]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/volumes.c
Btrfs: Properly dirty buffers in the split corner cases
[net-next-2.6.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7 29struct stripe {
0b86a832
CM
30 struct btrfs_device *dev;
31 u64 physical;
32};
593060d7
CM
33
34struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
41 struct stripe stripes[];
42};
43
44#define map_lookup_size(n) (sizeof(struct map_lookup) + \
45 (sizeof(struct stripe) * (n)))
46
8a4b83cc
CM
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
50int btrfs_cleanup_fs_uuids(void)
51{
52 struct btrfs_fs_devices *fs_devices;
53 struct list_head *uuid_cur;
54 struct list_head *devices_cur;
55 struct btrfs_device *dev;
56
57 list_for_each(uuid_cur, &fs_uuids) {
58 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
59 list);
60 while(!list_empty(&fs_devices->devices)) {
61 devices_cur = fs_devices->devices.next;
62 dev = list_entry(devices_cur, struct btrfs_device,
63 dev_list);
64 printk("uuid cleanup finds %s\n", dev->name);
65 if (dev->bdev) {
66 printk("closing\n");
67 close_bdev_excl(dev->bdev);
68 }
69 list_del(&dev->dev_list);
70 kfree(dev);
71 }
72 }
73 return 0;
74}
75
76static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
77{
78 struct btrfs_device *dev;
79 struct list_head *cur;
80
81 list_for_each(cur, head) {
82 dev = list_entry(cur, struct btrfs_device, dev_list);
83 if (dev->devid == devid)
84 return dev;
85 }
86 return NULL;
87}
88
89static struct btrfs_fs_devices *find_fsid(u8 *fsid)
90{
91 struct list_head *cur;
92 struct btrfs_fs_devices *fs_devices;
93
94 list_for_each(cur, &fs_uuids) {
95 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
96 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
97 return fs_devices;
98 }
99 return NULL;
100}
101
102static int device_list_add(const char *path,
103 struct btrfs_super_block *disk_super,
104 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
105{
106 struct btrfs_device *device;
107 struct btrfs_fs_devices *fs_devices;
108 u64 found_transid = btrfs_super_generation(disk_super);
109
110 fs_devices = find_fsid(disk_super->fsid);
111 if (!fs_devices) {
112 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
113 if (!fs_devices)
114 return -ENOMEM;
115 INIT_LIST_HEAD(&fs_devices->devices);
116 list_add(&fs_devices->list, &fs_uuids);
117 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
118 fs_devices->latest_devid = devid;
119 fs_devices->latest_trans = found_transid;
120 fs_devices->lowest_devid = (u64)-1;
121 fs_devices->num_devices = 0;
122 device = NULL;
123 } else {
124 device = __find_device(&fs_devices->devices, devid);
125 }
126 if (!device) {
127 device = kzalloc(sizeof(*device), GFP_NOFS);
128 if (!device) {
129 /* we can safely leave the fs_devices entry around */
130 return -ENOMEM;
131 }
132 device->devid = devid;
133 device->name = kstrdup(path, GFP_NOFS);
134 if (!device->name) {
135 kfree(device);
136 return -ENOMEM;
137 }
138 list_add(&device->dev_list, &fs_devices->devices);
139 fs_devices->num_devices++;
140 }
141
142 if (found_transid > fs_devices->latest_trans) {
143 fs_devices->latest_devid = devid;
144 fs_devices->latest_trans = found_transid;
145 }
146 if (fs_devices->lowest_devid > devid) {
147 fs_devices->lowest_devid = devid;
148 printk("lowest devid now %Lu\n", devid);
149 }
150 *fs_devices_ret = fs_devices;
151 return 0;
152}
153
154int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
155{
156 struct list_head *head = &fs_devices->devices;
157 struct list_head *cur;
158 struct btrfs_device *device;
159
160 mutex_lock(&uuid_mutex);
161 list_for_each(cur, head) {
162 device = list_entry(cur, struct btrfs_device, dev_list);
163 if (device->bdev) {
164 close_bdev_excl(device->bdev);
165 printk("close devices closes %s\n", device->name);
166 }
167 device->bdev = NULL;
168 }
169 mutex_unlock(&uuid_mutex);
170 return 0;
171}
172
173int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
174 int flags, void *holder)
175{
