]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext3/inode.c
[PATCH] Make address_space_operations->sync_page return void
[net-next-2.6.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/pagemap.h>
33#include <linux/quotaops.h>
34#include <linux/string.h>
35#include <linux/buffer_head.h>
36#include <linux/writeback.h>
37#include <linux/mpage.h>
38#include <linux/uio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static inline int ext3_inode_is_fast_symlink(struct inode *inode)
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54}
55
56/* The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
64
65int ext3_forget(handle_t *handle, int is_metadata,
66 struct inode *inode, struct buffer_head *bh,
67 int blocknr)
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __FUNCTION__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
107 * Work out how many blocks we need to progress with the next chunk of a
108 * truncate transaction.
109 */
110
111static unsigned long blocks_for_truncate(struct inode *inode)
112{
113 unsigned long needed;
114
115 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116
117 /* Give ourselves just enough room to cope with inodes in which
118 * i_blocks is corrupt: we've seen disk corruptions in the past
119 * which resulted in random data in an inode which looked enough
120 * like a regular file for ext3 to try to delete it. Things
121 * will go a bit crazy if that happens, but at least we should
122 * try not to panic the whole kernel. */
123 if (needed < 2)
124 needed = 2;
125
126 /* But we need to bound the transaction so we don't overflow the
127 * journal. */
128 if (needed > EXT3_MAX_TRANS_DATA)
129 needed = EXT3_MAX_TRANS_DATA;
130
1f54587b 131 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
132}
133
134/*
135 * Truncate transactions can be complex and absolutely huge. So we need to
136 * be able to restart the transaction at a conventient checkpoint to make
137 * sure we don't overflow the journal.
138 *
139 * start_transaction gets us a new handle for a truncate transaction,
140 * and extend_transaction tries to extend the existing one a bit. If
141 * extend fails, we need to propagate the failure up and restart the
142 * transaction in the top-level truncate loop. --sct
143 */
144
145static handle_t *start_transaction(struct inode *inode)
146{
147 handle_t *result;
148
149 result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 if (!IS_ERR(result))
151 return result;
152
153 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 return result;
155}
156
157/*
158 * Try to extend this transaction for the purposes of truncation.
159 *
160 * Returns 0 if we managed to create more room. If we can't create more
161 * room, and the transaction must be restarted we return 1.
162 */
163static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164{
165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 return 0;
167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 return 0;
169 return 1;
170}
171
172/*
173 * Restart the transaction associated with *handle. This does a commit,
174 * so before we call here everything must be consistently dirtied against
175 * this transaction.
176 */
177static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
178{
179 jbd_debug(2, "restarting handle %p\n", handle);
180 return ext3_journal_restart(handle, blocks_for_truncate(inode));
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
186void ext3_delete_inode (struct inode * inode)
187{
188 handle_t *handle;
189
fef26658
MF
190 truncate_inode_pages(&inode->i_data, 0);
191
1da177e4
LT
192 if (is_bad_inode(inode))
193 goto no_delete;
194
195 handle = start_transaction(inode);
196 if (IS_ERR(handle)) {
197 /* If we're going to skip the normal cleanup, we still
198 * need to make sure that the in-core orphan linked list
199 * is properly cleaned up. */
200 ext3_orphan_del(NULL, inode);
201 goto no_delete;
202 }
203
204 if (IS_SYNC(inode))
205 handle->h_sync = 1;
206 inode->i_size = 0;
207 if (inode->i_blocks)
208 ext3_truncate(inode);
209 /*
210 * Kill off the orphan record which ext3_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext3_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext3_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
216 */
217 ext3_orphan_del(handle, inode);
218 EXT3_I(inode)->i_dtime = get_seconds();
219
220 /*
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
225 * fails.
226 */
227 if (ext3_mark_inode_dirty(handle, inode))
228 /* If that failed, just do the required in-core inode clear. */
229 clear_inode(inode);
230 else
231 ext3_free_inode(handle, inode);
232 ext3_journal_stop(handle);
233 return;
234no_delete:
235 clear_inode(inode); /* We must guarantee clearing of inode... */
236}
237
238static int ext3_alloc_block (handle_t *handle,
239 struct inode * inode, unsigned long goal, int *err)
240{
241 unsigned long result;
242
243 result = ext3_new_block(handle, inode, goal, err);
244 return result;
245}
246
247
248typedef struct {
249 __le32 *p;
250 __le32 key;
251 struct buffer_head *bh;
252} Indirect;
253
254static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
255{
256 p->key = *(p->p = v);
257 p->bh = bh;
258}
259
260static inline int verify_chain(Indirect *from, Indirect *to)
261{
262 while (from <= to && from->key == *from->p)
263 from++;
264 return (from > to);
265}
266
267/**
268 * ext3_block_to_path - parse the block number into array of offsets
269 * @inode: inode in question (we are only interested in its superblock)
270 * @i_block: block number to be parsed
271 * @offsets: array to store the offsets in
272 * @boundary: set this non-zero if the referred-to block is likely to be
273 * followed (on disk) by an indirect block.
274 *
275 * To store the locations of file's data ext3 uses a data structure common
276 * for UNIX filesystems - tree of pointers anchored in the inode, with
277 * data blocks at leaves and indirect blocks in intermediate nodes.
278 * This function translates the block number into path in that tree -
279 * return value is the path length and @offsets[n] is the offset of
280 * pointer to (n+1)th node in the nth one. If @block is out of range
281 * (negative or too large) warning is printed and zero returned.
282 *
283 * Note: function doesn't find node addresses, so no IO is needed. All
284 * we need to know is the capacity of indirect blocks (taken from the
285 * inode->i_sb).
286 */
287
288/*
289 * Portability note: the last comparison (check that we fit into triple
290 * indirect block) is spelled differently, because otherwise on an
291 * architecture with 32-bit longs and 8Kb pages we might get into trouble
292 * if our filesystem had 8Kb blocks. We might use long long, but that would
293 * kill us on x86. Oh, well, at least the sign propagation does not matter -
294 * i_block would have to be negative in the very beginning, so we would not
295 * get there at all.
296 */
297
298static int ext3_block_to_path(struct inode *inode,
299 long i_block, int offsets[4], int *boundary)
300{
301 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
302 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
303 const long direct_blocks = EXT3_NDIR_BLOCKS,
304 indirect_blocks = ptrs,
305 double_blocks = (1 << (ptrs_bits * 2));
306 int n = 0;
307 int final = 0;
308
309 if (i_block < 0) {
310 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
311 } else if (i_block < direct_blocks) {
312 offsets[n++] = i_block;
313 final = direct_blocks;
314 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
315 offsets[n++] = EXT3_IND_BLOCK;
316 offsets[n++] = i_block;
317 final = ptrs;
318 } else if ((i_block -= indirect_blocks) < double_blocks) {
319 offsets[n++] = EXT3_DIND_BLOCK;
320 offsets[n++] = i_block >> ptrs_bits;
321 offsets[n++] = i_block & (ptrs - 1);
322 final = ptrs;
323 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
324 offsets[n++] = EXT3_TIND_BLOCK;
325 offsets[n++] = i_block >> (ptrs_bits * 2);
326 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
327 offsets[n++] = i_block & (ptrs - 1);
328 final = ptrs;
329 } else {
330 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
331 }
332 if (boundary)
333 *boundary = (i_block & (ptrs - 1)) == (final - 1);
334 return n;
335}
336
337/**
338 * ext3_get_branch - read the chain of indirect blocks leading to data
339 * @inode: inode in question
340 * @depth: depth of the chain (1 - direct pointer, etc.)
341 * @offsets: offsets of pointers in inode/indirect blocks
342 * @chain: place to store the result
343 * @err: here we store the error value
344 *
345 * Function fills the array of triples <key, p, bh> and returns %NULL
346 * if everything went OK or the pointer to the last filled triple
347 * (incomplete one) otherwise. Upon the return chain[i].key contains
348 * the number of (i+1)-th block in the chain (as it is stored in memory,
349 * i.e. little-endian 32-bit), chain[i].p contains the address of that
350 * number (it points into struct inode for i==0 and into the bh->b_data
351 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
352 * block for i>0 and NULL for i==0. In other words, it holds the block
353 * numbers of the chain, addresses they were taken from (and where we can
354 * verify that chain did not change) and buffer_heads hosting these
355 * numbers.
356 *
357 * Function stops when it stumbles upon zero pointer (absent block)
358 * (pointer to last triple returned, *@err == 0)
359 * or when it gets an IO error reading an indirect block
360 * (ditto, *@err == -EIO)
361 * or when it notices that chain had been changed while it was reading
362 * (ditto, *@err == -EAGAIN)
363 * or when it reads all @depth-1 indirect blocks successfully and finds
364 * the whole chain, all way to the data (returns %NULL, *err == 0).
365 */
366static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
367 Indirect chain[4], int *err)
368{
369 struct super_block *sb = inode->i_sb;
370 Indirect *p = chain;
371 struct buffer_head *bh;
372
373 *err = 0;
374 /* i_data is not going away, no lock needed */
375 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
376 if (!p->key)
377 goto no_block;
378 while (--depth) {
379 bh = sb_bread(sb, le32_to_cpu(p->key));
380 if (!bh)
381 goto failure;
382 /* Reader: pointers */
383 if (!verify_chain(chain, p))
384 goto changed;
385 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
386 /* Reader: end */
387 if (!p->key)
388 goto no_block;
389 }
390 return NULL;
391
392changed:
393 brelse(bh);
394 *err = -EAGAIN;
395 goto no_block;
396failure:
397 *err = -EIO;
398no_block:
399 return p;
400}
401
402/**
403 * ext3_find_near - find a place for allocation with sufficient locality
404 * @inode: owner
405 * @ind: descriptor of indirect block.
406 *
407 * This function returns the prefered place for block allocation.
408 * It is used when heuristic for sequential allocation fails.
409 * Rules are:
410 * + if there is a block to the left of our position - allocate near it.
411 * + if pointer will live in indirect block - allocate near that block.
412 * + if pointer will live in inode - allocate in the same
413 * cylinder group.
414 *
415 * In the latter case we colour the starting block by the callers PID to
416 * prevent it from clashing with concurrent allocations for a different inode
417 * in the same block group. The PID is used here so that functionally related
418 * files will be close-by on-disk.
419 *
420 * Caller must make sure that @ind is valid and will stay that way.
421 */
422
423static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
424{
425 struct ext3_inode_info *ei = EXT3_I(inode);
426 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427 __le32 *p;
428 unsigned long bg_start;
429 unsigned long colour;
430
431 /* Try to find previous block */
432 for (p = ind->p - 1; p >= start; p--)
433 if (*p)
434 return le32_to_cpu(*p);
435
436 /* No such thing, so let's try location of indirect block */
437 if (ind->bh)
438 return ind->bh->b_blocknr;
439
440 /*
441 * It is going to be refered from inode itself? OK, just put it into
442 * the same cylinder group then.
443 */
444 bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
445 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
446 colour = (current->pid % 16) *
447 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448 return bg_start + colour;
449}
450
451/**
452 * ext3_find_goal - find a prefered place for allocation.
453 * @inode: owner
454 * @block: block we want
455 * @chain: chain of indirect blocks
456 * @partial: pointer to the last triple within a chain
457 * @goal: place to store the result.
458 *
459 * Normally this function find the prefered place for block allocation,
fe55c452 460 * stores it in *@goal and returns zero.
1da177e4
LT
461 */
462
fe55c452
MC
463static unsigned long ext3_find_goal(struct inode *inode, long block,
464 Indirect chain[4], Indirect *partial)
1da177e4
LT
465{
466 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
467
468 /*
469 * try the heuristic for sequential allocation,
470 * failing that at least try to get decent locality.
471 */
472 if (block_i && (block == block_i->last_alloc_logical_block + 1)
473 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 474 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
475 }
476
fe55c452 477 return ext3_find_near(inode, partial);
1da177e4
LT
478}
479
480/**
481 * ext3_alloc_branch - allocate and set up a chain of blocks.
482 * @inode: owner
483 * @num: depth of the chain (number of blocks to allocate)
484 * @offsets: offsets (in the blocks) to store the pointers to next.
485 * @branch: place to store the chain in.
