]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/free-space-cache.c
Btrfs: avoid allocation clusters that are too spread out
[net-next-2.6.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
fa9c0d79
CM
21#include "free-space-cache.h"
22#include "transaction.h"
23
24struct btrfs_free_space {
25 struct rb_node bytes_index;
26 struct rb_node offset_index;
27 u64 offset;
28 u64 bytes;
29};
0f9dd46c
JB
30
31static int tree_insert_offset(struct rb_root *root, u64 offset,
32 struct rb_node *node)
33{
34 struct rb_node **p = &root->rb_node;
35 struct rb_node *parent = NULL;
36 struct btrfs_free_space *info;
37
38 while (*p) {
39 parent = *p;
40 info = rb_entry(parent, struct btrfs_free_space, offset_index);
41
42 if (offset < info->offset)
43 p = &(*p)->rb_left;
44 else if (offset > info->offset)
45 p = &(*p)->rb_right;
46 else
47 return -EEXIST;
48 }
49
50 rb_link_node(node, parent, p);
51 rb_insert_color(node, root);
52
53 return 0;
54}
55
56static int tree_insert_bytes(struct rb_root *root, u64 bytes,
57 struct rb_node *node)
58{
59 struct rb_node **p = &root->rb_node;
60 struct rb_node *parent = NULL;
61 struct btrfs_free_space *info;
62
63 while (*p) {
64 parent = *p;
65 info = rb_entry(parent, struct btrfs_free_space, bytes_index);
66
67 if (bytes < info->bytes)
68 p = &(*p)->rb_left;
69 else
70 p = &(*p)->rb_right;
71 }
72
73 rb_link_node(node, parent, p);
74 rb_insert_color(node, root);
75
76 return 0;
77}
78
79/*
70cb0743
JB
80 * searches the tree for the given offset.
81 *
82 * fuzzy == 1: this is used for allocations where we are given a hint of where
83 * to look for free space. Because the hint may not be completely on an offset
84 * mark, or the hint may no longer point to free space we need to fudge our
85 * results a bit. So we look for free space starting at or after offset with at
86 * least bytes size. We prefer to find as close to the given offset as we can.
87 * Also if the offset is within a free space range, then we will return the free
88 * space that contains the given offset, which means we can return a free space
89 * chunk with an offset before the provided offset.
90 *
91 * fuzzy == 0: this is just a normal tree search. Give us the free space that
92 * starts at the given offset which is at least bytes size, and if its not there
93 * return NULL.
0f9dd46c
JB
94 */
95static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
96 u64 offset, u64 bytes,
70cb0743 97 int fuzzy)
0f9dd46c
JB
98{
99 struct rb_node *n = root->rb_node;
100 struct btrfs_free_space *entry, *ret = NULL;
101
102 while (n) {
103 entry = rb_entry(n, struct btrfs_free_space, offset_index);
104
105 if (offset < entry->offset) {
70cb0743 106 if (fuzzy &&
0f9dd46c
JB
107 (!ret || entry->offset < ret->offset) &&
108 (bytes <= entry->bytes))
109 ret = entry;
110 n = n->rb_left;
111 } else if (offset > entry->offset) {
70cb0743
JB
112 if (fuzzy &&
113 (entry->offset + entry->bytes - 1) >= offset &&
37d3cddd 114 bytes <= entry->bytes) {
0f9dd46c
JB
115 ret = entry;
116 break;
117 }
118 n = n->rb_right;
119 } else {
120 if (bytes > entry->bytes) {
121 n = n->rb_right;
122 continue;
123 }
124 ret = entry;
125 break;
126 }
127 }
128
129 return ret;
130}
131
132/*
133 * return a chunk at least bytes size, as close to offset that we can get.
134 */
135static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
136 u64 offset, u64 bytes)
137{
138 struct rb_node *n = root->rb_node;
139 struct btrfs_free_space *entry, *ret = NULL;
140
141 while (n) {
142 entry = rb_entry(n, struct btrfs_free_space, bytes_index);
143
144 if (bytes < entry->bytes) {
145 /*
146 * We prefer to get a hole size as close to the size we
147 * are asking for so we don't take small slivers out of
148 * huge holes, but we also want to get as close to the
149 * offset as possible so we don't have a whole lot of
150 * fragmentation.
