]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/bio.c
bio: allow individual slabs in the bio_set
[net-next-2.6.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
5f3ea37c 29#include <trace/block.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
0bfc2455
IM
32DEFINE_TRACE(block_split);
33
6feef531 34static mempool_t *bio_split_pool __read_mostly;
1da177e4 35
1da177e4
LT
36/*
37 * if you change this list, also change bvec_alloc or things will
38 * break badly! cannot be bigger than what you can fit into an
39 * unsigned short
40 */
1da177e4 41#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
bb799ca0 42struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44};
45#undef BV
46
1da177e4
LT
47/*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51d654e1 51struct bio_set *fs_bio_set;
1da177e4 52
bb799ca0
JA
53/*
54 * Our slab pool management
55 */
56struct bio_slab {
57 struct kmem_cache *slab;
58 unsigned int slab_ref;
59 unsigned int slab_size;
60 char name[8];
61};
62static DEFINE_MUTEX(bio_slab_lock);
63static struct bio_slab *bio_slabs;
64static unsigned int bio_slab_nr, bio_slab_max;
65
66static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
67{
68 unsigned int sz = sizeof(struct bio) + extra_size;
69 struct kmem_cache *slab = NULL;
70 struct bio_slab *bslab;
71 unsigned int i, entry = -1;
72
73 mutex_lock(&bio_slab_lock);
74
75 i = 0;
76 while (i < bio_slab_nr) {
77 struct bio_slab *bslab = &bio_slabs[i];
78
79 if (!bslab->slab && entry == -1)
80 entry = i;
81 else if (bslab->slab_size == sz) {
82 slab = bslab->slab;
83 bslab->slab_ref++;
84 break;
85 }
86 i++;
87 }
88
89 if (slab)
90 goto out_unlock;
91
92 if (bio_slab_nr == bio_slab_max && entry == -1) {
93 bio_slab_max <<= 1;
94 bio_slabs = krealloc(bio_slabs,
95 bio_slab_max * sizeof(struct bio_slab),
96 GFP_KERNEL);
97 if (!bio_slabs)
98 goto out_unlock;
99 }
100 if (entry == -1)
101 entry = bio_slab_nr++;
102
103 bslab = &bio_slabs[entry];
104
105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
107 if (!slab)
108 goto out_unlock;
109
110 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
111 bslab->slab = slab;
112 bslab->slab_ref = 1;
113 bslab->slab_size = sz;
114out_unlock:
115 mutex_unlock(&bio_slab_lock);
116 return slab;
117}
118
119static void bio_put_slab(struct bio_set *bs)
120{
121 struct bio_slab *bslab = NULL;
122 unsigned int i;
123
124 mutex_lock(&bio_slab_lock);
125
126 for (i = 0; i < bio_slab_nr; i++) {
127 if (bs->bio_slab == bio_slabs[i].slab) {
128 bslab = &bio_slabs[i];
129 break;
130 }
131 }
132
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON(!bslab->slab_ref);
137
138 if (--bslab->slab_ref)
139 goto out;
140
141 kmem_cache_destroy(bslab->slab);
142 bslab->slab = NULL;
143
144out:
145 mutex_unlock(&bio_slab_lock);
146}
147
7ba1ba12
MP
148unsigned int bvec_nr_vecs(unsigned short idx)
149{
150 return bvec_slabs[idx].nr_vecs;
151}
152
bb799ca0
JA
153void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
154{
155 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
156
157 if (idx == BIOVEC_MAX_IDX)
158 mempool_free(bv, bs->bvec_pool);
159 else {
160 struct biovec_slab *bvs = bvec_slabs + idx;
161
162 kmem_cache_free(bvs->slab, bv);
163 }
164}
165
7ff9345f
JA
166struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
167 struct bio_set *bs)
1da177e4
LT
168{
169 struct bio_vec *bvl;
1da177e4
LT
170
171 /*
0a0d96b0
JA
172 * If 'bs' is given, lookup the pool and do the mempool alloc.
173 * If not, this is a bio_kmalloc() allocation and just do a
174 * kzalloc() for the exact number of vecs right away.
1da177e4 175 */
7ff9345f
JA
176 if (!bs)
177 bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask);
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f
JA
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 if (bvl)
235 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
1da177e4
LT
236
237 return bvl;
238}
239
7ff9345f 240void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 241{
bb799ca0 242 void *p;
1da177e4 243
bb799ca0
JA
244 if (bio->bi_io_vec)
245 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 246
7ba1ba12 247 if (bio_integrity(bio))
7ff9345f 248 bio_integrity_free(bio, bs);
7ba1ba12 249
bb799ca0
JA
250 /*
251 * If we have front padding, adjust the bio pointer before freeing
252 */
253 p = bio;
254 if (bs->front_pad)
255 p -= bs->front_pad;
256
257 mempool_free(p, bs->bio_pool);
3676347a
PO
258}
259
260/*
261 * default destructor for a bio allocated with bio_alloc_bioset()
262 */
263static void bio_fs_destructor(struct bio *bio)
264{
265 bio_free(bio, fs_bio_set);
1da177e4
LT
266}
267
0a0d96b0
JA
268static void bio_kmalloc_destructor(struct bio *bio)
269{
270 kfree(bio->bi_io_vec);
271 kfree(bio);
272}
273
858119e1 274void bio_init(struct bio *bio)
1da177e4 275{
2b94de55 276 memset(bio, 0, sizeof(*bio));
1da177e4 277 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 278 bio->bi_comp_cpu = -1;
1da177e4 279 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
280}
281
282/**
283 * bio_alloc_bioset - allocate a bio for I/O
284 * @gfp_mask: the GFP_ mask given to the slab allocator
285 * @nr_iovecs: number of iovecs to pre-allocate
0a0d96b0 286 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
1da177e4
LT
287 *
288 * Description:
0a0d96b0 289 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
1da177e4 290 * If %__GFP_WAIT is set then we will block on the internal pool waiting
0a0d96b0
JA
291 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
292 * fall back to just using @kmalloc to allocate the required memory.