176 struct block_device *bdev;
177 struct list_head *head = &fs_devices->devices;
178 struct list_head *cur;
179 struct btrfs_device *device;
180 int ret;
181
182 mutex_lock(&uuid_mutex);
183 list_for_each(cur, head) {
184 device = list_entry(cur, struct btrfs_device, dev_list);
185 bdev = open_bdev_excl(device->name, flags, holder);
186printk("opening %s devid %Lu\n", device->name, device->devid);
187 if (IS_ERR(bdev)) {
188 printk("open %s failed\n", device->name);
189 ret = PTR_ERR(bdev);
190 goto fail;
191 }
192 if (device->devid == fs_devices->latest_devid)
193 fs_devices->latest_bdev = bdev;
194 if (device->devid == fs_devices->lowest_devid) {
195 fs_devices->lowest_bdev = bdev;
196printk("lowest bdev %s\n", device->name);
197 }
198 device->bdev = bdev;
199 }
200 mutex_unlock(&uuid_mutex);
201 return 0;
202fail:
203 mutex_unlock(&uuid_mutex);
204 btrfs_close_devices(fs_devices);
205 return ret;
206}
207
208int btrfs_scan_one_device(const char *path, int flags, void *holder,
209 struct btrfs_fs_devices **fs_devices_ret)
210{
211 struct btrfs_super_block *disk_super;
212 struct block_device *bdev;
213 struct buffer_head *bh;
214 int ret;
215 u64 devid;
216
217 mutex_lock(&uuid_mutex);
218
219 printk("scan one opens %s\n", path);
220 bdev = open_bdev_excl(path, flags, holder);
221
222 if (IS_ERR(bdev)) {
223 printk("open failed\n");
224 ret = PTR_ERR(bdev);
225 goto error;
226 }
227
228 ret = set_blocksize(bdev, 4096);
229 if (ret)
230 goto error_close;
231 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
232 if (!bh) {
233 ret = -EIO;
234 goto error_close;
235 }
236 disk_super = (struct btrfs_super_block *)bh->b_data;
237 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
238 sizeof(disk_super->magic))) {
239 printk("no btrfs found on %s\n", path);
e58ca020 240 ret = -EINVAL;
8a4b83cc
CM
241 goto error_brelse;
242 }
243 devid = le64_to_cpu(disk_super->dev_item.devid);
244 printk("found device %Lu on %s\n", devid, path);
245 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
246
247error_brelse:
248 brelse(bh);
249error_close:
250 close_bdev_excl(bdev);
251 printk("scan one closes bdev %s\n", path);
252error:
253 mutex_unlock(&uuid_mutex);
254 return ret;
255}
0b86a832
CM
256
257/*
258 * this uses a pretty simple search, the expectation is that it is
259 * called very infrequently and that a given device has a small number
260 * of extents
261 */
262static int find_free_dev_extent(struct btrfs_trans_handle *trans,
263 struct btrfs_device *device,
264 struct btrfs_path *path,
265 u64 num_bytes, u64 *start)
266{
267 struct btrfs_key key;
268 struct btrfs_root *root = device->dev_root;
269 struct btrfs_dev_extent *dev_extent = NULL;
270 u64 hole_size = 0;
271 u64 last_byte = 0;
272 u64 search_start = 0;
273 u64 search_end = device->total_bytes;
274 int ret;
275 int slot = 0;
276 int start_found;
277 struct extent_buffer *l;
278
279 start_found = 0;
280 path->reada = 2;
281
282 /* FIXME use last free of some kind */
283
8a4b83cc
CM
284 /* we don't want to overwrite the superblock on the drive,
285 * so we make sure to start at an offset of at least 1MB
286 */
287 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
288 key.objectid = device->devid;
289 key.offset = search_start;
290 key.type = BTRFS_DEV_EXTENT_KEY;
291 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
292 if (ret < 0)
293 goto error;
294 ret = btrfs_previous_item(root, path, 0, key.type);
295 if (ret < 0)
296 goto error;
297 l = path->nodes[0];
298 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
299 while (1) {
300 l = path->nodes[0];
301 slot = path->slots[0];
302 if (slot >= btrfs_header_nritems(l)) {
303 ret = btrfs_next_leaf(root, path);
304 if (ret == 0)
305 continue;
306 if (ret < 0)
307 goto error;
308no_more_items:
309 if (!start_found) {
310 if (search_start >= search_end) {
311 ret = -ENOSPC;
312 goto error;
313 }
314 *start = search_start;
315 start_found = 1;
316 goto check_pending;
317 }
318 *start = last_byte > search_start ?