151 */
152 if (offset <= entry->offset) {
153 if (!ret)
154 ret = entry;
155 else if (entry->bytes < ret->bytes)
156 ret = entry;
157 else if (entry->offset < ret->offset)
158 ret = entry;
159 }
160 n = n->rb_left;
161 } else if (bytes > entry->bytes) {
162 n = n->rb_right;
163 } else {
164 /*
165 * Ok we may have multiple chunks of the wanted size,
166 * so we don't want to take the first one we find, we
167 * want to take the one closest to our given offset, so
168 * keep searching just in case theres a better match.
169 */
170 n = n->rb_right;
171 if (offset > entry->offset)
172 continue;
173 else if (!ret || entry->offset < ret->offset)
174 ret = entry;
175 }
176 }
177
178 return ret;
179}
180
181static void unlink_free_space(struct btrfs_block_group_cache *block_group,
182 struct btrfs_free_space *info)
183{
184 rb_erase(&info->offset_index, &block_group->free_space_offset);
185 rb_erase(&info->bytes_index, &block_group->free_space_bytes);
186}
187
188static int link_free_space(struct btrfs_block_group_cache *block_group,
189 struct btrfs_free_space *info)
190{
191 int ret = 0;
192
193
6226cb0a 194 BUG_ON(!info->bytes);
0f9dd46c
JB
195 ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
196 &info->offset_index);
197 if (ret)
198 return ret;
199
200 ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
201 &info->bytes_index);
202 if (ret)
203 return ret;
204
205 return ret;
206}
207
6226cb0a
JB
208int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
209 u64 offset, u64 bytes)
0f9dd46c
JB
210{
211 struct btrfs_free_space *right_info;
212 struct btrfs_free_space *left_info;
213 struct btrfs_free_space *info = NULL;
0f9dd46c
JB
214 int ret = 0;
215
6226cb0a
JB
216 info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
217 if (!info)
218 return -ENOMEM;
219
220 info->offset = offset;
221 info->bytes = bytes;
222
223 spin_lock(&block_group->tree_lock);
224
0f9dd46c
JB
225 /*
226 * first we want to see if there is free space adjacent to the range we
227 * are adding, if there is remove that struct and add a new one to
228 * cover the entire range
229 */
0f9dd46c 230 right_info = tree_search_offset(&block_group->free_space_offset,
70cb0743 231 offset+bytes, 0, 0);
0f9dd46c
JB
232 left_info = tree_search_offset(&block_group->free_space_offset,
233 offset-1, 0, 1);
234
70cb0743 235 if (right_info) {
0f9dd46c 236 unlink_free_space(block_group, right_info);
6226cb0a
JB
237 info->bytes += right_info->bytes;
238 kfree(right_info);
0f9dd46c
JB
239 }
240
70cb0743 241 if (left_info && left_info->offset + left_info->bytes == offset) {
0f9dd46c 242 unlink_free_space(block_group, left_info);
6226cb0a
JB
243 info->offset = left_info->offset;
244 info->bytes += left_info->bytes;
245 kfree(left_info);
0f9dd46c
JB
246 }
247
0f9dd46c
JB
248 ret = link_free_space(block_group, info);
249 if (ret)
250 kfree(info);
6226cb0a
JB
251
252 spin_unlock(&block_group->tree_lock);
253
0f9dd46c
JB
254 if (ret) {
255 printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
c293498b 256 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
257 }
258
0f9dd46c
JB
259 return ret;
260}
261
6226cb0a
JB
262int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
263 u64 offset, u64 bytes)
0f9dd46c
JB
264{
265 struct btrfs_free_space *info;
266 int ret = 0;
267
6226cb0a
JB
268 spin_lock(&block_group->tree_lock);
269
0f9dd46c
JB
270 info = tree_search_offset(&block_group->free_space_offset, offset, 0,
271 1);
0f9dd46c
JB
272 if (info && info->offset == offset) {
273 if (info->bytes < bytes) {
d397712b
CM
274 printk(KERN_ERR "Found free space at %llu, size %llu,"
275 "trying to use %llu\n",
276 (unsigned long long)info->offset,
277 (unsigned long long)info->bytes,
278 (unsigned long long)bytes);
0f9dd46c
JB
279 WARN_ON(1);
280 ret = -EINVAL;
6226cb0a 281 spin_unlock(&block_group->tree_lock);
0f9dd46c
JB
282 goto out;
283 }
0f9dd46c
JB
284 unlink_free_space(block_group, info);
285
286 if (info->bytes == bytes) {
287 kfree(info);
6226cb0a 288 spin_unlock(&block_group->tree_lock);
0f9dd46c
JB
289 goto out;
290 }
291
292 info->offset += bytes;
293 info->bytes -= bytes;
294
295 ret = link_free_space(block_group, info);
6226cb0a 296 spin_unlock(&block_group->tree_lock);
