]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/extent_io.c
Btrfs: Disable tree defrag in SSD mode
[net-next-2.6.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/gfp.h>
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
8#include <linux/module.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/version.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include "extent_io.h"
16#include "extent_map.h"
17
18/* temporary define until extent_map moves out of btrfs */
19struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
20 unsigned long extra_flags,
21 void (*ctor)(void *, struct kmem_cache *,
22 unsigned long));
23
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
29
d1310b2e
CM
30#define BUFFER_LRU_MAX 64
31
32struct tree_entry {
33 u64 start;
34 u64 end;
d1310b2e
CM
35 struct rb_node rb_node;
36};
37
38struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42};
43
44int __init extent_io_init(void)
45{
46 extent_state_cache = btrfs_cache_create("extent_state",
47 sizeof(struct extent_state), 0,
48 NULL);
49 if (!extent_state_cache)
50 return -ENOMEM;
51
52 extent_buffer_cache = btrfs_cache_create("extent_buffers",
53 sizeof(struct extent_buffer), 0,
54 NULL);
55 if (!extent_buffer_cache)
56 goto free_state_cache;
57 return 0;
58
59free_state_cache:
60 kmem_cache_destroy(extent_state_cache);
61 return -ENOMEM;
62}
63
64void extent_io_exit(void)
65{
66 struct extent_state *state;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, list);
70dec807 70 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
d1310b2e
CM
71 list_del(&state->list);
72 kmem_cache_free(extent_state_cache, state);
73
74 }
75
76 if (extent_state_cache)
77 kmem_cache_destroy(extent_state_cache);
78 if (extent_buffer_cache)
79 kmem_cache_destroy(extent_buffer_cache);
80}
81
82void extent_io_tree_init(struct extent_io_tree *tree,
83 struct address_space *mapping, gfp_t mask)
84{
85 tree->state.rb_node = NULL;
86 tree->ops = NULL;
87 tree->dirty_bytes = 0;
70dec807 88 spin_lock_init(&tree->lock);
d1310b2e
CM
89 spin_lock_init(&tree->lru_lock);
90 tree->mapping = mapping;
91 INIT_LIST_HEAD(&tree->buffer_lru);
92 tree->lru_size = 0;
80ea96b1 93 tree->last = NULL;
d1310b2e
CM
94}
95EXPORT_SYMBOL(extent_io_tree_init);
96
97void extent_io_tree_empty_lru(struct extent_io_tree *tree)
98{
99 struct extent_buffer *eb;
100 while(!list_empty(&tree->buffer_lru)) {
101 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
102 lru);
103 list_del_init(&eb->lru);
104 free_extent_buffer(eb);
105 }
106}
107EXPORT_SYMBOL(extent_io_tree_empty_lru);
108
109struct extent_state *alloc_extent_state(gfp_t mask)
110{
111 struct extent_state *state;
d1310b2e
CM
112
113 state = kmem_cache_alloc(extent_state_cache, mask);
114 if (!state || IS_ERR(state))
115 return state;
116 state->state = 0;
d1310b2e 117 state->private = 0;
70dec807 118 state->tree = NULL;
d1310b2e
CM
119
120 atomic_set(&state->refs, 1);
121 init_waitqueue_head(&state->wq);
122 return state;
123}
124EXPORT_SYMBOL(alloc_extent_state);
125
126void free_extent_state(struct extent_state *state)
127{
d1310b2e
CM
128 if (!state)
129 return;
130 if (atomic_dec_and_test(&state->refs)) {
70dec807 131 WARN_ON(state->tree);
d1310b2e
CM
132 kmem_cache_free(extent_state_cache, state);
133 }
134}
135EXPORT_SYMBOL(free_extent_state);
136
137static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
138 struct rb_node *node)
139{
140 struct rb_node ** p = &root->rb_node;
141 struct rb_node * parent = NULL;
142 struct tree_entry *entry;
143
144 while(*p) {
145 parent = *p;
146 entry = rb_entry(parent, struct tree_entry, rb_node);
147
148 if (offset < entry->start)
149 p = &(*p)->rb_left;
150 else if (offset > entry->end)
151 p = &(*p)->rb_right;
152 else
153 return parent;
154 }
155
156 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
157 rb_link_node(node, parent, p);
158 rb_insert_color(node, root);
159 return NULL;
160}
161
80ea96b1 162static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
163 struct rb_node **prev_ret,
164 struct rb_node **next_ret)
165{
80ea96b1 166 struct rb_root *root = &tree->state;
d1310b2e
CM
167 struct rb_node * n = root->rb_node;
168 struct rb_node *prev = NULL;
169 struct rb_node *orig_prev = NULL;
170 struct tree_entry *entry;
171 struct tree_entry *prev_entry = NULL;
172
80ea96b1
CM
173 if (tree->last) {
174 struct extent_state *state;
175 state = tree->last;
176 if (state->start <= offset && offset <= state->end)
177 return &tree->last->rb_node;
178 }
d1310b2e
CM
179 while(n) {
180 entry = rb_entry(n, struct tree_entry, rb_node);
181 prev = n;
182 prev_entry = entry;
183
184 if (offset < entry->start)
185 n = n->rb_left;
186 else if (offset > entry->end)
187 n = n->rb_right;
80ea96b1
CM
188 else {
189 tree->last = rb_entry(n, struct extent_state, rb_node);
d1310b2e 190 return n;
80ea96b1 191 }
d1310b2e
CM
192 }
193
194 if (prev_ret) {
195 orig_prev = prev;
196 while(prev && offset > prev_entry->end) {
197 prev = rb_next(prev);
198 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
199 }
200 *prev_ret = prev;
201 prev = orig_prev;
202 }
203
204 if (next_ret) {
205 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
206 while(prev && offset < prev_entry->start) {
207 prev = rb_prev(prev);
208 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209 }
210 *next_ret = prev;
211 }
212 return NULL;
213}
214
80ea96b1
CM
215static inline struct rb_node *tree_search(struct extent_io_tree *tree,
216 u64 offset)
d1310b2e 217{
70dec807 218 struct rb_node *prev = NULL;
d1310b2e 219 struct rb_node *ret;
70dec807 220
80ea96b1
CM
221 ret = __etree_search(tree, offset, &prev, NULL);
222 if (!ret) {
223 if (prev) {
224 tree->last = rb_entry(prev, struct extent_state,
225 rb_node);
226 }
d1310b2e 227 return prev;
80ea96b1 228 }
d1310b2e
CM
229 return ret;
230}
231
232/*
233 * utility function to look for merge candidates inside a given range.
234 * Any extents with matching state are merged together into a single
235 * extent in the tree. Extents with EXTENT_IO in their state field
236 * are not merged because the end_io handlers need to be able to do
237 * operations on them without sleeping (or doing allocations/splits).
238 *
239 * This should be called with the tree lock held.
240 */
241static int merge_state(struct extent_io_tree *tree,
242 struct extent_state *state)
243{
244 struct extent_state *other;
245 struct rb_node *other_node;
246
247 if (state->state & EXTENT_IOBITS)
248 return 0;
249
250 other_node = rb_prev(&state->rb_node);
251 if (other_node) {
252 other = rb_entry(other_node, struct extent_state, rb_node);
253 if (other->end == state->start - 1 &&
254 other->state == state->state) {
255 state->start = other->start;
70dec807 256 other->tree = NULL;
80ea96b1
CM
257 if (tree->last == other)
258 tree->last = NULL;
d1310b2e
CM
259 rb_erase(&other->rb_node, &tree->state);
260 free_extent_state(other);
261 }
262 }
263 other_node = rb_next(&state->rb_node);
264 if (other_node) {
265 other = rb_entry(other_node, struct extent_state, rb_node);
266 if (other->start == state->end + 1 &&
267 other->state == state->state) {
268 other->start = state->start;
70dec807 269 state->tree = NULL;
80ea96b1
CM
270 if (tree->last == state)
271 tree->last = NULL;
d1310b2e
CM
272 rb_erase(&state->rb_node, &tree->state);
273 free_extent_state(state);
274 }
275 }
276 return 0;
277}
278
291d673e
CM
279static void set_state_cb(struct extent_io_tree *tree,
280 struct extent_state *state,
281 unsigned long bits)
282{
283 if (tree->ops && tree->ops->set_bit_hook) {
284 tree->ops->set_bit_hook(tree->mapping->host, state->start,
b0c68f8b 285 state->end, state->state, bits);
291d673e
CM
286 }
287}
288
289static void clear_state_cb(struct extent_io_tree *tree,
290 struct extent_state *state,
291 unsigned long bits)
292{
293 if (tree->ops && tree->ops->set_bit_hook) {
294 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
b0c68f8b 295 state->end, state->state, bits);
291d673e
CM
296 }
297}
298
d1310b2e
CM
299/*
300 * insert an extent_state struct into the tree. 'bits' are set on the
301 * struct before it is inserted.
302 *
303 * This may return -EEXIST if the extent is already there, in which case the
304 * state struct is freed.
305 *
306 * The tree lock is not taken internally. This is a utility function and
307 * probably isn't what you want to call (see set/clear_extent_bit).
308 */
309static int insert_state(struct extent_io_tree *tree,
310 struct extent_state *state, u64 start, u64 end,
311 int bits)
312{
313 struct rb_node *node;
314
315 if (end < start) {
316 printk("end < start %Lu %Lu\n", end, start);
317 WARN_ON(1);
318 }
319 if (bits & EXTENT_DIRTY)
320 tree->dirty_bytes += end - start + 1;
b0c68f8b 321 set_state_cb(tree, state, bits);
d1310b2e
CM
322 state->state |= bits;
323 state->start = start;
324 state->end = end;
325 node = tree_insert(&tree->state, end, &state->rb_node);
326 if (node) {
327 struct extent_state *found;
328 found = rb_entry(node, struct extent_state, rb_node);
329 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
330 free_extent_state(state);
331 return -EEXIST;
332 }
70dec807 333 state->tree = tree;
80ea96b1 334 tree->last = state;
d1310b2e
CM
335 merge_state(tree, state);
336 return 0;
337}
338
339/*
340 * split a given extent state struct in two, inserting the preallocated
341 * struct 'prealloc' as the newly created second half. 'split' indicates an
342 * offset inside 'orig' where it should be split.
343 *
344 * Before calling,
345 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
346 * are two extent state structs in the tree:
347 * prealloc: [orig->start, split - 1]
348 * orig: [ split, orig->end ]
349 *
350 * The tree locks are not taken by this function. They need to be held
351 * by the caller.
352 */
353static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
354 struct extent_state *prealloc, u64 split)
355{
356 struct rb_node *node;
357 prealloc->start = orig->start;
358 prealloc->end = split - 1;
359 prealloc->state = orig->state;
360 orig->start = split;
361
362 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
363 if (node) {
364 struct extent_state *found;
365 found = rb_entry(node, struct extent_state, rb_node);
366 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
367 free_extent_state(prealloc);
368 return -EEXIST;
369 }
70dec807 370 prealloc->tree = tree;
d1310b2e
CM
371 return 0;
372}
373
374/*
375 * utility function to clear some bits in an extent state struct.
376 * it will optionally wake up any one waiting on this state (wake == 1), or
377 * forcibly remove the state from the tree (delete == 1).
378 *
379 * If no bits are set on the state struct after clearing things, the
380 * struct is freed and removed from the tree
381 */
382static int clear_state_bit(struct extent_io_tree *tree,
383 struct extent_state *state, int bits, int wake,
384 int delete)
385{
386 int ret = state->state & bits;
387
388 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
389 u64 range = state->end - state->start + 1;
390 WARN_ON(range > tree->dirty_bytes);
391 tree->dirty_bytes -= range;
392 }
291d673e 393 clear_state_cb(tree, state, bits);
b0c68f8b 394 state->state &= ~bits;
d1310b2e
CM
395 if (wake)
396 wake_up(&state->wq);
397 if (delete || state->state == 0) {
70dec807 398 if (state->tree) {
ae9d1285 399 clear_state_cb(tree, state, state->state);
80ea96b1
CM
400 if (tree->last == state)
401 tree->last = NULL;
d1310b2e 402 rb_erase(&state->rb_node, &tree->state);
70dec807 403 state->tree = NULL;
d1310b2e
CM
404 free_extent_state(state);
405 } else {
406 WARN_ON(1);
407 }
408 } else {
409 merge_state(tree, state);
410 }
411 return ret;
412}
413
414/*
415 * clear some bits on a range in the tree. This may require splitting
416 * or inserting elements in the tree, so the gfp mask is used to
417 * indicate which allocations or sleeping are allowed.