319 last_byte : search_start;
320 if (search_end <= *start) {
321 ret = -ENOSPC;
322 goto error;
323 }
324 goto check_pending;
325 }
326 btrfs_item_key_to_cpu(l, &key, slot);
327
328 if (key.objectid < device->devid)
329 goto next;
330
331 if (key.objectid > device->devid)
332 goto no_more_items;
333
334 if (key.offset >= search_start && key.offset > last_byte &&
335 start_found) {
336 if (last_byte < search_start)
337 last_byte = search_start;
338 hole_size = key.offset - last_byte;
339 if (key.offset > last_byte &&
340 hole_size >= num_bytes) {
341 *start = last_byte;
342 goto check_pending;
343 }
344 }
345 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
346 goto next;
347 }
348
349 start_found = 1;
350 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
351 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
352next:
353 path->slots[0]++;
354 cond_resched();
355 }
356check_pending:
357 /* we have to make sure we didn't find an extent that has already
358 * been allocated by the map tree or the original allocation
359 */
360 btrfs_release_path(root, path);
361 BUG_ON(*start < search_start);
362
6324fbf3 363 if (*start + num_bytes > search_end) {
0b86a832
CM
364 ret = -ENOSPC;
365 goto error;
366 }
367 /* check for pending inserts here */
368 return 0;
369
370error:
371 btrfs_release_path(root, path);
372 return ret;
373}
374
375int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
376 struct btrfs_device *device,
377 u64 owner, u64 num_bytes, u64 *start)
378{
379 int ret;
380 struct btrfs_path *path;
381 struct btrfs_root *root = device->dev_root;
382 struct btrfs_dev_extent *extent;
383 struct extent_buffer *leaf;
384 struct btrfs_key key;
385
386 path = btrfs_alloc_path();
387 if (!path)
388 return -ENOMEM;
389
390 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 391 if (ret) {
0b86a832 392 goto err;
6324fbf3 393 }
0b86a832
CM
394
395 key.objectid = device->devid;
396 key.offset = *start;
397 key.type = BTRFS_DEV_EXTENT_KEY;
398 ret = btrfs_insert_empty_item(trans, root, path, &key,
399 sizeof(*extent));
400 BUG_ON(ret);
401
402 leaf = path->nodes[0];
403 extent = btrfs_item_ptr(leaf, path->slots[0],
404 struct btrfs_dev_extent);
405 btrfs_set_dev_extent_owner(leaf, extent, owner);
406 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
407 btrfs_mark_buffer_dirty(leaf);
408err:
409 btrfs_free_path(path);
410 return ret;
411}
412
413static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
414{
415 struct btrfs_path *path;
416 int ret;
417 struct btrfs_key key;
418 struct btrfs_key found_key;
419
420 path = btrfs_alloc_path();
421 BUG_ON(!path);
422
423 key.objectid = (u64)-1;
424 key.offset = (u64)-1;
425 key.type = BTRFS_CHUNK_ITEM_KEY;
426
427 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
428 if (ret < 0)
429 goto error;
430
431 BUG_ON(ret == 0);
432
433 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
434 if (ret) {
435 *objectid = 0;
436 } else {
437 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
438 path->slots[0]);
439 *objectid = found_key.objectid + found_key.offset;
440 }
441 ret = 0;
442error:
443 btrfs_free_path(path);
444 return ret;
445}
446
0b86a832
CM
447static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
448 u64 *objectid)
449{
450 int ret;
451 struct btrfs_key key;
452 struct btrfs_key found_key;
453
454 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
455 key.type = BTRFS_DEV_ITEM_KEY;
456 key.offset = (u64)-1;
457
458 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
459 if (ret < 0)
460 goto error;
461
462 BUG_ON(ret == 0);
463
464 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
465 BTRFS_DEV_ITEM_KEY);
466 if (ret) {
467 *objectid = 1;
468 } else {
469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
470 path->slots[0]);
471 *objectid = found_key.offset + 1;
472 }
473 ret = 0;
474error:
475 btrfs_release_path(root, path);
476 return ret;
477}
478
479/*
480 * the device information is stored in the chunk root
481 * the btrfs_device struct should be fully filled in
482 */
483int btrfs_add_device(struct btrfs_trans_handle *trans,
484 struct btrfs_root *root,
485 struct btrfs_device *device)
486{
487 int ret;
488 struct btrfs_path *path;
489 struct btrfs_dev_item *dev_item;
490 struct extent_buffer *leaf;
491 struct btrfs_key key;
492 unsigned long ptr;
493 u64 free_devid;
494
495 root = root->fs_info->chunk_root;
496
497 path = btrfs_alloc_path();
498 if (!path)
499 return -ENOMEM;
500
501 ret = find_next_devid(root, path, &free_devid);
502 if (ret)
503 goto out;
504
505 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
506 key.type = BTRFS_DEV_ITEM_KEY;
507 key.offset = free_devid;
508
509 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 510 sizeof(*dev_item));
0b86a832
CM
511 if (ret)
512 goto out;
513
514 leaf = path->nodes[0];
515 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
516
8a4b83cc 517 device->devid = free_devid;
0b86a832
CM
518 btrfs_set_device_id(leaf, dev_item, device->devid);
519 btrfs_set_device_type(leaf, dev_item, device->type);
520 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
521 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
522 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
523 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
524 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
525
0b86a832
CM
526 ptr = (unsigned long)btrfs_device_uuid(dev_item);
527 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
528 btrfs_mark_buffer_dirty(leaf);
529 ret = 0;
530
531out:
532 btrfs_free_path(path);
533 return ret;
534}
535int btrfs_update_device(struct btrfs_trans_handle *trans,
536 struct btrfs_device *device)
537{
538 int ret;
539 struct btrfs_path *path;
540 struct btrfs_root *root;
541 struct btrfs_dev_item *dev_item;
542 struct extent_buffer *leaf;
543 struct btrfs_key key;
544
545 root = device->dev_root->fs_info->chunk_root;
546
547 path = btrfs_alloc_path();
548 if (!path)
549 return -ENOMEM;
550
551 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
552 key.type = BTRFS_DEV_ITEM_KEY;
553 key.offset = device->devid;
554
555 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
556 if (ret < 0)
557 goto out;
558
559 if (ret > 0) {
560 ret = -ENOENT;
561 goto out;
562 }
563
564 leaf = path->nodes[0];
565 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
566
567 btrfs_set_device_id(leaf, dev_item, device->devid);
568 btrfs_set_device_type(leaf, dev_item, device->type);
569 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
570 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
571 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
572 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
573 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
574 btrfs_mark_buffer_dirty(leaf);
575
576out:
577 btrfs_free_path(path);
578 return ret;
579}
580
581int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_key *key,
584 struct btrfs_chunk *chunk, int item_size)
585{
586 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
587 struct btrfs_disk_key disk_key;
588 u32 array_size;
589 u8 *ptr;
590
591 array_size = btrfs_super_sys_array_size(super_copy);
592 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
593 return -EFBIG;
594
595 ptr = super_copy->sys_chunk_array + array_size;
596 btrfs_cpu_key_to_disk(&disk_key, key);
597 memcpy(ptr, &disk_key, sizeof(disk_key));
598 ptr += sizeof(disk_key);
599 memcpy(ptr, chunk, item_size);
600 item_size += sizeof(disk_key);
601 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
602 return 0;
603}
604
605int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
606 struct btrfs_root *extent_root, u64 *start,
6324fbf3 607 u64 *num_bytes, u64 type)