0f9dd46c 297 BUG_ON(ret);
9b49c9b9
CM
298 } else if (info && info->offset < offset &&
299 info->offset + info->bytes >= offset + bytes) {
300 u64 old_start = info->offset;
301 /*
302 * we're freeing space in the middle of the info,
303 * this can happen during tree log replay
304 *
305 * first unlink the old info and then
306 * insert it again after the hole we're creating
307 */
308 unlink_free_space(block_group, info);
309 if (offset + bytes < info->offset + info->bytes) {
310 u64 old_end = info->offset + info->bytes;
311
312 info->offset = offset + bytes;
313 info->bytes = old_end - info->offset;
314 ret = link_free_space(block_group, info);
315 BUG_ON(ret);
316 } else {
317 /* the hole we're creating ends at the end
318 * of the info struct, just free the info
319 */
320 kfree(info);
321 }
6226cb0a 322 spin_unlock(&block_group->tree_lock);
9b49c9b9
CM
323 /* step two, insert a new info struct to cover anything
324 * before the hole
325 */
6226cb0a
JB
326 ret = btrfs_add_free_space(block_group, old_start,
327 offset - old_start);
9b49c9b9 328 BUG_ON(ret);
0f9dd46c 329 } else {
6226cb0a 330 spin_unlock(&block_group->tree_lock);
70cb0743
JB
331 if (!info) {
332 printk(KERN_ERR "couldn't find space %llu to free\n",
333 (unsigned long long)offset);
334 printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
21380931
JB
335 block_group->cached,
336 (unsigned long long)block_group->key.objectid,
337 (unsigned long long)block_group->key.offset);
70cb0743
JB
338 btrfs_dump_free_space(block_group, bytes);
339 } else if (info) {
340 printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
341 "but wanted offset=%llu bytes=%llu\n",
21380931
JB
342 (unsigned long long)info->offset,
343 (unsigned long long)info->bytes,
344 (unsigned long long)offset,
345 (unsigned long long)bytes);
70cb0743 346 }
0f9dd46c
JB
347 WARN_ON(1);
348 }
349out:
25179201
JB
350 return ret;
351}
352
0f9dd46c
JB
353void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
354 u64 bytes)
355{
356 struct btrfs_free_space *info;
357 struct rb_node *n;
358 int count = 0;
359
360 for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
361 info = rb_entry(n, struct btrfs_free_space, offset_index);
362 if (info->bytes >= bytes)
363 count++;
21380931
JB
364 printk(KERN_ERR "entry offset %llu, bytes %llu\n",
365 (unsigned long long)info->offset,
366 (unsigned long long)info->bytes);
0f9dd46c
JB
367 }
368 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
369 "\n", count);
370}
371
372u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
373{
374 struct btrfs_free_space *info;
375 struct rb_node *n;
376 u64 ret = 0;
377
378 for (n = rb_first(&block_group->free_space_offset); n;
379 n = rb_next(n)) {
380 info = rb_entry(n, struct btrfs_free_space, offset_index);
381 ret += info->bytes;
382 }
383
384 return ret;
385}
386
fa9c0d79
CM
387/*
388 * for a given cluster, put all of its extents back into the free
389 * space cache. If the block group passed doesn't match the block group
390 * pointed to by the cluster, someone else raced in and freed the
391 * cluster already. In that case, we just return without changing anything
392 */
393static int
394__btrfs_return_cluster_to_free_space(
395 struct btrfs_block_group_cache *block_group,
396 struct btrfs_free_cluster *cluster)
397{
398 struct btrfs_free_space *entry;
399 struct rb_node *node;
400
401 spin_lock(&cluster->lock);
402 if (cluster->block_group != block_group)
403 goto out;
404
405 cluster->window_start = 0;
406 node = rb_first(&cluster->root);
407 while(node) {
408 entry = rb_entry(node, struct btrfs_free_space, offset_index);
409 node = rb_next(&entry->offset_index);
410 rb_erase(&entry->offset_index, &cluster->root);
411 link_free_space(block_group, entry);
412 }
413 list_del_init(&cluster->block_group_list);
414
415 btrfs_put_block_group(cluster->block_group);
416 cluster->block_group = NULL;
417 cluster->root.rb_node = NULL;
418out:
419 spin_unlock(&cluster->lock);
420 return 0;
421}
422
0f9dd46c
JB
423void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
424{
425 struct btrfs_free_space *info;
426 struct rb_node *node;
fa9c0d79
CM
427 struct btrfs_free_cluster *cluster;
428 struct btrfs_free_cluster *safe;
