]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ceph/messenger.c
ceph: allocate middle of message before stating to read
[net-next-2.6.git] / fs / ceph / messenger.c
CommitLineData
31b8006e
SW
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/socket.h>
10#include <linux/string.h>
11#include <net/tcp.h>
12
13#include "super.h"
14#include "messenger.h"
63f2d211 15#include "decode.h"
58bb3b37 16#include "pagelist.h"
31b8006e
SW
17
18/*
19 * Ceph uses the messenger to exchange ceph_msg messages with other
20 * hosts in the system. The messenger provides ordered and reliable
21 * delivery. We tolerate TCP disconnects by reconnecting (with
22 * exponential backoff) in the case of a fault (disconnection, bad
23 * crc, protocol error). Acks allow sent messages to be discarded by
24 * the sender.
25 */
26
27/* static tag bytes (protocol control messages) */
28static char tag_msg = CEPH_MSGR_TAG_MSG;
29static char tag_ack = CEPH_MSGR_TAG_ACK;
30static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
31
32
33static void queue_con(struct ceph_connection *con);
34static void con_work(struct work_struct *);
35static void ceph_fault(struct ceph_connection *con);
36
37const char *ceph_name_type_str(int t)
38{
39 switch (t) {
40 case CEPH_ENTITY_TYPE_MON: return "mon";
41 case CEPH_ENTITY_TYPE_MDS: return "mds";
42 case CEPH_ENTITY_TYPE_OSD: return "osd";
43 case CEPH_ENTITY_TYPE_CLIENT: return "client";
44 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
45 default: return "???";
46 }
47}
48
49/*
50 * nicely render a sockaddr as a string.
51 */
52#define MAX_ADDR_STR 20
53static char addr_str[MAX_ADDR_STR][40];
54static DEFINE_SPINLOCK(addr_str_lock);
55static int last_addr_str;
56
57const char *pr_addr(const struct sockaddr_storage *ss)
58{
59 int i;
60 char *s;
61 struct sockaddr_in *in4 = (void *)ss;
62 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
63 struct sockaddr_in6 *in6 = (void *)ss;
64
65 spin_lock(&addr_str_lock);
66 i = last_addr_str++;
67 if (last_addr_str == MAX_ADDR_STR)
68 last_addr_str = 0;
69 spin_unlock(&addr_str_lock);
70 s = addr_str[i];
71
72 switch (ss->ss_family) {
73 case AF_INET:
74 sprintf(s, "%u.%u.%u.%u:%u",
75 (unsigned int)quad[0],
76 (unsigned int)quad[1],
77 (unsigned int)quad[2],
78 (unsigned int)quad[3],
79 (unsigned int)ntohs(in4->sin_port));
80 break;
81
82 case AF_INET6:
83 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
84 in6->sin6_addr.s6_addr16[0],
85 in6->sin6_addr.s6_addr16[1],
86 in6->sin6_addr.s6_addr16[2],
87 in6->sin6_addr.s6_addr16[3],
88 in6->sin6_addr.s6_addr16[4],
89 in6->sin6_addr.s6_addr16[5],
90 in6->sin6_addr.s6_addr16[6],
91 in6->sin6_addr.s6_addr16[7],
92 (unsigned int)ntohs(in6->sin6_port));
93 break;
94
95 default:
96 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
97 }
98
99 return s;
100}
101
63f2d211
SW
102static void encode_my_addr(struct ceph_messenger *msgr)
103{
104 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
105 ceph_encode_addr(&msgr->my_enc_addr);
106}
107
31b8006e
SW
108/*
109 * work queue for all reading and writing to/from the socket.
110 */
111struct workqueue_struct *ceph_msgr_wq;
112
113int __init ceph_msgr_init(void)
114{
115 ceph_msgr_wq = create_workqueue("ceph-msgr");
116 if (IS_ERR(ceph_msgr_wq)) {
117 int ret = PTR_ERR(ceph_msgr_wq);
118 pr_err("msgr_init failed to create workqueue: %d\n", ret);
119 ceph_msgr_wq = NULL;
120 return ret;
121 }
122 return 0;
123}
124
125void ceph_msgr_exit(void)
126{
127 destroy_workqueue(ceph_msgr_wq);
128}
129
130/*
131 * socket callback functions
132 */
133
134/* data available on socket, or listen socket received a connect */
135static void ceph_data_ready(struct sock *sk, int count_unused)
136{
137 struct ceph_connection *con =
138 (struct ceph_connection *)sk->sk_user_data;
139 if (sk->sk_state != TCP_CLOSE_WAIT) {
140 dout("ceph_data_ready on %p state = %lu, queueing work\n",
141 con, con->state);
142 queue_con(con);
143 }
144}
145
146/* socket has buffer space for writing */
147static void ceph_write_space(struct sock *sk)
148{
149 struct ceph_connection *con =
150 (struct ceph_connection *)sk->sk_user_data;
151
152 /* only queue to workqueue if there is data we want to write. */
153 if (test_bit(WRITE_PENDING, &con->state)) {
154 dout("ceph_write_space %p queueing write work\n", con);
155 queue_con(con);
156 } else {
157 dout("ceph_write_space %p nothing to write\n", con);
158 }
159
160 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
161 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
162}
163
164/* socket's state has changed */
165static void ceph_state_change(struct sock *sk)
166{
167 struct ceph_connection *con =
168 (struct ceph_connection *)sk->sk_user_data;
169
170 dout("ceph_state_change %p state = %lu sk_state = %u\n",
171 con, con->state, sk->sk_state);
172
173 if (test_bit(CLOSED, &con->state))
174 return;
175
176 switch (sk->sk_state) {
177 case TCP_CLOSE:
178 dout("ceph_state_change TCP_CLOSE\n");
179 case TCP_CLOSE_WAIT:
180 dout("ceph_state_change TCP_CLOSE_WAIT\n");
181 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
182 if (test_bit(CONNECTING, &con->state))
183 con->error_msg = "connection failed";
184 else
185 con->error_msg = "socket closed";
186 queue_con(con);
187 }
188 break;
189 case TCP_ESTABLISHED:
190 dout("ceph_state_change TCP_ESTABLISHED\n");
191 queue_con(con);
192 break;
193 }
194}
195
196/*
197 * set up socket callbacks
198 */
199static void set_sock_callbacks(struct socket *sock,
200 struct ceph_connection *con)
201{
202 struct sock *sk = sock->sk;
203 sk->sk_user_data = (void *)con;
204 sk->sk_data_ready = ceph_data_ready;
205 sk->sk_write_space = ceph_write_space;
206 sk->sk_state_change = ceph_state_change;
207}
208
209
210/*
211 * socket helpers
212 */
213
214/*
215 * initiate connection to a remote socket.
216 */
217static struct socket *ceph_tcp_connect(struct ceph_connection *con)
218{
219 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
220 struct socket *sock;
221 int ret;
222
223 BUG_ON(con->sock);
224 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
225 if (ret)
226 return ERR_PTR(ret);
227 con->sock = sock;
228 sock->sk->sk_allocation = GFP_NOFS;
229
230 set_sock_callbacks(sock, con);
231
232 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
233
234 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
235 if (ret == -EINPROGRESS) {
236 dout("connect %s EINPROGRESS sk_state = %u\n",
237 pr_addr(&con->peer_addr.in_addr),
238 sock->sk->sk_state);
239 ret = 0;
240 }
241 if (ret < 0) {
242 pr_err("connect %s error %d\n",
243 pr_addr(&con->peer_addr.in_addr), ret);
244 sock_release(sock);
245 con->sock = NULL;
246 con->error_msg = "connect error";
247 }
248
249 if (ret < 0)
250 return ERR_PTR(ret);
251 return sock;
252}
253
254static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
255{
256 struct kvec iov = {buf, len};
257 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
258
259 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
260}
261
262/*
263 * write something. @more is true if caller will be sending more data
264 * shortly.
265 */
266static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
267 size_t kvlen, size_t len, int more)
268{
269 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
270
271 if (more)
272 msg.msg_flags |= MSG_MORE;
273 else
274 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
275
276 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
277}
278
279
280/*
281 * Shutdown/close the socket for the given connection.
282 */
283static int con_close_socket(struct ceph_connection *con)
284{
285 int rc;
286
287 dout("con_close_socket on %p sock %p\n", con, con->sock);
288 if (!con->sock)
289 return 0;
290 set_bit(SOCK_CLOSED, &con->state);
291 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
292 sock_release(con->sock);
293 con->sock = NULL;
294 clear_bit(SOCK_CLOSED, &con->state);
295 return rc;
296}
297
298/*
299 * Reset a connection. Discard all incoming and outgoing messages
300 * and clear *_seq state.
