]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/volumes.c
Fix btrfs when ACLs are configured out
[net-next-2.6.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
b765ead5 23#include <linux/iocontext.h>
593060d7 24#include <asm/div64.h>
4b4e25f2 25#include "compat.h"
0b86a832
CM
26#include "ctree.h"
27#include "extent_map.h"
28#include "disk-io.h"
29#include "transaction.h"
30#include "print-tree.h"
31#include "volumes.h"
8b712842 32#include "async-thread.h"
0b86a832 33
593060d7
CM
34struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
321aecc6 41 int sub_stripes;
cea9e445 42 struct btrfs_bio_stripe stripes[];
593060d7
CM
43};
44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49
593060d7 50#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 51 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
a061fc8d
CM
56void btrfs_lock_volumes(void)
57{
58 mutex_lock(&uuid_mutex);
59}
60
61void btrfs_unlock_volumes(void)
62{
63 mutex_unlock(&uuid_mutex);
64}
65
7d9eb12c
CM
66static void lock_chunks(struct btrfs_root *root)
67{
7d9eb12c
CM
68 mutex_lock(&root->fs_info->chunk_mutex);
69}
70
71static void unlock_chunks(struct btrfs_root *root)
72{
7d9eb12c
CM
73 mutex_unlock(&root->fs_info->chunk_mutex);
74}
75
e4404d6e
YZ
76static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77{
78 struct btrfs_device *device;
79 WARN_ON(fs_devices->opened);
80 while (!list_empty(&fs_devices->devices)) {
81 device = list_entry(fs_devices->devices.next,
82 struct btrfs_device, dev_list);
83 list_del(&device->dev_list);
84 kfree(device->name);
85 kfree(device);
86 }
87 kfree(fs_devices);
88}
89
8a4b83cc
CM
90int btrfs_cleanup_fs_uuids(void)
91{
92 struct btrfs_fs_devices *fs_devices;
8a4b83cc 93
2b82032c
YZ
94 while (!list_empty(&fs_uuids)) {
95 fs_devices = list_entry(fs_uuids.next,
96 struct btrfs_fs_devices, list);
97 list_del(&fs_devices->list);
e4404d6e 98 free_fs_devices(fs_devices);
8a4b83cc
CM
99 }
100 return 0;
101}
102
a1b32a59
CM
103static noinline struct btrfs_device *__find_device(struct list_head *head,
104 u64 devid, u8 *uuid)
8a4b83cc
CM
105{
106 struct btrfs_device *dev;
8a4b83cc 107
c6e30871 108 list_for_each_entry(dev, head, dev_list) {
a443755f 109 if (dev->devid == devid &&
8f18cf13 110 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 111 return dev;
a443755f 112 }
8a4b83cc
CM
113 }
114 return NULL;
115}
116
a1b32a59 117static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 118{
8a4b83cc
CM
119 struct btrfs_fs_devices *fs_devices;
120
c6e30871 121 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
122 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 return fs_devices;
124 }
125 return NULL;
126}
127
ffbd517d
CM
128static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 struct bio *head, struct bio *tail)
130{
131
132 struct bio *old_head;
133
134 old_head = pending_bios->head;
135 pending_bios->head = head;
136 if (pending_bios->tail)
137 tail->bi_next = old_head;
138 else
139 pending_bios->tail = tail;
140}
141
8b712842
CM
142/*
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
146 *
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
152 */
d397712b 153static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
154{
155 struct bio *pending;
156 struct backing_dev_info *bdi;
b64a2851 157 struct btrfs_fs_info *fs_info;
ffbd517d 158 struct btrfs_pending_bios *pending_bios;
8b712842
CM
159 struct bio *tail;
160 struct bio *cur;
161 int again = 0;
ffbd517d
CM
162 unsigned long num_run;
163 unsigned long num_sync_run;
d644d8a1 164 unsigned long batch_run = 0;
b64a2851 165 unsigned long limit;
b765ead5 166 unsigned long last_waited = 0;
d84275c9 167 int force_reg = 0;
8b712842 168
bedf762b 169 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
170 fs_info = device->dev_root->fs_info;
171 limit = btrfs_async_submit_limit(fs_info);
172 limit = limit * 2 / 3;
173
ffbd517d
CM
174 /* we want to make sure that every time we switch from the sync
175 * list to the normal list, we unplug
176 */
177 num_sync_run = 0;
178
8b712842
CM
179loop:
180 spin_lock(&device->io_lock);
181
a6837051 182loop_lock:
d84275c9 183 num_run = 0;
ffbd517d 184
8b712842
CM
185 /* take all the bios off the list at once and process them
186 * later on (without the lock held). But, remember the
187 * tail and other pointers so the bios can be properly reinserted
188 * into the list if we hit congestion
189 */
d84275c9 190 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 191 pending_bios = &device->pending_sync_bios;
d84275c9
CM
192 force_reg = 1;
193 } else {
ffbd517d 194 pending_bios = &device->pending_bios;
d84275c9
CM
195 force_reg = 0;
196 }
ffbd517d
CM
197
198 pending = pending_bios->head;
199 tail = pending_bios->tail;
8b712842 200 WARN_ON(pending && !tail);
8b712842
CM
201
202 /*
203 * if pending was null this time around, no bios need processing
204 * at all and we can stop. Otherwise it'll loop back up again
205 * and do an additional check so no bios are missed.
206 *
207 * device->running_pending is used to synchronize with the
208 * schedule_bio code.
209 */
ffbd517d
CM
210 if (device->pending_sync_bios.head == NULL &&
211 device->pending_bios.head == NULL) {
8b712842
CM
212 again = 0;
213 device->running_pending = 0;
ffbd517d
CM
214 } else {
215 again = 1;
216 device->running_pending = 1;
8b712842 217 }
ffbd517d
CM
218
219 pending_bios->head = NULL;
220 pending_bios->tail = NULL;
221
8b712842
CM
222 spin_unlock(&device->io_lock);
223
ffbd517d
CM
224 /*
225 * if we're doing the regular priority list, make sure we unplug
226 * for any high prio bios we've sent down
227 */
228 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
229 num_sync_run = 0;
230 blk_run_backing_dev(bdi, NULL);
231 }
232
d397712b 233 while (pending) {
ffbd517d
CM
234
235 rmb();
d84275c9
CM
236 /* we want to work on both lists, but do more bios on the
237 * sync list than the regular list
238 */
239 if ((num_run > 32 &&
240 pending_bios != &device->pending_sync_bios &&
241 device->pending_sync_bios.head) ||
242 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
243 device->pending_bios.head)) {
ffbd517d
CM
244 spin_lock(&device->io_lock);
245 requeue_list(pending_bios, pending, tail);
246 goto loop_lock;
247 }
248
8b712842
CM
249 cur = pending;
250 pending = pending->bi_next;
251 cur->bi_next = NULL;
b64a2851
CM
252 atomic_dec(&fs_info->nr_async_bios);
253
254 if (atomic_read(&fs_info->nr_async_bios) < limit &&
255 waitqueue_active(&fs_info->async_submit_wait))
256 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
257
258 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
8b712842
CM
259 submit_bio(cur->bi_rw, cur);
260 num_run++;
d644d8a1
CM
261 batch_run++;
262
ffbd517d
CM
263 if (bio_sync(cur))
264 num_sync_run++;
265
266 if (need_resched()) {
267 if (num_sync_run) {
268 blk_run_backing_dev(bdi, NULL);
269 num_sync_run = 0;
270 }
271 cond_resched();
272 }
8b712842
CM
273
274 /*
275 * we made progress, there is more work to do and the bdi
276 * is now congested. Back off and let other work structs
277 * run instead
278 */
d644d8a1 279 if (pending && bdi_write_congested(bdi) && batch_run > 32 &&
5f2cc086 280 fs_info->fs_devices->open_devices > 1) {
b765ead5 281 struct io_context *ioc;
8b712842 282
b765ead5
CM
283 ioc = current->io_context;
284
285 /*
286 * the main goal here is that we don't want to
287 * block if we're going to be able to submit
288 * more requests without blocking.
289 *
290 * This code does two great things, it pokes into
291 * the elevator code from a filesystem _and_
292 * it makes assumptions about how batching works.
293 */
294 if (ioc && ioc->nr_batch_requests > 0 &&
295 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
296 (last_waited == 0 ||
297 ioc->last_waited == last_waited)) {
298 /*
299 * we want to go through our batch of
300 * requests and stop. So, we copy out
301 * the ioc->last_waited time and test
302 * against it before looping
303 */
304 last_waited = ioc->last_waited;
ffbd517d
CM
305 if (need_resched()) {
306 if (num_sync_run) {
307 blk_run_backing_dev(bdi, NULL);
308 num_sync_run = 0;
309 }
310 cond_resched();
311 }
b765ead5
CM
312 continue;
313 }
8b712842 314 spin_lock(&device->io_lock);
ffbd517d 315 requeue_list(pending_bios, pending, tail);
a6837051 316 device->running_pending = 1;
8b712842
CM
317
318 spin_unlock(&device->io_lock);
319 btrfs_requeue_work(&device->work);
320 goto done;
321 }
322 }
ffbd517d
CM
323
324 if (num_sync_run) {
325 num_sync_run = 0;
326 blk_run_backing_dev(bdi, NULL);
327 }
328
329 cond_resched();
8b712842
CM
330 if (again)
331 goto loop;
a6837051
CM
332
333 spin_lock(&device->io_lock);
ffbd517d 334 if (device->pending_bios.head || device->pending_sync_bios.head)
a6837051
CM
335 goto loop_lock;
336 spin_unlock(&device->io_lock);
bedf762b
CM
337
338 /*
339 * IO has already been through a long path to get here. Checksumming,
340 * async helper threads, perhaps compression. We've done a pretty
341 * good job of collecting a batch of IO and should just unplug
342 * the device right away.
343 *
344 * This will help anyone who is waiting on the IO, they might have
345 * already unplugged, but managed to do so before the bio they
346 * cared about found its way down here.