1da177e4 293 *
bb799ca0
JA
294 * Note that the caller must set ->bi_destructor on succesful return
295 * of a bio, to do the appropriate freeing of the bio once the reference
296 * count drops to zero.
1da177e4 297 **/
dd0fc66f 298struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 299{
bb799ca0
JA
300 struct bio *bio = NULL;
301
302 if (bs) {
303 void *p = mempool_alloc(bs->bio_pool, gfp_mask);
0a0d96b0 304
bb799ca0
JA
305 if (p)
306 bio = p + bs->front_pad;
307 } else
0a0d96b0 308 bio = kmalloc(sizeof(*bio), gfp_mask);
1da177e4
LT
309
310 if (likely(bio)) {
311 struct bio_vec *bvl = NULL;
312
313 bio_init(bio);
314 if (likely(nr_iovecs)) {
eeae1d48 315 unsigned long uninitialized_var(idx);
1da177e4
LT
316
317 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
318 if (unlikely(!bvl)) {
0a0d96b0
JA
319 if (bs)
320 mempool_free(bio, bs->bio_pool);
321 else
322 kfree(bio);
1da177e4
LT
323 bio = NULL;
324 goto out;
325 }
326 bio->bi_flags |= idx << BIO_POOL_OFFSET;
1ac0ae06 327 bio->bi_max_vecs = bvec_nr_vecs(idx);
1da177e4
LT
328 }
329 bio->bi_io_vec = bvl;
1da177e4
LT
330 }
331out:
332 return bio;
333}
334
dd0fc66f 335struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 336{
3676347a
PO
337 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
338
339 if (bio)
340 bio->bi_destructor = bio_fs_destructor;
341
342 return bio;
1da177e4
LT
343}
344
0a0d96b0
JA
345/*
346 * Like bio_alloc(), but doesn't use a mempool backing. This means that
347 * it CAN fail, but while bio_alloc() can only be used for allocations
348 * that have a short (finite) life span, bio_kmalloc() should be used
349 * for more permanent bio allocations (like allocating some bio's for
350 * initalization or setup purposes).
351 */
352struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
353{
354 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
355
356 if (bio)
357 bio->bi_destructor = bio_kmalloc_destructor;
358
359 return bio;
360}
361
1da177e4
LT
362void zero_fill_bio(struct bio *bio)
363{
364 unsigned long flags;
365 struct bio_vec *bv;
366 int i;
367
368 bio_for_each_segment(bv, bio, i) {
369 char *data = bvec_kmap_irq(bv, &flags);
370 memset(data, 0, bv->bv_len);
371 flush_dcache_page(bv->bv_page);
372 bvec_kunmap_irq(data, &flags);
373 }
374}
375EXPORT_SYMBOL(zero_fill_bio);
376
377/**
378 * bio_put - release a reference to a bio
379 * @bio: bio to release reference to
380 *
381 * Description:
382 * Put a reference to a &struct bio, either one you have gotten with
383 * bio_alloc or bio_get. The last put of a bio will free it.
384 **/
385void bio_put(struct bio *bio)
386{
387 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
388
389 /*
390 * last put frees it
391 */
392 if (atomic_dec_and_test(&bio->bi_cnt)) {
393 bio->bi_next = NULL;
394 bio->bi_destructor(bio);
395 }
396}
397
165125e1 398inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
399{
400 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
401 blk_recount_segments(q, bio);
402
403 return bio->bi_phys_segments;
404}
405
1da177e4
LT
406/**
407 * __bio_clone - clone a bio
408 * @bio: destination bio
409 * @bio_src: bio to clone
410 *
411 * Clone a &bio. Caller will own the returned bio, but not
412 * the actual data it points to. Reference count of returned
413 * bio will be one.
414 */
858119e1 415void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 416{
e525e153
AM
417 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
418 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 419
5d84070e
JA
420 /*
421 * most users will be overriding ->bi_bdev with a new target,
422 * so we don't set nor calculate new physical/hw segment counts here
423 */
1da177e4
LT
424 bio->bi_sector = bio_src->bi_sector;
425 bio->bi_bdev = bio_src->bi_bdev;
426 bio->bi_flags |= 1 << BIO_CLONED;
427 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
428 bio->bi_vcnt = bio_src->bi_vcnt;
429 bio->bi_size = bio_src->bi_size;
a5453be4 430 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
431}
432
433/**
434 * bio_clone - clone a bio
435 * @bio: bio to clone
436 * @gfp_mask: allocation priority
437 *
438 * Like __bio_clone, only also allocates the returned bio
439 */
dd0fc66f 440struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
441{
442 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
443
7ba1ba12
MP
444 if (!b)
445 return NULL;
446
447 b->bi_destructor = bio_fs_destructor;
448 __bio_clone(b, bio);
449
450 if (bio_integrity(bio)) {
451 int ret;
452
453 ret = bio_integrity_clone(b, bio, fs_bio_set);
454
455 if (ret < 0)
456 return NULL;
3676347a 457 }
1da177e4
LT
458
459 return b;
460}
461
462/**
463 * bio_get_nr_vecs - return approx number of vecs
464 * @bdev: I/O target
465 *
466 * Return the approximate number of pages we can send to this target.
467 * There's no guarantee that you will be able to fit this number of pages
468 * into a bio, it does not account for dynamic restrictions that vary
469 * on offset.