418 *
419 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
420 * the given range from the tree regardless of state (ie for truncate).
421 *
422 * the range [start, end] is inclusive.
423 *
424 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
425 * bits were already set, or zero if none of the bits were already set.
426 */
427int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
428 int bits, int wake, int delete, gfp_t mask)
429{
430 struct extent_state *state;
431 struct extent_state *prealloc = NULL;
432 struct rb_node *node;
433 unsigned long flags;
434 int err;
435 int set = 0;
436
437again:
438 if (!prealloc && (mask & __GFP_WAIT)) {
439 prealloc = alloc_extent_state(mask);
440 if (!prealloc)
441 return -ENOMEM;
442 }
443
70dec807 444 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
445 /*
446 * this search will find the extents that end after
447 * our range starts
448 */
80ea96b1 449 node = tree_search(tree, start);
d1310b2e
CM
450 if (!node)
451 goto out;
452 state = rb_entry(node, struct extent_state, rb_node);
453 if (state->start > end)
454 goto out;
455 WARN_ON(state->end < start);
456
457 /*
458 * | ---- desired range ---- |
459 * | state | or
460 * | ------------- state -------------- |
461 *
462 * We need to split the extent we found, and may flip
463 * bits on second half.
464 *
465 * If the extent we found extends past our range, we
466 * just split and search again. It'll get split again
467 * the next time though.
468 *
469 * If the extent we found is inside our range, we clear
470 * the desired bit on it.
471 */
472
473 if (state->start < start) {
70dec807
CM
474 if (!prealloc)
475 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
476 err = split_state(tree, state, prealloc, start);
477 BUG_ON(err == -EEXIST);
478 prealloc = NULL;
479 if (err)
480 goto out;
481 if (state->end <= end) {
482 start = state->end + 1;
483 set |= clear_state_bit(tree, state, bits,
484 wake, delete);
485 } else {
486 start = state->start;
487 }
488 goto search_again;
489 }
490 /*
491 * | ---- desired range ---- |
492 * | state |
493 * We need to split the extent, and clear the bit
494 * on the first half
495 */
496 if (state->start <= end && state->end > end) {
70dec807
CM
497 if (!prealloc)
498 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
499 err = split_state(tree, state, prealloc, end + 1);
500 BUG_ON(err == -EEXIST);
501
502 if (wake)
503 wake_up(&state->wq);
504 set |= clear_state_bit(tree, prealloc, bits,
505 wake, delete);
506 prealloc = NULL;
507 goto out;
508 }
509
510 start = state->end + 1;
511 set |= clear_state_bit(tree, state, bits, wake, delete);
512 goto search_again;
513
514out:
70dec807 515 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
516 if (prealloc)
517 free_extent_state(prealloc);
518
519 return set;
520
521search_again:
522 if (start > end)
523 goto out;
70dec807 524 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
525 if (mask & __GFP_WAIT)
526 cond_resched();
527 goto again;
528}
529EXPORT_SYMBOL(clear_extent_bit);
530
531static int wait_on_state(struct extent_io_tree *tree,
532 struct extent_state *state)
533{
534 DEFINE_WAIT(wait);
535 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
70dec807 536 spin_unlock_irq(&tree->lock);
d1310b2e 537 schedule();
70dec807 538 spin_lock_irq(&tree->lock);
d1310b2e
CM
539 finish_wait(&state->wq, &wait);
540 return 0;
541}
542
543/*
544 * waits for one or more bits to clear on a range in the state tree.
545 * The range [start, end] is inclusive.
546 * The tree lock is taken by this function
547 */
548int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
549{
550 struct extent_state *state;
551 struct rb_node *node;
552
70dec807 553 spin_lock_irq(&tree->lock);
d1310b2e
CM
554again:
555 while (1) {
556 /*
557 * this search will find all the extents that end after
558 * our range starts
559 */
80ea96b1 560 node = tree_search(tree, start);
d1310b2e
CM
561 if (!node)
562 break;
563
564 state = rb_entry(node, struct extent_state, rb_node);
565
566 if (state->start > end)
567 goto out;
568
569 if (state->state & bits) {
570 start = state->start;
571 atomic_inc(&state->refs);
572 wait_on_state(tree, state);
573 free_extent_state(state);
574 goto again;
575 }
576 start = state->end + 1;
577
578 if (start > end)
579 break;
580
581 if (need_resched()) {
70dec807 582 spin_unlock_irq(&tree->lock);
d1310b2e 583 cond_resched();
70dec807 584 spin_lock_irq(&tree->lock);
d1310b2e
CM
585 }
586 }
587out:
70dec807 588 spin_unlock_irq(&tree->lock);
d1310b2e
CM
589 return 0;
590}
591EXPORT_SYMBOL(wait_extent_bit);
592
593static void set_state_bits(struct extent_io_tree *tree,
594 struct extent_state *state,
595 int bits)
596{
597 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
598 u64 range = state->end - state->start + 1;
599 tree->dirty_bytes += range;
600 }
291d673e 601 set_state_cb(tree, state, bits);
b0c68f8b 602 state->state |= bits;
d1310b2e
CM
603}
604
605/*
606 * set some bits on a range in the tree. This may require allocations
607 * or sleeping, so the gfp mask is used to indicate what is allowed.
608 *
609 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
610 * range already has the desired bits set. The start of the existing
611 * range is returned in failed_start in this case.
612 *
613 * [start, end] is inclusive
614 * This takes the tree lock.
615 */
616int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
617 int exclusive, u64 *failed_start, gfp_t mask)
618{
619 struct extent_state *state;
620 struct extent_state *prealloc = NULL;
621 struct rb_node *node;
622 unsigned long flags;
623 int err = 0;
624 int set;
625 u64 last_start;
626 u64 last_end;
627again:
628 if (!prealloc && (mask & __GFP_WAIT)) {
629 prealloc = alloc_extent_state(mask);
630 if (!prealloc)
631 return -ENOMEM;
632 }
633
70dec807 634 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
635 /*
636 * this search will find all the extents that end after
637 * our range starts.
638 */
80ea96b1 639 node = tree_search(tree, start);
d1310b2e
CM
640 if (!node) {
641 err = insert_state(tree, prealloc, start, end, bits);
642 prealloc = NULL;
643 BUG_ON(err == -EEXIST);
644 goto out;
645 }
646
647 state = rb_entry(node, struct extent_state, rb_node);
648 last_start = state->start;
649 last_end = state->end;
650
651 /*
652 * | ---- desired range ---- |
653 * | state |
654 *
655 * Just lock what we found and keep going
656 */
657 if (state->start == start && state->end <= end) {
658 set = state->state & bits;
659 if (set && exclusive) {
660 *failed_start = state->start;
661 err = -EEXIST;
662 goto out;
663 }
664 set_state_bits(tree, state, bits);
665 start = state->end + 1;
666 merge_state(tree, state);
667 goto search_again;
668 }
669
670 /*
671 * | ---- desired range ---- |
672 * | state |
673 * or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip bits on
677 * second half.
678 *
679 * If the extent we found extends past our
680 * range, we just split and search again. It'll get split
681 * again the next time though.
682 *
683 * If the extent we found is inside our range, we set the
684 * desired bit on it.
685 */
686 if (state->start < start) {
687 set = state->state & bits;
688 if (exclusive && set) {
689 *failed_start = start;
690 err = -EEXIST;
691 goto out;
692 }
693 err = split_state(tree, state, prealloc, start);
694 BUG_ON(err == -EEXIST);
695 prealloc = NULL;
696 if (err)
697 goto out;
698 if (state->end <= end) {
699 set_state_bits(tree, state, bits);
700 start = state->end + 1;
701 merge_state(tree, state);
702 } else {
703 start = state->start;
704 }
705 goto search_again;
706 }
707 /*
708 * | ---- desired range ---- |
709 * | state | or | state |
710 *
711 * There's a hole, we need to insert something in it and
712 * ignore the extent we found.
713 */
714 if (state->start > start) {
715 u64 this_end;
716 if (end < last_start)
717 this_end = end;
718 else
719 this_end = last_start -1;
720 err = insert_state(tree, prealloc, start, this_end,
721 bits);
722 prealloc = NULL;
723 BUG_ON(err == -EEXIST);
724 if (err)
725 goto out;
726 start = this_end + 1;
727 goto search_again;
728 }
729 /*
730 * | ---- desired range ---- |
731 * | state |
732 * We need to split the extent, and set the bit
733 * on the first half
734 */
735 if (state->start <= end && state->end > end) {
736 set = state->state & bits;
737 if (exclusive && set) {
738 *failed_start = start;
739 err = -EEXIST;
740 goto out;
741 }
742 err = split_state(tree, state, prealloc, end + 1);
743 BUG_ON(err == -EEXIST);
744
745 set_state_bits(tree, prealloc, bits);
746 merge_state(tree, prealloc);
747 prealloc = NULL;
748 goto out;
749 }
750
751 goto search_again;
752
753out:
70dec807 754 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
755 if (prealloc)
756 free_extent_state(prealloc);
757
758 return err;
759
760search_again:
761 if (start > end)
762 goto out;
70dec807 763 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
764 if (mask & __GFP_WAIT)
765 cond_resched();
766 goto again;
767}
768EXPORT_SYMBOL(set_extent_bit);
769
770/* wrappers around set/clear extent bit */
771int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
772 gfp_t mask)
773{
774 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
775 mask);
776}
777EXPORT_SYMBOL(set_extent_dirty);
778
779int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
780 int bits, gfp_t mask)
781{
782 return set_extent_bit(tree, start, end, bits, 0, NULL,
783 mask);
784}
785EXPORT_SYMBOL(set_extent_bits);
786
787int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
788 int bits, gfp_t mask)
789{
790 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
791}
792EXPORT_SYMBOL(clear_extent_bits);
793
794int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
795 gfp_t mask)
796{
797 return set_extent_bit(tree, start, end,
798 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
799 mask);
800}
801EXPORT_SYMBOL(set_extent_delalloc);
802
803int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
804 gfp_t mask)
805{
806 return clear_extent_bit(tree, start, end,
807 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
808}
809EXPORT_SYMBOL(clear_extent_dirty);
810
811int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
812 gfp_t mask)
813{
814 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
815 mask);
816}
817EXPORT_SYMBOL(set_extent_new);
818
819int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
820 gfp_t mask)
821{
822 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
823}
824EXPORT_SYMBOL(clear_extent_new);
825
826int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
827 gfp_t mask)
828{
829 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
830 mask);
831}
832EXPORT_SYMBOL(set_extent_uptodate);
833
834int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
835 gfp_t mask)
836{
837 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
838}
839EXPORT_SYMBOL(clear_extent_uptodate);
840
841int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
842 gfp_t mask)
843{
844 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
845 0, NULL, mask);
846}
847EXPORT_SYMBOL(set_extent_writeback);
848
849int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
850 gfp_t mask)
851{
852 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
853}
854EXPORT_SYMBOL(clear_extent_writeback);
855
856int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
857{
858 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
859}
860EXPORT_SYMBOL(wait_on_extent_writeback);
861
d1310b2e
CM
862int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
863{
864 int err;
865 u64 failed_start;
866 while (1) {
867 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
868 &failed_start, mask);
869 if (err == -EEXIST && (mask & __GFP_WAIT)) {
870 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
871 start = failed_start;
872 } else {
873 break;
874 }
875 WARN_ON(start > end);
876 }
877 return err;
878}
879EXPORT_SYMBOL(lock_extent);
880
881int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
882 gfp_t mask)
883{
884 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
885}
886EXPORT_SYMBOL(unlock_extent);
887
888/*
889 * helper function to set pages and extents in the tree dirty
890 */
891int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
892{
893 unsigned long index = start >> PAGE_CACHE_SHIFT;
894 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
895 struct page *page;
896
897 while (index <= end_index) {
898 page = find_get_page(tree->mapping, index);
899 BUG_ON(!page);
900 __set_page_dirty_nobuffers(page);
901 page_cache_release(page);
902 index++;
903 }
904 set_extent_dirty(tree, start, end, GFP_NOFS);
905 return 0;
906}
907EXPORT_SYMBOL(set_range_dirty);
908
909/*
910 * helper function to set both pages and extents in the tree writeback
911 */
912int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
913{
914 unsigned long index = start >> PAGE_CACHE_SHIFT;
915 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
916 struct page *page;
917
918 while (index <= end_index) {
919 page = find_get_page(tree->mapping, index);
920 BUG_ON(!page);
921 set_page_writeback(page);
922 page_cache_release(page);
923 index++;
924 }
925 set_extent_writeback(tree, start, end, GFP_NOFS);
926 return 0;
927}
928EXPORT_SYMBOL(set_range_writeback);
929
930int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
931 u64 *start_ret, u64 *end_ret, int bits)
932{
933 struct rb_node *node;
934 struct extent_state *state;
935 int ret = 1;
936
70dec807 937 spin_lock_irq(&tree->lock);
d1310b2e
CM
938 /*
939 * this search will find all the extents that end after
940 * our range starts.
