */
275
276/*
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
283 * get there at all.
284 */
285
286static int ext3_block_to_path(struct inode *inode,
287 long i_block, int offsets[4], int *boundary)
288{
289 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291 const long direct_blocks = EXT3_NDIR_BLOCKS,
292 indirect_blocks = ptrs,
293 double_blocks = (1 << (ptrs_bits * 2));
294 int n = 0;
295 int final = 0;
296
297 if (i_block < 0) {
298 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299 } else if (i_block < direct_blocks) {
300 offsets[n++] = i_block;
301 final = direct_blocks;
302 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
303 offsets[n++] = EXT3_IND_BLOCK;
304 offsets[n++] = i_block;
305 final = ptrs;
306 } else if ((i_block -= indirect_blocks) < double_blocks) {
307 offsets[n++] = EXT3_DIND_BLOCK;
308 offsets[n++] = i_block >> ptrs_bits;
309 offsets[n++] = i_block & (ptrs - 1);
310 final = ptrs;
311 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312 offsets[n++] = EXT3_TIND_BLOCK;
313 offsets[n++] = i_block >> (ptrs_bits * 2);
314 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315 offsets[n++] = i_block & (ptrs - 1);
316 final = ptrs;
317 } else {
d6859bfc 318 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
319 }
320 if (boundary)
89747d36 321 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
322 return n;
323}
324
325/**
326 * ext3_get_branch - read the chain of indirect blocks leading to data
327 * @inode: inode in question
328 * @depth: depth of the chain (1 - direct pointer, etc.)
329 * @offsets: offsets of pointers in inode/indirect blocks
330 * @chain: place to store the result
331 * @err: here we store the error value
332 *
333 * Function fills the array of triples <key, p, bh> and returns %NULL
334 * if everything went OK or the pointer to the last filled triple
335 * (incomplete one) otherwise. Upon the return chain[i].key contains
336 * the number of (i+1)-th block in the chain (as it is stored in memory,
337 * i.e. little-endian 32-bit), chain[i].p contains the address of that
338 * number (it points into struct inode for i==0 and into the bh->b_data
339 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 * block for i>0 and NULL for i==0. In other words, it holds the block
341 * numbers of the chain, addresses they were taken from (and where we can
342 * verify that chain did not change) and buffer_heads hosting these
343 * numbers.
344 *
345 * Function stops when it stumbles upon zero pointer (absent block)
346 * (pointer to last triple returned, *@err == 0)
347 * or when it gets an IO error reading an indirect block
348 * (ditto, *@err == -EIO)
349 * or when it notices that chain had been changed while it was reading
350 * (ditto, *@err == -EAGAIN)
351 * or when it reads all @depth-1 indirect blocks successfully and finds
352 * the whole chain, all way to the data (returns %NULL, *err == 0).
353 */
354static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355 Indirect chain[4], int *err)
356{
357 struct super_block *sb = inode->i_sb;
358 Indirect *p = chain;
359 struct buffer_head *bh;
360
361 *err = 0;
362 /* i_data is not going away, no lock needed */
363 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
364 if (!p->key)
365 goto no_block;
366 while (--depth) {
367 bh = sb_bread(sb, le32_to_cpu(p->key));
368 if (!bh)
369 goto failure;
370 /* Reader: pointers */
371 if (!verify_chain(chain, p))
372 goto changed;
373 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374 /* Reader: end */
375 if (!p->key)
376 goto no_block;
377 }
378 return NULL;
379
380changed:
381 brelse(bh);
382 *err = -EAGAIN;
383 goto no_block;
384failure:
385 *err = -EIO;
386no_block:
387 return p;
388}
389
390/**
391 * ext3_find_near - find a place for allocation with sufficient locality
392 * @inode: owner
393 * @ind: descriptor of indirect block.
394 *
395 * This function returns the prefered place for block allocation.
396 * It is used when heuristic for sequential allocation fails.
397 * Rules are:
398 * + if there is a block to the left of our position - allocate near it.
399 * + if pointer will live in indirect block - allocate near that block.
400 * + if pointer will live in inode - allocate in the same
401 * cylinder group.
402 *
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group. The PID is used here so that functionally related
406 * files will be close-by on-disk.
407 *
408 * Caller must make sure that @ind is valid and will stay that way.
409 */
43d23f90 410static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
411{
412 struct ext3_inode_info *ei = EXT3_I(inode);
413 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414 __le32 *p;
43d23f90
MC
415 ext3_fsblk_t bg_start;
416 ext3_grpblk_t colour;
1da177e4
LT
417
418 /* Try to find previous block */
d6859bfc 419 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
420 if (*p)
421 return le32_to_cpu(*p);
d6859bfc 422 }
1da177e4
LT
423
424 /* No such thing, so let's try location of indirect block */
425 if (ind->bh)
426 return ind->bh->b_blocknr;
427
428 /*
d6859bfc
AM
429 * It is going to be referred to from the inode itself? OK, just put it
430 * into the same cylinder group then.
1da177e4 431 */
43d23f90 432 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
433 colour = (current->pid % 16) *
434 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435 return bg_start + colour;
436}
437
438/**
439 * ext3_find_goal - find a prefered place for allocation.
440 * @inode: owner
441 * @block: block we want
442 * @chain: chain of indirect blocks
443 * @partial: pointer to the last triple within a chain
444 * @goal: place to store the result.
445 *
446 * Normally this function find the prefered place for block allocation,
fe55c452 447 * stores it in *@goal and returns zero.
1da177e4
LT
448 */
449
43d23f90 450static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fe55c452 451 Indirect chain[4], Indirect *partial)
1da177e4 452{
d6859bfc
AM
453 struct ext3_block_alloc_info *block_i;
454
455 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
456
457 /*
458 * try the heuristic for sequential allocation,
459 * failing that at least try to get decent locality.
460 */
461 if (block_i && (block == block_i->last_alloc_logical_block + 1)
462 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 463 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
464 }
465
fe55c452 466 return ext3_find_near(inode, partial);
1da177e4 467}
d6859bfc 468
b47b2478
MC
469/**
470 * ext3_blks_to_allocate: Look up the block map and count the number
471 * of direct blocks need to be allocated for the given branch.
472 *
473 * @branch: chain of indirect blocks
474 * @k: number of blocks need for indirect blocks
475 * @blks: number of data blocks to be mapped.
476 * @blocks_to_boundary: the offset in the indirect block
477 *
478 * return the total number of blocks to be allocate, including the
479 * direct and indirect blocks.
480 */
d6859bfc 481static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
482 int blocks_to_boundary)
483{
484 unsigned long count = 0;
485
486 /*
487 * Simple case, [t,d]Indirect block(s) has not allocated yet
488 * then it's clear blocks on that path have not allocated
489 */
490 if (k > 0) {
d6859bfc 491 /* right now we don't handle cross boundary allocation */
b47b2478
MC
492 if (blks < blocks_to_boundary + 1)
493 count += blks;
494 else
495 count += blocks_to_boundary + 1;
496 return count;
497 }
498
499 count++;
500 while (count < blks && count <= blocks_to_boundary &&
501 le32_to_cpu(*(branch[0].p + count)) == 0) {
502 count++;
503 }
504 return count;
505}
506
507/**
508 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
509 * @indirect_blks: the number of blocks need to allocate for indirect
510 * blocks
511 *
512 * @new_blocks: on return it will store the new block numbers for
513 * the indirect blocks(if needed) and the first direct block,
514 * @blks: on return it will store the total number of allocated
515 * direct blocks
516 */
517static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
518 ext3_fsblk_t goal, int indirect_blks, int blks,
519 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
520{
521 int target, i;
522 unsigned long count = 0;
523 int index = 0;
43d23f90 524 ext3_fsblk_t current_block = 0;
b47b2478
MC
525 int ret = 0;
526
527 /*
528 * Here we try to allocate the requested multiple blocks at once,
529 * on a best-effort basis.
530 * To build a branch, we should allocate blocks for
531 * the indirect blocks(if not allocated yet), and at least
532 * the first direct block of this branch. That's the
533 * minimum number of blocks need to allocate(required)
534 */
535 target = blks + indirect_blks;
536
537 while (1) {
538 count = target;
539 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 540 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
541 if (*err)
542 goto failed_out;
543
544 target -= count;
545 /* allocate blocks for indirect blocks */
546 while (index < indirect_blks && count) {
547 new_blocks[index++] = current_block++;
548 count--;
549 }
550
551 if (count > 0)
552 break;
553 }
554
555 /* save the new block number for the first direct block */
556 new_blocks[index] = current_block;
557
558 /* total number of blocks allocated for direct blocks */
559 ret = count;
560 *err = 0;
561 return ret;
562failed_out:
563 for (i = 0; i <index; i++)
564 ext3_free_blocks(handle, inode, new_blocks[i], 1);
565 return ret;
566}
1da177e4
LT
567
568/**
569 * ext3_alloc_branch - allocate and set up a chain of blocks.
570 * @inode: owner
b47b2478
MC
571 * @indirect_blks: number of allocated indirect blocks
572 * @blks: number of allocated direct blocks
1da177e4
LT
573 * @offsets: offsets (in the blocks) to store the pointers to next.
574 * @branch: place to store the chain in.
575 *
b47b2478 576 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
577 * links them into chain and (if we are synchronous) writes them to disk.
578 * In other words, it prepares a branch that can be spliced onto the
579 * inode. It stores the information about that chain in the branch[], in
580 * the same format as ext3_get_branch() would do. We are calling it after
581 * we had read the existing part of chain and partial points to the last
582 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 583 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
584 * place chain is disconnected - *branch->p is still zero (we did not
585 * set the last link), but branch->key contains the number that should
586 * be placed into *branch->p to fill that gap.
587 *
588 * If allocation fails we free all blocks we've allocated (and forget
589 * their buffer_heads) and return the error value the from failed
590 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591 * as described above and return 0.
592 */
1da177e4 593static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 594 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 595 int *offsets, Indirect *branch)
1da177e4
LT
596{
597 int blocksize = inode->i_sb->s_blocksize;
b47b2478 598 int i, n = 0;
1da177e4 599 int err = 0;
b47b2478
MC
600 struct buffer_head *bh;
601 int num;
43d23f90
MC
602 ext3_fsblk_t new_blocks[4];
603 ext3_fsblk_t current_block;
1da177e4 604
b47b2478
MC
605 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
606 *blks, new_blocks, &err);
607 if (err)
608 return err;
1da177e4 609
b47b2478
MC
610 branch[0].key = cpu_to_le32(new_blocks[0]);
611 /*
612 * metadata blocks and data blocks are allocated.
613 */
614 for (n = 1; n <= indirect_blks; n++) {
615 /*
616 * Get buffer_head for parent block, zero it out
617 * and set the pointer to new one, then send
618 * parent to disk.
619 */
620 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621 branch[n].bh = bh;
622 lock_buffer(bh);
623 BUFFER_TRACE(bh, "call get_create_access");
624 err = ext3_journal_get_create_access(handle, bh);
625 if (err) {
1da177e4 626 unlock_buffer(bh);
b47b2478
MC
627 brelse(bh);
628 goto failed;
629 }
1da177e4 630
b47b2478
MC
631 memset(bh->b_data, 0, blocksize);
632 branch[n].p = (__le32 *) bh->b_data + offsets[n];
633 branch[n].key = cpu_to_le32(new_blocks[n]);
634 *branch[n].p = branch[n].key;
635 if ( n == indirect_blks) {
636 current_block = new_blocks[n];
637 /*
638 * End of chain, update the last new metablock of
639 * the chain to point to the new allocated
640 * data blocks numbers
641 */
642 for (i=1; i < num; i++)
643 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 644 }
b47b2478
MC
645 BUFFER_TRACE(bh, "marking uptodate");
646 set_buffer_uptodate(bh);
647 unlock_buffer(bh);
1da177e4 648
b47b2478
MC
649 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
650 err = ext3_journal_dirty_metadata(handle, bh);
651 if (err)
652 goto failed;
653 }
654 *blks = num;
655 return err;
656failed:
1da177e4 657 /* Allocation failed, free what we already allocated */
b47b2478 658 for (i = 1; i <= n ; i++) {
1da177e4
LT
659 BUFFER_TRACE(branch[i].bh, "call journal_forget");
660 ext3_journal_forget(handle, branch[i].bh);
661 }
b47b2478
MC
662 for (i = 0; i <indirect_blks; i++)
663 ext3_free_blocks(handle, inode, new_blocks[i], 1);
664
665 ext3_free_blocks(handle, inode, new_blocks[i], num);
666
1da177e4
LT
667 return err;
668}
669
670/**
d6859bfc
AM
671 * ext3_splice_branch - splice the allocated branch onto inode.
