]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/video/sa1100fb.c
[ARM] collie: fix two minor formatting nits
[net-next-2.6.git] / drivers / video / sa1100fb.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/video/sa1100fb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 * linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
20 *
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
37 *
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
43 *
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
64 *
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@cam.org>
70 * - Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
88 *
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
59f0cb0f 117 * memset.
1da177e4
LT
118 * - remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
161 */
162
1da177e4
LT
163#include <linux/module.h>
164#include <linux/kernel.h>
165#include <linux/sched.h>
166#include <linux/errno.h>
167#include <linux/string.h>
168#include <linux/interrupt.h>
169#include <linux/slab.h>
27ac792c 170#include <linux/mm.h>
1da177e4
LT
171#include <linux/fb.h>
172#include <linux/delay.h>
173#include <linux/init.h>
174#include <linux/ioport.h>
175#include <linux/cpufreq.h>
d052d1be 176#include <linux/platform_device.h>
1da177e4 177#include <linux/dma-mapping.h>
7951ac91 178#include <linux/mutex.h>
1da177e4 179
a09e64fb 180#include <mach/hardware.h>
1da177e4 181#include <asm/io.h>
1da177e4 182#include <asm/mach-types.h>
a09e64fb
RK
183#include <mach/assabet.h>
184#include <mach/shannon.h>
1da177e4
LT
185
186/*
187 * debugging?
188 */
189#define DEBUG 0
190/*
191 * Complain if VAR is out of range.
192 */
193#define DEBUG_VAR 1
194
195#undef ASSABET_PAL_VIDEO
196
197#include "sa1100fb.h"
198
199extern void (*sa1100fb_backlight_power)(int on);
200extern void (*sa1100fb_lcd_power)(int on);
201
202/*
203 * IMHO this looks wrong. In 8BPP, length should be 8.
204 */
205static struct sa1100fb_rgb rgb_8 = {
206 .red = { .offset = 0, .length = 4, },
207 .green = { .offset = 0, .length = 4, },
208 .blue = { .offset = 0, .length = 4, },
209 .transp = { .offset = 0, .length = 0, },
210};
211
212static struct sa1100fb_rgb def_rgb_16 = {
213 .red = { .offset = 11, .length = 5, },
214 .green = { .offset = 5, .length = 6, },
215 .blue = { .offset = 0, .length = 5, },
216 .transp = { .offset = 0, .length = 0, },
217};
218
219#ifdef CONFIG_SA1100_ASSABET
220#ifndef ASSABET_PAL_VIDEO
221/*
222 * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually
223 * takes an RGB666 signal, but we provide it with an RGB565 signal
224 * instead (def_rgb_16).
225 */
226static struct sa1100fb_mach_info lq039q2ds54_info __initdata = {
227 .pixclock = 171521, .bpp = 16,
228 .xres = 320, .yres = 240,
229
230 .hsync_len = 5, .vsync_len = 1,
231 .left_margin = 61, .upper_margin = 3,
232 .right_margin = 9, .lower_margin = 0,
233
234 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
235
236 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
237 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
238};
239#else
240static struct sa1100fb_mach_info pal_info __initdata = {
241 .pixclock = 67797, .bpp = 16,
242 .xres = 640, .yres = 512,
243
244 .hsync_len = 64, .vsync_len = 6,
245 .left_margin = 125, .upper_margin = 70,
246 .right_margin = 115, .lower_margin = 36,
247
248 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
249 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
250};
251#endif
252#endif
253
1da177e4
LT
254#ifdef CONFIG_SA1100_H3600
255static struct sa1100fb_mach_info h3600_info __initdata = {
256 .pixclock = 174757, .bpp = 16,
257 .xres = 320, .yres = 240,
258
259 .hsync_len = 3, .vsync_len = 3,
260 .left_margin = 12, .upper_margin = 10,
261 .right_margin = 17, .lower_margin = 1,
262
263 .cmap_static = 1,
264
265 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
266 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
267};
268
269static struct sa1100fb_rgb h3600_rgb_16 = {
270 .red = { .offset = 12, .length = 4, },
271 .green = { .offset = 7, .length = 4, },
272 .blue = { .offset = 1, .length = 4, },
273 .transp = { .offset = 0, .length = 0, },
274};
275#endif
276
277#ifdef CONFIG_SA1100_H3100
278static struct sa1100fb_mach_info h3100_info __initdata = {
279 .pixclock = 406977, .bpp = 4,
280 .xres = 320, .yres = 240,
281
282 .hsync_len = 26, .vsync_len = 41,
283 .left_margin = 4, .upper_margin = 0,
284 .right_margin = 4, .lower_margin = 0,
285
286 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
287 .cmap_greyscale = 1,
288 .cmap_inverse = 1,
289
290 .lccr0 = LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas,
291 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
292};
293#endif
294
295#ifdef CONFIG_SA1100_COLLIE
296static struct sa1100fb_mach_info collie_info __initdata = {
297 .pixclock = 171521, .bpp = 16,
298 .xres = 320, .yres = 240,
299
300 .hsync_len = 5, .vsync_len = 1,
301 .left_margin = 11, .upper_margin = 2,
302 .right_margin = 30, .lower_margin = 0,
303
304 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
305
306 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
307 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
308};
309#endif
310
311#ifdef LART_GREY_LCD
312static struct sa1100fb_mach_info lart_grey_info __initdata = {
313 .pixclock = 150000, .bpp = 4,
314 .xres = 320, .yres = 240,
315
316 .hsync_len = 1, .vsync_len = 1,
317 .left_margin = 4, .upper_margin = 0,
318 .right_margin = 2, .lower_margin = 0,
319
320 .cmap_greyscale = 1,
321 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
322
