]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/inode.c
Btrfs: Add btrfs_duplicate_item
[net-next-2.6.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194fail:
195 btrfs_free_path(path);
196 return err;
197}
198
199
200/*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
7f366cfe 205static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210{
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
70b99e69 224 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
c8b97818 233 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
a1ed835e 244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818 426 extent_clear_unlock_delalloc(inode,
a791e35e
CM
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 430 EXTENT_CLEAR_DELALLOC |
32c00aff 431 EXTENT_CLEAR_ACCOUNTING |
a791e35e 432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c8b97818
CM
433 ret = 0;
434 goto free_pages_out;
435 }
436 }
437
438 if (will_compress) {
439 /*
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
442 * things
443 */
444 total_compressed = (total_compressed + blocksize - 1) &
445 ~(blocksize - 1);
446
447 /*
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
450 */
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
454 will_compress = 0;
455 } else {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
458 }
459 }
460 if (!will_compress && pages) {
461 /*
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
464 */
465 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 466 WARN_ON(pages[i]->mapping);
c8b97818
CM
467 page_cache_release(pages[i]);
468 }
469 kfree(pages);
470 pages = NULL;
471 total_compressed = 0;
472 nr_pages_ret = 0;
473
474 /* flag the file so we don't compress in the future */
6cbff00f 475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 476 }
771ed689
CM
477 if (will_compress) {
478 *num_added += 1;
c8b97818 479
771ed689
CM
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
483 */
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
179e29e4 486
42dc7bab 487 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
488 start += num_bytes;
489 pages = NULL;
490 cond_resched();
491 goto again;
492 }
493 } else {
f03d9301 494cleanup_and_bail_uncompressed:
771ed689
CM
495 /*
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
501 */
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
506 }
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 *num_added += 1;
509 }
3b951516 510
771ed689
CM
511out:
512 return 0;
513
514free_pages_out:
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
518 }
d397712b 519 kfree(pages);
771ed689
CM
520
521 goto out;
522}
523
524/*
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
529 */
530static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
532{
533 struct async_extent *async_extent;
534 u64 alloc_hint = 0;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
f5a84ee3 541 int ret = 0;
771ed689
CM
542
543 if (list_empty(&async_cow->extents))
544 return 0;
545
546 trans = btrfs_join_transaction(root, 1);
547
d397712b 548 while (!list_empty(&async_cow->extents)) {
771ed689
CM
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
c8b97818 552
771ed689
CM
553 io_tree = &BTRFS_I(inode)->io_tree;
554
f5a84ee3 555retry:
771ed689
CM
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent->pages) {
558 int page_started = 0;
559 unsigned long nr_written = 0;
560
561 lock_extent(io_tree, async_extent->start,
d397712b
CM
562 async_extent->start +
563 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
564
565 /* allocate blocks */
f5a84ee3
JB
566 ret = cow_file_range(inode, async_cow->locked_page,
567 async_extent->start,
568 async_extent->start +
569 async_extent->ram_size - 1,
570 &page_started, &nr_written, 0);
771ed689
CM
571
572 /*
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
577 */
f5a84ee3 578 if (!page_started && !ret)
771ed689
CM
579 extent_write_locked_range(io_tree,
580 inode, async_extent->start,
d397712b 581 async_extent->start +
771ed689
CM
582 async_extent->ram_size - 1,
583 btrfs_get_extent,
584 WB_SYNC_ALL);
585 kfree(async_extent);
586 cond_resched();
587 continue;
588 }
589
590 lock_extent(io_tree, async_extent->start,
591 async_extent->start + async_extent->ram_size - 1,
592 GFP_NOFS);
c8b97818 593 /*
771ed689
CM
594 * here we're doing allocation and writeback of the
595 * compressed pages
c8b97818 596 */
771ed689
CM
597 btrfs_drop_extent_cache(inode, async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1, 0);
600
601 ret = btrfs_reserve_extent(trans, root,
602 async_extent->compressed_size,
603 async_extent->compressed_size,
604 0, alloc_hint,
605 (u64)-1, &ins, 1);
f5a84ee3
JB
606 if (ret) {
607 int i;
608 for (i = 0; i < async_extent->nr_pages; i++) {
609 WARN_ON(async_extent->pages[i]->mapping);
610 page_cache_release(async_extent->pages[i]);
611 }
612 kfree(async_extent->pages);
613 async_extent->nr_pages = 0;
614 async_extent->pages = NULL;
615 unlock_extent(io_tree, async_extent->start,
616 async_extent->start +
617 async_extent->ram_size - 1, GFP_NOFS);
618 goto retry;
619 }
620
771ed689
CM
621 em = alloc_extent_map(GFP_NOFS);
622 em->start = async_extent->start;
623 em->len = async_extent->ram_size;
445a6944 624 em->orig_start = em->start;
c8b97818 625
771ed689
CM
626 em->block_start = ins.objectid;
627 em->block_len = ins.offset;
628 em->bdev = root->fs_info->fs_devices->latest_bdev;
629 set_bit(EXTENT_FLAG_PINNED, &em->flags);
630 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
631
d397712b 632 while (1) {
890871be 633 write_lock(&em_tree->lock);
771ed689 634 ret = add_extent_mapping(em_tree, em);
890871be 635 write_unlock(&em_tree->lock);
771ed689
CM
636 if (ret != -EEXIST) {
637 free_extent_map(em);
638 break;
639 }
640 btrfs_drop_extent_cache(inode, async_extent->start,
641 async_extent->start +
642 async_extent->ram_size - 1, 0);
643 }
644
645 ret = btrfs_add_ordered_extent(inode, async_extent->start,
646 ins.objectid,
647 async_extent->ram_size,
648 ins.offset,
649 BTRFS_ORDERED_COMPRESSED);
650 BUG_ON(ret);
651
652 btrfs_end_transaction(trans, root);
653
654 /*
655 * clear dirty, set writeback and unlock the pages.
656 */
657 extent_clear_unlock_delalloc(inode,
a791e35e
CM
658 &BTRFS_I(inode)->io_tree,
659 async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1,
662 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
663 EXTENT_CLEAR_UNLOCK |
a3429ab7 664 EXTENT_CLEAR_DELALLOC |
a791e35e 665 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
666
667 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
668 async_extent->start,
669 async_extent->ram_size,
670 ins.objectid,
671 ins.offset, async_extent->pages,
672 async_extent->nr_pages);
771ed689
CM
673
674 BUG_ON(ret);
675 trans = btrfs_join_transaction(root, 1);
676 alloc_hint = ins.objectid + ins.offset;
677 kfree(async_extent);
678 cond_resched();
679 }
680
681 btrfs_end_transaction(trans, root);
682 return 0;
683}
684
685/*
686 * when extent_io.c finds a delayed allocation range in the file,
687 * the call backs end up in this code. The basic idea is to
688 * allocate extents on disk for the range, and create ordered data structs
689 * in ram to track those extents.
690 *
691 * locked_page is the page that writepage had locked already. We use
692 * it to make sure we don't do extra locks or unlocks.
693 *
694 * *page_started is set to one if we unlock locked_page and do everything
695 * required to start IO on it. It may be clean and already done with
696 * IO when we return.
697 */
698static noinline int cow_file_range(struct inode *inode,
699 struct page *locked_page,
700 u64 start, u64 end, int *page_started,
701 unsigned long *nr_written,
702 int unlock)
703{
704 struct btrfs_root *root = BTRFS_I(inode)->root;
705 struct btrfs_trans_handle *trans;
706 u64 alloc_hint = 0;
707 u64 num_bytes;
708 unsigned long ram_size;
709 u64 disk_num_bytes;
710 u64 cur_alloc_size;
711 u64 blocksize = root->sectorsize;
712 u64 actual_end;
42dc7bab 713 u64 isize = i_size_read(inode);
771ed689
CM
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 int ret = 0;
718
719 trans = btrfs_join_transaction(root, 1);
720 BUG_ON(!trans);
721 btrfs_set_trans_block_group(trans, inode);
722
42dc7bab 723 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
724
725 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
726 num_bytes = max(blocksize, num_bytes);
727 disk_num_bytes = num_bytes;
728 ret = 0;
729
730 if (start == 0) {
731 /* lets try to make an inline extent */
732 ret = cow_file_range_inline(trans, root, inode,
733 start, end, 0, NULL);
734 if (ret == 0) {
735 extent_clear_unlock_delalloc(inode,
a791e35e
CM
736 &BTRFS_I(inode)->io_tree,
737 start, end, NULL,
738 EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
740 EXTENT_CLEAR_DELALLOC |
32c00aff 741 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
742 EXTENT_CLEAR_DIRTY |
743 EXTENT_SET_WRITEBACK |
744 EXTENT_END_WRITEBACK);
771ed689
CM
745 *nr_written = *nr_written +
746 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
747 *page_started = 1;
748 ret = 0;
749 goto out;
750 }
751 }
752
753 BUG_ON(disk_num_bytes >
754 btrfs_super_total_bytes(&root->fs_info->super_copy));
755
b917b7c3
CM
756
757 read_lock(&BTRFS_I(inode)->extent_tree.lock);
758 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
759 start, num_bytes);
760 if (em) {
6346c939
JB
761 /*
762 * if block start isn't an actual block number then find the
763 * first block in this inode and use that as a hint. If that
764 * block is also bogus then just don't worry about it.
765 */
766 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
767 free_extent_map(em);
768 em = search_extent_mapping(em_tree, 0, 0);
769 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
770 alloc_hint = em->block_start;
771 if (em)
772 free_extent_map(em);
773 } else {
774 alloc_hint = em->block_start;
775 free_extent_map(em);
776 }
b917b7c3
CM
777 }
778 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
779 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
780
d397712b 781 while (disk_num_bytes > 0) {
a791e35e
CM
782 unsigned long op;
783
c8b97818 784 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 785 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 786 root->sectorsize, 0, alloc_hint,
e6dcd2dc 787 (u64)-1, &ins, 1);
d397712b
CM
788 BUG_ON(ret);
789
e6dcd2dc
CM
790 em = alloc_extent_map(GFP_NOFS);
791 em->start = start;
445a6944 792 em->orig_start = em->start;
771ed689
CM
793 ram_size = ins.offset;
794 em->len = ins.offset;
c8b97818 795
e6dcd2dc 796 em->block_start = ins.objectid;
c8b97818 797 em->block_len = ins.offset;
e6dcd2dc 798 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 799 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 800
d397712b 801 while (1) {
890871be 802 write_lock(&em_tree->lock);
e6dcd2dc 803 ret = add_extent_mapping(em_tree, em);
890871be 804 write_unlock(&em_tree->lock);
e6dcd2dc
CM
805 if (ret != -EEXIST) {
806 free_extent_map(em);
807 break;
808 }
809 btrfs_drop_extent_cache(inode, start,
c8b97818 810 start + ram_size - 1, 0);
e6dcd2dc
CM
811 }
812
98d20f67 813 cur_alloc_size = ins.offset;
e6dcd2dc 814 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 815 ram_size, cur_alloc_size, 0);
e6dcd2dc 816 BUG_ON(ret);
c8b97818 817
17d217fe
YZ
818 if (root->root_key.objectid ==
819 BTRFS_DATA_RELOC_TREE_OBJECTID) {
820 ret = btrfs_reloc_clone_csums(inode, start,
821 cur_alloc_size);
822 BUG_ON(ret);
823 }
824
d397712b 825 if (disk_num_bytes < cur_alloc_size)
3b951516 826 break;
d397712b 827
c8b97818
CM
828 /* we're not doing compressed IO, don't unlock the first
829 * page (which the caller expects to stay locked), don't
830 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
831 *
832 * Do set the Private2 bit so we know this page was properly
833 * setup for writepage
c8b97818 834 */
a791e35e
CM
835 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
836 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
837 EXTENT_SET_PRIVATE2;
838
c8b97818
CM
839 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
840 start, start + ram_size - 1,
a791e35e 841 locked_page, op);
c8b97818 842 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
843 num_bytes -= cur_alloc_size;
844 alloc_hint = ins.objectid + ins.offset;
845 start += cur_alloc_size;
b888db2b 846 }
b888db2b 847out:
771ed689 848 ret = 0;
b888db2b 849 btrfs_end_transaction(trans, root);
c8b97818 850
be20aa9d 851 return ret;
771ed689 852}
c8b97818 853
771ed689
CM
854/*
855 * work queue call back to started compression on a file and pages
856 */
857static noinline void async_cow_start(struct btrfs_work *work)
858{
859 struct async_cow *async_cow;
860 int num_added = 0;
861 async_cow = container_of(work, struct async_cow, work);
862
863 compress_file_range(async_cow->inode, async_cow->locked_page,
864 async_cow->start, async_cow->end, async_cow,
865 &num_added);
866 if (num_added == 0)
867 async_cow->inode = NULL;
868}
869
870/*
871 * work queue call back to submit previously compressed pages
872 */
873static noinline void async_cow_submit(struct btrfs_work *work)
874{
875 struct async_cow *async_cow;
876 struct btrfs_root *root;
877 unsigned long nr_pages;
878
879 async_cow = container_of(work, struct async_cow, work);
880
881 root = async_cow->root;
882 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
883 PAGE_CACHE_SHIFT;
884
885 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
886
887 if (atomic_read(&root->fs_info->async_delalloc_pages) <
888 5 * 1042 * 1024 &&
889 waitqueue_active(&root->fs_info->async_submit_wait))
890 wake_up(&root->fs_info->async_submit_wait);
891
d397712b 892 if (async_cow->inode)
771ed689 893 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 894}
c8b97818 895
771ed689
CM
896static noinline void async_cow_free(struct btrfs_work *work)
897{
898 struct async_cow *async_cow;
899 async_cow = container_of(work, struct async_cow, work);
900 kfree(async_cow);
901}
902
903static int cow_file_range_async(struct inode *inode, struct page *locked_page,
904 u64 start, u64 end, int *page_started,
905 unsigned long *nr_written)
906{
907 struct async_cow *async_cow;
908 struct btrfs_root *root = BTRFS_I(inode)->root;
909 unsigned long nr_pages;
910 u64 cur_end;
911 int limit = 10 * 1024 * 1042;
912
a3429ab7
CM
913 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
914 1, 0, NULL, GFP_NOFS);
d397712b 915 while (start < end) {
771ed689
CM
916 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
917 async_cow->inode = inode;
918 async_cow->root = root;
919 async_cow->locked_page = locked_page;
920 async_cow->start = start;
921
6cbff00f 922 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
923 cur_end = end;
924 else
925 cur_end = min(end, start + 512 * 1024 - 1);
926
927 async_cow->end = cur_end;
928 INIT_LIST_HEAD(&async_cow->extents);
929
930 async_cow->work.func = async_cow_start;
931 async_cow->work.ordered_func = async_cow_submit;
932 async_cow->work.ordered_free = async_cow_free;
933 async_cow->work.flags = 0;
934
771ed689
CM
935 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
936 PAGE_CACHE_SHIFT;
937 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
938
939 btrfs_queue_worker(&root->fs_info->delalloc_workers,
940 &async_cow->work);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
943 wait_event(root->fs_info->async_submit_wait,
944 (atomic_read(&root->fs_info->async_delalloc_pages) <
945 limit));
946 }
947
d397712b 948 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
949 atomic_read(&root->fs_info->async_delalloc_pages)) {
950 wait_event(root->fs_info->async_submit_wait,
951 (atomic_read(&root->fs_info->async_delalloc_pages) ==
952 0));
953 }
954
955 *nr_written += nr_pages;
956 start = cur_end + 1;
957 }
958 *page_started = 1;
959 return 0;
be20aa9d
CM
960}
961
d397712b 962static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
963 u64 bytenr, u64 num_bytes)
964{
965 int ret;
966 struct btrfs_ordered_sum *sums;
967 LIST_HEAD(list);
968
07d400a6
YZ
969 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
970 bytenr + num_bytes - 1, &list);
17d217fe
YZ
971 if (ret == 0 && list_empty(&list))
972 return 0;
973
974 while (!list_empty(&list)) {
975 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
976 list_del(&sums->list);
977 kfree(sums);
978 }
979 return 1;
980}
981
d352ac68
CM
982/*
983 * when nowcow writeback call back. This checks for snapshots or COW copies
984 * of the extents that exist in the file, and COWs the file as required.
985 *
986 * If no cow copies or snapshots exist, we write directly to the existing
987 * blocks on disk
988 */
7f366cfe
CM
989static noinline int run_delalloc_nocow(struct inode *inode,
990 struct page *locked_page,
771ed689
CM
991 u64 start, u64 end, int *page_started, int force,
992 unsigned long *nr_written)
be20aa9d 993{
be20aa9d 994 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 995 struct btrfs_trans_handle *trans;
be20aa9d 996 struct extent_buffer *leaf;
be20aa9d 997 struct btrfs_path *path;
80ff3856 998 struct btrfs_file_extent_item *fi;
be20aa9d 999 struct btrfs_key found_key;
80ff3856
YZ
1000 u64 cow_start;
1001 u64 cur_offset;
1002 u64 extent_end;
5d4f98a2 1003 u64 extent_offset;
80ff3856
YZ
1004 u64 disk_bytenr;
1005 u64 num_bytes;
1006 int extent_type;
1007 int ret;
d899e052 1008 int type;
80ff3856
YZ
1009 int nocow;
1010 int check_prev = 1;
be20aa9d
CM
1011
1012 path = btrfs_alloc_path();
1013 BUG_ON(!path);
7ea394f1
YZ
1014 trans = btrfs_join_transaction(root, 1);
1015 BUG_ON(!trans);
be20aa9d 1016
80ff3856
YZ
1017 cow_start = (u64)-1;
1018 cur_offset = start;
1019 while (1) {
1020 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1021 cur_offset, 0);
1022 BUG_ON(ret < 0);
1023 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1024 leaf = path->nodes[0];
1025 btrfs_item_key_to_cpu(leaf, &found_key,
1026 path->slots[0] - 1);
1027 if (found_key.objectid == inode->i_ino &&
1028 found_key.type == BTRFS_EXTENT_DATA_KEY)
1029 path->slots[0]--;
1030 }
1031 check_prev = 0;
1032next_slot:
1033 leaf = path->nodes[0];
1034 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1035 ret = btrfs_next_leaf(root, path);
1036 if (ret < 0)
1037 BUG_ON(1);
1038 if (ret > 0)
1039 break;
1040 leaf = path->nodes[0];
1041 }
be20aa9d 1042
80ff3856
YZ
1043 nocow = 0;
1044 disk_bytenr = 0;
17d217fe 1045 num_bytes = 0;
80ff3856
YZ
1046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1047
1048 if (found_key.objectid > inode->i_ino ||
1049 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1050 found_key.offset > end)
1051 break;
1052
1053 if (found_key.offset > cur_offset) {
1054 extent_end = found_key.offset;
e9061e21 1055 extent_type = 0;
80ff3856
YZ
1056 goto out_check;
1057 }
1058
1059 fi = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1061 extent_type = btrfs_file_extent_type(leaf, fi);
1062
d899e052
YZ
1063 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1064 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1065 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1066 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1067 extent_end = found_key.offset +
1068 btrfs_file_extent_num_bytes(leaf, fi);
1069 if (extent_end <= start) {
1070 path->slots[0]++;
1071 goto next_slot;
1072 }
17d217fe
YZ
1073 if (disk_bytenr == 0)
1074 goto out_check;
80ff3856
YZ
1075 if (btrfs_file_extent_compression(leaf, fi) ||
1076 btrfs_file_extent_encryption(leaf, fi) ||
1077 btrfs_file_extent_other_encoding(leaf, fi))
1078 goto out_check;
d899e052
YZ
1079 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1080 goto out_check;
d2fb3437 1081 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1082 goto out_check;
17d217fe 1083 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1084 found_key.offset -
1085 extent_offset, disk_bytenr))
17d217fe 1086 goto out_check;
5d4f98a2 1087 disk_bytenr += extent_offset;
17d217fe
YZ
1088 disk_bytenr += cur_offset - found_key.offset;
1089 num_bytes = min(end + 1, extent_end) - cur_offset;
1090 /*
1091 * force cow if csum exists in the range.
1092 * this ensure that csum for a given extent are
1093 * either valid or do not exist.