941 */
80ea96b1 942 node = tree_search(tree, start);
d1310b2e
CM
943 if (!node || IS_ERR(node)) {
944 goto out;
945 }
946
947 while(1) {
948 state = rb_entry(node, struct extent_state, rb_node);
949 if (state->end >= start && (state->state & bits)) {
950 *start_ret = state->start;
951 *end_ret = state->end;
952 ret = 0;
953 break;
954 }
955 node = rb_next(node);
956 if (!node)
957 break;
958 }
959out:
70dec807 960 spin_unlock_irq(&tree->lock);
d1310b2e
CM
961 return ret;
962}
963EXPORT_SYMBOL(find_first_extent_bit);
964
965u64 find_lock_delalloc_range(struct extent_io_tree *tree,
966 u64 *start, u64 *end, u64 max_bytes)
967{
968 struct rb_node *node;
969 struct extent_state *state;
970 u64 cur_start = *start;
971 u64 found = 0;
972 u64 total_bytes = 0;
973
70dec807 974 spin_lock_irq(&tree->lock);
d1310b2e
CM
975 /*
976 * this search will find all the extents that end after
977 * our range starts.
978 */
979search_again:
80ea96b1 980 node = tree_search(tree, cur_start);
d1310b2e
CM
981 if (!node || IS_ERR(node)) {
982 *end = (u64)-1;
983 goto out;
984 }
985
986 while(1) {
987 state = rb_entry(node, struct extent_state, rb_node);
988 if (found && state->start != cur_start) {
989 goto out;
990 }
991 if (!(state->state & EXTENT_DELALLOC)) {
992 if (!found)
993 *end = state->end;
994 goto out;
995 }
996 if (!found) {
997 struct extent_state *prev_state;
998 struct rb_node *prev_node = node;
999 while(1) {
1000 prev_node = rb_prev(prev_node);
1001 if (!prev_node)
1002 break;
1003 prev_state = rb_entry(prev_node,
1004 struct extent_state,
1005 rb_node);
1006 if (!(prev_state->state & EXTENT_DELALLOC))
1007 break;
1008 state = prev_state;
1009 node = prev_node;
1010 }
1011 }
1012 if (state->state & EXTENT_LOCKED) {
1013 DEFINE_WAIT(wait);
1014 atomic_inc(&state->refs);
1015 prepare_to_wait(&state->wq, &wait,
1016 TASK_UNINTERRUPTIBLE);
70dec807 1017 spin_unlock_irq(&tree->lock);
d1310b2e 1018 schedule();
70dec807 1019 spin_lock_irq(&tree->lock);
d1310b2e
CM
1020 finish_wait(&state->wq, &wait);
1021 free_extent_state(state);
1022 goto search_again;
1023 }
291d673e 1024 set_state_cb(tree, state, EXTENT_LOCKED);
b0c68f8b 1025 state->state |= EXTENT_LOCKED;
d1310b2e
CM
1026 if (!found)
1027 *start = state->start;
1028 found++;
1029 *end = state->end;
1030 cur_start = state->end + 1;
1031 node = rb_next(node);
1032 if (!node)
1033 break;
1034 total_bytes += state->end - state->start + 1;
1035 if (total_bytes >= max_bytes)
1036 break;
1037 }
1038out:
70dec807 1039 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1040 return found;
1041}
1042
1043u64 count_range_bits(struct extent_io_tree *tree,
1044 u64 *start, u64 search_end, u64 max_bytes,
1045 unsigned long bits)
1046{
1047 struct rb_node *node;
1048 struct extent_state *state;
1049 u64 cur_start = *start;
1050 u64 total_bytes = 0;
1051 int found = 0;
1052
1053 if (search_end <= cur_start) {
1054 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1055 WARN_ON(1);
1056 return 0;
1057 }
1058
70dec807 1059 spin_lock_irq(&tree->lock);
d1310b2e
CM
1060 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1061 total_bytes = tree->dirty_bytes;
1062 goto out;
1063 }
1064 /*
1065 * this search will find all the extents that end after
1066 * our range starts.
1067 */
80ea96b1 1068 node = tree_search(tree, cur_start);
d1310b2e
CM
1069 if (!node || IS_ERR(node)) {
1070 goto out;
1071 }
1072
1073 while(1) {
1074 state = rb_entry(node, struct extent_state, rb_node);
1075 if (state->start > search_end)
1076 break;
1077 if (state->end >= cur_start && (state->state & bits)) {
1078 total_bytes += min(search_end, state->end) + 1 -
1079 max(cur_start, state->start);
1080 if (total_bytes >= max_bytes)
1081 break;
1082 if (!found) {
1083 *start = state->start;
1084 found = 1;
1085 }
1086 }
1087 node = rb_next(node);
1088 if (!node)
1089 break;
1090 }
1091out:
70dec807 1092 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1093 return total_bytes;
1094}
1095/*
1096 * helper function to lock both pages and extents in the tree.
1097 * pages must be locked first.
1098 */
1099int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1100{
1101 unsigned long index = start >> PAGE_CACHE_SHIFT;
1102 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1103 struct page *page;
1104 int err;
1105
1106 while (index <= end_index) {
1107 page = grab_cache_page(tree->mapping, index);
1108 if (!page) {
1109 err = -ENOMEM;
1110 goto failed;
1111 }
1112 if (IS_ERR(page)) {
1113 err = PTR_ERR(page);
1114 goto failed;
1115 }
1116 index++;
1117 }
1118 lock_extent(tree, start, end, GFP_NOFS);
1119 return 0;
1120
1121failed:
1122 /*
1123 * we failed above in getting the page at 'index', so we undo here
1124 * up to but not including the page at 'index'
1125 */
1126 end_index = index;
1127 index = start >> PAGE_CACHE_SHIFT;
1128 while (index < end_index) {
1129 page = find_get_page(tree->mapping, index);
1130 unlock_page(page);
1131 page_cache_release(page);
1132 index++;
1133 }
1134 return err;
1135}
1136EXPORT_SYMBOL(lock_range);
1137
1138/*
1139 * helper function to unlock both pages and extents in the tree.
1140 */
1141int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1142{
1143 unsigned long index = start >> PAGE_CACHE_SHIFT;
1144 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1145 struct page *page;
1146
1147 while (index <= end_index) {
1148 page = find_get_page(tree->mapping, index);
1149 unlock_page(page);
1150 page_cache_release(page);
1151 index++;
1152 }
1153 unlock_extent(tree, start, end, GFP_NOFS);
1154 return 0;
1155}
1156EXPORT_SYMBOL(unlock_range);
1157
1158int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1159{
1160 struct rb_node *node;
1161 struct extent_state *state;
1162 int ret = 0;
1163
70dec807 1164 spin_lock_irq(&tree->lock);
d1310b2e
CM
1165 /*
1166 * this search will find all the extents that end after
1167 * our range starts.
1168 */
80ea96b1 1169 node = tree_search(tree, start);
d1310b2e
CM
1170 if (!node || IS_ERR(node)) {
1171 ret = -ENOENT;
1172 goto out;
1173 }
1174 state = rb_entry(node, struct extent_state, rb_node);
1175 if (state->start != start) {
1176 ret = -ENOENT;
1177 goto out;
1178 }
1179 state->private = private;
1180out:
70dec807 1181 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1182 return ret;
1183}
1184
1185int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1186{
1187 struct rb_node *node;
1188 struct extent_state *state;
1189 int ret = 0;
1190
70dec807 1191 spin_lock_irq(&tree->lock);
d1310b2e
CM
1192 /*
1193 * this search will find all the extents that end after
1194 * our range starts.
1195 */
80ea96b1 1196 node = tree_search(tree, start);
d1310b2e
CM
1197 if (!node || IS_ERR(node)) {
1198 ret = -ENOENT;
1199 goto out;
1200 }
1201 state = rb_entry(node, struct extent_state, rb_node);
1202 if (state->start != start) {
1203 ret = -ENOENT;
1204 goto out;
1205 }
1206 *private = state->private;
1207out:
70dec807 1208 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1209 return ret;
1210}
1211
1212/*
1213 * searches a range in the state tree for a given mask.
70dec807 1214 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1215 * has the bits set. Otherwise, 1 is returned if any bit in the
1216 * range is found set.
1217 */
1218int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1219 int bits, int filled)
1220{
1221 struct extent_state *state = NULL;
1222 struct rb_node *node;
1223 int bitset = 0;
1224 unsigned long flags;
1225
70dec807 1226 spin_lock_irqsave(&tree->lock, flags);
80ea96b1 1227 node = tree_search(tree, start);
d1310b2e
CM
1228 while (node && start <= end) {
1229 state = rb_entry(node, struct extent_state, rb_node);
1230
1231 if (filled && state->start > start) {
1232 bitset = 0;
1233 break;
1234 }
1235
1236 if (state->start > end)
1237 break;
1238
1239 if (state->state & bits) {
1240 bitset = 1;
1241 if (!filled)
1242 break;
1243 } else if (filled) {
1244 bitset = 0;
1245 break;
1246 }
1247 start = state->end + 1;
1248 if (start > end)
1249 break;
1250 node = rb_next(node);
1251 if (!node) {
1252 if (filled)
1253 bitset = 0;
1254 break;
1255 }
1256 }
70dec807 1257 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
1258 return bitset;
1259}
1260EXPORT_SYMBOL(test_range_bit);
1261
1262/*
1263 * helper function to set a given page up to date if all the
1264 * extents in the tree for that page are up to date
1265 */
1266static int check_page_uptodate(struct extent_io_tree *tree,
1267 struct page *page)
1268{
1269 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1270 u64 end = start + PAGE_CACHE_SIZE - 1;
1271 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1272 SetPageUptodate(page);
1273 return 0;
1274}
1275
1276/*
1277 * helper function to unlock a page if all the extents in the tree
1278 * for that page are unlocked
1279 */
1280static int check_page_locked(struct extent_io_tree *tree,
1281 struct page *page)
1282{
1283 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1284 u64 end = start + PAGE_CACHE_SIZE - 1;
1285 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1286 unlock_page(page);
1287 return 0;
1288}
1289
1290/*
1291 * helper function to end page writeback if all the extents
1292 * in the tree for that page are done with writeback
1293 */
1294static int check_page_writeback(struct extent_io_tree *tree,
1295 struct page *page)
1296{
1297 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1298 u64 end = start + PAGE_CACHE_SIZE - 1;
1299 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1300 end_page_writeback(page);
1301 return 0;
1302}
1303
1304/* lots and lots of room for performance fixes in the end_bio funcs */
1305
1306/*
1307 * after a writepage IO is done, we need to:
1308 * clear the uptodate bits on error
1309 * clear the writeback bits in the extent tree for this IO
1310 * end_page_writeback if the page has no more pending IO
1311 *
1312 * Scheduling is not allowed, so the extent state tree is expected
1313 * to have one and only one object corresponding to this IO.
