]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/ordered-data.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
d352ac68
CM
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
e6dcd2dc
CM
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
dc17ff8f 68{
d397712b 69 struct rb_node *n = root->rb_node;
dc17ff8f 70 struct rb_node *prev = NULL;
e6dcd2dc
CM
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 74
d397712b 75 while (n) {
e6dcd2dc 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
77 prev = n;
78 prev_entry = entry;
dc17ff8f 79
e6dcd2dc 80 if (file_offset < entry->file_offset)
dc17ff8f 81 n = n->rb_left;
e6dcd2dc 82 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
d397712b 90 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
d397712b 104 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
dc17ff8f
CM
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
d352ac68
CM
116/*
117 * helper to check if a given offset is inside a given entry
118 */
e6dcd2dc
CM
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
d352ac68
CM
127/*
128 * look find the first ordered struct that has this offset, otherwise
129 * the first one less than this offset
130 */
e6dcd2dc
CM
131static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
132 u64 file_offset)
dc17ff8f 133{
e6dcd2dc 134 struct rb_root *root = &tree->tree;
dc17ff8f
CM
135 struct rb_node *prev;
136 struct rb_node *ret;
e6dcd2dc
CM
137 struct btrfs_ordered_extent *entry;
138
139 if (tree->last) {
140 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
141 rb_node);
142 if (offset_in_entry(entry, file_offset))
143 return tree->last;
144 }
145 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 146 if (!ret)
e6dcd2dc
CM
147 ret = prev;
148 if (ret)
149 tree->last = ret;
dc17ff8f
CM
150 return ret;
151}
152
eb84ae03
CM
153/* allocate and add a new ordered_extent into the per-inode tree.
154 * file_offset is the logical offset in the file
155 *
156 * start is the disk block number of an extent already reserved in the
157 * extent allocation tree
158 *
159 * len is the length of the extent
160 *
eb84ae03
CM
161 * The tree is given a single reference on the ordered extent that was
162 * inserted.
163 */
e6dcd2dc 164int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
80ff3856 165 u64 start, u64 len, u64 disk_len, int type)
dc17ff8f 166{
dc17ff8f 167 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
168 struct rb_node *node;
169 struct btrfs_ordered_extent *entry;
dc17ff8f 170
e6dcd2dc
CM
171 tree = &BTRFS_I(inode)->ordered_tree;
172 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
173 if (!entry)
174 return -ENOMEM;
175
e6dcd2dc
CM
176 entry->file_offset = file_offset;
177 entry->start = start;
178 entry->len = len;
c8b97818 179 entry->disk_len = disk_len;
8b62b72b 180 entry->bytes_left = len;
3eaa2885 181 entry->inode = inode;
d899e052 182 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 183 set_bit(type, &entry->flags);
3eaa2885 184
e6dcd2dc
CM
185 /* one ref for the tree */
186 atomic_set(&entry->refs, 1);
187 init_waitqueue_head(&entry->wait);
188 INIT_LIST_HEAD(&entry->list);
3eaa2885 189 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 190
49958fd7 191 spin_lock(&tree->lock);
e6dcd2dc
CM
192 node = tree_insert(&tree->tree, file_offset,
193 &entry->rb_node);
d397712b 194 BUG_ON(node);
49958fd7 195 spin_unlock(&tree->lock);
d397712b 196
3eaa2885
CM
197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 list_add_tail(&entry->root_extent_list,
199 &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201
e6dcd2dc 202 BUG_ON(node);
dc17ff8f
CM
203 return 0;
204}
205
eb84ae03
CM
206/*
207 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
208 * when an ordered extent is finished. If the list covers more than one
209 * ordered extent, it is split across multiples.
eb84ae03 210 */
3edf7d33
CM
211int btrfs_add_ordered_sum(struct inode *inode,
212 struct btrfs_ordered_extent *entry,
213 struct btrfs_ordered_sum *sum)
dc17ff8f 214{
e6dcd2dc 215 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 216
e6dcd2dc 217 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 218 spin_lock(&tree->lock);
e6dcd2dc 219 list_add_tail(&sum->list, &entry->list);
49958fd7 220 spin_unlock(&tree->lock);
e6dcd2dc 221 return 0;
dc17ff8f
CM
222}
223
eb84ae03
CM
224/*
225 * this is used to account for finished IO across a given range
226 * of the file. The IO should not span ordered extents. If
227 * a given ordered_extent is completely done, 1 is returned, otherwise
228 * 0.