486 *
487 * This function allocates @num blocks, zeroes out all but the last one,
488 * links them into chain and (if we are synchronous) writes them to disk.
489 * In other words, it prepares a branch that can be spliced onto the
490 * inode. It stores the information about that chain in the branch[], in
491 * the same format as ext3_get_branch() would do. We are calling it after
492 * we had read the existing part of chain and partial points to the last
493 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 494 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
495 * place chain is disconnected - *branch->p is still zero (we did not
496 * set the last link), but branch->key contains the number that should
497 * be placed into *branch->p to fill that gap.
498 *
499 * If allocation fails we free all blocks we've allocated (and forget
500 * their buffer_heads) and return the error value the from failed
501 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
502 * as described above and return 0.
503 */
504
505static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
506 int num,
507 unsigned long goal,
508 int *offsets,
509 Indirect *branch)
510{
511 int blocksize = inode->i_sb->s_blocksize;
512 int n = 0, keys = 0;
513 int err = 0;
514 int i;
515 int parent = ext3_alloc_block(handle, inode, goal, &err);
516
517 branch[0].key = cpu_to_le32(parent);
518 if (parent) {
519 for (n = 1; n < num; n++) {
520 struct buffer_head *bh;
521 /* Allocate the next block */
522 int nr = ext3_alloc_block(handle, inode, parent, &err);
523 if (!nr)
524 break;
525 branch[n].key = cpu_to_le32(nr);
1da177e4
LT
526
527 /*
528 * Get buffer_head for parent block, zero it out
529 * and set the pointer to new one, then send
530 * parent to disk.
531 */
532 bh = sb_getblk(inode->i_sb, parent);
2973dfdb
GOC
533 if (!bh)
534 break;
535 keys = n+1;
1da177e4
LT
536 branch[n].bh = bh;
537 lock_buffer(bh);
538 BUFFER_TRACE(bh, "call get_create_access");
539 err = ext3_journal_get_create_access(handle, bh);
540 if (err) {
541 unlock_buffer(bh);
542 brelse(bh);
543 break;
544 }
545
546 memset(bh->b_data, 0, blocksize);
547 branch[n].p = (__le32*) bh->b_data + offsets[n];
548 *branch[n].p = branch[n].key;
549 BUFFER_TRACE(bh, "marking uptodate");
550 set_buffer_uptodate(bh);
551 unlock_buffer(bh);
552
553 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
554 err = ext3_journal_dirty_metadata(handle, bh);
555 if (err)
556 break;
557
558 parent = nr;
559 }
560 }
561 if (n == num)
562 return 0;
563
564 /* Allocation failed, free what we already allocated */
565 for (i = 1; i < keys; i++) {
566 BUFFER_TRACE(branch[i].bh, "call journal_forget");
567 ext3_journal_forget(handle, branch[i].bh);
568 }
569 for (i = 0; i < keys; i++)
570 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
571 return err;
572}
573
574/**
575 * ext3_splice_branch - splice the allocated branch onto inode.
576 * @inode: owner
577 * @block: (logical) number of block we are adding
578 * @chain: chain of indirect blocks (with a missing link - see
579 * ext3_alloc_branch)
580 * @where: location of missing link
581 * @num: number of blocks we are adding
582 *
fe55c452 583 * This function fills the missing link and does all housekeeping needed in
1da177e4 584 * inode (->i_blocks, etc.). In case of success we end up with the full
fe55c452 585 * chain to new block and return 0.
1da177e4
LT
586 */
587
588static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
589 Indirect chain[4], Indirect *where, int num)
590{
591 int i;
592 int err = 0;
593 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
594
595 /*
596 * If we're splicing into a [td]indirect block (as opposed to the
597 * inode) then we need to get write access to the [td]indirect block
598 * before the splice.
599 */
600 if (where->bh) {
601 BUFFER_TRACE(where->bh, "get_write_access");
602 err = ext3_journal_get_write_access(handle, where->bh);
603 if (err)
604 goto err_out;
605 }
1da177e4
LT
606 /* That's it */
607
608 *where->p = where->key;
609
610 /*
611 * update the most recently allocated logical & physical block
612 * in i_block_alloc_info, to assist find the proper goal block for next
613 * allocation
614 */
615 if (block_i) {
616 block_i->last_alloc_logical_block = block;
617 block_i->last_alloc_physical_block = le32_to_cpu(where[num-1].key);
618 }
619
620 /* We are done with atomic stuff, now do the rest of housekeeping */
621
622 inode->i_ctime = CURRENT_TIME_SEC;
623 ext3_mark_inode_dirty(handle, inode);
624
625 /* had we spliced it onto indirect block? */
626 if (where->bh) {
627 /*
628 * akpm: If we spliced it onto an indirect block, we haven't
629 * altered the inode. Note however that if it is being spliced
630 * onto an indirect block at the very end of the file (the
631 * file is growing) then we *will* alter the inode to reflect
632 * the new i_size. But that is not done here - it is done in
633 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
634 */
635 jbd_debug(5, "splicing indirect only\n");
636 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
637 err = ext3_journal_dirty_metadata(handle, where->bh);
638 if (err)
639 goto err_out;
640 } else {
641 /*
642 * OK, we spliced it into the inode itself on a direct block.
643 * Inode was dirtied above.
644 */
645 jbd_debug(5, "splicing direct\n");
646 }
647 return err;
648
1da177e4
LT
649err_out:
650 for (i = 1; i < num; i++) {
651 BUFFER_TRACE(where[i].bh, "call journal_forget");
652 ext3_journal_forget(handle, where[i].bh);
653 }
1da177e4
LT
654 return err;
655}
656
657/*
658 * Allocation strategy is simple: if we have to allocate something, we will
659 * have to go the whole way to leaf. So let's do it before attaching anything
660 * to tree, set linkage between the newborn blocks, write them if sync is
661 * required, recheck the path, free and repeat if check fails, otherwise
662 * set the last missing link (that will protect us from any truncate-generated
663 * removals - all blocks on the path are immune now) and possibly force the
664 * write on the parent block.
665 * That has a nice additional property: no special recovery from the failed
666 * allocations is needed - we simply release blocks and do not touch anything
667 * reachable from inode.
668 *
669 * akpm: `handle' can be NULL if create == 0.
670 *
671 * The BKL may not be held on entry here. Be sure to take it early.
672 */
673
d8733c29 674int
1da177e4
LT
675ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
676 struct buffer_head *bh_result, int create, int extend_disksize)
677{
678 int err = -EIO;
679 int offsets[4];
680 Indirect chain[4];
681 Indirect *partial;
682 unsigned long goal;
683 int left;
684 int boundary = 0;
fe55c452 685 const int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
1da177e4
LT
686 struct ext3_inode_info *ei = EXT3_I(inode);
687
688 J_ASSERT(handle != NULL || create == 0);
689
690 if (depth == 0)
691 goto out;
692
1da177e4
LT
693 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
694
695 /* Simplest case - block found, no allocation needed */
696 if (!partial) {
697 clear_buffer_new(bh_result);
fe55c452 698 goto got_it;
1da177e4
LT
699 }
700
701 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
702 if (!create || err == -EIO)
703 goto cleanup;
704
97461518 705 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
706
707 /*
708 * If the indirect block is missing while we are reading
709 * the chain(ext3_get_branch() returns -EAGAIN err), or
710 * if the chain has been changed after we grab the semaphore,
711 * (either because another process truncated this branch, or
712 * another get_block allocated this branch) re-grab the chain to see if
713 * the request block has been allocated or not.
714 *
715 * Since we already block the truncate/other get_block
716 * at this point, we will have the current copy of the chain when we
717 * splice the branch into the tree.
718 */
719 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 720 while (partial > chain) {
1da177e4
LT
721 brelse(partial->bh);
722 partial--;
723 }
fe55c452
MC
724 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
725 if (!partial) {
97461518 726 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
727 if (err)
728 goto cleanup;
729 clear_buffer_new(bh_result);
730 goto got_it;
731 }
1da177e4
LT
732 }
733
734 /*
fe55c452
MC
735 * Okay, we need to do block allocation. Lazily initialize the block
736 * allocation info here if necessary
737 */
738 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 739 ext3_init_block_alloc_info(inode);
1da177e4 740
fe55c452 741 goal = ext3_find_goal(inode, iblock, chain, partial);
1da177e4
LT
742
743 left = (chain + depth) - partial;
744
745 /*
746 * Block out ext3_truncate while we alter the tree
747 */
748 err = ext3_alloc_branch(handle, inode, left, goal,
fe55c452 749 offsets + (partial - chain), partial);
1da177e4 750
fe55c452
MC
751 /*
752 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
753 * on the new chain if there is a failure, but that risks using
754 * up transaction credits, especially for bitmaps where the
755 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
756 * may need to return -EAGAIN upwards in the worst case. --sct
757 */
1da177e4
LT
758 if (!err)
759 err = ext3_splice_branch(handle, inode, iblock, chain,
760 partial, left);
fe55c452 761 /*
97461518 762 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
763 * protect it if you're about to implement concurrent
764 * ext3_get_block() -bzzz
765 */
1da177e4
LT
766 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
767 ei->i_disksize = inode->i_size;
97461518 768 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
769 if (err)
770 goto cleanup;
771
772 set_buffer_new(bh_result);
fe55c452
MC
773got_it:
774 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
775 if (boundary)
776 set_buffer_boundary(bh_result);
777 /* Clean up and exit */
778 partial = chain + depth - 1; /* the whole chain */
779cleanup:
1da177e4 780 while (partial > chain) {
fe55c452 781 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
782 brelse(partial->bh);
783 partial--;
784 }
fe55c452
MC
785 BUFFER_TRACE(bh_result, "returned");
786out:
787 return err;
1da177e4
LT
788}
789
790static int ext3_get_block(struct inode *inode, sector_t iblock,
791 struct buffer_head *bh_result, int create)
792{
793 handle_t *handle = NULL;
794 int ret;
795
796 if (create) {
797 handle = ext3_journal_current_handle();
798 J_ASSERT(handle != 0);
799 }
800 ret = ext3_get_block_handle(handle, inode, iblock,
801 bh_result, create, 1);
802 return ret;
803}
804
805#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
806
807static int
808ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
809 unsigned long max_blocks, struct buffer_head *bh_result,
810 int create)
811{
812 handle_t *handle = journal_current_handle();
813 int ret = 0;
814
815 if (!handle)
816 goto get_block; /* A read */
817
818 if (handle->h_transaction->t_state == T_LOCKED) {
819 /*
820 * Huge direct-io writes can hold off commits for long
821 * periods of time. Let this commit run.
822 */
823 ext3_journal_stop(handle);
824 handle = ext3_journal_start(inode, DIO_CREDITS);
825 if (IS_ERR(handle))
826 ret = PTR_ERR(handle);
827 goto get_block;
828 }
829
830 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
831 /*
832 * Getting low on buffer credits...
833 */
834 ret = ext3_journal_extend(handle, DIO_CREDITS);
835 if (ret > 0) {
836 /*
837 * Couldn't extend the transaction. Start a new one.
838 */
839 ret = ext3_journal_restart(handle, DIO_CREDITS);
840 }
841 }
842
843get_block:
844 if (ret == 0)
845 ret = ext3_get_block_handle(handle, inode, iblock,
846 bh_result, create, 0);
847 bh_result->b_size = (1 << inode->i_blkbits);
848 return ret;
849}
850
1da177e4
LT
851/*
852 * `handle' can be NULL if create is zero
853 */
854struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
855 long block, int create, int * errp)
856{
857 struct buffer_head dummy;
858 int fatal = 0, err;
859
860 J_ASSERT(handle != NULL || create == 0);
861
862 dummy.b_state = 0;
863 dummy.b_blocknr = -1000;
864 buffer_trace_init(&dummy.b_history);
865 *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
866 if (!*errp && buffer_mapped(&dummy)) {
867 struct buffer_head *bh;
868 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
869 if (!bh) {
870 *errp = -EIO;
871 goto err;
872 }
1da177e4
LT
873 if (buffer_new(&dummy)) {
874 J_ASSERT(create != 0);
875 J_ASSERT(handle != 0);
876
877 /* Now that we do not always journal data, we
878 should keep in mind whether this should
879 always journal the new buffer as metadata.