470 */
471int bio_get_nr_vecs(struct block_device *bdev)
472{
165125e1 473 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
474 int nr_pages;
475
476 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
477 if (nr_pages > q->max_phys_segments)
478 nr_pages = q->max_phys_segments;
479 if (nr_pages > q->max_hw_segments)
480 nr_pages = q->max_hw_segments;
481
482 return nr_pages;
483}
484
165125e1 485static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
486 *page, unsigned int len, unsigned int offset,
487 unsigned short max_sectors)
1da177e4
LT
488{
489 int retried_segments = 0;
490 struct bio_vec *bvec;
491
492 /*
493 * cloned bio must not modify vec list
494 */
495 if (unlikely(bio_flagged(bio, BIO_CLONED)))
496 return 0;
497
80cfd548 498 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
499 return 0;
500
80cfd548
JA
501 /*
502 * For filesystems with a blocksize smaller than the pagesize
503 * we will often be called with the same page as last time and
504 * a consecutive offset. Optimize this special case.
505 */
506 if (bio->bi_vcnt > 0) {
507 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
508
509 if (page == prev->bv_page &&
510 offset == prev->bv_offset + prev->bv_len) {
511 prev->bv_len += len;
cc371e66
AK
512
513 if (q->merge_bvec_fn) {
514 struct bvec_merge_data bvm = {
515 .bi_bdev = bio->bi_bdev,
516 .bi_sector = bio->bi_sector,
517 .bi_size = bio->bi_size,
518 .bi_rw = bio->bi_rw,
519 };
520
521 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
522 prev->bv_len -= len;
523 return 0;
524 }
80cfd548
JA
525 }
526
527 goto done;
528 }
529 }
530
531 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
532 return 0;
533
534 /*
535 * we might lose a segment or two here, but rather that than
536 * make this too complex.
537 */
538
539 while (bio->bi_phys_segments >= q->max_phys_segments
5df97b91 540 || bio->bi_phys_segments >= q->max_hw_segments) {
1da177e4
LT
541
542 if (retried_segments)
543 return 0;
544
545 retried_segments = 1;
546 blk_recount_segments(q, bio);
547 }
548
549 /*
550 * setup the new entry, we might clear it again later if we
551 * cannot add the page
552 */
553 bvec = &bio->bi_io_vec[bio->bi_vcnt];
554 bvec->bv_page = page;
555 bvec->bv_len = len;
556 bvec->bv_offset = offset;
557
558 /*
559 * if queue has other restrictions (eg varying max sector size
560 * depending on offset), it can specify a merge_bvec_fn in the
561 * queue to get further control
562 */
563 if (q->merge_bvec_fn) {
cc371e66
AK
564 struct bvec_merge_data bvm = {
565 .bi_bdev = bio->bi_bdev,
566 .bi_sector = bio->bi_sector,
567 .bi_size = bio->bi_size,
568 .bi_rw = bio->bi_rw,
569 };
570
1da177e4
LT
571 /*
572 * merge_bvec_fn() returns number of bytes it can accept
573 * at this offset
574 */
cc371e66 575 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
576 bvec->bv_page = NULL;
577 bvec->bv_len = 0;
578 bvec->bv_offset = 0;
579 return 0;
580 }
581 }
582
583 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 584 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
585 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
586
587 bio->bi_vcnt++;
588 bio->bi_phys_segments++;
80cfd548 589 done:
1da177e4
LT
590 bio->bi_size += len;
591 return len;
592}
593
6e68af66
MC
594/**
595 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 596 * @q: the target queue
6e68af66
MC
597 * @bio: destination bio
598 * @page: page to add
599 * @len: vec entry length
600 * @offset: vec entry offset
601 *
602 * Attempt to add a page to the bio_vec maplist. This can fail for a
603 * number of reasons, such as the bio being full or target block
604 * device limitations. The target block device must allow bio's
605 * smaller than PAGE_SIZE, so it is always possible to add a single
606 * page to an empty bio. This should only be used by REQ_PC bios.
607 */
165125e1 608int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
609 unsigned int len, unsigned int offset)
610{
defd94b7 611 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
612}
613
1da177e4
LT
614/**
615 * bio_add_page - attempt to add page to bio
616 * @bio: destination bio
617 * @page: page to add
618 * @len: vec entry length
619 * @offset: vec entry offset
620 *
621 * Attempt to add a page to the bio_vec maplist. This can fail for a
622 * number of reasons, such as the bio being full or target block
623 * device limitations. The target block device must allow bio's
624 * smaller than PAGE_SIZE, so it is always possible to add a single
625 * page to an empty bio.
626 */
627int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
628 unsigned int offset)
629{
defd94b7
MC
630 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
631 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
632}
633
634struct bio_map_data {
635 struct bio_vec *iovecs;
c5dec1c3 636 struct sg_iovec *sgvecs;
152e283f
FT
637 int nr_sgvecs;
638 int is_our_pages;
1da177e4
LT
639};
640
c5dec1c3 641static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
642 struct sg_iovec *iov, int iov_count,
643 int is_our_pages)
1da177e4
LT
644{
645 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
646 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
647 bmd->nr_sgvecs = iov_count;
152e283f 648 bmd->is_our_pages = is_our_pages;
1da177e4
LT
649 bio->bi_private = bmd;
650}
651
652static void bio_free_map_data(struct bio_map_data *bmd)
653{
654 kfree(bmd->iovecs);
c5dec1c3 655 kfree(bmd->sgvecs);
1da177e4
LT
656 kfree(bmd);
657}
658
76029ff3
FT
659static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
660 gfp_t gfp_mask)
1da177e4 661{
76029ff3 662 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
663
664 if (!bmd)
665 return NULL;
666
76029ff3 667 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
668 if (!bmd->iovecs) {
669 kfree(bmd);
670 return NULL;
671 }
672
76029ff3 673 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 674 if (bmd->sgvecs)
1da177e4
LT
675 return bmd;
676
c5dec1c3 677 kfree(bmd->iovecs);
1da177e4
LT
678 kfree(bmd);
679 return NULL;
680}
681
aefcc28a 682static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
152e283f
FT
683 struct sg_iovec *iov, int iov_count, int uncopy,
684 int do_free_page)
c5dec1c3
FT
685{
686 int ret = 0, i;
687 struct bio_vec *bvec;
688 int iov_idx = 0;
689 unsigned int iov_off = 0;
690 int read = bio_data_dir(bio) == READ;
691
692 __bio_for_each_segment(bvec, bio, i, 0) {
693 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 694 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
695
696 while (bv_len && iov_idx < iov_count) {
697 unsigned int bytes;
698 char *iov_addr;
699
700 bytes = min_t(unsigned int,
701 iov[iov_idx].iov_len - iov_off, bv_len);
702 iov_addr = iov[iov_idx].iov_base + iov_off;
703
704 if (!ret) {
705 if (!read && !uncopy)
706 ret = copy_from_user(bv_addr, iov_addr,
707 bytes);
708 if (read && uncopy)
709 ret = copy_to_user(iov_addr, bv_addr,
710 bytes);
711
712 if (ret)
713 ret = -EFAULT;
714 }
715
716 bv_len -= bytes;
717 bv_addr += bytes;
718 iov_addr += bytes;
719 iov_off += bytes;
720
721 if (iov[iov_idx].iov_len == iov_off) {
722 iov_idx++;
723 iov_off = 0;
724 }
725 }
726
152e283f 727 if (do_free_page)
c5dec1c3
FT
728 __free_page(bvec->bv_page);
729 }
730
731 return ret;
732}
733
1da177e4
LT
734/**
735 * bio_uncopy_user - finish previously mapped bio
736 * @bio: bio being terminated
737 *
738 * Free pages allocated from bio_copy_user() and write back data
739 * to user space in case of a read.