229 *
230 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
231 * to make sure this function only returns 1 once for a given ordered extent.
232 */
e6dcd2dc 233int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 234 struct btrfs_ordered_extent **cached,
e6dcd2dc 235 u64 file_offset, u64 io_size)
dc17ff8f 236{
e6dcd2dc 237 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 238 struct rb_node *node;
5a1a3df1 239 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
240 int ret;
241
242 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 243 spin_lock(&tree->lock);
e6dcd2dc 244 node = tree_search(tree, file_offset);
dc17ff8f 245 if (!node) {
e6dcd2dc
CM
246 ret = 1;
247 goto out;
dc17ff8f
CM
248 }
249
e6dcd2dc
CM
250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 if (!offset_in_entry(entry, file_offset)) {
252 ret = 1;
253 goto out;
dc17ff8f 254 }
e6dcd2dc 255
8b62b72b
CM
256 if (io_size > entry->bytes_left) {
257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry->bytes_left,
259 (unsigned long long)io_size);
260 }
261 entry->bytes_left -= io_size;
262 if (entry->bytes_left == 0)
e6dcd2dc 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
264 else
265 ret = 1;
e6dcd2dc 266out:
5a1a3df1
JB
267 if (!ret && cached && entry) {
268 *cached = entry;
269 atomic_inc(&entry->refs);
270 }
49958fd7 271 spin_unlock(&tree->lock);
e6dcd2dc
CM
272 return ret == 0;
273}
dc17ff8f 274
eb84ae03
CM
275/*
276 * used to drop a reference on an ordered extent. This will free
277 * the extent if the last reference is dropped
278 */
e6dcd2dc
CM
279int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
280{
ba1da2f4
CM
281 struct list_head *cur;
282 struct btrfs_ordered_sum *sum;
283
284 if (atomic_dec_and_test(&entry->refs)) {
d397712b 285 while (!list_empty(&entry->list)) {
ba1da2f4
CM
286 cur = entry->list.next;
287 sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 list_del(&sum->list);
289 kfree(sum);
290 }
e6dcd2dc 291 kfree(entry);
ba1da2f4 292 }
e6dcd2dc 293 return 0;
dc17ff8f 294}
cee36a03 295
eb84ae03
CM
296/*
297 * remove an ordered extent from the tree. No references are dropped
49958fd7 298 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 299 * while you call this function.
eb84ae03 300 */
c2167754 301static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 302 struct btrfs_ordered_extent *entry)
cee36a03 303{
e6dcd2dc 304 struct btrfs_ordered_inode_tree *tree;
cee36a03 305 struct rb_node *node;
cee36a03 306
e6dcd2dc 307 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 308 node = &entry->rb_node;
cee36a03 309 rb_erase(node, &tree->tree);
e6dcd2dc
CM
310 tree->last = NULL;
311 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 312
32c00aff
JB
313 spin_lock(&BTRFS_I(inode)->accounting_lock);
314 BTRFS_I(inode)->outstanding_extents--;
315 spin_unlock(&BTRFS_I(inode)->accounting_lock);
316 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
317 inode, 1);
318
3eaa2885
CM
319 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
320 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
321
322 /*
323 * we have no more ordered extents for this inode and
324 * no dirty pages. We can safely remove it from the
325 * list of ordered extents
326 */
327 if (RB_EMPTY_ROOT(&tree->tree) &&
328 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
329 list_del_init(&BTRFS_I(inode)->ordered_operations);
330 }
3eaa2885
CM
331 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
332
c2167754
YZ
333 return 0;
334}
335
336/*
337 * remove an ordered extent from the tree. No references are dropped
338 * but any waiters are woken.