880 For now, regular file writes use
881 ext3_get_block instead, so it's not a
882 problem. */
883 lock_buffer(bh);
884 BUFFER_TRACE(bh, "call get_create_access");
885 fatal = ext3_journal_get_create_access(handle, bh);
886 if (!fatal && !buffer_uptodate(bh)) {
887 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
888 set_buffer_uptodate(bh);
889 }
890 unlock_buffer(bh);
891 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
892 err = ext3_journal_dirty_metadata(handle, bh);
893 if (!fatal)
894 fatal = err;
895 } else {
896 BUFFER_TRACE(bh, "not a new buffer");
897 }
898 if (fatal) {
899 *errp = fatal;
900 brelse(bh);
901 bh = NULL;
902 }
903 return bh;
904 }
2973dfdb 905err:
1da177e4
LT
906 return NULL;
907}
908
909struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
910 int block, int create, int *err)
911{
912 struct buffer_head * bh;
913
914 bh = ext3_getblk(handle, inode, block, create, err);
915 if (!bh)
916 return bh;
917 if (buffer_uptodate(bh))
918 return bh;
919 ll_rw_block(READ, 1, &bh);
920 wait_on_buffer(bh);
921 if (buffer_uptodate(bh))
922 return bh;
923 put_bh(bh);
924 *err = -EIO;
925 return NULL;
926}
927
928static int walk_page_buffers( handle_t *handle,
929 struct buffer_head *head,
930 unsigned from,
931 unsigned to,
932 int *partial,
933 int (*fn)( handle_t *handle,
934 struct buffer_head *bh))
935{
936 struct buffer_head *bh;
937 unsigned block_start, block_end;
938 unsigned blocksize = head->b_size;
939 int err, ret = 0;
940 struct buffer_head *next;
941
942 for ( bh = head, block_start = 0;
943 ret == 0 && (bh != head || !block_start);
944 block_start = block_end, bh = next)
945 {
946 next = bh->b_this_page;
947 block_end = block_start + blocksize;
948 if (block_end <= from || block_start >= to) {
949 if (partial && !buffer_uptodate(bh))
950 *partial = 1;
951 continue;
952 }
953 err = (*fn)(handle, bh);
954 if (!ret)
955 ret = err;
956 }
957 return ret;
958}
959
960/*
961 * To preserve ordering, it is essential that the hole instantiation and
962 * the data write be encapsulated in a single transaction. We cannot
963 * close off a transaction and start a new one between the ext3_get_block()
964 * and the commit_write(). So doing the journal_start at the start of
965 * prepare_write() is the right place.
966 *
967 * Also, this function can nest inside ext3_writepage() ->
968 * block_write_full_page(). In that case, we *know* that ext3_writepage()
969 * has generated enough buffer credits to do the whole page. So we won't
970 * block on the journal in that case, which is good, because the caller may
971 * be PF_MEMALLOC.
972 *
973 * By accident, ext3 can be reentered when a transaction is open via
974 * quota file writes. If we were to commit the transaction while thus
975 * reentered, there can be a deadlock - we would be holding a quota
976 * lock, and the commit would never complete if another thread had a
977 * transaction open and was blocking on the quota lock - a ranking
978 * violation.
979 *
980 * So what we do is to rely on the fact that journal_stop/journal_start
981 * will _not_ run commit under these circumstances because handle->h_ref
982 * is elevated. We'll still have enough credits for the tiny quotafile
983 * write.
984 */
985
986static int do_journal_get_write_access(handle_t *handle,
987 struct buffer_head *bh)
988{
989 if (!buffer_mapped(bh) || buffer_freed(bh))
990 return 0;
991 return ext3_journal_get_write_access(handle, bh);
992}
993
994static int ext3_prepare_write(struct file *file, struct page *page,
995 unsigned from, unsigned to)
996{
997 struct inode *inode = page->mapping->host;
998 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
999 handle_t *handle;
1000 int retries = 0;
1001
1002retry:
1003 handle = ext3_journal_start(inode, needed_blocks);
1004 if (IS_ERR(handle)) {
1005 ret = PTR_ERR(handle);
1006 goto out;
1007 }
1008 if (test_opt(inode->i_sb, NOBH))
1009 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1010 else
1011 ret = block_prepare_write(page, from, to, ext3_get_block);
1012 if (ret)
1013 goto prepare_write_failed;
1014
1015 if (ext3_should_journal_data(inode)) {
1016 ret = walk_page_buffers(handle, page_buffers(page),
1017 from, to, NULL, do_journal_get_write_access);
1018 }
1019prepare_write_failed:
1020 if (ret)
1021 ext3_journal_stop(handle);
1022 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1023 goto retry;
1024out:
1025 return ret;
1026}
1027
1028int
1029ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1030{
1031 int err = journal_dirty_data(handle, bh);
1032 if (err)
1033 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1034 bh, handle,err);
1035 return err;
1036}
1037
1038/* For commit_write() in data=journal mode */
1039static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1040{
1041 if (!buffer_mapped(bh) || buffer_freed(bh))
1042 return 0;
1043 set_buffer_uptodate(bh);
1044 return ext3_journal_dirty_metadata(handle, bh);
1045}
1046
1047/*
1048 * We need to pick up the new inode size which generic_commit_write gave us
1049 * `file' can be NULL - eg, when called from page_symlink().
1050 *
1051 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1052 * buffers are managed internally.
1053 */
1054
1055static int ext3_ordered_commit_write(struct file *file, struct page *page,
1056 unsigned from, unsigned to)
1057{
1058 handle_t *handle = ext3_journal_current_handle();
1059 struct inode *inode = page->mapping->host;
1060 int ret = 0, ret2;
1061
1062 ret = walk_page_buffers(handle, page_buffers(page),
1063 from, to, NULL, ext3_journal_dirty_data);
1064
1065 if (ret == 0) {
1066 /*
1067 * generic_commit_write() will run mark_inode_dirty() if i_size
1068 * changes. So let's piggyback the i_disksize mark_inode_dirty
1069 * into that.
1070 */
1071 loff_t new_i_size;
1072
1073 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1074 if (new_i_size > EXT3_I(inode)->i_disksize)
1075 EXT3_I(inode)->i_disksize = new_i_size;
1076 ret = generic_commit_write(file, page, from, to);
1077 }
1078 ret2 = ext3_journal_stop(handle);
1079 if (!ret)
1080 ret = ret2;
1081 return ret;
1082}
1083
1084static int ext3_writeback_commit_write(struct file *file, struct page *page,
1085 unsigned from, unsigned to)
1086{
1087 handle_t *handle = ext3_journal_current_handle();
1088 struct inode *inode = page->mapping->host;
1089 int ret = 0, ret2;
1090 loff_t new_i_size;
1091
1092 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1093 if (new_i_size > EXT3_I(inode)->i_disksize)
1094 EXT3_I(inode)->i_disksize = new_i_size;
1095
1096 if (test_opt(inode->i_sb, NOBH))
1097 ret = nobh_commit_write(file, page, from, to);
1098 else
1099 ret = generic_commit_write(file, page, from, to);
1100
1101 ret2 = ext3_journal_stop(handle);
1102 if (!ret)
1103 ret = ret2;
1104 return ret;
1105}
1106
1107static int ext3_journalled_commit_write(struct file *file,
1108 struct page *page, unsigned from, unsigned to)
1109{
1110 handle_t *handle = ext3_journal_current_handle();
1111 struct inode *inode = page->mapping->host;
1112 int ret = 0, ret2;
1113 int partial = 0;
1114 loff_t pos;
1115
1116 /*
1117 * Here we duplicate the generic_commit_write() functionality
1118 */
1119 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1120
1121 ret = walk_page_buffers(handle, page_buffers(page), from,
1122 to, &partial, commit_write_fn);
1123 if (!partial)
1124 SetPageUptodate(page);
1125 if (pos > inode->i_size)
1126 i_size_write(inode, pos);
1127 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1128 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1129 EXT3_I(inode)->i_disksize = inode->i_size;
1130 ret2 = ext3_mark_inode_dirty(handle, inode);
1131 if (!ret)
1132 ret = ret2;
1133 }
1134 ret2 = ext3_journal_stop(handle);
1135 if (!ret)
1136 ret = ret2;
1137 return ret;
1138}
1139
1140/*
1141 * bmap() is special. It gets used by applications such as lilo and by
1142 * the swapper to find the on-disk block of a specific piece of data.
1143 *
1144 * Naturally, this is dangerous if the block concerned is still in the
1145 * journal. If somebody makes a swapfile on an ext3 data-journaling
1146 * filesystem and enables swap, then they may get a nasty shock when the
1147 * data getting swapped to that swapfile suddenly gets overwritten by
1148 * the original zero's written out previously to the journal and
1149 * awaiting writeback in the kernel's buffer cache.
1150 *
1151 * So, if we see any bmap calls here on a modified, data-journaled file,
1152 * take extra steps to flush any blocks which might be in the cache.
1153 */
1154static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1155{
1156 struct inode *inode = mapping->host;
1157 journal_t *journal;
1158 int err;
1159
1160 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1161 /*
1162 * This is a REALLY heavyweight approach, but the use of
1163 * bmap on dirty files is expected to be extremely rare:
1164 * only if we run lilo or swapon on a freshly made file
1165 * do we expect this to happen.
1166 *
1167 * (bmap requires CAP_SYS_RAWIO so this does not
1168 * represent an unprivileged user DOS attack --- we'd be
1169 * in trouble if mortal users could trigger this path at
1170 * will.)
1171 *
1172 * NB. EXT3_STATE_JDATA is not set on files other than
1173 * regular files. If somebody wants to bmap a directory
1174 * or symlink and gets confused because the buffer
1175 * hasn't yet been flushed to disk, they deserve
1176 * everything they get.
1177 */
1178
1179 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1180 journal = EXT3_JOURNAL(inode);
1181 journal_lock_updates(journal);
1182 err = journal_flush(journal);
1183 journal_unlock_updates(journal);
1184
1185 if (err)
1186 return 0;
1187 }
1188
1189 return generic_block_bmap(mapping,block,ext3_get_block);
1190}
1191
1192static int bget_one(handle_t *handle, struct buffer_head *bh)
1193{
1194 get_bh(bh);
1195 return 0;
1196}
1197
1198static int bput_one(handle_t *handle, struct buffer_head *bh)
1199{
1200 put_bh(bh);
1201 return 0;
1202}
1203
1204static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1205{
1206 if (buffer_mapped(bh))
1207 return ext3_journal_dirty_data(handle, bh);
1208 return 0;
1209}
1210
1211/*
1212 * Note that we always start a transaction even if we're not journalling
1213 * data. This is to preserve ordering: any hole instantiation within
1214 * __block_write_full_page -> ext3_get_block() should be journalled
1215 * along with the data so we don't crash and then get metadata which
1216 * refers to old data.
1217 *
1218 * In all journalling modes block_write_full_page() will start the I/O.
1219 *
1220 * Problem:
1221 *
1222 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1223 * ext3_writepage()
1224 *
1225 * Similar for:
1226 *
1227 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1228 *
1229 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1230 * lock_journal and i_truncate_mutex.
1da177e4
LT
1231 *
1232 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1233 * allocations fail.
1234 *
1235 * 16May01: If we're reentered then journal_current_handle() will be
1236 * non-zero. We simply *return*.
1237 *
1238 * 1 July 2001: @@@ FIXME:
1239 * In journalled data mode, a data buffer may be metadata against the
1240 * current transaction. But the same file is part of a shared mapping
1241 * and someone does a writepage() on it.
1242 *
1243 * We will move the buffer onto the async_data list, but *after* it has
1244 * been dirtied. So there's a small window where we have dirty data on
1245 * BJ_Metadata.
1246 *
1247 * Note that this only applies to the last partial page in the file. The
1248 * bit which block_write_full_page() uses prepare/commit for. (That's
1249 * broken code anyway: it's wrong for msync()).
1250 *
1251 * It's a rare case: affects the final partial page, for journalled data
1252 * where the file is subject to bith write() and writepage() in the same
1253 * transction. To fix it we'll need a custom block_write_full_page().
1254 * We'll probably need that anyway for journalling writepage() output.