347 */
348 blk_run_backing_dev(bdi, NULL);
8b712842
CM
349done:
350 return 0;
351}
352
b2950863 353static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
354{
355 struct btrfs_device *device;
356
357 device = container_of(work, struct btrfs_device, work);
358 run_scheduled_bios(device);
359}
360
a1b32a59 361static noinline int device_list_add(const char *path,
8a4b83cc
CM
362 struct btrfs_super_block *disk_super,
363 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
364{
365 struct btrfs_device *device;
366 struct btrfs_fs_devices *fs_devices;
367 u64 found_transid = btrfs_super_generation(disk_super);
368
369 fs_devices = find_fsid(disk_super->fsid);
370 if (!fs_devices) {
515dc322 371 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
372 if (!fs_devices)
373 return -ENOMEM;
374 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 375 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
376 list_add(&fs_devices->list, &fs_uuids);
377 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
378 fs_devices->latest_devid = devid;
379 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
380 device = NULL;
381 } else {
a443755f
CM
382 device = __find_device(&fs_devices->devices, devid,
383 disk_super->dev_item.uuid);
8a4b83cc
CM
384 }
385 if (!device) {
2b82032c
YZ
386 if (fs_devices->opened)
387 return -EBUSY;
388
8a4b83cc
CM
389 device = kzalloc(sizeof(*device), GFP_NOFS);
390 if (!device) {
391 /* we can safely leave the fs_devices entry around */
392 return -ENOMEM;
393 }
394 device->devid = devid;
8b712842 395 device->work.func = pending_bios_fn;
a443755f
CM
396 memcpy(device->uuid, disk_super->dev_item.uuid,
397 BTRFS_UUID_SIZE);
f2984462 398 device->barriers = 1;
b248a415 399 spin_lock_init(&device->io_lock);
8a4b83cc
CM
400 device->name = kstrdup(path, GFP_NOFS);
401 if (!device->name) {
402 kfree(device);
403 return -ENOMEM;
404 }
2b82032c 405 INIT_LIST_HEAD(&device->dev_alloc_list);
8a4b83cc 406 list_add(&device->dev_list, &fs_devices->devices);
2b82032c 407 device->fs_devices = fs_devices;
8a4b83cc
CM
408 fs_devices->num_devices++;
409 }
410
411 if (found_transid > fs_devices->latest_trans) {
412 fs_devices->latest_devid = devid;
413 fs_devices->latest_trans = found_transid;
414 }
8a4b83cc
CM
415 *fs_devices_ret = fs_devices;
416 return 0;
417}
418
e4404d6e
YZ
419static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
420{
421 struct btrfs_fs_devices *fs_devices;
422 struct btrfs_device *device;
423 struct btrfs_device *orig_dev;
424
425 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
426 if (!fs_devices)
427 return ERR_PTR(-ENOMEM);
428
429 INIT_LIST_HEAD(&fs_devices->devices);
430 INIT_LIST_HEAD(&fs_devices->alloc_list);
431 INIT_LIST_HEAD(&fs_devices->list);
432 fs_devices->latest_devid = orig->latest_devid;
433 fs_devices->latest_trans = orig->latest_trans;
434 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
435
436 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
437 device = kzalloc(sizeof(*device), GFP_NOFS);
438 if (!device)
439 goto error;
440
441 device->name = kstrdup(orig_dev->name, GFP_NOFS);
442 if (!device->name)
443 goto error;
444
445 device->devid = orig_dev->devid;
446 device->work.func = pending_bios_fn;
447 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
448 device->barriers = 1;
449 spin_lock_init(&device->io_lock);
450 INIT_LIST_HEAD(&device->dev_list);
451 INIT_LIST_HEAD(&device->dev_alloc_list);
452
453 list_add(&device->dev_list, &fs_devices->devices);
454 device->fs_devices = fs_devices;
455 fs_devices->num_devices++;
456 }
457 return fs_devices;
458error:
459 free_fs_devices(fs_devices);
460 return ERR_PTR(-ENOMEM);
461}
462
dfe25020
CM
463int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
464{
c6e30871 465 struct btrfs_device *device, *next;
dfe25020
CM
466
467 mutex_lock(&uuid_mutex);
468again:
c6e30871 469 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
470 if (device->in_fs_metadata)
471 continue;
472
473 if (device->bdev) {
15916de8 474 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
475 device->bdev = NULL;
476 fs_devices->open_devices--;
477 }
478 if (device->writeable) {
479 list_del_init(&device->dev_alloc_list);
480 device->writeable = 0;
481 fs_devices->rw_devices--;
482 }
e4404d6e
YZ
483 list_del_init(&device->dev_list);
484 fs_devices->num_devices--;
485 kfree(device->name);
486 kfree(device);
dfe25020 487 }
2b82032c
YZ
488
489 if (fs_devices->seed) {
490 fs_devices = fs_devices->seed;
2b82032c
YZ
491 goto again;
492 }
493
dfe25020
CM
494 mutex_unlock(&uuid_mutex);
495 return 0;
496}
a0af469b 497
2b82032c 498static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 499{
8a4b83cc 500 struct btrfs_device *device;
e4404d6e 501
2b82032c
YZ
502 if (--fs_devices->opened > 0)
503 return 0;
8a4b83cc 504
c6e30871 505 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 506 if (device->bdev) {
15916de8 507 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 508 fs_devices->open_devices--;
8a4b83cc 509 }
2b82032c
YZ
510 if (device->writeable) {
511 list_del_init(&device->dev_alloc_list);
512 fs_devices->rw_devices--;
513 }
514
8a4b83cc 515 device->bdev = NULL;
2b82032c 516 device->writeable = 0;
dfe25020 517 device->in_fs_metadata = 0;
8a4b83cc 518 }
e4404d6e
YZ
519 WARN_ON(fs_devices->open_devices);
520 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
521 fs_devices->opened = 0;
522 fs_devices->seeding = 0;
2b82032c 523
8a4b83cc
CM
524 return 0;
525}
526
2b82032c
YZ
527int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
528{
e4404d6e 529 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
530 int ret;
531
532 mutex_lock(&uuid_mutex);
533 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
534 if (!fs_devices->opened) {
535 seed_devices = fs_devices->seed;
536 fs_devices->seed = NULL;
537 }
2b82032c 538 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
539
540 while (seed_devices) {
541 fs_devices = seed_devices;
542 seed_devices = fs_devices->seed;
543 __btrfs_close_devices(fs_devices);
544 free_fs_devices(fs_devices);
545 }
2b82032c
YZ
546 return ret;
547}
548
e4404d6e
YZ
549static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
550 fmode_t flags, void *holder)
8a4b83cc
CM
551{
552 struct block_device *bdev;
553 struct list_head *head = &fs_devices->devices;
8a4b83cc 554 struct btrfs_device *device;
a0af469b
CM
555 struct block_device *latest_bdev = NULL;
556 struct buffer_head *bh;
557 struct btrfs_super_block *disk_super;
558 u64 latest_devid = 0;
559 u64 latest_transid = 0;
a0af469b 560 u64 devid;
2b82032c 561 int seeding = 1;
a0af469b 562 int ret = 0;
8a4b83cc 563
c6e30871 564 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
565 if (device->bdev)
566 continue;
dfe25020
CM
567 if (!device->name)
568 continue;
569
15916de8 570 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc 571 if (IS_ERR(bdev)) {
d397712b 572 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 573 goto error;
8a4b83cc 574 }
a061fc8d 575 set_blocksize(bdev, 4096);
a0af469b 576
a512bbf8 577 bh = btrfs_read_dev_super(bdev);
a0af469b
CM
578 if (!bh)
579 goto error_close;
580
581 disk_super = (struct btrfs_super_block *)bh->b_data;
a0af469b
CM
582 devid = le64_to_cpu(disk_super->dev_item.devid);
583 if (devid != device->devid)
584 goto error_brelse;
585
2b82032c
YZ
586 if (memcmp(device->uuid, disk_super->dev_item.uuid,
587 BTRFS_UUID_SIZE))
588 goto error_brelse;
589
590 device->generation = btrfs_super_generation(disk_super);
591 if (!latest_transid || device->generation > latest_transid) {
a0af469b 592 latest_devid = devid;
2b82032c 593 latest_transid = device->generation;
a0af469b
CM
594 latest_bdev = bdev;
595 }
596
2b82032c
YZ
597 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
598 device->writeable = 0;
599 } else {
600 device->writeable = !bdev_read_only(bdev);
601 seeding = 0;
602 }
603
8a4b83cc 604 device->bdev = bdev;
dfe25020 605 device->in_fs_metadata = 0;
15916de8
CM
606 device->mode = flags;
607
c289811c
CM
608 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
609 fs_devices->rotating = 1;
610
a0af469b 611 fs_devices->open_devices++;
2b82032c
YZ
612 if (device->writeable) {
613 fs_devices->rw_devices++;
614 list_add(&device->dev_alloc_list,
615 &fs_devices->alloc_list);
616 }
a0af469b 617 continue;
a061fc8d 618
a0af469b
CM
619error_brelse:
620 brelse(bh);
621error_close:
97288f2c 622 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
623error:
624 continue;
8a4b83cc 625 }
a0af469b
CM
626 if (fs_devices->open_devices == 0) {
627 ret = -EIO;
628 goto out;
629 }
2b82032c
YZ
630 fs_devices->seeding = seeding;
631 fs_devices->opened = 1;
a0af469b
CM
632 fs_devices->latest_bdev = latest_bdev;
633 fs_devices->latest_devid = latest_devid;
634 fs_devices->latest_trans = latest_transid;
2b82032c 635 fs_devices->total_rw_bytes = 0;
a0af469b 636out:
2b82032c
YZ
637 return ret;
638}
639
640int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 641 fmode_t flags, void *holder)
2b82032c
YZ
642{
643 int ret;
644
645 mutex_lock(&uuid_mutex);
646 if (fs_devices->opened) {
e4404d6e
YZ
647 fs_devices->opened++;
648 ret = 0;
2b82032c 649 } else {
15916de8 650 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 651 }
8a4b83cc 652 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
653 return ret;
654}
655
97288f2c 656int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
657 struct btrfs_fs_devices **fs_devices_ret)
658{
659 struct btrfs_super_block *disk_super;
660 struct block_device *bdev;
661 struct buffer_head *bh;
662 int ret;
663 u64 devid;
f2984462 664 u64 transid;
8a4b83cc
CM
665
666 mutex_lock(&uuid_mutex);
667
15916de8 668 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
669
670 if (IS_ERR(bdev)) {
8a4b83cc
CM
671 ret = PTR_ERR(bdev);
672 goto error;
673 }
674
675 ret = set_blocksize(bdev, 4096);
676 if (ret)
677 goto error_close;
a512bbf8 678 bh = btrfs_read_dev_super(bdev);
8a4b83cc
CM
679 if (!bh) {
680 ret = -EIO;
681 goto error_close;
682 }
683 disk_super = (struct btrfs_super_block *)bh->b_data;
8a4b83cc 684 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 685 transid = btrfs_super_generation(disk_super);
7ae9c09d 686 if (disk_super->label[0])
d397712b 687 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
688 else {
689 /* FIXME, make a readl uuid parser */
d397712b 690 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
691 *(unsigned long long *)disk_super->fsid,
692 *(unsigned long long *)(disk_super->fsid + 8));
693 }
119e10cf 694 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 695 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
696 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
697
8a4b83cc
CM
698 brelse(bh);
699error_close:
15916de8 700 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
701error:
702 mutex_unlock(&uuid_mutex);
703 return ret;
704}
0b86a832
CM
705
706/*
707 * this uses a pretty simple search, the expectation is that it is
708 * called very infrequently and that a given device has a small number
709 * of extents
710 */
a1b32a59
CM
711static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
712 struct btrfs_device *device,
a1b32a59 713 u64 num_bytes, u64 *start)
0b86a832
CM
714{
715 struct btrfs_key key;
716 struct btrfs_root *root = device->dev_root;
717 struct btrfs_dev_extent *dev_extent = NULL;
2b82032c 718 struct btrfs_path *path;
0b86a832
CM
719 u64 hole_size = 0;
720 u64 last_byte = 0;
721 u64 search_start = 0;
722 u64 search_end = device->total_bytes;
723 int ret;
724 int slot = 0;
725 int start_found;
726 struct extent_buffer *l;
727
2b82032c
YZ
728 path = btrfs_alloc_path();
729 if (!path)
730 return -ENOMEM;
0b86a832 731 path->reada = 2;
2b82032c 732 start_found = 0;
0b86a832
CM
733
734 /* FIXME use last free of some kind */
735
8a4b83cc
CM
736 /* we don't want to overwrite the superblock on the drive,
737 * so we make sure to start at an offset of at least 1MB
738 */
739 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
740
741 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
742 search_start = max(root->fs_info->alloc_start, search_start);
743
0b86a832
CM
744 key.objectid = device->devid;
745 key.offset = search_start;
746 key.type = BTRFS_DEV_EXTENT_KEY;
747 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
748 if (ret < 0)
749 goto error;
750 ret = btrfs_previous_item(root, path, 0, key.type);
751 if (ret < 0)
752 goto error;
753 l = path->nodes[0];
754 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
755 while (1) {
756 l = path->nodes[0];
757 slot = path->slots[0];
758 if (slot >= btrfs_header_nritems(l)) {
759 ret = btrfs_next_leaf(root, path);
760 if (ret == 0)
761 continue;
762 if (ret < 0)
763 goto error;
764no_more_items:
765 if (!start_found) {
766 if (search_start >= search_end) {
767 ret = -ENOSPC;
768 goto error;
769 }
770 *start = search_start;
771 start_found = 1;
772 goto check_pending;
773 }
774 *start = last_byte > search_start ?