323 .lccr0 = LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono,
324 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
325};
326#endif
327#ifdef LART_COLOR_LCD
328static struct sa1100fb_mach_info lart_color_info __initdata = {
329 .pixclock = 150000, .bpp = 16,
330 .xres = 320, .yres = 240,
331
332 .hsync_len = 2, .vsync_len = 3,
333 .left_margin = 69, .upper_margin = 14,
334 .right_margin = 8, .lower_margin = 4,
335
336 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
337 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
338};
339#endif
340#ifdef LART_VIDEO_OUT
341static struct sa1100fb_mach_info lart_video_info __initdata = {
342 .pixclock = 39721, .bpp = 16,
343 .xres = 640, .yres = 480,
344
345 .hsync_len = 95, .vsync_len = 2,
346 .left_margin = 40, .upper_margin = 32,
347 .right_margin = 24, .lower_margin = 11,
348
349 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
350
351 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
352 .lccr3 = LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
353};
354#endif
355
356#ifdef LART_KIT01_LCD
357static struct sa1100fb_mach_info lart_kit01_info __initdata = {
358 .pixclock = 63291, .bpp = 16,
359 .xres = 640, .yres = 480,
360
361 .hsync_len = 64, .vsync_len = 3,
362 .left_margin = 122, .upper_margin = 45,
363 .right_margin = 10, .lower_margin = 10,
364
365 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
366 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg
367};
368#endif
369
370#ifdef CONFIG_SA1100_SHANNON
371static struct sa1100fb_mach_info shannon_info __initdata = {
372 .pixclock = 152500, .bpp = 8,
373 .xres = 640, .yres = 480,
374
375 .hsync_len = 4, .vsync_len = 3,
376 .left_margin = 2, .upper_margin = 0,
377 .right_margin = 1, .lower_margin = 0,
378
379 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
380
381 .lccr0 = LCCR0_Color | LCCR0_Dual | LCCR0_Pas,
382 .lccr3 = LCCR3_ACBsDiv(512),
383};
384#endif
385
386
387
388static struct sa1100fb_mach_info * __init
389sa1100fb_get_machine_info(struct sa1100fb_info *fbi)
390{
391 struct sa1100fb_mach_info *inf = NULL;
392
393 /*
394 * R G B T
395 * default {11,5}, { 5,6}, { 0,5}, { 0,0}
396 * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0}
397 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
398 */
399#ifdef CONFIG_SA1100_ASSABET
400 if (machine_is_assabet()) {
401#ifndef ASSABET_PAL_VIDEO
402 inf = &lq039q2ds54_info;
403#else
404 inf = &pal_info;
405#endif
406 }
407#endif
408#ifdef CONFIG_SA1100_H3100
409 if (machine_is_h3100()) {
410 inf = &h3100_info;
411 }
412#endif
413#ifdef CONFIG_SA1100_H3600
414 if (machine_is_h3600()) {
415 inf = &h3600_info;
416 fbi->rgb[RGB_16] = &h3600_rgb_16;
417 }
418#endif
1da177e4
LT
419#ifdef CONFIG_SA1100_COLLIE
420 if (machine_is_collie()) {
421 inf = &collie_info;
422 }
423#endif
424#ifdef CONFIG_SA1100_LART
425 if (machine_is_lart()) {
426#ifdef LART_GREY_LCD
427 inf = &lart_grey_info;
428#endif
429#ifdef LART_COLOR_LCD
430 inf = &lart_color_info;
431#endif
432#ifdef LART_VIDEO_OUT
433 inf = &lart_video_info;
434#endif
435#ifdef LART_KIT01_LCD
436 inf = &lart_kit01_info;
437#endif
438 }
439#endif
440#ifdef CONFIG_SA1100_SHANNON
441 if (machine_is_shannon()) {
442 inf = &shannon_info;
443 }
444#endif
445 return inf;
446}
447
448static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
449static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
450
451static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
452{
453 unsigned long flags;
454
455 local_irq_save(flags);
456 /*
457 * We need to handle two requests being made at the same time.
458 * There are two important cases:
459 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
460 * We must perform the unblanking, which will do our REENABLE for us.
461 * 2. When we are blanking, but immediately unblank before we have
462 * blanked. We do the "REENABLE" thing here as well, just to be sure.
463 */
464 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
465 state = (u_int) -1;
466 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
467 state = C_REENABLE;
468
469 if (state != (u_int)-1) {
470 fbi->task_state = state;
471 schedule_work(&fbi->task);
472 }
473 local_irq_restore(flags);
474}
475
476static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
477{
478 chan &= 0xffff;
479 chan >>= 16 - bf->length;
480 return chan << bf->offset;
481}
482
483/*
484 * Convert bits-per-pixel to a hardware palette PBS value.
485 */
486static inline u_int palette_pbs(struct fb_var_screeninfo *var)
487{
488 int ret = 0;
489 switch (var->bits_per_pixel) {
490 case 4: ret = 0 << 12; break;
491 case 8: ret = 1 << 12; break;
492 case 16: ret = 2 << 12; break;
493 }
494 return ret;
495}
496
497static int
498sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
499 u_int trans, struct fb_info *info)
500{
501 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
502 u_int val, ret = 1;
503
504 if (regno < fbi->palette_size) {
505 val = ((red >> 4) & 0xf00);
506 val |= ((green >> 8) & 0x0f0);
507 val |= ((blue >> 12) & 0x00f);
508
509 if (regno == 0)
510 val |= palette_pbs(&fbi->fb.var);
511
512 fbi->palette_cpu[regno] = val;
513 ret = 0;
514 }
515 return ret;
516}
517
518static int
519sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
520 u_int trans, struct fb_info *info)
521{
522 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
523 unsigned int val;
524 int ret = 1;
525
526 /*
527 * If inverse mode was selected, invert all the colours
528 * rather than the register number. The register number
529 * is what you poke into the framebuffer to produce the
530 * colour you requested.