672 * @inode: owner
673 * @block: (logical) number of block we are adding
674 * @chain: chain of indirect blocks (with a missing link - see
675 * ext3_alloc_branch)
676 * @where: location of missing link
677 * @num: number of indirect blocks we are adding
678 * @blks: number of direct blocks we are adding
679 *
680 * This function fills the missing link and does all housekeeping needed in
681 * inode (->i_blocks, etc.). In case of success we end up with the full
682 * chain to new block and return 0.
1da177e4 683 */
d6859bfc
AM
684static int ext3_splice_branch(handle_t *handle, struct inode *inode,
685 long block, Indirect *where, int num, int blks)
1da177e4
LT
686{
687 int i;
688 int err = 0;
d6859bfc 689 struct ext3_block_alloc_info *block_i;
43d23f90 690 ext3_fsblk_t current_block;
d6859bfc
AM
691
692 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
693 /*
694 * If we're splicing into a [td]indirect block (as opposed to the
695 * inode) then we need to get write access to the [td]indirect block
696 * before the splice.
697 */
698 if (where->bh) {
699 BUFFER_TRACE(where->bh, "get_write_access");
700 err = ext3_journal_get_write_access(handle, where->bh);
701 if (err)
702 goto err_out;
703 }
1da177e4
LT
704 /* That's it */
705
706 *where->p = where->key;
d6859bfc
AM
707
708 /*
709 * Update the host buffer_head or inode to point to more just allocated
710 * direct blocks blocks
711 */
b47b2478 712 if (num == 0 && blks > 1) {
5dea5176 713 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
714 for (i = 1; i < blks; i++)
715 *(where->p + i ) = cpu_to_le32(current_block++);
716 }
1da177e4
LT
717
718 /*
719 * update the most recently allocated logical & physical block
720 * in i_block_alloc_info, to assist find the proper goal block for next
721 * allocation
722 */
723 if (block_i) {
b47b2478 724 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 725 block_i->last_alloc_physical_block =
5dea5176 726 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
727 }
728
729 /* We are done with atomic stuff, now do the rest of housekeeping */
730
731 inode->i_ctime = CURRENT_TIME_SEC;
732 ext3_mark_inode_dirty(handle, inode);
733
734 /* had we spliced it onto indirect block? */
735 if (where->bh) {
736 /*
d6859bfc 737 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
738 * altered the inode. Note however that if it is being spliced
739 * onto an indirect block at the very end of the file (the
740 * file is growing) then we *will* alter the inode to reflect
741 * the new i_size. But that is not done here - it is done in
742 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743 */
744 jbd_debug(5, "splicing indirect only\n");
745 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
746 err = ext3_journal_dirty_metadata(handle, where->bh);
747 if (err)
748 goto err_out;
749 } else {
750 /*
751 * OK, we spliced it into the inode itself on a direct block.
752 * Inode was dirtied above.
753 */
754 jbd_debug(5, "splicing direct\n");
755 }
756 return err;
757
1da177e4 758err_out:
b47b2478 759 for (i = 1; i <= num; i++) {
1da177e4
LT
760 BUFFER_TRACE(where[i].bh, "call journal_forget");
761 ext3_journal_forget(handle, where[i].bh);
d6859bfc 762 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 763 }
b47b2478
MC
764 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
1da177e4
LT
766 return err;
767}
768
769/*
770 * Allocation strategy is simple: if we have to allocate something, we will
771 * have to go the whole way to leaf. So let's do it before attaching anything
772 * to tree, set linkage between the newborn blocks, write them if sync is
773 * required, recheck the path, free and repeat if check fails, otherwise
774 * set the last missing link (that will protect us from any truncate-generated
775 * removals - all blocks on the path are immune now) and possibly force the
776 * write on the parent block.
777 * That has a nice additional property: no special recovery from the failed
778 * allocations is needed - we simply release blocks and do not touch anything
779 * reachable from inode.
780 *
d6859bfc 781 * `handle' can be NULL if create == 0.
1da177e4
LT
782 *
783 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
784 * return > 0, # of blocks mapped or allocated.
785 * return = 0, if plain lookup failed.
786 * return < 0, error case.
1da177e4 787 */
d6859bfc
AM
788int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
789 sector_t iblock, unsigned long maxblocks,
790 struct buffer_head *bh_result,
89747d36 791 int create, int extend_disksize)
1da177e4
LT
792{
793 int err = -EIO;
794 int offsets[4];
795 Indirect chain[4];
796 Indirect *partial;
43d23f90 797 ext3_fsblk_t goal;
b47b2478 798 int indirect_blks;
89747d36
MC
799 int blocks_to_boundary = 0;
800 int depth;
1da177e4 801 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 802 int count = 0;
43d23f90 803 ext3_fsblk_t first_block = 0;
89747d36 804
1da177e4
LT
805
806 J_ASSERT(handle != NULL || create == 0);
d6859bfc 807 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
808
809 if (depth == 0)
810 goto out;
811
1da177e4
LT
812 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813
814 /* Simplest case - block found, no allocation needed */
815 if (!partial) {
5dea5176 816 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 817 clear_buffer_new(bh_result);
89747d36
MC
818 count++;
819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 821 ext3_fsblk_t blk;
5dea5176 822
89747d36
MC
823 if (!verify_chain(chain, partial)) {
824 /*
825 * Indirect block might be removed by
826 * truncate while we were reading it.
827 * Handling of that case: forget what we've
828 * got now. Flag the err as EAGAIN, so it
829 * will reread.
830 */
831 err = -EAGAIN;
832 count = 0;
833 break;
834 }
5dea5176
MC
835 blk = le32_to_cpu(*(chain[depth-1].p + count));
836
837 if (blk == first_block + count)
89747d36
MC
838 count++;
839 else
840 break;
841 }
842 if (err != -EAGAIN)
843 goto got_it;
1da177e4
LT
844 }
845
846 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
847 if (!create || err == -EIO)
848 goto cleanup;
849
97461518 850 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
851
852 /*
853 * If the indirect block is missing while we are reading
854 * the chain(ext3_get_branch() returns -EAGAIN err), or
855 * if the chain has been changed after we grab the semaphore,
856 * (either because another process truncated this branch, or
857 * another get_block allocated this branch) re-grab the chain to see if
858 * the request block has been allocated or not.
859 *
860 * Since we already block the truncate/other get_block
861 * at this point, we will have the current copy of the chain when we
862 * splice the branch into the tree.
863 */
864 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 865 while (partial > chain) {
1da177e4
LT
866 brelse(partial->bh);
867 partial--;
868 }
fe55c452
MC
869 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870 if (!partial) {
89747d36 871 count++;
97461518 872 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
873 if (err)
874 goto cleanup;
875 clear_buffer_new(bh_result);
876 goto got_it;
877 }
1da177e4
LT
878 }
879
880 /*
fe55c452
MC
881 * Okay, we need to do block allocation. Lazily initialize the block
882 * allocation info here if necessary
883 */
884 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 885 ext3_init_block_alloc_info(inode);
1da177e4 886
fe55c452 887 goal = ext3_find_goal(inode, iblock, chain, partial);
1da177e4 888
b47b2478
MC
889 /* the number of blocks need to allocate for [d,t]indirect blocks */
890 indirect_blks = (chain + depth) - partial - 1;
1da177e4 891
b47b2478
MC
892 /*
893 * Next look up the indirect map to count the totoal number of
894 * direct blocks to allocate for this branch.
895 */
896 count = ext3_blks_to_allocate(partial, indirect_blks,
897 maxblocks, blocks_to_boundary);
1da177e4
LT
898 /*
899 * Block out ext3_truncate while we alter the tree
900 */
b47b2478 901 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 902 offsets + (partial - chain), partial);
1da177e4 903
fe55c452
MC
904 /*
905 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
906 * on the new chain if there is a failure, but that risks using
907 * up transaction credits, especially for bitmaps where the
908 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
909 * may need to return -EAGAIN upwards in the worst case. --sct
910 */
1da177e4 911 if (!err)
b47b2478
MC
912 err = ext3_splice_branch(handle, inode, iblock,
913 partial, indirect_blks, count);
fe55c452 914 /*
97461518 915 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
916 * protect it if you're about to implement concurrent
917 * ext3_get_block() -bzzz
918 */
1da177e4
LT
919 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920 ei->i_disksize = inode->i_size;
97461518 921 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
922 if (err)
923 goto cleanup;
924
925 set_buffer_new(bh_result);
fe55c452
MC
926got_it:
927 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
89747d36 928 if (blocks_to_boundary == 0)
fe55c452 929 set_buffer_boundary(bh_result);
89747d36 930 err = count;
fe55c452
MC
931 /* Clean up and exit */
932 partial = chain + depth - 1; /* the whole chain */
933cleanup:
1da177e4 934 while (partial > chain) {
fe55c452 935 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
936 brelse(partial->bh);
937 partial--;
938 }
fe55c452
MC
939 BUFFER_TRACE(bh_result, "returned");
940out:
941 return err;
1da177e4
LT
942}
943
1da177e4
LT
944#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
945
f91a2ad2
BP
946static int ext3_get_block(struct inode *inode, sector_t iblock,
947 struct buffer_head *bh_result, int create)
1da177e4
LT
948{
949 handle_t *handle = journal_current_handle();
950 int ret = 0;
1d8fa7a2 951 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 952
89747d36 953 if (!create)
1da177e4
LT
954 goto get_block; /* A read */
955
89747d36
MC
956 if (max_blocks == 1)
957 goto get_block; /* A single block get */
958
1da177e4
LT
959 if (handle->h_transaction->t_state == T_LOCKED) {
960 /*
961 * Huge direct-io writes can hold off commits for long
962 * periods of time. Let this commit run.
963 */
964 ext3_journal_stop(handle);
965 handle = ext3_journal_start(inode, DIO_CREDITS);
966 if (IS_ERR(handle))
967 ret = PTR_ERR(handle);
968 goto get_block;
969 }
970
971 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
972 /*
973 * Getting low on buffer credits...
974 */
975 ret = ext3_journal_extend(handle, DIO_CREDITS);
976 if (ret > 0) {
977 /*
978 * Couldn't extend the transaction. Start a new one.
979 */
980 ret = ext3_journal_restart(handle, DIO_CREDITS);
981 }
982 }
983
984get_block:
89747d36
MC
985 if (ret == 0) {
986 ret = ext3_get_blocks_handle(handle, inode, iblock,
987 max_blocks, bh_result, create, 0);
988 if (ret > 0) {
989 bh_result->b_size = (ret << inode->i_blkbits);
990 ret = 0;
991 }
992 }
1da177e4
LT
993 return ret;
994}
995
1da177e4
LT
996/*
997 * `handle' can be NULL if create is zero
998 */
d6859bfc
AM
999struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1000 long block, int create, int *errp)
1da177e4
LT
1001{
1002 struct buffer_head dummy;
1003 int fatal = 0, err;
1004
1005 J_ASSERT(handle != NULL || create == 0);
1006
1007 dummy.b_state = 0;
1008 dummy.b_blocknr = -1000;
1009 buffer_trace_init(&dummy.b_history);
89747d36
MC
1010 err = ext3_get_blocks_handle(handle, inode, block, 1,
1011 &dummy, create, 1);
1012 if (err == 1) {
1013 err = 0;
1014 } else if (err >= 0) {
1015 WARN_ON(1);
1016 err = -EIO;
1017 }
1018 *errp = err;
1019 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1020 struct buffer_head *bh;
1021 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1022 if (!bh) {
1023 *errp = -EIO;
1024 goto err;
1025 }
1da177e4
LT
1026 if (buffer_new(&dummy)) {
1027 J_ASSERT(create != 0);
1028 J_ASSERT(handle != 0);
1029
d6859bfc
AM
1030 /*
1031 * Now that we do not always journal data, we should
1032 * keep in mind whether this should always journal the
1033 * new buffer as metadata. For now, regular file
1034 * writes use ext3_get_block instead, so it's not a
1035 * problem.