775 last_byte : search_start;
776 if (search_end <= *start) {
777 ret = -ENOSPC;
778 goto error;
779 }
780 goto check_pending;
781 }
782 btrfs_item_key_to_cpu(l, &key, slot);
783
784 if (key.objectid < device->devid)
785 goto next;
786
787 if (key.objectid > device->devid)
788 goto no_more_items;
789
790 if (key.offset >= search_start && key.offset > last_byte &&
791 start_found) {
792 if (last_byte < search_start)
793 last_byte = search_start;
794 hole_size = key.offset - last_byte;
795 if (key.offset > last_byte &&
796 hole_size >= num_bytes) {
797 *start = last_byte;
798 goto check_pending;
799 }
800 }
d397712b 801 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
0b86a832 802 goto next;
0b86a832
CM
803
804 start_found = 1;
805 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
806 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
807next:
808 path->slots[0]++;
809 cond_resched();
810 }
811check_pending:
812 /* we have to make sure we didn't find an extent that has already
813 * been allocated by the map tree or the original allocation
814 */
0b86a832
CM
815 BUG_ON(*start < search_start);
816
6324fbf3 817 if (*start + num_bytes > search_end) {
0b86a832
CM
818 ret = -ENOSPC;
819 goto error;
820 }
821 /* check for pending inserts here */
2b82032c 822 ret = 0;
0b86a832
CM
823
824error:
2b82032c 825 btrfs_free_path(path);
0b86a832
CM
826 return ret;
827}
828
b2950863 829static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
830 struct btrfs_device *device,
831 u64 start)
832{
833 int ret;
834 struct btrfs_path *path;
835 struct btrfs_root *root = device->dev_root;
836 struct btrfs_key key;
a061fc8d
CM
837 struct btrfs_key found_key;
838 struct extent_buffer *leaf = NULL;
839 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
845 key.objectid = device->devid;
846 key.offset = start;
847 key.type = BTRFS_DEV_EXTENT_KEY;
848
849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
850 if (ret > 0) {
851 ret = btrfs_previous_item(root, path, key.objectid,
852 BTRFS_DEV_EXTENT_KEY);
853 BUG_ON(ret);
854 leaf = path->nodes[0];
855 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
856 extent = btrfs_item_ptr(leaf, path->slots[0],
857 struct btrfs_dev_extent);
858 BUG_ON(found_key.offset > start || found_key.offset +
859 btrfs_dev_extent_length(leaf, extent) < start);
860 ret = 0;
861 } else if (ret == 0) {
862 leaf = path->nodes[0];
863 extent = btrfs_item_ptr(leaf, path->slots[0],
864 struct btrfs_dev_extent);
865 }
8f18cf13
CM
866 BUG_ON(ret);
867
dfe25020
CM
868 if (device->bytes_used > 0)
869 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
870 ret = btrfs_del_item(trans, root, path);
871 BUG_ON(ret);
872
873 btrfs_free_path(path);
874 return ret;
875}
876
2b82032c 877int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 878 struct btrfs_device *device,
e17cade2 879 u64 chunk_tree, u64 chunk_objectid,
2b82032c 880 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
881{
882 int ret;
883 struct btrfs_path *path;
884 struct btrfs_root *root = device->dev_root;
885 struct btrfs_dev_extent *extent;
886 struct extent_buffer *leaf;
887 struct btrfs_key key;
888
dfe25020 889 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
890 path = btrfs_alloc_path();
891 if (!path)
892 return -ENOMEM;
893
0b86a832 894 key.objectid = device->devid;
2b82032c 895 key.offset = start;
0b86a832
CM
896 key.type = BTRFS_DEV_EXTENT_KEY;
897 ret = btrfs_insert_empty_item(trans, root, path, &key,
898 sizeof(*extent));
899 BUG_ON(ret);
900
901 leaf = path->nodes[0];
902 extent = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_dev_extent);
e17cade2
CM
904 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
905 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
906 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
907
908 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
909 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
910 BTRFS_UUID_SIZE);
911
0b86a832
CM
912 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
913 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
914 btrfs_free_path(path);
915 return ret;
916}
917
a1b32a59
CM
918static noinline int find_next_chunk(struct btrfs_root *root,
919 u64 objectid, u64 *offset)
0b86a832
CM
920{
921 struct btrfs_path *path;
922 int ret;
923 struct btrfs_key key;
e17cade2 924 struct btrfs_chunk *chunk;
0b86a832
CM
925 struct btrfs_key found_key;
926
927 path = btrfs_alloc_path();
928 BUG_ON(!path);
929
e17cade2 930 key.objectid = objectid;
0b86a832
CM
931 key.offset = (u64)-1;
932 key.type = BTRFS_CHUNK_ITEM_KEY;
933
934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
935 if (ret < 0)
936 goto error;
937
938 BUG_ON(ret == 0);
939
940 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
941 if (ret) {
e17cade2 942 *offset = 0;
0b86a832
CM
943 } else {
944 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
945 path->slots[0]);
e17cade2
CM
946 if (found_key.objectid != objectid)
947 *offset = 0;
948 else {
949 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
950 struct btrfs_chunk);
951 *offset = found_key.offset +
952 btrfs_chunk_length(path->nodes[0], chunk);
953 }
0b86a832
CM
954 }
955 ret = 0;
956error:
957 btrfs_free_path(path);
958 return ret;
959}
960
2b82032c 961static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
962{
963 int ret;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
2b82032c
YZ
966 struct btrfs_path *path;
967
968 root = root->fs_info->chunk_root;
969
970 path = btrfs_alloc_path();
971 if (!path)
972 return -ENOMEM;
0b86a832
CM
973
974 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
975 key.type = BTRFS_DEV_ITEM_KEY;
976 key.offset = (u64)-1;
977
978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 if (ret < 0)
980 goto error;
981
982 BUG_ON(ret == 0);
983
984 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
985 BTRFS_DEV_ITEM_KEY);
986 if (ret) {
987 *objectid = 1;
988 } else {
989 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
990 path->slots[0]);
991 *objectid = found_key.offset + 1;
992 }
993 ret = 0;
994error:
2b82032c 995 btrfs_free_path(path);
0b86a832
CM
996 return ret;
997}
998
999/*
1000 * the device information is stored in the chunk root
1001 * the btrfs_device struct should be fully filled in
1002 */
1003int btrfs_add_device(struct btrfs_trans_handle *trans,
1004 struct btrfs_root *root,
1005 struct btrfs_device *device)
1006{
1007 int ret;
1008 struct btrfs_path *path;
1009 struct btrfs_dev_item *dev_item;
1010 struct extent_buffer *leaf;
1011 struct btrfs_key key;
1012 unsigned long ptr;
0b86a832
CM
1013
1014 root = root->fs_info->chunk_root;
1015
1016 path = btrfs_alloc_path();
1017 if (!path)
1018 return -ENOMEM;
1019
0b86a832
CM
1020 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1021 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1022 key.offset = device->devid;
0b86a832
CM
1023
1024 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1025 sizeof(*dev_item));
0b86a832
CM
1026 if (ret)
1027 goto out;
1028
1029 leaf = path->nodes[0];
1030 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1031
1032 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1033 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1034 btrfs_set_device_type(leaf, dev_item, device->type);
1035 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1036 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1037 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1038 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1039 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1040 btrfs_set_device_group(leaf, dev_item, 0);
1041 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1042 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1043 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1044
0b86a832 1045 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1046 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1047 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1048 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1049 btrfs_mark_buffer_dirty(leaf);
0b86a832 1050
2b82032c 1051 ret = 0;
0b86a832
CM
1052out:
1053 btrfs_free_path(path);
1054 return ret;
1055}
8f18cf13 1056
a061fc8d
CM
1057static int btrfs_rm_dev_item(struct btrfs_root *root,
1058 struct btrfs_device *device)
1059{
1060 int ret;
1061 struct btrfs_path *path;
a061fc8d 1062 struct btrfs_key key;
a061fc8d
CM
1063 struct btrfs_trans_handle *trans;
1064
1065 root = root->fs_info->chunk_root;
1066
1067 path = btrfs_alloc_path();
1068 if (!path)
1069 return -ENOMEM;
1070
1071 trans = btrfs_start_transaction(root, 1);
1072 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1073 key.type = BTRFS_DEV_ITEM_KEY;
1074 key.offset = device->devid;
7d9eb12c 1075 lock_chunks(root);
a061fc8d
CM
1076
1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 if (ret < 0)
1079 goto out;
1080
1081 if (ret > 0) {
1082 ret = -ENOENT;
1083 goto out;
1084 }
1085
1086 ret = btrfs_del_item(trans, root, path);
1087 if (ret)
1088 goto out;
a061fc8d
CM
1089out:
1090 btrfs_free_path(path);
7d9eb12c 1091 unlock_chunks(root);
a061fc8d
CM
1092 btrfs_commit_transaction(trans, root);
1093 return ret;
1094}
1095
1096int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1097{
1098 struct btrfs_device *device;
2b82032c 1099 struct btrfs_device *next_device;
a061fc8d 1100 struct block_device *bdev;
dfe25020 1101 struct buffer_head *bh = NULL;
a061fc8d
CM
1102 struct btrfs_super_block *disk_super;
1103 u64 all_avail;
1104 u64 devid;
2b82032c
YZ
1105 u64 num_devices;
1106 u8 *dev_uuid;
a061fc8d
CM
1107 int ret = 0;
1108
a061fc8d 1109 mutex_lock(&uuid_mutex);
7d9eb12c 1110 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1111
1112 all_avail = root->fs_info->avail_data_alloc_bits |
1113 root->fs_info->avail_system_alloc_bits |
1114 root->fs_info->avail_metadata_alloc_bits;
1115
1116 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
2b82032c 1117 root->fs_info->fs_devices->rw_devices <= 4) {
d397712b
CM
1118 printk(KERN_ERR "btrfs: unable to go below four devices "
1119 "on raid10\n");
a061fc8d
CM
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
2b82032c 1125 root->fs_info->fs_devices->rw_devices <= 2) {
d397712b
CM
1126 printk(KERN_ERR "btrfs: unable to go below two "
1127 "devices on raid1\n");
a061fc8d
CM
1128 ret = -EINVAL;
1129 goto out;
1130 }
1131
dfe25020 1132 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1133 struct list_head *devices;
1134 struct btrfs_device *tmp;
a061fc8d 1135
dfe25020
CM
1136 device = NULL;
1137 devices = &root->fs_info->fs_devices->devices;
c6e30871 1138 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1139 if (tmp->in_fs_metadata && !tmp->bdev) {
1140 device = tmp;
1141 break;
1142 }
1143 }
1144 bdev = NULL;
1145 bh = NULL;
1146 disk_super = NULL;
1147 if (!device) {
d397712b
CM
1148 printk(KERN_ERR "btrfs: no missing devices found to "
1149 "remove\n");
dfe25020
CM
1150 goto out;
1151 }
dfe25020 1152 } else {
97288f2c 1153 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1154 root->fs_info->bdev_holder);
1155 if (IS_ERR(bdev)) {
1156 ret = PTR_ERR(bdev);
1157 goto out;
1158 }
a061fc8d 1159
2b82032c 1160 set_blocksize(bdev, 4096);
a512bbf8 1161 bh = btrfs_read_dev_super(bdev);
dfe25020
CM
1162 if (!bh) {
1163 ret = -EIO;
1164 goto error_close;
1165 }
1166 disk_super = (struct btrfs_super_block *)bh->b_data;
dfe25020 1167 devid = le64_to_cpu(disk_super->dev_item.devid);
2b82032c
YZ
1168 dev_uuid = disk_super->dev_item.uuid;
1169 device = btrfs_find_device(root, devid, dev_uuid,
1170 disk_super->fsid);
dfe25020
CM
1171 if (!device) {
1172 ret = -ENOENT;
1173 goto error_brelse;
1174 }
2b82032c 1175 }
dfe25020 1176
2b82032c 1177 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1178 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1179 "device\n");
2b82032c
YZ
1180 ret = -EINVAL;
1181 goto error_brelse;
1182 }
1183
1184 if (device->writeable) {
1185 list_del_init(&device->dev_alloc_list);
1186 root->fs_info->fs_devices->rw_devices--;
dfe25020 1187 }
a061fc8d
CM
1188
1189 ret = btrfs_shrink_device(device, 0);
1190 if (ret)
1191 goto error_brelse;
1192
a061fc8d
CM
1193 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1194 if (ret)
1195 goto error_brelse;
1196
2b82032c 1197 device->in_fs_metadata = 0;
e4404d6e
YZ
1198 list_del_init(&device->dev_list);
1199 device->fs_devices->num_devices--;
2b82032c
YZ
1200
1201 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1202 struct btrfs_device, dev_list);
1203 if (device->bdev == root->fs_info->sb->s_bdev)
1204 root->fs_info->sb->s_bdev = next_device->bdev;
1205 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1206 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1207
e4404d6e
YZ
1208 if (device->bdev) {
1209 close_bdev_exclusive(device->bdev, device->mode);
1210 device->bdev = NULL;
1211 device->fs_devices->open_devices--;
1212 }
1213
2b82032c
YZ
1214 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1215 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1216
e4404d6e
YZ
1217 if (device->fs_devices->open_devices == 0) {
1218 struct btrfs_fs_devices *fs_devices;
1219 fs_devices = root->fs_info->fs_devices;
1220 while (fs_devices) {
1221 if (fs_devices->seed == device->fs_devices)
1222 break;
1223 fs_devices = fs_devices->seed;
2b82032c 1224 }
e4404d6e
YZ
1225 fs_devices->seed = device->fs_devices->seed;
1226 device->fs_devices->seed = NULL;
1227 __btrfs_close_devices(device->fs_devices);
1228 free_fs_devices(device->fs_devices);
2b82032c
YZ
1229 }
1230
1231 /*
1232 * at this point, the device is zero sized. We want to
1233 * remove it from the devices list and zero out the old super
1234 */
1235 if (device->writeable) {
dfe25020
CM
1236 /* make sure this device isn't detected as part of
1237 * the FS anymore
1238 */
1239 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1240 set_buffer_dirty(bh);
1241 sync_dirty_buffer(bh);
dfe25020 1242 }
a061fc8d
CM
1243
1244 kfree(device->name);
1245 kfree(device);
1246 ret = 0;
a061fc8d
CM
1247
1248error_brelse:
1249 brelse(bh);
1250error_close:
dfe25020 1251 if (bdev)
97288f2c 1252 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1253out:
7d9eb12c 1254 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1255 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1256 return ret;
1257}
1258
2b82032c
YZ
1259/*
1260 * does all the dirty work required for changing file system's UUID.
1261 */
1262static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root)
1264{
1265 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1266 struct btrfs_fs_devices *old_devices;
e4404d6e 1267 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1268 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1269 struct btrfs_device *device;
1270 u64 super_flags;
1271
1272 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1273 if (!fs_devices->seeding)
2b82032c
YZ
1274 return -EINVAL;
1275
e4404d6e
YZ
1276 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1277 if (!seed_devices)
2b82032c
YZ
1278 return -ENOMEM;
1279
e4404d6e
YZ
1280 old_devices = clone_fs_devices(fs_devices);
1281 if (IS_ERR(old_devices)) {
1282 kfree(seed_devices);
1283 return PTR_ERR(old_devices);
2b82032c 1284 }
e4404d6e 1285
2b82032c
YZ
1286 list_add(&old_devices->list, &fs_uuids);
1287
e4404d6e
YZ
1288 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1289 seed_devices->opened = 1;
1290 INIT_LIST_HEAD(&seed_devices->devices);
1291 INIT_LIST_HEAD(&seed_devices->alloc_list);
1292 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1293 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1294 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1295 device->fs_devices = seed_devices;
1296 }
1297
2b82032c
YZ
1298 fs_devices->seeding = 0;
1299 fs_devices->num_devices = 0;
1300 fs_devices->open_devices = 0;
e4404d6e 1301 fs_devices->seed = seed_devices;
2b82032c
YZ
1302
1303 generate_random_uuid(fs_devices->fsid);
1304 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1305 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1306 super_flags = btrfs_super_flags(disk_super) &
1307 ~BTRFS_SUPER_FLAG_SEEDING;
1308 btrfs_set_super_flags(disk_super, super_flags);
1309
1310 return 0;
1311}
1312
1313/*
1314 * strore the expected generation for seed devices in device items.