1314 */
1315#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1316static void end_bio_extent_writepage(struct bio *bio, int err)
1317#else
1318static int end_bio_extent_writepage(struct bio *bio,
1319 unsigned int bytes_done, int err)
1320#endif
1321{
1322 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1323 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1324 struct extent_state *state = bio->bi_private;
1325 struct extent_io_tree *tree = state->tree;
1326 struct rb_node *node;
d1310b2e
CM
1327 u64 start;
1328 u64 end;
70dec807 1329 u64 cur;
d1310b2e 1330 int whole_page;
70dec807 1331 unsigned long flags;
d1310b2e
CM
1332
1333#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1334 if (bio->bi_size)
1335 return 1;
1336#endif
d1310b2e
CM
1337 do {
1338 struct page *page = bvec->bv_page;
1339 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1340 bvec->bv_offset;
1341 end = start + bvec->bv_len - 1;
1342
1343 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1344 whole_page = 1;
1345 else
1346 whole_page = 0;
1347
1348 if (--bvec >= bio->bi_io_vec)
1349 prefetchw(&bvec->bv_page->flags);
1350
1351 if (!uptodate) {
1352 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1353 ClearPageUptodate(page);
1354 SetPageError(page);
1355 }
70dec807
CM
1356
1357 if (tree->ops && tree->ops->writepage_end_io_hook) {
1358 tree->ops->writepage_end_io_hook(page, start, end,
1359 state);
1360 }
1361
1362 /*
1363 * bios can get merged in funny ways, and so we need to
1364 * be careful with the state variable. We know the
1365 * state won't be merged with others because it has
1366 * WRITEBACK set, but we can't be sure each biovec is
1367 * sequential in the file. So, if our cached state
1368 * doesn't match the expected end, search the tree
1369 * for the correct one.
1370 */
1371
1372 spin_lock_irqsave(&tree->lock, flags);
1373 if (!state || state->end != end) {
1374 state = NULL;
80ea96b1 1375 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1376 if (node) {
1377 state = rb_entry(node, struct extent_state,
1378 rb_node);
1379 if (state->end != end ||
1380 !(state->state & EXTENT_WRITEBACK))
1381 state = NULL;
1382 }
1383 if (!state) {
1384 spin_unlock_irqrestore(&tree->lock, flags);
1385 clear_extent_writeback(tree, start,
1386 end, GFP_ATOMIC);
1387 goto next_io;
1388 }
1389 }
1390 cur = end;
1391 while(1) {
1392 struct extent_state *clear = state;
1393 cur = state->start;
1394 node = rb_prev(&state->rb_node);
1395 if (node) {
1396 state = rb_entry(node,
1397 struct extent_state,
1398 rb_node);
1399 } else {
1400 state = NULL;
1401 }
1402
1403 clear_state_bit(tree, clear, EXTENT_WRITEBACK,
1404 1, 0);
1405 if (cur == start)
1406 break;
1407 if (cur < start) {
1408 WARN_ON(1);
1409 break;
1410 }
1411 if (!node)
1412 break;
1413 }
1414 /* before releasing the lock, make sure the next state
1415 * variable has the expected bits set and corresponds
1416 * to the correct offsets in the file
1417 */
1418 if (state && (state->end + 1 != start ||
c2e639f0 1419 !(state->state & EXTENT_WRITEBACK))) {
70dec807
CM
1420 state = NULL;
1421 }
1422 spin_unlock_irqrestore(&tree->lock, flags);
1423next_io:
d1310b2e
CM
1424
1425 if (whole_page)
1426 end_page_writeback(page);
1427 else
1428 check_page_writeback(tree, page);
d1310b2e 1429 } while (bvec >= bio->bi_io_vec);
d1310b2e
CM
1430 bio_put(bio);
1431#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1432 return 0;
1433#endif
1434}
1435
1436/*
1437 * after a readpage IO is done, we need to:
1438 * clear the uptodate bits on error
1439 * set the uptodate bits if things worked
1440 * set the page up to date if all extents in the tree are uptodate
1441 * clear the lock bit in the extent tree
1442 * unlock the page if there are no other extents locked for it
1443 *
1444 * Scheduling is not allowed, so the extent state tree is expected
1445 * to have one and only one object corresponding to this IO.
1446 */
1447#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1448static void end_bio_extent_readpage(struct bio *bio, int err)
1449#else
1450static int end_bio_extent_readpage(struct bio *bio,
1451 unsigned int bytes_done, int err)
1452#endif
1453{
1454 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1455 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1456 struct extent_state *state = bio->bi_private;
1457 struct extent_io_tree *tree = state->tree;
1458 struct rb_node *node;
d1310b2e
CM
1459 u64 start;
1460 u64 end;
70dec807
CM
1461 u64 cur;
1462 unsigned long flags;
d1310b2e
CM
1463 int whole_page;
1464 int ret;
1465
1466#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1467 if (bio->bi_size)
1468 return 1;
1469#endif
1470
1471 do {
1472 struct page *page = bvec->bv_page;
1473 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1474 bvec->bv_offset;
1475 end = start + bvec->bv_len - 1;
1476
1477 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1478 whole_page = 1;
1479 else
1480 whole_page = 0;
1481
1482 if (--bvec >= bio->bi_io_vec)
1483 prefetchw(&bvec->bv_page->flags);
1484
1485 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807
CM
1486 ret = tree->ops->readpage_end_io_hook(page, start, end,
1487 state);
d1310b2e
CM
1488 if (ret)
1489 uptodate = 0;
1490 }
d1310b2e 1491
70dec807
CM
1492 spin_lock_irqsave(&tree->lock, flags);
1493 if (!state || state->end != end) {
1494 state = NULL;
80ea96b1 1495 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1496 if (node) {
1497 state = rb_entry(node, struct extent_state,
1498 rb_node);
1499 if (state->end != end ||
1500 !(state->state & EXTENT_LOCKED))
1501 state = NULL;
1502 }
1503 if (!state) {
1504 spin_unlock_irqrestore(&tree->lock, flags);
1505 set_extent_uptodate(tree, start, end,
1506 GFP_ATOMIC);
1507 unlock_extent(tree, start, end, GFP_ATOMIC);
1508 goto next_io;
1509 }
1510 }
d1310b2e 1511
70dec807
CM
1512 cur = end;
1513 while(1) {
1514 struct extent_state *clear = state;
1515 cur = state->start;
1516 node = rb_prev(&state->rb_node);
1517 if (node) {
1518 state = rb_entry(node,
1519 struct extent_state,
1520 rb_node);
1521 } else {
1522 state = NULL;
1523 }
291d673e 1524 set_state_cb(tree, clear, EXTENT_UPTODATE);
b0c68f8b 1525 clear->state |= EXTENT_UPTODATE;
70dec807
CM
1526 clear_state_bit(tree, clear, EXTENT_LOCKED,
1527 1, 0);
1528 if (cur == start)
1529 break;
1530 if (cur < start) {
1531 WARN_ON(1);
1532 break;
1533 }
1534 if (!node)
1535 break;
1536 }
1537 /* before releasing the lock, make sure the next state
1538 * variable has the expected bits set and corresponds
1539 * to the correct offsets in the file
1540 */
1541 if (state && (state->end + 1 != start ||
c2e639f0 1542 !(state->state & EXTENT_LOCKED))) {
70dec807
CM
1543 state = NULL;
1544 }
1545 spin_unlock_irqrestore(&tree->lock, flags);
1546next_io:
1547 if (whole_page) {
1548 if (uptodate) {
1549 SetPageUptodate(page);
1550 } else {
1551 ClearPageUptodate(page);
1552 SetPageError(page);
1553 }
d1310b2e 1554 unlock_page(page);
70dec807
CM
1555 } else {
1556 if (uptodate) {
1557 check_page_uptodate(tree, page);
1558 } else {
1559 ClearPageUptodate(page);
1560 SetPageError(page);
1561 }
d1310b2e 1562 check_page_locked(tree, page);
70dec807 1563 }
d1310b2e
CM
1564 } while (bvec >= bio->bi_io_vec);
1565
1566 bio_put(bio);
1567#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1568 return 0;
1569#endif
1570}
1571
1572/*
1573 * IO done from prepare_write is pretty simple, we just unlock
1574 * the structs in the extent tree when done, and set the uptodate bits
1575 * as appropriate.
1576 */
1577#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1578static void end_bio_extent_preparewrite(struct bio *bio, int err)
1579#else
1580static int end_bio_extent_preparewrite(struct bio *bio,
1581 unsigned int bytes_done, int err)
1582#endif
1583{
1584 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1585 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1586 struct extent_state *state = bio->bi_private;
1587 struct extent_io_tree *tree = state->tree;
d1310b2e
CM
1588 u64 start;
1589 u64 end;
1590
1591#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1592 if (bio->bi_size)
1593 return 1;
1594#endif
1595
1596 do {
1597 struct page *page = bvec->bv_page;
1598 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1599 bvec->bv_offset;
1600 end = start + bvec->bv_len - 1;
1601
1602 if (--bvec >= bio->bi_io_vec)
1603 prefetchw(&bvec->bv_page->flags);
1604
1605 if (uptodate) {
1606 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1607 } else {
1608 ClearPageUptodate(page);
1609 SetPageError(page);
1610 }
1611
1612 unlock_extent(tree, start, end, GFP_ATOMIC);
1613
1614 } while (bvec >= bio->bi_io_vec);
1615
1616 bio_put(bio);
1617#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1618 return 0;
1619#endif
1620}
1621
1622static struct bio *
1623extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1624 gfp_t gfp_flags)
1625{
1626 struct bio *bio;
1627
1628 bio = bio_alloc(gfp_flags, nr_vecs);
1629
1630 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1631 while (!bio && (nr_vecs /= 2))
1632 bio = bio_alloc(gfp_flags, nr_vecs);
1633 }
1634
1635 if (bio) {
1636 bio->bi_bdev = bdev;
1637 bio->bi_sector = first_sector;
1638 }
1639 return bio;
1640}
1641
1642static int submit_one_bio(int rw, struct bio *bio)
1643{
1644 u64 maxsector;
1645 int ret = 0;
70dec807
CM
1646 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1647 struct page *page = bvec->bv_page;
1648 struct extent_io_tree *tree = bio->bi_private;
1649 struct rb_node *node;
1650 struct extent_state *state;
1651 u64 start;
1652 u64 end;
1653
1654 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1655 end = start + bvec->bv_len - 1;
1656
1657 spin_lock_irq(&tree->lock);
80ea96b1 1658 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1659 BUG_ON(!node);
1660 state = rb_entry(node, struct extent_state, rb_node);
1661 while(state->end < end) {
1662 node = rb_next(node);
1663 state = rb_entry(node, struct extent_state, rb_node);
1664 }
1665 BUG_ON(state->end != end);
1666 spin_unlock_irq(&tree->lock);
1667
1668 bio->bi_private = state;
d1310b2e
CM
1669
1670 bio_get(bio);
1671
1672 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1673 if (maxsector < bio->bi_sector) {
1674 printk("sector too large max %Lu got %llu\n", maxsector,
1675 (unsigned long long)bio->bi_sector);
1676 WARN_ON(1);
1677 }
1678
1679 submit_bio(rw, bio);
1680 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1681 ret = -EOPNOTSUPP;
1682 bio_put(bio);
1683 return ret;
1684}
1685
1686static int submit_extent_page(int rw, struct extent_io_tree *tree,
1687 struct page *page, sector_t sector,
1688 size_t size, unsigned long offset,
1689 struct block_device *bdev,
1690 struct bio **bio_ret,
1691 unsigned long max_pages,
1692 bio_end_io_t end_io_func)
1693{
1694 int ret = 0;
1695 struct bio *bio;
1696 int nr;
1697
1698 if (bio_ret && *bio_ret) {
1699 bio = *bio_ret;