1255 *
1256 * We don't honour synchronous mounts for writepage(). That would be
1257 * disastrous. Any write() or metadata operation will sync the fs for
1258 * us.
1259 *
1260 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1261 * we don't need to open a transaction here.
1262 */
1263static int ext3_ordered_writepage(struct page *page,
1264 struct writeback_control *wbc)
1265{
1266 struct inode *inode = page->mapping->host;
1267 struct buffer_head *page_bufs;
1268 handle_t *handle = NULL;
1269 int ret = 0;
1270 int err;
1271
1272 J_ASSERT(PageLocked(page));
1273
1274 /*
1275 * We give up here if we're reentered, because it might be for a
1276 * different filesystem.
1277 */
1278 if (ext3_journal_current_handle())
1279 goto out_fail;
1280
1281 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1282
1283 if (IS_ERR(handle)) {
1284 ret = PTR_ERR(handle);
1285 goto out_fail;
1286 }
1287
1288 if (!page_has_buffers(page)) {
1289 create_empty_buffers(page, inode->i_sb->s_blocksize,
1290 (1 << BH_Dirty)|(1 << BH_Uptodate));
1291 }
1292 page_bufs = page_buffers(page);
1293 walk_page_buffers(handle, page_bufs, 0,
1294 PAGE_CACHE_SIZE, NULL, bget_one);
1295
1296 ret = block_write_full_page(page, ext3_get_block, wbc);
1297
1298 /*
1299 * The page can become unlocked at any point now, and
1300 * truncate can then come in and change things. So we
1301 * can't touch *page from now on. But *page_bufs is
1302 * safe due to elevated refcount.
1303 */
1304
1305 /*
1306 * And attach them to the current transaction. But only if
1307 * block_write_full_page() succeeded. Otherwise they are unmapped,
1308 * and generally junk.
1309 */
1310 if (ret == 0) {
1311 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1312 NULL, journal_dirty_data_fn);
1313 if (!ret)
1314 ret = err;
1315 }
1316 walk_page_buffers(handle, page_bufs, 0,
1317 PAGE_CACHE_SIZE, NULL, bput_one);
1318 err = ext3_journal_stop(handle);
1319 if (!ret)
1320 ret = err;
1321 return ret;
1322
1323out_fail:
1324 redirty_page_for_writepage(wbc, page);
1325 unlock_page(page);
1326 return ret;
1327}
1328
1da177e4
LT
1329static int ext3_writeback_writepage(struct page *page,
1330 struct writeback_control *wbc)
1331{
1332 struct inode *inode = page->mapping->host;
1333 handle_t *handle = NULL;
1334 int ret = 0;
1335 int err;
1336
1337 if (ext3_journal_current_handle())
1338 goto out_fail;
1339
1340 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1341 if (IS_ERR(handle)) {
1342 ret = PTR_ERR(handle);
1343 goto out_fail;
1344 }
1345
1346 if (test_opt(inode->i_sb, NOBH))
1347 ret = nobh_writepage(page, ext3_get_block, wbc);
1348 else
1349 ret = block_write_full_page(page, ext3_get_block, wbc);
1350
1351 err = ext3_journal_stop(handle);
1352 if (!ret)
1353 ret = err;
1354 return ret;
1355
1356out_fail:
1357 redirty_page_for_writepage(wbc, page);
1358 unlock_page(page);
1359 return ret;
1360}
1361
1362static int ext3_journalled_writepage(struct page *page,
1363 struct writeback_control *wbc)
1364{
1365 struct inode *inode = page->mapping->host;
1366 handle_t *handle = NULL;
1367 int ret = 0;
1368 int err;
1369
1370 if (ext3_journal_current_handle())
1371 goto no_write;
1372
1373 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1374 if (IS_ERR(handle)) {
1375 ret = PTR_ERR(handle);
1376 goto no_write;
1377 }
1378
1379 if (!page_has_buffers(page) || PageChecked(page)) {
1380 /*
1381 * It's mmapped pagecache. Add buffers and journal it. There
1382 * doesn't seem much point in redirtying the page here.
1383 */
1384 ClearPageChecked(page);
1385 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1386 ext3_get_block);
ab4eb43c
DL
1387 if (ret != 0) {
1388 ext3_journal_stop(handle);
1da177e4 1389 goto out_unlock;
ab4eb43c 1390 }
1da177e4
LT
1391 ret = walk_page_buffers(handle, page_buffers(page), 0,
1392 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1393
1394 err = walk_page_buffers(handle, page_buffers(page), 0,
1395 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1396 if (ret == 0)
1397 ret = err;
1398 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1399 unlock_page(page);
1400 } else {
1401 /*
1402 * It may be a page full of checkpoint-mode buffers. We don't
1403 * really know unless we go poke around in the buffer_heads.
1404 * But block_write_full_page will do the right thing.
1405 */
1406 ret = block_write_full_page(page, ext3_get_block, wbc);
1407 }
1408 err = ext3_journal_stop(handle);
1409 if (!ret)
1410 ret = err;
1411out:
1412 return ret;
1413
1414no_write:
1415 redirty_page_for_writepage(wbc, page);
1416out_unlock:
1417 unlock_page(page);
1418 goto out;
1419}
1420
1421static int ext3_readpage(struct file *file, struct page *page)
1422{
1423 return mpage_readpage(page, ext3_get_block);
1424}
1425
1426static int
1427ext3_readpages(struct file *file, struct address_space *mapping,
1428 struct list_head *pages, unsigned nr_pages)
1429{
1430 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1431}
1432
1433static int ext3_invalidatepage(struct page *page, unsigned long offset)
1434{
1435 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1436
1437 /*
1438 * If it's a full truncate we just forget about the pending dirtying
1439 */
1440 if (offset == 0)
1441 ClearPageChecked(page);
1442
1443 return journal_invalidatepage(journal, page, offset);
1444}
1445
27496a8c 1446static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1447{
1448 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1449
1450 WARN_ON(PageChecked(page));
1451 if (!page_has_buffers(page))
1452 return 0;
1453 return journal_try_to_free_buffers(journal, page, wait);
1454}
1455
1456/*
1457 * If the O_DIRECT write will extend the file then add this inode to the
1458 * orphan list. So recovery will truncate it back to the original size
1459 * if the machine crashes during the write.
1460 *
1461 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1462 * crashes then stale disk data _may_ be exposed inside the file.
1463 */
1464static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1465 const struct iovec *iov, loff_t offset,
1466 unsigned long nr_segs)
1467{
1468 struct file *file = iocb->ki_filp;
1469 struct inode *inode = file->f_mapping->host;
1470 struct ext3_inode_info *ei = EXT3_I(inode);
1471 handle_t *handle = NULL;
1472 ssize_t ret;
1473 int orphan = 0;
1474 size_t count = iov_length(iov, nr_segs);
1475
1476 if (rw == WRITE) {
1477 loff_t final_size = offset + count;
1478
1479 handle = ext3_journal_start(inode, DIO_CREDITS);
1480 if (IS_ERR(handle)) {
1481 ret = PTR_ERR(handle);
1482 goto out;
1483 }
1484 if (final_size > inode->i_size) {
1485 ret = ext3_orphan_add(handle, inode);
1486 if (ret)
1487 goto out_stop;
1488 orphan = 1;
1489 ei->i_disksize = inode->i_size;
1490 }
1491 }
1492
1493 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1494 offset, nr_segs,
1495 ext3_direct_io_get_blocks, NULL);
1496
1497 /*
1498 * Reacquire the handle: ext3_direct_io_get_block() can restart the
1499 * transaction
1500 */
1501 handle = journal_current_handle();
1502
1503out_stop:
1504 if (handle) {
1505 int err;
1506
1507 if (orphan && inode->i_nlink)
1508 ext3_orphan_del(handle, inode);
1509 if (orphan && ret > 0) {
1510 loff_t end = offset + ret;
1511 if (end > inode->i_size) {
1512 ei->i_disksize = end;
1513 i_size_write(inode, end);
1514 /*
1515 * We're going to return a positive `ret'
1516 * here due to non-zero-length I/O, so there's
1517 * no way of reporting error returns from
1518 * ext3_mark_inode_dirty() to userspace. So
1519 * ignore it.
1520 */
1521 ext3_mark_inode_dirty(handle, inode);
1522 }
1523 }
1524 err = ext3_journal_stop(handle);
1525 if (ret == 0)
1526 ret = err;
1527 }
1528out:
1529 return ret;
1530}
1531
1532/*
1533 * Pages can be marked dirty completely asynchronously from ext3's journalling
1534 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1535 * much here because ->set_page_dirty is called under VFS locks. The page is
1536 * not necessarily locked.
1537 *
1538 * We cannot just dirty the page and leave attached buffers clean, because the
1539 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1540 * or jbddirty because all the journalling code will explode.
1541 *
1542 * So what we do is to mark the page "pending dirty" and next time writepage
1543 * is called, propagate that into the buffers appropriately.
1544 */
1545static int ext3_journalled_set_page_dirty(struct page *page)
1546{
1547 SetPageChecked(page);
1548 return __set_page_dirty_nobuffers(page);
1549}
1550
1551static struct address_space_operations ext3_ordered_aops = {
1552 .readpage = ext3_readpage,
1553 .readpages = ext3_readpages,
1554 .writepage = ext3_ordered_writepage,
1555 .sync_page = block_sync_page,
1556 .prepare_write = ext3_prepare_write,
1557 .commit_write = ext3_ordered_commit_write,
1558 .bmap = ext3_bmap,
1559 .invalidatepage = ext3_invalidatepage,
1560 .releasepage = ext3_releasepage,
1561 .direct_IO = ext3_direct_IO,
e965f963 1562 .migratepage = buffer_migrate_page,
1da177e4
LT
1563};
1564
1565static struct address_space_operations ext3_writeback_aops = {
1566 .readpage = ext3_readpage,
1567 .readpages = ext3_readpages,
1568 .writepage = ext3_writeback_writepage,
1da177e4
LT
1569 .sync_page = block_sync_page,
1570 .prepare_write = ext3_prepare_write,
1571 .commit_write = ext3_writeback_commit_write,
1572 .bmap = ext3_bmap,
1573 .invalidatepage = ext3_invalidatepage,
1574 .releasepage = ext3_releasepage,
1575 .direct_IO = ext3_direct_IO,
e965f963 1576 .migratepage = buffer_migrate_page,
1da177e4
LT
1577};
1578
1579static struct address_space_operations ext3_journalled_aops = {
1580 .readpage = ext3_readpage,
1581 .readpages = ext3_readpages,
1582 .writepage = ext3_journalled_writepage,
1583 .sync_page = block_sync_page,
1584 .prepare_write = ext3_prepare_write,
1585 .commit_write = ext3_journalled_commit_write,
1586 .set_page_dirty = ext3_journalled_set_page_dirty,
1587 .bmap = ext3_bmap,
1588 .invalidatepage = ext3_invalidatepage,
1589 .releasepage = ext3_releasepage,
1590};
1591
1592void ext3_set_aops(struct inode *inode)
1593{
1594 if (ext3_should_order_data(inode))
1595 inode->i_mapping->a_ops = &ext3_ordered_aops;
1596 else if (ext3_should_writeback_data(inode))
1597 inode->i_mapping->a_ops = &ext3_writeback_aops;
1598 else
1599 inode->i_mapping->a_ops = &ext3_journalled_aops;
1600}
1601
1602/*
1603 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1604 * up to the end of the block which corresponds to `from'.
1605 * This required during truncate. We need to physically zero the tail end
1606 * of that block so it doesn't yield old data if the file is later grown.
1607 */
1608static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1609 struct address_space *mapping, loff_t from)
1610{
1611 unsigned long index = from >> PAGE_CACHE_SHIFT;
1612 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1613 unsigned blocksize, iblock, length, pos;
1614 struct inode *inode = mapping->host;
1615 struct buffer_head *bh;
1616 int err = 0;
1617 void *kaddr;
1618
1619 blocksize = inode->i_sb->s_blocksize;
1620 length = blocksize - (offset & (blocksize - 1));
1621 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1622
1623 /*
1624 * For "nobh" option, we can only work if we don't need to
1625 * read-in the page - otherwise we create buffers to do the IO.