1315 */
1316static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root)
1318{
1319 struct btrfs_path *path;
1320 struct extent_buffer *leaf;
1321 struct btrfs_dev_item *dev_item;
1322 struct btrfs_device *device;
1323 struct btrfs_key key;
1324 u8 fs_uuid[BTRFS_UUID_SIZE];
1325 u8 dev_uuid[BTRFS_UUID_SIZE];
1326 u64 devid;
1327 int ret;
1328
1329 path = btrfs_alloc_path();
1330 if (!path)
1331 return -ENOMEM;
1332
1333 root = root->fs_info->chunk_root;
1334 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1335 key.offset = 0;
1336 key.type = BTRFS_DEV_ITEM_KEY;
1337
1338 while (1) {
1339 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1340 if (ret < 0)
1341 goto error;
1342
1343 leaf = path->nodes[0];
1344next_slot:
1345 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1346 ret = btrfs_next_leaf(root, path);
1347 if (ret > 0)
1348 break;
1349 if (ret < 0)
1350 goto error;
1351 leaf = path->nodes[0];
1352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1353 btrfs_release_path(root, path);
1354 continue;
1355 }
1356
1357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1358 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1359 key.type != BTRFS_DEV_ITEM_KEY)
1360 break;
1361
1362 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_dev_item);
1364 devid = btrfs_device_id(leaf, dev_item);
1365 read_extent_buffer(leaf, dev_uuid,
1366 (unsigned long)btrfs_device_uuid(dev_item),
1367 BTRFS_UUID_SIZE);
1368 read_extent_buffer(leaf, fs_uuid,
1369 (unsigned long)btrfs_device_fsid(dev_item),
1370 BTRFS_UUID_SIZE);
1371 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1372 BUG_ON(!device);
1373
1374 if (device->fs_devices->seeding) {
1375 btrfs_set_device_generation(leaf, dev_item,
1376 device->generation);
1377 btrfs_mark_buffer_dirty(leaf);
1378 }
1379
1380 path->slots[0]++;
1381 goto next_slot;
1382 }
1383 ret = 0;
1384error:
1385 btrfs_free_path(path);
1386 return ret;
1387}
1388
788f20eb
CM
1389int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1390{
1391 struct btrfs_trans_handle *trans;
1392 struct btrfs_device *device;
1393 struct block_device *bdev;
788f20eb 1394 struct list_head *devices;
2b82032c 1395 struct super_block *sb = root->fs_info->sb;
788f20eb 1396 u64 total_bytes;
2b82032c 1397 int seeding_dev = 0;
788f20eb
CM
1398 int ret = 0;
1399
2b82032c
YZ
1400 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1401 return -EINVAL;
788f20eb 1402
15916de8 1403 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
d397712b 1404 if (!bdev)
788f20eb 1405 return -EIO;
a2135011 1406
2b82032c
YZ
1407 if (root->fs_info->fs_devices->seeding) {
1408 seeding_dev = 1;
1409 down_write(&sb->s_umount);
1410 mutex_lock(&uuid_mutex);
1411 }
1412
8c8bee1d 1413 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1414 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1415
788f20eb 1416 devices = &root->fs_info->fs_devices->devices;
c6e30871 1417 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1418 if (device->bdev == bdev) {
1419 ret = -EEXIST;
2b82032c 1420 goto error;
788f20eb
CM
1421 }
1422 }
1423
1424 device = kzalloc(sizeof(*device), GFP_NOFS);
1425 if (!device) {
1426 /* we can safely leave the fs_devices entry around */
1427 ret = -ENOMEM;
2b82032c 1428 goto error;
788f20eb
CM
1429 }
1430
788f20eb
CM
1431 device->name = kstrdup(device_path, GFP_NOFS);
1432 if (!device->name) {
1433 kfree(device);
2b82032c
YZ
1434 ret = -ENOMEM;
1435 goto error;
788f20eb 1436 }
2b82032c
YZ
1437
1438 ret = find_next_devid(root, &device->devid);
1439 if (ret) {
1440 kfree(device);
1441 goto error;
1442 }
1443
1444 trans = btrfs_start_transaction(root, 1);
1445 lock_chunks(root);
1446
1447 device->barriers = 1;
1448 device->writeable = 1;
1449 device->work.func = pending_bios_fn;
1450 generate_random_uuid(device->uuid);
1451 spin_lock_init(&device->io_lock);
1452 device->generation = trans->transid;
788f20eb
CM
1453 device->io_width = root->sectorsize;
1454 device->io_align = root->sectorsize;
1455 device->sector_size = root->sectorsize;
1456 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1457 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1458 device->dev_root = root->fs_info->dev_root;
1459 device->bdev = bdev;
dfe25020 1460 device->in_fs_metadata = 1;
15916de8 1461 device->mode = 0;
2b82032c 1462 set_blocksize(device->bdev, 4096);
788f20eb 1463
2b82032c
YZ
1464 if (seeding_dev) {
1465 sb->s_flags &= ~MS_RDONLY;
1466 ret = btrfs_prepare_sprout(trans, root);
1467 BUG_ON(ret);
1468 }
788f20eb 1469
2b82032c
YZ
1470 device->fs_devices = root->fs_info->fs_devices;
1471 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1472 list_add(&device->dev_alloc_list,
1473 &root->fs_info->fs_devices->alloc_list);
1474 root->fs_info->fs_devices->num_devices++;
1475 root->fs_info->fs_devices->open_devices++;
1476 root->fs_info->fs_devices->rw_devices++;
1477 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1478
c289811c
CM
1479 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1480 root->fs_info->fs_devices->rotating = 1;
1481
788f20eb
CM
1482 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1483 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1484 total_bytes + device->total_bytes);
1485
1486 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1487 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1488 total_bytes + 1);
1489
2b82032c
YZ
1490 if (seeding_dev) {
1491 ret = init_first_rw_device(trans, root, device);
1492 BUG_ON(ret);
1493 ret = btrfs_finish_sprout(trans, root);
1494 BUG_ON(ret);
1495 } else {
1496 ret = btrfs_add_device(trans, root, device);
1497 }
1498
913d952e
CM
1499 /*
1500 * we've got more storage, clear any full flags on the space
1501 * infos
1502 */
1503 btrfs_clear_space_info_full(root->fs_info);
1504
7d9eb12c 1505 unlock_chunks(root);
2b82032c 1506 btrfs_commit_transaction(trans, root);
a2135011 1507
2b82032c
YZ
1508 if (seeding_dev) {
1509 mutex_unlock(&uuid_mutex);
1510 up_write(&sb->s_umount);
788f20eb 1511
2b82032c
YZ
1512 ret = btrfs_relocate_sys_chunks(root);
1513 BUG_ON(ret);
1514 }
1515out:
1516 mutex_unlock(&root->fs_info->volume_mutex);
1517 return ret;
1518error:
15916de8 1519 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1520 if (seeding_dev) {
1521 mutex_unlock(&uuid_mutex);
1522 up_write(&sb->s_umount);
1523 }
788f20eb
CM
1524 goto out;
1525}
1526
d397712b
CM
1527static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1528 struct btrfs_device *device)
0b86a832
CM
1529{
1530 int ret;
1531 struct btrfs_path *path;
1532 struct btrfs_root *root;
1533 struct btrfs_dev_item *dev_item;
1534 struct extent_buffer *leaf;
1535 struct btrfs_key key;
1536
1537 root = device->dev_root->fs_info->chunk_root;
1538
1539 path = btrfs_alloc_path();
1540 if (!path)
1541 return -ENOMEM;
1542
1543 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1544 key.type = BTRFS_DEV_ITEM_KEY;
1545 key.offset = device->devid;
1546
1547 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1548 if (ret < 0)
1549 goto out;
1550
1551 if (ret > 0) {
1552 ret = -ENOENT;
1553 goto out;
1554 }
1555
1556 leaf = path->nodes[0];
1557 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1558
1559 btrfs_set_device_id(leaf, dev_item, device->devid);
1560 btrfs_set_device_type(leaf, dev_item, device->type);
1561 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1562 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1563 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1564 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1565 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1566 btrfs_mark_buffer_dirty(leaf);
1567
1568out:
1569 btrfs_free_path(path);
1570 return ret;
1571}
1572
7d9eb12c 1573static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1574 struct btrfs_device *device, u64 new_size)
1575{
1576 struct btrfs_super_block *super_copy =
1577 &device->dev_root->fs_info->super_copy;
1578 u64 old_total = btrfs_super_total_bytes(super_copy);
1579 u64 diff = new_size - device->total_bytes;
1580
2b82032c
YZ
1581 if (!device->writeable)
1582 return -EACCES;
1583 if (new_size <= device->total_bytes)
1584 return -EINVAL;
1585
8f18cf13 1586 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1587 device->fs_devices->total_rw_bytes += diff;
1588
1589 device->total_bytes = new_size;
4184ea7f
CM
1590 btrfs_clear_space_info_full(device->dev_root->fs_info);
1591
8f18cf13
CM
1592 return btrfs_update_device(trans, device);
1593}
1594
7d9eb12c
CM
1595int btrfs_grow_device(struct btrfs_trans_handle *trans,
1596 struct btrfs_device *device, u64 new_size)
1597{
1598 int ret;
1599 lock_chunks(device->dev_root);
1600 ret = __btrfs_grow_device(trans, device, new_size);
1601 unlock_chunks(device->dev_root);
1602 return ret;
1603}
1604
8f18cf13
CM
1605static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1606 struct btrfs_root *root,
1607 u64 chunk_tree, u64 chunk_objectid,
1608 u64 chunk_offset)
1609{
1610 int ret;
1611 struct btrfs_path *path;
1612 struct btrfs_key key;
1613
1614 root = root->fs_info->chunk_root;
1615 path = btrfs_alloc_path();
1616 if (!path)
1617 return -ENOMEM;
1618
1619 key.objectid = chunk_objectid;
1620 key.offset = chunk_offset;
1621 key.type = BTRFS_CHUNK_ITEM_KEY;
1622
1623 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1624 BUG_ON(ret);
1625
1626 ret = btrfs_del_item(trans, root, path);
1627 BUG_ON(ret);
1628
1629 btrfs_free_path(path);
1630 return 0;
1631}
1632
b2950863 1633static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1634 chunk_offset)
1635{
1636 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1637 struct btrfs_disk_key *disk_key;
1638 struct btrfs_chunk *chunk;
1639 u8 *ptr;
1640 int ret = 0;
1641 u32 num_stripes;
1642 u32 array_size;
1643 u32 len = 0;
1644 u32 cur;
1645 struct btrfs_key key;
1646
1647 array_size = btrfs_super_sys_array_size(super_copy);
1648
1649 ptr = super_copy->sys_chunk_array;
1650 cur = 0;
1651
1652 while (cur < array_size) {
1653 disk_key = (struct btrfs_disk_key *)ptr;
1654 btrfs_disk_key_to_cpu(&key, disk_key);
1655
1656 len = sizeof(*disk_key);
1657
1658 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1659 chunk = (struct btrfs_chunk *)(ptr + len);
1660 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1661 len += btrfs_chunk_item_size(num_stripes);
1662 } else {
1663 ret = -EIO;
1664 break;
1665 }
1666 if (key.objectid == chunk_objectid &&
1667 key.offset == chunk_offset) {
1668 memmove(ptr, ptr + len, array_size - (cur + len));
1669 array_size -= len;
1670 btrfs_set_super_sys_array_size(super_copy, array_size);
1671 } else {
1672 ptr += len;
1673 cur += len;
1674 }
1675 }
1676 return ret;
1677}
1678
b2950863 1679static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1680 u64 chunk_tree, u64 chunk_objectid,
1681 u64 chunk_offset)
1682{
1683 struct extent_map_tree *em_tree;
1684 struct btrfs_root *extent_root;
1685 struct btrfs_trans_handle *trans;
1686 struct extent_map *em;
1687 struct map_lookup *map;
1688 int ret;
1689 int i;
1690
1691 root = root->fs_info->chunk_root;
1692 extent_root = root->fs_info->extent_root;
1693 em_tree = &root->fs_info->mapping_tree.map_tree;
1694
1695 /* step one, relocate all the extents inside this chunk */
1a40e23b 1696 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
8f18cf13
CM
1697 BUG_ON(ret);
1698
1699 trans = btrfs_start_transaction(root, 1);