1700 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1701 bio_add_page(bio, page, size, offset) < size) {
1702 ret = submit_one_bio(rw, bio);
1703 bio = NULL;
1704 } else {
1705 return 0;
1706 }
1707 }
961d0232 1708 nr = bio_get_nr_vecs(bdev);
d1310b2e
CM
1709 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1710 if (!bio) {
1711 printk("failed to allocate bio nr %d\n", nr);
1712 }
70dec807
CM
1713
1714
d1310b2e
CM
1715 bio_add_page(bio, page, size, offset);
1716 bio->bi_end_io = end_io_func;
1717 bio->bi_private = tree;
70dec807 1718
d1310b2e
CM
1719 if (bio_ret) {
1720 *bio_ret = bio;
1721 } else {
1722 ret = submit_one_bio(rw, bio);
1723 }
1724
1725 return ret;
1726}
1727
1728void set_page_extent_mapped(struct page *page)
1729{
1730 if (!PagePrivate(page)) {
1731 SetPagePrivate(page);
1732 WARN_ON(!page->mapping->a_ops->invalidatepage);
1733 set_page_private(page, EXTENT_PAGE_PRIVATE);
1734 page_cache_get(page);
1735 }
1736}
1737
1738void set_page_extent_head(struct page *page, unsigned long len)
1739{
1740 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1741}
1742
1743/*
1744 * basic readpage implementation. Locked extent state structs are inserted
1745 * into the tree that are removed when the IO is done (by the end_io
1746 * handlers)
1747 */
1748static int __extent_read_full_page(struct extent_io_tree *tree,
1749 struct page *page,
1750 get_extent_t *get_extent,
1751 struct bio **bio)
1752{
1753 struct inode *inode = page->mapping->host;
1754 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1755 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1756 u64 end;
1757 u64 cur = start;
1758 u64 extent_offset;
1759 u64 last_byte = i_size_read(inode);
1760 u64 block_start;
1761 u64 cur_end;
1762 sector_t sector;
1763 struct extent_map *em;
1764 struct block_device *bdev;
1765 int ret;
1766 int nr = 0;
1767 size_t page_offset = 0;
1768 size_t iosize;
1769 size_t blocksize = inode->i_sb->s_blocksize;
1770
1771 set_page_extent_mapped(page);
1772
1773 end = page_end;
1774 lock_extent(tree, start, end, GFP_NOFS);
1775
1776 while (cur <= end) {
1777 if (cur >= last_byte) {
1778 char *userpage;
1779 iosize = PAGE_CACHE_SIZE - page_offset;
1780 userpage = kmap_atomic(page, KM_USER0);
1781 memset(userpage + page_offset, 0, iosize);
1782 flush_dcache_page(page);
1783 kunmap_atomic(userpage, KM_USER0);
1784 set_extent_uptodate(tree, cur, cur + iosize - 1,
1785 GFP_NOFS);
1786 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1787 break;
1788 }
1789 em = get_extent(inode, page, page_offset, cur,
1790 end - cur + 1, 0);
1791 if (IS_ERR(em) || !em) {
1792 SetPageError(page);
1793 unlock_extent(tree, cur, end, GFP_NOFS);
1794 break;
1795 }
1796
1797 extent_offset = cur - em->start;
1798 BUG_ON(extent_map_end(em) <= cur);
1799 BUG_ON(end < cur);
1800
1801 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1802 cur_end = min(extent_map_end(em) - 1, end);
1803 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1804 sector = (em->block_start + extent_offset) >> 9;
1805 bdev = em->bdev;
1806 block_start = em->block_start;
1807 free_extent_map(em);
1808 em = NULL;
1809
1810 /* we've found a hole, just zero and go on */
1811 if (block_start == EXTENT_MAP_HOLE) {
1812 char *userpage;
1813 userpage = kmap_atomic(page, KM_USER0);
1814 memset(userpage + page_offset, 0, iosize);
1815 flush_dcache_page(page);
1816 kunmap_atomic(userpage, KM_USER0);
1817
1818 set_extent_uptodate(tree, cur, cur + iosize - 1,
1819 GFP_NOFS);
1820 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1821 cur = cur + iosize;
1822 page_offset += iosize;
1823 continue;
1824 }
1825 /* the get_extent function already copied into the page */
1826 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1827 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1828 cur = cur + iosize;
1829 page_offset += iosize;
1830 continue;
1831 }
70dec807
CM
1832 /* we have an inline extent but it didn't get marked up
1833 * to date. Error out
1834 */
1835 if (block_start == EXTENT_MAP_INLINE) {
1836 SetPageError(page);
1837 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1838 cur = cur + iosize;
1839 page_offset += iosize;
1840 continue;
1841 }
d1310b2e
CM
1842
1843 ret = 0;
1844 if (tree->ops && tree->ops->readpage_io_hook) {
1845 ret = tree->ops->readpage_io_hook(page, cur,
1846 cur + iosize - 1);
1847 }
1848 if (!ret) {
1849 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1850 nr -= page->index;
1851 ret = submit_extent_page(READ, tree, page,
1852 sector, iosize, page_offset,
1853 bdev, bio, nr,
1854 end_bio_extent_readpage);
1855 }
1856 if (ret)
1857 SetPageError(page);
1858 cur = cur + iosize;
1859 page_offset += iosize;
1860 nr++;
1861 }
1862 if (!nr) {
1863 if (!PageError(page))
1864 SetPageUptodate(page);
1865 unlock_page(page);
1866 }
1867 return 0;
1868}
1869
1870int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
1871 get_extent_t *get_extent)
1872{
1873 struct bio *bio = NULL;
1874 int ret;
1875
1876 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1877 if (bio)
1878 submit_one_bio(READ, bio);
1879 return ret;
1880}
1881EXPORT_SYMBOL(extent_read_full_page);
1882
1883/*
1884 * the writepage semantics are similar to regular writepage. extent
1885 * records are inserted to lock ranges in the tree, and as dirty areas
1886 * are found, they are marked writeback. Then the lock bits are removed
1887 * and the end_io handler clears the writeback ranges
1888 */
1889static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1890 void *data)
1891{
1892 struct inode *inode = page->mapping->host;
1893 struct extent_page_data *epd = data;
1894 struct extent_io_tree *tree = epd->tree;
1895 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1896 u64 delalloc_start;
1897 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1898 u64 end;
1899 u64 cur = start;
1900 u64 extent_offset;
1901 u64 last_byte = i_size_read(inode);
1902 u64 block_start;
1903 u64 iosize;
1904 sector_t sector;
1905 struct extent_map *em;
1906 struct block_device *bdev;
1907 int ret;
1908 int nr = 0;
1909 size_t page_offset = 0;
1910 size_t blocksize;
1911 loff_t i_size = i_size_read(inode);
1912 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1913 u64 nr_delalloc;
1914 u64 delalloc_end;
1915
1916 WARN_ON(!PageLocked(page));
1917 if (page->index > end_index) {
1918 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1919 unlock_page(page);
1920 return 0;
1921 }
1922
1923 if (page->index == end_index) {
1924 char *userpage;
1925
1926 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1927
1928 userpage = kmap_atomic(page, KM_USER0);
1929 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1930 flush_dcache_page(page);
1931 kunmap_atomic(userpage, KM_USER0);
1932 }
1933
1934 set_page_extent_mapped(page);
1935
1936 delalloc_start = start;
1937 delalloc_end = 0;
1938 while(delalloc_end < page_end) {
1939 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1940 &delalloc_end,
1941 128 * 1024 * 1024);
1942 if (nr_delalloc == 0) {
1943 delalloc_start = delalloc_end + 1;
1944 continue;
1945 }
1946 tree->ops->fill_delalloc(inode, delalloc_start,
1947 delalloc_end);
1948 clear_extent_bit(tree, delalloc_start,
1949 delalloc_end,
1950 EXTENT_LOCKED | EXTENT_DELALLOC,
1951 1, 0, GFP_NOFS);
1952 delalloc_start = delalloc_end + 1;
1953 }
1954 lock_extent(tree, start, page_end, GFP_NOFS);
1955
1956 end = page_end;
1957 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1958 printk("found delalloc bits after lock_extent\n");
1959 }
1960
1961 if (last_byte <= start) {
1962 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1963 goto done;
1964 }
1965
1966 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1967 blocksize = inode->i_sb->s_blocksize;
1968
1969 while (cur <= end) {
1970 if (cur >= last_byte) {
1971 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1972 break;
1973 }
1974 em = epd->get_extent(inode, page, page_offset, cur,
1975 end - cur + 1, 1);
1976 if (IS_ERR(em) || !em) {
1977 SetPageError(page);
1978 break;
1979 }
1980
1981 extent_offset = cur - em->start;
1982 BUG_ON(extent_map_end(em) <= cur);
1983 BUG_ON(end < cur);
1984 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1985 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1986 sector = (em->block_start + extent_offset) >> 9;
1987 bdev = em->bdev;
1988 block_start = em->block_start;
1989 free_extent_map(em);
1990 em = NULL;
1991
1992 if (block_start == EXTENT_MAP_HOLE ||
1993 block_start == EXTENT_MAP_INLINE) {
1994 clear_extent_dirty(tree, cur,
1995 cur + iosize - 1, GFP_NOFS);
1996 cur = cur + iosize;
1997 page_offset += iosize;
1998 continue;
1999 }
2000
2001 /* leave this out until we have a page_mkwrite call */
2002 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2003 EXTENT_DIRTY, 0)) {
2004 cur = cur + iosize;
2005 page_offset += iosize;
2006 continue;
2007 }
2008 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2009 if (tree->ops && tree->ops->writepage_io_hook) {
2010 ret = tree->ops->writepage_io_hook(page, cur,
2011 cur + iosize - 1);
2012 } else {
2013 ret = 0;
2014 }
2015 if (ret)
2016 SetPageError(page);
2017 else {
2018 unsigned long max_nr = end_index + 1;
2019 set_range_writeback(tree, cur, cur + iosize - 1);
2020 if (!PageWriteback(page)) {
2021 printk("warning page %lu not writeback, "
2022 "cur %llu end %llu\n", page->index,
2023 (unsigned long long)cur,
2024 (unsigned long long)end);
2025 }
2026
2027 ret = submit_extent_page(WRITE, tree, page, sector,
2028 iosize, page_offset, bdev,
2029 &epd->bio, max_nr,
2030 end_bio_extent_writepage);
2031 if (ret)
2032 SetPageError(page);
2033 }
2034 cur = cur + iosize;
2035 page_offset += iosize;
2036 nr++;
2037 }
2038done:
2039 if (nr == 0) {
2040 /* make sure the mapping tag for page dirty gets cleared */
2041 set_page_writeback(page);
2042 end_page_writeback(page);
2043 }
2044 unlock_extent(tree, start, page_end, GFP_NOFS);
2045 unlock_page(page);
2046 return 0;
2047}
2048
2049#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2050
2051/* Taken directly from 2.6.23 for 2.6.18 back port */
2052typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
2053 void *data);
2054
2055/**
2056 * write_cache_pages - walk the list of dirty pages of the given address space
2057 * and write all of them.
2058 * @mapping: address space structure to write
2059 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2060 * @writepage: function called for each page
2061 * @data: data passed to writepage function
2062 *
2063 * If a page is already under I/O, write_cache_pages() skips it, even
2064 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2065 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2066 * and msync() need to guarantee that all the data which was dirty at the time
2067 * the call was made get new I/O started against them. If wbc->sync_mode is
2068 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2069 * existing IO to complete.