1626 */
cd6ef84e
BP
1627 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1628 ext3_should_writeback_data(inode) && PageUptodate(page)) {
1629 kaddr = kmap_atomic(page, KM_USER0);
1630 memset(kaddr + offset, 0, length);
1631 flush_dcache_page(page);
1632 kunmap_atomic(kaddr, KM_USER0);
1633 set_page_dirty(page);
1634 goto unlock;
1da177e4
LT
1635 }
1636
1637 if (!page_has_buffers(page))
1638 create_empty_buffers(page, blocksize, 0);
1639
1640 /* Find the buffer that contains "offset" */
1641 bh = page_buffers(page);
1642 pos = blocksize;
1643 while (offset >= pos) {
1644 bh = bh->b_this_page;
1645 iblock++;
1646 pos += blocksize;
1647 }
1648
1649 err = 0;
1650 if (buffer_freed(bh)) {
1651 BUFFER_TRACE(bh, "freed: skip");
1652 goto unlock;
1653 }
1654
1655 if (!buffer_mapped(bh)) {
1656 BUFFER_TRACE(bh, "unmapped");
1657 ext3_get_block(inode, iblock, bh, 0);
1658 /* unmapped? It's a hole - nothing to do */
1659 if (!buffer_mapped(bh)) {
1660 BUFFER_TRACE(bh, "still unmapped");
1661 goto unlock;
1662 }
1663 }
1664
1665 /* Ok, it's mapped. Make sure it's up-to-date */
1666 if (PageUptodate(page))
1667 set_buffer_uptodate(bh);
1668
1669 if (!buffer_uptodate(bh)) {
1670 err = -EIO;
1671 ll_rw_block(READ, 1, &bh);
1672 wait_on_buffer(bh);
1673 /* Uhhuh. Read error. Complain and punt. */
1674 if (!buffer_uptodate(bh))
1675 goto unlock;
1676 }
1677
1678 if (ext3_should_journal_data(inode)) {
1679 BUFFER_TRACE(bh, "get write access");
1680 err = ext3_journal_get_write_access(handle, bh);
1681 if (err)
1682 goto unlock;
1683 }
1684
1685 kaddr = kmap_atomic(page, KM_USER0);
1686 memset(kaddr + offset, 0, length);
1687 flush_dcache_page(page);
1688 kunmap_atomic(kaddr, KM_USER0);
1689
1690 BUFFER_TRACE(bh, "zeroed end of block");
1691
1692 err = 0;
1693 if (ext3_should_journal_data(inode)) {
1694 err = ext3_journal_dirty_metadata(handle, bh);
1695 } else {
1696 if (ext3_should_order_data(inode))
1697 err = ext3_journal_dirty_data(handle, bh);
1698 mark_buffer_dirty(bh);
1699 }
1700
1701unlock:
1702 unlock_page(page);
1703 page_cache_release(page);
1704 return err;
1705}
1706
1707/*
1708 * Probably it should be a library function... search for first non-zero word
1709 * or memcmp with zero_page, whatever is better for particular architecture.
1710 * Linus?
1711 */
1712static inline int all_zeroes(__le32 *p, __le32 *q)
1713{
1714 while (p < q)
1715 if (*p++)
1716 return 0;
1717 return 1;
1718}
1719
1720/**
1721 * ext3_find_shared - find the indirect blocks for partial truncation.
1722 * @inode: inode in question
1723 * @depth: depth of the affected branch
1724 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1725 * @chain: place to store the pointers to partial indirect blocks
1726 * @top: place to the (detached) top of branch
1727 *
1728 * This is a helper function used by ext3_truncate().
1729 *
1730 * When we do truncate() we may have to clean the ends of several
1731 * indirect blocks but leave the blocks themselves alive. Block is
1732 * partially truncated if some data below the new i_size is refered
1733 * from it (and it is on the path to the first completely truncated
1734 * data block, indeed). We have to free the top of that path along
1735 * with everything to the right of the path. Since no allocation
1736 * past the truncation point is possible until ext3_truncate()
1737 * finishes, we may safely do the latter, but top of branch may
1738 * require special attention - pageout below the truncation point
1739 * might try to populate it.
1740 *
1741 * We atomically detach the top of branch from the tree, store the
1742 * block number of its root in *@top, pointers to buffer_heads of
1743 * partially truncated blocks - in @chain[].bh and pointers to
1744 * their last elements that should not be removed - in
1745 * @chain[].p. Return value is the pointer to last filled element
1746 * of @chain.
1747 *
1748 * The work left to caller to do the actual freeing of subtrees:
1749 * a) free the subtree starting from *@top
1750 * b) free the subtrees whose roots are stored in
1751 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1752 * c) free the subtrees growing from the inode past the @chain[0].
1753 * (no partially truncated stuff there). */
1754
1755static Indirect *ext3_find_shared(struct inode *inode,
1756 int depth,
1757 int offsets[4],
1758 Indirect chain[4],
1759 __le32 *top)
1760{
1761 Indirect *partial, *p;
1762 int k, err;
1763
1764 *top = 0;
1765 /* Make k index the deepest non-null offest + 1 */
1766 for (k = depth; k > 1 && !offsets[k-1]; k--)
1767 ;
1768 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1769 /* Writer: pointers */
1770 if (!partial)
1771 partial = chain + k-1;
1772 /*
1773 * If the branch acquired continuation since we've looked at it -
1774 * fine, it should all survive and (new) top doesn't belong to us.
1775 */
1776 if (!partial->key && *partial->p)
1777 /* Writer: end */
1778 goto no_top;
1779 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1780 ;
1781 /*
1782 * OK, we've found the last block that must survive. The rest of our
1783 * branch should be detached before unlocking. However, if that rest
1784 * of branch is all ours and does not grow immediately from the inode
1785 * it's easier to cheat and just decrement partial->p.
1786 */
1787 if (p == chain + k - 1 && p > chain) {
1788 p->p--;
1789 } else {
1790 *top = *p->p;
1791 /* Nope, don't do this in ext3. Must leave the tree intact */
1792#if 0
1793 *p->p = 0;
1794#endif
1795 }
1796 /* Writer: end */
1797
1798 while(partial > p)
1799 {
1800 brelse(partial->bh);
1801 partial--;
1802 }
1803no_top:
1804 return partial;
1805}
1806
1807/*
1808 * Zero a number of block pointers in either an inode or an indirect block.
1809 * If we restart the transaction we must again get write access to the
1810 * indirect block for further modification.
1811 *
1812 * We release `count' blocks on disk, but (last - first) may be greater
1813 * than `count' because there can be holes in there.
1814 */
1815static void
1816ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1817 unsigned long block_to_free, unsigned long count,
1818 __le32 *first, __le32 *last)
1819{
1820 __le32 *p;
1821 if (try_to_extend_transaction(handle, inode)) {
1822 if (bh) {
1823 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1824 ext3_journal_dirty_metadata(handle, bh);
1825 }
1826 ext3_mark_inode_dirty(handle, inode);
1827 ext3_journal_test_restart(handle, inode);
1828 if (bh) {
1829 BUFFER_TRACE(bh, "retaking write access");
1830 ext3_journal_get_write_access(handle, bh);
1831 }
1832 }
1833
1834 /*
1835 * Any buffers which are on the journal will be in memory. We find
1836 * them on the hash table so journal_revoke() will run journal_forget()
1837 * on them. We've already detached each block from the file, so
1838 * bforget() in journal_forget() should be safe.
1839 *
1840 * AKPM: turn on bforget in journal_forget()!!!
1841 */
1842 for (p = first; p < last; p++) {
1843 u32 nr = le32_to_cpu(*p);
1844 if (nr) {
1845 struct buffer_head *bh;
1846
1847 *p = 0;
1848 bh = sb_find_get_block(inode->i_sb, nr);
1849 ext3_forget(handle, 0, inode, bh, nr);
1850 }
1851 }
1852
1853 ext3_free_blocks(handle, inode, block_to_free, count);
1854}
1855
1856/**
1857 * ext3_free_data - free a list of data blocks
1858 * @handle: handle for this transaction
1859 * @inode: inode we are dealing with
1860 * @this_bh: indirect buffer_head which contains *@first and *@last
1861 * @first: array of block numbers
1862 * @last: points immediately past the end of array
1863 *
1864 * We are freeing all blocks refered from that array (numbers are stored as
1865 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1866 *
1867 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1868 * blocks are contiguous then releasing them at one time will only affect one
1869 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1870 * actually use a lot of journal space.
1871 *
1872 * @this_bh will be %NULL if @first and @last point into the inode's direct
1873 * block pointers.
1874 */
1875static void ext3_free_data(handle_t *handle, struct inode *inode,
1876 struct buffer_head *this_bh,
1877 __le32 *first, __le32 *last)
1878{
1879 unsigned long block_to_free = 0; /* Starting block # of a run */
1880 unsigned long count = 0; /* Number of blocks in the run */
1881 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1882 corresponding to
1883 block_to_free */
1884 unsigned long nr; /* Current block # */
1885 __le32 *p; /* Pointer into inode/ind
1886 for current block */
1887 int err;
1888
1889 if (this_bh) { /* For indirect block */
1890 BUFFER_TRACE(this_bh, "get_write_access");
1891 err = ext3_journal_get_write_access(handle, this_bh);
1892 /* Important: if we can't update the indirect pointers
1893 * to the blocks, we can't free them. */
1894 if (err)
1895 return;
1896 }
1897
1898 for (p = first; p < last; p++) {
1899 nr = le32_to_cpu(*p);
1900 if (nr) {
1901 /* accumulate blocks to free if they're contiguous */
1902 if (count == 0) {
1903 block_to_free = nr;
1904 block_to_free_p = p;
1905 count = 1;
1906 } else if (nr == block_to_free + count) {
1907 count++;
1908 } else {
1909 ext3_clear_blocks(handle, inode, this_bh,
1910 block_to_free,
1911 count, block_to_free_p, p);
1912 block_to_free = nr;
1913 block_to_free_p = p;
1914 count = 1;
1915 }
1916 }
1917 }
1918
1919 if (count > 0)
1920 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1921 count, block_to_free_p, p);
1922
1923 if (this_bh) {
1924 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1925 ext3_journal_dirty_metadata(handle, this_bh);
1926 }
1927}
1928
1929/**
1930 * ext3_free_branches - free an array of branches
1931 * @handle: JBD handle for this transaction
1932 * @inode: inode we are dealing with
1933 * @parent_bh: the buffer_head which contains *@first and *@last
1934 * @first: array of block numbers
1935 * @last: pointer immediately past the end of array
1936 * @depth: depth of the branches to free
1937 *
1938 * We are freeing all blocks refered from these branches (numbers are
1939 * stored as little-endian 32-bit) and updating @inode->i_blocks
1940 * appropriately.
1941 */
1942static void ext3_free_branches(handle_t *handle, struct inode *inode,
1943 struct buffer_head *parent_bh,
1944 __le32 *first, __le32 *last, int depth)
1945{
1946 unsigned long nr;
1947 __le32 *p;
1948
1949 if (is_handle_aborted(handle))
1950 return;
1951
1952 if (depth--) {
1953 struct buffer_head *bh;
1954 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1955 p = last;
1956 while (--p >= first) {
1957 nr = le32_to_cpu(*p);
1958 if (!nr)
1959 continue; /* A hole */
1960
1961 /* Go read the buffer for the next level down */
1962 bh = sb_bread(inode->i_sb, nr);
1963
1964 /*
1965 * A read failure? Report error and clear slot
1966 * (should be rare).
1967 */
1968 if (!bh) {
1969 ext3_error(inode->i_sb, "ext3_free_branches",
1970 "Read failure, inode=%ld, block=%ld",
1971 inode->i_ino, nr);
1972 continue;
1973 }
1974
1975 /* This zaps the entire block. Bottom up. */
1976 BUFFER_TRACE(bh, "free child branches");
1977 ext3_free_branches(handle, inode, bh,
1978 (__le32*)bh->b_data,
1979 (__le32*)bh->b_data + addr_per_block,
1980 depth);
1981
1982 /*
1983 * We've probably journalled the indirect block several
1984 * times during the truncate. But it's no longer
1985 * needed and we now drop it from the transaction via
1986 * journal_revoke().