1700 BUG_ON(!trans);
1701
7d9eb12c
CM
1702 lock_chunks(root);
1703
8f18cf13
CM
1704 /*
1705 * step two, delete the device extents and the
1706 * chunk tree entries
1707 */
1708 spin_lock(&em_tree->lock);
1709 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1710 spin_unlock(&em_tree->lock);
1711
a061fc8d
CM
1712 BUG_ON(em->start > chunk_offset ||
1713 em->start + em->len < chunk_offset);
8f18cf13
CM
1714 map = (struct map_lookup *)em->bdev;
1715
1716 for (i = 0; i < map->num_stripes; i++) {
1717 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1718 map->stripes[i].physical);
1719 BUG_ON(ret);
a061fc8d 1720
dfe25020
CM
1721 if (map->stripes[i].dev) {
1722 ret = btrfs_update_device(trans, map->stripes[i].dev);
1723 BUG_ON(ret);
1724 }
8f18cf13
CM
1725 }
1726 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1727 chunk_offset);
1728
1729 BUG_ON(ret);
1730
1731 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1732 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1733 BUG_ON(ret);
8f18cf13
CM
1734 }
1735
2b82032c
YZ
1736 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1737 BUG_ON(ret);
1738
1739 spin_lock(&em_tree->lock);
1740 remove_extent_mapping(em_tree, em);
1741 spin_unlock(&em_tree->lock);
1742
1743 kfree(map);
1744 em->bdev = NULL;
1745
1746 /* once for the tree */
1747 free_extent_map(em);
1748 /* once for us */
1749 free_extent_map(em);
1750
1751 unlock_chunks(root);
1752 btrfs_end_transaction(trans, root);
1753 return 0;
1754}
1755
1756static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1757{
1758 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1759 struct btrfs_path *path;
1760 struct extent_buffer *leaf;
1761 struct btrfs_chunk *chunk;
1762 struct btrfs_key key;
1763 struct btrfs_key found_key;
1764 u64 chunk_tree = chunk_root->root_key.objectid;
1765 u64 chunk_type;
1766 int ret;
1767
1768 path = btrfs_alloc_path();
1769 if (!path)
1770 return -ENOMEM;
1771
1772 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1773 key.offset = (u64)-1;
1774 key.type = BTRFS_CHUNK_ITEM_KEY;
1775
1776 while (1) {
1777 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1778 if (ret < 0)
1779 goto error;
1780 BUG_ON(ret == 0);
1781
1782 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1783 key.type);
1784 if (ret < 0)
1785 goto error;
1786 if (ret > 0)
1787 break;
1a40e23b 1788
2b82032c
YZ
1789 leaf = path->nodes[0];
1790 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1791
2b82032c
YZ
1792 chunk = btrfs_item_ptr(leaf, path->slots[0],
1793 struct btrfs_chunk);
1794 chunk_type = btrfs_chunk_type(leaf, chunk);
1795 btrfs_release_path(chunk_root, path);
8f18cf13 1796
2b82032c
YZ
1797 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1798 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1799 found_key.objectid,
1800 found_key.offset);
1801 BUG_ON(ret);
1802 }
8f18cf13 1803
2b82032c
YZ
1804 if (found_key.offset == 0)
1805 break;
1806 key.offset = found_key.offset - 1;
1807 }
1808 ret = 0;
1809error:
1810 btrfs_free_path(path);
1811 return ret;
8f18cf13
CM
1812}
1813
ec44a35c
CM
1814static u64 div_factor(u64 num, int factor)
1815{
1816 if (factor == 10)
1817 return num;
1818 num *= factor;
1819 do_div(num, 10);
1820 return num;
1821}
1822
ec44a35c
CM
1823int btrfs_balance(struct btrfs_root *dev_root)
1824{
1825 int ret;
ec44a35c
CM
1826 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1827 struct btrfs_device *device;
1828 u64 old_size;
1829 u64 size_to_free;
1830 struct btrfs_path *path;
1831 struct btrfs_key key;
1832 struct btrfs_chunk *chunk;
1833 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1834 struct btrfs_trans_handle *trans;
1835 struct btrfs_key found_key;
1836
2b82032c
YZ
1837 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1838 return -EROFS;
ec44a35c 1839
7d9eb12c 1840 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1841 dev_root = dev_root->fs_info->dev_root;
1842
ec44a35c 1843 /* step one make some room on all the devices */
c6e30871 1844 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
1845 old_size = device->total_bytes;
1846 size_to_free = div_factor(old_size, 1);
1847 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
1848 if (!device->writeable ||
1849 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
1850 continue;
1851
1852 ret = btrfs_shrink_device(device, old_size - size_to_free);
1853 BUG_ON(ret);
1854
1855 trans = btrfs_start_transaction(dev_root, 1);
1856 BUG_ON(!trans);
1857
1858 ret = btrfs_grow_device(trans, device, old_size);
1859 BUG_ON(ret);
1860
1861 btrfs_end_transaction(trans, dev_root);
1862 }
1863
1864 /* step two, relocate all the chunks */
1865 path = btrfs_alloc_path();
1866 BUG_ON(!path);
1867
1868 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1869 key.offset = (u64)-1;
1870 key.type = BTRFS_CHUNK_ITEM_KEY;
1871
d397712b 1872 while (1) {
ec44a35c
CM
1873 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1874 if (ret < 0)
1875 goto error;
1876
1877 /*
1878 * this shouldn't happen, it means the last relocate
1879 * failed
1880 */
1881 if (ret == 0)
1882 break;
1883
1884 ret = btrfs_previous_item(chunk_root, path, 0,
1885 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1886 if (ret)
ec44a35c 1887 break;
7d9eb12c 1888
ec44a35c
CM
1889 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1890 path->slots[0]);
1891 if (found_key.objectid != key.objectid)
1892 break;
7d9eb12c 1893
ec44a35c
CM
1894 chunk = btrfs_item_ptr(path->nodes[0],
1895 path->slots[0],
1896 struct btrfs_chunk);
1897 key.offset = found_key.offset;
1898 /* chunk zero is special */
1899 if (key.offset == 0)
1900 break;
1901
7d9eb12c 1902 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1903 ret = btrfs_relocate_chunk(chunk_root,
1904 chunk_root->root_key.objectid,
1905 found_key.objectid,
1906 found_key.offset);
1907 BUG_ON(ret);
ec44a35c
CM
1908 }
1909 ret = 0;
1910error:
1911 btrfs_free_path(path);
7d9eb12c 1912 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1913 return ret;
1914}
1915
8f18cf13
CM
1916/*
1917 * shrinking a device means finding all of the device extents past
1918 * the new size, and then following the back refs to the chunks.
1919 * The chunk relocation code actually frees the device extent
1920 */
1921int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1922{
1923 struct btrfs_trans_handle *trans;
1924 struct btrfs_root *root = device->dev_root;
1925 struct btrfs_dev_extent *dev_extent = NULL;
1926 struct btrfs_path *path;
1927 u64 length;
1928 u64 chunk_tree;
1929 u64 chunk_objectid;
1930 u64 chunk_offset;
1931 int ret;
1932 int slot;
1933 struct extent_buffer *l;
1934 struct btrfs_key key;
1935 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1936 u64 old_total = btrfs_super_total_bytes(super_copy);
1937 u64 diff = device->total_bytes - new_size;
1938
2b82032c
YZ
1939 if (new_size >= device->total_bytes)
1940 return -EINVAL;
8f18cf13
CM
1941
1942 path = btrfs_alloc_path();
1943 if (!path)
1944 return -ENOMEM;
1945
1946 trans = btrfs_start_transaction(root, 1);
1947 if (!trans) {
1948 ret = -ENOMEM;
1949 goto done;
1950 }
1951
1952 path->reada = 2;
1953
7d9eb12c
CM
1954 lock_chunks(root);
1955
8f18cf13 1956 device->total_bytes = new_size;
2b82032c
YZ
1957 if (device->writeable)
1958 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 1959 unlock_chunks(root);
8f18cf13
CM
1960 btrfs_end_transaction(trans, root);
1961
1962 key.objectid = device->devid;
1963 key.offset = (u64)-1;
1964 key.type = BTRFS_DEV_EXTENT_KEY;
1965
1966 while (1) {
1967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1968 if (ret < 0)
1969 goto done;
1970
1971 ret = btrfs_previous_item(root, path, 0, key.type);
1972 if (ret < 0)
1973 goto done;
1974 if (ret) {
1975 ret = 0;
1976 goto done;
1977 }
1978
1979 l = path->nodes[0];
1980 slot = path->slots[0];
1981 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1982
1983 if (key.objectid != device->devid)
1984 goto done;
1985
1986 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1987 length = btrfs_dev_extent_length(l, dev_extent);
1988
1989 if (key.offset + length <= new_size)
d6397bae 1990 break;
8f18cf13
CM
1991
1992 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1993 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1994 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1995 btrfs_release_path(root, path);
1996
1997 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1998 chunk_offset);
1999 if (ret)
2000 goto done;
2001 }
2002
d6397bae
CB
2003 /* Shrinking succeeded, else we would be at "done". */
2004 trans = btrfs_start_transaction(root, 1);
2005 if (!trans) {
2006 ret = -ENOMEM;
2007 goto done;
2008 }
2009 lock_chunks(root);
2010
2011 device->disk_total_bytes = new_size;
2012 /* Now btrfs_update_device() will change the on-disk size. */
2013 ret = btrfs_update_device(trans, device);
2014 if (ret) {
2015 unlock_chunks(root);
2016 btrfs_end_transaction(trans, root);
2017 goto done;
2018 }
2019 WARN_ON(diff > old_total);
2020 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2021 unlock_chunks(root);
2022 btrfs_end_transaction(trans, root);
8f18cf13
CM
2023done:
2024 btrfs_free_path(path);
2025 return ret;
2026}
2027
b2950863 2028static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2029 struct btrfs_root *root,
2030 struct btrfs_key *key,
2031 struct btrfs_chunk *chunk, int item_size)
2032{
2033 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2034 struct btrfs_disk_key disk_key;
2035 u32 array_size;
2036 u8 *ptr;
2037
2038 array_size = btrfs_super_sys_array_size(super_copy);
2039 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2040 return -EFBIG;
2041
2042 ptr = super_copy->sys_chunk_array + array_size;
2043 btrfs_cpu_key_to_disk(&disk_key, key);
2044 memcpy(ptr, &disk_key, sizeof(disk_key));
2045 ptr += sizeof(disk_key);
2046 memcpy(ptr, chunk, item_size);
2047 item_size += sizeof(disk_key);
2048 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2049 return 0;
2050}
2051
d397712b 2052static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2053 int num_stripes, int sub_stripes)
9b3f68b9
CM
2054{
2055 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2056 return calc_size;
2057 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2058 return calc_size * (num_stripes / sub_stripes);
2059 else
2060 return calc_size * num_stripes;
2061}
2062
2b82032c
YZ
2063static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2064 struct btrfs_root *extent_root,
2065 struct map_lookup **map_ret,
2066 u64 *num_bytes, u64 *stripe_size,
2067 u64 start, u64 type)
0b86a832 2068{
593060d7 2069 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 2070 struct btrfs_device *device = NULL;
2b82032c 2071 struct btrfs_fs_devices *fs_devices = info->fs_devices;
6324fbf3 2072 struct list_head *cur;
2b82032c 2073 struct map_lookup *map = NULL;
0b86a832 2074 struct extent_map_tree *em_tree;
0b86a832 2075 struct extent_map *em;
2b82032c 2076 struct list_head private_devs;
a40a90a0 2077 int min_stripe_size = 1 * 1024 * 1024;
0b86a832 2078 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
2079 u64 max_chunk_size = calc_size;
2080 u64 min_free;
6324fbf3
CM
2081 u64 avail;
2082 u64 max_avail = 0;
2b82032c 2083 u64 dev_offset;
6324fbf3 2084 int num_stripes = 1;
a40a90a0 2085 int min_stripes = 1;
321aecc6 2086 int sub_stripes = 0;