1094 */
1095 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1096 goto out_check;
80ff3856
YZ
1097 nocow = 1;
1098 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1099 extent_end = found_key.offset +
1100 btrfs_file_extent_inline_len(leaf, fi);
1101 extent_end = ALIGN(extent_end, root->sectorsize);
1102 } else {
1103 BUG_ON(1);
1104 }
1105out_check:
1106 if (extent_end <= start) {
1107 path->slots[0]++;
1108 goto next_slot;
1109 }
1110 if (!nocow) {
1111 if (cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 cur_offset = extent_end;
1114 if (cur_offset > end)
1115 break;
1116 path->slots[0]++;
1117 goto next_slot;
7ea394f1
YZ
1118 }
1119
1120 btrfs_release_path(root, path);
80ff3856
YZ
1121 if (cow_start != (u64)-1) {
1122 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1123 found_key.offset - 1, page_started,
1124 nr_written, 1);
80ff3856
YZ
1125 BUG_ON(ret);
1126 cow_start = (u64)-1;
7ea394f1 1127 }
80ff3856 1128
d899e052
YZ
1129 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1130 struct extent_map *em;
1131 struct extent_map_tree *em_tree;
1132 em_tree = &BTRFS_I(inode)->extent_tree;
1133 em = alloc_extent_map(GFP_NOFS);
1134 em->start = cur_offset;
445a6944 1135 em->orig_start = em->start;
d899e052
YZ
1136 em->len = num_bytes;
1137 em->block_len = num_bytes;
1138 em->block_start = disk_bytenr;
1139 em->bdev = root->fs_info->fs_devices->latest_bdev;
1140 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1141 while (1) {
890871be 1142 write_lock(&em_tree->lock);
d899e052 1143 ret = add_extent_mapping(em_tree, em);
890871be 1144 write_unlock(&em_tree->lock);
d899e052
YZ
1145 if (ret != -EEXIST) {
1146 free_extent_map(em);
1147 break;
1148 }
1149 btrfs_drop_extent_cache(inode, em->start,
1150 em->start + em->len - 1, 0);
1151 }
1152 type = BTRFS_ORDERED_PREALLOC;
1153 } else {
1154 type = BTRFS_ORDERED_NOCOW;
1155 }
80ff3856
YZ
1156
1157 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1158 num_bytes, num_bytes, type);
1159 BUG_ON(ret);
771ed689 1160
d899e052 1161 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1162 cur_offset, cur_offset + num_bytes - 1,
1163 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1164 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1165 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1166 cur_offset = extent_end;
1167 if (cur_offset > end)
1168 break;
be20aa9d 1169 }
80ff3856
YZ
1170 btrfs_release_path(root, path);
1171
1172 if (cur_offset <= end && cow_start == (u64)-1)
1173 cow_start = cur_offset;
1174 if (cow_start != (u64)-1) {
1175 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1176 page_started, nr_written, 1);
80ff3856
YZ
1177 BUG_ON(ret);
1178 }
1179
1180 ret = btrfs_end_transaction(trans, root);
1181 BUG_ON(ret);
7ea394f1 1182 btrfs_free_path(path);
80ff3856 1183 return 0;
be20aa9d
CM
1184}
1185
d352ac68
CM
1186/*
1187 * extent_io.c call back to do delayed allocation processing
1188 */
c8b97818 1189static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1190 u64 start, u64 end, int *page_started,
1191 unsigned long *nr_written)
be20aa9d 1192{
be20aa9d 1193 int ret;
7f366cfe 1194 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1195
6cbff00f 1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1197 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1198 page_started, 1, nr_written);
6cbff00f 1199 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1200 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1201 page_started, 0, nr_written);
7f366cfe
CM
1202 else if (!btrfs_test_opt(root, COMPRESS))
1203 ret = cow_file_range(inode, locked_page, start, end,
1204 page_started, nr_written, 1);
be20aa9d 1205 else
771ed689 1206 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1207 page_started, nr_written);
b888db2b
CM
1208 return ret;
1209}
1210
9ed74f2d
JB
1211static int btrfs_split_extent_hook(struct inode *inode,
1212 struct extent_state *orig, u64 split)
1213{
1214 struct btrfs_root *root = BTRFS_I(inode)->root;
1215 u64 size;
1216
1217 if (!(orig->state & EXTENT_DELALLOC))
1218 return 0;
1219
1220 size = orig->end - orig->start + 1;
1221 if (size > root->fs_info->max_extent) {
1222 u64 num_extents;
1223 u64 new_size;
1224
1225 new_size = orig->end - split + 1;
1226 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1227 root->fs_info->max_extent);
1228
1229 /*
32c00aff
JB
1230 * if we break a large extent up then leave oustanding_extents
1231 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1232 */
1233 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1234 root->fs_info->max_extent) < num_extents)
1235 return 0;
1236 }
1237
32c00aff
JB
1238 spin_lock(&BTRFS_I(inode)->accounting_lock);
1239 BTRFS_I(inode)->outstanding_extents++;
1240 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1241
1242 return 0;
1243}
1244
1245/*
1246 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1247 * extents so we can keep track of new extents that are just merged onto old
1248 * extents, such as when we are doing sequential writes, so we can properly
1249 * account for the metadata space we'll need.
1250 */
1251static int btrfs_merge_extent_hook(struct inode *inode,
1252 struct extent_state *new,
1253 struct extent_state *other)
1254{
1255 struct btrfs_root *root = BTRFS_I(inode)->root;
1256 u64 new_size, old_size;
1257 u64 num_extents;
1258
1259 /* not delalloc, ignore it */
1260 if (!(other->state & EXTENT_DELALLOC))
1261 return 0;
1262
1263 old_size = other->end - other->start + 1;
1264 if (new->start < other->start)
1265 new_size = other->end - new->start + 1;
1266 else
1267 new_size = new->end - other->start + 1;
1268
1269 /* we're not bigger than the max, unreserve the space and go */
1270 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1271 spin_lock(&BTRFS_I(inode)->accounting_lock);
1272 BTRFS_I(inode)->outstanding_extents--;
1273 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1274 return 0;
1275 }
1276
1277 /*
1278 * If we grew by another max_extent, just return, we want to keep that
1279 * reserved amount.
1280 */
1281 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1282 root->fs_info->max_extent);
1283 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1284 root->fs_info->max_extent) > num_extents)
1285 return 0;
1286
32c00aff
JB
1287 spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 BTRFS_I(inode)->outstanding_extents--;
1289 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1290
1291 return 0;
1292}
1293
d352ac68
CM
1294/*
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1298 */
b2950863 1299static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1300 unsigned long old, unsigned long bits)
291d673e 1301{
9ed74f2d 1302
75eff68e
CM
1303 /*
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1307 */
b0c68f8b 1308 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1309 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1310
32c00aff
JB
1311 spin_lock(&BTRFS_I(inode)->accounting_lock);
1312 BTRFS_I(inode)->outstanding_extents++;
1313 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1314 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1315 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1316 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1317 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1318 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 &root->fs_info->delalloc_inodes);
1321 }
75eff68e 1322 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1323 }
1324 return 0;
1325}
1326
d352ac68
CM
1327/*
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1329 */
9ed74f2d
JB
1330static int btrfs_clear_bit_hook(struct inode *inode,
1331 struct extent_state *state, unsigned long bits)
291d673e 1332{
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1337 */
9ed74f2d 1338 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1340
32c00aff
JB
1341 if (bits & EXTENT_DO_ACCOUNTING) {
1342 spin_lock(&BTRFS_I(inode)->accounting_lock);
1343 BTRFS_I(inode)->outstanding_extents--;
1344 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1345 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1346 }
9ed74f2d 1347
75eff68e 1348 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1349 if (state->end - state->start + 1 >
1350 root->fs_info->delalloc_bytes) {
d397712b
CM
1351 printk(KERN_INFO "btrfs warning: delalloc account "
1352 "%llu %llu\n",
9ed74f2d
JB
1353 (unsigned long long)
1354 state->end - state->start + 1,
d397712b
CM
1355 (unsigned long long)
1356 root->fs_info->delalloc_bytes);
6a63209f 1357 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1358 root->fs_info->delalloc_bytes = 0;
9069218d 1359 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1360 } else {
6a63209f 1361 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1362 state->end -
1363 state->start + 1);
1364 root->fs_info->delalloc_bytes -= state->end -
1365 state->start + 1;
1366 BTRFS_I(inode)->delalloc_bytes -= state->end -
1367 state->start + 1;
b0c68f8b 1368 }
ea8c2819
CM
1369 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1370 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1371 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1372 }
75eff68e 1373 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1374 }
1375 return 0;
1376}
1377
d352ac68
CM
1378/*
1379 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1380 * we don't create bios that span stripes or chunks
1381 */
239b14b3 1382int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1383 size_t size, struct bio *bio,
1384 unsigned long bio_flags)
239b14b3
CM
1385{
1386 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1387 struct btrfs_mapping_tree *map_tree;
a62b9401 1388 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1389 u64 length = 0;
1390 u64 map_length;
239b14b3
CM
1391 int ret;
1392
771ed689
CM
1393 if (bio_flags & EXTENT_BIO_COMPRESSED)
1394 return 0;
1395
f2d8d74d 1396 length = bio->bi_size;
239b14b3
CM
1397 map_tree = &root->fs_info->mapping_tree;
1398 map_length = length;
cea9e445 1399 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1400 &map_length, NULL, 0);
cea9e445 1401
d397712b 1402 if (map_length < length + size)
239b14b3 1403 return 1;
239b14b3
CM
1404 return 0;
1405}
1406
d352ac68
CM
1407/*
1408 * in order to insert checksums into the metadata in large chunks,
1409 * we wait until bio submission time. All the pages in the bio are
1410 * checksummed and sums are attached onto the ordered extent record.
1411 *
1412 * At IO completion time the cums attached on the ordered extent record
1413 * are inserted into the btree
1414 */
d397712b
CM
1415static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1416 struct bio *bio, int mirror_num,
1417 unsigned long bio_flags)
065631f6 1418{
065631f6 1419 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1420 int ret = 0;
e015640f 1421
d20f7043 1422 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1423 BUG_ON(ret);
4a69a410
CM
1424 return 0;
1425}
e015640f 1426
4a69a410
CM
1427/*
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1431 *
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1434 */
b2950863 1435static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1436 int mirror_num, unsigned long bio_flags)
1437{
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1440}
1441
d352ac68 1442/*
cad321ad
CM
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
d352ac68 1445 */
b2950863 1446static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1447 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1448{
1449 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 int ret = 0;
19b9bdb0 1451 int skip_sum;
44b8bd7e 1452
6cbff00f 1453 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1454
e6dcd2dc
CM
1455 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1456 BUG_ON(ret);
065631f6 1457
4d1b5fb4 1458 if (!(rw & (1 << BIO_RW))) {
d20f7043 1459 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1460 return btrfs_submit_compressed_read(inode, bio,
1461 mirror_num, bio_flags);
d20f7043
CM
1462 } else if (!skip_sum)
1463 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1464 goto mapit;
19b9bdb0 1465 } else if (!skip_sum) {
17d217fe
YZ
1466 /* csum items have already been cloned */
1467 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1468 goto mapit;
19b9bdb0
CM
1469 /* we're doing a write, do the async checksumming */
1470 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1471 inode, rw, bio, mirror_num,
4a69a410
CM
1472 bio_flags, __btrfs_submit_bio_start,
1473 __btrfs_submit_bio_done);
19b9bdb0
CM
1474 }
1475
0b86a832 1476mapit:
8b712842 1477 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1478}
6885f308 1479
d352ac68
CM
1480/*
1481 * given a list of ordered sums record them in the inode. This happens
1482 * at IO completion time based on sums calculated at bio submission time.
1483 */
ba1da2f4 1484static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1485 struct inode *inode, u64 file_offset,
1486 struct list_head *list)
1487{
e6dcd2dc
CM
1488 struct btrfs_ordered_sum *sum;
1489
1490 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1491
1492 list_for_each_entry(sum, list, list) {
d20f7043
CM
1493 btrfs_csum_file_blocks(trans,
1494 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1495 }
1496 return 0;
1497}
1498
ea8c2819
CM
1499int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1500{
d397712b 1501 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1502 WARN_ON(1);
ea8c2819
CM
1503 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504 GFP_NOFS);
1505}
1506
d352ac68 1507/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1508struct btrfs_writepage_fixup {
1509 struct page *page;
1510 struct btrfs_work work;
1511};
1512
b2950863 1513static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1514{
1515 struct btrfs_writepage_fixup *fixup;
1516 struct btrfs_ordered_extent *ordered;
1517 struct page *page;
1518 struct inode *inode;
1519 u64 page_start;
1520 u64 page_end;
1521
1522 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523 page = fixup->page;
4a096752 1524again:
247e743c
CM
1525 lock_page(page);
1526 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 ClearPageChecked(page);
1528 goto out_page;
1529 }
1530
1531 inode = page->mapping->host;
1532 page_start = page_offset(page);
1533 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1534
1535 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1536
1537 /* already ordered? We're done */
8b62b72b 1538 if (PagePrivate2(page))
247e743c 1539 goto out;
4a096752
CM
1540
1541 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1542 if (ordered) {
1543 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1544 page_end, GFP_NOFS);
1545 unlock_page(page);
1546 btrfs_start_ordered_extent(inode, ordered, 1);
1547 goto again;
1548 }
247e743c 1549
ea8c2819 1550 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1551 ClearPageChecked(page);
1552out:
1553 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1554out_page:
1555 unlock_page(page);
1556 page_cache_release(page);
1557}
1558
1559/*
1560 * There are a few paths in the higher layers of the kernel that directly
1561 * set the page dirty bit without asking the filesystem if it is a
1562 * good idea. This causes problems because we want to make sure COW
1563 * properly happens and the data=ordered rules are followed.
1564 *
c8b97818 1565 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1566 * hasn't been properly setup for IO. We kick off an async process
1567 * to fix it up. The async helper will wait for ordered extents, set
1568 * the delalloc bit and make it safe to write the page.
1569 */
b2950863 1570static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1571{
1572 struct inode *inode = page->mapping->host;
1573 struct btrfs_writepage_fixup *fixup;
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1575
8b62b72b
CM
1576 /* this page is properly in the ordered list */
1577 if (TestClearPagePrivate2(page))
247e743c
CM
1578 return 0;
1579
1580 if (PageChecked(page))
1581 return -EAGAIN;
1582
1583 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1584 if (!fixup)
1585 return -EAGAIN;
f421950f 1586
247e743c
CM
1587 SetPageChecked(page);
1588 page_cache_get(page);
1589 fixup->work.func = btrfs_writepage_fixup_worker;
1590 fixup->page = page;
1591 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1592 return -EAGAIN;
1593}
1594
d899e052
YZ
1595static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1596 struct inode *inode, u64 file_pos,
1597 u64 disk_bytenr, u64 disk_num_bytes,
1598 u64 num_bytes, u64 ram_bytes,
e980b50c 1599 u64 locked_end,
d899e052
YZ
1600 u8 compression, u8 encryption,
1601 u16 other_encoding, int extent_type)
1602{
1603 struct btrfs_root *root = BTRFS_I(inode)->root;
1604 struct btrfs_file_extent_item *fi;
1605 struct btrfs_path *path;
1606 struct extent_buffer *leaf;
1607 struct btrfs_key ins;
1608 u64 hint;
1609 int ret;
1610
1611 path = btrfs_alloc_path();
1612 BUG_ON(!path);
1613
b9473439 1614 path->leave_spinning = 1;
a1ed835e
CM
1615
1616 /*
1617 * we may be replacing one extent in the tree with another.
1618 * The new extent is pinned in the extent map, and we don't want
1619 * to drop it from the cache until it is completely in the btree.
1620 *
1621 * So, tell btrfs_drop_extents to leave this extent in the cache.
1622 * the caller is expected to unpin it and allow it to be merged
1623 * with the others.
1624 */
d899e052 1625 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1626 file_pos + num_bytes, locked_end,
a1ed835e 1627 file_pos, &hint, 0);
d899e052
YZ
1628 BUG_ON(ret);
1629
1630 ins.objectid = inode->i_ino;
1631 ins.offset = file_pos;
1632 ins.type = BTRFS_EXTENT_DATA_KEY;
1633 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1634 BUG_ON(ret);
1635 leaf = path->nodes[0];
1636 fi = btrfs_item_ptr(leaf, path->slots[0],
1637 struct btrfs_file_extent_item);
1638 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1639 btrfs_set_file_extent_type(leaf, fi, extent_type);
1640 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1641 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1642 btrfs_set_file_extent_offset(leaf, fi, 0);
1643 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1644 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1645 btrfs_set_file_extent_compression(leaf, fi, compression);
1646 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1647 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1648
1649 btrfs_unlock_up_safe(path, 1);
1650 btrfs_set_lock_blocking(leaf);
1651
d899e052
YZ
1652 btrfs_mark_buffer_dirty(leaf);
1653
1654 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1655
1656 ins.objectid = disk_bytenr;
1657 ins.offset = disk_num_bytes;
1658 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1659 ret = btrfs_alloc_reserved_file_extent(trans, root,
1660 root->root_key.objectid,
1661 inode->i_ino, file_pos, &ins);
d899e052 1662 BUG_ON(ret);
d899e052 1663 btrfs_free_path(path);
b9473439 1664
d899e052
YZ
1665 return 0;
1666}
1667
5d13a98f
CM
1668/*
1669 * helper function for btrfs_finish_ordered_io, this
1670 * just reads in some of the csum leaves to prime them into ram
1671 * before we start the transaction. It limits the amount of btree
1672 * reads required while inside the transaction.
1673 */
1674static noinline void reada_csum(struct btrfs_root *root,
1675 struct btrfs_path *path,
1676 struct btrfs_ordered_extent *ordered_extent)
1677{
1678 struct btrfs_ordered_sum *sum;
1679 u64 bytenr;
1680
1681 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1682 list);
1683 bytenr = sum->sums[0].bytenr;
1684
1685 /*
1686 * we don't care about the results, the point of this search is
1687 * just to get the btree leaves into ram
1688 */
1689 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1690}
1691
d352ac68
CM
1692/* as ordered data IO finishes, this gets called so we can finish
1693 * an ordered extent if the range of bytes in the file it covers are
1694 * fully written.
1695 */
211f90e6 1696static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1697{
e6dcd2dc
CM
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 struct btrfs_trans_handle *trans;
5d13a98f 1700 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1702 struct btrfs_path *path;
d899e052 1703 int compressed = 0;
e6dcd2dc
CM
1704 int ret;
1705
1706 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1707 if (!ret)
e6dcd2dc 1708 return 0;
e6dcd2dc 1709
b7ec40d7
CM
1710 /*
1711 * before we join the transaction, try to do some of our IO.
1712 * This will limit the amount of IO that we have to do with
1713 * the transaction running. We're unlikely to need to do any
1714 * IO if the file extents are new, the disk_i_size checks
1715 * covers the most common case.