1987 *
1988 * That's easy if it's exclusively part of this
1989 * transaction. But if it's part of the committing
1990 * transaction then journal_forget() will simply
1991 * brelse() it. That means that if the underlying
1992 * block is reallocated in ext3_get_block(),
1993 * unmap_underlying_metadata() will find this block
1994 * and will try to get rid of it. damn, damn.
1995 *
1996 * If this block has already been committed to the
1997 * journal, a revoke record will be written. And
1998 * revoke records must be emitted *before* clearing
1999 * this block's bit in the bitmaps.
2000 */
2001 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2002
2003 /*
2004 * Everything below this this pointer has been
2005 * released. Now let this top-of-subtree go.
2006 *
2007 * We want the freeing of this indirect block to be
2008 * atomic in the journal with the updating of the
2009 * bitmap block which owns it. So make some room in
2010 * the journal.
2011 *
2012 * We zero the parent pointer *after* freeing its
2013 * pointee in the bitmaps, so if extend_transaction()
2014 * for some reason fails to put the bitmap changes and
2015 * the release into the same transaction, recovery
2016 * will merely complain about releasing a free block,
2017 * rather than leaking blocks.
2018 */
2019 if (is_handle_aborted(handle))
2020 return;
2021 if (try_to_extend_transaction(handle, inode)) {
2022 ext3_mark_inode_dirty(handle, inode);
2023 ext3_journal_test_restart(handle, inode);
2024 }
2025
2026 ext3_free_blocks(handle, inode, nr, 1);
2027
2028 if (parent_bh) {
2029 /*
2030 * The block which we have just freed is
2031 * pointed to by an indirect block: journal it
2032 */
2033 BUFFER_TRACE(parent_bh, "get_write_access");
2034 if (!ext3_journal_get_write_access(handle,
2035 parent_bh)){
2036 *p = 0;
2037 BUFFER_TRACE(parent_bh,
2038 "call ext3_journal_dirty_metadata");
2039 ext3_journal_dirty_metadata(handle,
2040 parent_bh);
2041 }
2042 }
2043 }
2044 } else {
2045 /* We have reached the bottom of the tree. */
2046 BUFFER_TRACE(parent_bh, "free data blocks");
2047 ext3_free_data(handle, inode, parent_bh, first, last);
2048 }
2049}
2050
2051/*
2052 * ext3_truncate()
2053 *
2054 * We block out ext3_get_block() block instantiations across the entire
2055 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2056 * simultaneously on behalf of the same inode.
2057 *
2058 * As we work through the truncate and commmit bits of it to the journal there
2059 * is one core, guiding principle: the file's tree must always be consistent on
2060 * disk. We must be able to restart the truncate after a crash.
2061 *
2062 * The file's tree may be transiently inconsistent in memory (although it
2063 * probably isn't), but whenever we close off and commit a journal transaction,
2064 * the contents of (the filesystem + the journal) must be consistent and
2065 * restartable. It's pretty simple, really: bottom up, right to left (although
2066 * left-to-right works OK too).
2067 *
2068 * Note that at recovery time, journal replay occurs *before* the restart of
2069 * truncate against the orphan inode list.
2070 *
2071 * The committed inode has the new, desired i_size (which is the same as
2072 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2073 * that this inode's truncate did not complete and it will again call
2074 * ext3_truncate() to have another go. So there will be instantiated blocks
2075 * to the right of the truncation point in a crashed ext3 filesystem. But
2076 * that's fine - as long as they are linked from the inode, the post-crash
2077 * ext3_truncate() run will find them and release them.
2078 */
2079
2080void ext3_truncate(struct inode * inode)
2081{
2082 handle_t *handle;
2083 struct ext3_inode_info *ei = EXT3_I(inode);
2084 __le32 *i_data = ei->i_data;
2085 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2086 struct address_space *mapping = inode->i_mapping;
2087 int offsets[4];
2088 Indirect chain[4];
2089 Indirect *partial;
2090 __le32 nr = 0;
2091 int n;
2092 long last_block;
2093 unsigned blocksize = inode->i_sb->s_blocksize;
2094 struct page *page;
2095
2096 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2097 S_ISLNK(inode->i_mode)))
2098 return;
2099 if (ext3_inode_is_fast_symlink(inode))
2100 return;
2101 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2102 return;
2103
2104 /*
2105 * We have to lock the EOF page here, because lock_page() nests
2106 * outside journal_start().
2107 */
2108 if ((inode->i_size & (blocksize - 1)) == 0) {
2109 /* Block boundary? Nothing to do */
2110 page = NULL;
2111 } else {
2112 page = grab_cache_page(mapping,
2113 inode->i_size >> PAGE_CACHE_SHIFT);
2114 if (!page)
2115 return;
2116 }
2117
2118 handle = start_transaction(inode);
2119 if (IS_ERR(handle)) {
2120 if (page) {
2121 clear_highpage(page);
2122 flush_dcache_page(page);
2123 unlock_page(page);
2124 page_cache_release(page);
2125 }
2126 return; /* AKPM: return what? */
2127 }
2128
2129 last_block = (inode->i_size + blocksize-1)
2130 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2131
2132 if (page)
2133 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2134
2135 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2136 if (n == 0)
2137 goto out_stop; /* error */
2138
2139 /*
2140 * OK. This truncate is going to happen. We add the inode to the
2141 * orphan list, so that if this truncate spans multiple transactions,
2142 * and we crash, we will resume the truncate when the filesystem
2143 * recovers. It also marks the inode dirty, to catch the new size.
2144 *
2145 * Implication: the file must always be in a sane, consistent
2146 * truncatable state while each transaction commits.
2147 */
2148 if (ext3_orphan_add(handle, inode))
2149 goto out_stop;
2150
2151 /*
2152 * The orphan list entry will now protect us from any crash which
2153 * occurs before the truncate completes, so it is now safe to propagate
2154 * the new, shorter inode size (held for now in i_size) into the
2155 * on-disk inode. We do this via i_disksize, which is the value which
2156 * ext3 *really* writes onto the disk inode.
2157 */
2158 ei->i_disksize = inode->i_size;
2159
2160 /*
2161 * From here we block out all ext3_get_block() callers who want to
2162 * modify the block allocation tree.
2163 */
97461518 2164 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2165
2166 if (n == 1) { /* direct blocks */
2167 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2168 i_data + EXT3_NDIR_BLOCKS);
2169 goto do_indirects;
2170 }
2171
2172 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2173 /* Kill the top of shared branch (not detached) */
2174 if (nr) {
2175 if (partial == chain) {
2176 /* Shared branch grows from the inode */
2177 ext3_free_branches(handle, inode, NULL,
2178 &nr, &nr+1, (chain+n-1) - partial);
2179 *partial->p = 0;
2180 /*
2181 * We mark the inode dirty prior to restart,
2182 * and prior to stop. No need for it here.
2183 */
2184 } else {
2185 /* Shared branch grows from an indirect block */
2186 BUFFER_TRACE(partial->bh, "get_write_access");
2187 ext3_free_branches(handle, inode, partial->bh,
2188 partial->p,
2189 partial->p+1, (chain+n-1) - partial);
2190 }
2191 }
2192 /* Clear the ends of indirect blocks on the shared branch */
2193 while (partial > chain) {
2194 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2195 (__le32*)partial->bh->b_data+addr_per_block,
2196 (chain+n-1) - partial);
2197 BUFFER_TRACE(partial->bh, "call brelse");
2198 brelse (partial->bh);
2199 partial--;
2200 }
2201do_indirects:
2202 /* Kill the remaining (whole) subtrees */
2203 switch (offsets[0]) {
2204 default:
2205 nr = i_data[EXT3_IND_BLOCK];
2206 if (nr) {
2207 ext3_free_branches(handle, inode, NULL,
2208 &nr, &nr+1, 1);
2209 i_data[EXT3_IND_BLOCK] = 0;
2210 }
2211 case EXT3_IND_BLOCK:
2212 nr = i_data[EXT3_DIND_BLOCK];
2213 if (nr) {
2214 ext3_free_branches(handle, inode, NULL,
2215 &nr, &nr+1, 2);
2216 i_data[EXT3_DIND_BLOCK] = 0;
2217 }
2218 case EXT3_DIND_BLOCK:
2219 nr = i_data[EXT3_TIND_BLOCK];
2220 if (nr) {
2221 ext3_free_branches(handle, inode, NULL,
2222 &nr, &nr+1, 3);
2223 i_data[EXT3_TIND_BLOCK] = 0;
2224 }
2225 case EXT3_TIND_BLOCK:
2226 ;
2227 }
2228
2229 ext3_discard_reservation(inode);
2230
97461518 2231 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2232 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2233 ext3_mark_inode_dirty(handle, inode);
2234
2235 /* In a multi-transaction truncate, we only make the final
2236 * transaction synchronous */
2237 if (IS_SYNC(inode))
2238 handle->h_sync = 1;
2239out_stop:
2240 /*
2241 * If this was a simple ftruncate(), and the file will remain alive
2242 * then we need to clear up the orphan record which we created above.
2243 * However, if this was a real unlink then we were called by
2244 * ext3_delete_inode(), and we allow that function to clean up the
2245 * orphan info for us.
2246 */
2247 if (inode->i_nlink)
2248 ext3_orphan_del(handle, inode);
2249
2250 ext3_journal_stop(handle);
2251}
2252
2253static unsigned long ext3_get_inode_block(struct super_block *sb,
2254 unsigned long ino, struct ext3_iloc *iloc)
2255{
2256 unsigned long desc, group_desc, block_group;
2257 unsigned long offset, block;
2258 struct buffer_head *bh;
2259 struct ext3_group_desc * gdp;
2260
2261
2262 if ((ino != EXT3_ROOT_INO &&
2263 ino != EXT3_JOURNAL_INO &&
2264 ino != EXT3_RESIZE_INO &&
2265 ino < EXT3_FIRST_INO(sb)) ||
2266 ino > le32_to_cpu(
2267 EXT3_SB(sb)->s_es->s_inodes_count)) {
2268 ext3_error (sb, "ext3_get_inode_block",
2269 "bad inode number: %lu", ino);
2270 return 0;
2271 }
2272 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2273 if (block_group >= EXT3_SB(sb)->s_groups_count) {
2274 ext3_error (sb, "ext3_get_inode_block",
2275 "group >= groups count");
2276 return 0;
2277 }
2278 smp_rmb();
2279 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2280 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2281 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2282 if (!bh) {
2283 ext3_error (sb, "ext3_get_inode_block",
2284 "Descriptor not loaded");
2285 return 0;
2286 }
2287
2288 gdp = (struct ext3_group_desc *) bh->b_data;
2289 /*
2290 * Figure out the offset within the block group inode table
2291 */
2292 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2293 EXT3_INODE_SIZE(sb);
2294 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2295 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2296
2297 iloc->block_group = block_group;
2298 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2299 return block;
2300}
2301
2302/*
2303 * ext3_get_inode_loc returns with an extra refcount against the inode's
2304 * underlying buffer_head on success. If 'in_mem' is true, we have all
2305 * data in memory that is needed to recreate the on-disk version of this
2306 * inode.
2307 */
2308static int __ext3_get_inode_loc(struct inode *inode,
2309 struct ext3_iloc *iloc, int in_mem)
2310{
2311 unsigned long block;
2312 struct buffer_head *bh;
2313
2314 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2315 if (!block)
2316 return -EIO;
2317
2318 bh = sb_getblk(inode->i_sb, block);
2319 if (!bh) {
2320 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2321 "unable to read inode block - "
2322 "inode=%lu, block=%lu", inode->i_ino, block);
2323 return -EIO;
2324 }
2325 if (!buffer_uptodate(bh)) {
2326 lock_buffer(bh);
2327 if (buffer_uptodate(bh)) {
2328 /* someone brought it uptodate while we waited */
2329 unlock_buffer(bh);
2330 goto has_buffer;
2331 }
2332
2333 /*
2334 * If we have all information of the inode in memory and this
2335 * is the only valid inode in the block, we need not read the
2336 * block.