301 */
302static void ceph_msg_remove(struct ceph_msg *msg)
303{
304 list_del_init(&msg->list_head);
305 ceph_msg_put(msg);
306}
307static void ceph_msg_remove_list(struct list_head *head)
308{
309 while (!list_empty(head)) {
310 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
311 list_head);
312 ceph_msg_remove(msg);
313 }
314}
315
316static void reset_connection(struct ceph_connection *con)
317{
318 /* reset connection, out_queue, msg_ and connect_seq */
319 /* discard existing out_queue and msg_seq */
31b8006e
SW
320 ceph_msg_remove_list(&con->out_queue);
321 ceph_msg_remove_list(&con->out_sent);
322
cf3e5c40
SW
323 if (con->in_msg) {
324 ceph_msg_put(con->in_msg);
325 con->in_msg = NULL;
326 }
327
31b8006e
SW
328 con->connect_seq = 0;
329 con->out_seq = 0;
c86a2930
SW
330 if (con->out_msg) {
331 ceph_msg_put(con->out_msg);
332 con->out_msg = NULL;
333 }
31b8006e 334 con->in_seq = 0;
31b8006e
SW
335}
336
337/*
338 * mark a peer down. drop any open connections.
339 */
340void ceph_con_close(struct ceph_connection *con)
341{
342 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
343 set_bit(CLOSED, &con->state); /* in case there's queued work */
344 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
ec302645 345 mutex_lock(&con->mutex);
31b8006e 346 reset_connection(con);
ec302645 347 mutex_unlock(&con->mutex);
31b8006e
SW
348 queue_con(con);
349}
350
31b8006e
SW
351/*
352 * Reopen a closed connection, with a new peer address.
353 */
354void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
355{
356 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
357 set_bit(OPENING, &con->state);
358 clear_bit(CLOSED, &con->state);
359 memcpy(&con->peer_addr, addr, sizeof(*addr));
03c677e1 360 con->delay = 0; /* reset backoff memory */
31b8006e
SW
361 queue_con(con);
362}
363
364/*
365 * generic get/put
366 */
367struct ceph_connection *ceph_con_get(struct ceph_connection *con)
368{
369 dout("con_get %p nref = %d -> %d\n", con,
370 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
371 if (atomic_inc_not_zero(&con->nref))
372 return con;
373 return NULL;
374}
375
376void ceph_con_put(struct ceph_connection *con)
377{
378 dout("con_put %p nref = %d -> %d\n", con,
379 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
380 BUG_ON(atomic_read(&con->nref) == 0);
381 if (atomic_dec_and_test(&con->nref)) {
71ececda 382 BUG_ON(con->sock);
31b8006e
SW
383 kfree(con);
384 }
385}
386
387/*
388 * initialize a new connection.
389 */
390void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
391{
392 dout("con_init %p\n", con);
393 memset(con, 0, sizeof(*con));
394 atomic_set(&con->nref, 1);
395 con->msgr = msgr;
ec302645 396 mutex_init(&con->mutex);
31b8006e
SW
397 INIT_LIST_HEAD(&con->out_queue);
398 INIT_LIST_HEAD(&con->out_sent);
399 INIT_DELAYED_WORK(&con->work, con_work);
400}
401
402
403/*
404 * We maintain a global counter to order connection attempts. Get
405 * a unique seq greater than @gt.
406 */
407static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
408{
409 u32 ret;
410
411 spin_lock(&msgr->global_seq_lock);
412 if (msgr->global_seq < gt)
413 msgr->global_seq = gt;
414 ret = ++msgr->global_seq;
415 spin_unlock(&msgr->global_seq_lock);
416 return ret;
417}
418
419
420/*
421 * Prepare footer for currently outgoing message, and finish things
422 * off. Assumes out_kvec* are already valid.. we just add on to the end.
423 */
424static void prepare_write_message_footer(struct ceph_connection *con, int v)
425{
426 struct ceph_msg *m = con->out_msg;
427
428 dout("prepare_write_message_footer %p\n", con);
429 con->out_kvec_is_msg = true;
430 con->out_kvec[v].iov_base = &m->footer;
431 con->out_kvec[v].iov_len = sizeof(m->footer);
432 con->out_kvec_bytes += sizeof(m->footer);
433 con->out_kvec_left++;
434 con->out_more = m->more_to_follow;
c86a2930 435 con->out_msg_done = true;
31b8006e
SW
436}
437
438/*
439 * Prepare headers for the next outgoing message.
440 */
441static void prepare_write_message(struct ceph_connection *con)
442{
443 struct ceph_msg *m;
444 int v = 0;
445
446 con->out_kvec_bytes = 0;
447 con->out_kvec_is_msg = true;
c86a2930 448 con->out_msg_done = false;
31b8006e
SW
449
450 /* Sneak an ack in there first? If we can get it into the same
451 * TCP packet that's a good thing. */
452 if (con->in_seq > con->in_seq_acked) {
453 con->in_seq_acked = con->in_seq;
454 con->out_kvec[v].iov_base = &tag_ack;
455 con->out_kvec[v++].iov_len = 1;
456 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
457 con->out_kvec[v].iov_base = &con->out_temp_ack;
458 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
459 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
460 }
461
31b8006e
SW
462 m = list_first_entry(&con->out_queue,
463 struct ceph_msg, list_head);
c86a2930 464 con->out_msg = m;
b3d1dbbd
SW
465 if (test_bit(LOSSYTX, &con->state)) {
466 /* put message on sent list */
467 ceph_msg_get(m);
468 list_move_tail(&m->list_head, &con->out_sent);
469 } else {
470 list_del_init(&m->list_head);
471 }
31b8006e
SW
472
473 m->hdr.seq = cpu_to_le64(++con->out_seq);
474
475 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
476 m, con->out_seq, le16_to_cpu(m->hdr.type),
477 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
478 le32_to_cpu(m->hdr.data_len),
479 m->nr_pages);
480 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
481
482 /* tag + hdr + front + middle */
483 con->out_kvec[v].iov_base = &tag_msg;
484 con->out_kvec[v++].iov_len = 1;
485 con->out_kvec[v].iov_base = &m->hdr;
486 con->out_kvec[v++].iov_len = sizeof(m->hdr);
487 con->out_kvec[v++] = m->front;
488 if (m->middle)
489 con->out_kvec[v++] = m->middle->vec;
490 con->out_kvec_left = v;
491 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
492 (m->middle ? m->middle->vec.iov_len : 0);
493 con->out_kvec_cur = con->out_kvec;
494
495 /* fill in crc (except data pages), footer */
496 con->out_msg->hdr.crc =
497 cpu_to_le32(crc32c(0, (void *)&m->hdr,
498 sizeof(m->hdr) - sizeof(m->hdr.crc)));
499 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
500 con->out_msg->footer.front_crc =
501 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
502 if (m->middle)
503 con->out_msg->footer.middle_crc =
504 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
505 m->middle->vec.iov_len));
506 else
507 con->out_msg->footer.middle_crc = 0;
508 con->out_msg->footer.data_crc = 0;
509 dout("prepare_write_message front_crc %u data_crc %u\n",
510 le32_to_cpu(con->out_msg->footer.front_crc),
511 le32_to_cpu(con->out_msg->footer.middle_crc));
512
513 /* is there a data payload? */
514 if (le32_to_cpu(m->hdr.data_len) > 0) {
515 /* initialize page iterator */
516 con->out_msg_pos.page = 0;
517 con->out_msg_pos.page_pos =
518 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
519 con->out_msg_pos.data_pos = 0;
520 con->out_msg_pos.did_page_crc = 0;
521 con->out_more = 1; /* data + footer will follow */
522 } else {
523 /* no, queue up footer too and be done */
524 prepare_write_message_footer(con, v);
525 }
526
527 set_bit(WRITE_PENDING, &con->state);
528}
529
530/*
531 * Prepare an ack.
532 */
533static void prepare_write_ack(struct ceph_connection *con)
534{
535 dout("prepare_write_ack %p %llu -> %llu\n", con,
536 con->in_seq_acked, con->in_seq);
537 con->in_seq_acked = con->in_seq;
538
539 con->out_kvec[0].iov_base = &tag_ack;
540 con->out_kvec[0].iov_len = 1;
541 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
542 con->out_kvec[1].iov_base = &con->out_temp_ack;
543 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
544 con->out_kvec_left = 2;
545 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
546 con->out_kvec_cur = con->out_kvec;
547 con->out_more = 1; /* more will follow.. eventually.. */
548 set_bit(WRITE_PENDING, &con->state);
549}
550
551/*
552 * Prepare to write keepalive byte.
553 */
554static void prepare_write_keepalive(struct ceph_connection *con)
555{
556 dout("prepare_write_keepalive %p\n", con);
557 con->out_kvec[0].iov_base = &tag_keepalive;
558 con->out_kvec[0].iov_len = 1;
559 con->out_kvec_left = 1;
560 con->out_kvec_bytes = 1;
561 con->out_kvec_cur = con->out_kvec;
562 set_bit(WRITE_PENDING, &con->state);
563}
564
565/*
566 * Connection negotiation.
567 */
568
4e7a5dcd
SW
569static void prepare_connect_authorizer(struct ceph_connection *con)
570{
571 void *auth_buf;
572 int auth_len = 0;
573 int auth_protocol = 0;
574
ec302645 575 mutex_unlock(&con->mutex);
4e7a5dcd
SW
576 if (con->ops->get_authorizer)
577 con->ops->get_authorizer(con, &auth_buf, &auth_len,
578 &auth_protocol, &con->auth_reply_buf,
579 &con->auth_reply_buf_len,
580 con->auth_retry);
ec302645 581 mutex_lock(&con->mutex);
4e7a5dcd
SW
582
583 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
584 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
585
586 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
587 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
588 con->out_kvec_left++;
589 con->out_kvec_bytes += auth_len;
590}
591
31b8006e
SW
592/*
593 * We connected to a peer and are saying hello.