531 */
532 if (fbi->cmap_inverse) {
533 red = 0xffff - red;
534 green = 0xffff - green;
535 blue = 0xffff - blue;
536 }
537
538 /*
539 * If greyscale is true, then we convert the RGB value
540 * to greyscale no mater what visual we are using.
541 */
542 if (fbi->fb.var.grayscale)
543 red = green = blue = (19595 * red + 38470 * green +
544 7471 * blue) >> 16;
545
546 switch (fbi->fb.fix.visual) {
547 case FB_VISUAL_TRUECOLOR:
548 /*
549 * 12 or 16-bit True Colour. We encode the RGB value
550 * according to the RGB bitfield information.
551 */
552 if (regno < 16) {
553 u32 *pal = fbi->fb.pseudo_palette;
554
555 val = chan_to_field(red, &fbi->fb.var.red);
556 val |= chan_to_field(green, &fbi->fb.var.green);
557 val |= chan_to_field(blue, &fbi->fb.var.blue);
558
559 pal[regno] = val;
560 ret = 0;
561 }
562 break;
563
564 case FB_VISUAL_STATIC_PSEUDOCOLOR:
565 case FB_VISUAL_PSEUDOCOLOR:
566 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
567 break;
568 }
569
570 return ret;
571}
572
6edb7467 573#ifdef CONFIG_CPU_FREQ
1da177e4
LT
574/*
575 * sa1100fb_display_dma_period()
576 * Calculate the minimum period (in picoseconds) between two DMA
577 * requests for the LCD controller. If we hit this, it means we're
578 * doing nothing but LCD DMA.
579 */
fc1df37e 580static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
1da177e4
LT
581{
582 /*
583 * Period = pixclock * bits_per_byte * bytes_per_transfer
584 * / memory_bits_per_pixel;
585 */
586 return var->pixclock * 8 * 16 / var->bits_per_pixel;
587}
6edb7467 588#endif
1da177e4
LT
589
590/*
591 * sa1100fb_check_var():
592 * Round up in the following order: bits_per_pixel, xres,
593 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
594 * bitfields, horizontal timing, vertical timing.
595 */
596static int
597sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
598{
599 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
600 int rgbidx;
601
602 if (var->xres < MIN_XRES)
603 var->xres = MIN_XRES;
604 if (var->yres < MIN_YRES)
605 var->yres = MIN_YRES;
606 if (var->xres > fbi->max_xres)
607 var->xres = fbi->max_xres;
608 if (var->yres > fbi->max_yres)
609 var->yres = fbi->max_yres;
610 var->xres_virtual = max(var->xres_virtual, var->xres);
611 var->yres_virtual = max(var->yres_virtual, var->yres);
612
613 DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel);
614 switch (var->bits_per_pixel) {
615 case 4:
616 rgbidx = RGB_8;
617 break;
618 case 8:
619 rgbidx = RGB_8;
620 break;
621 case 16:
622 rgbidx = RGB_16;
623 break;
624 default:
625 return -EINVAL;
626 }
627
628 /*
629 * Copy the RGB parameters for this display
630 * from the machine specific parameters.
631 */
632 var->red = fbi->rgb[rgbidx]->red;
633 var->green = fbi->rgb[rgbidx]->green;
634 var->blue = fbi->rgb[rgbidx]->blue;
635 var->transp = fbi->rgb[rgbidx]->transp;
636
637 DPRINTK("RGBT length = %d:%d:%d:%d\n",
638 var->red.length, var->green.length, var->blue.length,
639 var->transp.length);
640
641 DPRINTK("RGBT offset = %d:%d:%d:%d\n",
642 var->red.offset, var->green.offset, var->blue.offset,
643 var->transp.offset);
644
645#ifdef CONFIG_CPU_FREQ
646 printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n",
647 sa1100fb_display_dma_period(var),
648 cpufreq_get(smp_processor_id()));
649#endif
650
651 return 0;
652}
653
654static inline void sa1100fb_set_truecolor(u_int is_true_color)
655{
656 if (machine_is_assabet()) {
657#if 1 // phase 4 or newer Assabet's
658 if (is_true_color)
659 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
660 else
661 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
662#else
663 // older Assabet's
664 if (is_true_color)
665 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
666 else
667 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
668#endif
669 }
670}
671
672/*
673 * sa1100fb_set_par():
674 * Set the user defined part of the display for the specified console
675 */
676static int sa1100fb_set_par(struct fb_info *info)
677{
678 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
679 struct fb_var_screeninfo *var = &info->var;
680 unsigned long palette_mem_size;
681
682 DPRINTK("set_par\n");
683
684 if (var->bits_per_pixel == 16)
685 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
686 else if (!fbi->cmap_static)
687 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
688 else {
689 /*
690 * Some people have weird ideas about wanting static
691 * pseudocolor maps. I suspect their user space
692 * applications are broken.
693 */
694 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
695 }
696
697 fbi->fb.fix.line_length = var->xres_virtual *
698 var->bits_per_pixel / 8;
699 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
700
701 palette_mem_size = fbi->palette_size * sizeof(u16);
702
703 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
704
705 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
706 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
707
708 /*
709 * Set (any) board control register to handle new color depth
710 */
711 sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
712 sa1100fb_activate_var(var, fbi);
713
714 return 0;
715}
716
717#if 0
718static int
719sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
720 struct fb_info *info)
721{
722 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
723
724 /*
725 * Make sure the user isn't doing something stupid.