339 */
340int btrfs_remove_ordered_extent(struct inode *inode,
341 struct btrfs_ordered_extent *entry)
342{
343 struct btrfs_ordered_inode_tree *tree;
344 int ret;
345
346 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 347 spin_lock(&tree->lock);
c2167754 348 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 349 spin_unlock(&tree->lock);
e6dcd2dc 350 wake_up(&entry->wait);
c2167754
YZ
351
352 return ret;
cee36a03
CM
353}
354
d352ac68
CM
355/*
356 * wait for all the ordered extents in a root. This is done when balancing
357 * space between drives.
358 */
24bbcf04
YZ
359int btrfs_wait_ordered_extents(struct btrfs_root *root,
360 int nocow_only, int delay_iput)
3eaa2885
CM
361{
362 struct list_head splice;
363 struct list_head *cur;
364 struct btrfs_ordered_extent *ordered;
365 struct inode *inode;
366
367 INIT_LIST_HEAD(&splice);
368
369 spin_lock(&root->fs_info->ordered_extent_lock);
370 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 371 while (!list_empty(&splice)) {
3eaa2885
CM
372 cur = splice.next;
373 ordered = list_entry(cur, struct btrfs_ordered_extent,
374 root_extent_list);
7ea394f1 375 if (nocow_only &&
d899e052
YZ
376 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
377 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
378 list_move(&ordered->root_extent_list,
379 &root->fs_info->ordered_extents);
7ea394f1
YZ
380 cond_resched_lock(&root->fs_info->ordered_extent_lock);
381 continue;
382 }
383
3eaa2885
CM
384 list_del_init(&ordered->root_extent_list);
385 atomic_inc(&ordered->refs);
3eaa2885
CM
386
387 /*
5b21f2ed 388 * the inode may be getting freed (in sys_unlink path).
3eaa2885 389 */
5b21f2ed
ZY
390 inode = igrab(ordered->inode);
391
3eaa2885
CM
392 spin_unlock(&root->fs_info->ordered_extent_lock);
393
5b21f2ed
ZY
394 if (inode) {
395 btrfs_start_ordered_extent(inode, ordered, 1);
396 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
397 if (delay_iput)
398 btrfs_add_delayed_iput(inode);
399 else
400 iput(inode);
5b21f2ed
ZY
401 } else {
402 btrfs_put_ordered_extent(ordered);
403 }
3eaa2885
CM
404
405 spin_lock(&root->fs_info->ordered_extent_lock);
406 }
407 spin_unlock(&root->fs_info->ordered_extent_lock);
408 return 0;
409}
410
5a3f23d5
CM
411/*
412 * this is used during transaction commit to write all the inodes
413 * added to the ordered operation list. These files must be fully on
414 * disk before the transaction commits.
415 *
416 * we have two modes here, one is to just start the IO via filemap_flush
417 * and the other is to wait for all the io. When we wait, we have an
418 * extra check to make sure the ordered operation list really is empty
419 * before we return
420 */
421int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
422{
423 struct btrfs_inode *btrfs_inode;
424 struct inode *inode;
425 struct list_head splice;
426
427 INIT_LIST_HEAD(&splice);
428
429 mutex_lock(&root->fs_info->ordered_operations_mutex);
430 spin_lock(&root->fs_info->ordered_extent_lock);
431again:
432 list_splice_init(&root->fs_info->ordered_operations, &splice);
433
434 while (!list_empty(&splice)) {
435 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
436 ordered_operations);
437
438 inode = &btrfs_inode->vfs_inode;
439
440 list_del_init(&btrfs_inode->ordered_operations);
441
442 /*
443 * the inode may be getting freed (in sys_unlink path).