0b86a832
CM
608{
609 u64 dev_offset;
593060d7 610 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
611 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
612 struct btrfs_stripe *stripes;
613 struct btrfs_device *device = NULL;
614 struct btrfs_chunk *chunk;
6324fbf3 615 struct list_head private_devs;
8a4b83cc 616 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 617 struct list_head *cur;
0b86a832
CM
618 struct extent_map_tree *em_tree;
619 struct map_lookup *map;
620 struct extent_map *em;
621 u64 physical;
622 u64 calc_size = 1024 * 1024 * 1024;
6324fbf3
CM
623 u64 avail;
624 u64 max_avail = 0;
625 int num_stripes = 1;
626 int looped = 0;
0b86a832 627 int ret;
6324fbf3 628 int index;
593060d7 629 int stripe_len = 64 * 1024;
0b86a832
CM
630 struct btrfs_key key;
631
6324fbf3
CM
632 if (list_empty(dev_list))
633 return -ENOSPC;
593060d7
CM
634
635 if (type & BTRFS_BLOCK_GROUP_RAID0)
636 num_stripes = btrfs_super_num_devices(&info->super_copy);
637 if (type & BTRFS_BLOCK_GROUP_DATA)
638 stripe_len = 64 * 1024;
639 if (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
640 stripe_len = 32 * 1024;
6324fbf3
CM
641again:
642 INIT_LIST_HEAD(&private_devs);
643 cur = dev_list->next;
644 index = 0;
645 /* build a private list of devices we will allocate from */
646 while(index < num_stripes) {
647 device = list_entry(cur, struct btrfs_device, dev_list);
648 avail = device->total_bytes - device->bytes_used;
649 cur = cur->next;
650 if (avail > max_avail)
651 max_avail = avail;
652 if (avail >= calc_size) {
653 list_move_tail(&device->dev_list, &private_devs);
654 index++;
655 }
656 if (cur == dev_list)
657 break;
658 }
659 if (index < num_stripes) {
660 list_splice(&private_devs, dev_list);
661 if (!looped && max_avail > 0) {
662 looped = 1;
663 calc_size = max_avail;
664 goto again;
665 }
666 return -ENOSPC;
667 }
0b86a832
CM
668
669 ret = find_next_chunk(chunk_root, &key.objectid);
670 if (ret)
671 return ret;
672
0b86a832
CM
673 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
674 if (!chunk)
675 return -ENOMEM;
676
593060d7
CM
677 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
678 if (!map) {
679 kfree(chunk);
680 return -ENOMEM;
681 }
682
0b86a832
CM
683 stripes = &chunk->stripe;
684
593060d7 685 *num_bytes = calc_size * num_stripes;
6324fbf3 686 index = 0;
0b86a832 687 while(index < num_stripes) {
6324fbf3
CM
688 BUG_ON(list_empty(&private_devs));
689 cur = private_devs.next;
690 device = list_entry(cur, struct btrfs_device, dev_list);
691 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
692
693 ret = btrfs_alloc_dev_extent(trans, device,
694 key.objectid,
695 calc_size, &dev_offset);
696 BUG_ON(ret);
8a4b83cc 697printk("alloc chunk size %Lu from dev %Lu\n", calc_size, device->devid);
0b86a832
CM
698 device->bytes_used += calc_size;
699 ret = btrfs_update_device(trans, device);
700 BUG_ON(ret);
701
593060d7
CM
702 map->stripes[index].dev = device;
703 map->stripes[index].physical = dev_offset;
0b86a832
CM
704 btrfs_set_stack_stripe_devid(stripes + index, device->devid);
705 btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
706 physical = dev_offset;
707 index++;
708 }
6324fbf3 709 BUG_ON(!list_empty(&private_devs));
0b86a832
CM
710
711 /* key.objectid was set above */
712 key.offset = *num_bytes;
713 key.type = BTRFS_CHUNK_ITEM_KEY;
714 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 715 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
716 btrfs_set_stack_chunk_type(chunk, type);
717 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
718 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
719 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 720 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
593060d7
CM
721 map->sector_size = extent_root->sectorsize;
722 map->stripe_len = stripe_len;
723 map->io_align = stripe_len;