1036 */
1da177e4
LT
1037 lock_buffer(bh);
1038 BUFFER_TRACE(bh, "call get_create_access");
1039 fatal = ext3_journal_get_create_access(handle, bh);
1040 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1041 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1042 set_buffer_uptodate(bh);
1043 }
1044 unlock_buffer(bh);
1045 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1046 err = ext3_journal_dirty_metadata(handle, bh);
1047 if (!fatal)
1048 fatal = err;
1049 } else {
1050 BUFFER_TRACE(bh, "not a new buffer");
1051 }
1052 if (fatal) {
1053 *errp = fatal;
1054 brelse(bh);
1055 bh = NULL;
1056 }
1057 return bh;
1058 }
2973dfdb 1059err:
1da177e4
LT
1060 return NULL;
1061}
1062
d6859bfc 1063struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1064 int block, int create, int *err)
1065{
1066 struct buffer_head * bh;
1067
1068 bh = ext3_getblk(handle, inode, block, create, err);
1069 if (!bh)
1070 return bh;
1071 if (buffer_uptodate(bh))
1072 return bh;
1073 ll_rw_block(READ, 1, &bh);
1074 wait_on_buffer(bh);
1075 if (buffer_uptodate(bh))
1076 return bh;
1077 put_bh(bh);
1078 *err = -EIO;
1079 return NULL;
1080}
1081
1082static int walk_page_buffers( handle_t *handle,
1083 struct buffer_head *head,
1084 unsigned from,
1085 unsigned to,
1086 int *partial,
1087 int (*fn)( handle_t *handle,
1088 struct buffer_head *bh))
1089{
1090 struct buffer_head *bh;
1091 unsigned block_start, block_end;
1092 unsigned blocksize = head->b_size;
1093 int err, ret = 0;
1094 struct buffer_head *next;
1095
1096 for ( bh = head, block_start = 0;
1097 ret == 0 && (bh != head || !block_start);
1098 block_start = block_end, bh = next)
1099 {
1100 next = bh->b_this_page;
1101 block_end = block_start + blocksize;
1102 if (block_end <= from || block_start >= to) {
1103 if (partial && !buffer_uptodate(bh))
1104 *partial = 1;
1105 continue;
1106 }
1107 err = (*fn)(handle, bh);
1108 if (!ret)
1109 ret = err;
1110 }
1111 return ret;
1112}
1113
1114/*
1115 * To preserve ordering, it is essential that the hole instantiation and
1116 * the data write be encapsulated in a single transaction. We cannot
1117 * close off a transaction and start a new one between the ext3_get_block()
1118 * and the commit_write(). So doing the journal_start at the start of
1119 * prepare_write() is the right place.
1120 *
1121 * Also, this function can nest inside ext3_writepage() ->
1122 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1123 * has generated enough buffer credits to do the whole page. So we won't
1124 * block on the journal in that case, which is good, because the caller may
1125 * be PF_MEMALLOC.
1126 *
1127 * By accident, ext3 can be reentered when a transaction is open via
1128 * quota file writes. If we were to commit the transaction while thus
1129 * reentered, there can be a deadlock - we would be holding a quota
1130 * lock, and the commit would never complete if another thread had a
1131 * transaction open and was blocking on the quota lock - a ranking
1132 * violation.
1133 *
1134 * So what we do is to rely on the fact that journal_stop/journal_start
1135 * will _not_ run commit under these circumstances because handle->h_ref
1136 * is elevated. We'll still have enough credits for the tiny quotafile
1137 * write.
1138 */
d6859bfc
AM
1139static int do_journal_get_write_access(handle_t *handle,
1140 struct buffer_head *bh)
1da177e4
LT
1141{
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
1144 return ext3_journal_get_write_access(handle, bh);
1145}
1146
1147static int ext3_prepare_write(struct file *file, struct page *page,
1148 unsigned from, unsigned to)
1149{
1150 struct inode *inode = page->mapping->host;
1151 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1152 handle_t *handle;
1153 int retries = 0;
1154
1155retry:
1156 handle = ext3_journal_start(inode, needed_blocks);
1157 if (IS_ERR(handle)) {
1158 ret = PTR_ERR(handle);
1159 goto out;
1160 }
1161 if (test_opt(inode->i_sb, NOBH))
1162 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1163 else
1164 ret = block_prepare_write(page, from, to, ext3_get_block);
1165 if (ret)
1166 goto prepare_write_failed;
1167
1168 if (ext3_should_journal_data(inode)) {
1169 ret = walk_page_buffers(handle, page_buffers(page),
1170 from, to, NULL, do_journal_get_write_access);
1171 }
1172prepare_write_failed:
1173 if (ret)
1174 ext3_journal_stop(handle);
1175 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1176 goto retry;
1177out:
1178 return ret;
1179}
1180
d6859bfc 1181int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1182{
1183 int err = journal_dirty_data(handle, bh);
1184 if (err)
1185 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1186 bh, handle,err);
1187 return err;
1188}
1189
1190/* For commit_write() in data=journal mode */
1191static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1192{
1193 if (!buffer_mapped(bh) || buffer_freed(bh))
1194 return 0;
1195 set_buffer_uptodate(bh);
1196 return ext3_journal_dirty_metadata(handle, bh);
1197}
1198
1199/*
1200 * We need to pick up the new inode size which generic_commit_write gave us
1201 * `file' can be NULL - eg, when called from page_symlink().
1202 *
1203 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1204 * buffers are managed internally.
1205 */
1da177e4
LT
1206static int ext3_ordered_commit_write(struct file *file, struct page *page,
1207 unsigned from, unsigned to)
1208{
1209 handle_t *handle = ext3_journal_current_handle();
1210 struct inode *inode = page->mapping->host;
1211 int ret = 0, ret2;
1212
1213 ret = walk_page_buffers(handle, page_buffers(page),
1214 from, to, NULL, ext3_journal_dirty_data);
1215
1216 if (ret == 0) {
1217 /*
1218 * generic_commit_write() will run mark_inode_dirty() if i_size
1219 * changes. So let's piggyback the i_disksize mark_inode_dirty
1220 * into that.
1221 */
1222 loff_t new_i_size;
1223
1224 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1225 if (new_i_size > EXT3_I(inode)->i_disksize)
1226 EXT3_I(inode)->i_disksize = new_i_size;
1227 ret = generic_commit_write(file, page, from, to);
1228 }
1229 ret2 = ext3_journal_stop(handle);
1230 if (!ret)
1231 ret = ret2;
1232 return ret;
1233}
1234
1235static int ext3_writeback_commit_write(struct file *file, struct page *page,
1236 unsigned from, unsigned to)
1237{
1238 handle_t *handle = ext3_journal_current_handle();
1239 struct inode *inode = page->mapping->host;
1240 int ret = 0, ret2;
1241 loff_t new_i_size;
1242
1243 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1244 if (new_i_size > EXT3_I(inode)->i_disksize)
1245 EXT3_I(inode)->i_disksize = new_i_size;
1246
1247 if (test_opt(inode->i_sb, NOBH))
1248 ret = nobh_commit_write(file, page, from, to);
1249 else
1250 ret = generic_commit_write(file, page, from, to);
1251
1252 ret2 = ext3_journal_stop(handle);
1253 if (!ret)
1254 ret = ret2;
1255 return ret;
1256}
1257
1258static int ext3_journalled_commit_write(struct file *file,
1259 struct page *page, unsigned from, unsigned to)
1260{
1261 handle_t *handle = ext3_journal_current_handle();
1262 struct inode *inode = page->mapping->host;
1263 int ret = 0, ret2;
1264 int partial = 0;
1265 loff_t pos;
1266
1267 /*
1268 * Here we duplicate the generic_commit_write() functionality
1269 */
1270 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1271
1272 ret = walk_page_buffers(handle, page_buffers(page), from,
1273 to, &partial, commit_write_fn);
1274 if (!partial)
1275 SetPageUptodate(page);
1276 if (pos > inode->i_size)
1277 i_size_write(inode, pos);
1278 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1279 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1280 EXT3_I(inode)->i_disksize = inode->i_size;
1281 ret2 = ext3_mark_inode_dirty(handle, inode);
1282 if (!ret)
1283 ret = ret2;
1284 }
1285 ret2 = ext3_journal_stop(handle);
1286 if (!ret)
1287 ret = ret2;
1288 return ret;
1289}
1290
1291/*
1292 * bmap() is special. It gets used by applications such as lilo and by
1293 * the swapper to find the on-disk block of a specific piece of data.
1294 *
1295 * Naturally, this is dangerous if the block concerned is still in the
1296 * journal. If somebody makes a swapfile on an ext3 data-journaling
1297 * filesystem and enables swap, then they may get a nasty shock when the
1298 * data getting swapped to that swapfile suddenly gets overwritten by
1299 * the original zero's written out previously to the journal and
1300 * awaiting writeback in the kernel's buffer cache.
1301 *
1302 * So, if we see any bmap calls here on a modified, data-journaled file,
1303 * take extra steps to flush any blocks which might be in the cache.
1304 */
1305static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1306{
1307 struct inode *inode = mapping->host;
1308 journal_t *journal;
1309 int err;
1310
1311 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1312 /*
1313 * This is a REALLY heavyweight approach, but the use of
1314 * bmap on dirty files is expected to be extremely rare:
1315 * only if we run lilo or swapon on a freshly made file
1316 * do we expect this to happen.
1317 *
1318 * (bmap requires CAP_SYS_RAWIO so this does not
1319 * represent an unprivileged user DOS attack --- we'd be
1320 * in trouble if mortal users could trigger this path at
1321 * will.)
1322 *
1323 * NB. EXT3_STATE_JDATA is not set on files other than
1324 * regular files. If somebody wants to bmap a directory
1325 * or symlink and gets confused because the buffer
1326 * hasn't yet been flushed to disk, they deserve
1327 * everything they get.
1328 */
1329
1330 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1331 journal = EXT3_JOURNAL(inode);
1332 journal_lock_updates(journal);
1333 err = journal_flush(journal);
1334 journal_unlock_updates(journal);
1335
1336 if (err)
1337 return 0;
1338 }
1339
1340 return generic_block_bmap(mapping,block,ext3_get_block);
1341}
1342
1343static int bget_one(handle_t *handle, struct buffer_head *bh)
1344{
1345 get_bh(bh);
1346 return 0;
1347}
1348
1349static int bput_one(handle_t *handle, struct buffer_head *bh)
1350{
1351 put_bh(bh);
1352 return 0;
1353}
1354
1355static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1356{
1357 if (buffer_mapped(bh))
1358 return ext3_journal_dirty_data(handle, bh);
1359 return 0;
1360}
1361
1362/*
1363 * Note that we always start a transaction even if we're not journalling
1364 * data. This is to preserve ordering: any hole instantiation within
1365 * __block_write_full_page -> ext3_get_block() should be journalled
1366 * along with the data so we don't crash and then get metadata which
1367 * refers to old data.
1368 *
1369 * In all journalling modes block_write_full_page() will start the I/O.
1370 *
1371 * Problem:
1372 *
1373 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1374 * ext3_writepage()
1375 *
1376 * Similar for:
1377 *
1378 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1379 *
1380 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1381 * lock_journal and i_truncate_mutex.
1da177e4
LT
1382 *
1383 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1384 * allocations fail.
1385 *
1386 * 16May01: If we're reentered then journal_current_handle() will be
1387 * non-zero. We simply *return*.
1388 *
1389 * 1 July 2001: @@@ FIXME:
1390 * In journalled data mode, a data buffer may be metadata against the
1391 * current transaction. But the same file is part of a shared mapping
1392 * and someone does a writepage() on it.
1393 *
1394 * We will move the buffer onto the async_data list, but *after* it has
1395 * been dirtied. So there's a small window where we have dirty data on
1396 * BJ_Metadata.
1397 *
1398 * Note that this only applies to the last partial page in the file. The
1399 * bit which block_write_full_page() uses prepare/commit for. (That's
1400 * broken code anyway: it's wrong for msync()).
1401 *
1402 * It's a rare case: affects the final partial page, for journalled data
1403 * where the file is subject to bith write() and writepage() in the same
1404 * transction. To fix it we'll need a custom block_write_full_page().
