]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/usb/gadget/s3c-hsotg.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
5b7d70c6
BD
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
5b7d70c6
BD
26
27#include <linux/usb/ch9.h>
28#include <linux/usb/gadget.h>
29
30#include <mach/map.h>
31
32#include <plat/regs-usb-hsotg-phy.h>
33#include <plat/regs-usb-hsotg.h>
f9fed7cd 34#include <mach/regs-sys.h>
5b7d70c6
BD
35#include <plat/udc-hs.h>
36
37#define DMA_ADDR_INVALID (~((dma_addr_t)0))
38
39/* EP0_MPS_LIMIT
40 *
41 * Unfortunately there seems to be a limit of the amount of data that can
42 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
43 * packets (which practially means 1 packet and 63 bytes of data) when the
44 * MPS is set to 64.
45 *
46 * This means if we are wanting to move >127 bytes of data, we need to
47 * split the transactions up, but just doing one packet at a time does
48 * not work (this may be an implicit DATA0 PID on first packet of the
49 * transaction) and doing 2 packets is outside the controller's limits.
50 *
51 * If we try to lower the MPS size for EP0, then no transfers work properly
52 * for EP0, and the system will fail basic enumeration. As no cause for this
53 * has currently been found, we cannot support any large IN transfers for
54 * EP0.
55 */
56#define EP0_MPS_LIMIT 64
57
58struct s3c_hsotg;
59struct s3c_hsotg_req;
60
61/**
62 * struct s3c_hsotg_ep - driver endpoint definition.
63 * @ep: The gadget layer representation of the endpoint.
64 * @name: The driver generated name for the endpoint.
65 * @queue: Queue of requests for this endpoint.
66 * @parent: Reference back to the parent device structure.
67 * @req: The current request that the endpoint is processing. This is
68 * used to indicate an request has been loaded onto the endpoint
69 * and has yet to be completed (maybe due to data move, or simply
70 * awaiting an ack from the core all the data has been completed).
71 * @debugfs: File entry for debugfs file for this endpoint.
72 * @lock: State lock to protect contents of endpoint.
73 * @dir_in: Set to true if this endpoint is of the IN direction, which
74 * means that it is sending data to the Host.
75 * @index: The index for the endpoint registers.
76 * @name: The name array passed to the USB core.
77 * @halted: Set if the endpoint has been halted.
78 * @periodic: Set if this is a periodic ep, such as Interrupt
79 * @sent_zlp: Set if we've sent a zero-length packet.
80 * @total_data: The total number of data bytes done.
81 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
82 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
83 * @last_load: The offset of data for the last start of request.
84 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
85 *
86 * This is the driver's state for each registered enpoint, allowing it
87 * to keep track of transactions that need doing. Each endpoint has a
88 * lock to protect the state, to try and avoid using an overall lock
89 * for the host controller as much as possible.
90 *
91 * For periodic IN endpoints, we have fifo_size and fifo_load to try
92 * and keep track of the amount of data in the periodic FIFO for each
93 * of these as we don't have a status register that tells us how much
94 * is in each of them.
95 */
96struct s3c_hsotg_ep {
97 struct usb_ep ep;
98 struct list_head queue;
99 struct s3c_hsotg *parent;
100 struct s3c_hsotg_req *req;
101 struct dentry *debugfs;
102
103 spinlock_t lock;
104
105 unsigned long total_data;
106 unsigned int size_loaded;
107 unsigned int last_load;
108 unsigned int fifo_load;
109 unsigned short fifo_size;
110
111 unsigned char dir_in;
112 unsigned char index;
113
114 unsigned int halted:1;
115 unsigned int periodic:1;
116 unsigned int sent_zlp:1;
117
118 char name[10];
119};
120
121#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
122
123/**
124 * struct s3c_hsotg - driver state.
125 * @dev: The parent device supplied to the probe function
126 * @driver: USB gadget driver
127 * @plat: The platform specific configuration data.
128 * @regs: The memory area mapped for accessing registers.
129 * @regs_res: The resource that was allocated when claiming register space.
130 * @irq: The IRQ number we are using
131 * @debug_root: root directrory for debugfs.
132 * @debug_file: main status file for debugfs.
133 * @debug_fifo: FIFO status file for debugfs.
134 * @ep0_reply: Request used for ep0 reply.
135 * @ep0_buff: Buffer for EP0 reply data, if needed.
136 * @ctrl_buff: Buffer for EP0 control requests.
137 * @ctrl_req: Request for EP0 control packets.