724 map->io_width = stripe_len;
725 map->type = type;
726 map->num_stripes = num_stripes;
0b86a832
CM
727
728 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
729 btrfs_chunk_item_size(num_stripes));
730 BUG_ON(ret);
731 *start = key.objectid;
732
733 em = alloc_extent_map(GFP_NOFS);
734 if (!em)
735 return -ENOMEM;
0b86a832
CM
736 em->bdev = (struct block_device *)map;
737 em->start = key.objectid;
738 em->len = key.offset;
739 em->block_start = 0;
740
0b86a832
CM
741 kfree(chunk);
742
743 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
744 spin_lock(&em_tree->lock);
745 ret = add_extent_mapping(em_tree, em);
746 BUG_ON(ret);
747 spin_unlock(&em_tree->lock);
748 free_extent_map(em);
749 return ret;
750}
751
752void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
753{
754 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
755}
756
757void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
758{
759 struct extent_map *em;
760
761 while(1) {
762 spin_lock(&tree->map_tree.lock);
763 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
764 if (em)
765 remove_extent_mapping(&tree->map_tree, em);
766 spin_unlock(&tree->map_tree.lock);
767 if (!em)
768 break;
769 kfree(em->bdev);
770 /* once for us */
771 free_extent_map(em);
772 /* once for the tree */
773 free_extent_map(em);
774 }
775}
776
777int btrfs_map_block(struct btrfs_mapping_tree *map_tree,
778 u64 logical, u64 *phys, u64 *length,
779 struct btrfs_device **dev)
780{
781 struct extent_map *em;
782 struct map_lookup *map;
783 struct extent_map_tree *em_tree = &map_tree->map_tree;
784 u64 offset;
593060d7
CM
785 u64 stripe_offset;
786 u64 stripe_nr;
787 int stripe_index;
0b86a832
CM
788
789
790 spin_lock(&em_tree->lock);
791 em = lookup_extent_mapping(em_tree, logical, *length);
792 BUG_ON(!em);
793
794 BUG_ON(em->start > logical || em->start + em->len < logical);
795 map = (struct map_lookup *)em->bdev;
796 offset = logical - em->start;
593060d7
CM
797
798 stripe_nr = offset;
799 /*
800 * stripe_nr counts the total number of stripes we have to stride
801 * to get to this block
802 */
803 do_div(stripe_nr, map->stripe_len);
804
805 stripe_offset = stripe_nr * map->stripe_len;
806 BUG_ON(offset < stripe_offset);
807
808 /* stripe_offset is the offset of this block in its stripe*/
809 stripe_offset = offset - stripe_offset;
810
811 /*
812 * after this do_div call, stripe_nr is the number of stripes
813 * on this device we have to walk to find the data, and
814 * stripe_index is the number of our device in the stripe array
815 */
816 stripe_index = do_div(stripe_nr, map->num_stripes);
817
818 BUG_ON(stripe_index >= map->num_stripes);
819
820 *phys = map->stripes[stripe_index].physical + stripe_offset +
821 stripe_nr * map->stripe_len;
822
823 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
824 /* we limit the length of each bio to what fits in a stripe */
825 *length = min_t(u64, em->len - offset,
826 map->stripe_len - stripe_offset);
827 } else {
828 *length = em->len - offset;
829 }
830 *dev = map->stripes[stripe_index].dev;
0b86a832
CM
831 free_extent_map(em);
832 spin_unlock(&em_tree->lock);
833 return 0;
834}
835
836int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio)
837{
838 struct btrfs_mapping_tree *map_tree;
839 struct btrfs_device *dev;
840 u64 logical = bio->bi_sector << 9;
841 u64 physical;
842 u64 length = 0;
843 u64 map_length;
844 struct bio_vec *bvec;
845 int i;
846 int ret;
847
848 bio_for_each_segment(bvec, bio, i) {
849 length += bvec->bv_len;
850 }
851 map_tree = &root->fs_info->mapping_tree;
852 map_length = length;
853 ret = btrfs_map_block(map_tree, logical, &physical, &map_length, &dev);
239b14b3
CM
854 if (map_length < length) {
855 printk("mapping failed logical %Lu bio len %Lu physical %Lu "
856 "len %Lu\n", logical, length, physical, map_length);
857 BUG();
858 }