726 */
727 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static))
728 return -EINVAL;
729
730 return gen_set_cmap(cmap, kspc, con, info);
731}
732#endif
733
734/*
735 * Formal definition of the VESA spec:
736 * On
737 * This refers to the state of the display when it is in full operation
738 * Stand-By
739 * This defines an optional operating state of minimal power reduction with
740 * the shortest recovery time
741 * Suspend
742 * This refers to a level of power management in which substantial power
743 * reduction is achieved by the display. The display can have a longer
744 * recovery time from this state than from the Stand-by state
745 * Off
746 * This indicates that the display is consuming the lowest level of power
747 * and is non-operational. Recovery from this state may optionally require
748 * the user to manually power on the monitor
749 *
750 * Now, the fbdev driver adds an additional state, (blank), where they
751 * turn off the video (maybe by colormap tricks), but don't mess with the
752 * video itself: think of it semantically between on and Stand-By.
753 *
754 * So here's what we should do in our fbdev blank routine:
755 *
756 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
757 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
758 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
759 * VESA_POWERDOWN (mode 3) Video off, front/back light off
760 *
761 * This will match the matrox implementation.
762 */
763/*
764 * sa1100fb_blank():
765 * Blank the display by setting all palette values to zero. Note, the
766 * 12 and 16 bpp modes don't really use the palette, so this will not
767 * blank the display in all modes.
768 */
769static int sa1100fb_blank(int blank, struct fb_info *info)
770{
771 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
772 int i;
773
774 DPRINTK("sa1100fb_blank: blank=%d\n", blank);
775
776 switch (blank) {
777 case FB_BLANK_POWERDOWN:
778 case FB_BLANK_VSYNC_SUSPEND:
779 case FB_BLANK_HSYNC_SUSPEND:
780 case FB_BLANK_NORMAL:
781 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
782 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
783 for (i = 0; i < fbi->palette_size; i++)
784 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
785 sa1100fb_schedule_work(fbi, C_DISABLE);
786 break;
787
788 case FB_BLANK_UNBLANK:
789 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
790 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
791 fb_set_cmap(&fbi->fb.cmap, info);
792 sa1100fb_schedule_work(fbi, C_ENABLE);
793 }
794 return 0;
795}
796
216d526c 797static int sa1100fb_mmap(struct fb_info *info,
1da177e4
LT
798 struct vm_area_struct *vma)
799{
800 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
801 unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
802
803 if (off < info->fix.smem_len) {
804 vma->vm_pgoff += 1; /* skip over the palette */
805 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
806 fbi->map_dma, fbi->map_size);
807 }
808
809 start = info->fix.mmio_start;
810 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
811
812 if ((vma->vm_end - vma->vm_start + off) > len)
813 return -EINVAL;
814
815 off += start & PAGE_MASK;
816 vma->vm_pgoff = off >> PAGE_SHIFT;
817 vma->vm_flags |= VM_IO;
818 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
819 return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
820 vma->vm_end - vma->vm_start,
821 vma->vm_page_prot);
822}
823
824static struct fb_ops sa1100fb_ops = {
825 .owner = THIS_MODULE,
826 .fb_check_var = sa1100fb_check_var,
827 .fb_set_par = sa1100fb_set_par,
828// .fb_set_cmap = sa1100fb_set_cmap,
829 .fb_setcolreg = sa1100fb_setcolreg,
830 .fb_fillrect = cfb_fillrect,
831 .fb_copyarea = cfb_copyarea,
832 .fb_imageblit = cfb_imageblit,
833 .fb_blank = sa1100fb_blank,
1da177e4
LT
834 .fb_mmap = sa1100fb_mmap,
835};
836
837/*
838 * Calculate the PCD value from the clock rate (in picoseconds).
839 * We take account of the PPCR clock setting.
840 */
841static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
842{
843 unsigned int pcd = cpuclock / 100;
844
845 pcd *= pixclock;
846 pcd /= 10000000;
847
848 return pcd + 1; /* make up for integer math truncations */
849}
850
851/*
852 * sa1100fb_activate_var():
853 * Configures LCD Controller based on entries in var parameter. Settings are
854 * only written to the controller if changes were made.
855 */
856static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
857{
858 struct sa1100fb_lcd_reg new_regs;
859 u_int half_screen_size, yres, pcd;
860 u_long flags;
861
862 DPRINTK("Configuring SA1100 LCD\n");
863
864 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
865 var->xres, var->hsync_len,
866 var->left_margin, var->right_margin);
867 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
868 var->yres, var->vsync_len,
869 var->upper_margin, var->lower_margin);
870
871#if DEBUG_VAR
872 if (var->xres < 16 || var->xres > 1024)
873 printk(KERN_ERR "%s: invalid xres %d\n",
874 fbi->fb.fix.id, var->xres);
875 if (var->hsync_len < 1 || var->hsync_len > 64)
876 printk(KERN_ERR "%s: invalid hsync_len %d\n",
877 fbi->fb.fix.id, var->hsync_len);
878 if (var->left_margin < 1 || var->left_margin > 255)
879 printk(KERN_ERR "%s: invalid left_margin %d\n",
880 fbi->fb.fix.id, var->left_margin);
881 if (var->right_margin < 1 || var->right_margin > 255)
882 printk(KERN_ERR "%s: invalid right_margin %d\n",
883 fbi->fb.fix.id, var->right_margin);
884 if (var->yres < 1 || var->yres > 1024)
885 printk(KERN_ERR "%s: invalid yres %d\n",
886 fbi->fb.fix.id, var->yres);
887 if (var->vsync_len < 1 || var->vsync_len > 64)
888 printk(KERN_ERR "%s: invalid vsync_len %d\n",
889 fbi->fb.fix.id, var->vsync_len);
890 if (var->upper_margin < 0 || var->upper_margin > 255)
891 printk(KERN_ERR "%s: invalid upper_margin %d\n",
892 fbi->fb.fix.id, var->upper_margin);
893 if (var->lower_margin < 0 || var->lower_margin > 255)
894 printk(KERN_ERR "%s: invalid lower_margin %d\n",
895 fbi->fb.fix.id, var->lower_margin);
896#endif
897
898 new_regs.lccr0 = fbi->lccr0 |
899 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
900 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
901
902 new_regs.lccr1 =
903 LCCR1_DisWdth(var->xres) +
904 LCCR1_HorSnchWdth(var->hsync_len) +
905 LCCR1_BegLnDel(var->left_margin) +
906 LCCR1_EndLnDel(var->right_margin);
907
908 /*
909 * If we have a dual scan LCD, then we need to halve
910 * the YRES parameter.