2337 */
2338 if (in_mem) {
2339 struct buffer_head *bitmap_bh;
2340 struct ext3_group_desc *desc;
2341 int inodes_per_buffer;
2342 int inode_offset, i;
2343 int block_group;
2344 int start;
2345
2346 block_group = (inode->i_ino - 1) /
2347 EXT3_INODES_PER_GROUP(inode->i_sb);
2348 inodes_per_buffer = bh->b_size /
2349 EXT3_INODE_SIZE(inode->i_sb);
2350 inode_offset = ((inode->i_ino - 1) %
2351 EXT3_INODES_PER_GROUP(inode->i_sb));
2352 start = inode_offset & ~(inodes_per_buffer - 1);
2353
2354 /* Is the inode bitmap in cache? */
2355 desc = ext3_get_group_desc(inode->i_sb,
2356 block_group, NULL);
2357 if (!desc)
2358 goto make_io;
2359
2360 bitmap_bh = sb_getblk(inode->i_sb,
2361 le32_to_cpu(desc->bg_inode_bitmap));
2362 if (!bitmap_bh)
2363 goto make_io;
2364
2365 /*
2366 * If the inode bitmap isn't in cache then the
2367 * optimisation may end up performing two reads instead
2368 * of one, so skip it.
2369 */
2370 if (!buffer_uptodate(bitmap_bh)) {
2371 brelse(bitmap_bh);
2372 goto make_io;
2373 }
2374 for (i = start; i < start + inodes_per_buffer; i++) {
2375 if (i == inode_offset)
2376 continue;
2377 if (ext3_test_bit(i, bitmap_bh->b_data))
2378 break;
2379 }
2380 brelse(bitmap_bh);
2381 if (i == start + inodes_per_buffer) {
2382 /* all other inodes are free, so skip I/O */
2383 memset(bh->b_data, 0, bh->b_size);
2384 set_buffer_uptodate(bh);
2385 unlock_buffer(bh);
2386 goto has_buffer;
2387 }
2388 }
2389
2390make_io:
2391 /*
2392 * There are other valid inodes in the buffer, this inode
2393 * has in-inode xattrs, or we don't have this inode in memory.
2394 * Read the block from disk.
2395 */
2396 get_bh(bh);
2397 bh->b_end_io = end_buffer_read_sync;
2398 submit_bh(READ, bh);
2399 wait_on_buffer(bh);
2400 if (!buffer_uptodate(bh)) {
2401 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2402 "unable to read inode block - "
2403 "inode=%lu, block=%lu",
2404 inode->i_ino, block);
2405 brelse(bh);
2406 return -EIO;
2407 }
2408 }
2409has_buffer:
2410 iloc->bh = bh;
2411 return 0;
2412}
2413
2414int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2415{
2416 /* We have all inode data except xattrs in memory here. */
2417 return __ext3_get_inode_loc(inode, iloc,
2418 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2419}
2420
2421void ext3_set_inode_flags(struct inode *inode)
2422{
2423 unsigned int flags = EXT3_I(inode)->i_flags;
2424
2425 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2426 if (flags & EXT3_SYNC_FL)
2427 inode->i_flags |= S_SYNC;
2428 if (flags & EXT3_APPEND_FL)
2429 inode->i_flags |= S_APPEND;
2430 if (flags & EXT3_IMMUTABLE_FL)
2431 inode->i_flags |= S_IMMUTABLE;
2432 if (flags & EXT3_NOATIME_FL)
2433 inode->i_flags |= S_NOATIME;
2434 if (flags & EXT3_DIRSYNC_FL)
2435 inode->i_flags |= S_DIRSYNC;
2436}
2437
2438void ext3_read_inode(struct inode * inode)
2439{
2440 struct ext3_iloc iloc;
2441 struct ext3_inode *raw_inode;
2442 struct ext3_inode_info *ei = EXT3_I(inode);
2443 struct buffer_head *bh;
2444 int block;
2445
2446#ifdef CONFIG_EXT3_FS_POSIX_ACL
2447 ei->i_acl = EXT3_ACL_NOT_CACHED;
2448 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2449#endif
2450 ei->i_block_alloc_info = NULL;
2451
2452 if (__ext3_get_inode_loc(inode, &iloc, 0))
2453 goto bad_inode;
2454 bh = iloc.bh;
2455 raw_inode = ext3_raw_inode(&iloc);
2456 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2457 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2458 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2459 if(!(test_opt (inode->i_sb, NO_UID32))) {
2460 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2461 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2462 }
2463 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2464 inode->i_size = le32_to_cpu(raw_inode->i_size);
2465 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2466 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2467 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2468 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2469
2470 ei->i_state = 0;
2471 ei->i_dir_start_lookup = 0;
2472 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2473 /* We now have enough fields to check if the inode was active or not.
2474 * This is needed because nfsd might try to access dead inodes
2475 * the test is that same one that e2fsck uses
2476 * NeilBrown 1999oct15
2477 */
2478 if (inode->i_nlink == 0) {
2479 if (inode->i_mode == 0 ||
2480 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2481 /* this inode is deleted */
2482 brelse (bh);
2483 goto bad_inode;
2484 }
2485 /* The only unlinked inodes we let through here have
2486 * valid i_mode and are being read by the orphan
2487 * recovery code: that's fine, we're about to complete
2488 * the process of deleting those. */
2489 }
2490 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2491 * (for stat), not the fs block
2492 * size */
2493 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2494 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2495#ifdef EXT3_FRAGMENTS
2496 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2497 ei->i_frag_no = raw_inode->i_frag;
2498 ei->i_frag_size = raw_inode->i_fsize;
2499#endif
2500 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2501 if (!S_ISREG(inode->i_mode)) {
2502 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2503 } else {
2504 inode->i_size |=
2505 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2506 }
2507 ei->i_disksize = inode->i_size;
2508 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2509 ei->i_block_group = iloc.block_group;
2510 /*
2511 * NOTE! The in-memory inode i_data array is in little-endian order
2512 * even on big-endian machines: we do NOT byteswap the block numbers!
2513 */
2514 for (block = 0; block < EXT3_N_BLOCKS; block++)
2515 ei->i_data[block] = raw_inode->i_block[block];
2516 INIT_LIST_HEAD(&ei->i_orphan);
2517
2518 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2519 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2520 /*
2521 * When mke2fs creates big inodes it does not zero out
2522 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2523 * so ignore those first few inodes.
2524 */
2525 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2526 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2527 EXT3_INODE_SIZE(inode->i_sb))
2528 goto bad_inode;
2529 if (ei->i_extra_isize == 0) {
2530 /* The extra space is currently unused. Use it. */
2531 ei->i_extra_isize = sizeof(struct ext3_inode) -
2532 EXT3_GOOD_OLD_INODE_SIZE;
2533 } else {
2534 __le32 *magic = (void *)raw_inode +
2535 EXT3_GOOD_OLD_INODE_SIZE +
2536 ei->i_extra_isize;
2537 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2538 ei->i_state |= EXT3_STATE_XATTR;
2539 }
2540 } else
2541 ei->i_extra_isize = 0;
2542
2543 if (S_ISREG(inode->i_mode)) {
2544 inode->i_op = &ext3_file_inode_operations;
2545 inode->i_fop = &ext3_file_operations;
2546 ext3_set_aops(inode);
2547 } else if (S_ISDIR(inode->i_mode)) {
2548 inode->i_op = &ext3_dir_inode_operations;
2549 inode->i_fop = &ext3_dir_operations;
2550 } else if (S_ISLNK(inode->i_mode)) {
2551 if (ext3_inode_is_fast_symlink(inode))
2552 inode->i_op = &ext3_fast_symlink_inode_operations;
2553 else {
2554 inode->i_op = &ext3_symlink_inode_operations;
2555 ext3_set_aops(inode);
2556 }
2557 } else {
2558 inode->i_op = &ext3_special_inode_operations;
2559 if (raw_inode->i_block[0])
2560 init_special_inode(inode, inode->i_mode,
2561 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2562 else
2563 init_special_inode(inode, inode->i_mode,
2564 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2565 }
2566 brelse (iloc.bh);
2567 ext3_set_inode_flags(inode);
2568 return;
2569
2570bad_inode:
2571 make_bad_inode(inode);
2572 return;
2573}
2574
2575/*
2576 * Post the struct inode info into an on-disk inode location in the
2577 * buffer-cache. This gobbles the caller's reference to the
2578 * buffer_head in the inode location struct.
2579 *
2580 * The caller must have write access to iloc->bh.
2581 */
2582static int ext3_do_update_inode(handle_t *handle,
2583 struct inode *inode,
2584 struct ext3_iloc *iloc)
2585{
2586 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2587 struct ext3_inode_info *ei = EXT3_I(inode);
2588 struct buffer_head *bh = iloc->bh;
2589 int err = 0, rc, block;
2590
2591 /* For fields not not tracking in the in-memory inode,
2592 * initialise them to zero for new inodes. */
2593 if (ei->i_state & EXT3_STATE_NEW)
2594 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2595
2596 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2597 if(!(test_opt(inode->i_sb, NO_UID32))) {
2598 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2599 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2600/*
2601 * Fix up interoperability with old kernels. Otherwise, old inodes get
2602 * re-used with the upper 16 bits of the uid/gid intact
2603 */
2604 if(!ei->i_dtime) {
2605 raw_inode->i_uid_high =
2606 cpu_to_le16(high_16_bits(inode->i_uid));
2607 raw_inode->i_gid_high =
2608 cpu_to_le16(high_16_bits(inode->i_gid));
2609 } else {
2610 raw_inode->i_uid_high = 0;
2611 raw_inode->i_gid_high = 0;
2612 }
2613 } else {
2614 raw_inode->i_uid_low =
2615 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2616 raw_inode->i_gid_low =
2617 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2618 raw_inode->i_uid_high = 0;
2619 raw_inode->i_gid_high = 0;
2620 }
2621 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2622 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2623 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2624 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2625 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2626 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2627 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2628 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2629#ifdef EXT3_FRAGMENTS
2630 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2631 raw_inode->i_frag = ei->i_frag_no;
2632 raw_inode->i_fsize = ei->i_frag_size;
2633#endif
2634 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2635 if (!S_ISREG(inode->i_mode)) {
2636 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2637 } else {
2638 raw_inode->i_size_high =
2639 cpu_to_le32(ei->i_disksize >> 32);
2640 if (ei->i_disksize > 0x7fffffffULL) {
2641 struct super_block *sb = inode->i_sb;
2642 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2643 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2644 EXT3_SB(sb)->s_es->s_rev_level ==
2645 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2646 /* If this is the first large file
2647 * created, add a flag to the superblock.
2648 */
2649 err = ext3_journal_get_write_access(handle,
2650 EXT3_SB(sb)->s_sbh);
2651 if (err)
2652 goto out_brelse;
2653 ext3_update_dynamic_rev(sb);
2654 EXT3_SET_RO_COMPAT_FEATURE(sb,
2655 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2656 sb->s_dirt = 1;
2657 handle->h_sync = 1;
2658 err = ext3_journal_dirty_metadata(handle,
2659 EXT3_SB(sb)->s_sbh);
2660 }
2661 }
2662 }
2663 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2664 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2665 if (old_valid_dev(inode->i_rdev)) {
2666 raw_inode->i_block[0] =
2667 cpu_to_le32(old_encode_dev(inode->i_rdev));
2668 raw_inode->i_block[1] = 0;
2669 } else {
2670 raw_inode->i_block[0] = 0;
2671 raw_inode->i_block[1] =
2672 cpu_to_le32(new_encode_dev(inode->i_rdev));
2673 raw_inode->i_block[2] = 0;
2674 }
2675 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2676 raw_inode->i_block[block] = ei->i_data[block];
2677
ff87b37d 2678 if (ei->i_extra_isize)
1da177e4
LT
2679 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2680
2681 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2682 rc = ext3_journal_dirty_metadata(handle, bh);
2683 if (!err)
2684 err = rc;
2685 ei->i_state &= ~EXT3_STATE_NEW;
2686
2687out_brelse:
2688 brelse (bh);
2689 ext3_std_error(inode->i_sb, err);
2690 return err;
2691}
2692
2693/*
2694 * ext3_write_inode()
2695 *
2696 * We are called from a few places:
2697 *
2698 * - Within generic_file_write() for O_SYNC files.
2699 * Here, there will be no transaction running. We wait for any running
2700 * trasnaction to commit.
2701 *
2702 * - Within sys_sync(), kupdate and such.
2703 * We wait on commit, if tol to.