0b86a832
CM
859 BUG_ON(map_length < length);
860 bio->bi_sector = physical >> 9;
861 bio->bi_bdev = dev->bdev;
862 submit_bio(rw, bio);
863 return 0;
864}
865
866struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
867{
8a4b83cc 868 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 869
8a4b83cc 870 return __find_device(head, devid);
0b86a832
CM
871}
872
873static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
874 struct extent_buffer *leaf,
875 struct btrfs_chunk *chunk)
876{
877 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
878 struct map_lookup *map;
879 struct extent_map *em;
880 u64 logical;
881 u64 length;
882 u64 devid;
593060d7 883 int num_stripes;
0b86a832 884 int ret;
593060d7 885 int i;
0b86a832
CM
886
887 logical = key->objectid;
888 length = key->offset;
889 spin_lock(&map_tree->map_tree.lock);
890 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
891
892 /* already mapped? */
893 if (em && em->start <= logical && em->start + em->len > logical) {
894 free_extent_map(em);
895 spin_unlock(&map_tree->map_tree.lock);
896 return 0;
897 } else if (em) {
898 free_extent_map(em);
899 }
900 spin_unlock(&map_tree->map_tree.lock);
901
902 map = kzalloc(sizeof(*map), GFP_NOFS);
903 if (!map)
904 return -ENOMEM;
905
906 em = alloc_extent_map(GFP_NOFS);
907 if (!em)
908 return -ENOMEM;
593060d7
CM
909 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
910 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
911 if (!map) {
912 free_extent_map(em);
913 return -ENOMEM;
914 }
915
916 em->bdev = (struct block_device *)map;
917 em->start = logical;
918 em->len = length;
919 em->block_start = 0;
920
593060d7
CM
921 map->num_stripes = num_stripes;
922 map->io_width = btrfs_chunk_io_width(leaf, chunk);
923 map->io_align = btrfs_chunk_io_align(leaf, chunk);
924 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
925 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
926 map->type = btrfs_chunk_type(leaf, chunk);
927 for (i = 0; i < num_stripes; i++) {
928 map->stripes[i].physical =
929 btrfs_stripe_offset_nr(leaf, chunk, i);
930 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
931 map->stripes[i].dev = btrfs_find_device(root, devid);
932 if (!map->stripes[i].dev) {
933 kfree(map);
934 free_extent_map(em);
935 return -EIO;
936 }
0b86a832
CM
937 }
938
939 spin_lock(&map_tree->map_tree.lock);
940 ret = add_extent_mapping(&map_tree->map_tree, em);
941 BUG_ON(ret);
942 spin_unlock(&map_tree->map_tree.lock);
943 free_extent_map(em);
944
945 return 0;
946}
947
948static int fill_device_from_item(struct extent_buffer *leaf,
949 struct btrfs_dev_item *dev_item,
950 struct btrfs_device *device)
951{
952 unsigned long ptr;
0b86a832
CM
953
954 device->devid = btrfs_device_id(leaf, dev_item);
955 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
956 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
957 device->type = btrfs_device_type(leaf, dev_item);
958 device->io_align = btrfs_device_io_align(leaf, dev_item);
959 device->io_width = btrfs_device_io_width(leaf, dev_item);
960 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
961
962 ptr = (unsigned long)btrfs_device_uuid(dev_item);
963 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
964
0b86a832
CM
965 return 0;
966}
967
0d81ba5d 968static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
969 struct extent_buffer *leaf,
970 struct btrfs_dev_item *dev_item)
971{
972 struct btrfs_device *device;
973 u64 devid;
974 int ret;
975
976 devid = btrfs_device_id(leaf, dev_item);
6324fbf3
CM
977 device = btrfs_find_device(root, devid);
978 if (!device) {
8a4b83cc 979 printk("warning devid %Lu not found already\n", devid);
6324fbf3
CM
980 device = kmalloc(sizeof(*device), GFP_NOFS);
981 if (!device)
982 return -ENOMEM;
8a4b83cc
CM
983 list_add(&device->dev_list,
984 &root->fs_info->fs_devices->devices);