911 */
912 yres = var->yres;
913 if (fbi->lccr0 & LCCR0_Dual)
914 yres /= 2;
915
916 new_regs.lccr2 =
917 LCCR2_DisHght(yres) +
918 LCCR2_VrtSnchWdth(var->vsync_len) +
919 LCCR2_BegFrmDel(var->upper_margin) +
920 LCCR2_EndFrmDel(var->lower_margin);
921
922 pcd = get_pcd(var->pixclock, cpufreq_get(0));
923 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 |
924 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
925 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
926
927 DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0);
928 DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1);
929 DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2);
930 DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3);
931
932 half_screen_size = var->bits_per_pixel;
933 half_screen_size = half_screen_size * var->xres * var->yres / 16;
934
935 /* Update shadow copy atomically */
936 local_irq_save(flags);
937 fbi->dbar1 = fbi->palette_dma;
938 fbi->dbar2 = fbi->screen_dma + half_screen_size;
939
940 fbi->reg_lccr0 = new_regs.lccr0;
941 fbi->reg_lccr1 = new_regs.lccr1;
942 fbi->reg_lccr2 = new_regs.lccr2;
943 fbi->reg_lccr3 = new_regs.lccr3;
944 local_irq_restore(flags);
945
946 /*
947 * Only update the registers if the controller is enabled
948 * and something has changed.
949 */
950 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
951 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
952 (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2))
953 sa1100fb_schedule_work(fbi, C_REENABLE);
954
955 return 0;
956}
957
958/*
959 * NOTE! The following functions are purely helpers for set_ctrlr_state.
960 * Do not call them directly; set_ctrlr_state does the correct serialisation
961 * to ensure that things happen in the right way 100% of time time.
962 * -- rmk
963 */
964static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
965{
966 DPRINTK("backlight o%s\n", on ? "n" : "ff");
967
968 if (sa1100fb_backlight_power)
969 sa1100fb_backlight_power(on);
970}
971
972static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
973{
974 DPRINTK("LCD power o%s\n", on ? "n" : "ff");
975
976 if (sa1100fb_lcd_power)
977 sa1100fb_lcd_power(on);
978}
979
980static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
981{
982 u_int mask = 0;
983
984 /*
985 * Enable GPIO<9:2> for LCD use if:
986 * 1. Active display, or
987 * 2. Color Dual Passive display
988 *
989 * see table 11.8 on page 11-27 in the SA1100 manual
990 * -- Erik.
991 *
992 * SA1110 spec update nr. 25 says we can and should
993 * clear LDD15 to 12 for 4 or 8bpp modes with active
994 * panels.
995 */
996 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
997 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
998 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
999
1000 if (fbi->fb.var.bits_per_pixel > 8 ||
1001 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
1002 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
1003
1004 }
1005
1006 if (mask) {
1007 GPDR |= mask;
1008 GAFR |= mask;
1009 }
1010}
1011
1012static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
1013{
1014 DPRINTK("Enabling LCD controller\n");
1015
1016 /*
1017 * Make sure the mode bits are present in the first palette entry
1018 */
1019 fbi->palette_cpu[0] &= 0xcfff;
1020 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
1021
1022 /* Sequence from 11.7.10 */
1023 LCCR3 = fbi->reg_lccr3;
1024 LCCR2 = fbi->reg_lccr2;
1025 LCCR1 = fbi->reg_lccr1;
1026 LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN;
1027 DBAR1 = fbi->dbar1;
1028 DBAR2 = fbi->dbar2;
1029 LCCR0 |= LCCR0_LEN;
1030
1031 if (machine_is_shannon()) {
1032 GPDR |= SHANNON_GPIO_DISP_EN;
1033 GPSR |= SHANNON_GPIO_DISP_EN;
1034 }
1035
1036 DPRINTK("DBAR1 = 0x%08x\n", DBAR1);
1037 DPRINTK("DBAR2 = 0x%08x\n", DBAR2);
1038 DPRINTK("LCCR0 = 0x%08x\n", LCCR0);
1039 DPRINTK("LCCR1 = 0x%08x\n", LCCR1);
1040 DPRINTK("LCCR2 = 0x%08x\n", LCCR2);
1041 DPRINTK("LCCR3 = 0x%08x\n", LCCR3);
1042}
1043
1044static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
1045{
1046 DECLARE_WAITQUEUE(wait, current);
1047
1048 DPRINTK("Disabling LCD controller\n");
1049
1050 if (machine_is_shannon()) {
1051 GPCR |= SHANNON_GPIO_DISP_EN;
1052 }
1053
1054 set_current_state(TASK_UNINTERRUPTIBLE);
1055 add_wait_queue(&fbi->ctrlr_wait, &wait);
1056
1057 LCSR = 0xffffffff; /* Clear LCD Status Register */
1058 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
1059 LCCR0 &= ~LCCR0_LEN; /* Disable LCD Controller */
1060
1061 schedule_timeout(20 * HZ / 1000);
1062 remove_wait_queue(&fbi->ctrlr_wait, &wait);
1063}
1064
1065/*
1066 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1067 */
7d12e780 1068static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
1da177e4
LT
1069{
1070 struct sa1100fb_info *fbi = dev_id;
1071 unsigned int lcsr = LCSR;
1072
1073 if (lcsr & LCSR_LDD) {
1074 LCCR0 |= LCCR0_LDM;
1075 wake_up(&fbi->ctrlr_wait);
1076 }
1077
1078 LCSR = lcsr;
1079 return IRQ_HANDLED;
1080}
1081
1082/*
1083 * This function must be called from task context only, since it will
1084 * sleep when disabling the LCD controller, or if we get two contending
1085 * processes trying to alter state.