1405 * We'll probably need that anyway for journalling writepage() output.
1406 *
1407 * We don't honour synchronous mounts for writepage(). That would be
1408 * disastrous. Any write() or metadata operation will sync the fs for
1409 * us.
1410 *
1411 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1412 * we don't need to open a transaction here.
1413 */
1414static int ext3_ordered_writepage(struct page *page,
d6859bfc 1415 struct writeback_control *wbc)
1da177e4
LT
1416{
1417 struct inode *inode = page->mapping->host;
1418 struct buffer_head *page_bufs;
1419 handle_t *handle = NULL;
1420 int ret = 0;
1421 int err;
1422
1423 J_ASSERT(PageLocked(page));
1424
1425 /*
1426 * We give up here if we're reentered, because it might be for a
1427 * different filesystem.
1428 */
1429 if (ext3_journal_current_handle())
1430 goto out_fail;
1431
1432 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1433
1434 if (IS_ERR(handle)) {
1435 ret = PTR_ERR(handle);
1436 goto out_fail;
1437 }
1438
1439 if (!page_has_buffers(page)) {
1440 create_empty_buffers(page, inode->i_sb->s_blocksize,
1441 (1 << BH_Dirty)|(1 << BH_Uptodate));
1442 }
1443 page_bufs = page_buffers(page);
1444 walk_page_buffers(handle, page_bufs, 0,
1445 PAGE_CACHE_SIZE, NULL, bget_one);
1446
1447 ret = block_write_full_page(page, ext3_get_block, wbc);
1448
1449 /*
1450 * The page can become unlocked at any point now, and
1451 * truncate can then come in and change things. So we
1452 * can't touch *page from now on. But *page_bufs is
1453 * safe due to elevated refcount.
1454 */
1455
1456 /*
1457 * And attach them to the current transaction. But only if
1458 * block_write_full_page() succeeded. Otherwise they are unmapped,
1459 * and generally junk.
1460 */
1461 if (ret == 0) {
1462 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1463 NULL, journal_dirty_data_fn);
1464 if (!ret)
1465 ret = err;
1466 }
1467 walk_page_buffers(handle, page_bufs, 0,
1468 PAGE_CACHE_SIZE, NULL, bput_one);
1469 err = ext3_journal_stop(handle);
1470 if (!ret)
1471 ret = err;
1472 return ret;
1473
1474out_fail:
1475 redirty_page_for_writepage(wbc, page);
1476 unlock_page(page);
1477 return ret;
1478}
1479
1da177e4
LT
1480static int ext3_writeback_writepage(struct page *page,
1481 struct writeback_control *wbc)
1482{
1483 struct inode *inode = page->mapping->host;
1484 handle_t *handle = NULL;
1485 int ret = 0;
1486 int err;
1487
1488 if (ext3_journal_current_handle())
1489 goto out_fail;
1490
1491 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1492 if (IS_ERR(handle)) {
1493 ret = PTR_ERR(handle);
1494 goto out_fail;
1495 }
1496
1497 if (test_opt(inode->i_sb, NOBH))
1498 ret = nobh_writepage(page, ext3_get_block, wbc);
1499 else
1500 ret = block_write_full_page(page, ext3_get_block, wbc);
1501
1502 err = ext3_journal_stop(handle);
1503 if (!ret)
1504 ret = err;
1505 return ret;
1506
1507out_fail:
1508 redirty_page_for_writepage(wbc, page);
1509 unlock_page(page);
1510 return ret;
1511}
1512
1513static int ext3_journalled_writepage(struct page *page,
1514 struct writeback_control *wbc)
1515{
1516 struct inode *inode = page->mapping->host;
1517 handle_t *handle = NULL;
1518 int ret = 0;
1519 int err;
1520
1521 if (ext3_journal_current_handle())
1522 goto no_write;
1523
1524 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1525 if (IS_ERR(handle)) {
1526 ret = PTR_ERR(handle);
1527 goto no_write;
1528 }
1529
1530 if (!page_has_buffers(page) || PageChecked(page)) {
1531 /*
1532 * It's mmapped pagecache. Add buffers and journal it. There
1533 * doesn't seem much point in redirtying the page here.
1534 */
1535 ClearPageChecked(page);
1536 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1537 ext3_get_block);
ab4eb43c
DL
1538 if (ret != 0) {
1539 ext3_journal_stop(handle);
1da177e4 1540 goto out_unlock;
ab4eb43c 1541 }
1da177e4
LT
1542 ret = walk_page_buffers(handle, page_buffers(page), 0,
1543 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1544
1545 err = walk_page_buffers(handle, page_buffers(page), 0,
1546 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1547 if (ret == 0)
1548 ret = err;
1549 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1550 unlock_page(page);
1551 } else {
1552 /*
1553 * It may be a page full of checkpoint-mode buffers. We don't
1554 * really know unless we go poke around in the buffer_heads.
1555 * But block_write_full_page will do the right thing.
1556 */
1557 ret = block_write_full_page(page, ext3_get_block, wbc);
1558 }
1559 err = ext3_journal_stop(handle);
1560 if (!ret)
1561 ret = err;
1562out:
1563 return ret;
1564
1565no_write:
1566 redirty_page_for_writepage(wbc, page);
1567out_unlock:
1568 unlock_page(page);
1569 goto out;
1570}
1571
1572static int ext3_readpage(struct file *file, struct page *page)
1573{
1574 return mpage_readpage(page, ext3_get_block);
1575}
1576
1577static int
1578ext3_readpages(struct file *file, struct address_space *mapping,
1579 struct list_head *pages, unsigned nr_pages)
1580{
1581 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1582}
1583
2ff28e22 1584static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1585{
1586 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1587
1588 /*
1589 * If it's a full truncate we just forget about the pending dirtying
1590 */
1591 if (offset == 0)
1592 ClearPageChecked(page);
1593
2ff28e22 1594 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1595}
1596
27496a8c 1597static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1598{
1599 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1600
1601 WARN_ON(PageChecked(page));
1602 if (!page_has_buffers(page))
1603 return 0;
1604 return journal_try_to_free_buffers(journal, page, wait);
1605}
1606
1607/*
1608 * If the O_DIRECT write will extend the file then add this inode to the
1609 * orphan list. So recovery will truncate it back to the original size
1610 * if the machine crashes during the write.
1611 *
1612 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1613 * crashes then stale disk data _may_ be exposed inside the file.
1614 */
1615static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1616 const struct iovec *iov, loff_t offset,
1617 unsigned long nr_segs)
1618{
1619 struct file *file = iocb->ki_filp;
1620 struct inode *inode = file->f_mapping->host;
1621 struct ext3_inode_info *ei = EXT3_I(inode);
1622 handle_t *handle = NULL;
1623 ssize_t ret;
1624 int orphan = 0;
1625 size_t count = iov_length(iov, nr_segs);
1626
1627 if (rw == WRITE) {
1628 loff_t final_size = offset + count;
1629
1630 handle = ext3_journal_start(inode, DIO_CREDITS);
1631 if (IS_ERR(handle)) {
1632 ret = PTR_ERR(handle);
1633 goto out;
1634 }
1635 if (final_size > inode->i_size) {
1636 ret = ext3_orphan_add(handle, inode);
1637 if (ret)
1638 goto out_stop;
1639 orphan = 1;
1640 ei->i_disksize = inode->i_size;
1641 }
1642 }
1643
1644 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1645 offset, nr_segs,
f91a2ad2 1646 ext3_get_block, NULL);
1da177e4
LT
1647
1648 /*
f91a2ad2 1649 * Reacquire the handle: ext3_get_block() can restart the transaction
1da177e4
LT
1650 */
1651 handle = journal_current_handle();
1652
1653out_stop:
1654 if (handle) {
1655 int err;
1656
1657 if (orphan && inode->i_nlink)
1658 ext3_orphan_del(handle, inode);
1659 if (orphan && ret > 0) {
1660 loff_t end = offset + ret;
1661 if (end > inode->i_size) {
1662 ei->i_disksize = end;
1663 i_size_write(inode, end);
1664 /*
1665 * We're going to return a positive `ret'
1666 * here due to non-zero-length I/O, so there's
1667 * no way of reporting error returns from
1668 * ext3_mark_inode_dirty() to userspace. So
1669 * ignore it.
1670 */
1671 ext3_mark_inode_dirty(handle, inode);
1672 }
1673 }
1674 err = ext3_journal_stop(handle);
1675 if (ret == 0)
1676 ret = err;
1677 }
1678out:
1679 return ret;
1680}
1681
1682/*
1683 * Pages can be marked dirty completely asynchronously from ext3's journalling
1684 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1685 * much here because ->set_page_dirty is called under VFS locks. The page is
1686 * not necessarily locked.
1687 *
1688 * We cannot just dirty the page and leave attached buffers clean, because the
1689 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1690 * or jbddirty because all the journalling code will explode.
1691 *
1692 * So what we do is to mark the page "pending dirty" and next time writepage
1693 * is called, propagate that into the buffers appropriately.
1694 */
1695static int ext3_journalled_set_page_dirty(struct page *page)
1696{
1697 SetPageChecked(page);
1698 return __set_page_dirty_nobuffers(page);
1699}
1700
1701static struct address_space_operations ext3_ordered_aops = {
1702 .readpage = ext3_readpage,
1703 .readpages = ext3_readpages,
1704 .writepage = ext3_ordered_writepage,
1705 .sync_page = block_sync_page,
1706 .prepare_write = ext3_prepare_write,
1707 .commit_write = ext3_ordered_commit_write,
1708 .bmap = ext3_bmap,
1709 .invalidatepage = ext3_invalidatepage,
1710 .releasepage = ext3_releasepage,
1711 .direct_IO = ext3_direct_IO,
e965f963 1712 .migratepage = buffer_migrate_page,
1da177e4
LT
1713};
1714
1715static struct address_space_operations ext3_writeback_aops = {
1716 .readpage = ext3_readpage,
1717 .readpages = ext3_readpages,
1718 .writepage = ext3_writeback_writepage,
1da177e4
LT
1719 .sync_page = block_sync_page,
1720 .prepare_write = ext3_prepare_write,
1721 .commit_write = ext3_writeback_commit_write,
1722 .bmap = ext3_bmap,
1723 .invalidatepage = ext3_invalidatepage,
1724 .releasepage = ext3_releasepage,
1725 .direct_IO = ext3_direct_IO,
e965f963 1726 .migratepage = buffer_migrate_page,
1da177e4
LT
1727};
1728
1729static struct address_space_operations ext3_journalled_aops = {
1730 .readpage = ext3_readpage,
1731 .readpages = ext3_readpages,
1732 .writepage = ext3_journalled_writepage,
1733 .sync_page = block_sync_page,
1734 .prepare_write = ext3_prepare_write,
1735 .commit_write = ext3_journalled_commit_write,
1736 .set_page_dirty = ext3_journalled_set_page_dirty,
1737 .bmap = ext3_bmap,
1738 .invalidatepage = ext3_invalidatepage,
1739 .releasepage = ext3_releasepage,
1740};
1741
1742void ext3_set_aops(struct inode *inode)
1743{
1744 if (ext3_should_order_data(inode))
1745 inode->i_mapping->a_ops = &ext3_ordered_aops;
1746 else if (ext3_should_writeback_data(inode))
1747 inode->i_mapping->a_ops = &ext3_writeback_aops;
1748 else
1749 inode->i_mapping->a_ops = &ext3_journalled_aops;
1750}
1751
1752/*
1753 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1754 * up to the end of the block which corresponds to `from'.
1755 * This required during truncate. We need to physically zero the tail end
1756 * of that block so it doesn't yield old data if the file is later grown.
1757 */
1758static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1759 struct address_space *mapping, loff_t from)
1760{
43d23f90 1761 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1762 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1763 unsigned blocksize, iblock, length, pos;
1764 struct inode *inode = mapping->host;
1765 struct buffer_head *bh;
1766 int err = 0;
1767 void *kaddr;
1768
1769 blocksize = inode->i_sb->s_blocksize;
1770 length = blocksize - (offset & (blocksize - 1));
1771 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1772
1773 /*
1774 * For "nobh" option, we can only work if we don't need to
1775 * read-in the page - otherwise we create buffers to do the IO.