740 */
741int bio_uncopy_user(struct bio *bio)
742{
743 struct bio_map_data *bmd = bio->bi_private;
81882766 744 int ret = 0;
1da177e4 745
81882766
FT
746 if (!bio_flagged(bio, BIO_NULL_MAPPED))
747 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
748 bmd->nr_sgvecs, 1, bmd->is_our_pages);
1da177e4
LT
749 bio_free_map_data(bmd);
750 bio_put(bio);
751 return ret;
752}
753
754/**
c5dec1c3 755 * bio_copy_user_iov - copy user data to bio
1da177e4 756 * @q: destination block queue
152e283f 757 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
758 * @iov: the iovec.
759 * @iov_count: number of elements in the iovec
1da177e4 760 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 761 * @gfp_mask: memory allocation flags
1da177e4
LT
762 *
763 * Prepares and returns a bio for indirect user io, bouncing data
764 * to/from kernel pages as necessary. Must be paired with
765 * call bio_uncopy_user() on io completion.
766 */
152e283f
FT
767struct bio *bio_copy_user_iov(struct request_queue *q,
768 struct rq_map_data *map_data,
769 struct sg_iovec *iov, int iov_count,
770 int write_to_vm, gfp_t gfp_mask)
1da177e4 771{
1da177e4
LT
772 struct bio_map_data *bmd;
773 struct bio_vec *bvec;
774 struct page *page;
775 struct bio *bio;
776 int i, ret;
c5dec1c3
FT
777 int nr_pages = 0;
778 unsigned int len = 0;
1da177e4 779
c5dec1c3
FT
780 for (i = 0; i < iov_count; i++) {
781 unsigned long uaddr;
782 unsigned long end;
783 unsigned long start;
784
785 uaddr = (unsigned long)iov[i].iov_base;
786 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
787 start = uaddr >> PAGE_SHIFT;
788
789 nr_pages += end - start;
790 len += iov[i].iov_len;
791 }
792
a3bce90e 793 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
794 if (!bmd)
795 return ERR_PTR(-ENOMEM);
796
1da177e4 797 ret = -ENOMEM;
a3bce90e 798 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
799 if (!bio)
800 goto out_bmd;
801
802 bio->bi_rw |= (!write_to_vm << BIO_RW);
803
804 ret = 0;
152e283f 805 i = 0;
1da177e4 806 while (len) {
152e283f
FT
807 unsigned int bytes;
808
809 if (map_data)
810 bytes = 1U << (PAGE_SHIFT + map_data->page_order);
811 else
812 bytes = PAGE_SIZE;
1da177e4
LT
813
814 if (bytes > len)
815 bytes = len;
816
152e283f
FT
817 if (map_data) {
818 if (i == map_data->nr_entries) {
819 ret = -ENOMEM;
820 break;
821 }
822 page = map_data->pages[i++];
823 } else
824 page = alloc_page(q->bounce_gfp | gfp_mask);
1da177e4
LT
825 if (!page) {
826 ret = -ENOMEM;
827 break;
828 }
829
0e75f906 830 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 831 break;
1da177e4
LT
832
833 len -= bytes;
834 }
835
836 if (ret)
837 goto cleanup;
838
839 /*
840 * success
841 */
842 if (!write_to_vm) {
152e283f 843 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
c5dec1c3
FT
844 if (ret)
845 goto cleanup;
1da177e4
LT
846 }
847
152e283f 848 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
849 return bio;
850cleanup:
152e283f
FT
851 if (!map_data)
852 bio_for_each_segment(bvec, bio, i)
853 __free_page(bvec->bv_page);
1da177e4
LT
854
855 bio_put(bio);
856out_bmd:
857 bio_free_map_data(bmd);
858 return ERR_PTR(ret);
859}
860
c5dec1c3
FT
861/**
862 * bio_copy_user - copy user data to bio
863 * @q: destination block queue
152e283f 864 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
865 * @uaddr: start of user address
866 * @len: length in bytes
867 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 868 * @gfp_mask: memory allocation flags
c5dec1c3
FT
869 *
870 * Prepares and returns a bio for indirect user io, bouncing data
871 * to/from kernel pages as necessary. Must be paired with
872 * call bio_uncopy_user() on io completion.