6324fbf3 2087 int looped = 0;
0b86a832 2088 int ret;
6324fbf3 2089 int index;
593060d7 2090 int stripe_len = 64 * 1024;
0b86a832 2091
ec44a35c
CM
2092 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2093 (type & BTRFS_BLOCK_GROUP_DUP)) {
2094 WARN_ON(1);
2095 type &= ~BTRFS_BLOCK_GROUP_DUP;
2096 }
2b82032c 2097 if (list_empty(&fs_devices->alloc_list))
6324fbf3 2098 return -ENOSPC;
593060d7 2099
a40a90a0 2100 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2b82032c 2101 num_stripes = fs_devices->rw_devices;
a40a90a0
CM
2102 min_stripes = 2;
2103 }
2104 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 2105 num_stripes = 2;
a40a90a0
CM
2106 min_stripes = 2;
2107 }
8790d502 2108 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2b82032c 2109 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
9b3f68b9
CM
2110 if (num_stripes < 2)
2111 return -ENOSPC;
a40a90a0 2112 min_stripes = 2;
8790d502 2113 }
321aecc6 2114 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2b82032c 2115 num_stripes = fs_devices->rw_devices;
321aecc6
CM
2116 if (num_stripes < 4)
2117 return -ENOSPC;
2118 num_stripes &= ~(u32)1;
2119 sub_stripes = 2;
a40a90a0 2120 min_stripes = 4;
321aecc6 2121 }
9b3f68b9
CM
2122
2123 if (type & BTRFS_BLOCK_GROUP_DATA) {
2124 max_chunk_size = 10 * calc_size;
a40a90a0 2125 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
2126 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2127 max_chunk_size = 4 * calc_size;
a40a90a0
CM
2128 min_stripe_size = 32 * 1024 * 1024;
2129 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2130 calc_size = 8 * 1024 * 1024;
2131 max_chunk_size = calc_size * 2;
2132 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2133 }
2134
2b82032c
YZ
2135 /* we don't want a chunk larger than 10% of writeable space */
2136 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2137 max_chunk_size);
9b3f68b9 2138
a40a90a0 2139again:
2b82032c
YZ
2140 if (!map || map->num_stripes != num_stripes) {
2141 kfree(map);
2142 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2143 if (!map)
2144 return -ENOMEM;
2145 map->num_stripes = num_stripes;
2146 }
2147
9b3f68b9
CM
2148 if (calc_size * num_stripes > max_chunk_size) {
2149 calc_size = max_chunk_size;
2150 do_div(calc_size, num_stripes);
2151 do_div(calc_size, stripe_len);
2152 calc_size *= stripe_len;
2153 }
2154 /* we don't want tiny stripes */
a40a90a0 2155 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2156
9b3f68b9
CM
2157 do_div(calc_size, stripe_len);
2158 calc_size *= stripe_len;
2159
2b82032c 2160 cur = fs_devices->alloc_list.next;
6324fbf3 2161 index = 0;
611f0e00
CM
2162
2163 if (type & BTRFS_BLOCK_GROUP_DUP)
2164 min_free = calc_size * 2;
9b3f68b9
CM
2165 else
2166 min_free = calc_size;
611f0e00 2167
0f9dd46c
JB
2168 /*
2169 * we add 1MB because we never use the first 1MB of the device, unless
2170 * we've looped, then we are likely allocating the maximum amount of
2171 * space left already
2172 */
2173 if (!looped)
2174 min_free += 1024 * 1024;
ad5bd91e 2175
2b82032c 2176 INIT_LIST_HEAD(&private_devs);
d397712b 2177 while (index < num_stripes) {
b3075717 2178 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2179 BUG_ON(!device->writeable);
dfe25020
CM
2180 if (device->total_bytes > device->bytes_used)
2181 avail = device->total_bytes - device->bytes_used;
2182 else
2183 avail = 0;
6324fbf3 2184 cur = cur->next;
8f18cf13 2185
dfe25020 2186 if (device->in_fs_metadata && avail >= min_free) {
2b82032c
YZ
2187 ret = find_free_dev_extent(trans, device,
2188 min_free, &dev_offset);
8f18cf13
CM
2189 if (ret == 0) {
2190 list_move_tail(&device->dev_alloc_list,
2191 &private_devs);
2b82032c
YZ
2192 map->stripes[index].dev = device;
2193 map->stripes[index].physical = dev_offset;
611f0e00 2194 index++;
2b82032c
YZ
2195 if (type & BTRFS_BLOCK_GROUP_DUP) {
2196 map->stripes[index].dev = device;
2197 map->stripes[index].physical =
2198 dev_offset + calc_size;
8f18cf13 2199 index++;
2b82032c 2200 }
8f18cf13 2201 }
dfe25020 2202 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 2203 max_avail = avail;
2b82032c 2204 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2205 break;
2206 }
2b82032c 2207 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2208 if (index < num_stripes) {
a40a90a0
CM
2209 if (index >= min_stripes) {
2210 num_stripes = index;
2211 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2212 num_stripes /= sub_stripes;
2213 num_stripes *= sub_stripes;
2214 }
2215 looped = 1;
2216 goto again;
2217 }
6324fbf3
CM
2218 if (!looped && max_avail > 0) {
2219 looped = 1;
2220 calc_size = max_avail;
2221 goto again;
2222 }
2b82032c 2223 kfree(map);
6324fbf3
CM
2224 return -ENOSPC;
2225 }
2b82032c
YZ
2226 map->sector_size = extent_root->sectorsize;
2227 map->stripe_len = stripe_len;
2228 map->io_align = stripe_len;
2229 map->io_width = stripe_len;
2230 map->type = type;
2231 map->num_stripes = num_stripes;
2232 map->sub_stripes = sub_stripes;
0b86a832 2233
2b82032c
YZ
2234 *map_ret = map;
2235 *stripe_size = calc_size;
2236 *num_bytes = chunk_bytes_by_type(type, calc_size,
2237 num_stripes, sub_stripes);
0b86a832 2238
2b82032c
YZ
2239 em = alloc_extent_map(GFP_NOFS);
2240 if (!em) {
2241 kfree(map);
593060d7
CM
2242 return -ENOMEM;
2243 }
2b82032c
YZ
2244 em->bdev = (struct block_device *)map;
2245 em->start = start;
2246 em->len = *num_bytes;
2247 em->block_start = 0;
2248 em->block_len = em->len;
593060d7 2249
2b82032c
YZ
2250 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2251 spin_lock(&em_tree->lock);
2252 ret = add_extent_mapping(em_tree, em);
2253 spin_unlock(&em_tree->lock);
2254 BUG_ON(ret);
2255 free_extent_map(em);
0b86a832 2256
2b82032c
YZ
2257 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2258 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2259 start, *num_bytes);
2260 BUG_ON(ret);
611f0e00 2261
2b82032c
YZ
2262 index = 0;
2263 while (index < map->num_stripes) {
2264 device = map->stripes[index].dev;
2265 dev_offset = map->stripes[index].physical;
0b86a832
CM
2266
2267 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2268 info->chunk_root->root_key.objectid,
2269 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2270 start, dev_offset, calc_size);
0b86a832 2271 BUG_ON(ret);
2b82032c
YZ
2272 index++;
2273 }
2274
2275 return 0;
2276}
2277
2278static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *extent_root,
2280 struct map_lookup *map, u64 chunk_offset,
2281 u64 chunk_size, u64 stripe_size)
2282{
2283 u64 dev_offset;
2284 struct btrfs_key key;
2285 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2286 struct btrfs_device *device;
2287 struct btrfs_chunk *chunk;
2288 struct btrfs_stripe *stripe;
2289 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2290 int index = 0;
2291 int ret;
2292
2293 chunk = kzalloc(item_size, GFP_NOFS);
2294 if (!chunk)
2295 return -ENOMEM;
2296
2297 index = 0;
2298 while (index < map->num_stripes) {
2299 device = map->stripes[index].dev;
2300 device->bytes_used += stripe_size;
0b86a832
CM
2301 ret = btrfs_update_device(trans, device);
2302 BUG_ON(ret);
2b82032c
YZ
2303 index++;
2304 }
2305
2306 index = 0;
2307 stripe = &chunk->stripe;
2308 while (index < map->num_stripes) {
2309 device = map->stripes[index].dev;
2310 dev_offset = map->stripes[index].physical;
0b86a832 2311
e17cade2
CM
2312 btrfs_set_stack_stripe_devid(stripe, device->devid);
2313 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2314 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2315 stripe++;
0b86a832
CM
2316 index++;
2317 }
2318
2b82032c 2319 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2320 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2321 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2322 btrfs_set_stack_chunk_type(chunk, map->type);
2323 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2324 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2325 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2326 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2327 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2328
2b82032c
YZ
2329 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2330 key.type = BTRFS_CHUNK_ITEM_KEY;
2331 key.offset = chunk_offset;
0b86a832 2332
2b82032c
YZ
2333 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2334 BUG_ON(ret);
0b86a832 2335
2b82032c
YZ
2336 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2337 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2338 item_size);
8f18cf13
CM
2339 BUG_ON(ret);
2340 }
0b86a832 2341 kfree(chunk);
2b82032c
YZ
2342 return 0;
2343}
0b86a832 2344
2b82032c
YZ
2345/*
2346 * Chunk allocation falls into two parts. The first part does works
2347 * that make the new allocated chunk useable, but not do any operation
2348 * that modifies the chunk tree. The second part does the works that
2349 * require modifying the chunk tree. This division is important for the
2350 * bootstrap process of adding storage to a seed btrfs.
2351 */
2352int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2353 struct btrfs_root *extent_root, u64 type)
2354{
2355 u64 chunk_offset;
2356 u64 chunk_size;
2357 u64 stripe_size;
2358 struct map_lookup *map;
2359 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2360 int ret;
2361
2362 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2363 &chunk_offset);
2364 if (ret)
2365 return ret;
2366
2367 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2368 &stripe_size, chunk_offset, type);
2369 if (ret)
2370 return ret;
2371
2372 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2373 chunk_size, stripe_size);
2374 BUG_ON(ret);
2375 return 0;
2376}
2377
d397712b 2378static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2379 struct btrfs_root *root,
2380 struct btrfs_device *device)
2381{
2382 u64 chunk_offset;
2383 u64 sys_chunk_offset;
2384 u64 chunk_size;
2385 u64 sys_chunk_size;
2386 u64 stripe_size;
2387 u64 sys_stripe_size;
2388 u64 alloc_profile;
2389 struct map_lookup *map;
2390 struct map_lookup *sys_map;
2391 struct btrfs_fs_info *fs_info = root->fs_info;
2392 struct btrfs_root *extent_root = fs_info->extent_root;
2393 int ret;
2394
2395 ret = find_next_chunk(fs_info->chunk_root,
2396 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2397 BUG_ON(ret);
2398
2399 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2400 (fs_info->metadata_alloc_profile &
2401 fs_info->avail_metadata_alloc_bits);
2402 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2403
2404 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2405 &stripe_size, chunk_offset, alloc_profile);
2406 BUG_ON(ret);
2407
2408 sys_chunk_offset = chunk_offset + chunk_size;
2409
2410 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2411 (fs_info->system_alloc_profile &
2412 fs_info->avail_system_alloc_bits);
2413 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2414
2415 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2416 &sys_chunk_size, &sys_stripe_size,
2417 sys_chunk_offset, alloc_profile);
2418 BUG_ON(ret);
2419
2420 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2421 BUG_ON(ret);
2422
2423 /*
2424 * Modifying chunk tree needs allocating new blocks from both
2425 * system block group and metadata block group. So we only can
2426 * do operations require modifying the chunk tree after both
2427 * block groups were created.