138 * @eps: The endpoints being supplied to the gadget framework
139 */
140struct s3c_hsotg {
141 struct device *dev;
142 struct usb_gadget_driver *driver;
143 struct s3c_hsotg_plat *plat;
144
145 void __iomem *regs;
146 struct resource *regs_res;
147 int irq;
148
149 struct dentry *debug_root;
150 struct dentry *debug_file;
151 struct dentry *debug_fifo;
152
153 struct usb_request *ep0_reply;
154 struct usb_request *ctrl_req;
155 u8 ep0_buff[8];
156 u8 ctrl_buff[8];
157
158 struct usb_gadget gadget;
159 struct s3c_hsotg_ep eps[];
160};
161
162/**
163 * struct s3c_hsotg_req - data transfer request
164 * @req: The USB gadget request
165 * @queue: The list of requests for the endpoint this is queued for.
166 * @in_progress: Has already had size/packets written to core
167 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
168 */
169struct s3c_hsotg_req {
170 struct usb_request req;
171 struct list_head queue;
172 unsigned char in_progress;
173 unsigned char mapped;
174};
175
176/* conversion functions */
177static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
178{
179 return container_of(req, struct s3c_hsotg_req, req);
180}
181
182static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
183{
184 return container_of(ep, struct s3c_hsotg_ep, ep);
185}
186
187static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
188{
189 return container_of(gadget, struct s3c_hsotg, gadget);
190}
191
192static inline void __orr32(void __iomem *ptr, u32 val)
193{
194 writel(readl(ptr) | val, ptr);
195}
196
197static inline void __bic32(void __iomem *ptr, u32 val)
198{
199 writel(readl(ptr) & ~val, ptr);
200}
201
202/* forward decleration of functions */
203static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
204
205/**
206 * using_dma - return the DMA status of the driver.
207 * @hsotg: The driver state.
208 *
209 * Return true if we're using DMA.
210 *
211 * Currently, we have the DMA support code worked into everywhere
212 * that needs it, but the AMBA DMA implementation in the hardware can
213 * only DMA from 32bit aligned addresses. This means that gadgets such
214 * as the CDC Ethernet cannot work as they often pass packets which are
215 * not 32bit aligned.
216 *
217 * Unfortunately the choice to use DMA or not is global to the controller
218 * and seems to be only settable when the controller is being put through
219 * a core reset. This means we either need to fix the gadgets to take
220 * account of DMA alignment, or add bounce buffers (yuerk).
221 *
222 * Until this issue is sorted out, we always return 'false'.
223 */
224static inline bool using_dma(struct s3c_hsotg *hsotg)
225{
226 return false; /* support is not complete */
227}
228
229/**
230 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
231 * @hsotg: The device state
232 * @ints: A bitmask of the interrupts to enable
233 */
234static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
235{
236 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
237 u32 new_gsintmsk;
238
239 new_gsintmsk = gsintmsk | ints;
240
241 if (new_gsintmsk != gsintmsk) {
242 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
243 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
244 }
245}
246
247/**
248 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
249 * @hsotg: The device state
250 * @ints: A bitmask of the interrupts to enable
251 */
252static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
253{
254 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
255 u32 new_gsintmsk;
256
257 new_gsintmsk = gsintmsk & ~ints;
258
259 if (new_gsintmsk != gsintmsk)
260 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
261}
262
263/**
264 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
265 * @hsotg: The device state
266 * @ep: The endpoint index
267 * @dir_in: True if direction is in.
268 * @en: The enable value, true to enable
269 *
270 * Set or clear the mask for an individual endpoint's interrupt
271 * request.
272 */
273static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
274 unsigned int ep, unsigned int dir_in,
275 unsigned int en)
276{
277 unsigned long flags;
278 u32 bit = 1 << ep;
279 u32 daint;
280
281 if (!dir_in)
282 bit <<= 16;
283
284 local_irq_save(flags);
285 daint = readl(hsotg->regs + S3C_DAINTMSK);
286 if (en)
287 daint |= bit;
288 else
289 daint &= ~bit;
290 writel(daint, hsotg->regs + S3C_DAINTMSK);
291 local_irq_restore(flags);
292}
293
294/**
295 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
296 * @hsotg: The device instance.
297 */
298static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
299{
300 /* the ryu 2.6.24 release ahs
301 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
302 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
303 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
304 hsotg->regs + S3C_GNPTXFSIZ);
305 */
306
307 /* set FIFO sizes to 2048/0x1C0 */
308
309 writel(2048, hsotg->regs + S3C_GRXFSIZ);
310 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
311 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
312 hsotg->regs + S3C_GNPTXFSIZ);
313}
314
315/**
316 * @ep: USB endpoint to allocate request for.
317 * @flags: Allocation flags
318 *
319 * Allocate a new USB request structure appropriate for the specified endpoint
320 */
0978f8c5
MB
321static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
322 gfp_t flags)
5b7d70c6
BD
323{
324 struct s3c_hsotg_req *req;
325
326 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
327 if (!req)
328 return NULL;
329
330 INIT_LIST_HEAD(&req->queue);
331
332 req->req.dma = DMA_ADDR_INVALID;
333 return &req->req;
334}
335
336/**
337 * is_ep_periodic - return true if the endpoint is in periodic mode.