0f9dd46c 429
6226cb0a 430 spin_lock(&block_group->tree_lock);
fa9c0d79
CM
431
432 list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
433 block_group_list) {
434
435 WARN_ON(cluster->block_group != block_group);
436 __btrfs_return_cluster_to_free_space(block_group, cluster);
437 }
438
0f9dd46c
JB
439 while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
440 info = rb_entry(node, struct btrfs_free_space, bytes_index);
441 unlink_free_space(block_group, info);
442 kfree(info);
443 if (need_resched()) {
6226cb0a 444 spin_unlock(&block_group->tree_lock);
0f9dd46c 445 cond_resched();
6226cb0a 446 spin_lock(&block_group->tree_lock);
0f9dd46c
JB
447 }
448 }
6226cb0a 449 spin_unlock(&block_group->tree_lock);
0f9dd46c
JB
450}
451
6226cb0a
JB
452u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
453 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 454{
6226cb0a
JB
455 struct btrfs_free_space *entry = NULL;
456 u64 ret = 0;
0f9dd46c 457
6226cb0a
JB
458 spin_lock(&block_group->tree_lock);
459 entry = tree_search_offset(&block_group->free_space_offset, offset,
460 bytes + empty_size, 1);
461 if (!entry)
462 entry = tree_search_bytes(&block_group->free_space_bytes,
463 offset, bytes + empty_size);
464 if (entry) {
465 unlink_free_space(block_group, entry);
466 ret = entry->offset;
467 entry->offset += bytes;
468 entry->bytes -= bytes;
469
470 if (!entry->bytes)
471 kfree(entry);
472 else
473 link_free_space(block_group, entry);
474 }
475 spin_unlock(&block_group->tree_lock);
0f9dd46c 476
0f9dd46c
JB
477 return ret;
478}
fa9c0d79
CM
479
480/*
481 * given a cluster, put all of its extents back into the free space
482 * cache. If a block group is passed, this function will only free
483 * a cluster that belongs to the passed block group.
484 *
485 * Otherwise, it'll get a reference on the block group pointed to by the
486 * cluster and remove the cluster from it.
487 */
488int btrfs_return_cluster_to_free_space(
489 struct btrfs_block_group_cache *block_group,
490 struct btrfs_free_cluster *cluster)
491{
492 int ret;
493
494 /* first, get a safe pointer to the block group */
495 spin_lock(&cluster->lock);
496 if (!block_group) {
497 block_group = cluster->block_group;
498 if (!block_group) {
499 spin_unlock(&cluster->lock);
500 return 0;
501 }
502 } else if (cluster->block_group != block_group) {
503 /* someone else has already freed it don't redo their work */
504 spin_unlock(&cluster->lock);
505 return 0;
506 }
507 atomic_inc(&block_group->count);
508 spin_unlock(&cluster->lock);
509
510 /* now return any extents the cluster had on it */
511 spin_lock(&block_group->tree_lock);
512 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
513 spin_unlock(&block_group->tree_lock);
514
515 /* finally drop our ref */
516 btrfs_put_block_group(block_group);
517 return ret;
518}
519
520/*
521 * given a cluster, try to allocate 'bytes' from it, returns 0
522 * if it couldn't find anything suitably large, or a logical disk offset
523 * if things worked out
524 */
525u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
526 struct btrfs_free_cluster *cluster, u64 bytes,
527 u64 min_start)
528{
529 struct btrfs_free_space *entry = NULL;
530 struct rb_node *node;
531 u64 ret = 0;
532
533 spin_lock(&cluster->lock);
534 if (bytes > cluster->max_size)
535 goto out;
536
537 if (cluster->block_group != block_group)
538 goto out;
539
540 node = rb_first(&cluster->root);
541 if (!node)
542 goto out;
543
544 entry = rb_entry(node, struct btrfs_free_space, offset_index);
545
546 while(1) {
547 if (entry->bytes < bytes || entry->offset < min_start) {
548 struct rb_node *node;
549
550 node = rb_next(&entry->offset_index);
551 if (!node)
552 break;
553 entry = rb_entry(node, struct btrfs_free_space,
554 offset_index);
555 continue;
556 }
557 ret = entry->offset;
558
559 entry->offset += bytes;
560 entry->bytes -= bytes;
561
562 if (entry->bytes == 0) {
563 rb_erase(&entry->offset_index, &cluster->root);
564 kfree(entry);
565 }
566 break;
567 }
568out:
569 spin_unlock(&cluster->lock);
570 return ret;
571}
572
573/*
574 * here we try to find a cluster of blocks in a block group. The goal
575 * is to find at least bytes free and up to empty_size + bytes free.