594 */
eed0ef2c
SW
595static void prepare_write_banner(struct ceph_messenger *msgr,
596 struct ceph_connection *con)
31b8006e
SW
597{
598 int len = strlen(CEPH_BANNER);
eed0ef2c
SW
599
600 con->out_kvec[0].iov_base = CEPH_BANNER;
601 con->out_kvec[0].iov_len = len;
602 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
603 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
604 con->out_kvec_left = 2;
605 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
606 con->out_kvec_cur = con->out_kvec;
607 con->out_more = 0;
608 set_bit(WRITE_PENDING, &con->state);
609}
610
611static void prepare_write_connect(struct ceph_messenger *msgr,
612 struct ceph_connection *con,
613 int after_banner)
614{
31b8006e
SW
615 unsigned global_seq = get_global_seq(con->msgr, 0);
616 int proto;
617
618 switch (con->peer_name.type) {
619 case CEPH_ENTITY_TYPE_MON:
620 proto = CEPH_MONC_PROTOCOL;
621 break;
622 case CEPH_ENTITY_TYPE_OSD:
623 proto = CEPH_OSDC_PROTOCOL;
624 break;
625 case CEPH_ENTITY_TYPE_MDS:
626 proto = CEPH_MDSC_PROTOCOL;
627 break;
628 default:
629 BUG();
630 }
631
632 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
633 con->connect_seq, global_seq, proto);
4e7a5dcd 634
04a419f9 635 con->out_connect.features = CEPH_FEATURE_SUPPORTED;
31b8006e
SW
636 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
637 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
638 con->out_connect.global_seq = cpu_to_le32(global_seq);
639 con->out_connect.protocol_version = cpu_to_le32(proto);
640 con->out_connect.flags = 0;
31b8006e 641
eed0ef2c
SW
642 if (!after_banner) {
643 con->out_kvec_left = 0;
644 con->out_kvec_bytes = 0;
645 }
646 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
647 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
648 con->out_kvec_left++;
649 con->out_kvec_bytes += sizeof(con->out_connect);
31b8006e
SW
650 con->out_kvec_cur = con->out_kvec;
651 con->out_more = 0;
652 set_bit(WRITE_PENDING, &con->state);
4e7a5dcd
SW
653
654 prepare_connect_authorizer(con);
31b8006e
SW
655}
656
657
658/*
659 * write as much of pending kvecs to the socket as we can.
660 * 1 -> done
661 * 0 -> socket full, but more to do
662 * <0 -> error
663 */
664static int write_partial_kvec(struct ceph_connection *con)
665{
666 int ret;
667
668 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
669 while (con->out_kvec_bytes > 0) {
670 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
671 con->out_kvec_left, con->out_kvec_bytes,
672 con->out_more);
673 if (ret <= 0)
674 goto out;
675 con->out_kvec_bytes -= ret;
676 if (con->out_kvec_bytes == 0)
677 break; /* done */
678 while (ret > 0) {
679 if (ret >= con->out_kvec_cur->iov_len) {
680 ret -= con->out_kvec_cur->iov_len;
681 con->out_kvec_cur++;
682 con->out_kvec_left--;
683 } else {
684 con->out_kvec_cur->iov_len -= ret;
685 con->out_kvec_cur->iov_base += ret;
686 ret = 0;
687 break;
688 }
689 }
690 }
691 con->out_kvec_left = 0;
692 con->out_kvec_is_msg = false;
693 ret = 1;
694out:
695 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
696 con->out_kvec_bytes, con->out_kvec_left, ret);
697 return ret; /* done! */
698}
699
700/*
701 * Write as much message data payload as we can. If we finish, queue
702 * up the footer.
703 * 1 -> done, footer is now queued in out_kvec[].
704 * 0 -> socket full, but more to do
705 * <0 -> error
706 */
707static int write_partial_msg_pages(struct ceph_connection *con)
708{
709 struct ceph_msg *msg = con->out_msg;
710 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
711 size_t len;
712 int crc = con->msgr->nocrc;
713 int ret;
714
715 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
716 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
717 con->out_msg_pos.page_pos);
718
719 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
720 struct page *page = NULL;
721 void *kaddr = NULL;
722
723 /*
724 * if we are calculating the data crc (the default), we need
725 * to map the page. if our pages[] has been revoked, use the
726 * zero page.
727 */
728 if (msg->pages) {
729 page = msg->pages[con->out_msg_pos.page];
730 if (crc)
731 kaddr = kmap(page);
58bb3b37
SW
732 } else if (msg->pagelist) {
733 page = list_first_entry(&msg->pagelist->head,
734 struct page, lru);
735 if (crc)
736 kaddr = kmap(page);
31b8006e
SW
737 } else {
738 page = con->msgr->zero_page;
739 if (crc)
740 kaddr = page_address(con->msgr->zero_page);
741 }
742 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
743 (int)(data_len - con->out_msg_pos.data_pos));
744 if (crc && !con->out_msg_pos.did_page_crc) {
745 void *base = kaddr + con->out_msg_pos.page_pos;
746 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
747
748 BUG_ON(kaddr == NULL);
749 con->out_msg->footer.data_crc =
750 cpu_to_le32(crc32c(tmpcrc, base, len));
751 con->out_msg_pos.did_page_crc = 1;
752 }
753
754 ret = kernel_sendpage(con->sock, page,
755 con->out_msg_pos.page_pos, len,
756 MSG_DONTWAIT | MSG_NOSIGNAL |
757 MSG_MORE);
758
58bb3b37 759 if (crc && (msg->pages || msg->pagelist))
31b8006e
SW
760 kunmap(page);
761
762 if (ret <= 0)
763 goto out;
764
765 con->out_msg_pos.data_pos += ret;
766 con->out_msg_pos.page_pos += ret;
767 if (ret == len) {
768 con->out_msg_pos.page_pos = 0;
769 con->out_msg_pos.page++;
770 con->out_msg_pos.did_page_crc = 0;
58bb3b37
SW
771 if (msg->pagelist)
772 list_move_tail(&page->lru,
773 &msg->pagelist->head);
31b8006e
SW
774 }
775 }
776
777 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
778
779 /* prepare and queue up footer, too */
780 if (!crc)
781 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
782 con->out_kvec_bytes = 0;
783 con->out_kvec_left = 0;
784 con->out_kvec_cur = con->out_kvec;
785 prepare_write_message_footer(con, 0);
786 ret = 1;
787out:
788 return ret;
789}
790
791/*
792 * write some zeros
793 */
794static int write_partial_skip(struct ceph_connection *con)
795{
796 int ret;
797
798 while (con->out_skip > 0) {
799 struct kvec iov = {
800 .iov_base = page_address(con->msgr->zero_page),
801 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
802 };
803
804 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
805 if (ret <= 0)
806 goto out;
807 con->out_skip -= ret;
808 }
809 ret = 1;
810out:
811 return ret;
812}
813
814/*
815 * Prepare to read connection handshake, or an ack.
816 */
eed0ef2c
SW
817static void prepare_read_banner(struct ceph_connection *con)
818{
819 dout("prepare_read_banner %p\n", con);
820 con->in_base_pos = 0;
821}
822
31b8006e
SW
823static void prepare_read_connect(struct ceph_connection *con)
824{
825 dout("prepare_read_connect %p\n", con);
826 con->in_base_pos = 0;
827}
828
4e7a5dcd
SW
829static void prepare_read_connect_retry(struct ceph_connection *con)
830{
831 dout("prepare_read_connect_retry %p\n", con);
832 con->in_base_pos = strlen(CEPH_BANNER) + sizeof(con->actual_peer_addr)
833 + sizeof(con->peer_addr_for_me);
834}
835
31b8006e
SW
836static void prepare_read_ack(struct ceph_connection *con)
837{
838 dout("prepare_read_ack %p\n", con);
839 con->in_base_pos = 0;
840}
841
842static void prepare_read_tag(struct ceph_connection *con)
843{
844 dout("prepare_read_tag %p\n", con);
845 con->in_base_pos = 0;
846 con->in_tag = CEPH_MSGR_TAG_READY;
847}
848
849/*
850 * Prepare to read a message.