1776 */
cd6ef84e
BP
1777 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1778 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1779 kaddr = kmap_atomic(page, KM_USER0);
1780 memset(kaddr + offset, 0, length);
1781 flush_dcache_page(page);
1782 kunmap_atomic(kaddr, KM_USER0);
1783 set_page_dirty(page);
1784 goto unlock;
1da177e4
LT
1785 }
1786
1787 if (!page_has_buffers(page))
1788 create_empty_buffers(page, blocksize, 0);
1789
1790 /* Find the buffer that contains "offset" */
1791 bh = page_buffers(page);
1792 pos = blocksize;
1793 while (offset >= pos) {
1794 bh = bh->b_this_page;
1795 iblock++;
1796 pos += blocksize;
1797 }
1798
1799 err = 0;
1800 if (buffer_freed(bh)) {
1801 BUFFER_TRACE(bh, "freed: skip");
1802 goto unlock;
1803 }
1804
1805 if (!buffer_mapped(bh)) {
1806 BUFFER_TRACE(bh, "unmapped");
1807 ext3_get_block(inode, iblock, bh, 0);
1808 /* unmapped? It's a hole - nothing to do */
1809 if (!buffer_mapped(bh)) {
1810 BUFFER_TRACE(bh, "still unmapped");
1811 goto unlock;
1812 }
1813 }
1814
1815 /* Ok, it's mapped. Make sure it's up-to-date */
1816 if (PageUptodate(page))
1817 set_buffer_uptodate(bh);
1818
1819 if (!buffer_uptodate(bh)) {
1820 err = -EIO;
1821 ll_rw_block(READ, 1, &bh);
1822 wait_on_buffer(bh);
1823 /* Uhhuh. Read error. Complain and punt. */
1824 if (!buffer_uptodate(bh))
1825 goto unlock;
1826 }
1827
1828 if (ext3_should_journal_data(inode)) {
1829 BUFFER_TRACE(bh, "get write access");
1830 err = ext3_journal_get_write_access(handle, bh);
1831 if (err)
1832 goto unlock;
1833 }
1834
1835 kaddr = kmap_atomic(page, KM_USER0);
1836 memset(kaddr + offset, 0, length);
1837 flush_dcache_page(page);
1838 kunmap_atomic(kaddr, KM_USER0);
1839
1840 BUFFER_TRACE(bh, "zeroed end of block");
1841
1842 err = 0;
1843 if (ext3_should_journal_data(inode)) {
1844 err = ext3_journal_dirty_metadata(handle, bh);
1845 } else {
1846 if (ext3_should_order_data(inode))
1847 err = ext3_journal_dirty_data(handle, bh);
1848 mark_buffer_dirty(bh);
1849 }
1850
1851unlock:
1852 unlock_page(page);
1853 page_cache_release(page);
1854 return err;
1855}
1856
1857/*
1858 * Probably it should be a library function... search for first non-zero word
1859 * or memcmp with zero_page, whatever is better for particular architecture.
1860 * Linus?
1861 */
1862static inline int all_zeroes(__le32 *p, __le32 *q)
1863{
1864 while (p < q)
1865 if (*p++)
1866 return 0;
1867 return 1;
1868}
1869
1870/**
1871 * ext3_find_shared - find the indirect blocks for partial truncation.
1872 * @inode: inode in question
1873 * @depth: depth of the affected branch
1874 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1875 * @chain: place to store the pointers to partial indirect blocks
1876 * @top: place to the (detached) top of branch
1877 *
1878 * This is a helper function used by ext3_truncate().
1879 *
1880 * When we do truncate() we may have to clean the ends of several
1881 * indirect blocks but leave the blocks themselves alive. Block is
1882 * partially truncated if some data below the new i_size is refered
1883 * from it (and it is on the path to the first completely truncated
1884 * data block, indeed). We have to free the top of that path along
1885 * with everything to the right of the path. Since no allocation
1886 * past the truncation point is possible until ext3_truncate()
1887 * finishes, we may safely do the latter, but top of branch may
1888 * require special attention - pageout below the truncation point
1889 * might try to populate it.
1890 *
1891 * We atomically detach the top of branch from the tree, store the
1892 * block number of its root in *@top, pointers to buffer_heads of
1893 * partially truncated blocks - in @chain[].bh and pointers to
1894 * their last elements that should not be removed - in
1895 * @chain[].p. Return value is the pointer to last filled element
1896 * of @chain.
1897 *
1898 * The work left to caller to do the actual freeing of subtrees:
1899 * a) free the subtree starting from *@top
1900 * b) free the subtrees whose roots are stored in
1901 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1902 * c) free the subtrees growing from the inode past the @chain[0].
1903 * (no partially truncated stuff there). */
1904
d6859bfc
AM
1905static Indirect *ext3_find_shared(struct inode *inode, int depth,
1906 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
1907{
1908 Indirect *partial, *p;
1909 int k, err;
1910
1911 *top = 0;
1912 /* Make k index the deepest non-null offest + 1 */
1913 for (k = depth; k > 1 && !offsets[k-1]; k--)
1914 ;
1915 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1916 /* Writer: pointers */
1917 if (!partial)
1918 partial = chain + k-1;
1919 /*
1920 * If the branch acquired continuation since we've looked at it -
1921 * fine, it should all survive and (new) top doesn't belong to us.
1922 */
1923 if (!partial->key && *partial->p)
1924 /* Writer: end */
1925 goto no_top;
1926 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1927 ;
1928 /*
1929 * OK, we've found the last block that must survive. The rest of our
1930 * branch should be detached before unlocking. However, if that rest
1931 * of branch is all ours and does not grow immediately from the inode
1932 * it's easier to cheat and just decrement partial->p.
1933 */
1934 if (p == chain + k - 1 && p > chain) {
1935 p->p--;
1936 } else {
1937 *top = *p->p;
1938 /* Nope, don't do this in ext3. Must leave the tree intact */
1939#if 0
1940 *p->p = 0;
1941#endif
1942 }
1943 /* Writer: end */
1944
d6859bfc 1945 while(partial > p) {
1da177e4
LT
1946 brelse(partial->bh);
1947 partial--;
1948 }
1949no_top:
1950 return partial;
1951}
1952
1953/*
1954 * Zero a number of block pointers in either an inode or an indirect block.
1955 * If we restart the transaction we must again get write access to the
1956 * indirect block for further modification.
1957 *
1958 * We release `count' blocks on disk, but (last - first) may be greater
1959 * than `count' because there can be holes in there.
1960 */
d6859bfc 1961static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 1962 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 1963 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
1964{
1965 __le32 *p;
1966 if (try_to_extend_transaction(handle, inode)) {
1967 if (bh) {
1968 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1969 ext3_journal_dirty_metadata(handle, bh);
1970 }
1971 ext3_mark_inode_dirty(handle, inode);
1972 ext3_journal_test_restart(handle, inode);
1973 if (bh) {
1974 BUFFER_TRACE(bh, "retaking write access");
1975 ext3_journal_get_write_access(handle, bh);
1976 }
1977 }
1978
1979 /*
1980 * Any buffers which are on the journal will be in memory. We find
1981 * them on the hash table so journal_revoke() will run journal_forget()
1982 * on them. We've already detached each block from the file, so
1983 * bforget() in journal_forget() should be safe.
1984 *
1985 * AKPM: turn on bforget in journal_forget()!!!
1986 */
1987 for (p = first; p < last; p++) {
1988 u32 nr = le32_to_cpu(*p);
1989 if (nr) {
1990 struct buffer_head *bh;
1991
1992 *p = 0;
1993 bh = sb_find_get_block(inode->i_sb, nr);
1994 ext3_forget(handle, 0, inode, bh, nr);
1995 }
1996 }
1997
1998 ext3_free_blocks(handle, inode, block_to_free, count);
1999}
2000
2001/**
2002 * ext3_free_data - free a list of data blocks
2003 * @handle: handle for this transaction
2004 * @inode: inode we are dealing with
2005 * @this_bh: indirect buffer_head which contains *@first and *@last
2006 * @first: array of block numbers
2007 * @last: points immediately past the end of array
2008 *
2009 * We are freeing all blocks refered from that array (numbers are stored as
2010 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2011 *
2012 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2013 * blocks are contiguous then releasing them at one time will only affect one
2014 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2015 * actually use a lot of journal space.
2016 *
2017 * @this_bh will be %NULL if @first and @last point into the inode's direct
2018 * block pointers.
2019 */
2020static void ext3_free_data(handle_t *handle, struct inode *inode,
2021 struct buffer_head *this_bh,
2022 __le32 *first, __le32 *last)
2023{
43d23f90 2024 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
1da177e4
LT
2025 unsigned long count = 0; /* Number of blocks in the run */
2026 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2027 corresponding to
2028 block_to_free */
43d23f90 2029 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2030 __le32 *p; /* Pointer into inode/ind
2031 for current block */
2032 int err;
2033
2034 if (this_bh) { /* For indirect block */
2035 BUFFER_TRACE(this_bh, "get_write_access");
2036 err = ext3_journal_get_write_access(handle, this_bh);
2037 /* Important: if we can't update the indirect pointers
2038 * to the blocks, we can't free them. */
2039 if (err)
2040 return;
2041 }
2042
2043 for (p = first; p < last; p++) {
2044 nr = le32_to_cpu(*p);
2045 if (nr) {
2046 /* accumulate blocks to free if they're contiguous */
2047 if (count == 0) {
2048 block_to_free = nr;
2049 block_to_free_p = p;
2050 count = 1;
2051 } else if (nr == block_to_free + count) {
2052 count++;
2053 } else {
2054 ext3_clear_blocks(handle, inode, this_bh,
2055 block_to_free,
2056 count, block_to_free_p, p);
2057 block_to_free = nr;
2058 block_to_free_p = p;
2059 count = 1;
2060 }
2061 }
2062 }
2063
2064 if (count > 0)
2065 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2066 count, block_to_free_p, p);
2067
2068 if (this_bh) {
2069 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2070 ext3_journal_dirty_metadata(handle, this_bh);
2071 }
2072}
2073
2074/**
2075 * ext3_free_branches - free an array of branches
2076 * @handle: JBD handle for this transaction
2077 * @inode: inode we are dealing with
2078 * @parent_bh: the buffer_head which contains *@first and *@last
2079 * @first: array of block numbers
2080 * @last: pointer immediately past the end of array
2081 * @depth: depth of the branches to free
2082 *
2083 * We are freeing all blocks refered from these branches (numbers are
2084 * stored as little-endian 32-bit) and updating @inode->i_blocks
2085 * appropriately.
2086 */
2087static void ext3_free_branches(handle_t *handle, struct inode *inode,
2088 struct buffer_head *parent_bh,
2089 __le32 *first, __le32 *last, int depth)
2090{
43d23f90 2091 ext3_fsblk_t nr;
1da177e4
LT
2092 __le32 *p;
2093
2094 if (is_handle_aborted(handle))
2095 return;
2096
2097 if (depth--) {
2098 struct buffer_head *bh;
2099 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2100 p = last;
2101 while (--p >= first) {
2102 nr = le32_to_cpu(*p);
2103 if (!nr)
2104 continue; /* A hole */
2105
2106 /* Go read the buffer for the next level down */
2107 bh = sb_bread(inode->i_sb, nr);
2108
2109 /*
2110 * A read failure? Report error and clear slot
2111 * (should be rare).
2112 */
2113 if (!bh) {
2114 ext3_error(inode->i_sb, "ext3_free_branches",
43d23f90 2115 "Read failure, inode=%ld, block="E3FSBLK,
1da177e4
LT
2116 inode->i_ino, nr);
2117 continue;
2118 }
2119
2120 /* This zaps the entire block. Bottom up. */
2121 BUFFER_TRACE(bh, "free child branches");
2122 ext3_free_branches(handle, inode, bh,
2123 (__le32*)bh->b_data,
2124 (__le32*)bh->b_data + addr_per_block,
2125 depth);
2126
2127 /*
2128 * We've probably journalled the indirect block several
2129 * times during the truncate. But it's no longer
2130 * needed and we now drop it from the transaction via
2131 * journal_revoke().