1086 */
1087static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
1088{
1089 u_int old_state;
1090
7951ac91 1091 mutex_lock(&fbi->ctrlr_lock);
1da177e4
LT
1092
1093 old_state = fbi->state;
1094
1095 /*
1096 * Hack around fbcon initialisation.
1097 */
1098 if (old_state == C_STARTUP && state == C_REENABLE)
1099 state = C_ENABLE;
1100
1101 switch (state) {
1102 case C_DISABLE_CLKCHANGE:
1103 /*
1104 * Disable controller for clock change. If the
1105 * controller is already disabled, then do nothing.
1106 */
1107 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1108 fbi->state = state;
1109 sa1100fb_disable_controller(fbi);
1110 }
1111 break;
1112
1113 case C_DISABLE_PM:
1114 case C_DISABLE:
1115 /*
1116 * Disable controller
1117 */
1118 if (old_state != C_DISABLE) {
1119 fbi->state = state;
1120
1121 __sa1100fb_backlight_power(fbi, 0);
1122 if (old_state != C_DISABLE_CLKCHANGE)
1123 sa1100fb_disable_controller(fbi);
1124 __sa1100fb_lcd_power(fbi, 0);
1125 }
1126 break;
1127
1128 case C_ENABLE_CLKCHANGE:
1129 /*
1130 * Enable the controller after clock change. Only
1131 * do this if we were disabled for the clock change.
1132 */
1133 if (old_state == C_DISABLE_CLKCHANGE) {
1134 fbi->state = C_ENABLE;
1135 sa1100fb_enable_controller(fbi);
1136 }
1137 break;
1138
1139 case C_REENABLE:
1140 /*
1141 * Re-enable the controller only if it was already
1142 * enabled. This is so we reprogram the control
1143 * registers.
1144 */
1145 if (old_state == C_ENABLE) {
1146 sa1100fb_disable_controller(fbi);
1147 sa1100fb_setup_gpio(fbi);
1148 sa1100fb_enable_controller(fbi);
1149 }
1150 break;
1151
1152 case C_ENABLE_PM:
1153 /*
1154 * Re-enable the controller after PM. This is not
1155 * perfect - think about the case where we were doing
1156 * a clock change, and we suspended half-way through.
1157 */
1158 if (old_state != C_DISABLE_PM)
1159 break;
1160 /* fall through */
1161
1162 case C_ENABLE:
1163 /*
1164 * Power up the LCD screen, enable controller, and
1165 * turn on the backlight.
1166 */
1167 if (old_state != C_ENABLE) {
1168 fbi->state = C_ENABLE;
1169 sa1100fb_setup_gpio(fbi);
1170 __sa1100fb_lcd_power(fbi, 1);
1171 sa1100fb_enable_controller(fbi);
1172 __sa1100fb_backlight_power(fbi, 1);
1173 }
1174 break;
1175 }
7951ac91 1176 mutex_unlock(&fbi->ctrlr_lock);
1da177e4
LT
1177}
1178
1179/*
1180 * Our LCD controller task (which is called when we blank or unblank)
1181 * via keventd.
1182 */
2343217f 1183static void sa1100fb_task(struct work_struct *w)
1da177e4 1184{
2343217f 1185 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
1da177e4
LT
1186 u_int state = xchg(&fbi->task_state, -1);
1187
1188 set_ctrlr_state(fbi, state);
1189}
1190
1191#ifdef CONFIG_CPU_FREQ
1192/*
1193 * Calculate the minimum DMA period over all displays that we own.
1194 * This, together with the SDRAM bandwidth defines the slowest CPU
1195 * frequency that can be selected.
1196 */
1197static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
1198{
1199#if 0
1200 unsigned int min_period = (unsigned int)-1;
1201 int i;
1202
1203 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1204 struct display *disp = &fb_display[i];
1205 unsigned int period;
1206
1207 /*
1208 * Do we own this display?
1209 */
1210 if (disp->fb_info != &fbi->fb)
1211 continue;
1212
1213 /*
1214 * Ok, calculate its DMA period
1215 */
1216 period = sa1100fb_display_dma_period(&disp->var);
1217 if (period < min_period)
1218 min_period = period;
1219 }
1220
1221 return min_period;
1222#else
1223 /*
1224 * FIXME: we need to verify _all_ consoles.
1225 */
1226 return sa1100fb_display_dma_period(&fbi->fb.var);
1227#endif
1228}
1229
1230/*
1231 * CPU clock speed change handler. We need to adjust the LCD timing
1232 * parameters when the CPU clock is adjusted by the power management
1233 * subsystem.