851 */
852static int prepare_read_message(struct ceph_connection *con)
853{
854 dout("prepare_read_message %p\n", con);
855 BUG_ON(con->in_msg != NULL);
856 con->in_base_pos = 0;
857 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
858 return 0;
859}
860
861
862static int read_partial(struct ceph_connection *con,
863 int *to, int size, void *object)
864{
865 *to += size;
866 while (con->in_base_pos < *to) {
867 int left = *to - con->in_base_pos;
868 int have = size - left;
869 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
870 if (ret <= 0)
871 return ret;
872 con->in_base_pos += ret;
873 }
874 return 1;
875}
876
877
878/*
879 * Read all or part of the connect-side handshake on a new connection
880 */
eed0ef2c 881static int read_partial_banner(struct ceph_connection *con)
31b8006e
SW
882{
883 int ret, to = 0;
884
eed0ef2c 885 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
31b8006e
SW
886
887 /* peer's banner */
888 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
889 if (ret <= 0)
890 goto out;
891 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
892 &con->actual_peer_addr);
893 if (ret <= 0)
894 goto out;
895 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
896 &con->peer_addr_for_me);
897 if (ret <= 0)
898 goto out;
eed0ef2c
SW
899out:
900 return ret;
901}
902
903static int read_partial_connect(struct ceph_connection *con)
904{
905 int ret, to = 0;
906
907 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
908
31b8006e
SW
909 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
910 if (ret <= 0)
911 goto out;
4e7a5dcd
SW
912 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
913 con->auth_reply_buf);
914 if (ret <= 0)
915 goto out;
31b8006e 916
4e7a5dcd
SW
917 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
918 con, (int)con->in_reply.tag,
919 le32_to_cpu(con->in_reply.connect_seq),
31b8006e
SW
920 le32_to_cpu(con->in_reply.global_seq));
921out:
922 return ret;
eed0ef2c 923
31b8006e
SW
924}
925
926/*
927 * Verify the hello banner looks okay.
928 */
929static int verify_hello(struct ceph_connection *con)
930{
931 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
13e38c8a 932 pr_err("connect to %s got bad banner\n",
31b8006e
SW
933 pr_addr(&con->peer_addr.in_addr));
934 con->error_msg = "protocol error, bad banner";
935 return -1;
936 }
937 return 0;
938}
939
940static bool addr_is_blank(struct sockaddr_storage *ss)
941{
942 switch (ss->ss_family) {
943 case AF_INET:
944 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
945 case AF_INET6:
946 return
947 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
948 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
949 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
950 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
951 }
952 return false;
953}
954
955static int addr_port(struct sockaddr_storage *ss)
956{
957 switch (ss->ss_family) {
958 case AF_INET:
f28bcfbe 959 return ntohs(((struct sockaddr_in *)ss)->sin_port);
31b8006e 960 case AF_INET6:
f28bcfbe 961 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
31b8006e
SW
962 }
963 return 0;
964}
965
966static void addr_set_port(struct sockaddr_storage *ss, int p)
967{
968 switch (ss->ss_family) {
969 case AF_INET:
970 ((struct sockaddr_in *)ss)->sin_port = htons(p);
971 case AF_INET6:
972 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
973 }
974}
975
976/*
977 * Parse an ip[:port] list into an addr array. Use the default
978 * monitor port if a port isn't specified.
979 */
980int ceph_parse_ips(const char *c, const char *end,
981 struct ceph_entity_addr *addr,
982 int max_count, int *count)
983{
984 int i;
985 const char *p = c;
986
987 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
988 for (i = 0; i < max_count; i++) {
989 const char *ipend;
990 struct sockaddr_storage *ss = &addr[i].in_addr;
991 struct sockaddr_in *in4 = (void *)ss;
992 struct sockaddr_in6 *in6 = (void *)ss;
993 int port;
994
995 memset(ss, 0, sizeof(*ss));
996 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
997 ',', &ipend)) {
998 ss->ss_family = AF_INET;
999 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1000 ',', &ipend)) {
1001 ss->ss_family = AF_INET6;
1002 } else {
1003 goto bad;
1004 }
1005 p = ipend;
1006
1007 /* port? */
1008 if (p < end && *p == ':') {
1009 port = 0;
1010 p++;
1011 while (p < end && *p >= '0' && *p <= '9') {
1012 port = (port * 10) + (*p - '0');
1013 p++;
1014 }
1015 if (port > 65535 || port == 0)
1016 goto bad;
1017 } else {
1018 port = CEPH_MON_PORT;
1019 }
1020
1021 addr_set_port(ss, port);
1022
1023 dout("parse_ips got %s\n", pr_addr(ss));
1024
1025 if (p == end)
1026 break;
1027 if (*p != ',')
1028 goto bad;
1029 p++;
1030 }
1031
1032 if (p != end)
1033 goto bad;
1034
1035 if (count)
1036 *count = i + 1;
1037 return 0;
1038
1039bad:
1040 pr_err("parse_ips bad ip '%s'\n", c);
1041 return -EINVAL;
1042}
1043
eed0ef2c 1044static int process_banner(struct ceph_connection *con)
31b8006e 1045{
eed0ef2c 1046 dout("process_banner on %p\n", con);
31b8006e
SW
1047
1048 if (verify_hello(con) < 0)
1049 return -1;
1050
63f2d211
SW
1051 ceph_decode_addr(&con->actual_peer_addr);
1052 ceph_decode_addr(&con->peer_addr_for_me);
1053
31b8006e
SW
1054 /*
1055 * Make sure the other end is who we wanted. note that the other
1056 * end may not yet know their ip address, so if it's 0.0.0.0, give
1057 * them the benefit of the doubt.
1058 */
103e2d3a
SW
1059 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1060 sizeof(con->peer_addr)) != 0 &&
31b8006e
SW
1061 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1062 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
103e2d3a
SW
1063 pr_warning("wrong peer, want %s/%lld, got %s/%lld\n",
1064 pr_addr(&con->peer_addr.in_addr),
1065 le64_to_cpu(con->peer_addr.nonce),
1066 pr_addr(&con->actual_peer_addr.in_addr),
1067 le64_to_cpu(con->actual_peer_addr.nonce));
58bb3b37 1068 con->error_msg = "wrong peer at address";
31b8006e
SW
1069 return -1;
1070 }
1071
1072 /*
1073 * did we learn our address?
1074 */
1075 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1076 int port = addr_port(&con->msgr->inst.addr.in_addr);
1077
1078 memcpy(&con->msgr->inst.addr.in_addr,
1079 &con->peer_addr_for_me.in_addr,
1080 sizeof(con->peer_addr_for_me.in_addr));
1081 addr_set_port(&con->msgr->inst.addr.in_addr, port);
63f2d211 1082 encode_my_addr(con->msgr);
eed0ef2c 1083 dout("process_banner learned my addr is %s\n",
31b8006e
SW
1084 pr_addr(&con->msgr->inst.addr.in_addr));
1085 }
1086
eed0ef2c
SW
1087 set_bit(NEGOTIATING, &con->state);
1088 prepare_read_connect(con);
1089 return 0;
1090}
1091
04a419f9
SW
1092static void fail_protocol(struct ceph_connection *con)
1093{
1094 reset_connection(con);
1095 set_bit(CLOSED, &con->state); /* in case there's queued work */
1096
1097 mutex_unlock(&con->mutex);
1098 if (con->ops->bad_proto)
1099 con->ops->bad_proto(con);
1100 mutex_lock(&con->mutex);
1101}
1102
eed0ef2c
SW
1103static int process_connect(struct ceph_connection *con)
1104{
04a419f9
SW
1105 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1106 u64 req_feat = CEPH_FEATURE_REQUIRED;
1107 u64 server_feat = le64_to_cpu(con->in_reply.features);
1108
eed0ef2c
SW
1109 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1110
31b8006e 1111 switch (con->in_reply.tag) {
04a419f9
SW
1112 case CEPH_MSGR_TAG_FEATURES:
1113 pr_err("%s%lld %s feature set mismatch,"
1114 " my %llx < server's %llx, missing %llx\n",
1115 ENTITY_NAME(con->peer_name),
1116 pr_addr(&con->peer_addr.in_addr),
1117 sup_feat, server_feat, server_feat & ~sup_feat);
1118 con->error_msg = "missing required protocol features";
1119 fail_protocol(con);
1120 return -1;
1121
31b8006e 1122 case CEPH_MSGR_TAG_BADPROTOVER:
31b8006e
SW
1123 pr_err("%s%lld %s protocol version mismatch,"
1124 " my %d != server's %d\n",
1125 ENTITY_NAME(con->peer_name),
1126 pr_addr(&con->peer_addr.in_addr),
1127 le32_to_cpu(con->out_connect.protocol_version),
1128 le32_to_cpu(con->in_reply.protocol_version));
1129 con->error_msg = "protocol version mismatch";
04a419f9 1130 fail_protocol(con);
31b8006e
SW
1131 return -1;
1132
4e7a5dcd
SW
1133 case CEPH_MSGR_TAG_BADAUTHORIZER:
1134 con->auth_retry++;
1135 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1136 con->auth_retry);
1137 if (con->auth_retry == 2) {
1138 con->error_msg = "connect authorization failure";
1139 reset_connection(con);
1140 set_bit(CLOSED, &con->state);
1141 return -1;
1142 }
1143 con->auth_retry = 1;
1144 prepare_write_connect(con->msgr, con, 0);
1145 prepare_read_connect_retry(con);
1146 break;
31b8006e
SW
1147
1148 case CEPH_MSGR_TAG_RESETSESSION:
1149 /*
1150 * If we connected with a large connect_seq but the peer
1151 * has no record of a session with us (no connection, or
1152 * connect_seq == 0), they will send RESETSESION to indicate
1153 * that they must have reset their session, and may have
1154 * dropped messages.