2070 */
2071static int write_cache_pages(struct address_space *mapping,
2072 struct writeback_control *wbc, writepage_t writepage,
2073 void *data)
2074{
2075 struct backing_dev_info *bdi = mapping->backing_dev_info;
2076 int ret = 0;
2077 int done = 0;
2078 struct pagevec pvec;
2079 int nr_pages;
2080 pgoff_t index;
2081 pgoff_t end; /* Inclusive */
2082 int scanned = 0;
2083 int range_whole = 0;
2084
2085 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2086 wbc->encountered_congestion = 1;
2087 return 0;
2088 }
2089
2090 pagevec_init(&pvec, 0);
2091 if (wbc->range_cyclic) {
2092 index = mapping->writeback_index; /* Start from prev offset */
2093 end = -1;
2094 } else {
2095 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2096 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2097 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2098 range_whole = 1;
2099 scanned = 1;
2100 }
2101retry:
2102 while (!done && (index <= end) &&
2103 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2104 PAGECACHE_TAG_DIRTY,
2105 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2106 unsigned i;
2107
2108 scanned = 1;
2109 for (i = 0; i < nr_pages; i++) {
2110 struct page *page = pvec.pages[i];
2111
2112 /*
2113 * At this point we hold neither mapping->tree_lock nor
2114 * lock on the page itself: the page may be truncated or
2115 * invalidated (changing page->mapping to NULL), or even
2116 * swizzled back from swapper_space to tmpfs file
2117 * mapping
2118 */
2119 lock_page(page);
2120
2121 if (unlikely(page->mapping != mapping)) {
2122 unlock_page(page);
2123 continue;
2124 }
2125
2126 if (!wbc->range_cyclic && page->index > end) {
2127 done = 1;
2128 unlock_page(page);
2129 continue;
2130 }
2131
2132 if (wbc->sync_mode != WB_SYNC_NONE)
2133 wait_on_page_writeback(page);
2134
2135 if (PageWriteback(page) ||
2136 !clear_page_dirty_for_io(page)) {
2137 unlock_page(page);
2138 continue;
2139 }
2140
2141 ret = (*writepage)(page, wbc, data);
2142
2143 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2144 unlock_page(page);
2145 ret = 0;
2146 }
2147 if (ret || (--(wbc->nr_to_write) <= 0))
2148 done = 1;
2149 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2150 wbc->encountered_congestion = 1;
2151 done = 1;
2152 }
2153 }
2154 pagevec_release(&pvec);
2155 cond_resched();
2156 }
2157 if (!scanned && !done) {
2158 /*
2159 * We hit the last page and there is more work to be done: wrap
2160 * back to the start of the file
2161 */
2162 scanned = 1;
2163 index = 0;
2164 goto retry;
2165 }
2166 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2167 mapping->writeback_index = index;
2168 return ret;
2169}
2170#endif
2171
2172int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2173 get_extent_t *get_extent,
2174 struct writeback_control *wbc)
2175{
2176 int ret;
2177 struct address_space *mapping = page->mapping;
2178 struct extent_page_data epd = {
2179 .bio = NULL,
2180 .tree = tree,
2181 .get_extent = get_extent,
2182 };
2183 struct writeback_control wbc_writepages = {
2184 .bdi = wbc->bdi,
2185 .sync_mode = WB_SYNC_NONE,
2186 .older_than_this = NULL,
2187 .nr_to_write = 64,
2188 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2189 .range_end = (loff_t)-1,
2190 };
2191
2192
2193 ret = __extent_writepage(page, wbc, &epd);
2194
2195 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2196 if (epd.bio) {
2197 submit_one_bio(WRITE, epd.bio);
2198 }
2199 return ret;
2200}
2201EXPORT_SYMBOL(extent_write_full_page);
2202
2203
2204int extent_writepages(struct extent_io_tree *tree,
2205 struct address_space *mapping,
2206 get_extent_t *get_extent,
2207 struct writeback_control *wbc)
2208{
2209 int ret = 0;
2210 struct extent_page_data epd = {
2211 .bio = NULL,
2212 .tree = tree,
2213 .get_extent = get_extent,
2214 };
2215
2216 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2217 if (epd.bio) {
2218 submit_one_bio(WRITE, epd.bio);
2219 }
2220 return ret;
2221}
2222EXPORT_SYMBOL(extent_writepages);
2223
2224int extent_readpages(struct extent_io_tree *tree,
2225 struct address_space *mapping,
2226 struct list_head *pages, unsigned nr_pages,
2227 get_extent_t get_extent)
2228{
2229 struct bio *bio = NULL;
2230 unsigned page_idx;
2231 struct pagevec pvec;
2232
2233 pagevec_init(&pvec, 0);
2234 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2235 struct page *page = list_entry(pages->prev, struct page, lru);
2236
2237 prefetchw(&page->flags);
2238 list_del(&page->lru);
2239 /*
2240 * what we want to do here is call add_to_page_cache_lru,
2241 * but that isn't exported, so we reproduce it here
2242 */
2243 if (!add_to_page_cache(page, mapping,
2244 page->index, GFP_KERNEL)) {
2245
2246 /* open coding of lru_cache_add, also not exported */
2247 page_cache_get(page);
2248 if (!pagevec_add(&pvec, page))
2249 __pagevec_lru_add(&pvec);
2250 __extent_read_full_page(tree, page, get_extent, &bio);
2251 }
2252 page_cache_release(page);
2253 }
2254 if (pagevec_count(&pvec))
2255 __pagevec_lru_add(&pvec);
2256 BUG_ON(!list_empty(pages));
2257 if (bio)
2258 submit_one_bio(READ, bio);
2259 return 0;
2260}
2261EXPORT_SYMBOL(extent_readpages);
2262
2263/*
2264 * basic invalidatepage code, this waits on any locked or writeback
2265 * ranges corresponding to the page, and then deletes any extent state
2266 * records from the tree
2267 */
2268int extent_invalidatepage(struct extent_io_tree *tree,
2269 struct page *page, unsigned long offset)
2270{
2271 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2272 u64 end = start + PAGE_CACHE_SIZE - 1;
2273 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2274
2275 start += (offset + blocksize -1) & ~(blocksize - 1);
2276 if (start > end)
2277 return 0;
2278
2279 lock_extent(tree, start, end, GFP_NOFS);
2280 wait_on_extent_writeback(tree, start, end);
2281 clear_extent_bit(tree, start, end,
2282 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2283 1, 1, GFP_NOFS);
2284 return 0;
2285}
2286EXPORT_SYMBOL(extent_invalidatepage);
2287
2288/*
2289 * simple commit_write call, set_range_dirty is used to mark both
2290 * the pages and the extent records as dirty
2291 */
2292int extent_commit_write(struct extent_io_tree *tree,
2293 struct inode *inode, struct page *page,
2294 unsigned from, unsigned to)
2295{
2296 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2297
2298 set_page_extent_mapped(page);
2299 set_page_dirty(page);
2300
2301 if (pos > inode->i_size) {
2302 i_size_write(inode, pos);
2303 mark_inode_dirty(inode);
2304 }
2305 return 0;
2306}
2307EXPORT_SYMBOL(extent_commit_write);
2308
2309int extent_prepare_write(struct extent_io_tree *tree,
2310 struct inode *inode, struct page *page,
2311 unsigned from, unsigned to, get_extent_t *get_extent)
2312{
2313 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2314 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2315 u64 block_start;
2316 u64 orig_block_start;
2317 u64 block_end;
2318 u64 cur_end;
2319 struct extent_map *em;
2320 unsigned blocksize = 1 << inode->i_blkbits;
2321 size_t page_offset = 0;
2322 size_t block_off_start;
2323 size_t block_off_end;
2324 int err = 0;
2325 int iocount = 0;
2326 int ret = 0;
2327 int isnew;
2328
2329 set_page_extent_mapped(page);
2330
2331 block_start = (page_start + from) & ~((u64)blocksize - 1);
2332 block_end = (page_start + to - 1) | (blocksize - 1);
2333 orig_block_start = block_start;
2334
2335 lock_extent(tree, page_start, page_end, GFP_NOFS);
2336 while(block_start <= block_end) {
2337 em = get_extent(inode, page, page_offset, block_start,
2338 block_end - block_start + 1, 1);
2339 if (IS_ERR(em) || !em) {
2340 goto err;
2341 }
2342 cur_end = min(block_end, extent_map_end(em) - 1);
2343 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2344 block_off_end = block_off_start + blocksize;
2345 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2346
2347 if (!PageUptodate(page) && isnew &&
2348 (block_off_end > to || block_off_start < from)) {
2349 void *kaddr;
2350
2351 kaddr = kmap_atomic(page, KM_USER0);
2352 if (block_off_end > to)
2353 memset(kaddr + to, 0, block_off_end - to);
2354 if (block_off_start < from)
2355 memset(kaddr + block_off_start, 0,
2356 from - block_off_start);
2357 flush_dcache_page(page);
2358 kunmap_atomic(kaddr, KM_USER0);
2359 }
2360 if ((em->block_start != EXTENT_MAP_HOLE &&
2361 em->block_start != EXTENT_MAP_INLINE) &&
2362 !isnew && !PageUptodate(page) &&
2363 (block_off_end > to || block_off_start < from) &&
2364 !test_range_bit(tree, block_start, cur_end,
2365 EXTENT_UPTODATE, 1)) {
2366 u64 sector;
2367 u64 extent_offset = block_start - em->start;
2368 size_t iosize;
2369 sector = (em->block_start + extent_offset) >> 9;
2370 iosize = (cur_end - block_start + blocksize) &
2371 ~((u64)blocksize - 1);
2372 /*
2373 * we've already got the extent locked, but we
2374 * need to split the state such that our end_bio
2375 * handler can clear the lock.
2376 */
2377 set_extent_bit(tree, block_start,
2378 block_start + iosize - 1,
2379 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2380 ret = submit_extent_page(READ, tree, page,
2381 sector, iosize, page_offset, em->bdev,
2382 NULL, 1,
2383 end_bio_extent_preparewrite);
2384 iocount++;
2385 block_start = block_start + iosize;
2386 } else {
2387 set_extent_uptodate(tree, block_start, cur_end,
2388 GFP_NOFS);
2389 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2390 block_start = cur_end + 1;
2391 }
2392 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2393 free_extent_map(em);
2394 }
2395 if (iocount) {
2396 wait_extent_bit(tree, orig_block_start,
2397 block_end, EXTENT_LOCKED);
2398 }
2399 check_page_uptodate(tree, page);
2400err:
2401 /* FIXME, zero out newly allocated blocks on error */
2402 return err;
2403}
2404EXPORT_SYMBOL(extent_prepare_write);
2405
2406/*
2407 * a helper for releasepage. As long as there are no locked extents
2408 * in the range corresponding to the page, both state records and extent
2409 * map records are removed
2410 */
2411int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
2412 struct extent_io_tree *tree, struct page *page,
2413 gfp_t mask)
d1310b2e
CM
2414{
2415 struct extent_map *em;
2416 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2417 u64 end = start + PAGE_CACHE_SIZE - 1;
2418 u64 orig_start = start;
2419 int ret = 1;
70dec807
CM
2420 if ((mask & __GFP_WAIT) &&
2421 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 2422 u64 len;
70dec807 2423 while (start <= end) {
39b5637f 2424 len = end - start + 1;