444 */
445 inode = igrab(inode);
446
447 if (!wait && inode) {
448 list_add_tail(&BTRFS_I(inode)->ordered_operations,
449 &root->fs_info->ordered_operations);
450 }
451 spin_unlock(&root->fs_info->ordered_extent_lock);
452
453 if (inode) {
454 if (wait)
455 btrfs_wait_ordered_range(inode, 0, (u64)-1);
456 else
457 filemap_flush(inode->i_mapping);
24bbcf04 458 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
459 }
460
461 cond_resched();
462 spin_lock(&root->fs_info->ordered_extent_lock);
463 }
464 if (wait && !list_empty(&root->fs_info->ordered_operations))
465 goto again;
466
467 spin_unlock(&root->fs_info->ordered_extent_lock);
468 mutex_unlock(&root->fs_info->ordered_operations_mutex);
469
470 return 0;
471}
472
eb84ae03
CM
473/*
474 * Used to start IO or wait for a given ordered extent to finish.
475 *
476 * If wait is one, this effectively waits on page writeback for all the pages
477 * in the extent, and it waits on the io completion code to insert
478 * metadata into the btree corresponding to the extent
479 */
480void btrfs_start_ordered_extent(struct inode *inode,
481 struct btrfs_ordered_extent *entry,
482 int wait)
e6dcd2dc
CM
483{
484 u64 start = entry->file_offset;
485 u64 end = start + entry->len - 1;
e1b81e67 486
eb84ae03
CM
487 /*
488 * pages in the range can be dirty, clean or writeback. We
489 * start IO on any dirty ones so the wait doesn't stall waiting
490 * for pdflush to find them
491 */
8aa38c31 492 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 493 if (wait) {
e6dcd2dc
CM
494 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
495 &entry->flags));
c8b97818 496 }
e6dcd2dc 497}
cee36a03 498
eb84ae03
CM
499/*
500 * Used to wait on ordered extents across a large range of bytes.
501 */
cb843a6f 502int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
503{
504 u64 end;
e5a2217e
CM
505 u64 orig_end;
506 u64 wait_end;
e6dcd2dc 507 struct btrfs_ordered_extent *ordered;
8b62b72b 508 int found;
e5a2217e
CM
509
510 if (start + len < start) {
f421950f 511 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
512 } else {
513 orig_end = start + len - 1;
f421950f
CM
514 if (orig_end > INT_LIMIT(loff_t))
515 orig_end = INT_LIMIT(loff_t);
e5a2217e 516 }
f421950f 517 wait_end = orig_end;
4a096752 518again:
e5a2217e
CM
519 /* start IO across the range first to instantiate any delalloc
520 * extents
521 */
8aa38c31 522 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 523
771ed689
CM
524 /* The compression code will leave pages locked but return from
525 * writepage without setting the page writeback. Starting again
526 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
527 */
8aa38c31 528 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 529
8aa38c31 530 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 531
f421950f 532 end = orig_end;
8b62b72b 533 found = 0;
d397712b 534 while (1) {
e6dcd2dc 535 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 536 if (!ordered)
e6dcd2dc 537 break;
e5a2217e 538 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
539 btrfs_put_ordered_extent(ordered);
540 break;
541 }
542 if (ordered->file_offset + ordered->len < start) {
543 btrfs_put_ordered_extent(ordered);
544 break;
545 }
8b62b72b 546 found++;
e5a2217e 547 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
548 end = ordered->file_offset;
549 btrfs_put_ordered_extent(ordered);
e5a2217e 550 if (end == 0 || end == start)
e6dcd2dc
CM
551 break;
552 end--;
553 }
8b62b72b
CM
554 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
555 EXTENT_DELALLOC, 0, NULL)) {
771ed689 556 schedule_timeout(1);
4a096752
CM
557 goto again;
558 }
cb843a6f 559 return 0;
cee36a03
CM
560}
561
eb84ae03
CM
562/*
563 * find an ordered extent corresponding to file_offset. return NULL if
564 * nothing is found, otherwise take a reference on the extent and return it
565 */
e6dcd2dc
CM
566struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
567 u64 file_offset)
568{
569 struct btrfs_ordered_inode_tree *tree;