873 */
152e283f
FT
874struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
875 unsigned long uaddr, unsigned int len,
876 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
877{
878 struct sg_iovec iov;
879
880 iov.iov_base = (void __user *)uaddr;
881 iov.iov_len = len;
882
152e283f 883 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3
FT
884}
885
165125e1 886static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
887 struct block_device *bdev,
888 struct sg_iovec *iov, int iov_count,
a3bce90e 889 int write_to_vm, gfp_t gfp_mask)
1da177e4 890{
f1970baf
JB
891 int i, j;
892 int nr_pages = 0;
1da177e4
LT
893 struct page **pages;
894 struct bio *bio;
f1970baf
JB
895 int cur_page = 0;
896 int ret, offset;
1da177e4 897
f1970baf
JB
898 for (i = 0; i < iov_count; i++) {
899 unsigned long uaddr = (unsigned long)iov[i].iov_base;
900 unsigned long len = iov[i].iov_len;
901 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
902 unsigned long start = uaddr >> PAGE_SHIFT;
903
904 nr_pages += end - start;
905 /*
ad2d7225 906 * buffer must be aligned to at least hardsector size for now
f1970baf 907 */
ad2d7225 908 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
909 return ERR_PTR(-EINVAL);
910 }
911
912 if (!nr_pages)
1da177e4
LT
913 return ERR_PTR(-EINVAL);
914
a3bce90e 915 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
916 if (!bio)
917 return ERR_PTR(-ENOMEM);
918
919 ret = -ENOMEM;
a3bce90e 920 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
921 if (!pages)
922 goto out;
923
f1970baf
JB
924 for (i = 0; i < iov_count; i++) {
925 unsigned long uaddr = (unsigned long)iov[i].iov_base;
926 unsigned long len = iov[i].iov_len;
927 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
928 unsigned long start = uaddr >> PAGE_SHIFT;
929 const int local_nr_pages = end - start;
930 const int page_limit = cur_page + local_nr_pages;
931
f5dd33c4
NP
932 ret = get_user_pages_fast(uaddr, local_nr_pages,
933 write_to_vm, &pages[cur_page]);
99172157
JA
934 if (ret < local_nr_pages) {
935 ret = -EFAULT;
f1970baf 936 goto out_unmap;
99172157 937 }
f1970baf
JB
938
939 offset = uaddr & ~PAGE_MASK;
940 for (j = cur_page; j < page_limit; j++) {
941 unsigned int bytes = PAGE_SIZE - offset;
942
943 if (len <= 0)
944 break;
945
946 if (bytes > len)
947 bytes = len;
948
949 /*
950 * sorry...
951 */
defd94b7
MC
952 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
953 bytes)
f1970baf
JB
954 break;
955
956 len -= bytes;
957 offset = 0;
958 }
1da177e4 959
f1970baf 960 cur_page = j;
1da177e4 961 /*
f1970baf 962 * release the pages we didn't map into the bio, if any
1da177e4 963 */
f1970baf
JB
964 while (j < page_limit)
965 page_cache_release(pages[j++]);
1da177e4
LT
966 }
967
1da177e4
LT
968 kfree(pages);
969
970 /*
971 * set data direction, and check if mapped pages need bouncing
972 */
973 if (!write_to_vm)
974 bio->bi_rw |= (1 << BIO_RW);
975
f1970baf 976 bio->bi_bdev = bdev;
1da177e4
LT
977 bio->bi_flags |= (1 << BIO_USER_MAPPED);
978 return bio;
f1970baf
JB
979
980 out_unmap:
981 for (i = 0; i < nr_pages; i++) {
982 if(!pages[i])
983 break;
984 page_cache_release(pages[i]);
985 }
986 out:
1da177e4
LT
987 kfree(pages);
988 bio_put(bio);
989 return ERR_PTR(ret);
990}
991
992/**
993 * bio_map_user - map user address into bio
165125e1 994 * @q: the struct request_queue for the bio
1da177e4
LT
995 * @bdev: destination block device
996 * @uaddr: start of user address
997 * @len: length in bytes
998 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 999 * @gfp_mask: memory allocation flags
1da177e4
LT
1000 *
1001 * Map the user space address into a bio suitable for io to a block
1002 * device. Returns an error pointer in case of error.
1003 */
165125e1 1004struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1005 unsigned long uaddr, unsigned int len, int write_to_vm,
1006 gfp_t gfp_mask)
f1970baf
JB
1007{
1008 struct sg_iovec iov;
1009
3f70353e 1010 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1011 iov.iov_len = len;
1012
a3bce90e 1013 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf
JB
1014}
1015
1016/**
1017 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1018 * @q: the struct request_queue for the bio
f1970baf
JB
1019 * @bdev: destination block device
1020 * @iov: the iovec.
1021 * @iov_count: number of elements in the iovec
1022 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1023 * @gfp_mask: memory allocation flags
f1970baf
JB
1024 *
1025 * Map the user space address into a bio suitable for io to a block
1026 * device. Returns an error pointer in case of error.
1027 */
165125e1 1028struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1029 struct sg_iovec *iov, int iov_count,
a3bce90e 1030 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1031{
1032 struct bio *bio;
1033
a3bce90e
FT
1034 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1035 gfp_mask);
1da177e4
LT
1036 if (IS_ERR(bio))
1037 return bio;
1038
1039 /*
1040 * subtle -- if __bio_map_user() ended up bouncing a bio,
1041 * it would normally disappear when its bi_end_io is run.
1042 * however, we need it for the unmap, so grab an extra
1043 * reference to it
1044 */
1045 bio_get(bio);
1046
0e75f906 1047 return bio;
1da177e4
LT
1048}
1049
1050static void __bio_unmap_user(struct bio *bio)
1051{
1052 struct bio_vec *bvec;
1053 int i;
1054
1055 /*
1056 * make sure we dirty pages we wrote to
1057 */
1058 __bio_for_each_segment(bvec, bio, i, 0) {
1059 if (bio_data_dir(bio) == READ)
1060 set_page_dirty_lock(bvec->bv_page);
1061
1062 page_cache_release(bvec->bv_page);
1063 }
1064
1065 bio_put(bio);
1066}
1067
1068/**
1069 * bio_unmap_user - unmap a bio
1070 * @bio: the bio being unmapped
1071 *
1072 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1073 * a process context.