1234 */
1235static int
1236sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1237 void *data)
1238{
1239 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1240 struct cpufreq_freqs *f = data;
1241 u_int pcd;
1242
1243 switch (val) {
1244 case CPUFREQ_PRECHANGE:
1245 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1246 break;
1247
1248 case CPUFREQ_POSTCHANGE:
1249 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1250 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1251 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1252 break;
1253 }
1254 return 0;
1255}
1256
1257static int
1258sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1259 void *data)
1260{
1261 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1262 struct cpufreq_policy *policy = data;
1263
1264 switch (val) {
1265 case CPUFREQ_ADJUST:
1266 case CPUFREQ_INCOMPATIBLE:
1267 printk(KERN_DEBUG "min dma period: %d ps, "
1268 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1269 policy->max);
1270 /* todo: fill in min/max values */
1271 break;
1272 case CPUFREQ_NOTIFY:
1273 do {} while(0);
1274 /* todo: panic if min/max values aren't fulfilled
1275 * [can't really happen unless there's a bug in the
1276 * CPU policy verififcation process *
1277 */
1278 break;
1279 }
1280 return 0;
1281}
1282#endif
1283
1284#ifdef CONFIG_PM
1285/*
1286 * Power management hooks. Note that we won't be called from IRQ context,
1287 * unlike the blank functions above, so we may sleep.
1288 */
3ae5eaec 1289static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1da177e4 1290{
3ae5eaec 1291 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1da177e4 1292
9480e307 1293 set_ctrlr_state(fbi, C_DISABLE_PM);
1da177e4
LT
1294 return 0;
1295}
1296
3ae5eaec 1297static int sa1100fb_resume(struct platform_device *dev)
1da177e4 1298{
3ae5eaec 1299 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1da177e4 1300
9480e307 1301 set_ctrlr_state(fbi, C_ENABLE_PM);
1da177e4
LT
1302 return 0;
1303}
1304#else
1305#define sa1100fb_suspend NULL
1306#define sa1100fb_resume NULL
1307#endif
1308
1309/*
1310 * sa1100fb_map_video_memory():
1311 * Allocates the DRAM memory for the frame buffer. This buffer is
1312 * remapped into a non-cached, non-buffered, memory region to
1313 * allow palette and pixel writes to occur without flushing the
1314 * cache. Once this area is remapped, all virtual memory
1315 * access to the video memory should occur at the new region.
1316 */
1317static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1318{
1319 /*
1320 * We reserve one page for the palette, plus the size
1321 * of the framebuffer.
1322 */
1323 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1324 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1325 &fbi->map_dma, GFP_KERNEL);
1326
1327 if (fbi->map_cpu) {
1328 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1329 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1330 /*
1331 * FIXME: this is actually the wrong thing to place in
1332 * smem_start. But fbdev suffers from the problem that
1333 * it needs an API which doesn't exist (in this case,
1334 * dma_writecombine_mmap)
1335 */
1336 fbi->fb.fix.smem_start = fbi->screen_dma;
1337 }
1338
1339 return fbi->map_cpu ? 0 : -ENOMEM;
1340}
1341
1342/* Fake monspecs to fill in fbinfo structure */
1343static struct fb_monspecs monspecs __initdata = {
1344 .hfmin = 30000,
1345 .hfmax = 70000,
1346 .vfmin = 50,
1347 .vfmax = 65,
1348};
1349
1350
1351static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev)
1352{
1353 struct sa1100fb_mach_info *inf;
1354 struct sa1100fb_info *fbi;
1355
1356 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1357 GFP_KERNEL);
1358 if (!fbi)
1359 return NULL;
1360
1361 memset(fbi, 0, sizeof(struct sa1100fb_info));
1362 fbi->dev = dev;
1363
1364 strcpy(fbi->fb.fix.id, SA1100_NAME);
1365
1366 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1367 fbi->fb.fix.type_aux = 0;
1368 fbi->fb.fix.xpanstep = 0;
1369 fbi->fb.fix.ypanstep = 0;
1370 fbi->fb.fix.ywrapstep = 0;
1371 fbi->fb.fix.accel = FB_ACCEL_NONE;
1372
1373 fbi->fb.var.nonstd = 0;
1374 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1375 fbi->fb.var.height = -1;
1376 fbi->fb.var.width = -1;
1377 fbi->fb.var.accel_flags = 0;
1378 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1379
1380 fbi->fb.fbops = &sa1100fb_ops;
1381 fbi->fb.flags = FBINFO_DEFAULT;
1382 fbi->fb.monspecs = monspecs;
1383 fbi->fb.pseudo_palette = (fbi + 1);
1384
1385 fbi->rgb[RGB_8] = &rgb_8;
1386 fbi->rgb[RGB_16] = &def_rgb_16;
1387
1388 inf = sa1100fb_get_machine_info(fbi);
1389
1390 /*
1391 * People just don't seem to get this. We don't support
1392 * anything but correct entries now, so panic if someone
1393 * does something stupid.