6324fbf3 985 }
0b86a832
CM
986
987 fill_device_from_item(leaf, dev_item, device);
988 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
989 ret = 0;
990#if 0
991 ret = btrfs_open_device(device);
992 if (ret) {
993 kfree(device);
994 }
995#endif
996 return ret;
997}
998
0d81ba5d
CM
999int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1000{
1001 struct btrfs_dev_item *dev_item;
1002
1003 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1004 dev_item);
1005 return read_one_dev(root, buf, dev_item);
1006}
1007
0b86a832
CM
1008int btrfs_read_sys_array(struct btrfs_root *root)
1009{
1010 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1011 struct extent_buffer *sb = root->fs_info->sb_buffer;
1012 struct btrfs_disk_key *disk_key;
0b86a832
CM
1013 struct btrfs_chunk *chunk;
1014 struct btrfs_key key;
1015 u32 num_stripes;
1016 u32 array_size;
1017 u32 len = 0;
1018 u8 *ptr;
1019 unsigned long sb_ptr;
1020 u32 cur;
1021 int ret;
0b86a832
CM
1022
1023 array_size = btrfs_super_sys_array_size(super_copy);
1024
1025 /*
1026 * we do this loop twice, once for the device items and
1027 * once for all of the chunks. This way there are device
1028 * structs filled in for every chunk
1029 */
0b86a832
CM
1030 ptr = super_copy->sys_chunk_array;
1031 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1032 cur = 0;
1033
1034 while (cur < array_size) {
1035 disk_key = (struct btrfs_disk_key *)ptr;
1036 btrfs_disk_key_to_cpu(&key, disk_key);
1037
1038 len = sizeof(*disk_key);
1039 ptr += len;
1040 sb_ptr += len;
1041 cur += len;
1042
0d81ba5d 1043 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1044 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1045 ret = read_one_chunk(root, &key, sb, chunk);
1046 BUG_ON(ret);
0b86a832
CM
1047 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1048 len = btrfs_chunk_item_size(num_stripes);
1049 } else {
1050 BUG();
1051 }
1052 ptr += len;
1053 sb_ptr += len;
1054 cur += len;
1055 }
0b86a832
CM
1056 return 0;
1057}
1058
1059int btrfs_read_chunk_tree(struct btrfs_root *root)
1060{
1061 struct btrfs_path *path;
1062 struct extent_buffer *leaf;
1063 struct btrfs_key key;
1064 struct btrfs_key found_key;
1065 int ret;
1066 int slot;
1067
1068 root = root->fs_info->chunk_root;
1069
1070 path = btrfs_alloc_path();
1071 if (!path)
1072 return -ENOMEM;
1073
1074 /* first we search for all of the device items, and then we
1075 * read in all of the chunk items. This way we can create chunk
1076 * mappings that reference all of the devices that are afound
1077 */
1078 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1079 key.offset = 0;
1080 key.type = 0;
1081again:
1082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1083 while(1) {
1084 leaf = path->nodes[0];
1085 slot = path->slots[0];
1086 if (slot >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret == 0)
1089 continue;
1090 if (ret < 0)
1091 goto error;
1092 break;
1093 }
1094 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1095 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1096 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1097 break;
1098 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1099 struct btrfs_dev_item *dev_item;
1100 dev_item = btrfs_item_ptr(leaf, slot,
1101 struct btrfs_dev_item);
0d81ba5d 1102 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1103 BUG_ON(ret);
1104 }
1105 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1106 struct btrfs_chunk *chunk;
1107 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1108 ret = read_one_chunk(root, &found_key, leaf, chunk);
1109 }
1110 path->slots[0]++;
1111 }
1112 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1113 key.objectid = 0;
1114 btrfs_release_path(root, path);
1115 goto again;
1116 }
1117
1118 btrfs_free_path(path);
1119 ret = 0;
1120error:
1121 return ret;
1122}
1123