1716 */
1717 if (start < BTRFS_I(inode)->disk_i_size) {
1718 path = btrfs_alloc_path();
1719 if (path) {
1720 ret = btrfs_lookup_file_extent(NULL, root, path,
1721 inode->i_ino,
1722 start, 0);
5d13a98f
CM
1723 ordered_extent = btrfs_lookup_ordered_extent(inode,
1724 start);
1725 if (!list_empty(&ordered_extent->list)) {
1726 btrfs_release_path(root, path);
1727 reada_csum(root, path, ordered_extent);
1728 }
b7ec40d7
CM
1729 btrfs_free_path(path);
1730 }
1731 }
1732
f9295749 1733 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1734
5d13a98f
CM
1735 if (!ordered_extent)
1736 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1737 BUG_ON(!ordered_extent);
7ea394f1
YZ
1738 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1739 goto nocow;
e6dcd2dc
CM
1740
1741 lock_extent(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1743 GFP_NOFS);
1744
c8b97818 1745 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1746 compressed = 1;
1747 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1748 BUG_ON(compressed);
1749 ret = btrfs_mark_extent_written(trans, root, inode,
1750 ordered_extent->file_offset,
1751 ordered_extent->file_offset +
1752 ordered_extent->len);
1753 BUG_ON(ret);
1754 } else {
1755 ret = insert_reserved_file_extent(trans, inode,
1756 ordered_extent->file_offset,
1757 ordered_extent->start,
1758 ordered_extent->disk_len,
1759 ordered_extent->len,
1760 ordered_extent->len,
e980b50c
CM
1761 ordered_extent->file_offset +
1762 ordered_extent->len,
d899e052
YZ
1763 compressed, 0, 0,
1764 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1765 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1766 ordered_extent->file_offset,
1767 ordered_extent->len);
d899e052
YZ
1768 BUG_ON(ret);
1769 }
e6dcd2dc
CM
1770 unlock_extent(io_tree, ordered_extent->file_offset,
1771 ordered_extent->file_offset + ordered_extent->len - 1,
1772 GFP_NOFS);
7ea394f1 1773nocow:
e6dcd2dc
CM
1774 add_pending_csums(trans, inode, ordered_extent->file_offset,
1775 &ordered_extent->list);
1776
34353029 1777 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1778 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1779 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1780 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1781 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1782
e6dcd2dc
CM
1783 /* once for us */
1784 btrfs_put_ordered_extent(ordered_extent);
1785 /* once for the tree */
1786 btrfs_put_ordered_extent(ordered_extent);
1787
e6dcd2dc
CM
1788 btrfs_end_transaction(trans, root);
1789 return 0;
1790}
1791
b2950863 1792static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1793 struct extent_state *state, int uptodate)
1794{
8b62b72b 1795 ClearPagePrivate2(page);
211f90e6
CM
1796 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1797}
1798
d352ac68
CM
1799/*
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1806 */
7e38326f
CM
1807struct io_failure_record {
1808 struct page *page;
1809 u64 start;
1810 u64 len;
1811 u64 logical;
d20f7043 1812 unsigned long bio_flags;
7e38326f
CM
1813 int last_mirror;
1814};
1815
b2950863 1816static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1817 struct page *page, u64 start, u64 end,
1818 struct extent_state *state)
7e38326f
CM
1819{
1820 struct io_failure_record *failrec = NULL;
1821 u64 private;
1822 struct extent_map *em;
1823 struct inode *inode = page->mapping->host;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1826 struct bio *bio;
1827 int num_copies;
1828 int ret;
1259ab75 1829 int rw;
7e38326f
CM
1830 u64 logical;
1831
1832 ret = get_state_private(failure_tree, start, &private);
1833 if (ret) {
7e38326f
CM
1834 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1835 if (!failrec)
1836 return -ENOMEM;
1837 failrec->start = start;
1838 failrec->len = end - start + 1;
1839 failrec->last_mirror = 0;
d20f7043 1840 failrec->bio_flags = 0;
7e38326f 1841
890871be 1842 read_lock(&em_tree->lock);
3b951516
CM
1843 em = lookup_extent_mapping(em_tree, start, failrec->len);
1844 if (em->start > start || em->start + em->len < start) {
1845 free_extent_map(em);
1846 em = NULL;
1847 }
890871be 1848 read_unlock(&em_tree->lock);
7e38326f
CM
1849
1850 if (!em || IS_ERR(em)) {
1851 kfree(failrec);
1852 return -EIO;
1853 }
1854 logical = start - em->start;
1855 logical = em->block_start + logical;
d20f7043
CM
1856 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1857 logical = em->block_start;
1858 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1859 }
7e38326f
CM
1860 failrec->logical = logical;
1861 free_extent_map(em);
1862 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1863 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1864 set_state_private(failure_tree, start,
1865 (u64)(unsigned long)failrec);
7e38326f 1866 } else {
587f7704 1867 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1868 }
1869 num_copies = btrfs_num_copies(
1870 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1871 failrec->logical, failrec->len);
1872 failrec->last_mirror++;
1873 if (!state) {
cad321ad 1874 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1875 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1876 failrec->start,
1877 EXTENT_LOCKED);
1878 if (state && state->start != failrec->start)
1879 state = NULL;
cad321ad 1880 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1881 }
1882 if (!state || failrec->last_mirror > num_copies) {
1883 set_state_private(failure_tree, failrec->start, 0);
1884 clear_extent_bits(failure_tree, failrec->start,
1885 failrec->start + failrec->len - 1,
1886 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1887 kfree(failrec);
1888 return -EIO;
1889 }
1890 bio = bio_alloc(GFP_NOFS, 1);
1891 bio->bi_private = state;
1892 bio->bi_end_io = failed_bio->bi_end_io;
1893 bio->bi_sector = failrec->logical >> 9;
1894 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1895 bio->bi_size = 0;
d20f7043 1896
7e38326f 1897 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1898 if (failed_bio->bi_rw & (1 << BIO_RW))
1899 rw = WRITE;
1900 else
1901 rw = READ;
1902
1903 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1904 failrec->last_mirror,
d20f7043 1905 failrec->bio_flags);
1259ab75
CM
1906 return 0;
1907}
1908
d352ac68
CM
1909/*
1910 * each time an IO finishes, we do a fast check in the IO failure tree
1911 * to see if we need to process or clean up an io_failure_record
1912 */
b2950863 1913static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1914{
1915 u64 private;
1916 u64 private_failure;
1917 struct io_failure_record *failure;
1918 int ret;
1919
1920 private = 0;
1921 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1922 (u64)-1, 1, EXTENT_DIRTY)) {
1923 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1924 start, &private_failure);
1925 if (ret == 0) {
1926 failure = (struct io_failure_record *)(unsigned long)
1927 private_failure;
1928 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 failure->start, 0);
1930 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1931 failure->start,
1932 failure->start + failure->len - 1,
1933 EXTENT_DIRTY | EXTENT_LOCKED,
1934 GFP_NOFS);
1935 kfree(failure);
1936 }
1937 }
7e38326f
CM
1938 return 0;
1939}
1940
d352ac68
CM
1941/*
1942 * when reads are done, we need to check csums to verify the data is correct
1943 * if there's a match, we allow the bio to finish. If not, we go through
1944 * the io_failure_record routines to find good copies
1945 */
b2950863 1946static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1947 struct extent_state *state)
07157aac 1948{
35ebb934 1949 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1950 struct inode *inode = page->mapping->host;
d1310b2e 1951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1952 char *kaddr;
aadfeb6e 1953 u64 private = ~(u32)0;
07157aac 1954 int ret;
ff79f819
CM
1955 struct btrfs_root *root = BTRFS_I(inode)->root;
1956 u32 csum = ~(u32)0;
d1310b2e 1957
d20f7043
CM
1958 if (PageChecked(page)) {
1959 ClearPageChecked(page);
1960 goto good;
1961 }
6cbff00f
CH
1962
1963 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1964 return 0;
1965
1966 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1967 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1968 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1969 GFP_NOFS);
b6cda9bc 1970 return 0;
17d217fe 1971 }
d20f7043 1972
c2e639f0 1973 if (state && state->start == start) {
70dec807
CM
1974 private = state->private;
1975 ret = 0;
1976 } else {
1977 ret = get_state_private(io_tree, start, &private);
1978 }
9ab86c8e 1979 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1980 if (ret)
07157aac 1981 goto zeroit;
d397712b 1982
ff79f819
CM
1983 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1984 btrfs_csum_final(csum, (char *)&csum);
d397712b 1985 if (csum != private)
07157aac 1986 goto zeroit;
d397712b 1987
9ab86c8e 1988 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1989good:
7e38326f
CM
1990 /* if the io failure tree for this inode is non-empty,
1991 * check to see if we've recovered from a failed IO
1992 */
1259ab75 1993 btrfs_clean_io_failures(inode, start);
07157aac
CM
1994 return 0;
1995
1996zeroit:
193f284d
CM
1997 if (printk_ratelimit()) {
1998 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1999 "private %llu\n", page->mapping->host->i_ino,
2000 (unsigned long long)start, csum,
2001 (unsigned long long)private);
2002 }
db94535d
CM
2003 memset(kaddr + offset, 1, end - start + 1);
2004 flush_dcache_page(page);
9ab86c8e 2005 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2006 if (private == 0)
2007 return 0;
7e38326f 2008 return -EIO;
07157aac 2009}
b888db2b 2010
7b128766
JB
2011/*
2012 * This creates an orphan entry for the given inode in case something goes
2013 * wrong in the middle of an unlink/truncate.
2014 */
2015int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2016{
2017 struct btrfs_root *root = BTRFS_I(inode)->root;
2018 int ret = 0;
2019
bcc63abb 2020 spin_lock(&root->list_lock);
7b128766
JB
2021
2022 /* already on the orphan list, we're good */
2023 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2024 spin_unlock(&root->list_lock);
7b128766
JB
2025 return 0;
2026 }
2027
2028 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2029
bcc63abb 2030 spin_unlock(&root->list_lock);
7b128766
JB
2031
2032 /*
2033 * insert an orphan item to track this unlinked/truncated file
2034 */
2035 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2036
2037 return ret;
2038}
2039
2040/*
2041 * We have done the truncate/delete so we can go ahead and remove the orphan
2042 * item for this particular inode.
2043 */
2044int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2045{
2046 struct btrfs_root *root = BTRFS_I(inode)->root;
2047 int ret = 0;
2048
bcc63abb 2049 spin_lock(&root->list_lock);
7b128766
JB
2050
2051 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2052 spin_unlock(&root->list_lock);
7b128766
JB
2053 return 0;
2054 }
2055
2056 list_del_init(&BTRFS_I(inode)->i_orphan);
2057 if (!trans) {
bcc63abb 2058 spin_unlock(&root->list_lock);
7b128766
JB
2059 return 0;
2060 }
2061
bcc63abb 2062 spin_unlock(&root->list_lock);
7b128766
JB
2063
2064 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2065
2066 return ret;
2067}
2068
2069/*
2070 * this cleans up any orphans that may be left on the list from the last use
2071 * of this root.
2072 */
2073void btrfs_orphan_cleanup(struct btrfs_root *root)
2074{
2075 struct btrfs_path *path;
2076 struct extent_buffer *leaf;
2077 struct btrfs_item *item;
2078 struct btrfs_key key, found_key;
2079 struct btrfs_trans_handle *trans;
2080 struct inode *inode;
2081 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2082
7b128766
JB
2083 path = btrfs_alloc_path();
2084 if (!path)
2085 return;
2086 path->reada = -1;
2087
2088 key.objectid = BTRFS_ORPHAN_OBJECTID;
2089 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2090 key.offset = (u64)-1;
2091
7b128766
JB
2092
2093 while (1) {
2094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2095 if (ret < 0) {
2096 printk(KERN_ERR "Error searching slot for orphan: %d"
2097 "\n", ret);
2098 break;
2099 }
2100
2101 /*
2102 * if ret == 0 means we found what we were searching for, which
2103 * is weird, but possible, so only screw with path if we didnt
2104 * find the key and see if we have stuff that matches
2105 */
2106 if (ret > 0) {
2107 if (path->slots[0] == 0)
2108 break;
2109 path->slots[0]--;
2110 }
2111
2112 /* pull out the item */
2113 leaf = path->nodes[0];
2114 item = btrfs_item_nr(leaf, path->slots[0]);
2115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2116
2117 /* make sure the item matches what we want */
2118 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2119 break;
2120 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2121 break;
2122
2123 /* release the path since we're done with it */
2124 btrfs_release_path(root, path);
2125
2126 /*
2127 * this is where we are basically btrfs_lookup, without the
2128 * crossing root thing. we store the inode number in the
2129 * offset of the orphan item.
2130 */
5d4f98a2
YZ
2131 found_key.objectid = found_key.offset;
2132 found_key.type = BTRFS_INODE_ITEM_KEY;
2133 found_key.offset = 0;
2134 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2135 if (IS_ERR(inode))
7b128766
JB
2136 break;
2137
7b128766
JB
2138 /*
2139 * add this inode to the orphan list so btrfs_orphan_del does
2140 * the proper thing when we hit it
2141 */
bcc63abb 2142 spin_lock(&root->list_lock);
7b128766 2143 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2144 spin_unlock(&root->list_lock);
7b128766
JB
2145
2146 /*
2147 * if this is a bad inode, means we actually succeeded in
2148 * removing the inode, but not the orphan record, which means
2149 * we need to manually delete the orphan since iput will just
2150 * do a destroy_inode
2151 */
2152 if (is_bad_inode(inode)) {
5b21f2ed 2153 trans = btrfs_start_transaction(root, 1);
7b128766 2154 btrfs_orphan_del(trans, inode);
5b21f2ed 2155 btrfs_end_transaction(trans, root);
7b128766
JB
2156 iput(inode);
2157 continue;
2158 }
2159
2160 /* if we have links, this was a truncate, lets do that */
2161 if (inode->i_nlink) {
2162 nr_truncate++;
2163 btrfs_truncate(inode);
2164 } else {
2165 nr_unlink++;
2166 }
2167
2168 /* this will do delete_inode and everything for us */
2169 iput(inode);
2170 }
2171
2172 if (nr_unlink)
2173 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2174 if (nr_truncate)
2175 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2176
2177 btrfs_free_path(path);
7b128766
JB
2178}
2179
46a53cca
CM
2180/*
2181 * very simple check to peek ahead in the leaf looking for xattrs. If we
2182 * don't find any xattrs, we know there can't be any acls.
2183 *
2184 * slot is the slot the inode is in, objectid is the objectid of the inode
2185 */
2186static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2187 int slot, u64 objectid)
2188{
2189 u32 nritems = btrfs_header_nritems(leaf);
2190 struct btrfs_key found_key;
2191 int scanned = 0;
2192
2193 slot++;
2194 while (slot < nritems) {
2195 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2196
2197 /* we found a different objectid, there must not be acls */
2198 if (found_key.objectid != objectid)
2199 return 0;
2200
2201 /* we found an xattr, assume we've got an acl */
2202 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2203 return 1;
2204
2205 /*
2206 * we found a key greater than an xattr key, there can't
2207 * be any acls later on
2208 */
2209 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2210 return 0;
2211
2212 slot++;
2213 scanned++;
2214
2215 /*
2216 * it goes inode, inode backrefs, xattrs, extents,
2217 * so if there are a ton of hard links to an inode there can
2218 * be a lot of backrefs. Don't waste time searching too hard,
2219 * this is just an optimization
2220 */
2221 if (scanned >= 8)
2222 break;
2223 }
2224 /* we hit the end of the leaf before we found an xattr or
2225 * something larger than an xattr. We have to assume the inode
2226 * has acls
2227 */
2228 return 1;
2229}
2230
d352ac68
CM
2231/*
2232 * read an inode from the btree into the in-memory inode
2233 */
5d4f98a2 2234static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2235{
2236 struct btrfs_path *path;
5f39d397 2237 struct extent_buffer *leaf;
39279cc3 2238 struct btrfs_inode_item *inode_item;
0b86a832 2239 struct btrfs_timespec *tspec;
39279cc3
CM
2240 struct btrfs_root *root = BTRFS_I(inode)->root;
2241 struct btrfs_key location;
46a53cca 2242 int maybe_acls;
39279cc3 2243 u64 alloc_group_block;
618e21d5 2244 u32 rdev;
39279cc3
CM
2245 int ret;
2246
2247 path = btrfs_alloc_path();
2248 BUG_ON(!path);
39279cc3 2249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2250
39279cc3 2251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2252 if (ret)
39279cc3 2253 goto make_bad;
39279cc3 2254
5f39d397
CM
2255 leaf = path->nodes[0];
2256 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2257 struct btrfs_inode_item);
2258
2259 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2260 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2261 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2262 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2263 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2264
2265 tspec = btrfs_inode_atime(inode_item);
2266 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2267 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2268
2269 tspec = btrfs_inode_mtime(inode_item);
2270 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2271 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2272
2273 tspec = btrfs_inode_ctime(inode_item);
2274 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2275 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2276
a76a3cd4 2277 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2278 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2279 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2280 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2281 inode->i_rdev = 0;
5f39d397
CM
2282 rdev = btrfs_inode_rdev(leaf, inode_item);
2283
aec7477b 2284 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2285 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2286
5f39d397 2287 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2288
46a53cca
CM
2289 /*
2290 * try to precache a NULL acl entry for files that don't have
2291 * any xattrs or acls
2292 */
2293 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2294 if (!maybe_acls)
2295 cache_no_acl(inode);
46a53cca 2296
d2fb3437
YZ
2297 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2298 alloc_group_block, 0);
39279cc3
CM
2299 btrfs_free_path(path);
2300 inode_item = NULL;
2301
39279cc3 2302 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2303 case S_IFREG:
2304 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2306 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2307 inode->i_fop = &btrfs_file_operations;
2308 inode->i_op = &btrfs_file_inode_operations;
2309 break;
2310 case S_IFDIR:
2311 inode->i_fop = &btrfs_dir_file_operations;
2312 if (root == root->fs_info->tree_root)
2313 inode->i_op = &btrfs_dir_ro_inode_operations;
2314 else
2315 inode->i_op = &btrfs_dir_inode_operations;
2316 break;
2317 case S_IFLNK:
2318 inode->i_op = &btrfs_symlink_inode_operations;
2319 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2320 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2321 break;
618e21d5 2322 default:
0279b4cd 2323 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2324 init_special_inode(inode, inode->i_mode, rdev);
2325 break;
39279cc3 2326 }
6cbff00f
CH
2327
2328 btrfs_update_iflags(inode);
39279cc3
CM
2329 return;
2330
2331make_bad:
39279cc3 2332 btrfs_free_path(path);
39279cc3
CM
2333 make_bad_inode(inode);
2334}
2335
d352ac68
CM
2336/*
2337 * given a leaf and an inode, copy the inode fields into the leaf
2338 */
e02119d5
CM
2339static void fill_inode_item(struct btrfs_trans_handle *trans,
2340 struct extent_buffer *leaf,
5f39d397 2341 struct btrfs_inode_item *item,
39279cc3
CM
2342 struct inode *inode)
2343{
5f39d397
CM
2344 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2345 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2346 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2347 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2348 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2349
2350 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2351 inode->i_atime.tv_sec);
2352 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2353 inode->i_atime.tv_nsec);
2354
2355 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2356 inode->i_mtime.tv_sec);
2357 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2358 inode->i_mtime.tv_nsec);
2359
2360 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2361 inode->i_ctime.tv_sec);
2362 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2363 inode->i_ctime.tv_nsec);
2364
a76a3cd4 2365 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2366 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2367 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2368 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2369 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2370 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2371 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2372}
2373
d352ac68
CM
2374/*
2375 * copy everything in the in-memory inode into the btree.
2376 */
d397712b
CM
2377noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2379{
2380 struct btrfs_inode_item *inode_item;
2381 struct btrfs_path *path;
5f39d397 2382 struct extent_buffer *leaf;
39279cc3
CM
2383 int ret;
2384
2385 path = btrfs_alloc_path();
2386 BUG_ON(!path);
b9473439 2387 path->leave_spinning = 1;
39279cc3
CM
2388 ret = btrfs_lookup_inode(trans, root, path,
2389 &BTRFS_I(inode)->location, 1);
2390 if (ret) {
2391 if (ret > 0)
2392 ret = -ENOENT;
2393 goto failed;
2394 }
2395
b4ce94de 2396 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2397 leaf = path->nodes[0];
2398 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2399 struct btrfs_inode_item);
2400
e02119d5 2401 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2402 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2403 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2404 ret = 0;
2405failed:
39279cc3
CM
2406 btrfs_free_path(path);
2407 return ret;
2408}
2409
2410
d352ac68
CM
2411/*
2412 * unlink helper that gets used here in inode.c and in the tree logging
2413 * recovery code. It remove a link in a directory with a given name, and
2414 * also drops the back refs in the inode to the directory
2415 */
e02119d5
CM
2416int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct inode *dir, struct inode *inode,
2419 const char *name, int name_len)
39279cc3
CM
2420{
2421 struct btrfs_path *path;
39279cc3 2422 int ret = 0;
5f39d397 2423 struct extent_buffer *leaf;
39279cc3 2424 struct btrfs_dir_item *di;
5f39d397 2425 struct btrfs_key key;
aec7477b 2426 u64 index;
39279cc3
CM
2427
2428 path = btrfs_alloc_path();
54aa1f4d
CM
2429 if (!path) {
2430 ret = -ENOMEM;
2431 goto err;
2432 }
2433
b9473439 2434 path->leave_spinning = 1;
39279cc3
CM
2435 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2436 name, name_len, -1);
2437 if (IS_ERR(di)) {
2438 ret = PTR_ERR(di);
2439 goto err;
2440 }
2441 if (!di) {
2442 ret = -ENOENT;
2443 goto err;
2444 }
5f39d397
CM
2445 leaf = path->nodes[0];
2446 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2447 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2448 if (ret)
2449 goto err;
39279cc3
CM
2450 btrfs_release_path(root, path);
2451
aec7477b 2452 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2453 inode->i_ino,
2454 dir->i_ino, &index);
aec7477b 2455 if (ret) {
d397712b 2456 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2457 "inode %lu parent %lu\n", name_len, name,
e02119d5 2458 inode->i_ino, dir->i_ino);
aec7477b
JB
2459 goto err;
2460 }
2461
39279cc3 2462 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2463 index, name, name_len, -1);
39279cc3
CM
2464 if (IS_ERR(di)) {
2465 ret = PTR_ERR(di);
2466 goto err;
2467 }
2468 if (!di) {
2469 ret = -ENOENT;
2470 goto err;
2471 }
2472 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2473 btrfs_release_path(root, path);
39279cc3 2474
e02119d5
CM
2475 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2476 inode, dir->i_ino);
49eb7e46 2477 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2478
2479 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2480 dir, index);
2481 BUG_ON(ret);
39279cc3
CM
2482err:
2483 btrfs_free_path(path);
e02119d5
CM
2484 if (ret)
2485 goto out;
2486
2487 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2488 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2489 btrfs_update_inode(trans, root, dir);
2490 btrfs_drop_nlink(inode);
2491 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2492out:
39279cc3
CM
2493 return ret;
2494}
2495
2496static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2497{
2498 struct btrfs_root *root;
2499 struct btrfs_trans_handle *trans;
7b128766 2500 struct inode *inode = dentry->d_inode;
39279cc3 2501 int ret;
1832a6d5 2502 unsigned long nr = 0;
39279cc3
CM
2503
2504 root = BTRFS_I(dir)->root;
1832a6d5 2505
5df6a9f6
JB
2506 /*
2507 * 5 items for unlink inode
2508 * 1 for orphan
2509 */
2510 ret = btrfs_reserve_metadata_space(root, 6);
2511 if (ret)
2512 return ret;
2513
39279cc3 2514 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2515 if (IS_ERR(trans)) {
2516 btrfs_unreserve_metadata_space(root, 6);
2517 return PTR_ERR(trans);
2518 }
5f39d397 2519
39279cc3 2520 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2521
2522 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2523
e02119d5
CM
2524 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2525 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2526
2527 if (inode->i_nlink == 0)
2528 ret = btrfs_orphan_add(trans, inode);
2529
d3c2fdcf 2530 nr = trans->blocks_used;
5f39d397 2531
89ce8a63 2532 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2533 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2534 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2535 return ret;
2536}
2537
4df27c4d
YZ
2538int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *root,
2540 struct inode *dir, u64 objectid,
2541 const char *name, int name_len)
2542{
2543 struct btrfs_path *path;
2544 struct extent_buffer *leaf;
2545 struct btrfs_dir_item *di;
2546 struct btrfs_key key;
2547 u64 index;
2548 int ret;
2549
2550 path = btrfs_alloc_path();
2551 if (!path)
2552 return -ENOMEM;
2553
2554 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2555 name, name_len, -1);
2556 BUG_ON(!di || IS_ERR(di));
2557
2558 leaf = path->nodes[0];
2559 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2560 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2561 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2562 BUG_ON(ret);
2563 btrfs_release_path(root, path);
2564
2565 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2566 objectid, root->root_key.objectid,
2567 dir->i_ino, &index, name, name_len);
2568 if (ret < 0) {
2569 BUG_ON(ret != -ENOENT);
2570 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2571 name, name_len);
2572 BUG_ON(!di || IS_ERR(di));
2573
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 btrfs_release_path(root, path);
2577 index = key.offset;
2578 }
2579
2580 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2581 index, name, name_len, -1);
2582 BUG_ON(!di || IS_ERR(di));
2583
2584 leaf = path->nodes[0];
2585 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2586 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2587 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2588 BUG_ON(ret);
2589 btrfs_release_path(root, path);
2590
2591 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2592 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2593 ret = btrfs_update_inode(trans, root, dir);
2594 BUG_ON(ret);
2595 dir->i_sb->s_dirt = 1;
2596
2597 btrfs_free_path(path);
2598 return 0;
2599}
2600
39279cc3
CM
2601static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2602{
2603 struct inode *inode = dentry->d_inode;
1832a6d5 2604 int err = 0;
39279cc3
CM
2605 int ret;
2606 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2607 struct btrfs_trans_handle *trans;
1832a6d5 2608 unsigned long nr = 0;
39279cc3 2609
3394e160 2610 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2611 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2612 return -ENOTEMPTY;
2613
5df6a9f6
JB
2614 ret = btrfs_reserve_metadata_space(root, 5);
2615 if (ret)
2616 return ret;
2617
39279cc3 2618 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2619 if (IS_ERR(trans)) {
2620 btrfs_unreserve_metadata_space(root, 5);
2621 return PTR_ERR(trans);
2622 }
2623
39279cc3 2624 btrfs_set_trans_block_group(trans, dir);
39279cc3 2625
4df27c4d
YZ
2626 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2627 err = btrfs_unlink_subvol(trans, root, dir,
2628 BTRFS_I(inode)->location.objectid,
2629 dentry->d_name.name,
2630 dentry->d_name.len);
2631 goto out;
2632 }
2633
7b128766
JB
2634 err = btrfs_orphan_add(trans, inode);
2635 if (err)
4df27c4d 2636 goto out;
7b128766 2637
39279cc3 2638 /* now the directory is empty */
e02119d5
CM
2639 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2640 dentry->d_name.name, dentry->d_name.len);
d397712b 2641 if (!err)
dbe674a9 2642 btrfs_i_size_write(inode, 0);
4df27c4d 2643out:
d3c2fdcf 2644 nr = trans->blocks_used;
89ce8a63 2645 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2646 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2647 btrfs_btree_balance_dirty(root, nr);
3954401f 2648
39279cc3
CM
2649 if (ret && !err)
2650 err = ret;
2651 return err;
2652}
2653
d20f7043 2654#if 0
323ac95b
CM
2655/*
2656 * when truncating bytes in a file, it is possible to avoid reading
2657 * the leaves that contain only checksum items. This can be the
2658 * majority of the IO required to delete a large file, but it must
2659 * be done carefully.