2132 *
2133 * That's easy if it's exclusively part of this
2134 * transaction. But if it's part of the committing
2135 * transaction then journal_forget() will simply
2136 * brelse() it. That means that if the underlying
2137 * block is reallocated in ext3_get_block(),
2138 * unmap_underlying_metadata() will find this block
2139 * and will try to get rid of it. damn, damn.
2140 *
2141 * If this block has already been committed to the
2142 * journal, a revoke record will be written. And
2143 * revoke records must be emitted *before* clearing
2144 * this block's bit in the bitmaps.
2145 */
2146 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2147
2148 /*
2149 * Everything below this this pointer has been
2150 * released. Now let this top-of-subtree go.
2151 *
2152 * We want the freeing of this indirect block to be
2153 * atomic in the journal with the updating of the
2154 * bitmap block which owns it. So make some room in
2155 * the journal.
2156 *
2157 * We zero the parent pointer *after* freeing its
2158 * pointee in the bitmaps, so if extend_transaction()
2159 * for some reason fails to put the bitmap changes and
2160 * the release into the same transaction, recovery
2161 * will merely complain about releasing a free block,
2162 * rather than leaking blocks.
2163 */
2164 if (is_handle_aborted(handle))
2165 return;
2166 if (try_to_extend_transaction(handle, inode)) {
2167 ext3_mark_inode_dirty(handle, inode);
2168 ext3_journal_test_restart(handle, inode);
2169 }
2170
2171 ext3_free_blocks(handle, inode, nr, 1);
2172
2173 if (parent_bh) {
2174 /*
2175 * The block which we have just freed is
2176 * pointed to by an indirect block: journal it
2177 */
2178 BUFFER_TRACE(parent_bh, "get_write_access");
2179 if (!ext3_journal_get_write_access(handle,
2180 parent_bh)){
2181 *p = 0;
2182 BUFFER_TRACE(parent_bh,
2183 "call ext3_journal_dirty_metadata");
2184 ext3_journal_dirty_metadata(handle,
2185 parent_bh);
2186 }
2187 }
2188 }
2189 } else {
2190 /* We have reached the bottom of the tree. */
2191 BUFFER_TRACE(parent_bh, "free data blocks");
2192 ext3_free_data(handle, inode, parent_bh, first, last);
2193 }
2194}
2195
2196/*
2197 * ext3_truncate()
2198 *
2199 * We block out ext3_get_block() block instantiations across the entire
2200 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2201 * simultaneously on behalf of the same inode.
2202 *
2203 * As we work through the truncate and commmit bits of it to the journal there
2204 * is one core, guiding principle: the file's tree must always be consistent on
2205 * disk. We must be able to restart the truncate after a crash.
2206 *
2207 * The file's tree may be transiently inconsistent in memory (although it
2208 * probably isn't), but whenever we close off and commit a journal transaction,
2209 * the contents of (the filesystem + the journal) must be consistent and
2210 * restartable. It's pretty simple, really: bottom up, right to left (although
2211 * left-to-right works OK too).
2212 *
2213 * Note that at recovery time, journal replay occurs *before* the restart of
2214 * truncate against the orphan inode list.
2215 *
2216 * The committed inode has the new, desired i_size (which is the same as
2217 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2218 * that this inode's truncate did not complete and it will again call
2219 * ext3_truncate() to have another go. So there will be instantiated blocks
2220 * to the right of the truncation point in a crashed ext3 filesystem. But
2221 * that's fine - as long as they are linked from the inode, the post-crash
2222 * ext3_truncate() run will find them and release them.
2223 */
d6859bfc 2224void ext3_truncate(struct inode *inode)
1da177e4
LT
2225{
2226 handle_t *handle;
2227 struct ext3_inode_info *ei = EXT3_I(inode);
2228 __le32 *i_data = ei->i_data;
2229 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2230 struct address_space *mapping = inode->i_mapping;
2231 int offsets[4];
2232 Indirect chain[4];
2233 Indirect *partial;
2234 __le32 nr = 0;
2235 int n;
2236 long last_block;
2237 unsigned blocksize = inode->i_sb->s_blocksize;
2238 struct page *page;
2239
2240 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2241 S_ISLNK(inode->i_mode)))
2242 return;
2243 if (ext3_inode_is_fast_symlink(inode))
2244 return;
2245 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2246 return;
2247
2248 /*
2249 * We have to lock the EOF page here, because lock_page() nests
2250 * outside journal_start().
2251 */
2252 if ((inode->i_size & (blocksize - 1)) == 0) {
2253 /* Block boundary? Nothing to do */
2254 page = NULL;
2255 } else {
2256 page = grab_cache_page(mapping,
2257 inode->i_size >> PAGE_CACHE_SHIFT);
2258 if (!page)
2259 return;
2260 }
2261
2262 handle = start_transaction(inode);
2263 if (IS_ERR(handle)) {
2264 if (page) {
2265 clear_highpage(page);
2266 flush_dcache_page(page);
2267 unlock_page(page);
2268 page_cache_release(page);
2269 }
2270 return; /* AKPM: return what? */
2271 }
2272
2273 last_block = (inode->i_size + blocksize-1)
2274 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2275
2276 if (page)
2277 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2278
2279 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2280 if (n == 0)
2281 goto out_stop; /* error */
2282
2283 /*
2284 * OK. This truncate is going to happen. We add the inode to the
2285 * orphan list, so that if this truncate spans multiple transactions,
2286 * and we crash, we will resume the truncate when the filesystem
2287 * recovers. It also marks the inode dirty, to catch the new size.
2288 *
2289 * Implication: the file must always be in a sane, consistent
2290 * truncatable state while each transaction commits.
2291 */
2292 if (ext3_orphan_add(handle, inode))
2293 goto out_stop;
2294
2295 /*
2296 * The orphan list entry will now protect us from any crash which
2297 * occurs before the truncate completes, so it is now safe to propagate
2298 * the new, shorter inode size (held for now in i_size) into the
2299 * on-disk inode. We do this via i_disksize, which is the value which
2300 * ext3 *really* writes onto the disk inode.
2301 */
2302 ei->i_disksize = inode->i_size;
2303
2304 /*
2305 * From here we block out all ext3_get_block() callers who want to
2306 * modify the block allocation tree.
2307 */
97461518 2308 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2309
2310 if (n == 1) { /* direct blocks */
2311 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2312 i_data + EXT3_NDIR_BLOCKS);
2313 goto do_indirects;
2314 }
2315
2316 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2317 /* Kill the top of shared branch (not detached) */
2318 if (nr) {
2319 if (partial == chain) {
2320 /* Shared branch grows from the inode */
2321 ext3_free_branches(handle, inode, NULL,
2322 &nr, &nr+1, (chain+n-1) - partial);
2323 *partial->p = 0;
2324 /*
2325 * We mark the inode dirty prior to restart,
2326 * and prior to stop. No need for it here.
2327 */
2328 } else {
2329 /* Shared branch grows from an indirect block */
2330 BUFFER_TRACE(partial->bh, "get_write_access");
2331 ext3_free_branches(handle, inode, partial->bh,
2332 partial->p,
2333 partial->p+1, (chain+n-1) - partial);
2334 }
2335 }
2336 /* Clear the ends of indirect blocks on the shared branch */
2337 while (partial > chain) {
2338 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2339 (__le32*)partial->bh->b_data+addr_per_block,
2340 (chain+n-1) - partial);
2341 BUFFER_TRACE(partial->bh, "call brelse");
2342 brelse (partial->bh);
2343 partial--;
2344 }
2345do_indirects:
2346 /* Kill the remaining (whole) subtrees */
2347 switch (offsets[0]) {
d6859bfc
AM
2348 default:
2349 nr = i_data[EXT3_IND_BLOCK];
2350 if (nr) {
2351 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2352 i_data[EXT3_IND_BLOCK] = 0;
2353 }
2354 case EXT3_IND_BLOCK:
2355 nr = i_data[EXT3_DIND_BLOCK];
2356 if (nr) {
2357 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2358 i_data[EXT3_DIND_BLOCK] = 0;
2359 }
2360 case EXT3_DIND_BLOCK:
2361 nr = i_data[EXT3_TIND_BLOCK];
2362 if (nr) {
2363 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2364 i_data[EXT3_TIND_BLOCK] = 0;
2365 }
2366 case EXT3_TIND_BLOCK:
2367 ;
1da177e4
LT
2368 }
2369
2370 ext3_discard_reservation(inode);
2371
97461518 2372 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2373 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2374 ext3_mark_inode_dirty(handle, inode);
2375
d6859bfc
AM
2376 /*
2377 * In a multi-transaction truncate, we only make the final transaction
2378 * synchronous
2379 */
1da177e4
LT
2380 if (IS_SYNC(inode))
2381 handle->h_sync = 1;
2382out_stop:
2383 /*
2384 * If this was a simple ftruncate(), and the file will remain alive
2385 * then we need to clear up the orphan record which we created above.
2386 * However, if this was a real unlink then we were called by
2387 * ext3_delete_inode(), and we allow that function to clean up the
2388 * orphan info for us.
2389 */
2390 if (inode->i_nlink)
2391 ext3_orphan_del(handle, inode);
2392
2393 ext3_journal_stop(handle);
2394}
2395
43d23f90 2396static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2397 unsigned long ino, struct ext3_iloc *iloc)
2398{
2399 unsigned long desc, group_desc, block_group;
43d23f90
MC
2400 unsigned long offset;
2401 ext3_fsblk_t block;
1da177e4
LT
2402 struct buffer_head *bh;
2403 struct ext3_group_desc * gdp;
2404
2405
d6859bfc
AM
2406 if ((ino != EXT3_ROOT_INO && ino != EXT3_JOURNAL_INO &&
2407 ino != EXT3_RESIZE_INO && ino < EXT3_FIRST_INO(sb)) ||
2408 ino > le32_to_cpu(EXT3_SB(sb)->s_es->s_inodes_count)) {
2409 ext3_error(sb, "ext3_get_inode_block",
1da177e4
LT
2410 "bad inode number: %lu", ino);
2411 return 0;
2412 }
2413 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2414 if (block_group >= EXT3_SB(sb)->s_groups_count) {
d6859bfc 2415 ext3_error(sb,"ext3_get_inode_block","group >= groups count");
1da177e4
LT
2416 return 0;
2417 }
2418 smp_rmb();
2419 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2420 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2421 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2422 if (!bh) {
2423 ext3_error (sb, "ext3_get_inode_block",
2424 "Descriptor not loaded");
2425 return 0;
2426 }
2427
d6859bfc 2428 gdp = (struct ext3_group_desc *)bh->b_data;
1da177e4
LT
2429 /*
2430 * Figure out the offset within the block group inode table
2431 */
2432 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2433 EXT3_INODE_SIZE(sb);
2434 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2435 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2436
2437 iloc->block_group = block_group;
2438 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2439 return block;
2440}
2441
2442/*
2443 * ext3_get_inode_loc returns with an extra refcount against the inode's
2444 * underlying buffer_head on success. If 'in_mem' is true, we have all
2445 * data in memory that is needed to recreate the on-disk version of this
2446 * inode.
2447 */
2448static int __ext3_get_inode_loc(struct inode *inode,
2449 struct ext3_iloc *iloc, int in_mem)
2450{
43d23f90 2451 ext3_fsblk_t block;
1da177e4
LT
2452 struct buffer_head *bh;
2453
2454 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2455 if (!block)
2456 return -EIO;
2457
2458 bh = sb_getblk(inode->i_sb, block);
2459 if (!bh) {
2460 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2461 "unable to read inode block - "
43d23f90
MC
2462 "inode=%lu, block="E3FSBLK,
2463 inode->i_ino, block);
1da177e4
LT
2464 return -EIO;
2465 }
2466 if (!buffer_uptodate(bh)) {
2467 lock_buffer(bh);
2468 if (buffer_uptodate(bh)) {
2469 /* someone brought it uptodate while we waited */
2470 unlock_buffer(bh);
2471 goto has_buffer;
2472 }
2473
2474 /*
2475 * If we have all information of the inode in memory and this
2476 * is the only valid inode in the block, we need not read the
2477 * block.