70dec807 2425 spin_lock(&map->lock);
39b5637f 2426 em = lookup_extent_mapping(map, start, len);
70dec807
CM
2427 if (!em || IS_ERR(em)) {
2428 spin_unlock(&map->lock);
2429 break;
2430 }
2431 if (em->start != start) {
2432 spin_unlock(&map->lock);
2433 free_extent_map(em);
2434 break;
2435 }
2436 if (!test_range_bit(tree, em->start,
2437 extent_map_end(em) - 1,
2438 EXTENT_LOCKED, 0)) {
2439 remove_extent_mapping(map, em);
2440 /* once for the rb tree */
2441 free_extent_map(em);
2442 }
2443 start = extent_map_end(em);
d1310b2e 2444 spin_unlock(&map->lock);
70dec807
CM
2445
2446 /* once for us */
d1310b2e
CM
2447 free_extent_map(em);
2448 }
d1310b2e 2449 }
70dec807 2450 if (test_range_bit(tree, orig_start, end, EXTENT_IOBITS, 0))
d1310b2e 2451 ret = 0;
70dec807
CM
2452 else {
2453 if ((mask & GFP_NOFS) == GFP_NOFS)
2454 mask = GFP_NOFS;
d1310b2e 2455 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
70dec807
CM
2456 1, 1, mask);
2457 }
d1310b2e
CM
2458 return ret;
2459}
2460EXPORT_SYMBOL(try_release_extent_mapping);
2461
2462sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2463 get_extent_t *get_extent)
2464{
2465 struct inode *inode = mapping->host;
2466 u64 start = iblock << inode->i_blkbits;
2467 sector_t sector = 0;
2468 struct extent_map *em;
2469
2470 em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0);
2471 if (!em || IS_ERR(em))
2472 return 0;
2473
2474 if (em->block_start == EXTENT_MAP_INLINE ||
2475 em->block_start == EXTENT_MAP_HOLE)
2476 goto out;
2477
2478 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
d1310b2e
CM
2479out:
2480 free_extent_map(em);
2481 return sector;
2482}
2483
2484static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb)
2485{
2486 if (list_empty(&eb->lru)) {
2487 extent_buffer_get(eb);
2488 list_add(&eb->lru, &tree->buffer_lru);
2489 tree->lru_size++;
2490 if (tree->lru_size >= BUFFER_LRU_MAX) {
2491 struct extent_buffer *rm;
2492 rm = list_entry(tree->buffer_lru.prev,
2493 struct extent_buffer, lru);
2494 tree->lru_size--;
2495 list_del_init(&rm->lru);
2496 free_extent_buffer(rm);
2497 }
2498 } else
2499 list_move(&eb->lru, &tree->buffer_lru);
2500 return 0;
2501}
2502static struct extent_buffer *find_lru(struct extent_io_tree *tree,
2503 u64 start, unsigned long len)
2504{
2505 struct list_head *lru = &tree->buffer_lru;
2506 struct list_head *cur = lru->next;
2507 struct extent_buffer *eb;
2508
2509 if (list_empty(lru))
2510 return NULL;
2511
2512 do {
2513 eb = list_entry(cur, struct extent_buffer, lru);
2514 if (eb->start == start && eb->len == len) {
2515 extent_buffer_get(eb);
2516 return eb;
2517 }
2518 cur = cur->next;
2519 } while (cur != lru);
2520 return NULL;
2521}
2522
2523static inline unsigned long num_extent_pages(u64 start, u64 len)
2524{
2525 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2526 (start >> PAGE_CACHE_SHIFT);
2527}
2528
2529static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2530 unsigned long i)
2531{
2532 struct page *p;
2533 struct address_space *mapping;
2534
2535 if (i == 0)
2536 return eb->first_page;
2537 i += eb->start >> PAGE_CACHE_SHIFT;
2538 mapping = eb->first_page->mapping;
2539 read_lock_irq(&mapping->tree_lock);
2540 p = radix_tree_lookup(&mapping->page_tree, i);
2541 read_unlock_irq(&mapping->tree_lock);
2542 return p;
2543}
2544
2545static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2546 u64 start,
2547 unsigned long len,
2548 gfp_t mask)
2549{
2550 struct extent_buffer *eb = NULL;
2551
2552 spin_lock(&tree->lru_lock);
2553 eb = find_lru(tree, start, len);
2554 spin_unlock(&tree->lru_lock);
2555 if (eb) {
2556 return eb;
2557 }
2558
2559 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2560 INIT_LIST_HEAD(&eb->lru);
2561 eb->start = start;
2562 eb->len = len;
2563 atomic_set(&eb->refs, 1);
2564
2565 return eb;
2566}
2567
2568static void __free_extent_buffer(struct extent_buffer *eb)
2569{
2570 kmem_cache_free(extent_buffer_cache, eb);
2571}
2572
2573struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2574 u64 start, unsigned long len,
2575 struct page *page0,
2576 gfp_t mask)
2577{
2578 unsigned long num_pages = num_extent_pages(start, len);
2579 unsigned long i;
2580 unsigned long index = start >> PAGE_CACHE_SHIFT;
2581 struct extent_buffer *eb;
2582 struct page *p;
2583 struct address_space *mapping = tree->mapping;
2584 int uptodate = 1;
2585
2586 eb = __alloc_extent_buffer(tree, start, len, mask);
2587 if (!eb || IS_ERR(eb))
2588 return NULL;
2589
2590 if (eb->flags & EXTENT_BUFFER_FILLED)
2591 goto lru_add;
2592
2593 if (page0) {
2594 eb->first_page = page0;
2595 i = 1;
2596 index++;
2597 page_cache_get(page0);
2598 mark_page_accessed(page0);
2599 set_page_extent_mapped(page0);
2600 WARN_ON(!PageUptodate(page0));
2601 set_page_extent_head(page0, len);
2602 } else {
2603 i = 0;
2604 }
2605 for (; i < num_pages; i++, index++) {
2606 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2607 if (!p) {
2608 WARN_ON(1);
2609 goto fail;
2610 }
2611 set_page_extent_mapped(p);
2612 mark_page_accessed(p);
2613 if (i == 0) {
2614 eb->first_page = p;
2615 set_page_extent_head(p, len);
2616 } else {
2617 set_page_private(p, EXTENT_PAGE_PRIVATE);
2618 }
2619 if (!PageUptodate(p))
2620 uptodate = 0;
2621 unlock_page(p);
2622 }
2623 if (uptodate)
2624 eb->flags |= EXTENT_UPTODATE;
2625 eb->flags |= EXTENT_BUFFER_FILLED;
2626
2627lru_add:
2628 spin_lock(&tree->lru_lock);
2629 add_lru(tree, eb);
2630 spin_unlock(&tree->lru_lock);
2631 return eb;
2632
2633fail:
2634 spin_lock(&tree->lru_lock);
2635 list_del_init(&eb->lru);
2636 spin_unlock(&tree->lru_lock);
2637 if (!atomic_dec_and_test(&eb->refs))
2638 return NULL;
2639 for (index = 1; index < i; index++) {
2640 page_cache_release(extent_buffer_page(eb, index));
2641 }
2642 if (i > 0)
2643 page_cache_release(extent_buffer_page(eb, 0));
2644 __free_extent_buffer(eb);
2645 return NULL;
2646}
2647EXPORT_SYMBOL(alloc_extent_buffer);
2648
2649struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
2650 u64 start, unsigned long len,
2651 gfp_t mask)
2652{
2653 unsigned long num_pages = num_extent_pages(start, len);
2654 unsigned long i;
2655 unsigned long index = start >> PAGE_CACHE_SHIFT;
2656 struct extent_buffer *eb;
2657 struct page *p;
2658 struct address_space *mapping = tree->mapping;
2659 int uptodate = 1;
2660
2661 eb = __alloc_extent_buffer(tree, start, len, mask);
2662 if (!eb || IS_ERR(eb))
2663 return NULL;
2664
2665 if (eb->flags & EXTENT_BUFFER_FILLED)
2666 goto lru_add;
2667
2668 for (i = 0; i < num_pages; i++, index++) {
2669 p = find_lock_page(mapping, index);
2670 if (!p) {
2671 goto fail;
2672 }
2673 set_page_extent_mapped(p);
2674 mark_page_accessed(p);
2675
2676 if (i == 0) {
2677 eb->first_page = p;
2678 set_page_extent_head(p, len);
2679 } else {
2680 set_page_private(p, EXTENT_PAGE_PRIVATE);
2681 }
2682
2683 if (!PageUptodate(p))
2684 uptodate = 0;
2685 unlock_page(p);
2686 }
2687 if (uptodate)
2688 eb->flags |= EXTENT_UPTODATE;
2689 eb->flags |= EXTENT_BUFFER_FILLED;
2690
2691lru_add:
2692 spin_lock(&tree->lru_lock);
2693 add_lru(tree, eb);
2694 spin_unlock(&tree->lru_lock);
2695 return eb;
2696fail:
2697 spin_lock(&tree->lru_lock);
2698 list_del_init(&eb->lru);
2699 spin_unlock(&tree->lru_lock);
2700 if (!atomic_dec_and_test(&eb->refs))
2701 return NULL;
2702 for (index = 1; index < i; index++) {
2703 page_cache_release(extent_buffer_page(eb, index));
2704 }
2705 if (i > 0)
2706 page_cache_release(extent_buffer_page(eb, 0));
2707 __free_extent_buffer(eb);
2708 return NULL;
2709}
2710EXPORT_SYMBOL(find_extent_buffer);
2711
2712void free_extent_buffer(struct extent_buffer *eb)
2713{
2714 unsigned long i;
2715 unsigned long num_pages;
2716
2717 if (!eb)
2718 return;
2719
2720 if (!atomic_dec_and_test(&eb->refs))
2721 return;
2722
2723 WARN_ON(!list_empty(&eb->lru));
2724 num_pages = num_extent_pages(eb->start, eb->len);
2725
2726 for (i = 1; i < num_pages; i++) {
2727 page_cache_release(extent_buffer_page(eb, i));
2728 }
2729 page_cache_release(extent_buffer_page(eb, 0));
2730 __free_extent_buffer(eb);
2731}
2732EXPORT_SYMBOL(free_extent_buffer);
2733
2734int clear_extent_buffer_dirty(struct extent_io_tree *tree,
2735 struct extent_buffer *eb)
2736{
2737 int set;
2738 unsigned long i;
2739 unsigned long num_pages;
2740 struct page *page;
2741
2742 u64 start = eb->start;
2743 u64 end = start + eb->len - 1;
2744
2745 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2746 num_pages = num_extent_pages(eb->start, eb->len);
2747
2748 for (i = 0; i < num_pages; i++) {
2749 page = extent_buffer_page(eb, i);
2750 lock_page(page);
2751 if (i == 0)
2752 set_page_extent_head(page, eb->len);
2753 else
2754 set_page_private(page, EXTENT_PAGE_PRIVATE);
2755
2756 /*
2757 * if we're on the last page or the first page and the
2758 * block isn't aligned on a page boundary, do extra checks
2759 * to make sure we don't clean page that is partially dirty
2760 */
2761 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2762 ((i == num_pages - 1) &&
2763 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2764 start = (u64)page->index << PAGE_CACHE_SHIFT;
2765 end = start + PAGE_CACHE_SIZE - 1;
2766 if (test_range_bit(tree, start, end,
2767 EXTENT_DIRTY, 0)) {
2768 unlock_page(page);
2769 continue;
2770 }
2771 }
2772 clear_page_dirty_for_io(page);
70dec807 2773 read_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2774 if (!PageDirty(page)) {
2775 radix_tree_tag_clear(&page->mapping->page_tree,
2776 page_index(page),
2777 PAGECACHE_TAG_DIRTY);
2778 }
70dec807 2779 read_unlock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2780 unlock_page(page);
2781 }
2782 return 0;
2783}
2784EXPORT_SYMBOL(clear_extent_buffer_dirty);
2785
2786int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
2787 struct extent_buffer *eb)
2788{
2789 return wait_on_extent_writeback(tree, eb->start,
2790 eb->start + eb->len - 1);
2791}
2792EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2793
2794int set_extent_buffer_dirty(struct extent_io_tree *tree,
2795 struct extent_buffer *eb)
2796{
2797 unsigned long i;
2798 unsigned long num_pages;
2799
2800 num_pages = num_extent_pages(eb->start, eb->len);
2801 for (i = 0; i < num_pages; i++) {
2802 struct page *page = extent_buffer_page(eb, i);
2803 /* writepage may need to do something special for the
2804 * first page, we have to make sure page->private is
2805 * properly set. releasepage may drop page->private
2806 * on us if the page isn't already dirty.