1074 *
1075 * bio_unmap_user() may sleep.
1076 */
1077void bio_unmap_user(struct bio *bio)
1078{
1079 __bio_unmap_user(bio);
1080 bio_put(bio);
1081}
1082
6712ecf8 1083static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1084{
b823825e 1085 bio_put(bio);
b823825e
JA
1086}
1087
1088
165125e1 1089static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1090 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1091{
1092 unsigned long kaddr = (unsigned long)data;
1093 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094 unsigned long start = kaddr >> PAGE_SHIFT;
1095 const int nr_pages = end - start;
1096 int offset, i;
1097 struct bio *bio;
1098
1099 bio = bio_alloc(gfp_mask, nr_pages);
1100 if (!bio)
1101 return ERR_PTR(-ENOMEM);
1102
1103 offset = offset_in_page(kaddr);
1104 for (i = 0; i < nr_pages; i++) {
1105 unsigned int bytes = PAGE_SIZE - offset;
1106
1107 if (len <= 0)
1108 break;
1109
1110 if (bytes > len)
1111 bytes = len;
1112
defd94b7
MC
1113 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1114 offset) < bytes)
df46b9a4
MC
1115 break;
1116
1117 data += bytes;
1118 len -= bytes;
1119 offset = 0;
1120 }
1121
b823825e 1122 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1123 return bio;
1124}
1125
1126/**
1127 * bio_map_kern - map kernel address into bio
165125e1 1128 * @q: the struct request_queue for the bio
df46b9a4
MC
1129 * @data: pointer to buffer to map
1130 * @len: length in bytes
1131 * @gfp_mask: allocation flags for bio allocation
1132 *
1133 * Map the kernel address into a bio suitable for io to a block
1134 * device. Returns an error pointer in case of error.
1135 */
165125e1 1136struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1137 gfp_t gfp_mask)
df46b9a4
MC
1138{
1139 struct bio *bio;
1140
1141 bio = __bio_map_kern(q, data, len, gfp_mask);
1142 if (IS_ERR(bio))
1143 return bio;
1144
1145 if (bio->bi_size == len)
1146 return bio;
1147
1148 /*
1149 * Don't support partial mappings.
1150 */
1151 bio_put(bio);
1152 return ERR_PTR(-EINVAL);
1153}
1154
68154e90
FT
1155static void bio_copy_kern_endio(struct bio *bio, int err)
1156{
1157 struct bio_vec *bvec;
1158 const int read = bio_data_dir(bio) == READ;
76029ff3 1159 struct bio_map_data *bmd = bio->bi_private;
68154e90 1160 int i;
76029ff3 1161 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1162
1163 __bio_for_each_segment(bvec, bio, i, 0) {
1164 char *addr = page_address(bvec->bv_page);
76029ff3 1165 int len = bmd->iovecs[i].bv_len;
68154e90
FT
1166
1167 if (read && !err)
76029ff3 1168 memcpy(p, addr, len);
68154e90
FT
1169
1170 __free_page(bvec->bv_page);
76029ff3 1171 p += len;
68154e90
FT
1172 }
1173
76029ff3 1174 bio_free_map_data(bmd);
68154e90
FT
1175 bio_put(bio);
1176}
1177
1178/**
1179 * bio_copy_kern - copy kernel address into bio
1180 * @q: the struct request_queue for the bio
1181 * @data: pointer to buffer to copy
1182 * @len: length in bytes
1183 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1184 * @reading: data direction is READ
68154e90
FT
1185 *
1186 * copy the kernel address into a bio suitable for io to a block
1187 * device. Returns an error pointer in case of error.
1188 */
1189struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1190 gfp_t gfp_mask, int reading)
1191{
68154e90
FT
1192 struct bio *bio;
1193 struct bio_vec *bvec;
4d8ab62e 1194 int i;
68154e90 1195
4d8ab62e
FT
1196 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1197 if (IS_ERR(bio))
1198 return bio;
68154e90
FT
1199
1200 if (!reading) {
1201 void *p = data;
1202
1203 bio_for_each_segment(bvec, bio, i) {
1204 char *addr = page_address(bvec->bv_page);
1205
1206 memcpy(addr, p, bvec->bv_len);
1207 p += bvec->bv_len;
1208 }
1209 }
1210
68154e90 1211 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1212
68154e90 1213 return bio;
68154e90
FT
1214}
1215
1da177e4
LT
1216/*
1217 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1218 * for performing direct-IO in BIOs.
1219 *
1220 * The problem is that we cannot run set_page_dirty() from interrupt context
1221 * because the required locks are not interrupt-safe. So what we can do is to
1222 * mark the pages dirty _before_ performing IO. And in interrupt context,
1223 * check that the pages are still dirty. If so, fine. If not, redirty them
1224 * in process context.
1225 *
1226 * We special-case compound pages here: normally this means reads into hugetlb
1227 * pages. The logic in here doesn't really work right for compound pages
1228 * because the VM does not uniformly chase down the head page in all cases.
1229 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1230 * handle them at all. So we skip compound pages here at an early stage.
1231 *
1232 * Note that this code is very hard to test under normal circumstances because
1233 * direct-io pins the pages with get_user_pages(). This makes
1234 * is_page_cache_freeable return false, and the VM will not clean the pages.
1235 * But other code (eg, pdflush) could clean the pages if they are mapped
1236 * pagecache.
1237 *
1238 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1239 * deferred bio dirtying paths.