570 struct rb_node *node;
571 struct btrfs_ordered_extent *entry = NULL;
572
573 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 574 spin_lock(&tree->lock);
e6dcd2dc
CM
575 node = tree_search(tree, file_offset);
576 if (!node)
577 goto out;
578
579 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
580 if (!offset_in_entry(entry, file_offset))
581 entry = NULL;
582 if (entry)
583 atomic_inc(&entry->refs);
584out:
49958fd7 585 spin_unlock(&tree->lock);
e6dcd2dc
CM
586 return entry;
587}
588
eb84ae03
CM
589/*
590 * lookup and return any extent before 'file_offset'. NULL is returned
591 * if none is found
592 */
e6dcd2dc 593struct btrfs_ordered_extent *
d397712b 594btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
595{
596 struct btrfs_ordered_inode_tree *tree;
597 struct rb_node *node;
598 struct btrfs_ordered_extent *entry = NULL;
599
600 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 601 spin_lock(&tree->lock);
e6dcd2dc
CM
602 node = tree_search(tree, file_offset);
603 if (!node)
604 goto out;
605
606 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
607 atomic_inc(&entry->refs);
608out:
49958fd7 609 spin_unlock(&tree->lock);
e6dcd2dc 610 return entry;
81d7ed29 611}
dbe674a9 612
eb84ae03
CM
613/*
614 * After an extent is done, call this to conditionally update the on disk
615 * i_size. i_size is updated to cover any fully written part of the file.
616 */
c2167754 617int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
618 struct btrfs_ordered_extent *ordered)
619{
620 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
621 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
622 u64 disk_i_size;
623 u64 new_i_size;
624 u64 i_size_test;
c2167754 625 u64 i_size = i_size_read(inode);
dbe674a9 626 struct rb_node *node;
c2167754 627 struct rb_node *prev = NULL;
dbe674a9 628 struct btrfs_ordered_extent *test;
c2167754
YZ
629 int ret = 1;
630
631 if (ordered)
632 offset = entry_end(ordered);
a038fab0
YZ
633 else
634 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 635
49958fd7 636 spin_lock(&tree->lock);
dbe674a9
CM
637 disk_i_size = BTRFS_I(inode)->disk_i_size;
638
c2167754
YZ
639 /* truncate file */
640 if (disk_i_size > i_size) {
641 BTRFS_I(inode)->disk_i_size = i_size;
642 ret = 0;
643 goto out;
644 }
645
dbe674a9
CM
646 /*
647 * if the disk i_size is already at the inode->i_size, or
648 * this ordered extent is inside the disk i_size, we're done
649 */
c2167754 650 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
651 goto out;
652 }
653
654 /*
655 * we can't update the disk_isize if there are delalloc bytes
656 * between disk_i_size and this ordered extent
657 */
c2167754 658 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 659 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
660 goto out;
661 }
662 /*
663 * walk backward from this ordered extent to disk_i_size.
664 * if we find an ordered extent then we can't update disk i_size
665 * yet
666 */
c2167754
YZ
667 if (ordered) {
668 node = rb_prev(&ordered->rb_node);
669 } else {
670 prev = tree_search(tree, offset);
671 /*
672 * we insert file extents without involving ordered struct,
673 * so there should be no ordered struct cover this offset
674 */
675 if (prev) {
676 test = rb_entry(prev, struct btrfs_ordered_extent,
677 rb_node);
678 BUG_ON(offset_in_entry(test, offset));
679 }
680 node = prev;
681 }
682 while (node) {
dbe674a9
CM
683 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
684 if (test->file_offset + test->len <= disk_i_size)
685 break;
c2167754 686 if (test->file_offset >= i_size)
dbe674a9
CM
687 break;
688 if (test->file_offset >= disk_i_size)
689 goto out;
c2167754 690 node = rb_prev(node);
dbe674a9 691 }
c2167754 692 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
693
694 /*
695 * at this point, we know we can safely update i_size to at least
696 * the offset from this ordered extent. But, we need to
697 * walk forward and see if ios from higher up in the file have
698 * finished.