576 * We might not find them all in one contiguous area.
577 *
578 * returns zero and sets up cluster if things worked out, otherwise
579 * it returns -enospc
580 */
581int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
582 struct btrfs_block_group_cache *block_group,
583 struct btrfs_free_cluster *cluster,
584 u64 offset, u64 bytes, u64 empty_size)
585{
586 struct btrfs_free_space *entry = NULL;
587 struct rb_node *node;
588 struct btrfs_free_space *next;
589 struct btrfs_free_space *last;
590 u64 min_bytes;
591 u64 window_start;
592 u64 window_free;
593 u64 max_extent = 0;
594 int total_retries = 0;
595 int ret;
596
597 /* for metadata, allow allocates with more holes */
598 if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
599 /*
600 * we want to do larger allocations when we are
601 * flushing out the delayed refs, it helps prevent
602 * making more work as we go along.
603 */
604 if (trans->transaction->delayed_refs.flushing)
605 min_bytes = max(bytes, (bytes + empty_size) >> 1);
606 else
607 min_bytes = max(bytes, (bytes + empty_size) >> 4);
608 } else
609 min_bytes = max(bytes, (bytes + empty_size) >> 2);
610
611 spin_lock(&block_group->tree_lock);
612 spin_lock(&cluster->lock);
613
614 /* someone already found a cluster, hooray */
615 if (cluster->block_group) {
616 ret = 0;
617 goto out;
618 }
619again:
620 min_bytes = min(min_bytes, bytes + empty_size);
621 entry = tree_search_bytes(&block_group->free_space_bytes,
622 offset, min_bytes);
623 if (!entry) {
624 ret = -ENOSPC;
625 goto out;
626 }
627 window_start = entry->offset;
628 window_free = entry->bytes;
629 last = entry;
630 max_extent = entry->bytes;
631
632 while(1) {
633 /* out window is just right, lets fill it */
634 if (window_free >= bytes + empty_size)
635 break;
636
637 node = rb_next(&last->offset_index);
638 if (!node) {
639 ret = -ENOSPC;
640 goto out;
641 }
642 next = rb_entry(node, struct btrfs_free_space, offset_index);
643
644 /*
645 * we haven't filled the empty size and the window is
646 * very large. reset and try again
647 */
c6044801
CM
648 if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
649 next->offset - window_start > (bytes + empty_size) * 2) {
fa9c0d79
CM
650 entry = next;
651 window_start = entry->offset;
652 window_free = entry->bytes;
653 last = entry;
654 max_extent = 0;
655 total_retries++;
2c943de6 656 if (total_retries % 64 == 0) {
fa9c0d79
CM
657 if (min_bytes >= (bytes + empty_size)) {
658 ret = -ENOSPC;
659 goto out;
660 }
661 /*
662 * grow our allocation a bit, we're not having
663 * much luck
664 */
665 min_bytes *= 2;
666 goto again;
667 }
668 } else {
669 last = next;
670 window_free += next->bytes;
671 if (entry->bytes > max_extent)
672 max_extent = entry->bytes;
673 }
674 }
675
676 cluster->window_start = entry->offset;
677
678 /*
679 * now we've found our entries, pull them out of the free space
680 * cache and put them into the cluster rbtree
681 *
682 * The cluster includes an rbtree, but only uses the offset index
683 * of each free space cache entry.
684 */
685 while(1) {
686 node = rb_next(&entry->offset_index);
687 unlink_free_space(block_group, entry);
688 ret = tree_insert_offset(&cluster->root, entry->offset,
689 &entry->offset_index);
690 BUG_ON(ret);
691
692 if (!node || entry == last)
693 break;
694
695 entry = rb_entry(node, struct btrfs_free_space, offset_index);
696 }
697 ret = 0;
698 cluster->max_size = max_extent;
699 atomic_inc(&block_group->count);
700 list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
701 cluster->block_group = block_group;
702out:
703 spin_unlock(&cluster->lock);
704 spin_unlock(&block_group->tree_lock);
705
706 return ret;
707}
708
709/*
710 * simple code to zero out a cluster
711 */
712void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
713{
714 spin_lock_init(&cluster->lock);
715 spin_lock_init(&cluster->refill_lock);
716 cluster->root.rb_node = NULL;
717 cluster->max_size = 0;
718 INIT_LIST_HEAD(&cluster->block_group_list);
719 cluster->block_group = NULL;
720}
721