1240 */
1241
1242/*
1243 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1244 */
1245void bio_set_pages_dirty(struct bio *bio)
1246{
1247 struct bio_vec *bvec = bio->bi_io_vec;
1248 int i;
1249
1250 for (i = 0; i < bio->bi_vcnt; i++) {
1251 struct page *page = bvec[i].bv_page;
1252
1253 if (page && !PageCompound(page))
1254 set_page_dirty_lock(page);
1255 }
1256}
1257
86b6c7a7 1258static void bio_release_pages(struct bio *bio)
1da177e4
LT
1259{
1260 struct bio_vec *bvec = bio->bi_io_vec;
1261 int i;
1262
1263 for (i = 0; i < bio->bi_vcnt; i++) {
1264 struct page *page = bvec[i].bv_page;
1265
1266 if (page)
1267 put_page(page);
1268 }
1269}
1270
1271/*
1272 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1273 * If they are, then fine. If, however, some pages are clean then they must
1274 * have been written out during the direct-IO read. So we take another ref on
1275 * the BIO and the offending pages and re-dirty the pages in process context.
1276 *
1277 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1278 * here on. It will run one page_cache_release() against each page and will
1279 * run one bio_put() against the BIO.
1280 */
1281
65f27f38 1282static void bio_dirty_fn(struct work_struct *work);
1da177e4 1283
65f27f38 1284static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1285static DEFINE_SPINLOCK(bio_dirty_lock);
1286static struct bio *bio_dirty_list;
1287
1288/*
1289 * This runs in process context
1290 */
65f27f38 1291static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1292{
1293 unsigned long flags;
1294 struct bio *bio;
1295
1296 spin_lock_irqsave(&bio_dirty_lock, flags);
1297 bio = bio_dirty_list;
1298 bio_dirty_list = NULL;
1299 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1300
1301 while (bio) {
1302 struct bio *next = bio->bi_private;
1303
1304 bio_set_pages_dirty(bio);
1305 bio_release_pages(bio);
1306 bio_put(bio);
1307 bio = next;
1308 }
1309}
1310
1311void bio_check_pages_dirty(struct bio *bio)
1312{
1313 struct bio_vec *bvec = bio->bi_io_vec;
1314 int nr_clean_pages = 0;
1315 int i;
1316
1317 for (i = 0; i < bio->bi_vcnt; i++) {
1318 struct page *page = bvec[i].bv_page;
1319
1320 if (PageDirty(page) || PageCompound(page)) {
1321 page_cache_release(page);
1322 bvec[i].bv_page = NULL;
1323 } else {
1324 nr_clean_pages++;
1325 }
1326 }
1327
1328 if (nr_clean_pages) {
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&bio_dirty_lock, flags);
1332 bio->bi_private = bio_dirty_list;
1333 bio_dirty_list = bio;
1334 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1335 schedule_work(&bio_dirty_work);
1336 } else {
1337 bio_put(bio);
1338 }
1339}
1340
1341/**
1342 * bio_endio - end I/O on a bio
1343 * @bio: bio
1da177e4
LT
1344 * @error: error, if any
1345 *
1346 * Description:
6712ecf8 1347 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1348 * preferred way to end I/O on a bio, it takes care of clearing
1349 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1350 * established -Exxxx (-EIO, for instance) error values in case
1351 * something went wrong. Noone should call bi_end_io() directly on a
1352 * bio unless they own it and thus know that it has an end_io
1353 * function.
1da177e4 1354 **/
6712ecf8 1355void bio_endio(struct bio *bio, int error)
1da177e4
LT
1356{
1357 if (error)
1358 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1359 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1360 error = -EIO;
1da177e4 1361
5bb23a68 1362 if (bio->bi_end_io)
6712ecf8 1363 bio->bi_end_io(bio, error);
1da177e4
LT
1364}
1365
1366void bio_pair_release(struct bio_pair *bp)
1367{
1368 if (atomic_dec_and_test(&bp->cnt)) {
1369 struct bio *master = bp->bio1.bi_private;
1370
6712ecf8 1371 bio_endio(master, bp->error);
1da177e4
LT
1372 mempool_free(bp, bp->bio2.bi_private);
1373 }
1374}
1375
6712ecf8 1376static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1377{
1378 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1379
1380 if (err)
1381 bp->error = err;
1382
1da177e4 1383 bio_pair_release(bp);
1da177e4
LT
1384}
1385
6712ecf8 1386static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1387{
1388 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1389
1390 if (err)
1391 bp->error = err;
1392
1da177e4 1393 bio_pair_release(bp);
1da177e4
LT
1394}
1395
1396/*
1397 * split a bio - only worry about a bio with a single page
1398 * in it's iovec
1399 */
6feef531 1400struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1401{
6feef531 1402 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1403
1404 if (!bp)
1405 return bp;
1406
5f3ea37c 1407 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1408 bi->bi_sector + first_sectors);
1409
1da177e4
LT
1410 BUG_ON(bi->bi_vcnt != 1);
1411 BUG_ON(bi->bi_idx != 0);
1412 atomic_set(&bp->cnt, 3);
1413 bp->error = 0;
1414 bp->bio1 = *bi;
1415 bp->bio2 = *bi;
1416 bp->bio2.bi_sector += first_sectors;
1417 bp->bio2.bi_size -= first_sectors << 9;
1418 bp->bio1.bi_size = first_sectors << 9;
1419
1420 bp->bv1 = bi->bi_io_vec[0];
1421 bp->bv2 = bi->bi_io_vec[0];
1422 bp->bv2.bv_offset += first_sectors << 9;
1423 bp->bv2.bv_len -= first_sectors << 9;
1424 bp->bv1.bv_len = first_sectors << 9;
1425
1426 bp->bio1.bi_io_vec = &bp->bv1;
1427 bp->bio2.bi_io_vec = &bp->bv2;
1428
a2eb0c10
N
1429 bp->bio1.bi_max_vecs = 1;
1430 bp->bio2.bi_max_vecs = 1;
1431
1da177e4
LT
1432 bp->bio1.bi_end_io = bio_pair_end_1;
1433 bp->bio2.bi_end_io = bio_pair_end_2;
1434
1435 bp->bio1.bi_private = bi;
6feef531 1436 bp->bio2.bi_private = bio_split_pool;
1da177e4 1437
7ba1ba12
MP
1438 if (bio_integrity(bi))
1439 bio_integrity_split(bi, bp, first_sectors);
1440
1da177e4
LT
1441 return bp;
1442}
1443
ad3316bf
MP
1444/**
1445 * bio_sector_offset - Find hardware sector offset in bio
1446 * @bio: bio to inspect
1447 * @index: bio_vec index
1448 * @offset: offset in bv_page
1449 *
1450 * Return the number of hardware sectors between beginning of bio
1451 * and an end point indicated by a bio_vec index and an offset
1452 * within that vector's page.