2428 */
2429 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2430 chunk_size, stripe_size);
2431 BUG_ON(ret);
2432
2433 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2434 sys_chunk_offset, sys_chunk_size,
2435 sys_stripe_size);
b248a415 2436 BUG_ON(ret);
2b82032c
YZ
2437 return 0;
2438}
2439
2440int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2441{
2442 struct extent_map *em;
2443 struct map_lookup *map;
2444 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2445 int readonly = 0;
2446 int i;
2447
2448 spin_lock(&map_tree->map_tree.lock);
2449 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2450 spin_unlock(&map_tree->map_tree.lock);
2451 if (!em)
2452 return 1;
2453
2454 map = (struct map_lookup *)em->bdev;
2455 for (i = 0; i < map->num_stripes; i++) {
2456 if (!map->stripes[i].dev->writeable) {
2457 readonly = 1;
2458 break;
2459 }
2460 }
0b86a832 2461 free_extent_map(em);
2b82032c 2462 return readonly;
0b86a832
CM
2463}
2464
2465void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2466{
2467 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2468}
2469
2470void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2471{
2472 struct extent_map *em;
2473
d397712b 2474 while (1) {
0b86a832
CM
2475 spin_lock(&tree->map_tree.lock);
2476 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2477 if (em)
2478 remove_extent_mapping(&tree->map_tree, em);
2479 spin_unlock(&tree->map_tree.lock);
2480 if (!em)
2481 break;
2482 kfree(em->bdev);
2483 /* once for us */
2484 free_extent_map(em);
2485 /* once for the tree */
2486 free_extent_map(em);
2487 }
2488}
2489
f188591e
CM
2490int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2491{
2492 struct extent_map *em;
2493 struct map_lookup *map;
2494 struct extent_map_tree *em_tree = &map_tree->map_tree;
2495 int ret;
2496
2497 spin_lock(&em_tree->lock);
2498 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 2499 spin_unlock(&em_tree->lock);
f188591e
CM
2500 BUG_ON(!em);
2501
2502 BUG_ON(em->start > logical || em->start + em->len < logical);
2503 map = (struct map_lookup *)em->bdev;
2504 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2505 ret = map->num_stripes;
321aecc6
CM
2506 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2507 ret = map->sub_stripes;
f188591e
CM
2508 else
2509 ret = 1;
2510 free_extent_map(em);
f188591e
CM
2511 return ret;
2512}
2513
dfe25020
CM
2514static int find_live_mirror(struct map_lookup *map, int first, int num,
2515 int optimal)
2516{
2517 int i;
2518 if (map->stripes[optimal].dev->bdev)
2519 return optimal;
2520 for (i = first; i < first + num; i++) {
2521 if (map->stripes[i].dev->bdev)
2522 return i;
2523 }
2524 /* we couldn't find one that doesn't fail. Just return something
2525 * and the io error handling code will clean up eventually
2526 */
2527 return optimal;
2528}
2529
f2d8d74d
CM
2530static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2531 u64 logical, u64 *length,
2532 struct btrfs_multi_bio **multi_ret,
2533 int mirror_num, struct page *unplug_page)
0b86a832
CM
2534{
2535 struct extent_map *em;
2536 struct map_lookup *map;
2537 struct extent_map_tree *em_tree = &map_tree->map_tree;
2538 u64 offset;
593060d7
CM
2539 u64 stripe_offset;
2540 u64 stripe_nr;
cea9e445 2541 int stripes_allocated = 8;
321aecc6 2542 int stripes_required = 1;
593060d7 2543 int stripe_index;
cea9e445 2544 int i;
f2d8d74d 2545 int num_stripes;
a236aed1 2546 int max_errors = 0;
cea9e445 2547 struct btrfs_multi_bio *multi = NULL;
0b86a832 2548
d397712b 2549 if (multi_ret && !(rw & (1 << BIO_RW)))
cea9e445 2550 stripes_allocated = 1;
cea9e445
CM
2551again:
2552 if (multi_ret) {
2553 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2554 GFP_NOFS);
2555 if (!multi)
2556 return -ENOMEM;
a236aed1
CM
2557
2558 atomic_set(&multi->error, 0);
cea9e445 2559 }
0b86a832
CM
2560
2561 spin_lock(&em_tree->lock);
2562 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 2563 spin_unlock(&em_tree->lock);
f2d8d74d
CM
2564
2565 if (!em && unplug_page)
2566 return 0;
2567
3b951516 2568 if (!em) {
d397712b
CM
2569 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2570 (unsigned long long)logical,
2571 (unsigned long long)*length);
f2d8d74d 2572 BUG();
3b951516 2573 }
0b86a832
CM
2574
2575 BUG_ON(em->start > logical || em->start + em->len < logical);
2576 map = (struct map_lookup *)em->bdev;
2577 offset = logical - em->start;
593060d7 2578
f188591e
CM
2579 if (mirror_num > map->num_stripes)
2580 mirror_num = 0;
2581
cea9e445 2582 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
2583 if (rw & (1 << BIO_RW)) {
2584 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2585 BTRFS_BLOCK_GROUP_DUP)) {
2586 stripes_required = map->num_stripes;
a236aed1 2587 max_errors = 1;
321aecc6
CM
2588 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2589 stripes_required = map->sub_stripes;
a236aed1 2590 max_errors = 1;
321aecc6
CM
2591 }
2592 }
ffbd517d 2593 if (multi_ret && (rw & (1 << BIO_RW)) &&
321aecc6 2594 stripes_allocated < stripes_required) {
cea9e445 2595 stripes_allocated = map->num_stripes;
cea9e445
CM
2596 free_extent_map(em);
2597 kfree(multi);
2598 goto again;
2599 }
593060d7
CM
2600 stripe_nr = offset;
2601 /*
2602 * stripe_nr counts the total number of stripes we have to stride
2603 * to get to this block
2604 */
2605 do_div(stripe_nr, map->stripe_len);
2606
2607 stripe_offset = stripe_nr * map->stripe_len;
2608 BUG_ON(offset < stripe_offset);
2609
2610 /* stripe_offset is the offset of this block in its stripe*/
2611 stripe_offset = offset - stripe_offset;
2612
cea9e445 2613 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 2614 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
2615 BTRFS_BLOCK_GROUP_DUP)) {
2616 /* we limit the length of each bio to what fits in a stripe */
2617 *length = min_t(u64, em->len - offset,
2618 map->stripe_len - stripe_offset);
2619 } else {
2620 *length = em->len - offset;
2621 }
f2d8d74d
CM
2622
2623 if (!multi_ret && !unplug_page)
cea9e445
CM
2624 goto out;
2625
f2d8d74d 2626 num_stripes = 1;
cea9e445 2627 stripe_index = 0;
8790d502 2628 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
2629 if (unplug_page || (rw & (1 << BIO_RW)))
2630 num_stripes = map->num_stripes;
2fff734f 2631 else if (mirror_num)
f188591e 2632 stripe_index = mirror_num - 1;
dfe25020
CM
2633 else {
2634 stripe_index = find_live_mirror(map, 0,
2635 map->num_stripes,
2636 current->pid % map->num_stripes);
2637 }
2fff734f 2638
611f0e00 2639 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 2640 if (rw & (1 << BIO_RW))
f2d8d74d 2641 num_stripes = map->num_stripes;
f188591e
CM
2642 else if (mirror_num)
2643 stripe_index = mirror_num - 1;
2fff734f 2644
321aecc6
CM
2645 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2646 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2647
2648 stripe_index = do_div(stripe_nr, factor);
2649 stripe_index *= map->sub_stripes;
2650
f2d8d74d
CM
2651 if (unplug_page || (rw & (1 << BIO_RW)))
2652 num_stripes = map->sub_stripes;
321aecc6
CM
2653 else if (mirror_num)
2654 stripe_index += mirror_num - 1;
dfe25020
CM
2655 else {
2656 stripe_index = find_live_mirror(map, stripe_index,
2657 map->sub_stripes, stripe_index +
2658 current->pid % map->sub_stripes);
2659 }
8790d502
CM
2660 } else {
2661 /*
2662 * after this do_div call, stripe_nr is the number of stripes
2663 * on this device we have to walk to find the data, and
2664 * stripe_index is the number of our device in the stripe array
2665 */
2666 stripe_index = do_div(stripe_nr, map->num_stripes);
2667 }
593060d7 2668 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2669
f2d8d74d
CM
2670 for (i = 0; i < num_stripes; i++) {
2671 if (unplug_page) {
2672 struct btrfs_device *device;
2673 struct backing_dev_info *bdi;
2674
2675 device = map->stripes[stripe_index].dev;
dfe25020
CM
2676 if (device->bdev) {
2677 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 2678 if (bdi->unplug_io_fn)
dfe25020 2679 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
2680 }
2681 } else {
2682 multi->stripes[i].physical =
2683 map->stripes[stripe_index].physical +
2684 stripe_offset + stripe_nr * map->stripe_len;
2685 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2686 }
cea9e445 2687 stripe_index++;
593060d7 2688 }
f2d8d74d
CM
2689 if (multi_ret) {
2690 *multi_ret = multi;
2691 multi->num_stripes = num_stripes;
a236aed1 2692 multi->max_errors = max_errors;
f2d8d74d 2693 }
cea9e445 2694out:
0b86a832 2695 free_extent_map(em);
0b86a832
CM
2696 return 0;
2697}
2698
f2d8d74d
CM
2699int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2700 u64 logical, u64 *length,
2701 struct btrfs_multi_bio **multi_ret, int mirror_num)
2702{
2703 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2704 mirror_num, NULL);
2705}
2706
a512bbf8
YZ
2707int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2708 u64 chunk_start, u64 physical, u64 devid,
2709 u64 **logical, int *naddrs, int *stripe_len)
2710{
2711 struct extent_map_tree *em_tree = &map_tree->map_tree;
2712 struct extent_map *em;
2713 struct map_lookup *map;
2714 u64 *buf;
2715 u64 bytenr;
2716 u64 length;
2717 u64 stripe_nr;
2718 int i, j, nr = 0;
2719
2720 spin_lock(&em_tree->lock);
2721 em = lookup_extent_mapping(em_tree, chunk_start, 1);
2722 spin_unlock(&em_tree->lock);
2723
2724 BUG_ON(!em || em->start != chunk_start);
2725 map = (struct map_lookup *)em->bdev;
2726
2727 length = em->len;
2728 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2729 do_div(length, map->num_stripes / map->sub_stripes);
2730 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2731 do_div(length, map->num_stripes);
2732
2733 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2734 BUG_ON(!buf);
2735
2736 for (i = 0; i < map->num_stripes; i++) {
2737 if (devid && map->stripes[i].dev->devid != devid)
2738 continue;
2739 if (map->stripes[i].physical > physical ||
2740 map->stripes[i].physical + length <= physical)
2741 continue;
2742
2743 stripe_nr = physical - map->stripes[i].physical;
2744 do_div(stripe_nr, map->stripe_len);
2745
2746 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2747 stripe_nr = stripe_nr * map->num_stripes + i;
2748 do_div(stripe_nr, map->sub_stripes);
2749 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2750 stripe_nr = stripe_nr * map->num_stripes + i;
2751 }
2752 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 2753 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
2754 for (j = 0; j < nr; j++) {
2755 if (buf[j] == bytenr)
2756 break;
2757 }
934d375b
CM
2758 if (j == nr) {
2759 WARN_ON(nr >= map->num_stripes);
a512bbf8 2760 buf[nr++] = bytenr;
934d375b 2761 }
a512bbf8
YZ
2762 }
2763
2764 for (i = 0; i > nr; i++) {
2765 struct btrfs_multi_bio *multi;
2766 struct btrfs_bio_stripe *stripe;
2767 int ret;
2768
2769 length = 1;
2770 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2771 &length, &multi, 0);
2772 BUG_ON(ret);
2773
2774 stripe = multi->stripes;
2775 for (j = 0; j < multi->num_stripes; j++) {
2776 if (stripe->physical >= physical &&
2777 physical < stripe->physical + length)
2778 break;
2779 }
2780 BUG_ON(j >= multi->num_stripes);
2781 kfree(multi);
2782 }
2783
2784 *logical = buf;
2785 *naddrs = nr;
2786 *stripe_len = map->stripe_len;
2787
2788 free_extent_map(em);
2789 return 0;
2790}
2791
f2d8d74d
CM
2792int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2793 u64 logical, struct page *page)
2794{
2795 u64 length = PAGE_CACHE_SIZE;
2796 return __btrfs_map_block(map_tree, READ, logical, &length,
2797 NULL, 0, page);
2798}
2799
8790d502 2800static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 2801{
cea9e445 2802 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2803 int is_orig_bio = 0;
8790d502 2804
8790d502 2805 if (err)
a236aed1 2806 atomic_inc(&multi->error);
8790d502 2807
7d2b4daa
CM
2808 if (bio == multi->orig_bio)
2809 is_orig_bio = 1;
2810
cea9e445 2811 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2812 if (!is_orig_bio) {
2813 bio_put(bio);
2814 bio = multi->orig_bio;
2815 }
8790d502
CM
2816 bio->bi_private = multi->private;
2817 bio->bi_end_io = multi->end_io;
a236aed1
CM
2818 /* only send an error to the higher layers if it is
2819 * beyond the tolerance of the multi-bio
2820 */
1259ab75 2821 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2822 err = -EIO;
1259ab75
CM
2823 } else if (err) {
2824 /*
2825 * this bio is actually up to date, we didn't
2826 * go over the max number of errors
2827 */
2828 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2829 err = 0;
1259ab75 2830 }
8790d502
CM
2831 kfree(multi);
2832
2833 bio_endio(bio, err);
7d2b4daa 2834 } else if (!is_orig_bio) {
8790d502
CM
2835 bio_put(bio);
2836 }
8790d502
CM
2837}
2838
8b712842
CM
2839struct async_sched {
2840 struct bio *bio;
2841 int rw;
2842 struct btrfs_fs_info *info;
2843 struct btrfs_work work;
2844};
2845
2846/*
2847 * see run_scheduled_bios for a description of why bios are collected for
2848 * async submit.
2849 *
2850 * This will add one bio to the pending list for a device and make sure
2851 * the work struct is scheduled.