2807 */
2808 if (i == 0) {
2809 lock_page(page);
2810 set_page_extent_head(page, eb->len);
2811 } else if (PagePrivate(page) &&
2812 page->private != EXTENT_PAGE_PRIVATE) {
2813 lock_page(page);
2814 set_page_extent_mapped(page);
2815 unlock_page(page);
2816 }
2817 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2818 if (i == 0)
2819 unlock_page(page);
2820 }
2821 return set_extent_dirty(tree, eb->start,
2822 eb->start + eb->len - 1, GFP_NOFS);
2823}
2824EXPORT_SYMBOL(set_extent_buffer_dirty);
2825
2826int set_extent_buffer_uptodate(struct extent_io_tree *tree,
2827 struct extent_buffer *eb)
2828{
2829 unsigned long i;
2830 struct page *page;
2831 unsigned long num_pages;
2832
2833 num_pages = num_extent_pages(eb->start, eb->len);
2834
2835 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2836 GFP_NOFS);
2837 for (i = 0; i < num_pages; i++) {
2838 page = extent_buffer_page(eb, i);
2839 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2840 ((i == num_pages - 1) &&
2841 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2842 check_page_uptodate(tree, page);
2843 continue;
2844 }
2845 SetPageUptodate(page);
2846 }
2847 return 0;
2848}
2849EXPORT_SYMBOL(set_extent_buffer_uptodate);
2850
2851int extent_buffer_uptodate(struct extent_io_tree *tree,
2852 struct extent_buffer *eb)
2853{
2854 if (eb->flags & EXTENT_UPTODATE)
2855 return 1;
2856 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2857 EXTENT_UPTODATE, 1);
2858}
2859EXPORT_SYMBOL(extent_buffer_uptodate);
2860
2861int read_extent_buffer_pages(struct extent_io_tree *tree,
2862 struct extent_buffer *eb,
a86c12c7
CM
2863 u64 start, int wait,
2864 get_extent_t *get_extent)
d1310b2e
CM
2865{
2866 unsigned long i;
2867 unsigned long start_i;
2868 struct page *page;
2869 int err;
2870 int ret = 0;
2871 unsigned long num_pages;
a86c12c7
CM
2872 struct bio *bio = NULL;
2873
d1310b2e
CM
2874
2875 if (eb->flags & EXTENT_UPTODATE)
2876 return 0;
2877
2878 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2879 EXTENT_UPTODATE, 1)) {
2880 return 0;
2881 }
2882
2883 if (start) {
2884 WARN_ON(start < eb->start);
2885 start_i = (start >> PAGE_CACHE_SHIFT) -
2886 (eb->start >> PAGE_CACHE_SHIFT);
2887 } else {
2888 start_i = 0;
2889 }
2890
2891 num_pages = num_extent_pages(eb->start, eb->len);
2892 for (i = start_i; i < num_pages; i++) {
2893 page = extent_buffer_page(eb, i);
2894 if (PageUptodate(page)) {
2895 continue;
2896 }
2897 if (!wait) {
2898 if (TestSetPageLocked(page)) {
2899 continue;
2900 }
2901 } else {
2902 lock_page(page);
2903 }
2904 if (!PageUptodate(page)) {
a86c12c7
CM
2905 err = __extent_read_full_page(tree, page,
2906 get_extent, &bio);
d1310b2e
CM
2907 if (err) {
2908 ret = err;
2909 }
2910 } else {
2911 unlock_page(page);
2912 }
2913 }
2914
a86c12c7
CM
2915 if (bio)
2916 submit_one_bio(READ, bio);
2917
d1310b2e
CM
2918 if (ret || !wait) {
2919 return ret;
2920 }
d1310b2e
CM
2921 for (i = start_i; i < num_pages; i++) {
2922 page = extent_buffer_page(eb, i);
2923 wait_on_page_locked(page);
2924 if (!PageUptodate(page)) {
2925 ret = -EIO;
2926 }
2927 }
2928 if (!ret)
2929 eb->flags |= EXTENT_UPTODATE;
2930 return ret;
2931}
2932EXPORT_SYMBOL(read_extent_buffer_pages);
2933
2934void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2935 unsigned long start,
2936 unsigned long len)
2937{
2938 size_t cur;
2939 size_t offset;
2940 struct page *page;
2941 char *kaddr;
2942 char *dst = (char *)dstv;
2943 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2944 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2945 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2946
2947 WARN_ON(start > eb->len);
2948 WARN_ON(start + len > eb->start + eb->len);
2949
2950 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2951
2952 while(len > 0) {
2953 page = extent_buffer_page(eb, i);
2954 if (!PageUptodate(page)) {
2955 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2956 WARN_ON(1);
2957 }
2958 WARN_ON(!PageUptodate(page));
2959
2960 cur = min(len, (PAGE_CACHE_SIZE - offset));
2961 kaddr = kmap_atomic(page, KM_USER1);
2962 memcpy(dst, kaddr + offset, cur);
2963 kunmap_atomic(kaddr, KM_USER1);
2964
2965 dst += cur;
2966 len -= cur;
2967 offset = 0;
2968 i++;
2969 }
2970}
2971EXPORT_SYMBOL(read_extent_buffer);
2972
2973int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2974 unsigned long min_len, char **token, char **map,
2975 unsigned long *map_start,
2976 unsigned long *map_len, int km)
2977{
2978 size_t offset = start & (PAGE_CACHE_SIZE - 1);
2979 char *kaddr;
2980 struct page *p;
2981 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2982 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2983 unsigned long end_i = (start_offset + start + min_len - 1) >>
2984 PAGE_CACHE_SHIFT;
2985
2986 if (i != end_i)
2987 return -EINVAL;
2988
2989 if (i == 0) {
2990 offset = start_offset;
2991 *map_start = 0;
2992 } else {
2993 offset = 0;
2994 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2995 }
2996 if (start + min_len > eb->len) {
2997printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2998 WARN_ON(1);
2999 }
3000
3001 p = extent_buffer_page(eb, i);
3002 WARN_ON(!PageUptodate(p));
3003 kaddr = kmap_atomic(p, km);
3004 *token = kaddr;
3005 *map = kaddr + offset;
3006 *map_len = PAGE_CACHE_SIZE - offset;
3007 return 0;
3008}
3009EXPORT_SYMBOL(map_private_extent_buffer);
3010
3011int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3012 unsigned long min_len,
3013 char **token, char **map,
3014 unsigned long *map_start,
3015 unsigned long *map_len, int km)
3016{
3017 int err;
3018 int save = 0;
3019 if (eb->map_token) {
3020 unmap_extent_buffer(eb, eb->map_token, km);
3021 eb->map_token = NULL;
3022 save = 1;
3023 }
3024 err = map_private_extent_buffer(eb, start, min_len, token, map,
3025 map_start, map_len, km);
3026 if (!err && save) {
3027 eb->map_token = *token;
3028 eb->kaddr = *map;
3029 eb->map_start = *map_start;
3030 eb->map_len = *map_len;
3031 }
3032 return err;
3033}
3034EXPORT_SYMBOL(map_extent_buffer);
3035
3036void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3037{
3038 kunmap_atomic(token, km);
3039}
3040EXPORT_SYMBOL(unmap_extent_buffer);
3041
3042int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3043 unsigned long start,
3044 unsigned long len)
3045{
3046 size_t cur;
3047 size_t offset;
3048 struct page *page;
3049 char *kaddr;
3050 char *ptr = (char *)ptrv;
3051 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3052 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3053 int ret = 0;
3054
3055 WARN_ON(start > eb->len);
3056 WARN_ON(start + len > eb->start + eb->len);
3057
3058 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3059
3060 while(len > 0) {
3061 page = extent_buffer_page(eb, i);
3062 WARN_ON(!PageUptodate(page));
3063
3064 cur = min(len, (PAGE_CACHE_SIZE - offset));
3065
3066 kaddr = kmap_atomic(page, KM_USER0);
3067 ret = memcmp(ptr, kaddr + offset, cur);
3068 kunmap_atomic(kaddr, KM_USER0);
3069 if (ret)
3070 break;
3071
3072 ptr += cur;
3073 len -= cur;
3074 offset = 0;
3075 i++;
3076 }
3077 return ret;
3078}
3079EXPORT_SYMBOL(memcmp_extent_buffer);
3080
3081void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3082 unsigned long start, unsigned long len)
3083{
3084 size_t cur;
3085 size_t offset;
3086 struct page *page;
3087 char *kaddr;
3088 char *src = (char *)srcv;
3089 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3090 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3091
3092 WARN_ON(start > eb->len);
3093 WARN_ON(start + len > eb->start + eb->len);
3094
3095 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3096
3097 while(len > 0) {
3098 page = extent_buffer_page(eb, i);
3099 WARN_ON(!PageUptodate(page));
3100
3101 cur = min(len, PAGE_CACHE_SIZE - offset);
3102 kaddr = kmap_atomic(page, KM_USER1);
3103 memcpy(kaddr + offset, src, cur);
3104 kunmap_atomic(kaddr, KM_USER1);
3105
3106 src += cur;
3107 len -= cur;
3108 offset = 0;
3109 i++;
3110 }
3111}
3112EXPORT_SYMBOL(write_extent_buffer);
3113
3114void memset_extent_buffer(struct extent_buffer *eb, char c,
3115 unsigned long start, unsigned long len)
3116{
3117 size_t cur;
3118 size_t offset;
3119 struct page *page;
3120 char *kaddr;
3121 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3122 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3123
3124 WARN_ON(start > eb->len);
3125 WARN_ON(start + len > eb->start + eb->len);
3126
3127 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3128
3129 while(len > 0) {
3130 page = extent_buffer_page(eb, i);
3131 WARN_ON(!PageUptodate(page));
3132
3133 cur = min(len, PAGE_CACHE_SIZE - offset);
3134 kaddr = kmap_atomic(page, KM_USER0);
3135 memset(kaddr + offset, c, cur);
3136 kunmap_atomic(kaddr, KM_USER0);
3137
3138 len -= cur;
3139 offset = 0;
3140 i++;
3141 }
3142}
3143EXPORT_SYMBOL(memset_extent_buffer);
3144
3145void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3146 unsigned long dst_offset, unsigned long src_offset,
3147 unsigned long len)
3148{
3149 u64 dst_len = dst->len;
3150 size_t cur;
3151 size_t offset;
3152 struct page *page;
3153 char *kaddr;
3154 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3155 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3156
3157 WARN_ON(src->len != dst_len);
3158
3159 offset = (start_offset + dst_offset) &
3160 ((unsigned long)PAGE_CACHE_SIZE - 1);
3161
3162 while(len > 0) {
3163 page = extent_buffer_page(dst, i);
3164 WARN_ON(!PageUptodate(page));
3165
3166 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3167
3168 kaddr = kmap_atomic(page, KM_USER0);
3169 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3170 kunmap_atomic(kaddr, KM_USER0);
3171
3172 src_offset += cur;
3173 len -= cur;
3174 offset = 0;
3175 i++;
3176 }
3177}
3178EXPORT_SYMBOL(copy_extent_buffer);
3179
3180static void move_pages(struct page *dst_page, struct page *src_page,
3181 unsigned long dst_off, unsigned long src_off,
3182 unsigned long len)
3183{
3184 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3185 if (dst_page == src_page) {
3186 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3187 } else {
3188 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3189 char *p = dst_kaddr + dst_off + len;
3190 char *s = src_kaddr + src_off + len;
3191
3192 while (len--)
3193 *--p = *--s;
3194
3195 kunmap_atomic(src_kaddr, KM_USER1);
3196 }
3197 kunmap_atomic(dst_kaddr, KM_USER0);
3198}
3199
3200static void copy_pages(struct page *dst_page, struct page *src_page,
3201 unsigned long dst_off, unsigned long src_off,
3202 unsigned long len)
3203{
3204 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3205 char *src_kaddr;
3206
3207 if (dst_page != src_page)
3208 src_kaddr = kmap_atomic(src_page, KM_USER1);
3209 else
3210 src_kaddr = dst_kaddr;
3211
3212 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3213 kunmap_atomic(dst_kaddr, KM_USER0);
3214 if (dst_page != src_page)
3215 kunmap_atomic(src_kaddr, KM_USER1);
3216}
3217
3218void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3219 unsigned long src_offset, unsigned long len)
3220{
3221 size_t cur;
3222 size_t dst_off_in_page;
3223 size_t src_off_in_page;
3224 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3225 unsigned long dst_i;
3226 unsigned long src_i;
3227
3228 if (src_offset + len > dst->len) {
3229 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3230 src_offset, len, dst->len);
3231 BUG_ON(1);
3232 }
3233 if (dst_offset + len > dst->len) {
3234 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3235 dst_offset, len, dst->len);
3236 BUG_ON(1);
3237 }
3238
3239 while(len > 0) {
3240 dst_off_in_page = (start_offset + dst_offset) &
3241 ((unsigned long)PAGE_CACHE_SIZE - 1);
3242 src_off_in_page = (start_offset + src_offset) &
3243 ((unsigned long)PAGE_CACHE_SIZE - 1);
3244
3245 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3246 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3247
3248 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3249 src_off_in_page));
3250 cur = min_t(unsigned long, cur,
3251 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3252
3253 copy_pages(extent_buffer_page(dst, dst_i),
3254 extent_buffer_page(dst, src_i),
3255 dst_off_in_page, src_off_in_page, cur);
3256
3257 src_offset += cur;
3258 dst_offset += cur;
3259 len -= cur;
3260 }
3261}
3262EXPORT_SYMBOL(memcpy_extent_buffer);
3263
3264void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3265 unsigned long src_offset, unsigned long len)
3266{
3267 size_t cur;
3268 size_t dst_off_in_page;
3269 size_t src_off_in_page;
3270 unsigned long dst_end = dst_offset + len - 1;
3271 unsigned long src_end = src_offset + len - 1;
3272 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3273 unsigned long dst_i;
3274 unsigned long src_i;
3275
3276 if (src_offset + len > dst->len) {
3277 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3278 src_offset, len, dst->len);
3279 BUG_ON(1);
3280 }
3281 if (dst_offset + len > dst->len) {
3282 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3283 dst_offset, len, dst->len);
3284 BUG_ON(1);
3285 }
3286 if (dst_offset < src_offset) {
3287 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3288 return;
3289 }
3290 while(len > 0) {
3291 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3292 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3293
3294 dst_off_in_page = (start_offset + dst_end) &
3295 ((unsigned long)PAGE_CACHE_SIZE - 1);
3296 src_off_in_page = (start_offset + src_end) &
3297 ((unsigned long)PAGE_CACHE_SIZE - 1);
3298
3299 cur = min_t(unsigned long, len, src_off_in_page + 1);
3300 cur = min(cur, dst_off_in_page + 1);
3301 move_pages(extent_buffer_page(dst, dst_i),
3302 extent_buffer_page(dst, src_i),
3303 dst_off_in_page - cur + 1,
3304 src_off_in_page - cur + 1, cur);
3305
3306 dst_end -= cur;
3307 src_end -= cur;
3308 len -= cur;
3309 }
3310}
3311EXPORT_SYMBOL(memmove_extent_buffer);