1155 */
1156 dout("process_connect got RESET peer seq %u\n",
1157 le32_to_cpu(con->in_connect.connect_seq));
1158 pr_err("%s%lld %s connection reset\n",
1159 ENTITY_NAME(con->peer_name),
1160 pr_addr(&con->peer_addr.in_addr));
1161 reset_connection(con);
eed0ef2c 1162 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1163 prepare_read_connect(con);
1164
1165 /* Tell ceph about it. */
ec302645 1166 mutex_unlock(&con->mutex);
31b8006e
SW
1167 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1168 if (con->ops->peer_reset)
1169 con->ops->peer_reset(con);
ec302645 1170 mutex_lock(&con->mutex);
31b8006e
SW
1171 break;
1172
1173 case CEPH_MSGR_TAG_RETRY_SESSION:
1174 /*
1175 * If we sent a smaller connect_seq than the peer has, try
1176 * again with a larger value.
1177 */
1178 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1179 le32_to_cpu(con->out_connect.connect_seq),
1180 le32_to_cpu(con->in_connect.connect_seq));
1181 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
eed0ef2c 1182 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1183 prepare_read_connect(con);
1184 break;
1185
1186 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1187 /*
1188 * If we sent a smaller global_seq than the peer has, try
1189 * again with a larger value.
1190 */
eed0ef2c 1191 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
31b8006e
SW
1192 con->peer_global_seq,
1193 le32_to_cpu(con->in_connect.global_seq));
1194 get_global_seq(con->msgr,
1195 le32_to_cpu(con->in_connect.global_seq));
eed0ef2c 1196 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1197 prepare_read_connect(con);
1198 break;
1199
1200 case CEPH_MSGR_TAG_READY:
04a419f9
SW
1201 if (req_feat & ~server_feat) {
1202 pr_err("%s%lld %s protocol feature mismatch,"
1203 " my required %llx > server's %llx, need %llx\n",
1204 ENTITY_NAME(con->peer_name),
1205 pr_addr(&con->peer_addr.in_addr),
1206 req_feat, server_feat, req_feat & ~server_feat);
1207 con->error_msg = "missing required protocol features";
1208 fail_protocol(con);
1209 return -1;
1210 }
31b8006e 1211 clear_bit(CONNECTING, &con->state);
31b8006e
SW
1212 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1213 con->connect_seq++;
1214 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1215 con->peer_global_seq,
1216 le32_to_cpu(con->in_reply.connect_seq),
1217 con->connect_seq);
1218 WARN_ON(con->connect_seq !=
1219 le32_to_cpu(con->in_reply.connect_seq));
92ac41d0
SW
1220
1221 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1222 set_bit(LOSSYTX, &con->state);
1223
31b8006e
SW
1224 prepare_read_tag(con);
1225 break;
1226
1227 case CEPH_MSGR_TAG_WAIT:
1228 /*
1229 * If there is a connection race (we are opening
1230 * connections to each other), one of us may just have
1231 * to WAIT. This shouldn't happen if we are the
1232 * client.
1233 */
1234 pr_err("process_connect peer connecting WAIT\n");
1235
1236 default:
1237 pr_err("connect protocol error, will retry\n");
1238 con->error_msg = "protocol error, garbage tag during connect";
1239 return -1;
1240 }
1241 return 0;
1242}
1243
1244
1245/*
1246 * read (part of) an ack
1247 */
1248static int read_partial_ack(struct ceph_connection *con)
1249{
1250 int to = 0;
1251
1252 return read_partial(con, &to, sizeof(con->in_temp_ack),
1253 &con->in_temp_ack);
1254}
1255
1256
1257/*
1258 * We can finally discard anything that's been acked.
1259 */
1260static void process_ack(struct ceph_connection *con)
1261{
1262 struct ceph_msg *m;
1263 u64 ack = le64_to_cpu(con->in_temp_ack);
1264 u64 seq;
1265
31b8006e
SW
1266 while (!list_empty(&con->out_sent)) {
1267 m = list_first_entry(&con->out_sent, struct ceph_msg,
1268 list_head);
1269 seq = le64_to_cpu(m->hdr.seq);
1270 if (seq > ack)
1271 break;
1272 dout("got ack for seq %llu type %d at %p\n", seq,
1273 le16_to_cpu(m->hdr.type), m);
1274 ceph_msg_remove(m);
1275 }
31b8006e
SW
1276 prepare_read_tag(con);
1277}
1278
1279
1280
1281
2450418c
YS
1282static int read_partial_message_section(struct ceph_connection *con,
1283 struct kvec *section, unsigned int sec_len,
1284 u32 *crc)
1285{
1286 int left;
1287 int ret;
1288
1289 BUG_ON(!section);
1290
1291 while (section->iov_len < sec_len) {
1292 BUG_ON(section->iov_base == NULL);
1293 left = sec_len - section->iov_len;
1294 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1295 section->iov_len, left);
1296 if (ret <= 0)
1297 return ret;
1298 section->iov_len += ret;
1299 if (section->iov_len == sec_len)
1300 *crc = crc32c(0, section->iov_base,
1301 section->iov_len);
1302 }
31b8006e 1303
2450418c
YS
1304 return 1;
1305}
31b8006e 1306
2450418c
YS
1307static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1308 struct ceph_msg_header *hdr,
1309 int *skip);
31b8006e
SW
1310/*
1311 * read (part of) a message.
1312 */
1313static int read_partial_message(struct ceph_connection *con)
1314{
1315 struct ceph_msg *m = con->in_msg;
1316 void *p;
1317 int ret;
1318 int to, want, left;
1319 unsigned front_len, middle_len, data_len, data_off;
1320 int datacrc = con->msgr->nocrc;
2450418c 1321 int skip;
31b8006e
SW
1322
1323 dout("read_partial_message con %p msg %p\n", con, m);
1324
1325 /* header */
1326 while (con->in_base_pos < sizeof(con->in_hdr)) {
1327 left = sizeof(con->in_hdr) - con->in_base_pos;
1328 ret = ceph_tcp_recvmsg(con->sock,
1329 (char *)&con->in_hdr + con->in_base_pos,
1330 left);
1331 if (ret <= 0)
1332 return ret;
1333 con->in_base_pos += ret;
1334 if (con->in_base_pos == sizeof(con->in_hdr)) {
1335 u32 crc = crc32c(0, (void *)&con->in_hdr,
1336 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1337 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1338 pr_err("read_partial_message bad hdr "
1339 " crc %u != expected %u\n",
1340 crc, con->in_hdr.crc);
1341 return -EBADMSG;
1342 }
1343 }
1344 }
31b8006e
SW
1345 front_len = le32_to_cpu(con->in_hdr.front_len);
1346 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1347 return -EIO;
1348 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1349 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1350 return -EIO;
1351 data_len = le32_to_cpu(con->in_hdr.data_len);
1352 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1353 return -EIO;
1354
1355 /* allocate message? */
1356 if (!con->in_msg) {
1357 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1358 con->in_hdr.front_len, con->in_hdr.data_len);
2450418c
YS
1359 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1360 if (skip) {
31b8006e 1361 /* skip this message */
cf3e5c40 1362 pr_err("alloc_msg returned NULL, skipping message\n");
31b8006e
SW
1363 con->in_base_pos = -front_len - middle_len - data_len -
1364 sizeof(m->footer);
1365 con->in_tag = CEPH_MSGR_TAG_READY;
1366 return 0;
1367 }
1368 if (IS_ERR(con->in_msg)) {
1369 ret = PTR_ERR(con->in_msg);
1370 con->in_msg = NULL;
2450418c 1371 con->error_msg = "error allocating memory for incoming message";
31b8006e
SW
1372 return ret;
1373 }
1374 m = con->in_msg;
1375 m->front.iov_len = 0; /* haven't read it yet */
2450418c
YS
1376 if (m->middle)
1377 m->middle->vec.iov_len = 0;
31b8006e
SW
1378 memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr));
1379 }
1380
1381 /* front */
2450418c
YS
1382 ret = read_partial_message_section(con, &m->front, front_len,
1383 &con->in_front_crc);
1384 if (ret <= 0)
1385 return ret;
31b8006e
SW
1386
1387 /* middle */
2450418c
YS
1388 if (m->middle) {
1389 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1390 &con->in_middle_crc);
31b8006e
SW
1391 if (ret <= 0)
1392 return ret;
31b8006e
SW
1393 }
1394
1395 /* (page) data */
1396 data_off = le16_to_cpu(m->hdr.data_off);
1397 if (data_len == 0)
1398 goto no_data;
1399
1400 if (m->nr_pages == 0) {
1401 con->in_msg_pos.page = 0;
1402 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1403 con->in_msg_pos.data_pos = 0;
1404 /* find pages for data payload */
1405 want = calc_pages_for(data_off & ~PAGE_MASK, data_len);
1406 ret = -1;
ec302645 1407 mutex_unlock(&con->mutex);
31b8006e
SW
1408 if (con->ops->prepare_pages)
1409 ret = con->ops->prepare_pages(con, m, want);
ec302645 1410 mutex_lock(&con->mutex);
31b8006e
SW
1411 if (ret < 0) {
1412 dout("%p prepare_pages failed, skipping payload\n", m);
1413 con->in_base_pos = -data_len - sizeof(m->footer);
1414 ceph_msg_put(con->in_msg);
1415 con->in_msg = NULL;
1416 con->in_tag = CEPH_MSGR_TAG_READY;
1417 return 0;
1418 }
1419 BUG_ON(m->nr_pages < want);
1420 }
1421 while (con->in_msg_pos.data_pos < data_len) {
1422 left = min((int)(data_len - con->in_msg_pos.data_pos),
1423 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1424 BUG_ON(m->pages == NULL);
1425 p = kmap(m->pages[con->in_msg_pos.page]);
1426 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1427 left);
1428 if (ret > 0 && datacrc)
1429 con->in_data_crc =
1430 crc32c(con->in_data_crc,
1431 p + con->in_msg_pos.page_pos, ret);
1432 kunmap(m->pages[con->in_msg_pos.page]);
1433 if (ret <= 0)
1434 return ret;
1435 con->in_msg_pos.data_pos += ret;
1436 con->in_msg_pos.page_pos += ret;
1437 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1438 con->in_msg_pos.page_pos = 0;
1439 con->in_msg_pos.page++;
1440 }
1441 }
1442
1443no_data:
1444 /* footer */
1445 to = sizeof(m->hdr) + sizeof(m->footer);
1446 while (con->in_base_pos < to) {
1447 left = to - con->in_base_pos;
1448 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1449 (con->in_base_pos - sizeof(m->hdr)),
1450 left);
1451 if (ret <= 0)
1452 return ret;
1453 con->in_base_pos += ret;
1454 }
1455 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1456 m, front_len, m->footer.front_crc, middle_len,
1457 m->footer.middle_crc, data_len, m->footer.data_crc);
1458
1459 /* crc ok? */
1460 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1461 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1462 m, con->in_front_crc, m->footer.front_crc);
1463 return -EBADMSG;
1464 }
1465 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1466 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1467 m, con->in_middle_crc, m->footer.middle_crc);
1468 return -EBADMSG;
1469 }
1470 if (datacrc &&
1471 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1472 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1473 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1474 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1475 return -EBADMSG;
1476 }
1477
1478 return 1; /* done! */
1479}
1480
1481/*
1482 * Process message. This happens in the worker thread. The callback should
1483 * be careful not to do anything that waits on other incoming messages or it
1484 * may deadlock.