2478 */
2479 if (in_mem) {
2480 struct buffer_head *bitmap_bh;
2481 struct ext3_group_desc *desc;
2482 int inodes_per_buffer;
2483 int inode_offset, i;
2484 int block_group;
2485 int start;
2486
2487 block_group = (inode->i_ino - 1) /
2488 EXT3_INODES_PER_GROUP(inode->i_sb);
2489 inodes_per_buffer = bh->b_size /
2490 EXT3_INODE_SIZE(inode->i_sb);
2491 inode_offset = ((inode->i_ino - 1) %
2492 EXT3_INODES_PER_GROUP(inode->i_sb));
2493 start = inode_offset & ~(inodes_per_buffer - 1);
2494
2495 /* Is the inode bitmap in cache? */
2496 desc = ext3_get_group_desc(inode->i_sb,
2497 block_group, NULL);
2498 if (!desc)
2499 goto make_io;
2500
2501 bitmap_bh = sb_getblk(inode->i_sb,
2502 le32_to_cpu(desc->bg_inode_bitmap));
2503 if (!bitmap_bh)
2504 goto make_io;
2505
2506 /*
2507 * If the inode bitmap isn't in cache then the
2508 * optimisation may end up performing two reads instead
2509 * of one, so skip it.
2510 */
2511 if (!buffer_uptodate(bitmap_bh)) {
2512 brelse(bitmap_bh);
2513 goto make_io;
2514 }
2515 for (i = start; i < start + inodes_per_buffer; i++) {
2516 if (i == inode_offset)
2517 continue;
2518 if (ext3_test_bit(i, bitmap_bh->b_data))
2519 break;
2520 }
2521 brelse(bitmap_bh);
2522 if (i == start + inodes_per_buffer) {
2523 /* all other inodes are free, so skip I/O */
2524 memset(bh->b_data, 0, bh->b_size);
2525 set_buffer_uptodate(bh);
2526 unlock_buffer(bh);
2527 goto has_buffer;
2528 }
2529 }
2530
2531make_io:
2532 /*
2533 * There are other valid inodes in the buffer, this inode
2534 * has in-inode xattrs, or we don't have this inode in memory.
2535 * Read the block from disk.
2536 */
2537 get_bh(bh);
2538 bh->b_end_io = end_buffer_read_sync;
2539 submit_bh(READ, bh);
2540 wait_on_buffer(bh);
2541 if (!buffer_uptodate(bh)) {
2542 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2543 "unable to read inode block - "
43d23f90 2544 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2545 inode->i_ino, block);
2546 brelse(bh);
2547 return -EIO;
2548 }
2549 }
2550has_buffer:
2551 iloc->bh = bh;
2552 return 0;
2553}
2554
2555int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2556{
2557 /* We have all inode data except xattrs in memory here. */
2558 return __ext3_get_inode_loc(inode, iloc,
2559 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2560}
2561
2562void ext3_set_inode_flags(struct inode *inode)
2563{
2564 unsigned int flags = EXT3_I(inode)->i_flags;
2565
2566 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2567 if (flags & EXT3_SYNC_FL)
2568 inode->i_flags |= S_SYNC;
2569 if (flags & EXT3_APPEND_FL)
2570 inode->i_flags |= S_APPEND;
2571 if (flags & EXT3_IMMUTABLE_FL)
2572 inode->i_flags |= S_IMMUTABLE;
2573 if (flags & EXT3_NOATIME_FL)
2574 inode->i_flags |= S_NOATIME;
2575 if (flags & EXT3_DIRSYNC_FL)
2576 inode->i_flags |= S_DIRSYNC;
2577}
2578
2579void ext3_read_inode(struct inode * inode)
2580{
2581 struct ext3_iloc iloc;
2582 struct ext3_inode *raw_inode;
2583 struct ext3_inode_info *ei = EXT3_I(inode);
2584 struct buffer_head *bh;
2585 int block;
2586
2587#ifdef CONFIG_EXT3_FS_POSIX_ACL
2588 ei->i_acl = EXT3_ACL_NOT_CACHED;
2589 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2590#endif
2591 ei->i_block_alloc_info = NULL;
2592
2593 if (__ext3_get_inode_loc(inode, &iloc, 0))
2594 goto bad_inode;
2595 bh = iloc.bh;
2596 raw_inode = ext3_raw_inode(&iloc);
2597 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2598 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2599 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2600 if(!(test_opt (inode->i_sb, NO_UID32))) {
2601 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2602 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2603 }
2604 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2605 inode->i_size = le32_to_cpu(raw_inode->i_size);
2606 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2607 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2608 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2609 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2610
2611 ei->i_state = 0;
2612 ei->i_dir_start_lookup = 0;
2613 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2614 /* We now have enough fields to check if the inode was active or not.
2615 * This is needed because nfsd might try to access dead inodes
2616 * the test is that same one that e2fsck uses
2617 * NeilBrown 1999oct15
2618 */
2619 if (inode->i_nlink == 0) {
2620 if (inode->i_mode == 0 ||
2621 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2622 /* this inode is deleted */
2623 brelse (bh);
2624 goto bad_inode;
2625 }
2626 /* The only unlinked inodes we let through here have
2627 * valid i_mode and are being read by the orphan
2628 * recovery code: that's fine, we're about to complete
2629 * the process of deleting those. */
2630 }
2631 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2632 * (for stat), not the fs block
2633 * size */
2634 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2635 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2636#ifdef EXT3_FRAGMENTS
2637 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2638 ei->i_frag_no = raw_inode->i_frag;
2639 ei->i_frag_size = raw_inode->i_fsize;
2640#endif
2641 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2642 if (!S_ISREG(inode->i_mode)) {
2643 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2644 } else {
2645 inode->i_size |=
2646 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2647 }
2648 ei->i_disksize = inode->i_size;
2649 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2650 ei->i_block_group = iloc.block_group;
2651 /*
2652 * NOTE! The in-memory inode i_data array is in little-endian order
2653 * even on big-endian machines: we do NOT byteswap the block numbers!
2654 */
2655 for (block = 0; block < EXT3_N_BLOCKS; block++)
2656 ei->i_data[block] = raw_inode->i_block[block];
2657 INIT_LIST_HEAD(&ei->i_orphan);
2658
2659 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2660 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2661 /*
2662 * When mke2fs creates big inodes it does not zero out
2663 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2664 * so ignore those first few inodes.
2665 */
2666 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2667 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2668 EXT3_INODE_SIZE(inode->i_sb))
2669 goto bad_inode;
2670 if (ei->i_extra_isize == 0) {
2671 /* The extra space is currently unused. Use it. */
2672 ei->i_extra_isize = sizeof(struct ext3_inode) -
2673 EXT3_GOOD_OLD_INODE_SIZE;
2674 } else {
2675 __le32 *magic = (void *)raw_inode +
2676 EXT3_GOOD_OLD_INODE_SIZE +
2677 ei->i_extra_isize;
2678 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2679 ei->i_state |= EXT3_STATE_XATTR;
2680 }
2681 } else
2682 ei->i_extra_isize = 0;
2683
2684 if (S_ISREG(inode->i_mode)) {
2685 inode->i_op = &ext3_file_inode_operations;
2686 inode->i_fop = &ext3_file_operations;
2687 ext3_set_aops(inode);
2688 } else if (S_ISDIR(inode->i_mode)) {
2689 inode->i_op = &ext3_dir_inode_operations;
2690 inode->i_fop = &ext3_dir_operations;
2691 } else if (S_ISLNK(inode->i_mode)) {
2692 if (ext3_inode_is_fast_symlink(inode))
2693 inode->i_op = &ext3_fast_symlink_inode_operations;
2694 else {
2695 inode->i_op = &ext3_symlink_inode_operations;
2696 ext3_set_aops(inode);
2697 }
2698 } else {
2699 inode->i_op = &ext3_special_inode_operations;
2700 if (raw_inode->i_block[0])
2701 init_special_inode(inode, inode->i_mode,
2702 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2703 else
2704 init_special_inode(inode, inode->i_mode,
2705 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2706 }
2707 brelse (iloc.bh);
2708 ext3_set_inode_flags(inode);
2709 return;
2710
2711bad_inode:
2712 make_bad_inode(inode);
2713 return;
2714}
2715
2716/*
2717 * Post the struct inode info into an on-disk inode location in the
2718 * buffer-cache. This gobbles the caller's reference to the
2719 * buffer_head in the inode location struct.
2720 *
2721 * The caller must have write access to iloc->bh.
2722 */
2723static int ext3_do_update_inode(handle_t *handle,
2724 struct inode *inode,
2725 struct ext3_iloc *iloc)
2726{
2727 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2728 struct ext3_inode_info *ei = EXT3_I(inode);
2729 struct buffer_head *bh = iloc->bh;
2730 int err = 0, rc, block;
2731
2732 /* For fields not not tracking in the in-memory inode,
2733 * initialise them to zero for new inodes. */
2734 if (ei->i_state & EXT3_STATE_NEW)
2735 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2736
2737 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2738 if(!(test_opt(inode->i_sb, NO_UID32))) {
2739 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2740 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2741/*
2742 * Fix up interoperability with old kernels. Otherwise, old inodes get
2743 * re-used with the upper 16 bits of the uid/gid intact
2744 */
2745 if(!ei->i_dtime) {
2746 raw_inode->i_uid_high =
2747 cpu_to_le16(high_16_bits(inode->i_uid));
2748 raw_inode->i_gid_high =
2749 cpu_to_le16(high_16_bits(inode->i_gid));
2750 } else {
2751 raw_inode->i_uid_high = 0;
2752 raw_inode->i_gid_high = 0;
2753 }
2754 } else {
2755 raw_inode->i_uid_low =
2756 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2757 raw_inode->i_gid_low =
2758 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2759 raw_inode->i_uid_high = 0;
2760 raw_inode->i_gid_high = 0;
2761 }
2762 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2763 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2764 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2765 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2766 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2767 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2768 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2769 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2770#ifdef EXT3_FRAGMENTS
2771 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2772 raw_inode->i_frag = ei->i_frag_no;
2773 raw_inode->i_fsize = ei->i_frag_size;
2774#endif
2775 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2776 if (!S_ISREG(inode->i_mode)) {
2777 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2778 } else {
2779 raw_inode->i_size_high =
2780 cpu_to_le32(ei->i_disksize >> 32);
2781 if (ei->i_disksize > 0x7fffffffULL) {
2782 struct super_block *sb = inode->i_sb;
2783 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2784 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2785 EXT3_SB(sb)->s_es->s_rev_level ==
2786 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2787 /* If this is the first large file
2788 * created, add a flag to the superblock.
2789 */
2790 err = ext3_journal_get_write_access(handle,
2791 EXT3_SB(sb)->s_sbh);
2792 if (err)
2793 goto out_brelse;
2794 ext3_update_dynamic_rev(sb);
2795 EXT3_SET_RO_COMPAT_FEATURE(sb,
2796 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2797 sb->s_dirt = 1;
2798 handle->h_sync = 1;
2799 err = ext3_journal_dirty_metadata(handle,
2800 EXT3_SB(sb)->s_sbh);
2801 }
2802 }
2803 }
2804 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2805 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2806 if (old_valid_dev(inode->i_rdev)) {
2807 raw_inode->i_block[0] =
2808 cpu_to_le32(old_encode_dev(inode->i_rdev));
2809 raw_inode->i_block[1] = 0;
2810 } else {
2811 raw_inode->i_block[0] = 0;
2812 raw_inode->i_block[1] =
2813 cpu_to_le32(new_encode_dev(inode->i_rdev));
2814 raw_inode->i_block[2] = 0;
2815 }
2816 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2817 raw_inode->i_block[block] = ei->i_data[block];
2818
ff87b37d 2819 if (ei->i_extra_isize)
1da177e4
LT
2820 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2821
2822 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2823 rc = ext3_journal_dirty_metadata(handle, bh);
2824 if (!err)
2825 err = rc;
2826 ei->i_state &= ~EXT3_STATE_NEW;
2827
2828out_brelse:
2829 brelse (bh);
2830 ext3_std_error(inode->i_sb, err);
2831 return err;
2832}
2833
2834/*
2835 * ext3_write_inode()
2836 *
2837 * We are called from a few places:
2838 *
2839 * - Within generic_file_write() for O_SYNC files.
2840 * Here, there will be no transaction running. We wait for any running
2841 * trasnaction to commit.
2842 *
2843 * - Within sys_sync(), kupdate and such.
2844 * We wait on commit, if tol to.