699 */
c2167754
YZ
700 if (ordered) {
701 node = rb_next(&ordered->rb_node);
702 } else {
703 if (prev)
704 node = rb_next(prev);
705 else
706 node = rb_first(&tree->tree);
707 }
dbe674a9
CM
708 i_size_test = 0;
709 if (node) {
710 /*
711 * do we have an area where IO might have finished
712 * between our ordered extent and the next one.
713 */
714 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 715 if (test->file_offset > offset)
b48652c1 716 i_size_test = test->file_offset;
dbe674a9 717 } else {
c2167754 718 i_size_test = i_size;
dbe674a9
CM
719 }
720
721 /*
722 * i_size_test is the end of a region after this ordered
723 * extent where there are no ordered extents. As long as there
724 * are no delalloc bytes in this area, it is safe to update
725 * disk_i_size to the end of the region.
726 */
c2167754
YZ
727 if (i_size_test > offset &&
728 !test_range_bit(io_tree, offset, i_size_test - 1,
729 EXTENT_DELALLOC, 0, NULL)) {
730 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
731 }
732 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 733 ret = 0;
dbe674a9 734out:
c2167754
YZ
735 /*
736 * we need to remove the ordered extent with the tree lock held
737 * so that other people calling this function don't find our fully
738 * processed ordered entry and skip updating the i_size
739 */
740 if (ordered)
741 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 742 spin_unlock(&tree->lock);
c2167754
YZ
743 if (ordered)
744 wake_up(&ordered->wait);
745 return ret;
dbe674a9 746}
ba1da2f4 747
eb84ae03
CM
748/*
749 * search the ordered extents for one corresponding to 'offset' and
750 * try to find a checksum. This is used because we allow pages to
751 * be reclaimed before their checksum is actually put into the btree
752 */
d20f7043
CM
753int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
754 u32 *sum)
ba1da2f4
CM
755{
756 struct btrfs_ordered_sum *ordered_sum;
757 struct btrfs_sector_sum *sector_sums;
758 struct btrfs_ordered_extent *ordered;
759 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
760 unsigned long num_sectors;
761 unsigned long i;
762 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 763 int ret = 1;
ba1da2f4
CM
764
765 ordered = btrfs_lookup_ordered_extent(inode, offset);
766 if (!ordered)
767 return 1;
768
49958fd7 769 spin_lock(&tree->lock);
c6e30871 770 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 771 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 772 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 773 sector_sums = ordered_sum->sums;
3edf7d33 774 for (i = 0; i < num_sectors; i++) {
d20f7043 775 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
776 *sum = sector_sums[i].sum;
777 ret = 0;
778 goto out;
779 }
780 }
ba1da2f4
CM
781 }
782 }
783out:
49958fd7 784 spin_unlock(&tree->lock);
89642229 785 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
786 return ret;
787}
788
f421950f 789
5a3f23d5
CM
790/*
791 * add a given inode to the list of inodes that must be fully on
792 * disk before a transaction commit finishes.
793 *
794 * This basically gives us the ext3 style data=ordered mode, and it is mostly
795 * used to make sure renamed files are fully on disk.
796 *
797 * It is a noop if the inode is already fully on disk.
798 *
799 * If trans is not null, we'll do a friendly check for a transaction that
800 * is already flushing things and force the IO down ourselves.
801 */
802int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
803 struct btrfs_root *root,
804 struct inode *inode)
805{
806 u64 last_mod;
807
808 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
809
810 /*
811 * if this file hasn't been changed since the last transaction
812 * commit, we can safely return without doing anything
813 */
814 if (last_mod < root->fs_info->last_trans_committed)
815 return 0;
816
817 /*
818 * the transaction is already committing. Just start the IO and
819 * don't bother with all of this list nonsense
820 */
821 if (trans && root->fs_info->running_transaction->blocked) {
822 btrfs_wait_ordered_range(inode, 0, (u64)-1);
823 return 0;
824 }
825
826 spin_lock(&root->fs_info->ordered_extent_lock);
827 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
828 list_add_tail(&BTRFS_I(inode)->ordered_operations,
829 &root->fs_info->ordered_operations);
830 }
831 spin_unlock(&root->fs_info->ordered_extent_lock);
832
833 return 0;
834}