2660 *
2661 * The keys in the level just above the leaves are checked to make sure
2662 * the lowest key in a given leaf is a csum key, and starts at an offset
2663 * after the new size.
2664 *
2665 * Then the key for the next leaf is checked to make sure it also has
2666 * a checksum item for the same file. If it does, we know our target leaf
2667 * contains only checksum items, and it can be safely freed without reading
2668 * it.
2669 *
2670 * This is just an optimization targeted at large files. It may do
2671 * nothing. It will return 0 unless things went badly.
2672 */
2673static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root,
2675 struct btrfs_path *path,
2676 struct inode *inode, u64 new_size)
2677{
2678 struct btrfs_key key;
2679 int ret;
2680 int nritems;
2681 struct btrfs_key found_key;
2682 struct btrfs_key other_key;
5b84e8d6
YZ
2683 struct btrfs_leaf_ref *ref;
2684 u64 leaf_gen;
2685 u64 leaf_start;
323ac95b
CM
2686
2687 path->lowest_level = 1;
2688 key.objectid = inode->i_ino;
2689 key.type = BTRFS_CSUM_ITEM_KEY;
2690 key.offset = new_size;
2691again:
2692 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2693 if (ret < 0)
2694 goto out;
2695
2696 if (path->nodes[1] == NULL) {
2697 ret = 0;
2698 goto out;
2699 }
2700 ret = 0;
2701 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2702 nritems = btrfs_header_nritems(path->nodes[1]);
2703
2704 if (!nritems)
2705 goto out;
2706
2707 if (path->slots[1] >= nritems)
2708 goto next_node;
2709
2710 /* did we find a key greater than anything we want to delete? */
2711 if (found_key.objectid > inode->i_ino ||
2712 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2713 goto out;
2714
2715 /* we check the next key in the node to make sure the leave contains
2716 * only checksum items. This comparison doesn't work if our
2717 * leaf is the last one in the node
2718 */
2719 if (path->slots[1] + 1 >= nritems) {
2720next_node:
2721 /* search forward from the last key in the node, this
2722 * will bring us into the next node in the tree
2723 */
2724 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2725
2726 /* unlikely, but we inc below, so check to be safe */
2727 if (found_key.offset == (u64)-1)
2728 goto out;
2729
2730 /* search_forward needs a path with locks held, do the
2731 * search again for the original key. It is possible
2732 * this will race with a balance and return a path that
2733 * we could modify, but this drop is just an optimization
2734 * and is allowed to miss some leaves.
2735 */
2736 btrfs_release_path(root, path);
2737 found_key.offset++;
2738
2739 /* setup a max key for search_forward */
2740 other_key.offset = (u64)-1;
2741 other_key.type = key.type;
2742 other_key.objectid = key.objectid;
2743
2744 path->keep_locks = 1;
2745 ret = btrfs_search_forward(root, &found_key, &other_key,
2746 path, 0, 0);
2747 path->keep_locks = 0;
2748 if (ret || found_key.objectid != key.objectid ||
2749 found_key.type != key.type) {
2750 ret = 0;
2751 goto out;
2752 }
2753
2754 key.offset = found_key.offset;
2755 btrfs_release_path(root, path);
2756 cond_resched();
2757 goto again;
2758 }
2759
2760 /* we know there's one more slot after us in the tree,
2761 * read that key so we can verify it is also a checksum item
2762 */
2763 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2764
2765 if (found_key.objectid < inode->i_ino)
2766 goto next_key;
2767
2768 if (found_key.type != key.type || found_key.offset < new_size)
2769 goto next_key;
2770
2771 /*
2772 * if the key for the next leaf isn't a csum key from this objectid,
2773 * we can't be sure there aren't good items inside this leaf.
2774 * Bail out
2775 */
2776 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2777 goto out;
2778
5b84e8d6
YZ
2779 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2780 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2781 /*
2782 * it is safe to delete this leaf, it contains only
2783 * csum items from this inode at an offset >= new_size
2784 */
5b84e8d6 2785 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2786 BUG_ON(ret);
2787
5b84e8d6
YZ
2788 if (root->ref_cows && leaf_gen < trans->transid) {
2789 ref = btrfs_alloc_leaf_ref(root, 0);
2790 if (ref) {
2791 ref->root_gen = root->root_key.offset;
2792 ref->bytenr = leaf_start;
2793 ref->owner = 0;
2794 ref->generation = leaf_gen;
2795 ref->nritems = 0;
2796
bd56b302
CM
2797 btrfs_sort_leaf_ref(ref);
2798
5b84e8d6
YZ
2799 ret = btrfs_add_leaf_ref(root, ref, 0);
2800 WARN_ON(ret);
2801 btrfs_free_leaf_ref(root, ref);
2802 } else {
2803 WARN_ON(1);
2804 }
2805 }
323ac95b
CM
2806next_key:
2807 btrfs_release_path(root, path);
2808
2809 if (other_key.objectid == inode->i_ino &&
2810 other_key.type == key.type && other_key.offset > key.offset) {
2811 key.offset = other_key.offset;
2812 cond_resched();
2813 goto again;
2814 }
2815 ret = 0;
2816out:
2817 /* fixup any changes we've made to the path */
2818 path->lowest_level = 0;
2819 path->keep_locks = 0;
2820 btrfs_release_path(root, path);
2821 return ret;
2822}
2823
d20f7043
CM
2824#endif
2825
39279cc3
CM
2826/*
2827 * this can truncate away extent items, csum items and directory items.
2828 * It starts at a high offset and removes keys until it can't find
d352ac68 2829 * any higher than new_size
39279cc3
CM
2830 *
2831 * csum items that cross the new i_size are truncated to the new size
2832 * as well.
7b128766
JB
2833 *
2834 * min_type is the minimum key type to truncate down to. If set to 0, this
2835 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2836 */
e02119d5
CM
2837noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root,
2839 struct inode *inode,
2840 u64 new_size, u32 min_type)
39279cc3
CM
2841{
2842 int ret;
2843 struct btrfs_path *path;
2844 struct btrfs_key key;
5f39d397 2845 struct btrfs_key found_key;
06d9a8d7 2846 u32 found_type = (u8)-1;
5f39d397 2847 struct extent_buffer *leaf;
39279cc3
CM
2848 struct btrfs_file_extent_item *fi;
2849 u64 extent_start = 0;
db94535d 2850 u64 extent_num_bytes = 0;
5d4f98a2 2851 u64 extent_offset = 0;
39279cc3
CM
2852 u64 item_end = 0;
2853 int found_extent;
2854 int del_item;
85e21bac
CM
2855 int pending_del_nr = 0;
2856 int pending_del_slot = 0;
179e29e4 2857 int extent_type = -1;
771ed689 2858 int encoding;
3b951516 2859 u64 mask = root->sectorsize - 1;
39279cc3 2860
e02119d5 2861 if (root->ref_cows)
5b21f2ed 2862 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2863 path = btrfs_alloc_path();
2864 BUG_ON(!path);
33c17ad5 2865 path->reada = -1;
5f39d397 2866
39279cc3
CM
2867 /* FIXME, add redo link to tree so we don't leak on crash */
2868 key.objectid = inode->i_ino;
2869 key.offset = (u64)-1;
5f39d397
CM
2870 key.type = (u8)-1;
2871
85e21bac 2872search_again:
b9473439 2873 path->leave_spinning = 1;
85e21bac 2874 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2875 if (ret < 0)
85e21bac 2876 goto error;
d397712b 2877
85e21bac 2878 if (ret > 0) {
e02119d5
CM
2879 /* there are no items in the tree for us to truncate, we're
2880 * done
2881 */
2882 if (path->slots[0] == 0) {
2883 ret = 0;
2884 goto error;
2885 }
85e21bac
CM
2886 path->slots[0]--;
2887 }
2888
d397712b 2889 while (1) {
39279cc3 2890 fi = NULL;
5f39d397
CM
2891 leaf = path->nodes[0];
2892 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2893 found_type = btrfs_key_type(&found_key);
771ed689 2894 encoding = 0;
39279cc3 2895
5f39d397 2896 if (found_key.objectid != inode->i_ino)
39279cc3 2897 break;
5f39d397 2898
85e21bac 2899 if (found_type < min_type)
39279cc3
CM
2900 break;
2901
5f39d397 2902 item_end = found_key.offset;
39279cc3 2903 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2904 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2905 struct btrfs_file_extent_item);
179e29e4 2906 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2907 encoding = btrfs_file_extent_compression(leaf, fi);
2908 encoding |= btrfs_file_extent_encryption(leaf, fi);
2909 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2910
179e29e4 2911 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2912 item_end +=
db94535d 2913 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2915 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2916 fi);
39279cc3 2917 }
008630c1 2918 item_end--;
39279cc3 2919 }
e02119d5 2920 if (item_end < new_size) {
d397712b 2921 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2922 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2923 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2924 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2925 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2926 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2927 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2928 found_type = BTRFS_INODE_REF_KEY;
d397712b 2929 else if (found_type)
b888db2b 2930 found_type--;
d397712b 2931 else
b888db2b 2932 break;
a61721d5 2933 btrfs_set_key_type(&key, found_type);
85e21bac 2934 goto next;
39279cc3 2935 }
e02119d5 2936 if (found_key.offset >= new_size)
39279cc3
CM
2937 del_item = 1;
2938 else
2939 del_item = 0;
2940 found_extent = 0;
2941
2942 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2943 if (found_type != BTRFS_EXTENT_DATA_KEY)
2944 goto delete;
2945
2946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2947 u64 num_dec;
db94535d 2948 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2949 if (!del_item && !encoding) {
db94535d
CM
2950 u64 orig_num_bytes =
2951 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2952 extent_num_bytes = new_size -
5f39d397 2953 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2954 extent_num_bytes = extent_num_bytes &
2955 ~((u64)root->sectorsize - 1);
db94535d
CM
2956 btrfs_set_file_extent_num_bytes(leaf, fi,
2957 extent_num_bytes);
2958 num_dec = (orig_num_bytes -
9069218d 2959 extent_num_bytes);
e02119d5 2960 if (root->ref_cows && extent_start != 0)
a76a3cd4 2961 inode_sub_bytes(inode, num_dec);
5f39d397 2962 btrfs_mark_buffer_dirty(leaf);
39279cc3 2963 } else {
db94535d
CM
2964 extent_num_bytes =
2965 btrfs_file_extent_disk_num_bytes(leaf,
2966 fi);
5d4f98a2
YZ
2967 extent_offset = found_key.offset -
2968 btrfs_file_extent_offset(leaf, fi);
2969
39279cc3 2970 /* FIXME blocksize != 4096 */
9069218d 2971 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2972 if (extent_start != 0) {
2973 found_extent = 1;
e02119d5 2974 if (root->ref_cows)
a76a3cd4 2975 inode_sub_bytes(inode, num_dec);
e02119d5 2976 }
39279cc3 2977 }
9069218d 2978 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2979 /*
2980 * we can't truncate inline items that have had
2981 * special encodings
2982 */
2983 if (!del_item &&
2984 btrfs_file_extent_compression(leaf, fi) == 0 &&
2985 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2986 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2987 u32 size = new_size - found_key.offset;
2988
2989 if (root->ref_cows) {
a76a3cd4
YZ
2990 inode_sub_bytes(inode, item_end + 1 -
2991 new_size);
e02119d5
CM
2992 }
2993 size =
2994 btrfs_file_extent_calc_inline_size(size);
9069218d 2995 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2996 size, 1);
9069218d 2997 BUG_ON(ret);
e02119d5 2998 } else if (root->ref_cows) {
a76a3cd4
YZ
2999 inode_sub_bytes(inode, item_end + 1 -
3000 found_key.offset);
9069218d 3001 }
39279cc3 3002 }
179e29e4 3003delete:
39279cc3 3004 if (del_item) {
85e21bac
CM
3005 if (!pending_del_nr) {
3006 /* no pending yet, add ourselves */
3007 pending_del_slot = path->slots[0];
3008 pending_del_nr = 1;
3009 } else if (pending_del_nr &&
3010 path->slots[0] + 1 == pending_del_slot) {
3011 /* hop on the pending chunk */
3012 pending_del_nr++;
3013 pending_del_slot = path->slots[0];
3014 } else {
d397712b 3015 BUG();
85e21bac 3016 }
39279cc3
CM
3017 } else {
3018 break;
3019 }
5d4f98a2 3020 if (found_extent && root->ref_cows) {
b9473439 3021 btrfs_set_path_blocking(path);
39279cc3 3022 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3023 extent_num_bytes, 0,
3024 btrfs_header_owner(leaf),
3025 inode->i_ino, extent_offset);
39279cc3
CM
3026 BUG_ON(ret);
3027 }
85e21bac
CM
3028next:
3029 if (path->slots[0] == 0) {
3030 if (pending_del_nr)
3031 goto del_pending;
3032 btrfs_release_path(root, path);
06d9a8d7
CM
3033 if (found_type == BTRFS_INODE_ITEM_KEY)
3034 break;
85e21bac
CM
3035 goto search_again;
3036 }
3037
3038 path->slots[0]--;
3039 if (pending_del_nr &&
3040 path->slots[0] + 1 != pending_del_slot) {
3041 struct btrfs_key debug;
3042del_pending:
3043 btrfs_item_key_to_cpu(path->nodes[0], &debug,
3044 pending_del_slot);
3045 ret = btrfs_del_items(trans, root, path,
3046 pending_del_slot,
3047 pending_del_nr);
3048 BUG_ON(ret);
3049 pending_del_nr = 0;
3050 btrfs_release_path(root, path);
06d9a8d7
CM
3051 if (found_type == BTRFS_INODE_ITEM_KEY)
3052 break;
85e21bac
CM
3053 goto search_again;
3054 }
39279cc3
CM
3055 }
3056 ret = 0;
3057error:
85e21bac
CM
3058 if (pending_del_nr) {
3059 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3060 pending_del_nr);
3061 }
39279cc3 3062 btrfs_free_path(path);
39279cc3
CM
3063 return ret;
3064}
3065
3066/*
3067 * taken from block_truncate_page, but does cow as it zeros out
3068 * any bytes left in the last page in the file.
3069 */
3070static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3071{
3072 struct inode *inode = mapping->host;
db94535d 3073 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3074 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3075 struct btrfs_ordered_extent *ordered;
3076 char *kaddr;
db94535d 3077 u32 blocksize = root->sectorsize;
39279cc3
CM
3078 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3079 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3080 struct page *page;
39279cc3 3081 int ret = 0;
a52d9a80 3082 u64 page_start;
e6dcd2dc 3083 u64 page_end;
39279cc3
CM
3084
3085 if ((offset & (blocksize - 1)) == 0)
3086 goto out;
5d5e103a
JB
3087 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3088 if (ret)
3089 goto out;
3090
3091 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3092 if (ret)
3093 goto out;
39279cc3
CM
3094
3095 ret = -ENOMEM;
211c17f5 3096again:
39279cc3 3097 page = grab_cache_page(mapping, index);
5d5e103a
JB
3098 if (!page) {
3099 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3100 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3101 goto out;
5d5e103a 3102 }
e6dcd2dc
CM
3103
3104 page_start = page_offset(page);
3105 page_end = page_start + PAGE_CACHE_SIZE - 1;
3106
39279cc3 3107 if (!PageUptodate(page)) {
9ebefb18 3108 ret = btrfs_readpage(NULL, page);
39279cc3 3109 lock_page(page);
211c17f5
CM
3110 if (page->mapping != mapping) {
3111 unlock_page(page);
3112 page_cache_release(page);
3113 goto again;
3114 }
39279cc3
CM
3115 if (!PageUptodate(page)) {
3116 ret = -EIO;
89642229 3117 goto out_unlock;
39279cc3
CM
3118 }
3119 }
211c17f5 3120 wait_on_page_writeback(page);
e6dcd2dc
CM
3121
3122 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123 set_page_extent_mapped(page);
3124
3125 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3126 if (ordered) {
3127 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3128 unlock_page(page);
3129 page_cache_release(page);
eb84ae03 3130 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3131 btrfs_put_ordered_extent(ordered);
3132 goto again;
3133 }
3134
5d5e103a
JB
3135 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3136 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3137 GFP_NOFS);
3138
9ed74f2d
JB
3139 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3140 if (ret) {
3141 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3142 goto out_unlock;
3143 }
3144
e6dcd2dc
CM
3145 ret = 0;
3146 if (offset != PAGE_CACHE_SIZE) {
3147 kaddr = kmap(page);
3148 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3149 flush_dcache_page(page);
3150 kunmap(page);
3151 }
247e743c 3152 ClearPageChecked(page);
e6dcd2dc
CM
3153 set_page_dirty(page);
3154 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3155
89642229 3156out_unlock:
5d5e103a
JB
3157 if (ret)
3158 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3159 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3160 unlock_page(page);
3161 page_cache_release(page);
3162out:
3163 return ret;
3164}
3165
9036c102 3166int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3167{
9036c102
YZ
3168 struct btrfs_trans_handle *trans;
3169 struct btrfs_root *root = BTRFS_I(inode)->root;
3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3171 struct extent_map *em;
3172 u64 mask = root->sectorsize - 1;
3173 u64 hole_start = (inode->i_size + mask) & ~mask;
3174 u64 block_end = (size + mask) & ~mask;
3175 u64 last_byte;
3176 u64 cur_offset;
3177 u64 hole_size;
9ed74f2d 3178 int err = 0;
39279cc3 3179
9036c102
YZ
3180 if (size <= hole_start)
3181 return 0;
3182
5d5e103a
JB
3183 err = btrfs_truncate_page(inode->i_mapping, inode->i_size);
3184 if (err)
3185 return err;
2bf5a725 3186
9036c102
YZ
3187 while (1) {
3188 struct btrfs_ordered_extent *ordered;
3189 btrfs_wait_ordered_range(inode, hole_start,
3190 block_end - hole_start);
3191 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3192 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3193 if (!ordered)
3194 break;
3195 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3196 btrfs_put_ordered_extent(ordered);
3197 }
39279cc3 3198
9036c102
YZ
3199 trans = btrfs_start_transaction(root, 1);
3200 btrfs_set_trans_block_group(trans, inode);
39279cc3 3201
9036c102
YZ
3202 cur_offset = hole_start;
3203 while (1) {
3204 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3205 block_end - cur_offset, 0);
3206 BUG_ON(IS_ERR(em) || !em);
3207 last_byte = min(extent_map_end(em), block_end);
3208 last_byte = (last_byte + mask) & ~mask;
3209 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 3210 u64 hint_byte = 0;
9036c102 3211 hole_size = last_byte - cur_offset;
771ed689
CM
3212 err = btrfs_drop_extents(trans, root, inode,
3213 cur_offset,
3214 cur_offset + hole_size,
e980b50c 3215 block_end,
a1ed835e 3216 cur_offset, &hint_byte, 1);
771ed689
CM
3217 if (err)
3218 break;
9ed74f2d
JB
3219
3220 err = btrfs_reserve_metadata_space(root, 1);
3221 if (err)
3222 break;
3223
9036c102
YZ
3224 err = btrfs_insert_file_extent(trans, root,
3225 inode->i_ino, cur_offset, 0,
3226 0, hole_size, 0, hole_size,
3227 0, 0, 0);
3228 btrfs_drop_extent_cache(inode, hole_start,
3229 last_byte - 1, 0);
9ed74f2d 3230 btrfs_unreserve_metadata_space(root, 1);
9036c102
YZ
3231 }
3232 free_extent_map(em);
3233 cur_offset = last_byte;
3234 if (err || cur_offset >= block_end)
3235 break;
3236 }
1832a6d5 3237
9036c102
YZ
3238 btrfs_end_transaction(trans, root);
3239 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3240 return err;
3241}
39279cc3 3242
9036c102
YZ
3243static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3244{
3245 struct inode *inode = dentry->d_inode;
3246 int err;
39279cc3 3247
9036c102
YZ
3248 err = inode_change_ok(inode, attr);
3249 if (err)
3250 return err;
2bf5a725 3251
5a3f23d5
CM
3252 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3253 if (attr->ia_size > inode->i_size) {
3254 err = btrfs_cont_expand(inode, attr->ia_size);
3255 if (err)
3256 return err;
3257 } else if (inode->i_size > 0 &&
3258 attr->ia_size == 0) {
3259
3260 /* we're truncating a file that used to have good
3261 * data down to zero. Make sure it gets into
3262 * the ordered flush list so that any new writes
3263 * get down to disk quickly.