2845 *
2846 * - Within prune_icache() (PF_MEMALLOC == true)
2847 * Here we simply return. We can't afford to block kswapd on the
2848 * journal commit.
2849 *
2850 * In all cases it is actually safe for us to return without doing anything,
2851 * because the inode has been copied into a raw inode buffer in
2852 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2853 * knfsd.
2854 *
2855 * Note that we are absolutely dependent upon all inode dirtiers doing the
2856 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2857 * which we are interested.
2858 *
2859 * It would be a bug for them to not do this. The code:
2860 *
2861 * mark_inode_dirty(inode)
2862 * stuff();
2863 * inode->i_size = expr;
2864 *
2865 * is in error because a kswapd-driven write_inode() could occur while
2866 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2867 * will no longer be on the superblock's dirty inode list.
2868 */
2869int ext3_write_inode(struct inode *inode, int wait)
2870{
2871 if (current->flags & PF_MEMALLOC)
2872 return 0;
2873
2874 if (ext3_journal_current_handle()) {
2875 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2876 dump_stack();
2877 return -EIO;
2878 }
2879
2880 if (!wait)
2881 return 0;
2882
2883 return ext3_force_commit(inode->i_sb);
2884}
2885
2886/*
2887 * ext3_setattr()
2888 *
2889 * Called from notify_change.
2890 *
2891 * We want to trap VFS attempts to truncate the file as soon as
2892 * possible. In particular, we want to make sure that when the VFS
2893 * shrinks i_size, we put the inode on the orphan list and modify
2894 * i_disksize immediately, so that during the subsequent flushing of
2895 * dirty pages and freeing of disk blocks, we can guarantee that any
2896 * commit will leave the blocks being flushed in an unused state on
2897 * disk. (On recovery, the inode will get truncated and the blocks will
2898 * be freed, so we have a strong guarantee that no future commit will
2899 * leave these blocks visible to the user.)
2900 *
2901 * Called with inode->sem down.
2902 */
2903int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2904{
2905 struct inode *inode = dentry->d_inode;
2906 int error, rc = 0;
2907 const unsigned int ia_valid = attr->ia_valid;
2908
2909 error = inode_change_ok(inode, attr);
2910 if (error)
2911 return error;
2912
2913 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2914 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2915 handle_t *handle;
2916
2917 /* (user+group)*(old+new) structure, inode write (sb,
2918 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
2919 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2920 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
2921 if (IS_ERR(handle)) {
2922 error = PTR_ERR(handle);
2923 goto err_out;
2924 }
2925 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2926 if (error) {
2927 ext3_journal_stop(handle);
2928 return error;
2929 }
2930 /* Update corresponding info in inode so that everything is in
2931 * one transaction */
2932 if (attr->ia_valid & ATTR_UID)
2933 inode->i_uid = attr->ia_uid;
2934 if (attr->ia_valid & ATTR_GID)
2935 inode->i_gid = attr->ia_gid;
2936 error = ext3_mark_inode_dirty(handle, inode);
2937 ext3_journal_stop(handle);
2938 }
2939
2940 if (S_ISREG(inode->i_mode) &&
2941 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2942 handle_t *handle;
2943
2944 handle = ext3_journal_start(inode, 3);
2945 if (IS_ERR(handle)) {
2946 error = PTR_ERR(handle);
2947 goto err_out;
2948 }
2949
2950 error = ext3_orphan_add(handle, inode);
2951 EXT3_I(inode)->i_disksize = attr->ia_size;
2952 rc = ext3_mark_inode_dirty(handle, inode);
2953 if (!error)
2954 error = rc;
2955 ext3_journal_stop(handle);
2956 }
2957
2958 rc = inode_setattr(inode, attr);
2959
2960 /* If inode_setattr's call to ext3_truncate failed to get a
2961 * transaction handle at all, we need to clean up the in-core
2962 * orphan list manually. */
2963 if (inode->i_nlink)
2964 ext3_orphan_del(NULL, inode);
2965
2966 if (!rc && (ia_valid & ATTR_MODE))
2967 rc = ext3_acl_chmod(inode);
2968
2969err_out:
2970 ext3_std_error(inode->i_sb, error);
2971 if (!error)
2972 error = rc;
2973 return error;
2974}
2975
2976
2977/*
d6859bfc 2978 * How many blocks doth make a writepage()?
1da177e4
LT
2979 *
2980 * With N blocks per page, it may be:
2981 * N data blocks
2982 * 2 indirect block
2983 * 2 dindirect
2984 * 1 tindirect
2985 * N+5 bitmap blocks (from the above)
2986 * N+5 group descriptor summary blocks
2987 * 1 inode block
2988 * 1 superblock.
2989 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2990 *
2991 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2992 *
2993 * With ordered or writeback data it's the same, less the N data blocks.
2994 *
2995 * If the inode's direct blocks can hold an integral number of pages then a
2996 * page cannot straddle two indirect blocks, and we can only touch one indirect
2997 * and dindirect block, and the "5" above becomes "3".
2998 *
2999 * This still overestimates under most circumstances. If we were to pass the
3000 * start and end offsets in here as well we could do block_to_path() on each
3001 * block and work out the exact number of indirects which are touched. Pah.
3002 */
3003
3004static int ext3_writepage_trans_blocks(struct inode *inode)
3005{
3006 int bpp = ext3_journal_blocks_per_page(inode);
3007 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3008 int ret;
3009
3010 if (ext3_should_journal_data(inode))
3011 ret = 3 * (bpp + indirects) + 2;
3012 else
3013 ret = 2 * (bpp + indirects) + 2;
3014
3015#ifdef CONFIG_QUOTA
3016 /* We know that structure was already allocated during DQUOT_INIT so
3017 * we will be updating only the data blocks + inodes */
1f54587b 3018 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3019#endif
3020
3021 return ret;
3022}
3023
3024/*
3025 * The caller must have previously called ext3_reserve_inode_write().
3026 * Give this, we know that the caller already has write access to iloc->bh.
3027 */
3028int ext3_mark_iloc_dirty(handle_t *handle,
3029 struct inode *inode, struct ext3_iloc *iloc)
3030{
3031 int err = 0;
3032
3033 /* the do_update_inode consumes one bh->b_count */
3034 get_bh(iloc->bh);
3035
3036 /* ext3_do_update_inode() does journal_dirty_metadata */
3037 err = ext3_do_update_inode(handle, inode, iloc);
3038 put_bh(iloc->bh);
3039 return err;
3040}
3041
3042/*
3043 * On success, We end up with an outstanding reference count against
3044 * iloc->bh. This _must_ be cleaned up later.
3045 */
3046
3047int
3048ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3049 struct ext3_iloc *iloc)
3050{
3051 int err = 0;
3052 if (handle) {
3053 err = ext3_get_inode_loc(inode, iloc);
3054 if (!err) {
3055 BUFFER_TRACE(iloc->bh, "get_write_access");
3056 err = ext3_journal_get_write_access(handle, iloc->bh);
3057 if (err) {
3058 brelse(iloc->bh);
3059 iloc->bh = NULL;
3060 }
3061 }
3062 }
3063 ext3_std_error(inode->i_sb, err);
3064 return err;
3065}
3066
3067/*
d6859bfc
AM
3068 * What we do here is to mark the in-core inode as clean with respect to inode
3069 * dirtiness (it may still be data-dirty).
1da177e4
LT
3070 * This means that the in-core inode may be reaped by prune_icache
3071 * without having to perform any I/O. This is a very good thing,
3072 * because *any* task may call prune_icache - even ones which
3073 * have a transaction open against a different journal.
3074 *
3075 * Is this cheating? Not really. Sure, we haven't written the
3076 * inode out, but prune_icache isn't a user-visible syncing function.
3077 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3078 * we start and wait on commits.
3079 *
3080 * Is this efficient/effective? Well, we're being nice to the system
3081 * by cleaning up our inodes proactively so they can be reaped
3082 * without I/O. But we are potentially leaving up to five seconds'
3083 * worth of inodes floating about which prune_icache wants us to
3084 * write out. One way to fix that would be to get prune_icache()
3085 * to do a write_super() to free up some memory. It has the desired
3086 * effect.
3087 */
3088int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3089{
3090 struct ext3_iloc iloc;
3091 int err;
3092
3093 might_sleep();
3094 err = ext3_reserve_inode_write(handle, inode, &iloc);
3095 if (!err)
3096 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3097 return err;
3098}
3099
3100/*
d6859bfc 3101 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3102 *
3103 * We're really interested in the case where a file is being extended.
3104 * i_size has been changed by generic_commit_write() and we thus need
3105 * to include the updated inode in the current transaction.
3106 *
3107 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3108 * are allocated to the file.
3109 *
3110 * If the inode is marked synchronous, we don't honour that here - doing
3111 * so would cause a commit on atime updates, which we don't bother doing.
3112 * We handle synchronous inodes at the highest possible level.
3113 */
3114void ext3_dirty_inode(struct inode *inode)
3115{
3116 handle_t *current_handle = ext3_journal_current_handle();
3117 handle_t *handle;
3118
3119 handle = ext3_journal_start(inode, 2);
3120 if (IS_ERR(handle))
3121 goto out;
3122 if (current_handle &&
3123 current_handle->h_transaction != handle->h_transaction) {
3124 /* This task has a transaction open against a different fs */
3125 printk(KERN_EMERG "%s: transactions do not match!\n",
3126 __FUNCTION__);
3127 } else {
3128 jbd_debug(5, "marking dirty. outer handle=%p\n",
3129 current_handle);
3130 ext3_mark_inode_dirty(handle, inode);
3131 }
3132 ext3_journal_stop(handle);
3133out:
3134 return;
3135}
3136
d6859bfc 3137#if 0
1da177e4
LT
3138/*
3139 * Bind an inode's backing buffer_head into this transaction, to prevent
3140 * it from being flushed to disk early. Unlike
3141 * ext3_reserve_inode_write, this leaves behind no bh reference and
3142 * returns no iloc structure, so the caller needs to repeat the iloc
3143 * lookup to mark the inode dirty later.
3144 */
d6859bfc 3145static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3146{
3147 struct ext3_iloc iloc;
3148
3149 int err = 0;
3150 if (handle) {
3151 err = ext3_get_inode_loc(inode, &iloc);
3152 if (!err) {
3153 BUFFER_TRACE(iloc.bh, "get_write_access");
3154 err = journal_get_write_access(handle, iloc.bh);
3155 if (!err)
3156 err = ext3_journal_dirty_metadata(handle,
3157 iloc.bh);
3158 brelse(iloc.bh);
3159 }
3160 }
3161 ext3_std_error(inode->i_sb, err);
3162 return err;
3163}
3164#endif
3165
3166int ext3_change_inode_journal_flag(struct inode *inode, int val)
3167{
3168 journal_t *journal;
3169 handle_t *handle;
3170 int err;
3171
3172 /*
3173 * We have to be very careful here: changing a data block's
3174 * journaling status dynamically is dangerous. If we write a
3175 * data block to the journal, change the status and then delete
3176 * that block, we risk forgetting to revoke the old log record
3177 * from the journal and so a subsequent replay can corrupt data.
3178 * So, first we make sure that the journal is empty and that
3179 * nobody is changing anything.
3180 */
3181
3182 journal = EXT3_JOURNAL(inode);
3183 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3184 return -EROFS;
3185
3186 journal_lock_updates(journal);
3187 journal_flush(journal);
3188
3189 /*
3190 * OK, there are no updates running now, and all cached data is
3191 * synced to disk. We are now in a completely consistent state
3192 * which doesn't have anything in the journal, and we know that
3193 * no filesystem updates are running, so it is safe to modify
3194 * the inode's in-core data-journaling state flag now.
3195 */
3196
3197 if (val)
3198 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3199 else
3200 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3201 ext3_set_aops(inode);
3202
3203 journal_unlock_updates(journal);
3204
3205 /* Finally we can mark the inode as dirty. */
3206
3207 handle = ext3_journal_start(inode, 1);
3208 if (IS_ERR(handle))
3209 return PTR_ERR(handle);
3210
3211 err = ext3_mark_inode_dirty(handle, inode);
3212 handle->h_sync = 1;
3213 ext3_journal_stop(handle);
3214 ext3_std_error(inode->i_sb, err);
3215
3216 return err;
3217}