1485 */
1486static void process_message(struct ceph_connection *con)
1487{
5e095e8b 1488 struct ceph_msg *msg;
31b8006e 1489
5e095e8b 1490 msg = con->in_msg;
31b8006e
SW
1491 con->in_msg = NULL;
1492
1493 /* if first message, set peer_name */
1494 if (con->peer_name.type == 0)
1495 con->peer_name = msg->hdr.src.name;
1496
31b8006e 1497 con->in_seq++;
ec302645 1498 mutex_unlock(&con->mutex);
31b8006e
SW
1499
1500 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1501 msg, le64_to_cpu(msg->hdr.seq),
1502 ENTITY_NAME(msg->hdr.src.name),
1503 le16_to_cpu(msg->hdr.type),
1504 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1505 le32_to_cpu(msg->hdr.front_len),
1506 le32_to_cpu(msg->hdr.data_len),
1507 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1508 con->ops->dispatch(con, msg);
ec302645
SW
1509
1510 mutex_lock(&con->mutex);
31b8006e
SW
1511 prepare_read_tag(con);
1512}
1513
1514
1515/*
1516 * Write something to the socket. Called in a worker thread when the
1517 * socket appears to be writeable and we have something ready to send.
1518 */
1519static int try_write(struct ceph_connection *con)
1520{
1521 struct ceph_messenger *msgr = con->msgr;
1522 int ret = 1;
1523
1524 dout("try_write start %p state %lu nref %d\n", con, con->state,
1525 atomic_read(&con->nref));
1526
ec302645 1527 mutex_lock(&con->mutex);
31b8006e
SW
1528more:
1529 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1530
1531 /* open the socket first? */
1532 if (con->sock == NULL) {
1533 /*
1534 * if we were STANDBY and are reconnecting _this_
1535 * connection, bump connect_seq now. Always bump
1536 * global_seq.
1537 */
1538 if (test_and_clear_bit(STANDBY, &con->state))
1539 con->connect_seq++;
1540
eed0ef2c
SW
1541 prepare_write_banner(msgr, con);
1542 prepare_write_connect(msgr, con, 1);
1543 prepare_read_banner(con);
31b8006e 1544 set_bit(CONNECTING, &con->state);
eed0ef2c 1545 clear_bit(NEGOTIATING, &con->state);
31b8006e 1546
cf3e5c40 1547 BUG_ON(con->in_msg);
31b8006e
SW
1548 con->in_tag = CEPH_MSGR_TAG_READY;
1549 dout("try_write initiating connect on %p new state %lu\n",
1550 con, con->state);
1551 con->sock = ceph_tcp_connect(con);
1552 if (IS_ERR(con->sock)) {
1553 con->sock = NULL;
1554 con->error_msg = "connect error";
1555 ret = -1;
1556 goto out;
1557 }
1558 }
1559
1560more_kvec:
1561 /* kvec data queued? */
1562 if (con->out_skip) {
1563 ret = write_partial_skip(con);
1564 if (ret <= 0)
1565 goto done;
1566 if (ret < 0) {
1567 dout("try_write write_partial_skip err %d\n", ret);
1568 goto done;
1569 }
1570 }
1571 if (con->out_kvec_left) {
1572 ret = write_partial_kvec(con);
1573 if (ret <= 0)
1574 goto done;
31b8006e
SW
1575 }
1576
1577 /* msg pages? */
1578 if (con->out_msg) {
c86a2930
SW
1579 if (con->out_msg_done) {
1580 ceph_msg_put(con->out_msg);
1581 con->out_msg = NULL; /* we're done with this one */
1582 goto do_next;
1583 }
1584
31b8006e
SW
1585 ret = write_partial_msg_pages(con);
1586 if (ret == 1)
1587 goto more_kvec; /* we need to send the footer, too! */
1588 if (ret == 0)
1589 goto done;
1590 if (ret < 0) {
1591 dout("try_write write_partial_msg_pages err %d\n",
1592 ret);
1593 goto done;
1594 }
1595 }
1596
c86a2930 1597do_next:
31b8006e
SW
1598 if (!test_bit(CONNECTING, &con->state)) {
1599 /* is anything else pending? */
1600 if (!list_empty(&con->out_queue)) {
1601 prepare_write_message(con);
1602 goto more;
1603 }
1604 if (con->in_seq > con->in_seq_acked) {
1605 prepare_write_ack(con);
1606 goto more;
1607 }
1608 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1609 prepare_write_keepalive(con);
1610 goto more;
1611 }
1612 }
1613
1614 /* Nothing to do! */
1615 clear_bit(WRITE_PENDING, &con->state);
1616 dout("try_write nothing else to write.\n");
1617done:
1618 ret = 0;
1619out:
ec302645 1620 mutex_unlock(&con->mutex);
31b8006e
SW
1621 dout("try_write done on %p\n", con);
1622 return ret;
1623}
1624
1625
1626
1627/*
1628 * Read what we can from the socket.
1629 */
1630static int try_read(struct ceph_connection *con)
1631{
1632 struct ceph_messenger *msgr;
1633 int ret = -1;
1634
1635 if (!con->sock)
1636 return 0;
1637
1638 if (test_bit(STANDBY, &con->state))
1639 return 0;
1640
1641 dout("try_read start on %p\n", con);
1642 msgr = con->msgr;
1643
ec302645
SW
1644 mutex_lock(&con->mutex);
1645
31b8006e
SW
1646more:
1647 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1648 con->in_base_pos);
1649 if (test_bit(CONNECTING, &con->state)) {
eed0ef2c
SW
1650 if (!test_bit(NEGOTIATING, &con->state)) {
1651 dout("try_read connecting\n");
1652 ret = read_partial_banner(con);
1653 if (ret <= 0)
1654 goto done;
1655 if (process_banner(con) < 0) {
1656 ret = -1;
1657 goto out;
1658 }
1659 }
31b8006e
SW
1660 ret = read_partial_connect(con);
1661 if (ret <= 0)
1662 goto done;
1663 if (process_connect(con) < 0) {
1664 ret = -1;
1665 goto out;
1666 }
1667 goto more;
1668 }
1669
1670 if (con->in_base_pos < 0) {
1671 /*
1672 * skipping + discarding content.
1673 *
1674 * FIXME: there must be a better way to do this!
1675 */
1676 static char buf[1024];
1677 int skip = min(1024, -con->in_base_pos);
1678 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1679 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1680 if (ret <= 0)
1681 goto done;
1682 con->in_base_pos += ret;
1683 if (con->in_base_pos)
1684 goto more;
1685 }
1686 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1687 /*
1688 * what's next?