3264 */
3265 BTRFS_I(inode)->ordered_data_close = 1;
3266 }
39279cc3 3267 }
9036c102 3268
39279cc3 3269 err = inode_setattr(inode, attr);
33268eaf
JB
3270
3271 if (!err && ((attr->ia_valid & ATTR_MODE)))
3272 err = btrfs_acl_chmod(inode);
39279cc3
CM
3273 return err;
3274}
61295eb8 3275
39279cc3
CM
3276void btrfs_delete_inode(struct inode *inode)
3277{
3278 struct btrfs_trans_handle *trans;
3279 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3280 unsigned long nr;
39279cc3
CM
3281 int ret;
3282
3283 truncate_inode_pages(&inode->i_data, 0);
3284 if (is_bad_inode(inode)) {
7b128766 3285 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3286 goto no_delete;
3287 }
4a096752 3288 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3289
76dda93c
YZ
3290 if (inode->i_nlink > 0) {
3291 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3292 goto no_delete;
3293 }
3294
dbe674a9 3295 btrfs_i_size_write(inode, 0);
180591bc 3296 trans = btrfs_join_transaction(root, 1);
5f39d397 3297
39279cc3 3298 btrfs_set_trans_block_group(trans, inode);
e02119d5 3299 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3300 if (ret) {
3301 btrfs_orphan_del(NULL, inode);
54aa1f4d 3302 goto no_delete_lock;
7b128766
JB
3303 }
3304
3305 btrfs_orphan_del(trans, inode);
85e21bac 3306
d3c2fdcf 3307 nr = trans->blocks_used;
85e21bac 3308 clear_inode(inode);
5f39d397 3309
39279cc3 3310 btrfs_end_transaction(trans, root);
d3c2fdcf 3311 btrfs_btree_balance_dirty(root, nr);
39279cc3 3312 return;
54aa1f4d
CM
3313
3314no_delete_lock:
d3c2fdcf 3315 nr = trans->blocks_used;
54aa1f4d 3316 btrfs_end_transaction(trans, root);
d3c2fdcf 3317 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3318no_delete:
3319 clear_inode(inode);
3320}
3321
3322/*
3323 * this returns the key found in the dir entry in the location pointer.
3324 * If no dir entries were found, location->objectid is 0.
3325 */
3326static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3327 struct btrfs_key *location)
3328{
3329 const char *name = dentry->d_name.name;
3330 int namelen = dentry->d_name.len;
3331 struct btrfs_dir_item *di;
3332 struct btrfs_path *path;
3333 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3334 int ret = 0;
39279cc3
CM
3335
3336 path = btrfs_alloc_path();
3337 BUG_ON(!path);
3954401f 3338
39279cc3
CM
3339 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3340 namelen, 0);
0d9f7f3e
Y
3341 if (IS_ERR(di))
3342 ret = PTR_ERR(di);
d397712b
CM
3343
3344 if (!di || IS_ERR(di))
3954401f 3345 goto out_err;
d397712b 3346
5f39d397 3347 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3348out:
39279cc3
CM
3349 btrfs_free_path(path);
3350 return ret;
3954401f
CM
3351out_err:
3352 location->objectid = 0;
3353 goto out;
39279cc3
CM
3354}
3355
3356/*
3357 * when we hit a tree root in a directory, the btrfs part of the inode
3358 * needs to be changed to reflect the root directory of the tree root. This
3359 * is kind of like crossing a mount point.
3360 */
3361static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3362 struct inode *dir,
3363 struct dentry *dentry,
3364 struct btrfs_key *location,
3365 struct btrfs_root **sub_root)
39279cc3 3366{
4df27c4d
YZ
3367 struct btrfs_path *path;
3368 struct btrfs_root *new_root;
3369 struct btrfs_root_ref *ref;
3370 struct extent_buffer *leaf;
3371 int ret;
3372 int err = 0;
39279cc3 3373
4df27c4d
YZ
3374 path = btrfs_alloc_path();
3375 if (!path) {
3376 err = -ENOMEM;
3377 goto out;
3378 }
39279cc3 3379
4df27c4d
YZ
3380 err = -ENOENT;
3381 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3382 BTRFS_I(dir)->root->root_key.objectid,
3383 location->objectid);
3384 if (ret) {
3385 if (ret < 0)
3386 err = ret;
3387 goto out;
3388 }
39279cc3 3389
4df27c4d
YZ
3390 leaf = path->nodes[0];
3391 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3392 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3393 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3394 goto out;
39279cc3 3395
4df27c4d
YZ
3396 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3397 (unsigned long)(ref + 1),
3398 dentry->d_name.len);
3399 if (ret)
3400 goto out;
3401
3402 btrfs_release_path(root->fs_info->tree_root, path);
3403
3404 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3405 if (IS_ERR(new_root)) {
3406 err = PTR_ERR(new_root);
3407 goto out;
3408 }
3409
3410 if (btrfs_root_refs(&new_root->root_item) == 0) {
3411 err = -ENOENT;
3412 goto out;
3413 }
3414
3415 *sub_root = new_root;
3416 location->objectid = btrfs_root_dirid(&new_root->root_item);
3417 location->type = BTRFS_INODE_ITEM_KEY;
3418 location->offset = 0;
3419 err = 0;
3420out:
3421 btrfs_free_path(path);
3422 return err;
39279cc3
CM
3423}
3424
5d4f98a2
YZ
3425static void inode_tree_add(struct inode *inode)
3426{
3427 struct btrfs_root *root = BTRFS_I(inode)->root;
3428 struct btrfs_inode *entry;
03e860bd
FNP
3429 struct rb_node **p;
3430 struct rb_node *parent;
03e860bd
FNP
3431again:
3432 p = &root->inode_tree.rb_node;
3433 parent = NULL;
5d4f98a2 3434
76dda93c
YZ
3435 if (hlist_unhashed(&inode->i_hash))
3436 return;
3437
5d4f98a2
YZ
3438 spin_lock(&root->inode_lock);
3439 while (*p) {
3440 parent = *p;
3441 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3442
3443 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3444 p = &parent->rb_left;
5d4f98a2 3445 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3446 p = &parent->rb_right;
5d4f98a2
YZ
3447 else {
3448 WARN_ON(!(entry->vfs_inode.i_state &
3449 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3450 rb_erase(parent, &root->inode_tree);
3451 RB_CLEAR_NODE(parent);
3452 spin_unlock(&root->inode_lock);
3453 goto again;
5d4f98a2
YZ
3454 }
3455 }
3456 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3457 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3458 spin_unlock(&root->inode_lock);
3459}
3460
3461static void inode_tree_del(struct inode *inode)
3462{
3463 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3464 int empty = 0;
5d4f98a2 3465
03e860bd 3466 spin_lock(&root->inode_lock);
5d4f98a2 3467 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3468 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3469 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3470 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3471 }
03e860bd 3472 spin_unlock(&root->inode_lock);
76dda93c
YZ
3473
3474 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3475 synchronize_srcu(&root->fs_info->subvol_srcu);
3476 spin_lock(&root->inode_lock);
3477 empty = RB_EMPTY_ROOT(&root->inode_tree);
3478 spin_unlock(&root->inode_lock);
3479 if (empty)
3480 btrfs_add_dead_root(root);
3481 }
3482}
3483
3484int btrfs_invalidate_inodes(struct btrfs_root *root)
3485{
3486 struct rb_node *node;
3487 struct rb_node *prev;
3488 struct btrfs_inode *entry;
3489 struct inode *inode;
3490 u64 objectid = 0;
3491
3492 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3493
3494 spin_lock(&root->inode_lock);
3495again:
3496 node = root->inode_tree.rb_node;
3497 prev = NULL;
3498 while (node) {
3499 prev = node;
3500 entry = rb_entry(node, struct btrfs_inode, rb_node);
3501
3502 if (objectid < entry->vfs_inode.i_ino)
3503 node = node->rb_left;
3504 else if (objectid > entry->vfs_inode.i_ino)
3505 node = node->rb_right;
3506 else
3507 break;
3508 }
3509 if (!node) {
3510 while (prev) {
3511 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3512 if (objectid <= entry->vfs_inode.i_ino) {
3513 node = prev;
3514 break;
3515 }
3516 prev = rb_next(prev);
3517 }
3518 }
3519 while (node) {
3520 entry = rb_entry(node, struct btrfs_inode, rb_node);
3521 objectid = entry->vfs_inode.i_ino + 1;
3522 inode = igrab(&entry->vfs_inode);
3523 if (inode) {
3524 spin_unlock(&root->inode_lock);
3525 if (atomic_read(&inode->i_count) > 1)
3526 d_prune_aliases(inode);
3527 /*
3528 * btrfs_drop_inode will remove it from
3529 * the inode cache when its usage count
3530 * hits zero.
3531 */
3532 iput(inode);
3533 cond_resched();
3534 spin_lock(&root->inode_lock);
3535 goto again;
3536 }
3537
3538 if (cond_resched_lock(&root->inode_lock))
3539 goto again;
3540
3541 node = rb_next(node);
3542 }
3543 spin_unlock(&root->inode_lock);
3544 return 0;
5d4f98a2
YZ
3545}
3546
e02119d5 3547static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3548{
e02119d5
CM
3549 struct btrfs_inode *bi = BTRFS_I(inode);
3550
e02119d5 3551 bi->generation = 0;
c3027eb5 3552 bi->sequence = 0;
e02119d5 3553 bi->last_trans = 0;
257c62e1 3554 bi->last_sub_trans = 0;
e02119d5
CM
3555 bi->logged_trans = 0;
3556 bi->delalloc_bytes = 0;
6a63209f 3557 bi->reserved_bytes = 0;
e02119d5
CM
3558 bi->disk_i_size = 0;
3559 bi->flags = 0;
3560 bi->index_cnt = (u64)-1;
12fcfd22 3561 bi->last_unlink_trans = 0;
2757495c 3562 bi->ordered_data_close = 0;
d1310b2e
CM
3563 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3564 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3565 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3566 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3567 inode->i_mapping, GFP_NOFS);
ea8c2819 3568 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3569 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3570 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3571 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3572 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3573 mutex_init(&BTRFS_I(inode)->log_mutex);
3574}
3575
3576static int btrfs_init_locked_inode(struct inode *inode, void *p)
3577{
3578 struct btrfs_iget_args *args = p;
3579 inode->i_ino = args->ino;
3580 init_btrfs_i(inode);
3581 BTRFS_I(inode)->root = args->root;
6a63209f 3582 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3583 return 0;
3584}
3585
3586static int btrfs_find_actor(struct inode *inode, void *opaque)
3587{
3588 struct btrfs_iget_args *args = opaque;
d397712b
CM
3589 return args->ino == inode->i_ino &&
3590 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3591}
3592
5d4f98a2
YZ
3593static struct inode *btrfs_iget_locked(struct super_block *s,
3594 u64 objectid,
3595 struct btrfs_root *root)
39279cc3
CM
3596{
3597 struct inode *inode;
3598 struct btrfs_iget_args args;
3599 args.ino = objectid;
3600 args.root = root;
3601
3602 inode = iget5_locked(s, objectid, btrfs_find_actor,
3603 btrfs_init_locked_inode,
3604 (void *)&args);
3605 return inode;
3606}
3607
1a54ef8c
BR
3608/* Get an inode object given its location and corresponding root.
3609 * Returns in *is_new if the inode was read from disk
3610 */
3611struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3612 struct btrfs_root *root)
1a54ef8c
BR
3613{
3614 struct inode *inode;
3615
3616 inode = btrfs_iget_locked(s, location->objectid, root);
3617 if (!inode)
5d4f98a2 3618 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3619
3620 if (inode->i_state & I_NEW) {
3621 BTRFS_I(inode)->root = root;
3622 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3623 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3624
3625 inode_tree_add(inode);
1a54ef8c 3626 unlock_new_inode(inode);
1a54ef8c
BR
3627 }
3628
3629 return inode;
3630}
3631
4df27c4d
YZ
3632static struct inode *new_simple_dir(struct super_block *s,
3633 struct btrfs_key *key,
3634 struct btrfs_root *root)
3635{
3636 struct inode *inode = new_inode(s);
3637
3638 if (!inode)
3639 return ERR_PTR(-ENOMEM);
3640
3641 init_btrfs_i(inode);
3642
3643 BTRFS_I(inode)->root = root;
3644 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3645 BTRFS_I(inode)->dummy_inode = 1;
3646
3647 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3648 inode->i_op = &simple_dir_inode_operations;
3649 inode->i_fop = &simple_dir_operations;
3650 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3651 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3652
3653 return inode;
3654}
3655
3de4586c 3656struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3657{
d397712b 3658 struct inode *inode;
4df27c4d 3659 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3660 struct btrfs_root *sub_root = root;
3661 struct btrfs_key location;
76dda93c 3662 int index;
5d4f98a2 3663 int ret;
39279cc3 3664
76dda93c
YZ
3665 dentry->d_op = &btrfs_dentry_operations;
3666
39279cc3
CM
3667 if (dentry->d_name.len > BTRFS_NAME_LEN)
3668 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3669
39279cc3 3670 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3671
39279cc3
CM
3672 if (ret < 0)
3673 return ERR_PTR(ret);
5f39d397 3674
4df27c4d
YZ
3675 if (location.objectid == 0)
3676 return NULL;
3677
3678 if (location.type == BTRFS_INODE_ITEM_KEY) {
3679 inode = btrfs_iget(dir->i_sb, &location, root);
3680 return inode;
3681 }
3682
3683 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3684
76dda93c 3685 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3686 ret = fixup_tree_root_location(root, dir, dentry,
3687 &location, &sub_root);
3688 if (ret < 0) {
3689 if (ret != -ENOENT)
3690 inode = ERR_PTR(ret);
3691 else
3692 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3693 } else {
5d4f98a2 3694 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3695 }
76dda93c
YZ
3696 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3697
3de4586c
CM
3698 return inode;
3699}
3700
76dda93c
YZ
3701static int btrfs_dentry_delete(struct dentry *dentry)
3702{
3703 struct btrfs_root *root;
3704
efefb143
YZ
3705 if (!dentry->d_inode && !IS_ROOT(dentry))
3706 dentry = dentry->d_parent;
76dda93c 3707
efefb143
YZ
3708 if (dentry->d_inode) {
3709 root = BTRFS_I(dentry->d_inode)->root;
3710 if (btrfs_root_refs(&root->root_item) == 0)
3711 return 1;
3712 }
76dda93c
YZ
3713 return 0;
3714}
3715
3de4586c
CM
3716static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3717 struct nameidata *nd)
3718{
3719 struct inode *inode;
3720
3de4586c
CM
3721 inode = btrfs_lookup_dentry(dir, dentry);
3722 if (IS_ERR(inode))
3723 return ERR_CAST(inode);
7b128766 3724
39279cc3
CM
3725 return d_splice_alias(inode, dentry);
3726}
3727
39279cc3
CM
3728static unsigned char btrfs_filetype_table[] = {
3729 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3730};
3731
cbdf5a24
DW
3732static int btrfs_real_readdir(struct file *filp, void *dirent,
3733 filldir_t filldir)
39279cc3 3734{
6da6abae 3735 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 struct btrfs_item *item;
3738 struct btrfs_dir_item *di;
3739 struct btrfs_key key;
5f39d397 3740 struct btrfs_key found_key;
39279cc3
CM
3741 struct btrfs_path *path;
3742 int ret;
3743 u32 nritems;
5f39d397 3744 struct extent_buffer *leaf;
39279cc3
CM
3745 int slot;
3746 int advance;
3747 unsigned char d_type;
3748 int over = 0;
3749 u32 di_cur;
3750 u32 di_total;
3751 u32 di_len;
3752 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3753 char tmp_name[32];
3754 char *name_ptr;
3755 int name_len;
39279cc3
CM
3756
3757 /* FIXME, use a real flag for deciding about the key type */
3758 if (root->fs_info->tree_root == root)
3759 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3760
3954401f
CM
3761 /* special case for "." */
3762 if (filp->f_pos == 0) {
3763 over = filldir(dirent, ".", 1,
3764 1, inode->i_ino,
3765 DT_DIR);
3766 if (over)
3767 return 0;
3768 filp->f_pos = 1;
3769 }
3954401f
CM
3770 /* special case for .., just use the back ref */
3771 if (filp->f_pos == 1) {
5ecc7e5d 3772 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3773 over = filldir(dirent, "..", 2,
5ecc7e5d 3774 2, pino, DT_DIR);
3954401f 3775 if (over)
49593bfa 3776 return 0;
3954401f
CM
3777 filp->f_pos = 2;
3778 }
49593bfa
DW
3779 path = btrfs_alloc_path();
3780 path->reada = 2;
3781
39279cc3
CM
3782 btrfs_set_key_type(&key, key_type);
3783 key.offset = filp->f_pos;
49593bfa 3784 key.objectid = inode->i_ino;
5f39d397 3785
39279cc3
CM
3786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3787 if (ret < 0)
3788 goto err;
3789 advance = 0;
49593bfa
DW
3790
3791 while (1) {
5f39d397
CM
3792 leaf = path->nodes[0];
3793 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3794 slot = path->slots[0];
3795 if (advance || slot >= nritems) {
49593bfa 3796 if (slot >= nritems - 1) {
39279cc3
CM
3797 ret = btrfs_next_leaf(root, path);
3798 if (ret)
3799 break;
5f39d397
CM
3800 leaf = path->nodes[0];
3801 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3802 slot = path->slots[0];
3803 } else {
3804 slot++;
3805 path->slots[0]++;
3806 }
3807 }
3de4586c 3808
39279cc3 3809 advance = 1;
5f39d397
CM
3810 item = btrfs_item_nr(leaf, slot);
3811 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3812
3813 if (found_key.objectid != key.objectid)
39279cc3 3814 break;
5f39d397 3815 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3816 break;
5f39d397 3817 if (found_key.offset < filp->f_pos)
39279cc3 3818 continue;
5f39d397
CM
3819
3820 filp->f_pos = found_key.offset;
49593bfa 3821
39279cc3
CM
3822 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3823 di_cur = 0;
5f39d397 3824 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3825
3826 while (di_cur < di_total) {
5f39d397
CM
3827 struct btrfs_key location;
3828
3829 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3830 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3831 name_ptr = tmp_name;
3832 } else {
3833 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3834 if (!name_ptr) {
3835 ret = -ENOMEM;
3836 goto err;
3837 }
5f39d397
CM
3838 }
3839 read_extent_buffer(leaf, name_ptr,
3840 (unsigned long)(di + 1), name_len);
3841
3842 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3843 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3844
3845 /* is this a reference to our own snapshot? If so
3846 * skip it
3847 */
3848 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3849 location.objectid == root->root_key.objectid) {
3850 over = 0;
3851 goto skip;
3852 }
5f39d397 3853 over = filldir(dirent, name_ptr, name_len,
49593bfa 3854 found_key.offset, location.objectid,
39279cc3 3855 d_type);
5f39d397 3856
3de4586c 3857skip:
5f39d397
CM
3858 if (name_ptr != tmp_name)
3859 kfree(name_ptr);
3860
39279cc3
CM
3861 if (over)
3862 goto nopos;
5103e947 3863 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3864 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3865 di_cur += di_len;
3866 di = (struct btrfs_dir_item *)((char *)di + di_len);
3867 }
3868 }
49593bfa
DW
3869
3870 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3871 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3872 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3873 else
3874 filp->f_pos++;
39279cc3
CM
3875nopos:
3876 ret = 0;
3877err:
39279cc3 3878 btrfs_free_path(path);
39279cc3
CM
3879 return ret;
3880}
3881
3882int btrfs_write_inode(struct inode *inode, int wait)
3883{
3884 struct btrfs_root *root = BTRFS_I(inode)->root;
3885 struct btrfs_trans_handle *trans;
3886 int ret = 0;
3887
c146afad 3888 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3889 return 0;
3890
39279cc3 3891 if (wait) {
f9295749 3892 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3893 btrfs_set_trans_block_group(trans, inode);
3894 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3895 }
3896 return ret;
3897}
3898
3899/*
54aa1f4d 3900 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3901 * inode changes. But, it is most likely to find the inode in cache.
3902 * FIXME, needs more benchmarking...there are no reasons other than performance
3903 * to keep or drop this code.