2704 *
2705 * - Within prune_icache() (PF_MEMALLOC == true)
2706 * Here we simply return. We can't afford to block kswapd on the
2707 * journal commit.
2708 *
2709 * In all cases it is actually safe for us to return without doing anything,
2710 * because the inode has been copied into a raw inode buffer in
2711 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2712 * knfsd.
2713 *
2714 * Note that we are absolutely dependent upon all inode dirtiers doing the
2715 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2716 * which we are interested.
2717 *
2718 * It would be a bug for them to not do this. The code:
2719 *
2720 * mark_inode_dirty(inode)
2721 * stuff();
2722 * inode->i_size = expr;
2723 *
2724 * is in error because a kswapd-driven write_inode() could occur while
2725 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2726 * will no longer be on the superblock's dirty inode list.
2727 */
2728int ext3_write_inode(struct inode *inode, int wait)
2729{
2730 if (current->flags & PF_MEMALLOC)
2731 return 0;
2732
2733 if (ext3_journal_current_handle()) {
2734 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2735 dump_stack();
2736 return -EIO;
2737 }
2738
2739 if (!wait)
2740 return 0;
2741
2742 return ext3_force_commit(inode->i_sb);
2743}
2744
2745/*
2746 * ext3_setattr()
2747 *
2748 * Called from notify_change.
2749 *
2750 * We want to trap VFS attempts to truncate the file as soon as
2751 * possible. In particular, we want to make sure that when the VFS
2752 * shrinks i_size, we put the inode on the orphan list and modify
2753 * i_disksize immediately, so that during the subsequent flushing of
2754 * dirty pages and freeing of disk blocks, we can guarantee that any
2755 * commit will leave the blocks being flushed in an unused state on
2756 * disk. (On recovery, the inode will get truncated and the blocks will
2757 * be freed, so we have a strong guarantee that no future commit will
2758 * leave these blocks visible to the user.)
2759 *
2760 * Called with inode->sem down.
2761 */
2762int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2763{
2764 struct inode *inode = dentry->d_inode;
2765 int error, rc = 0;
2766 const unsigned int ia_valid = attr->ia_valid;
2767
2768 error = inode_change_ok(inode, attr);
2769 if (error)
2770 return error;
2771
2772 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2773 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2774 handle_t *handle;
2775
2776 /* (user+group)*(old+new) structure, inode write (sb,
2777 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
2778 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2779 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
2780 if (IS_ERR(handle)) {
2781 error = PTR_ERR(handle);
2782 goto err_out;
2783 }
2784 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2785 if (error) {
2786 ext3_journal_stop(handle);
2787 return error;
2788 }
2789 /* Update corresponding info in inode so that everything is in
2790 * one transaction */
2791 if (attr->ia_valid & ATTR_UID)
2792 inode->i_uid = attr->ia_uid;
2793 if (attr->ia_valid & ATTR_GID)
2794 inode->i_gid = attr->ia_gid;
2795 error = ext3_mark_inode_dirty(handle, inode);
2796 ext3_journal_stop(handle);
2797 }
2798
2799 if (S_ISREG(inode->i_mode) &&
2800 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2801 handle_t *handle;
2802
2803 handle = ext3_journal_start(inode, 3);
2804 if (IS_ERR(handle)) {
2805 error = PTR_ERR(handle);
2806 goto err_out;
2807 }
2808
2809 error = ext3_orphan_add(handle, inode);
2810 EXT3_I(inode)->i_disksize = attr->ia_size;
2811 rc = ext3_mark_inode_dirty(handle, inode);
2812 if (!error)
2813 error = rc;
2814 ext3_journal_stop(handle);
2815 }
2816
2817 rc = inode_setattr(inode, attr);
2818
2819 /* If inode_setattr's call to ext3_truncate failed to get a
2820 * transaction handle at all, we need to clean up the in-core
2821 * orphan list manually. */
2822 if (inode->i_nlink)
2823 ext3_orphan_del(NULL, inode);
2824
2825 if (!rc && (ia_valid & ATTR_MODE))
2826 rc = ext3_acl_chmod(inode);
2827
2828err_out:
2829 ext3_std_error(inode->i_sb, error);
2830 if (!error)
2831 error = rc;
2832 return error;
2833}
2834
2835
2836/*
2837 * akpm: how many blocks doth make a writepage()?
2838 *
2839 * With N blocks per page, it may be:
2840 * N data blocks
2841 * 2 indirect block
2842 * 2 dindirect
2843 * 1 tindirect
2844 * N+5 bitmap blocks (from the above)
2845 * N+5 group descriptor summary blocks
2846 * 1 inode block
2847 * 1 superblock.
2848 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2849 *
2850 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2851 *
2852 * With ordered or writeback data it's the same, less the N data blocks.
2853 *
2854 * If the inode's direct blocks can hold an integral number of pages then a
2855 * page cannot straddle two indirect blocks, and we can only touch one indirect
2856 * and dindirect block, and the "5" above becomes "3".
2857 *
2858 * This still overestimates under most circumstances. If we were to pass the
2859 * start and end offsets in here as well we could do block_to_path() on each
2860 * block and work out the exact number of indirects which are touched. Pah.
2861 */
2862
2863static int ext3_writepage_trans_blocks(struct inode *inode)
2864{
2865 int bpp = ext3_journal_blocks_per_page(inode);
2866 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2867 int ret;
2868
2869 if (ext3_should_journal_data(inode))
2870 ret = 3 * (bpp + indirects) + 2;
2871 else
2872 ret = 2 * (bpp + indirects) + 2;
2873
2874#ifdef CONFIG_QUOTA
2875 /* We know that structure was already allocated during DQUOT_INIT so
2876 * we will be updating only the data blocks + inodes */
1f54587b 2877 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
2878#endif
2879
2880 return ret;
2881}
2882
2883/*
2884 * The caller must have previously called ext3_reserve_inode_write().
2885 * Give this, we know that the caller already has write access to iloc->bh.
2886 */
2887int ext3_mark_iloc_dirty(handle_t *handle,
2888 struct inode *inode, struct ext3_iloc *iloc)
2889{
2890 int err = 0;
2891
2892 /* the do_update_inode consumes one bh->b_count */
2893 get_bh(iloc->bh);
2894
2895 /* ext3_do_update_inode() does journal_dirty_metadata */
2896 err = ext3_do_update_inode(handle, inode, iloc);
2897 put_bh(iloc->bh);
2898 return err;
2899}
2900
2901/*
2902 * On success, We end up with an outstanding reference count against
2903 * iloc->bh. This _must_ be cleaned up later.
2904 */
2905
2906int
2907ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2908 struct ext3_iloc *iloc)
2909{
2910 int err = 0;
2911 if (handle) {
2912 err = ext3_get_inode_loc(inode, iloc);
2913 if (!err) {
2914 BUFFER_TRACE(iloc->bh, "get_write_access");
2915 err = ext3_journal_get_write_access(handle, iloc->bh);
2916 if (err) {
2917 brelse(iloc->bh);
2918 iloc->bh = NULL;
2919 }
2920 }
2921 }
2922 ext3_std_error(inode->i_sb, err);
2923 return err;
2924}
2925
2926/*
2927 * akpm: What we do here is to mark the in-core inode as clean
2928 * with respect to inode dirtiness (it may still be data-dirty).
2929 * This means that the in-core inode may be reaped by prune_icache
2930 * without having to perform any I/O. This is a very good thing,
2931 * because *any* task may call prune_icache - even ones which
2932 * have a transaction open against a different journal.
2933 *
2934 * Is this cheating? Not really. Sure, we haven't written the
2935 * inode out, but prune_icache isn't a user-visible syncing function.
2936 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2937 * we start and wait on commits.
2938 *
2939 * Is this efficient/effective? Well, we're being nice to the system
2940 * by cleaning up our inodes proactively so they can be reaped
2941 * without I/O. But we are potentially leaving up to five seconds'
2942 * worth of inodes floating about which prune_icache wants us to
2943 * write out. One way to fix that would be to get prune_icache()
2944 * to do a write_super() to free up some memory. It has the desired
2945 * effect.
2946 */
2947int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2948{
2949 struct ext3_iloc iloc;
2950 int err;
2951
2952 might_sleep();
2953 err = ext3_reserve_inode_write(handle, inode, &iloc);
2954 if (!err)
2955 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2956 return err;
2957}
2958
2959/*
2960 * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2961 *
2962 * We're really interested in the case where a file is being extended.
2963 * i_size has been changed by generic_commit_write() and we thus need
2964 * to include the updated inode in the current transaction.
2965 *
2966 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2967 * are allocated to the file.
2968 *
2969 * If the inode is marked synchronous, we don't honour that here - doing
2970 * so would cause a commit on atime updates, which we don't bother doing.
2971 * We handle synchronous inodes at the highest possible level.
2972 */
2973void ext3_dirty_inode(struct inode *inode)
2974{
2975 handle_t *current_handle = ext3_journal_current_handle();
2976 handle_t *handle;
2977
2978 handle = ext3_journal_start(inode, 2);
2979 if (IS_ERR(handle))
2980 goto out;
2981 if (current_handle &&
2982 current_handle->h_transaction != handle->h_transaction) {
2983 /* This task has a transaction open against a different fs */
2984 printk(KERN_EMERG "%s: transactions do not match!\n",
2985 __FUNCTION__);
2986 } else {
2987 jbd_debug(5, "marking dirty. outer handle=%p\n",
2988 current_handle);
2989 ext3_mark_inode_dirty(handle, inode);
2990 }
2991 ext3_journal_stop(handle);
2992out:
2993 return;
2994}
2995
2996#ifdef AKPM
2997/*
2998 * Bind an inode's backing buffer_head into this transaction, to prevent
2999 * it from being flushed to disk early. Unlike
3000 * ext3_reserve_inode_write, this leaves behind no bh reference and
3001 * returns no iloc structure, so the caller needs to repeat the iloc
3002 * lookup to mark the inode dirty later.
3003 */
3004static inline int
3005ext3_pin_inode(handle_t *handle, struct inode *inode)
3006{
3007 struct ext3_iloc iloc;
3008
3009 int err = 0;
3010 if (handle) {
3011 err = ext3_get_inode_loc(inode, &iloc);
3012 if (!err) {
3013 BUFFER_TRACE(iloc.bh, "get_write_access");
3014 err = journal_get_write_access(handle, iloc.bh);
3015 if (!err)
3016 err = ext3_journal_dirty_metadata(handle,
3017 iloc.bh);
3018 brelse(iloc.bh);
3019 }
3020 }
3021 ext3_std_error(inode->i_sb, err);
3022 return err;
3023}
3024#endif
3025
3026int ext3_change_inode_journal_flag(struct inode *inode, int val)
3027{
3028 journal_t *journal;
3029 handle_t *handle;
3030 int err;
3031
3032 /*
3033 * We have to be very careful here: changing a data block's
3034 * journaling status dynamically is dangerous. If we write a
3035 * data block to the journal, change the status and then delete
3036 * that block, we risk forgetting to revoke the old log record
3037 * from the journal and so a subsequent replay can corrupt data.
3038 * So, first we make sure that the journal is empty and that
3039 * nobody is changing anything.
3040 */
3041
3042 journal = EXT3_JOURNAL(inode);
3043 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3044 return -EROFS;
3045
3046 journal_lock_updates(journal);
3047 journal_flush(journal);
3048
3049 /*
3050 * OK, there are no updates running now, and all cached data is
3051 * synced to disk. We are now in a completely consistent state
3052 * which doesn't have anything in the journal, and we know that
3053 * no filesystem updates are running, so it is safe to modify
3054 * the inode's in-core data-journaling state flag now.
3055 */
3056
3057 if (val)
3058 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3059 else
3060 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3061 ext3_set_aops(inode);
3062
3063 journal_unlock_updates(journal);
3064
3065 /* Finally we can mark the inode as dirty. */
3066
3067 handle = ext3_journal_start(inode, 1);
3068 if (IS_ERR(handle))
3069 return PTR_ERR(handle);
3070
3071 err = ext3_mark_inode_dirty(handle, inode);
3072 handle->h_sync = 1;
3073 ext3_journal_stop(handle);
3074 ext3_std_error(inode->i_sb, err);
3075
3076 return err;
3077}