1453 */
1454sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1455 unsigned int offset)
1456{
1457 unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
1458 struct bio_vec *bv;
1459 sector_t sectors;
1460 int i;
1461
1462 sectors = 0;
1463
1464 if (index >= bio->bi_idx)
1465 index = bio->bi_vcnt - 1;
1466
1467 __bio_for_each_segment(bv, bio, i, 0) {
1468 if (i == index) {
1469 if (offset > bv->bv_offset)
1470 sectors += (offset - bv->bv_offset) / sector_sz;
1471 break;
1472 }
1473
1474 sectors += bv->bv_len / sector_sz;
1475 }
1476
1477 return sectors;
1478}
1479EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1480
1481/*
1482 * create memory pools for biovec's in a bio_set.
1483 * use the global biovec slabs created for general use.
1484 */
5972511b 1485static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1486{
7ff9345f 1487 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1488
7ff9345f
JA
1489 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1490 if (!bs->bvec_pool)
1491 return -ENOMEM;
1da177e4 1492
1da177e4
LT
1493 return 0;
1494}
1495
1496static void biovec_free_pools(struct bio_set *bs)
1497{
7ff9345f 1498 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1499}
1500
1501void bioset_free(struct bio_set *bs)
1502{
1503 if (bs->bio_pool)
1504 mempool_destroy(bs->bio_pool);
1505
7ba1ba12 1506 bioset_integrity_free(bs);
1da177e4 1507 biovec_free_pools(bs);
bb799ca0 1508 bio_put_slab(bs);
1da177e4
LT
1509
1510 kfree(bs);
1511}
1512
bb799ca0
JA
1513/**
1514 * bioset_create - Create a bio_set
1515 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1516 * @front_pad: Number of bytes to allocate in front of the returned bio
1517 *
1518 * Description:
1519 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1520 * to ask for a number of bytes to be allocated in front of the bio.
1521 * Front pad allocation is useful for embedding the bio inside
1522 * another structure, to avoid allocating extra data to go with the bio.
1523 * Note that the bio must be embedded at the END of that structure always,
1524 * or things will break badly.
1525 */
1526struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1527{
1b434498 1528 struct bio_set *bs;
1da177e4 1529
1b434498 1530 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1531 if (!bs)
1532 return NULL;
1533
bb799ca0 1534 bs->front_pad = front_pad;
1b434498 1535
bb799ca0
JA
1536 bs->bio_slab = bio_find_or_create_slab(front_pad);
1537 if (!bs->bio_slab) {
1538 kfree(bs);
1539 return NULL;
1540 }
1541
1542 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1543 if (!bs->bio_pool)
1544 goto bad;
1545
bb799ca0 1546 if (bioset_integrity_create(bs, pool_size))
7ba1ba12
MP
1547 goto bad;
1548
bb799ca0 1549 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1550 return bs;
1551
1552bad:
1553 bioset_free(bs);
1554 return NULL;
1555}
1556
1557static void __init biovec_init_slabs(void)
1558{
1559 int i;
1560
1561 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1562 int size;
1563 struct biovec_slab *bvs = bvec_slabs + i;
1564
1565 size = bvs->nr_vecs * sizeof(struct bio_vec);
1566 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1567 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1568 }
1569}
1570
1571static int __init init_bio(void)
1572{
bb799ca0
JA
1573 bio_slab_max = 2;
1574 bio_slab_nr = 0;
1575 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1576 if (!bio_slabs)
1577 panic("bio: can't allocate bios\n");
1da177e4 1578
7ba1ba12 1579 bio_integrity_init_slab();
1da177e4
LT
1580 biovec_init_slabs();
1581
bb799ca0 1582 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1583 if (!fs_bio_set)
1584 panic("bio: can't allocate bios\n");
1585
0eaae62a
MD
1586 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1587 sizeof(struct bio_pair));
1da177e4
LT
1588 if (!bio_split_pool)
1589 panic("bio: can't create split pool\n");
1590
1591 return 0;
1592}
1593
1594subsys_initcall(init_bio);
1595
1596EXPORT_SYMBOL(bio_alloc);
0a0d96b0 1597EXPORT_SYMBOL(bio_kmalloc);
1da177e4 1598EXPORT_SYMBOL(bio_put);
3676347a 1599EXPORT_SYMBOL(bio_free);
1da177e4
LT
1600EXPORT_SYMBOL(bio_endio);
1601EXPORT_SYMBOL(bio_init);
1602EXPORT_SYMBOL(__bio_clone);
1603EXPORT_SYMBOL(bio_clone);
1604EXPORT_SYMBOL(bio_phys_segments);
1da177e4 1605EXPORT_SYMBOL(bio_add_page);
6e68af66 1606EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1607EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1608EXPORT_SYMBOL(bio_map_user);
1609EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1610EXPORT_SYMBOL(bio_map_kern);
68154e90 1611EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1612EXPORT_SYMBOL(bio_pair_release);
1613EXPORT_SYMBOL(bio_split);
1da177e4
LT
1614EXPORT_SYMBOL(bio_copy_user);
1615EXPORT_SYMBOL(bio_uncopy_user);
1616EXPORT_SYMBOL(bioset_create);
1617EXPORT_SYMBOL(bioset_free);
1618EXPORT_SYMBOL(bio_alloc_bioset);