2852 */
d397712b 2853static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
2854 struct btrfs_device *device,
2855 int rw, struct bio *bio)
8b712842
CM
2856{
2857 int should_queue = 1;
ffbd517d 2858 struct btrfs_pending_bios *pending_bios;
8b712842
CM
2859
2860 /* don't bother with additional async steps for reads, right now */
2861 if (!(rw & (1 << BIO_RW))) {
492bb6de 2862 bio_get(bio);
8b712842 2863 submit_bio(rw, bio);
492bb6de 2864 bio_put(bio);
8b712842
CM
2865 return 0;
2866 }
2867
2868 /*
0986fe9e 2869 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2870 * higher layers. Otherwise, the async bio makes it appear we have
2871 * made progress against dirty pages when we've really just put it
2872 * on a queue for later
2873 */
0986fe9e 2874 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2875 WARN_ON(bio->bi_next);
8b712842
CM
2876 bio->bi_next = NULL;
2877 bio->bi_rw |= rw;
2878
2879 spin_lock(&device->io_lock);
ffbd517d
CM
2880 if (bio_sync(bio))
2881 pending_bios = &device->pending_sync_bios;
2882 else
2883 pending_bios = &device->pending_bios;
8b712842 2884
ffbd517d
CM
2885 if (pending_bios->tail)
2886 pending_bios->tail->bi_next = bio;
8b712842 2887
ffbd517d
CM
2888 pending_bios->tail = bio;
2889 if (!pending_bios->head)
2890 pending_bios->head = bio;
8b712842
CM
2891 if (device->running_pending)
2892 should_queue = 0;
2893
2894 spin_unlock(&device->io_lock);
2895
2896 if (should_queue)
1cc127b5
CM
2897 btrfs_queue_worker(&root->fs_info->submit_workers,
2898 &device->work);
8b712842
CM
2899 return 0;
2900}
2901
f188591e 2902int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2903 int mirror_num, int async_submit)
0b86a832
CM
2904{
2905 struct btrfs_mapping_tree *map_tree;
2906 struct btrfs_device *dev;
8790d502 2907 struct bio *first_bio = bio;
a62b9401 2908 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
2909 u64 length = 0;
2910 u64 map_length;
cea9e445 2911 struct btrfs_multi_bio *multi = NULL;
0b86a832 2912 int ret;
8790d502
CM
2913 int dev_nr = 0;
2914 int total_devs = 1;
0b86a832 2915
f2d8d74d 2916 length = bio->bi_size;
0b86a832
CM
2917 map_tree = &root->fs_info->mapping_tree;
2918 map_length = length;
cea9e445 2919
f188591e
CM
2920 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2921 mirror_num);
cea9e445
CM
2922 BUG_ON(ret);
2923
2924 total_devs = multi->num_stripes;
2925 if (map_length < length) {
d397712b
CM
2926 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2927 "len %llu\n", (unsigned long long)logical,
2928 (unsigned long long)length,
2929 (unsigned long long)map_length);
cea9e445
CM
2930 BUG();
2931 }
2932 multi->end_io = first_bio->bi_end_io;
2933 multi->private = first_bio->bi_private;
7d2b4daa 2934 multi->orig_bio = first_bio;
cea9e445
CM
2935 atomic_set(&multi->stripes_pending, multi->num_stripes);
2936
d397712b 2937 while (dev_nr < total_devs) {
8790d502 2938 if (total_devs > 1) {
8790d502
CM
2939 if (dev_nr < total_devs - 1) {
2940 bio = bio_clone(first_bio, GFP_NOFS);
2941 BUG_ON(!bio);
2942 } else {
2943 bio = first_bio;
2944 }
2945 bio->bi_private = multi;
2946 bio->bi_end_io = end_bio_multi_stripe;
2947 }
cea9e445
CM
2948 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2949 dev = multi->stripes[dev_nr].dev;
2b82032c 2950 BUG_ON(rw == WRITE && !dev->writeable);
dfe25020
CM
2951 if (dev && dev->bdev) {
2952 bio->bi_bdev = dev->bdev;
8b712842
CM
2953 if (async_submit)
2954 schedule_bio(root, dev, rw, bio);
2955 else
2956 submit_bio(rw, bio);
dfe25020
CM
2957 } else {
2958 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2959 bio->bi_sector = logical >> 9;
dfe25020 2960 bio_endio(bio, -EIO);
dfe25020 2961 }
8790d502
CM
2962 dev_nr++;
2963 }
cea9e445
CM
2964 if (total_devs == 1)
2965 kfree(multi);
0b86a832
CM
2966 return 0;
2967}
2968
a443755f 2969struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 2970 u8 *uuid, u8 *fsid)
0b86a832 2971{
2b82032c
YZ
2972 struct btrfs_device *device;
2973 struct btrfs_fs_devices *cur_devices;
2974
2975 cur_devices = root->fs_info->fs_devices;
2976 while (cur_devices) {
2977 if (!fsid ||
2978 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2979 device = __find_device(&cur_devices->devices,
2980 devid, uuid);
2981 if (device)
2982 return device;
2983 }
2984 cur_devices = cur_devices->seed;
2985 }
2986 return NULL;
0b86a832
CM
2987}
2988
dfe25020
CM
2989static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2990 u64 devid, u8 *dev_uuid)
2991{
2992 struct btrfs_device *device;
2993 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2994
2995 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 2996 if (!device)
2997 return NULL;
dfe25020
CM
2998 list_add(&device->dev_list,
2999 &fs_devices->devices);
dfe25020
CM
3000 device->barriers = 1;
3001 device->dev_root = root->fs_info->dev_root;
3002 device->devid = devid;
8b712842 3003 device->work.func = pending_bios_fn;
e4404d6e 3004 device->fs_devices = fs_devices;
dfe25020
CM
3005 fs_devices->num_devices++;
3006 spin_lock_init(&device->io_lock);
d20f7043 3007 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3008 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3009 return device;
3010}
3011
0b86a832
CM
3012static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3013 struct extent_buffer *leaf,
3014 struct btrfs_chunk *chunk)
3015{
3016 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3017 struct map_lookup *map;
3018 struct extent_map *em;
3019 u64 logical;
3020 u64 length;
3021 u64 devid;
a443755f 3022 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3023 int num_stripes;
0b86a832 3024 int ret;
593060d7 3025 int i;
0b86a832 3026
e17cade2
CM
3027 logical = key->offset;
3028 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3029
0b86a832
CM
3030 spin_lock(&map_tree->map_tree.lock);
3031 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 3032 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3033
3034 /* already mapped? */
3035 if (em && em->start <= logical && em->start + em->len > logical) {
3036 free_extent_map(em);
0b86a832
CM
3037 return 0;
3038 } else if (em) {
3039 free_extent_map(em);
3040 }
0b86a832 3041
0b86a832
CM
3042 em = alloc_extent_map(GFP_NOFS);
3043 if (!em)
3044 return -ENOMEM;
593060d7
CM
3045 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3046 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3047 if (!map) {
3048 free_extent_map(em);
3049 return -ENOMEM;
3050 }
3051
3052 em->bdev = (struct block_device *)map;
3053 em->start = logical;
3054 em->len = length;
3055 em->block_start = 0;
c8b97818 3056 em->block_len = em->len;
0b86a832 3057
593060d7
CM
3058 map->num_stripes = num_stripes;
3059 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3060 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3061 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3062 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3063 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3064 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3065 for (i = 0; i < num_stripes; i++) {
3066 map->stripes[i].physical =
3067 btrfs_stripe_offset_nr(leaf, chunk, i);
3068 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3069 read_extent_buffer(leaf, uuid, (unsigned long)
3070 btrfs_stripe_dev_uuid_nr(chunk, i),
3071 BTRFS_UUID_SIZE);
2b82032c
YZ
3072 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3073 NULL);
dfe25020 3074 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3075 kfree(map);
3076 free_extent_map(em);
3077 return -EIO;
3078 }
dfe25020
CM
3079 if (!map->stripes[i].dev) {
3080 map->stripes[i].dev =
3081 add_missing_dev(root, devid, uuid);
3082 if (!map->stripes[i].dev) {
3083 kfree(map);
3084 free_extent_map(em);
3085 return -EIO;
3086 }
3087 }
3088 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3089 }
3090
3091 spin_lock(&map_tree->map_tree.lock);
3092 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 3093 spin_unlock(&map_tree->map_tree.lock);
b248a415 3094 BUG_ON(ret);
0b86a832
CM
3095 free_extent_map(em);
3096
3097 return 0;
3098}
3099
3100static int fill_device_from_item(struct extent_buffer *leaf,
3101 struct btrfs_dev_item *dev_item,
3102 struct btrfs_device *device)
3103{
3104 unsigned long ptr;
0b86a832
CM
3105
3106 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3107 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3108 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3109 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3110 device->type = btrfs_device_type(leaf, dev_item);
3111 device->io_align = btrfs_device_io_align(leaf, dev_item);
3112 device->io_width = btrfs_device_io_width(leaf, dev_item);
3113 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3114
3115 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3116 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3117
0b86a832
CM
3118 return 0;
3119}
3120
2b82032c
YZ
3121static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3122{
3123 struct btrfs_fs_devices *fs_devices;
3124 int ret;
3125
3126 mutex_lock(&uuid_mutex);
3127
3128 fs_devices = root->fs_info->fs_devices->seed;
3129 while (fs_devices) {
3130 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3131 ret = 0;
3132 goto out;
3133 }
3134 fs_devices = fs_devices->seed;
3135 }
3136
3137 fs_devices = find_fsid(fsid);
3138 if (!fs_devices) {
3139 ret = -ENOENT;
3140 goto out;
3141 }
e4404d6e
YZ
3142
3143 fs_devices = clone_fs_devices(fs_devices);
3144 if (IS_ERR(fs_devices)) {
3145 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3146 goto out;
3147 }
3148
97288f2c 3149 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3150 root->fs_info->bdev_holder);
2b82032c
YZ
3151 if (ret)
3152 goto out;
3153
3154 if (!fs_devices->seeding) {
3155 __btrfs_close_devices(fs_devices);
e4404d6e 3156 free_fs_devices(fs_devices);
2b82032c
YZ
3157 ret = -EINVAL;
3158 goto out;
3159 }
3160
3161 fs_devices->seed = root->fs_info->fs_devices->seed;
3162 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3163out:
3164 mutex_unlock(&uuid_mutex);
3165 return ret;
3166}
3167
0d81ba5d 3168static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3169 struct extent_buffer *leaf,
3170 struct btrfs_dev_item *dev_item)
3171{
3172 struct btrfs_device *device;
3173 u64 devid;
3174 int ret;
2b82032c 3175 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3176 u8 dev_uuid[BTRFS_UUID_SIZE];
3177
0b86a832 3178 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3179 read_extent_buffer(leaf, dev_uuid,
3180 (unsigned long)btrfs_device_uuid(dev_item),
3181 BTRFS_UUID_SIZE);
2b82032c
YZ
3182 read_extent_buffer(leaf, fs_uuid,
3183 (unsigned long)btrfs_device_fsid(dev_item),
3184 BTRFS_UUID_SIZE);
3185
3186 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3187 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3188 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3189 return ret;
2b82032c
YZ
3190 }
3191
3192 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3193 if (!device || !device->bdev) {
e4404d6e 3194 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3195 return -EIO;
3196
3197 if (!device) {
d397712b
CM
3198 printk(KERN_WARNING "warning devid %llu missing\n",
3199 (unsigned long long)devid);
2b82032c
YZ
3200 device = add_missing_dev(root, devid, dev_uuid);
3201 if (!device)
3202 return -ENOMEM;
3203 }
3204 }
3205
3206 if (device->fs_devices != root->fs_info->fs_devices) {
3207 BUG_ON(device->writeable);
3208 if (device->generation !=
3209 btrfs_device_generation(leaf, dev_item))
3210 return -EINVAL;
6324fbf3 3211 }
0b86a832
CM
3212
3213 fill_device_from_item(leaf, dev_item, device);
3214 device->dev_root = root->fs_info->dev_root;
dfe25020 3215 device->in_fs_metadata = 1;
2b82032c
YZ
3216 if (device->writeable)
3217 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3218 ret = 0;
0b86a832
CM
3219 return ret;
3220}
3221
0d81ba5d
CM
3222int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3223{
3224 struct btrfs_dev_item *dev_item;
3225
3226 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3227 dev_item);
3228 return read_one_dev(root, buf, dev_item);
3229}
3230
e4404d6e 3231int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3232{
3233 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3234 struct extent_buffer *sb;
0b86a832 3235 struct btrfs_disk_key *disk_key;
0b86a832 3236 struct btrfs_chunk *chunk;
84eed90f
CM
3237 u8 *ptr;
3238 unsigned long sb_ptr;
3239 int ret = 0;
0b86a832
CM
3240 u32 num_stripes;
3241 u32 array_size;
3242 u32 len = 0;
0b86a832 3243 u32 cur;
84eed90f 3244 struct btrfs_key key;
0b86a832 3245
e4404d6e 3246 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3247 BTRFS_SUPER_INFO_SIZE);
3248 if (!sb)
3249 return -ENOMEM;
3250 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3251 btrfs_set_buffer_lockdep_class(sb, 0);
3252
a061fc8d 3253 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3254 array_size = btrfs_super_sys_array_size(super_copy);
3255
0b86a832
CM
3256 ptr = super_copy->sys_chunk_array;
3257 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3258 cur = 0;
3259
3260 while (cur < array_size) {
3261 disk_key = (struct btrfs_disk_key *)ptr;
3262 btrfs_disk_key_to_cpu(&key, disk_key);
3263
a061fc8d 3264 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3265 sb_ptr += len;
3266 cur += len;
3267
0d81ba5d 3268 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3269 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3270 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3271 if (ret)
3272 break;
0b86a832
CM
3273 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3274 len = btrfs_chunk_item_size(num_stripes);
3275 } else {
84eed90f
CM
3276 ret = -EIO;
3277 break;
0b86a832
CM
3278 }
3279 ptr += len;
3280 sb_ptr += len;
3281 cur += len;
3282 }
a061fc8d 3283 free_extent_buffer(sb);
84eed90f 3284 return ret;
0b86a832
CM
3285}
3286
3287int btrfs_read_chunk_tree(struct btrfs_root *root)
3288{
3289 struct btrfs_path *path;
3290 struct extent_buffer *leaf;
3291 struct btrfs_key key;
3292 struct btrfs_key found_key;
3293 int ret;
3294 int slot;
3295
3296 root = root->fs_info->chunk_root;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
3300 return -ENOMEM;
3301
3302 /* first we search for all of the device items, and then we
3303 * read in all of the chunk items. This way we can create chunk
3304 * mappings that reference all of the devices that are afound
3305 */
3306 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3307 key.offset = 0;
3308 key.type = 0;
3309again:
3310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
d397712b 3311 while (1) {
0b86a832
CM
3312 leaf = path->nodes[0];
3313 slot = path->slots[0];
3314 if (slot >= btrfs_header_nritems(leaf)) {
3315 ret = btrfs_next_leaf(root, path);
3316 if (ret == 0)
3317 continue;
3318 if (ret < 0)
3319 goto error;
3320 break;
3321 }
3322 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3323 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3324 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3325 break;
3326 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3327 struct btrfs_dev_item *dev_item;
3328 dev_item = btrfs_item_ptr(leaf, slot,
3329 struct btrfs_dev_item);
0d81ba5d 3330 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3331 if (ret)
3332 goto error;
0b86a832
CM
3333 }
3334 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3335 struct btrfs_chunk *chunk;
3336 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3337 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3338 if (ret)
3339 goto error;
0b86a832
CM
3340 }
3341 path->slots[0]++;
3342 }
3343 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3344 key.objectid = 0;
3345 btrfs_release_path(root, path);
3346 goto again;
3347 }
0b86a832
CM
3348 ret = 0;
3349error:
2b82032c 3350 btrfs_free_path(path);
0b86a832
CM
3351 return ret;
3352}