3904 */
3905void btrfs_dirty_inode(struct inode *inode)
3906{
3907 struct btrfs_root *root = BTRFS_I(inode)->root;
3908 struct btrfs_trans_handle *trans;
3909
f9295749 3910 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3911 btrfs_set_trans_block_group(trans, inode);
3912 btrfs_update_inode(trans, root, inode);
3913 btrfs_end_transaction(trans, root);
39279cc3
CM
3914}
3915
d352ac68
CM
3916/*
3917 * find the highest existing sequence number in a directory
3918 * and then set the in-memory index_cnt variable to reflect
3919 * free sequence numbers
3920 */
aec7477b
JB
3921static int btrfs_set_inode_index_count(struct inode *inode)
3922{
3923 struct btrfs_root *root = BTRFS_I(inode)->root;
3924 struct btrfs_key key, found_key;
3925 struct btrfs_path *path;
3926 struct extent_buffer *leaf;
3927 int ret;
3928
3929 key.objectid = inode->i_ino;
3930 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3931 key.offset = (u64)-1;
3932
3933 path = btrfs_alloc_path();
3934 if (!path)
3935 return -ENOMEM;
3936
3937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3938 if (ret < 0)
3939 goto out;
3940 /* FIXME: we should be able to handle this */
3941 if (ret == 0)
3942 goto out;
3943 ret = 0;
3944
3945 /*
3946 * MAGIC NUMBER EXPLANATION:
3947 * since we search a directory based on f_pos we have to start at 2
3948 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3949 * else has to start at 2
3950 */
3951 if (path->slots[0] == 0) {
3952 BTRFS_I(inode)->index_cnt = 2;
3953 goto out;
3954 }
3955
3956 path->slots[0]--;
3957
3958 leaf = path->nodes[0];
3959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3960
3961 if (found_key.objectid != inode->i_ino ||
3962 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3963 BTRFS_I(inode)->index_cnt = 2;
3964 goto out;
3965 }
3966
3967 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3968out:
3969 btrfs_free_path(path);
3970 return ret;
3971}
3972
d352ac68
CM
3973/*
3974 * helper to find a free sequence number in a given directory. This current
3975 * code is very simple, later versions will do smarter things in the btree
3976 */
3de4586c 3977int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3978{
3979 int ret = 0;
3980
3981 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3982 ret = btrfs_set_inode_index_count(dir);
d397712b 3983 if (ret)
aec7477b
JB
3984 return ret;
3985 }
3986
00e4e6b3 3987 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3988 BTRFS_I(dir)->index_cnt++;
3989
3990 return ret;
3991}
3992
39279cc3
CM
3993static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3994 struct btrfs_root *root,
aec7477b 3995 struct inode *dir,
9c58309d 3996 const char *name, int name_len,
d2fb3437
YZ
3997 u64 ref_objectid, u64 objectid,
3998 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3999{
4000 struct inode *inode;
5f39d397 4001 struct btrfs_inode_item *inode_item;
39279cc3 4002 struct btrfs_key *location;
5f39d397 4003 struct btrfs_path *path;
9c58309d
CM
4004 struct btrfs_inode_ref *ref;
4005 struct btrfs_key key[2];
4006 u32 sizes[2];
4007 unsigned long ptr;
39279cc3
CM
4008 int ret;
4009 int owner;
4010
5f39d397
CM
4011 path = btrfs_alloc_path();
4012 BUG_ON(!path);
4013
39279cc3
CM
4014 inode = new_inode(root->fs_info->sb);
4015 if (!inode)
4016 return ERR_PTR(-ENOMEM);
4017
aec7477b 4018 if (dir) {
3de4586c 4019 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4020 if (ret) {
4021 iput(inode);
aec7477b 4022 return ERR_PTR(ret);
09771430 4023 }
aec7477b
JB
4024 }
4025 /*
4026 * index_cnt is ignored for everything but a dir,
4027 * btrfs_get_inode_index_count has an explanation for the magic
4028 * number
4029 */
e02119d5 4030 init_btrfs_i(inode);
aec7477b 4031 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4032 BTRFS_I(inode)->root = root;
e02119d5 4033 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4034 btrfs_set_inode_space_info(root, inode);
b888db2b 4035
39279cc3
CM
4036 if (mode & S_IFDIR)
4037 owner = 0;
4038 else
4039 owner = 1;
d2fb3437
YZ
4040 BTRFS_I(inode)->block_group =
4041 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4042
4043 key[0].objectid = objectid;
4044 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4045 key[0].offset = 0;
4046
4047 key[1].objectid = objectid;
4048 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4049 key[1].offset = ref_objectid;
4050
4051 sizes[0] = sizeof(struct btrfs_inode_item);
4052 sizes[1] = name_len + sizeof(*ref);
4053
b9473439 4054 path->leave_spinning = 1;
9c58309d
CM
4055 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4056 if (ret != 0)
5f39d397
CM
4057 goto fail;
4058
79683f2d 4059 inode->i_uid = current_fsuid();
8c087b51 4060
42f15d77 4061 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4062 inode->i_gid = dir->i_gid;
4063 if (S_ISDIR(mode))
4064 mode |= S_ISGID;
4065 } else
4066 inode->i_gid = current_fsgid();
4067
39279cc3
CM
4068 inode->i_mode = mode;
4069 inode->i_ino = objectid;
a76a3cd4 4070 inode_set_bytes(inode, 0);
39279cc3 4071 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4072 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4073 struct btrfs_inode_item);
e02119d5 4074 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4075
4076 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4077 struct btrfs_inode_ref);
4078 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4079 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4080 ptr = (unsigned long)(ref + 1);
4081 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4082
5f39d397
CM
4083 btrfs_mark_buffer_dirty(path->nodes[0]);
4084 btrfs_free_path(path);
4085
39279cc3
CM
4086 location = &BTRFS_I(inode)->location;
4087 location->objectid = objectid;
39279cc3
CM
4088 location->offset = 0;
4089 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4090
6cbff00f
CH
4091 btrfs_inherit_iflags(inode, dir);
4092
94272164
CM
4093 if ((mode & S_IFREG)) {
4094 if (btrfs_test_opt(root, NODATASUM))
4095 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4096 if (btrfs_test_opt(root, NODATACOW))
4097 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4098 }
4099
39279cc3 4100 insert_inode_hash(inode);
5d4f98a2 4101 inode_tree_add(inode);
39279cc3 4102 return inode;
5f39d397 4103fail:
aec7477b
JB
4104 if (dir)
4105 BTRFS_I(dir)->index_cnt--;
5f39d397 4106 btrfs_free_path(path);
09771430 4107 iput(inode);
5f39d397 4108 return ERR_PTR(ret);
39279cc3
CM
4109}
4110
4111static inline u8 btrfs_inode_type(struct inode *inode)
4112{
4113 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4114}
4115
d352ac68
CM
4116/*
4117 * utility function to add 'inode' into 'parent_inode' with
4118 * a give name and a given sequence number.
4119 * if 'add_backref' is true, also insert a backref from the
4120 * inode to the parent directory.
4121 */
e02119d5
CM
4122int btrfs_add_link(struct btrfs_trans_handle *trans,
4123 struct inode *parent_inode, struct inode *inode,
4124 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4125{
4df27c4d 4126 int ret = 0;
39279cc3 4127 struct btrfs_key key;
e02119d5 4128 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4129
4df27c4d
YZ
4130 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4131 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4132 } else {
4133 key.objectid = inode->i_ino;
4134 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4135 key.offset = 0;
4136 }
4137
4138 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4139 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4140 key.objectid, root->root_key.objectid,
4141 parent_inode->i_ino,
4142 index, name, name_len);
4143 } else if (add_backref) {
4144 ret = btrfs_insert_inode_ref(trans, root,
4145 name, name_len, inode->i_ino,
4146 parent_inode->i_ino, index);
4147 }
39279cc3 4148
39279cc3 4149 if (ret == 0) {
4df27c4d
YZ
4150 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4151 parent_inode->i_ino, &key,
4152 btrfs_inode_type(inode), index);
4153 BUG_ON(ret);
4154
dbe674a9 4155 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4156 name_len * 2);
79c44584 4157 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4158 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4159 }
4160 return ret;
4161}
4162
4163static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4164 struct dentry *dentry, struct inode *inode,
00e4e6b3 4165 int backref, u64 index)
39279cc3 4166{
e02119d5
CM
4167 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4168 inode, dentry->d_name.name,
4169 dentry->d_name.len, backref, index);
39279cc3
CM
4170 if (!err) {
4171 d_instantiate(dentry, inode);
4172 return 0;
4173 }
4174 if (err > 0)
4175 err = -EEXIST;
4176 return err;
4177}
4178
618e21d5
JB
4179static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4180 int mode, dev_t rdev)
4181{
4182 struct btrfs_trans_handle *trans;
4183 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4184 struct inode *inode = NULL;
618e21d5
JB
4185 int err;
4186 int drop_inode = 0;
4187 u64 objectid;
1832a6d5 4188 unsigned long nr = 0;
00e4e6b3 4189 u64 index = 0;
618e21d5
JB
4190
4191 if (!new_valid_dev(rdev))
4192 return -EINVAL;
4193
9ed74f2d
JB
4194 /*
4195 * 2 for inode item and ref
4196 * 2 for dir items
4197 * 1 for xattr if selinux is on
4198 */
4199 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4200 if (err)
9ed74f2d 4201 return err;
1832a6d5 4202
618e21d5 4203 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4204 if (!trans)
4205 goto fail;
618e21d5
JB
4206 btrfs_set_trans_block_group(trans, dir);
4207
4208 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4209 if (err) {
4210 err = -ENOSPC;
4211 goto out_unlock;
4212 }
4213
aec7477b 4214 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4215 dentry->d_name.len,
4216 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4217 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4218 err = PTR_ERR(inode);
4219 if (IS_ERR(inode))
4220 goto out_unlock;
4221
0279b4cd 4222 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4223 if (err) {
4224 drop_inode = 1;
4225 goto out_unlock;
4226 }
4227
618e21d5 4228 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4229 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4230 if (err)
4231 drop_inode = 1;
4232 else {
4233 inode->i_op = &btrfs_special_inode_operations;
4234 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4235 btrfs_update_inode(trans, root, inode);
618e21d5 4236 }
618e21d5
JB
4237 btrfs_update_inode_block_group(trans, inode);
4238 btrfs_update_inode_block_group(trans, dir);
4239out_unlock:
d3c2fdcf 4240 nr = trans->blocks_used;
89ce8a63 4241 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4242fail:
9ed74f2d 4243 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4244 if (drop_inode) {
4245 inode_dec_link_count(inode);
4246 iput(inode);
4247 }
d3c2fdcf 4248 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4249 return err;
4250}
4251
39279cc3
CM
4252static int btrfs_create(struct inode *dir, struct dentry *dentry,
4253 int mode, struct nameidata *nd)
4254{
4255 struct btrfs_trans_handle *trans;
4256 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4257 struct inode *inode = NULL;
39279cc3
CM
4258 int err;
4259 int drop_inode = 0;
1832a6d5 4260 unsigned long nr = 0;
39279cc3 4261 u64 objectid;
00e4e6b3 4262 u64 index = 0;
39279cc3 4263
9ed74f2d
JB
4264 /*
4265 * 2 for inode item and ref
4266 * 2 for dir items
4267 * 1 for xattr if selinux is on
4268 */
4269 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4270 if (err)
9ed74f2d
JB
4271 return err;
4272
39279cc3 4273 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4274 if (!trans)
4275 goto fail;
39279cc3
CM
4276 btrfs_set_trans_block_group(trans, dir);
4277
4278 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4279 if (err) {
4280 err = -ENOSPC;
4281 goto out_unlock;
4282 }
4283
aec7477b 4284 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4285 dentry->d_name.len,
4286 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4287 objectid, BTRFS_I(dir)->block_group, mode,
4288 &index);
39279cc3
CM
4289 err = PTR_ERR(inode);
4290 if (IS_ERR(inode))
4291 goto out_unlock;
4292
0279b4cd 4293 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4294 if (err) {
4295 drop_inode = 1;
4296 goto out_unlock;
4297 }
4298
39279cc3 4299 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4300 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4301 if (err)
4302 drop_inode = 1;
4303 else {
4304 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4305 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4306 inode->i_fop = &btrfs_file_operations;
4307 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4308 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4309 }
39279cc3
CM
4310 btrfs_update_inode_block_group(trans, inode);
4311 btrfs_update_inode_block_group(trans, dir);
4312out_unlock:
d3c2fdcf 4313 nr = trans->blocks_used;
ab78c84d 4314 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4315fail:
9ed74f2d 4316 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4317 if (drop_inode) {
4318 inode_dec_link_count(inode);
4319 iput(inode);
4320 }
d3c2fdcf 4321 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4322 return err;
4323}
4324
4325static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4326 struct dentry *dentry)
4327{
4328 struct btrfs_trans_handle *trans;
4329 struct btrfs_root *root = BTRFS_I(dir)->root;
4330 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4331 u64 index;
1832a6d5 4332 unsigned long nr = 0;
39279cc3
CM
4333 int err;
4334 int drop_inode = 0;
4335
4336 if (inode->i_nlink == 0)
4337 return -ENOENT;
4338
9ed74f2d
JB
4339 /*
4340 * 1 item for inode ref
4341 * 2 items for dir items
4342 */
4343 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4344 if (err)
9ed74f2d
JB
4345 return err;
4346
4347 btrfs_inc_nlink(inode);
4348
3de4586c 4349 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4350 if (err)
4351 goto fail;
4352
39279cc3 4353 trans = btrfs_start_transaction(root, 1);
5f39d397 4354
39279cc3
CM
4355 btrfs_set_trans_block_group(trans, dir);
4356 atomic_inc(&inode->i_count);
aec7477b 4357
00e4e6b3 4358 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4359
a5719521 4360 if (err) {
54aa1f4d 4361 drop_inode = 1;
a5719521
YZ
4362 } else {
4363 btrfs_update_inode_block_group(trans, dir);
4364 err = btrfs_update_inode(trans, root, inode);
4365 BUG_ON(err);
4366 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4367 }
39279cc3 4368
d3c2fdcf 4369 nr = trans->blocks_used;
ab78c84d 4370 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4371fail:
9ed74f2d 4372 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4373 if (drop_inode) {
4374 inode_dec_link_count(inode);
4375 iput(inode);
4376 }
d3c2fdcf 4377 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4378 return err;
4379}
4380
39279cc3
CM
4381static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4382{
b9d86667 4383 struct inode *inode = NULL;
39279cc3
CM
4384 struct btrfs_trans_handle *trans;
4385 struct btrfs_root *root = BTRFS_I(dir)->root;
4386 int err = 0;
4387 int drop_on_err = 0;
b9d86667 4388 u64 objectid = 0;
00e4e6b3 4389 u64 index = 0;
d3c2fdcf 4390 unsigned long nr = 1;
39279cc3 4391
9ed74f2d
JB
4392 /*
4393 * 2 items for inode and ref
4394 * 2 items for dir items
4395 * 1 for xattr if selinux is on
4396 */
4397 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4398 if (err)
9ed74f2d 4399 return err;
1832a6d5 4400
39279cc3 4401 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4402 if (!trans) {
4403 err = -ENOMEM;
39279cc3
CM
4404 goto out_unlock;
4405 }
9ed74f2d 4406 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4407
4408 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4409 if (err) {
4410 err = -ENOSPC;
4411 goto out_unlock;
4412 }
4413
aec7477b 4414 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4415 dentry->d_name.len,
4416 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4417 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4418 &index);
39279cc3
CM
4419 if (IS_ERR(inode)) {
4420 err = PTR_ERR(inode);
4421 goto out_fail;
4422 }
5f39d397 4423
39279cc3 4424 drop_on_err = 1;
33268eaf 4425
0279b4cd 4426 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4427 if (err)
4428 goto out_fail;
4429
39279cc3
CM
4430 inode->i_op = &btrfs_dir_inode_operations;
4431 inode->i_fop = &btrfs_dir_file_operations;
4432 btrfs_set_trans_block_group(trans, inode);
4433
dbe674a9 4434 btrfs_i_size_write(inode, 0);
39279cc3
CM
4435 err = btrfs_update_inode(trans, root, inode);
4436 if (err)
4437 goto out_fail;
5f39d397 4438
e02119d5
CM
4439 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4440 inode, dentry->d_name.name,
4441 dentry->d_name.len, 0, index);
39279cc3
CM
4442 if (err)
4443 goto out_fail;
5f39d397 4444
39279cc3
CM
4445 d_instantiate(dentry, inode);
4446 drop_on_err = 0;
39279cc3
CM
4447 btrfs_update_inode_block_group(trans, inode);
4448 btrfs_update_inode_block_group(trans, dir);
4449
4450out_fail:
d3c2fdcf 4451 nr = trans->blocks_used;
ab78c84d 4452 btrfs_end_transaction_throttle(trans, root);
5f39d397 4453
39279cc3 4454out_unlock:
9ed74f2d 4455 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4456 if (drop_on_err)
4457 iput(inode);
d3c2fdcf 4458 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4459 return err;
4460}
4461
d352ac68
CM
4462/* helper for btfs_get_extent. Given an existing extent in the tree,
4463 * and an extent that you want to insert, deal with overlap and insert
4464 * the new extent into the tree.
4465 */
3b951516
CM
4466static int merge_extent_mapping(struct extent_map_tree *em_tree,
4467 struct extent_map *existing,
e6dcd2dc
CM
4468 struct extent_map *em,
4469 u64 map_start, u64 map_len)
3b951516
CM
4470{
4471 u64 start_diff;
3b951516 4472
e6dcd2dc
CM
4473 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4474 start_diff = map_start - em->start;
4475 em->start = map_start;
4476 em->len = map_len;
c8b97818
CM
4477 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4478 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4479 em->block_start += start_diff;
c8b97818
CM
4480 em->block_len -= start_diff;
4481 }
e6dcd2dc 4482 return add_extent_mapping(em_tree, em);
3b951516
CM
4483}
4484
c8b97818
CM
4485static noinline int uncompress_inline(struct btrfs_path *path,
4486 struct inode *inode, struct page *page,
4487 size_t pg_offset, u64 extent_offset,
4488 struct btrfs_file_extent_item *item)
4489{
4490 int ret;
4491 struct extent_buffer *leaf = path->nodes[0];
4492 char *tmp;
4493 size_t max_size;
4494 unsigned long inline_size;
4495 unsigned long ptr;
4496
4497 WARN_ON(pg_offset != 0);
4498 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4499 inline_size = btrfs_file_extent_inline_item_len(leaf,
4500 btrfs_item_nr(leaf, path->slots[0]));
4501 tmp = kmalloc(inline_size, GFP_NOFS);
4502 ptr = btrfs_file_extent_inline_start(item);
4503
4504 read_extent_buffer(leaf, tmp, ptr, inline_size);
4505
5b050f04 4506 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4507 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4508 inline_size, max_size);
4509 if (ret) {
4510 char *kaddr = kmap_atomic(page, KM_USER0);
4511 unsigned long copy_size = min_t(u64,
4512 PAGE_CACHE_SIZE - pg_offset,
4513 max_size - extent_offset);
4514 memset(kaddr + pg_offset, 0, copy_size);
4515 kunmap_atomic(kaddr, KM_USER0);
4516 }
4517 kfree(tmp);
4518 return 0;
4519}
4520
d352ac68
CM
4521/*
4522 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4523 * the ugly parts come from merging extents from the disk with the in-ram
4524 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4525 * where the in-ram extents might be locked pending data=ordered completion.
4526 *
4527 * This also copies inline extents directly into the page.