1689 */
1690 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1691 if (ret <= 0)
1692 goto done;
1693 dout("try_read got tag %d\n", (int)con->in_tag);
1694 switch (con->in_tag) {
1695 case CEPH_MSGR_TAG_MSG:
1696 prepare_read_message(con);
1697 break;
1698 case CEPH_MSGR_TAG_ACK:
1699 prepare_read_ack(con);
1700 break;
1701 case CEPH_MSGR_TAG_CLOSE:
1702 set_bit(CLOSED, &con->state); /* fixme */
1703 goto done;
1704 default:
1705 goto bad_tag;
1706 }
1707 }
1708 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1709 ret = read_partial_message(con);
1710 if (ret <= 0) {
1711 switch (ret) {
1712 case -EBADMSG:
1713 con->error_msg = "bad crc";
1714 ret = -EIO;
1715 goto out;
1716 case -EIO:
1717 con->error_msg = "io error";
1718 goto out;
1719 default:
1720 goto done;
1721 }
1722 }
1723 if (con->in_tag == CEPH_MSGR_TAG_READY)
1724 goto more;
1725 process_message(con);
1726 goto more;
1727 }
1728 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1729 ret = read_partial_ack(con);
1730 if (ret <= 0)
1731 goto done;
1732 process_ack(con);
1733 goto more;
1734 }
1735
1736done:
1737 ret = 0;
1738out:
ec302645 1739 mutex_unlock(&con->mutex);
31b8006e
SW
1740 dout("try_read done on %p\n", con);
1741 return ret;
1742
1743bad_tag:
1744 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1745 con->error_msg = "protocol error, garbage tag";
1746 ret = -1;
1747 goto out;
1748}
1749
1750
1751/*
1752 * Atomically queue work on a connection. Bump @con reference to
1753 * avoid races with connection teardown.
1754 *
1755 * There is some trickery going on with QUEUED and BUSY because we
1756 * only want a _single_ thread operating on each connection at any
1757 * point in time, but we want to use all available CPUs.
1758 *
1759 * The worker thread only proceeds if it can atomically set BUSY. It
1760 * clears QUEUED and does it's thing. When it thinks it's done, it
1761 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1762 * (tries again to set BUSY).
1763 *
1764 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1765 * try to queue work. If that fails (work is already queued, or BUSY)
1766 * we give up (work also already being done or is queued) but leave QUEUED
1767 * set so that the worker thread will loop if necessary.
1768 */
1769static void queue_con(struct ceph_connection *con)
1770{
1771 if (test_bit(DEAD, &con->state)) {
1772 dout("queue_con %p ignoring: DEAD\n",
1773 con);
1774 return;
1775 }
1776
1777 if (!con->ops->get(con)) {
1778 dout("queue_con %p ref count 0\n", con);
1779 return;
1780 }
1781
1782 set_bit(QUEUED, &con->state);
1783 if (test_bit(BUSY, &con->state)) {
1784 dout("queue_con %p - already BUSY\n", con);
1785 con->ops->put(con);
1786 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1787 dout("queue_con %p - already queued\n", con);
1788 con->ops->put(con);
1789 } else {
1790 dout("queue_con %p\n", con);
1791 }
1792}
1793
1794/*
1795 * Do some work on a connection. Drop a connection ref when we're done.
1796 */
1797static void con_work(struct work_struct *work)
1798{
1799 struct ceph_connection *con = container_of(work, struct ceph_connection,
1800 work.work);
1801 int backoff = 0;
1802
1803more:
1804 if (test_and_set_bit(BUSY, &con->state) != 0) {
1805 dout("con_work %p BUSY already set\n", con);
1806 goto out;
1807 }
1808 dout("con_work %p start, clearing QUEUED\n", con);
1809 clear_bit(QUEUED, &con->state);
1810
1811 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1812 dout("con_work CLOSED\n");
1813 con_close_socket(con);
1814 goto done;
1815 }
1816 if (test_and_clear_bit(OPENING, &con->state)) {
1817 /* reopen w/ new peer */
1818 dout("con_work OPENING\n");
1819 con_close_socket(con);
1820 }
1821
1822 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1823 try_read(con) < 0 ||
1824 try_write(con) < 0) {
1825 backoff = 1;
1826 ceph_fault(con); /* error/fault path */
1827 }
1828
1829done:
1830 clear_bit(BUSY, &con->state);
1831 dout("con->state=%lu\n", con->state);
1832 if (test_bit(QUEUED, &con->state)) {
1833 if (!backoff) {
1834 dout("con_work %p QUEUED reset, looping\n", con);
1835 goto more;
1836 }
1837 dout("con_work %p QUEUED reset, but just faulted\n", con);
1838 clear_bit(QUEUED, &con->state);
1839 }
1840 dout("con_work %p done\n", con);
1841
1842out:
1843 con->ops->put(con);
1844}
1845
1846
1847/*
1848 * Generic error/fault handler. A retry mechanism is used with
1849 * exponential backoff
1850 */
1851static void ceph_fault(struct ceph_connection *con)
1852{
1853 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1854 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1855 dout("fault %p state %lu to peer %s\n",
1856 con, con->state, pr_addr(&con->peer_addr.in_addr));
1857
1858 if (test_bit(LOSSYTX, &con->state)) {
1859 dout("fault on LOSSYTX channel\n");
1860 goto out;
1861 }
1862
1863 clear_bit(BUSY, &con->state); /* to avoid an improbable race */
1864
ec302645
SW
1865 mutex_lock(&con->mutex);
1866
31b8006e 1867 con_close_socket(con);
5e095e8b
SW
1868
1869 if (con->in_msg) {
1870 ceph_msg_put(con->in_msg);
1871 con->in_msg = NULL;
1872 }
31b8006e
SW
1873
1874 /* If there are no messages in the queue, place the connection
1875 * in a STANDBY state (i.e., don't try to reconnect just yet). */
31b8006e
SW
1876 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1877 dout("fault setting STANDBY\n");
1878 set_bit(STANDBY, &con->state);
ec302645 1879 mutex_unlock(&con->mutex);
31b8006e
SW
1880 goto out;
1881 }
1882
1883 /* Requeue anything that hasn't been acked, and retry after a
1884 * delay. */
1885 list_splice_init(&con->out_sent, &con->out_queue);
31b8006e
SW
1886
1887 if (con->delay == 0)
1888 con->delay = BASE_DELAY_INTERVAL;
1889 else if (con->delay < MAX_DELAY_INTERVAL)
1890 con->delay *= 2;
1891
ec302645
SW
1892 mutex_unlock(&con->mutex);
1893
31b8006e
SW
1894 /* explicitly schedule work to try to reconnect again later. */
1895 dout("fault queueing %p delay %lu\n", con, con->delay);
1896 con->ops->get(con);
1897 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1898 round_jiffies_relative(con->delay)) == 0)
1899 con->ops->put(con);
1900
1901out:
1902 if (con->ops->fault)
1903 con->ops->fault(con);
1904}
1905
1906
1907
1908/*
1909 * create a new messenger instance
1910 */
1911struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1912{
1913 struct ceph_messenger *msgr;
1914
1915 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1916 if (msgr == NULL)
1917 return ERR_PTR(-ENOMEM);
1918
1919 spin_lock_init(&msgr->global_seq_lock);
1920
1921 /* the zero page is needed if a request is "canceled" while the message
1922 * is being written over the socket */
1923 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1924 if (!msgr->zero_page) {
1925 kfree(msgr);
1926 return ERR_PTR(-ENOMEM);
1927 }
1928 kmap(msgr->zero_page);
1929
1930 if (myaddr)
1931 msgr->inst.addr = *myaddr;
1932
1933 /* select a random nonce */
103e2d3a 1934 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
63f2d211 1935 encode_my_addr(msgr);
31b8006e
SW
1936
1937 dout("messenger_create %p\n", msgr);
1938 return msgr;
1939}
1940
1941void ceph_messenger_destroy(struct ceph_messenger *msgr)
1942{
1943 dout("destroy %p\n", msgr);
1944 kunmap(msgr->zero_page);
1945 __free_page(msgr->zero_page);
1946 kfree(msgr);
1947 dout("destroyed messenger %p\n", msgr);
1948}
1949
1950/*
1951 * Queue up an outgoing message on the given connection.