1394 */
1395 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1396 inf->pixclock == 0)
1397 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1398 "pixclock.");
1399
1400 fbi->max_xres = inf->xres;
1401 fbi->fb.var.xres = inf->xres;
1402 fbi->fb.var.xres_virtual = inf->xres;
1403 fbi->max_yres = inf->yres;
1404 fbi->fb.var.yres = inf->yres;
1405 fbi->fb.var.yres_virtual = inf->yres;
1406 fbi->max_bpp = inf->bpp;
1407 fbi->fb.var.bits_per_pixel = inf->bpp;
1408 fbi->fb.var.pixclock = inf->pixclock;
1409 fbi->fb.var.hsync_len = inf->hsync_len;
1410 fbi->fb.var.left_margin = inf->left_margin;
1411 fbi->fb.var.right_margin = inf->right_margin;
1412 fbi->fb.var.vsync_len = inf->vsync_len;
1413 fbi->fb.var.upper_margin = inf->upper_margin;
1414 fbi->fb.var.lower_margin = inf->lower_margin;
1415 fbi->fb.var.sync = inf->sync;
1416 fbi->fb.var.grayscale = inf->cmap_greyscale;
1417 fbi->cmap_inverse = inf->cmap_inverse;
1418 fbi->cmap_static = inf->cmap_static;
1419 fbi->lccr0 = inf->lccr0;
1420 fbi->lccr3 = inf->lccr3;
1421 fbi->state = C_STARTUP;
1422 fbi->task_state = (u_char)-1;
1423 fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
1424 fbi->max_bpp / 8;
1425
1426 init_waitqueue_head(&fbi->ctrlr_wait);
2343217f 1427 INIT_WORK(&fbi->task, sa1100fb_task);
7951ac91 1428 mutex_init(&fbi->ctrlr_lock);
1da177e4
LT
1429
1430 return fbi;
1431}
1432
3ae5eaec 1433static int __init sa1100fb_probe(struct platform_device *pdev)
1da177e4
LT
1434{
1435 struct sa1100fb_info *fbi;
e9368f82
RK
1436 int ret, irq;
1437
1438 irq = platform_get_irq(pdev, 0);
48944738 1439 if (irq < 0)
e9368f82 1440 return -EINVAL;
1da177e4
LT
1441
1442 if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1443 return -EBUSY;
1444
3ae5eaec 1445 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1da177e4
LT
1446 ret = -ENOMEM;
1447 if (!fbi)
1448 goto failed;
1449
1450 /* Initialize video memory */
1451 ret = sa1100fb_map_video_memory(fbi);
1452 if (ret)
1453 goto failed;
1454
63a43399 1455 ret = request_irq(irq, sa1100fb_handle_irq, IRQF_DISABLED,
1da177e4
LT
1456 "LCD", fbi);
1457 if (ret) {
1458 printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret);
1459 goto failed;
1460 }
1461
1462#ifdef ASSABET_PAL_VIDEO
1463 if (machine_is_assabet())
1464 ASSABET_BCR_clear(ASSABET_BCR_LCD_ON);
1465#endif
1466
1467 /*
1468 * This makes sure that our colour bitfield
1469 * descriptors are correctly initialised.
1470 */
1471 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1472
3ae5eaec 1473 platform_set_drvdata(pdev, fbi);
1da177e4
LT
1474
1475 ret = register_framebuffer(&fbi->fb);
1476 if (ret < 0)
e9368f82 1477 goto err_free_irq;
1da177e4
LT
1478
1479#ifdef CONFIG_CPU_FREQ
1480 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1481 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1482 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1483 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1484#endif
1485
1486 /* This driver cannot be unloaded at the moment */
1487 return 0;
1488
e9368f82
RK
1489 err_free_irq:
1490 free_irq(irq, fbi);
1491 failed:
3ae5eaec 1492 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1493 kfree(fbi);
1494 release_mem_region(0xb0100000, 0x10000);
1495 return ret;
1496}
1497
3ae5eaec 1498static struct platform_driver sa1100fb_driver = {
1da177e4
LT
1499 .probe = sa1100fb_probe,
1500 .suspend = sa1100fb_suspend,
1501 .resume = sa1100fb_resume,
3ae5eaec
RK
1502 .driver = {
1503 .name = "sa11x0-fb",
1504 },
1da177e4
LT
1505};
1506
1507int __init sa1100fb_init(void)
1508{
1509 if (fb_get_options("sa1100fb", NULL))
1510 return -ENODEV;
1511
3ae5eaec 1512 return platform_driver_register(&sa1100fb_driver);
1da177e4
LT
1513}
1514
1515int __init sa1100fb_setup(char *options)
1516{
1517#if 0
1518 char *this_opt;
1519
1520 if (!options || !*options)
1521 return 0;
1522
1523 while ((this_opt = strsep(&options, ",")) != NULL) {
1524
1525 if (!strncmp(this_opt, "bpp:", 4))
1526 current_par.max_bpp =
1527 simple_strtoul(this_opt + 4, NULL, 0);
1528
1529 if (!strncmp(this_opt, "lccr0:", 6))
1530 lcd_shadow.lccr0 =
1531 simple_strtoul(this_opt + 6, NULL, 0);
1532 if (!strncmp(this_opt, "lccr1:", 6)) {
1533 lcd_shadow.lccr1 =
1534 simple_strtoul(this_opt + 6, NULL, 0);
1535 current_par.max_xres =
1536 (lcd_shadow.lccr1 & 0x3ff) + 16;
1537 }
1538 if (!strncmp(this_opt, "lccr2:", 6)) {
1539 lcd_shadow.lccr2 =
1540 simple_strtoul(this_opt + 6, NULL, 0);
1541 current_par.max_yres =
1542 (lcd_shadow.
1543 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1544 lccr2 & 0x3ff) +
1545 1) *
1546 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1547 }
1548 if (!strncmp(this_opt, "lccr3:", 6))
1549 lcd_shadow.lccr3 =
1550 simple_strtoul(this_opt + 6, NULL, 0);
1551 }
1552#endif
1553 return 0;
1554}
1555
1556module_init(sa1100fb_init);
1557MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1558MODULE_LICENSE("GPL");