4528 */
d397712b 4529
a52d9a80 4530struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4531 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4532 int create)
4533{
4534 int ret;
4535 int err = 0;
db94535d 4536 u64 bytenr;
a52d9a80
CM
4537 u64 extent_start = 0;
4538 u64 extent_end = 0;
4539 u64 objectid = inode->i_ino;
4540 u32 found_type;
f421950f 4541 struct btrfs_path *path = NULL;
a52d9a80
CM
4542 struct btrfs_root *root = BTRFS_I(inode)->root;
4543 struct btrfs_file_extent_item *item;
5f39d397
CM
4544 struct extent_buffer *leaf;
4545 struct btrfs_key found_key;
a52d9a80
CM
4546 struct extent_map *em = NULL;
4547 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4548 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4549 struct btrfs_trans_handle *trans = NULL;
c8b97818 4550 int compressed;
a52d9a80 4551
a52d9a80 4552again:
890871be 4553 read_lock(&em_tree->lock);
d1310b2e 4554 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4555 if (em)
4556 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4557 read_unlock(&em_tree->lock);
d1310b2e 4558
a52d9a80 4559 if (em) {
e1c4b745
CM
4560 if (em->start > start || em->start + em->len <= start)
4561 free_extent_map(em);
4562 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4563 free_extent_map(em);
4564 else
4565 goto out;
a52d9a80 4566 }
d1310b2e 4567 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4568 if (!em) {
d1310b2e
CM
4569 err = -ENOMEM;
4570 goto out;
a52d9a80 4571 }
e6dcd2dc 4572 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4573 em->start = EXTENT_MAP_HOLE;
445a6944 4574 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4575 em->len = (u64)-1;
c8b97818 4576 em->block_len = (u64)-1;
f421950f
CM
4577
4578 if (!path) {
4579 path = btrfs_alloc_path();
4580 BUG_ON(!path);
4581 }
4582
179e29e4
CM
4583 ret = btrfs_lookup_file_extent(trans, root, path,
4584 objectid, start, trans != NULL);
a52d9a80
CM
4585 if (ret < 0) {
4586 err = ret;
4587 goto out;
4588 }
4589
4590 if (ret != 0) {
4591 if (path->slots[0] == 0)
4592 goto not_found;
4593 path->slots[0]--;
4594 }
4595
5f39d397
CM
4596 leaf = path->nodes[0];
4597 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4598 struct btrfs_file_extent_item);
a52d9a80 4599 /* are we inside the extent that was found? */
5f39d397
CM
4600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4601 found_type = btrfs_key_type(&found_key);
4602 if (found_key.objectid != objectid ||
a52d9a80
CM
4603 found_type != BTRFS_EXTENT_DATA_KEY) {
4604 goto not_found;
4605 }
4606
5f39d397
CM
4607 found_type = btrfs_file_extent_type(leaf, item);
4608 extent_start = found_key.offset;
c8b97818 4609 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4610 if (found_type == BTRFS_FILE_EXTENT_REG ||
4611 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4612 extent_end = extent_start +
db94535d 4613 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4614 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4615 size_t size;
4616 size = btrfs_file_extent_inline_len(leaf, item);
4617 extent_end = (extent_start + size + root->sectorsize - 1) &
4618 ~((u64)root->sectorsize - 1);
4619 }
4620
4621 if (start >= extent_end) {
4622 path->slots[0]++;
4623 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4624 ret = btrfs_next_leaf(root, path);
4625 if (ret < 0) {
4626 err = ret;
4627 goto out;
a52d9a80 4628 }
9036c102
YZ
4629 if (ret > 0)
4630 goto not_found;
4631 leaf = path->nodes[0];
a52d9a80 4632 }
9036c102
YZ
4633 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4634 if (found_key.objectid != objectid ||
4635 found_key.type != BTRFS_EXTENT_DATA_KEY)
4636 goto not_found;
4637 if (start + len <= found_key.offset)
4638 goto not_found;
4639 em->start = start;
4640 em->len = found_key.offset - start;
4641 goto not_found_em;
4642 }
4643
d899e052
YZ
4644 if (found_type == BTRFS_FILE_EXTENT_REG ||
4645 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4646 em->start = extent_start;
4647 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4648 em->orig_start = extent_start -
4649 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4650 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4651 if (bytenr == 0) {
5f39d397 4652 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4653 goto insert;
4654 }
c8b97818
CM
4655 if (compressed) {
4656 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4657 em->block_start = bytenr;
4658 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4659 item);
4660 } else {
4661 bytenr += btrfs_file_extent_offset(leaf, item);
4662 em->block_start = bytenr;
4663 em->block_len = em->len;
d899e052
YZ
4664 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4665 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4666 }
a52d9a80
CM
4667 goto insert;
4668 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4669 unsigned long ptr;
a52d9a80 4670 char *map;
3326d1b0
CM
4671 size_t size;
4672 size_t extent_offset;
4673 size_t copy_size;
a52d9a80 4674
689f9346 4675 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4676 if (!page || create) {
689f9346 4677 em->start = extent_start;
9036c102 4678 em->len = extent_end - extent_start;
689f9346
Y
4679 goto out;
4680 }
5f39d397 4681
9036c102
YZ
4682 size = btrfs_file_extent_inline_len(leaf, item);
4683 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4684 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4685 size - extent_offset);
3326d1b0 4686 em->start = extent_start + extent_offset;
70dec807
CM
4687 em->len = (copy_size + root->sectorsize - 1) &
4688 ~((u64)root->sectorsize - 1);
ff5b7ee3 4689 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4690 if (compressed)
4691 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4692 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4693 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4694 if (btrfs_file_extent_compression(leaf, item) ==
4695 BTRFS_COMPRESS_ZLIB) {
4696 ret = uncompress_inline(path, inode, page,
4697 pg_offset,
4698 extent_offset, item);
4699 BUG_ON(ret);
4700 } else {
4701 map = kmap(page);
4702 read_extent_buffer(leaf, map + pg_offset, ptr,
4703 copy_size);
93c82d57
CM
4704 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4705 memset(map + pg_offset + copy_size, 0,
4706 PAGE_CACHE_SIZE - pg_offset -
4707 copy_size);
4708 }
c8b97818
CM
4709 kunmap(page);
4710 }
179e29e4
CM
4711 flush_dcache_page(page);
4712 } else if (create && PageUptodate(page)) {
4713 if (!trans) {
4714 kunmap(page);
4715 free_extent_map(em);
4716 em = NULL;
4717 btrfs_release_path(root, path);
f9295749 4718 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4719 goto again;
4720 }
c8b97818 4721 map = kmap(page);
70dec807 4722 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4723 copy_size);
c8b97818 4724 kunmap(page);
179e29e4 4725 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4726 }
d1310b2e
CM
4727 set_extent_uptodate(io_tree, em->start,
4728 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4729 goto insert;
4730 } else {
d397712b 4731 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4732 WARN_ON(1);
4733 }
4734not_found:
4735 em->start = start;
d1310b2e 4736 em->len = len;
a52d9a80 4737not_found_em:
5f39d397 4738 em->block_start = EXTENT_MAP_HOLE;
9036c102 4739 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4740insert:
4741 btrfs_release_path(root, path);
d1310b2e 4742 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4743 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4744 "[%llu %llu]\n", (unsigned long long)em->start,
4745 (unsigned long long)em->len,
4746 (unsigned long long)start,
4747 (unsigned long long)len);
a52d9a80
CM
4748 err = -EIO;
4749 goto out;
4750 }
d1310b2e
CM
4751
4752 err = 0;
890871be 4753 write_lock(&em_tree->lock);
a52d9a80 4754 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4755 /* it is possible that someone inserted the extent into the tree
4756 * while we had the lock dropped. It is also possible that
4757 * an overlapping map exists in the tree
4758 */
a52d9a80 4759 if (ret == -EEXIST) {
3b951516 4760 struct extent_map *existing;
e6dcd2dc
CM
4761
4762 ret = 0;
4763
3b951516 4764 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4765 if (existing && (existing->start > start ||
4766 existing->start + existing->len <= start)) {
4767 free_extent_map(existing);
4768 existing = NULL;
4769 }
3b951516
CM
4770 if (!existing) {
4771 existing = lookup_extent_mapping(em_tree, em->start,
4772 em->len);
4773 if (existing) {
4774 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4775 em, start,
4776 root->sectorsize);
3b951516
CM
4777 free_extent_map(existing);
4778 if (err) {
4779 free_extent_map(em);
4780 em = NULL;
4781 }
4782 } else {
4783 err = -EIO;
3b951516
CM
4784 free_extent_map(em);
4785 em = NULL;
4786 }
4787 } else {
4788 free_extent_map(em);
4789 em = existing;
e6dcd2dc 4790 err = 0;
a52d9a80 4791 }
a52d9a80 4792 }
890871be 4793 write_unlock(&em_tree->lock);
a52d9a80 4794out:
f421950f
CM
4795 if (path)
4796 btrfs_free_path(path);
a52d9a80
CM
4797 if (trans) {
4798 ret = btrfs_end_transaction(trans, root);
d397712b 4799 if (!err)
a52d9a80
CM
4800 err = ret;
4801 }
a52d9a80
CM
4802 if (err) {
4803 free_extent_map(em);
a52d9a80
CM
4804 return ERR_PTR(err);
4805 }
4806 return em;
4807}
4808
16432985
CM
4809static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4810 const struct iovec *iov, loff_t offset,
4811 unsigned long nr_segs)
4812{
e1c4b745 4813 return -EINVAL;
16432985
CM
4814}
4815
1506fcc8
YS
4816static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4817 __u64 start, __u64 len)
4818{
4819 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4820}
4821
a52d9a80 4822int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4823{
d1310b2e
CM
4824 struct extent_io_tree *tree;
4825 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4826 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4827}
1832a6d5 4828
a52d9a80 4829static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4830{
d1310b2e 4831 struct extent_io_tree *tree;
b888db2b
CM
4832
4833
4834 if (current->flags & PF_MEMALLOC) {
4835 redirty_page_for_writepage(wbc, page);
4836 unlock_page(page);
4837 return 0;
4838 }
d1310b2e 4839 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4840 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4841}
4842
f421950f
CM
4843int btrfs_writepages(struct address_space *mapping,
4844 struct writeback_control *wbc)
b293f02e 4845{
d1310b2e 4846 struct extent_io_tree *tree;
771ed689 4847
d1310b2e 4848 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4849 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4850}
4851
3ab2fb5a
CM
4852static int
4853btrfs_readpages(struct file *file, struct address_space *mapping,
4854 struct list_head *pages, unsigned nr_pages)
4855{
d1310b2e
CM
4856 struct extent_io_tree *tree;
4857 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4858 return extent_readpages(tree, mapping, pages, nr_pages,
4859 btrfs_get_extent);
4860}
e6dcd2dc 4861static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4862{
d1310b2e
CM
4863 struct extent_io_tree *tree;
4864 struct extent_map_tree *map;
a52d9a80 4865 int ret;
8c2383c3 4866
d1310b2e
CM
4867 tree = &BTRFS_I(page->mapping->host)->io_tree;
4868 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4869 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4870 if (ret == 1) {
4871 ClearPagePrivate(page);
4872 set_page_private(page, 0);
4873 page_cache_release(page);
39279cc3 4874 }
a52d9a80 4875 return ret;
39279cc3
CM
4876}
4877
e6dcd2dc
CM
4878static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4879{
98509cfc
CM
4880 if (PageWriteback(page) || PageDirty(page))
4881 return 0;
b335b003 4882 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4883}
4884
a52d9a80 4885static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4886{
d1310b2e 4887 struct extent_io_tree *tree;
e6dcd2dc
CM
4888 struct btrfs_ordered_extent *ordered;
4889 u64 page_start = page_offset(page);
4890 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4891
8b62b72b
CM
4892
4893 /*
4894 * we have the page locked, so new writeback can't start,
4895 * and the dirty bit won't be cleared while we are here.
4896 *
4897 * Wait for IO on this page so that we can safely clear
4898 * the PagePrivate2 bit and do ordered accounting
4899 */
e6dcd2dc 4900 wait_on_page_writeback(page);
8b62b72b 4901
d1310b2e 4902 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4903 if (offset) {
4904 btrfs_releasepage(page, GFP_NOFS);
4905 return;
4906 }
e6dcd2dc
CM
4907 lock_extent(tree, page_start, page_end, GFP_NOFS);
4908 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4909 page_offset(page));
4910 if (ordered) {
eb84ae03
CM
4911 /*
4912 * IO on this page will never be started, so we need
4913 * to account for any ordered extents now
4914 */
e6dcd2dc
CM
4915 clear_extent_bit(tree, page_start, page_end,
4916 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
4917 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4918 NULL, GFP_NOFS);
8b62b72b
CM
4919 /*
4920 * whoever cleared the private bit is responsible
4921 * for the finish_ordered_io
4922 */
4923 if (TestClearPagePrivate2(page)) {
4924 btrfs_finish_ordered_io(page->mapping->host,
4925 page_start, page_end);
4926 }
e6dcd2dc
CM
4927 btrfs_put_ordered_extent(ordered);
4928 lock_extent(tree, page_start, page_end, GFP_NOFS);
4929 }
4930 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
4931 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4932 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4933 __btrfs_releasepage(page, GFP_NOFS);
4934
4a096752 4935 ClearPageChecked(page);
9ad6b7bc 4936 if (PagePrivate(page)) {
9ad6b7bc
CM
4937 ClearPagePrivate(page);
4938 set_page_private(page, 0);
4939 page_cache_release(page);
4940 }
39279cc3
CM
4941}
4942
9ebefb18
CM
4943/*
4944 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4945 * called from a page fault handler when a page is first dirtied. Hence we must
4946 * be careful to check for EOF conditions here. We set the page up correctly
4947 * for a written page which means we get ENOSPC checking when writing into
4948 * holes and correct delalloc and unwritten extent mapping on filesystems that
4949 * support these features.
4950 *
4951 * We are not allowed to take the i_mutex here so we have to play games to
4952 * protect against truncate races as the page could now be beyond EOF. Because
4953 * vmtruncate() writes the inode size before removing pages, once we have the
4954 * page lock we can determine safely if the page is beyond EOF. If it is not
4955 * beyond EOF, then the page is guaranteed safe against truncation until we
4956 * unlock the page.
4957 */
c2ec175c 4958int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4959{
c2ec175c 4960 struct page *page = vmf->page;
6da6abae 4961 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4962 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4964 struct btrfs_ordered_extent *ordered;
4965 char *kaddr;
4966 unsigned long zero_start;
9ebefb18 4967 loff_t size;
1832a6d5 4968 int ret;
a52d9a80 4969 u64 page_start;
e6dcd2dc 4970 u64 page_end;
9ebefb18 4971
6a63209f 4972 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4973 if (ret) {
4974 if (ret == -ENOMEM)
4975 ret = VM_FAULT_OOM;
4976 else /* -ENOSPC, -EIO, etc */
4977 ret = VM_FAULT_SIGBUS;
1832a6d5 4978 goto out;
56a76f82 4979 }
1832a6d5 4980
9ed74f2d
JB
4981 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4982 if (ret) {
4983 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4984 ret = VM_FAULT_SIGBUS;
4985 goto out;
4986 }
4987
56a76f82 4988 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4989again:
9ebefb18 4990 lock_page(page);
9ebefb18 4991 size = i_size_read(inode);
e6dcd2dc
CM
4992 page_start = page_offset(page);
4993 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4994
9ebefb18 4995 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4996 (page_start >= size)) {
6a63209f 4997 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4998 /* page got truncated out from underneath us */
4999 goto out_unlock;
5000 }
e6dcd2dc
CM
5001 wait_on_page_writeback(page);
5002
5003 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5004 set_page_extent_mapped(page);
5005
eb84ae03
CM
5006 /*
5007 * we can't set the delalloc bits if there are pending ordered
5008 * extents. Drop our locks and wait for them to finish
5009 */
e6dcd2dc
CM
5010 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5011 if (ordered) {
5012 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5013 unlock_page(page);
eb84ae03 5014 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5015 btrfs_put_ordered_extent(ordered);
5016 goto again;
5017 }
5018
fbf19087
JB
5019 /*
5020 * XXX - page_mkwrite gets called every time the page is dirtied, even
5021 * if it was already dirty, so for space accounting reasons we need to
5022 * clear any delalloc bits for the range we are fixing to save. There
5023 * is probably a better way to do this, but for now keep consistent with
5024 * prepare_pages in the normal write path.
5025 */
5026 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
5027 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5028 GFP_NOFS);
fbf19087 5029
9ed74f2d
JB
5030 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5031 if (ret) {
5032 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5033 ret = VM_FAULT_SIGBUS;
fbf19087 5034 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5035 goto out_unlock;
5036 }
e6dcd2dc 5037 ret = 0;
9ebefb18
CM
5038
5039 /* page is wholly or partially inside EOF */
a52d9a80 5040 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5041 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5042 else
e6dcd2dc 5043 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5044
e6dcd2dc
CM
5045 if (zero_start != PAGE_CACHE_SIZE) {
5046 kaddr = kmap(page);
5047 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5048 flush_dcache_page(page);
5049 kunmap(page);
5050 }
247e743c 5051 ClearPageChecked(page);
e6dcd2dc 5052 set_page_dirty(page);
50a9b214 5053 SetPageUptodate(page);
5a3f23d5 5054
257c62e1
CM
5055 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5056 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5057
e6dcd2dc 5058 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
5059
5060out_unlock:
9ed74f2d 5061 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5062 if (!ret)
5063 return VM_FAULT_LOCKED;
9ebefb18 5064 unlock_page(page);
1832a6d5 5065out:
9ebefb18
CM
5066 return ret;
5067}
5068
39279cc3
CM
5069static void btrfs_truncate(struct inode *inode)
5070{
5071 struct btrfs_root *root = BTRFS_I(inode)->root;
5072 int ret;
5073 struct btrfs_trans_handle *trans;
d3c2fdcf 5074 unsigned long nr;
dbe674a9 5075 u64 mask = root->sectorsize - 1;
39279cc3
CM
5076
5077 if (!S_ISREG(inode->i_mode))
5078 return;
5079 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5080 return;
5081
5d5e103a
JB
5082 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5083 if (ret)
5084 return;
4a096752 5085 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 5086
39279cc3 5087 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
5088
5089 /*
5090 * setattr is responsible for setting the ordered_data_close flag,
5091 * but that is only tested during the last file release. That
5092 * could happen well after the next commit, leaving a great big
5093 * window where new writes may get lost if someone chooses to write
5094 * to this file after truncating to zero
5095 *
5096 * The inode doesn't have any dirty data here, and so if we commit
5097 * this is a noop. If someone immediately starts writing to the inode
5098 * it is very likely we'll catch some of their writes in this
5099 * transaction, and the commit will find this file on the ordered
5100 * data list with good things to send down.
5101 *
5102 * This is a best effort solution, there is still a window where
5103 * using truncate to replace the contents of the file will
5104 * end up with a zero length file after a crash.
5105 */
5106 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5107 btrfs_add_ordered_operation(trans, root, inode);
5108
39279cc3 5109 btrfs_set_trans_block_group(trans, inode);
dbe674a9 5110 btrfs_i_size_write(inode, inode->i_size);
39279cc3 5111
7b128766
JB
5112 ret = btrfs_orphan_add(trans, inode);
5113 if (ret)
5114 goto out;
39279cc3 5115 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 5116 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 5117 BTRFS_EXTENT_DATA_KEY);
39279cc3 5118 btrfs_update_inode(trans, root, inode);
5f39d397 5119
7b128766
JB
5120 ret = btrfs_orphan_del(trans, inode);
5121 BUG_ON(ret);
5122
5123out:
5124 nr = trans->blocks_used;
89ce8a63 5125 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5126 BUG_ON(ret);
d3c2fdcf 5127 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5128}
5129
d352ac68
CM
5130/*
5131 * create a new subvolume directory/inode (helper for the ioctl).
5132 */
d2fb3437 5133int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5134 struct btrfs_root *new_root,
d2fb3437 5135 u64 new_dirid, u64 alloc_hint)
39279cc3 5136{
39279cc3 5137 struct inode *inode;
76dda93c 5138 int err;
00e4e6b3 5139 u64 index = 0;
39279cc3 5140
aec7477b 5141 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5142 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5143 if (IS_ERR(inode))
f46b5a66 5144 return PTR_ERR(inode);
39279cc3
CM
5145 inode->i_op = &btrfs_dir_inode_operations;
5146 inode->i_fop = &btrfs_dir_file_operations;
5147
39279cc3 5148 inode->i_nlink = 1;
dbe674a9 5149 btrfs_i_size_write(inode, 0);
3b96362c 5150
76dda93c
YZ
5151 err = btrfs_update_inode(trans, new_root, inode);
5152 BUG_ON(err);
cb8e7090 5153
76dda93c 5154 iput(inode);
cb8e7090 5155 return 0;
39279cc3
CM
5156}
5157
d352ac68
CM
5158/* helper function for file defrag and space balancing. This
5159 * forces readahead on a given range of bytes in an inode
5160 */
edbd8d4e 5161unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5162 struct file_ra_state *ra, struct file *file,
5163 pgoff_t offset, pgoff_t last_index)
5164{
8e7bf94f 5165 pgoff_t req_size = last_index - offset + 1;
86479a04 5166
86479a04
CM
5167 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5168 return offset + req_size;
86479a04
CM
5169}
5170
39279cc3
CM
5171struct inode *btrfs_alloc_inode(struct super_block *sb)
5172{
5173 struct btrfs_inode *ei;
5174
5175 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5176 if (!ei)
5177 return NULL;
15ee9bc7 5178 ei->last_trans = 0;
257c62e1 5179 ei->last_sub_trans = 0;
e02119d5 5180 ei->logged_trans = 0;
32c00aff
JB
5181 ei->outstanding_extents = 0;
5182 ei->reserved_extents = 0;
a6dbd429 5183 ei->root = NULL;
32c00aff 5184 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5185 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5186 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5187 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5188 return &ei->vfs_inode;
5189}
5190
5191void btrfs_destroy_inode(struct inode *inode)
5192{
e6dcd2dc 5193 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5194 struct btrfs_root *root = BTRFS_I(inode)->root;
5195
39279cc3
CM
5196 WARN_ON(!list_empty(&inode->i_dentry));
5197 WARN_ON(inode->i_data.nrpages);
5198
a6dbd429
JB
5199 /*
5200 * This can happen where we create an inode, but somebody else also
5201 * created the same inode and we need to destroy the one we already
5202 * created.
5203 */
5204 if (!root)
5205 goto free;
5206
5a3f23d5
CM
5207 /*
5208 * Make sure we're properly removed from the ordered operation
5209 * lists.
5210 */
5211 smp_mb();
5212 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5213 spin_lock(&root->fs_info->ordered_extent_lock);
5214 list_del_init(&BTRFS_I(inode)->ordered_operations);
5215 spin_unlock(&root->fs_info->ordered_extent_lock);
5216 }
5217
5218 spin_lock(&root->list_lock);
7b128766
JB
5219 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5220 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5221 " list\n", inode->i_ino);
5222 dump_stack();
5223 }
5a3f23d5 5224 spin_unlock(&root->list_lock);
7b128766 5225
d397712b 5226 while (1) {
e6dcd2dc
CM
5227 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5228 if (!ordered)
5229 break;
5230 else {
d397712b
CM
5231 printk(KERN_ERR "btrfs found ordered "
5232 "extent %llu %llu on inode cleanup\n",
5233 (unsigned long long)ordered->file_offset,
5234 (unsigned long long)ordered->len);
e6dcd2dc
CM
5235 btrfs_remove_ordered_extent(inode, ordered);
5236 btrfs_put_ordered_extent(ordered);
5237 btrfs_put_ordered_extent(ordered);
5238 }
5239 }
5d4f98a2 5240 inode_tree_del(inode);
5b21f2ed 5241 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5242free:
39279cc3
CM
5243 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5244}
5245
76dda93c
YZ
5246void btrfs_drop_inode(struct inode *inode)
5247{
5248 struct btrfs_root *root = BTRFS_I(inode)->root;
5249
5250 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5251 generic_delete_inode(inode);
5252 else
5253 generic_drop_inode(inode);
5254}
5255
0ee0fda0 5256static void init_once(void *foo)
39279cc3
CM
5257{
5258 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5259
5260 inode_init_once(&ei->vfs_inode);
5261}
5262
5263void btrfs_destroy_cachep(void)
5264{
5265 if (btrfs_inode_cachep)
5266 kmem_cache_destroy(btrfs_inode_cachep);
5267 if (btrfs_trans_handle_cachep)
5268 kmem_cache_destroy(btrfs_trans_handle_cachep);
5269 if (btrfs_transaction_cachep)
5270 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5271 if (btrfs_path_cachep)
5272 kmem_cache_destroy(btrfs_path_cachep);
5273}
5274
5275int btrfs_init_cachep(void)
5276{
9601e3f6
CH
5277 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5278 sizeof(struct btrfs_inode), 0,
5279 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5280 if (!btrfs_inode_cachep)
5281 goto fail;
9601e3f6
CH
5282
5283 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5284 sizeof(struct btrfs_trans_handle), 0,
5285 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5286 if (!btrfs_trans_handle_cachep)
5287 goto fail;
9601e3f6
CH
5288
5289 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5290 sizeof(struct btrfs_transaction), 0,
5291 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5292 if (!btrfs_transaction_cachep)
5293 goto fail;
9601e3f6
CH
5294
5295 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5296 sizeof(struct btrfs_path), 0,
5297 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5298 if (!btrfs_path_cachep)
5299 goto fail;
9601e3f6 5300
39279cc3
CM
5301 return 0;
5302fail:
5303 btrfs_destroy_cachep();
5304 return -ENOMEM;
5305}
5306
5307static int btrfs_getattr(struct vfsmount *mnt,
5308 struct dentry *dentry, struct kstat *stat)
5309{
5310 struct inode *inode = dentry->d_inode;
5311 generic_fillattr(inode, stat);
3394e160 5312 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5313 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5314 stat->blocks = (inode_get_bytes(inode) +
5315 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5316 return 0;
5317}
5318
d397712b
CM
5319static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5320 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5321{
5322 struct btrfs_trans_handle *trans;
5323 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5324 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5325 struct inode *new_inode = new_dentry->d_inode;
5326 struct inode *old_inode = old_dentry->d_inode;
5327 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5328 u64 index = 0;
4df27c4d 5329 u64 root_objectid;
39279cc3
CM
5330 int ret;
5331
f679a840
YZ
5332 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5333 return -EPERM;
5334
4df27c4d
YZ
5335 /* we only allow rename subvolume link between subvolumes */
5336 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5337 return -EXDEV;
5338
4df27c4d
YZ
5339 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5340 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5341 return -ENOTEMPTY;
5f39d397 5342
4df27c4d
YZ
5343 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5344 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5345 return -ENOTEMPTY;
0660b5af 5346
9ed74f2d 5347 /*
5df6a9f6
JB
5348 * We want to reserve the absolute worst case amount of items. So if
5349 * both inodes are subvols and we need to unlink them then that would
5350 * require 4 item modifications, but if they are both normal inodes it
5351 * would require 5 item modifications, so we'll assume their normal
5352 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5353 * should cover the worst case number of items we'll modify.