1952 */
1953void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1954{
1955 if (test_bit(CLOSED, &con->state)) {
1956 dout("con_send %p closed, dropping %p\n", con, msg);
1957 ceph_msg_put(msg);
1958 return;
1959 }
1960
1961 /* set src+dst */
63f2d211
SW
1962 msg->hdr.src.name = con->msgr->inst.name;
1963 msg->hdr.src.addr = con->msgr->my_enc_addr;
1964 msg->hdr.orig_src = msg->hdr.src;
31b8006e
SW
1965
1966 /* queue */
ec302645 1967 mutex_lock(&con->mutex);
31b8006e
SW
1968 BUG_ON(!list_empty(&msg->list_head));
1969 list_add_tail(&msg->list_head, &con->out_queue);
1970 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1971 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1972 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1973 le32_to_cpu(msg->hdr.front_len),
1974 le32_to_cpu(msg->hdr.middle_len),
1975 le32_to_cpu(msg->hdr.data_len));
ec302645 1976 mutex_unlock(&con->mutex);
31b8006e
SW
1977
1978 /* if there wasn't anything waiting to send before, queue
1979 * new work */
1980 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1981 queue_con(con);
1982}
1983
1984/*
1985 * Revoke a message that was previously queued for send
1986 */
1987void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1988{
ec302645 1989 mutex_lock(&con->mutex);
31b8006e
SW
1990 if (!list_empty(&msg->list_head)) {
1991 dout("con_revoke %p msg %p\n", con, msg);
1992 list_del_init(&msg->list_head);
1993 ceph_msg_put(msg);
1994 msg->hdr.seq = 0;
c86a2930
SW
1995 if (con->out_msg == msg) {
1996 ceph_msg_put(con->out_msg);
31b8006e 1997 con->out_msg = NULL;
c86a2930 1998 }
31b8006e
SW
1999 if (con->out_kvec_is_msg) {
2000 con->out_skip = con->out_kvec_bytes;
2001 con->out_kvec_is_msg = false;
2002 }
2003 } else {
2004 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
2005 }
ec302645 2006 mutex_unlock(&con->mutex);
31b8006e
SW
2007}
2008
350b1c32
SW
2009/*
2010 * Revoke a page vector that we may be reading data into
2011 */
2012void ceph_con_revoke_pages(struct ceph_connection *con, struct page **pages)
2013{
2014 mutex_lock(&con->mutex);
2015 if (con->in_msg && con->in_msg->pages == pages) {
2016 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2017
2018 /* skip rest of message */
2019 dout("con_revoke_pages %p msg %p pages %p revoked\n", con,
2020 con->in_msg, pages);
2021 if (con->in_msg_pos.data_pos < data_len)
2022 con->in_base_pos = con->in_msg_pos.data_pos - data_len;
2023 else
2024 con->in_base_pos = con->in_base_pos -
2025 sizeof(struct ceph_msg_header) -
2026 sizeof(struct ceph_msg_footer);
2027 con->in_msg->pages = NULL;
2028 ceph_msg_put(con->in_msg);
2029 con->in_msg = NULL;
2030 con->in_tag = CEPH_MSGR_TAG_READY;
2031 } else {
2032 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2033 con, con->in_msg, pages);
2034 }
2035 mutex_unlock(&con->mutex);
2036}
2037
31b8006e
SW
2038/*
2039 * Queue a keepalive byte to ensure the tcp connection is alive.
2040 */
2041void ceph_con_keepalive(struct ceph_connection *con)
2042{
2043 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2044 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2045 queue_con(con);
2046}
2047
2048
2049/*
2050 * construct a new message with given type, size
2051 * the new msg has a ref count of 1.
2052 */
2053struct ceph_msg *ceph_msg_new(int type, int front_len,
2054 int page_len, int page_off, struct page **pages)
2055{
2056 struct ceph_msg *m;
2057
2058 m = kmalloc(sizeof(*m), GFP_NOFS);
2059 if (m == NULL)
2060 goto out;
c2e552e7 2061 kref_init(&m->kref);
31b8006e
SW
2062 INIT_LIST_HEAD(&m->list_head);
2063
2064 m->hdr.type = cpu_to_le16(type);
2065 m->hdr.front_len = cpu_to_le32(front_len);
2066 m->hdr.middle_len = 0;
2067 m->hdr.data_len = cpu_to_le32(page_len);
2068 m->hdr.data_off = cpu_to_le16(page_off);
2069 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2070 m->footer.front_crc = 0;
2071 m->footer.middle_crc = 0;
2072 m->footer.data_crc = 0;
2073 m->front_max = front_len;
2074 m->front_is_vmalloc = false;
2075 m->more_to_follow = false;
2076 m->pool = NULL;
2077
2078 /* front */
2079 if (front_len) {
2080 if (front_len > PAGE_CACHE_SIZE) {
2081 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2082 PAGE_KERNEL);
2083 m->front_is_vmalloc = true;
2084 } else {
2085 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2086 }
2087 if (m->front.iov_base == NULL) {
2088 pr_err("msg_new can't allocate %d bytes\n",
2089 front_len);
2090 goto out2;
2091 }
2092 } else {
2093 m->front.iov_base = NULL;
2094 }
2095 m->front.iov_len = front_len;
2096
2097 /* middle */
2098 m->middle = NULL;
2099
2100 /* data */
2101 m->nr_pages = calc_pages_for(page_off, page_len);
2102 m->pages = pages;
58bb3b37 2103 m->pagelist = NULL;
31b8006e
SW
2104
2105 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
2106 m->nr_pages);
2107 return m;
2108
2109out2:
2110 ceph_msg_put(m);
2111out:
2112 pr_err("msg_new can't create type %d len %d\n", type, front_len);
2113 return ERR_PTR(-ENOMEM);
2114}
2115
31b8006e
SW
2116/*
2117 * Allocate "middle" portion of a message, if it is needed and wasn't
2118 * allocated by alloc_msg. This allows us to read a small fixed-size
2119 * per-type header in the front and then gracefully fail (i.e.,
2120 * propagate the error to the caller based on info in the front) when
2121 * the middle is too large.
2122 */
2450418c 2123static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
31b8006e
SW
2124{
2125 int type = le16_to_cpu(msg->hdr.type);
2126 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2127
2128 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2129 ceph_msg_type_name(type), middle_len);
2130 BUG_ON(!middle_len);
2131 BUG_ON(msg->middle);
2132
b6c1d5b8 2133 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
31b8006e
SW
2134 if (!msg->middle)
2135 return -ENOMEM;
2136 return 0;
2137}
2138
2450418c
YS
2139/*
2140 * Generic message allocator, for incoming messages.
2141 */
2142static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2143 struct ceph_msg_header *hdr,
2144 int *skip)
2145{
2146 int type = le16_to_cpu(hdr->type);
2147 int front_len = le32_to_cpu(hdr->front_len);
2148 int middle_len = le32_to_cpu(hdr->middle_len);
2149 struct ceph_msg *msg = NULL;
2150 int ret;
2151
2152 if (con->ops->alloc_msg) {
2153 msg = con->ops->alloc_msg(con, hdr, skip);
2154 if (IS_ERR(msg))
2155 return msg;
2156
2157 if (*skip)
2158 return NULL;
2159 }
2160 if (!msg) {
2161 *skip = 0;
2162 msg = ceph_msg_new(type, front_len, 0, 0, NULL);
2163 if (!msg) {
2164 pr_err("unable to allocate msg type %d len %d\n",
2165 type, front_len);
2166 return ERR_PTR(-ENOMEM);
2167 }
2168 }
2169
2170 if (middle_len) {
2171 ret = ceph_alloc_middle(con, msg);
2172
2173 if (ret < 0) {
2174 ceph_msg_put(msg);
2175 return msg;
2176 }
2177 }
2178 return msg;
2179}
2180
31b8006e
SW
2181
2182/*
2183 * Free a generically kmalloc'd message.
2184 */
2185void ceph_msg_kfree(struct ceph_msg *m)
2186{
2187 dout("msg_kfree %p\n", m);
2188 if (m->front_is_vmalloc)
2189 vfree(m->front.iov_base);
2190 else
2191 kfree(m->front.iov_base);
2192 kfree(m);
2193}
2194
2195/*
2196 * Drop a msg ref. Destroy as needed.
2197 */
c2e552e7
SW
2198void ceph_msg_last_put(struct kref *kref)
2199{
2200 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
31b8006e 2201
c2e552e7
SW
2202 dout("ceph_msg_put last one on %p\n", m);
2203 WARN_ON(!list_empty(&m->list_head));
2204
2205 /* drop middle, data, if any */
2206 if (m->middle) {
2207 ceph_buffer_put(m->middle);
2208 m->middle = NULL;
31b8006e 2209 }
c2e552e7
SW
2210 m->nr_pages = 0;
2211 m->pages = NULL;
2212
58bb3b37
SW
2213 if (m->pagelist) {
2214 ceph_pagelist_release(m->pagelist);
2215 kfree(m->pagelist);
2216 m->pagelist = NULL;
2217 }
2218
c2e552e7
SW
2219 if (m->pool)
2220 ceph_msgpool_put(m->pool, m);
2221 else
2222 ceph_msg_kfree(m);
31b8006e 2223}
9ec7cab1
SW
2224
2225void ceph_msg_dump(struct ceph_msg *msg)
2226{
2227 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2228 msg->front_max, msg->nr_pages);
2229 print_hex_dump(KERN_DEBUG, "header: ",
2230 DUMP_PREFIX_OFFSET, 16, 1,
2231 &msg->hdr, sizeof(msg->hdr), true);
2232 print_hex_dump(KERN_DEBUG, " front: ",
2233 DUMP_PREFIX_OFFSET, 16, 1,
2234 msg->front.iov_base, msg->front.iov_len, true);
2235 if (msg->middle)
2236 print_hex_dump(KERN_DEBUG, "middle: ",
2237 DUMP_PREFIX_OFFSET, 16, 1,
2238 msg->middle->vec.iov_base,
2239 msg->middle->vec.iov_len, true);
2240 print_hex_dump(KERN_DEBUG, "footer: ",
2241 DUMP_PREFIX_OFFSET, 16, 1,
2242 &msg->footer, sizeof(msg->footer), true);
2243}