9ed74f2d 5354 */
5df6a9f6 5355 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5356 if (ret)
4df27c4d 5357 return ret;
1832a6d5 5358
5a3f23d5
CM
5359 /*
5360 * we're using rename to replace one file with another.
5361 * and the replacement file is large. Start IO on it now so
5362 * we don't add too much work to the end of the transaction
5363 */
4baf8c92 5364 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5365 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5366 filemap_flush(old_inode->i_mapping);
5367
76dda93c
YZ
5368 /* close the racy window with snapshot create/destroy ioctl */
5369 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5370 down_read(&root->fs_info->subvol_sem);
5371
39279cc3 5372 trans = btrfs_start_transaction(root, 1);
a5719521 5373 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5374
4df27c4d
YZ
5375 if (dest != root)
5376 btrfs_record_root_in_trans(trans, dest);
5f39d397 5377
a5719521
YZ
5378 ret = btrfs_set_inode_index(new_dir, &index);
5379 if (ret)
5380 goto out_fail;
5a3f23d5 5381
a5719521 5382 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5383 /* force full log commit if subvolume involved. */
5384 root->fs_info->last_trans_log_full_commit = trans->transid;
5385 } else {
a5719521
YZ
5386 ret = btrfs_insert_inode_ref(trans, dest,
5387 new_dentry->d_name.name,
5388 new_dentry->d_name.len,
5389 old_inode->i_ino,
5390 new_dir->i_ino, index);
5391 if (ret)
5392 goto out_fail;
4df27c4d
YZ
5393 /*
5394 * this is an ugly little race, but the rename is required
5395 * to make sure that if we crash, the inode is either at the
5396 * old name or the new one. pinning the log transaction lets
5397 * us make sure we don't allow a log commit to come in after
5398 * we unlink the name but before we add the new name back in.
5399 */
5400 btrfs_pin_log_trans(root);
5401 }
5a3f23d5
CM
5402 /*
5403 * make sure the inode gets flushed if it is replacing
5404 * something.
5405 */
5406 if (new_inode && new_inode->i_size &&
5407 old_inode && S_ISREG(old_inode->i_mode)) {
5408 btrfs_add_ordered_operation(trans, root, old_inode);
5409 }
5410
39279cc3
CM
5411 old_dir->i_ctime = old_dir->i_mtime = ctime;
5412 new_dir->i_ctime = new_dir->i_mtime = ctime;
5413 old_inode->i_ctime = ctime;
5f39d397 5414
12fcfd22
CM
5415 if (old_dentry->d_parent != new_dentry->d_parent)
5416 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5417
4df27c4d
YZ
5418 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5419 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5420 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5421 old_dentry->d_name.name,
5422 old_dentry->d_name.len);
5423 } else {
5424 btrfs_inc_nlink(old_dentry->d_inode);
5425 ret = btrfs_unlink_inode(trans, root, old_dir,
5426 old_dentry->d_inode,
5427 old_dentry->d_name.name,
5428 old_dentry->d_name.len);
5429 }
5430 BUG_ON(ret);
39279cc3
CM
5431
5432 if (new_inode) {
5433 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5434 if (unlikely(new_inode->i_ino ==
5435 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5436 root_objectid = BTRFS_I(new_inode)->location.objectid;
5437 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5438 root_objectid,
5439 new_dentry->d_name.name,
5440 new_dentry->d_name.len);
5441 BUG_ON(new_inode->i_nlink == 0);
5442 } else {
5443 ret = btrfs_unlink_inode(trans, dest, new_dir,
5444 new_dentry->d_inode,
5445 new_dentry->d_name.name,
5446 new_dentry->d_name.len);
5447 }
5448 BUG_ON(ret);
7b128766 5449 if (new_inode->i_nlink == 0) {
e02119d5 5450 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5451 BUG_ON(ret);
7b128766 5452 }
39279cc3 5453 }
aec7477b 5454
4df27c4d
YZ
5455 ret = btrfs_add_link(trans, new_dir, old_inode,
5456 new_dentry->d_name.name,
a5719521 5457 new_dentry->d_name.len, 0, index);
4df27c4d 5458 BUG_ON(ret);
39279cc3 5459
4df27c4d
YZ
5460 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5461 btrfs_log_new_name(trans, old_inode, old_dir,
5462 new_dentry->d_parent);
5463 btrfs_end_log_trans(root);
5464 }
39279cc3 5465out_fail:
ab78c84d 5466 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5467
76dda93c
YZ
5468 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5469 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5470
5df6a9f6 5471 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5472 return ret;
5473}
5474
d352ac68
CM
5475/*
5476 * some fairly slow code that needs optimization. This walks the list
5477 * of all the inodes with pending delalloc and forces them to disk.
5478 */
ea8c2819
CM
5479int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5480{
5481 struct list_head *head = &root->fs_info->delalloc_inodes;
5482 struct btrfs_inode *binode;
5b21f2ed 5483 struct inode *inode;
ea8c2819 5484
c146afad
YZ
5485 if (root->fs_info->sb->s_flags & MS_RDONLY)
5486 return -EROFS;
5487
75eff68e 5488 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5489 while (!list_empty(head)) {
ea8c2819
CM
5490 binode = list_entry(head->next, struct btrfs_inode,
5491 delalloc_inodes);
5b21f2ed
ZY
5492 inode = igrab(&binode->vfs_inode);
5493 if (!inode)
5494 list_del_init(&binode->delalloc_inodes);
75eff68e 5495 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5496 if (inode) {
8c8bee1d 5497 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5498 iput(inode);
5499 }
5500 cond_resched();
75eff68e 5501 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5502 }
75eff68e 5503 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5504
5505 /* the filemap_flush will queue IO into the worker threads, but
5506 * we have to make sure the IO is actually started and that
5507 * ordered extents get created before we return
5508 */
5509 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5510 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5511 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5512 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5513 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5514 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5515 }
5516 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5517 return 0;
5518}
5519
39279cc3
CM
5520static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5521 const char *symname)
5522{
5523 struct btrfs_trans_handle *trans;
5524 struct btrfs_root *root = BTRFS_I(dir)->root;
5525 struct btrfs_path *path;
5526 struct btrfs_key key;
1832a6d5 5527 struct inode *inode = NULL;
39279cc3
CM
5528 int err;
5529 int drop_inode = 0;
5530 u64 objectid;
00e4e6b3 5531 u64 index = 0 ;
39279cc3
CM
5532 int name_len;
5533 int datasize;
5f39d397 5534 unsigned long ptr;
39279cc3 5535 struct btrfs_file_extent_item *ei;
5f39d397 5536 struct extent_buffer *leaf;
1832a6d5 5537 unsigned long nr = 0;
39279cc3
CM
5538
5539 name_len = strlen(symname) + 1;
5540 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5541 return -ENAMETOOLONG;
1832a6d5 5542
9ed74f2d
JB
5543 /*
5544 * 2 items for inode item and ref
5545 * 2 items for dir items
5546 * 1 item for xattr if selinux is on
5547 */
5548 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5549 if (err)
9ed74f2d 5550 return err;
1832a6d5 5551
39279cc3 5552 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5553 if (!trans)
5554 goto out_fail;
39279cc3
CM
5555 btrfs_set_trans_block_group(trans, dir);
5556
5557 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5558 if (err) {
5559 err = -ENOSPC;
5560 goto out_unlock;
5561 }
5562
aec7477b 5563 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5564 dentry->d_name.len,
5565 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5566 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5567 &index);
39279cc3
CM
5568 err = PTR_ERR(inode);
5569 if (IS_ERR(inode))
5570 goto out_unlock;
5571
0279b4cd 5572 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5573 if (err) {
5574 drop_inode = 1;
5575 goto out_unlock;
5576 }
5577
39279cc3 5578 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5579 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5580 if (err)
5581 drop_inode = 1;
5582 else {
5583 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5584 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5585 inode->i_fop = &btrfs_file_operations;
5586 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5587 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5588 }
39279cc3
CM
5589 btrfs_update_inode_block_group(trans, inode);
5590 btrfs_update_inode_block_group(trans, dir);
5591 if (drop_inode)
5592 goto out_unlock;
5593
5594 path = btrfs_alloc_path();
5595 BUG_ON(!path);
5596 key.objectid = inode->i_ino;
5597 key.offset = 0;
39279cc3
CM
5598 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5599 datasize = btrfs_file_extent_calc_inline_size(name_len);
5600 err = btrfs_insert_empty_item(trans, root, path, &key,
5601 datasize);
54aa1f4d
CM
5602 if (err) {
5603 drop_inode = 1;
5604 goto out_unlock;
5605 }
5f39d397
CM
5606 leaf = path->nodes[0];
5607 ei = btrfs_item_ptr(leaf, path->slots[0],
5608 struct btrfs_file_extent_item);
5609 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5610 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5611 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5612 btrfs_set_file_extent_encryption(leaf, ei, 0);
5613 btrfs_set_file_extent_compression(leaf, ei, 0);
5614 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5615 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5616
39279cc3 5617 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5618 write_extent_buffer(leaf, symname, ptr, name_len);
5619 btrfs_mark_buffer_dirty(leaf);
39279cc3 5620 btrfs_free_path(path);
5f39d397 5621
39279cc3
CM
5622 inode->i_op = &btrfs_symlink_inode_operations;
5623 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5624 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5625 inode_set_bytes(inode, name_len);
dbe674a9 5626 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5627 err = btrfs_update_inode(trans, root, inode);
5628 if (err)
5629 drop_inode = 1;
39279cc3
CM
5630
5631out_unlock:
d3c2fdcf 5632 nr = trans->blocks_used;
ab78c84d 5633 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5634out_fail:
9ed74f2d 5635 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5636 if (drop_inode) {
5637 inode_dec_link_count(inode);
5638 iput(inode);
5639 }
d3c2fdcf 5640 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5641 return err;
5642}
16432985 5643
546888da
CM
5644static int prealloc_file_range(struct btrfs_trans_handle *trans,
5645 struct inode *inode, u64 start, u64 end,
e980b50c 5646 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5647{
d899e052
YZ
5648 struct btrfs_root *root = BTRFS_I(inode)->root;
5649 struct btrfs_key ins;
5650 u64 alloc_size;
5651 u64 cur_offset = start;
5652 u64 num_bytes = end - start;
5653 int ret = 0;
5654
d899e052
YZ
5655 while (num_bytes > 0) {
5656 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d
JB
5657
5658 ret = btrfs_reserve_metadata_space(root, 1);
5659 if (ret)
5660 goto out;
5661
d899e052
YZ
5662 ret = btrfs_reserve_extent(trans, root, alloc_size,
5663 root->sectorsize, 0, alloc_hint,
5664 (u64)-1, &ins, 1);
5665 if (ret) {
5666 WARN_ON(1);
5667 goto out;
5668 }
5669 ret = insert_reserved_file_extent(trans, inode,
5670 cur_offset, ins.objectid,
5671 ins.offset, ins.offset,
e980b50c
CM
5672 ins.offset, locked_end,
5673 0, 0, 0,
d899e052
YZ
5674 BTRFS_FILE_EXTENT_PREALLOC);
5675 BUG_ON(ret);
a1ed835e
CM
5676 btrfs_drop_extent_cache(inode, cur_offset,
5677 cur_offset + ins.offset -1, 0);
d899e052
YZ
5678 num_bytes -= ins.offset;
5679 cur_offset += ins.offset;
5680 alloc_hint = ins.objectid + ins.offset;
9ed74f2d 5681 btrfs_unreserve_metadata_space(root, 1);
d899e052
YZ
5682 }
5683out:
5684 if (cur_offset > start) {
5685 inode->i_ctime = CURRENT_TIME;
6cbff00f 5686 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5687 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5688 cur_offset > i_size_read(inode))
5689 btrfs_i_size_write(inode, cur_offset);
5690 ret = btrfs_update_inode(trans, root, inode);
5691 BUG_ON(ret);
5692 }
5693
d899e052
YZ
5694 return ret;
5695}
5696
5697static long btrfs_fallocate(struct inode *inode, int mode,
5698 loff_t offset, loff_t len)
5699{
5700 u64 cur_offset;
5701 u64 last_byte;
5702 u64 alloc_start;
5703 u64 alloc_end;
5704 u64 alloc_hint = 0;
e980b50c 5705 u64 locked_end;
d899e052
YZ
5706 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5707 struct extent_map *em;
546888da 5708 struct btrfs_trans_handle *trans;
a970b0a1 5709 struct btrfs_root *root;
d899e052
YZ
5710 int ret;
5711
5712 alloc_start = offset & ~mask;
5713 alloc_end = (offset + len + mask) & ~mask;
5714
546888da
CM
5715 /*
5716 * wait for ordered IO before we have any locks. We'll loop again
5717 * below with the locks held.
5718 */
5719 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5720
d899e052
YZ
5721 mutex_lock(&inode->i_mutex);
5722 if (alloc_start > inode->i_size) {
5723 ret = btrfs_cont_expand(inode, alloc_start);
5724 if (ret)
5725 goto out;
5726 }
5727
a970b0a1
JB
5728 root = BTRFS_I(inode)->root;
5729
5730 ret = btrfs_check_data_free_space(root, inode,
5731 alloc_end - alloc_start);
5732 if (ret)
5733 goto out;
5734
e980b50c 5735 locked_end = alloc_end - 1;
d899e052
YZ
5736 while (1) {
5737 struct btrfs_ordered_extent *ordered;
546888da
CM
5738
5739 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5740 if (!trans) {
5741 ret = -EIO;
a970b0a1 5742 goto out_free;
546888da
CM
5743 }
5744
5745 /* the extent lock is ordered inside the running
5746 * transaction
5747 */
e980b50c
CM
5748 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5749 GFP_NOFS);
d899e052
YZ
5750 ordered = btrfs_lookup_first_ordered_extent(inode,
5751 alloc_end - 1);
5752 if (ordered &&
5753 ordered->file_offset + ordered->len > alloc_start &&
5754 ordered->file_offset < alloc_end) {
5755 btrfs_put_ordered_extent(ordered);
5756 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5757 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5758 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5759
5760 /*
5761 * we can't wait on the range with the transaction
5762 * running or with the extent lock held
5763 */
d899e052
YZ
5764 btrfs_wait_ordered_range(inode, alloc_start,
5765 alloc_end - alloc_start);
5766 } else {
5767 if (ordered)
5768 btrfs_put_ordered_extent(ordered);
5769 break;
5770 }
5771 }
5772
5773 cur_offset = alloc_start;
5774 while (1) {
5775 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5776 alloc_end - cur_offset, 0);
5777 BUG_ON(IS_ERR(em) || !em);
5778 last_byte = min(extent_map_end(em), alloc_end);
5779 last_byte = (last_byte + mask) & ~mask;
5780 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5781 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5782 last_byte, locked_end + 1,
5783 alloc_hint, mode);
d899e052
YZ
5784 if (ret < 0) {
5785 free_extent_map(em);
5786 break;
5787 }
5788 }
5789 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5790 alloc_hint = em->block_start;
5791 free_extent_map(em);
5792
5793 cur_offset = last_byte;
5794 if (cur_offset >= alloc_end) {
5795 ret = 0;
5796 break;
5797 }
5798 }
e980b50c 5799 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5800 GFP_NOFS);
546888da
CM
5801
5802 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5803out_free:
5804 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5805out:
5806 mutex_unlock(&inode->i_mutex);
5807 return ret;
5808}
5809
e6dcd2dc
CM
5810static int btrfs_set_page_dirty(struct page *page)
5811{
e6dcd2dc
CM
5812 return __set_page_dirty_nobuffers(page);
5813}
5814
0ee0fda0 5815static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5816{
6cbff00f 5817 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5818 return -EACCES;
33268eaf 5819 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5820}
39279cc3 5821
6e1d5dcc 5822static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5823 .getattr = btrfs_getattr,
39279cc3
CM
5824 .lookup = btrfs_lookup,
5825 .create = btrfs_create,
5826 .unlink = btrfs_unlink,
5827 .link = btrfs_link,
5828 .mkdir = btrfs_mkdir,
5829 .rmdir = btrfs_rmdir,
5830 .rename = btrfs_rename,
5831 .symlink = btrfs_symlink,
5832 .setattr = btrfs_setattr,
618e21d5 5833 .mknod = btrfs_mknod,
95819c05
CH
5834 .setxattr = btrfs_setxattr,
5835 .getxattr = btrfs_getxattr,
5103e947 5836 .listxattr = btrfs_listxattr,
95819c05 5837 .removexattr = btrfs_removexattr,
fdebe2bd 5838 .permission = btrfs_permission,
39279cc3 5839};
6e1d5dcc 5840static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5841 .lookup = btrfs_lookup,
fdebe2bd 5842 .permission = btrfs_permission,
39279cc3 5843};
76dda93c 5844
828c0950 5845static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5846 .llseek = generic_file_llseek,
5847 .read = generic_read_dir,
cbdf5a24 5848 .readdir = btrfs_real_readdir,
34287aa3 5849 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5850#ifdef CONFIG_COMPAT
34287aa3 5851 .compat_ioctl = btrfs_ioctl,
39279cc3 5852#endif
6bf13c0c 5853 .release = btrfs_release_file,
e02119d5 5854 .fsync = btrfs_sync_file,
39279cc3
CM
5855};
5856
d1310b2e 5857static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5858 .fill_delalloc = run_delalloc_range,
065631f6 5859 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5860 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5861 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5862 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5863 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5864 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5865 .set_bit_hook = btrfs_set_bit_hook,
5866 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5867 .merge_extent_hook = btrfs_merge_extent_hook,
5868 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5869};
5870
35054394
CM
5871/*
5872 * btrfs doesn't support the bmap operation because swapfiles
5873 * use bmap to make a mapping of extents in the file. They assume
5874 * these extents won't change over the life of the file and they
5875 * use the bmap result to do IO directly to the drive.
5876 *
5877 * the btrfs bmap call would return logical addresses that aren't
5878 * suitable for IO and they also will change frequently as COW
5879 * operations happen. So, swapfile + btrfs == corruption.
5880 *
5881 * For now we're avoiding this by dropping bmap.
5882 */
7f09410b 5883static const struct address_space_operations btrfs_aops = {
39279cc3
CM
5884 .readpage = btrfs_readpage,
5885 .writepage = btrfs_writepage,
b293f02e 5886 .writepages = btrfs_writepages,
3ab2fb5a 5887 .readpages = btrfs_readpages,
39279cc3 5888 .sync_page = block_sync_page,
16432985 5889 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5890 .invalidatepage = btrfs_invalidatepage,
5891 .releasepage = btrfs_releasepage,
e6dcd2dc 5892 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 5893 .error_remove_page = generic_error_remove_page,
39279cc3
CM
5894};
5895
7f09410b 5896static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
5897 .readpage = btrfs_readpage,
5898 .writepage = btrfs_writepage,
2bf5a725
CM
5899 .invalidatepage = btrfs_invalidatepage,
5900 .releasepage = btrfs_releasepage,
39279cc3
CM
5901};
5902
6e1d5dcc 5903static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
5904 .truncate = btrfs_truncate,
5905 .getattr = btrfs_getattr,
5906 .setattr = btrfs_setattr,
95819c05
CH
5907 .setxattr = btrfs_setxattr,
5908 .getxattr = btrfs_getxattr,
5103e947 5909 .listxattr = btrfs_listxattr,
95819c05 5910 .removexattr = btrfs_removexattr,
fdebe2bd 5911 .permission = btrfs_permission,
d899e052 5912 .fallocate = btrfs_fallocate,
1506fcc8 5913 .fiemap = btrfs_fiemap,
39279cc3 5914};
6e1d5dcc 5915static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
5916 .getattr = btrfs_getattr,
5917 .setattr = btrfs_setattr,
fdebe2bd 5918 .permission = btrfs_permission,
95819c05
CH
5919 .setxattr = btrfs_setxattr,
5920 .getxattr = btrfs_getxattr,
33268eaf 5921 .listxattr = btrfs_listxattr,
95819c05 5922 .removexattr = btrfs_removexattr,
618e21d5 5923};
6e1d5dcc 5924static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
5925 .readlink = generic_readlink,
5926 .follow_link = page_follow_link_light,
5927 .put_link = page_put_link,
fdebe2bd 5928 .permission = btrfs_permission,
0279b4cd
JO
5929 .setxattr = btrfs_setxattr,
5930 .getxattr = btrfs_getxattr,
5931 .listxattr = btrfs_listxattr,
5932 .removexattr = btrfs_removexattr,
39279cc3 5933};
76dda93c 5934
82d339d9 5935const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
5936 .d_delete = btrfs_dentry_delete,
5937};