338 * @hs_ep: The endpoint to query.
339 *
340 * Returns true if the endpoint is in periodic mode, meaning it is being
341 * used for an Interrupt or ISO transfer.
342 */
343static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
344{
345 return hs_ep->periodic;
346}
347
348/**
349 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
350 * @hsotg: The device state.
351 * @hs_ep: The endpoint for the request
352 * @hs_req: The request being processed.
353 *
354 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
355 * of a request to ensure the buffer is ready for access by the caller.
356*/
357static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
358 struct s3c_hsotg_ep *hs_ep,
359 struct s3c_hsotg_req *hs_req)
360{
361 struct usb_request *req = &hs_req->req;
362 enum dma_data_direction dir;
363
364 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
365
366 /* ignore this if we're not moving any data */
367 if (hs_req->req.length == 0)
368 return;
369
370 if (hs_req->mapped) {
371 /* we mapped this, so unmap and remove the dma */
372
373 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
374
375 req->dma = DMA_ADDR_INVALID;
376 hs_req->mapped = 0;
377 } else {
5b520259 378 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
379 }
380}
381
382/**
383 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
384 * @hsotg: The controller state.
385 * @hs_ep: The endpoint we're going to write for.
386 * @hs_req: The request to write data for.
387 *
388 * This is called when the TxFIFO has some space in it to hold a new
389 * transmission and we have something to give it. The actual setup of
390 * the data size is done elsewhere, so all we have to do is to actually
391 * write the data.
392 *
393 * The return value is zero if there is more space (or nothing was done)
394 * otherwise -ENOSPC is returned if the FIFO space was used up.
395 *
396 * This routine is only needed for PIO
397*/
398static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
399 struct s3c_hsotg_ep *hs_ep,
400 struct s3c_hsotg_req *hs_req)
401{
402 bool periodic = is_ep_periodic(hs_ep);
403 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
404 int buf_pos = hs_req->req.actual;
405 int to_write = hs_ep->size_loaded;
406 void *data;
407 int can_write;
408 int pkt_round;
409
410 to_write -= (buf_pos - hs_ep->last_load);
411
412 /* if there's nothing to write, get out early */
413 if (to_write == 0)
414 return 0;
415
416 if (periodic) {
417 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
418 int size_left;
419 int size_done;
420
421 /* work out how much data was loaded so we can calculate
422 * how much data is left in the fifo. */
423
424 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
425
426 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
427 __func__, size_left,
428 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
429
430 /* how much of the data has moved */
431 size_done = hs_ep->size_loaded - size_left;
432
433 /* how much data is left in the fifo */
434 can_write = hs_ep->fifo_load - size_done;
435 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
436 __func__, can_write);
437
438 can_write = hs_ep->fifo_size - can_write;
439 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
440 __func__, can_write);
441
442 if (can_write <= 0) {
443 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
444 return -ENOSPC;
445 }
446 } else {
447 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
448 dev_dbg(hsotg->dev,
449 "%s: no queue slots available (0x%08x)\n",
450 __func__, gnptxsts);
451
452 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
453 return -ENOSPC;
454 }
455
456 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
457 }
458
459 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
460 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
461
462 /* limit to 512 bytes of data, it seems at least on the non-periodic
463 * FIFO, requests of >512 cause the endpoint to get stuck with a
464 * fragment of the end of the transfer in it.
465 */
466 if (can_write > 512)
467 can_write = 512;
468
469 /* see if we can write data */
470
471 if (to_write > can_write) {
472 to_write = can_write;
473 pkt_round = to_write % hs_ep->ep.maxpacket;
474
475 /* Not sure, but we probably shouldn't be writing partial
476 * packets into the FIFO, so round the write down to an
477 * exact number of packets.
478 *
479 * Note, we do not currently check to see if we can ever
480 * write a full packet or not to the FIFO.
481 */
482
483 if (pkt_round)
484 to_write -= pkt_round;
485
486 /* enable correct FIFO interrupt to alert us when there
487 * is more room left. */
488
489 s3c_hsotg_en_gsint(hsotg,
490 periodic ? S3C_GINTSTS_PTxFEmp :
491 S3C_GINTSTS_NPTxFEmp);
492 }
493
494 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
495 to_write, hs_req->req.length, can_write, buf_pos);
496
497 if (to_write <= 0)
498 return -ENOSPC;
499
500 hs_req->req.actual = buf_pos + to_write;
501 hs_ep->total_data += to_write;
502
503 if (periodic)
504 hs_ep->fifo_load += to_write;
505
506 to_write = DIV_ROUND_UP(to_write, 4);
507 data = hs_req->req.buf + buf_pos;
508
509 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
510
511 return (to_write >= can_write) ? -ENOSPC : 0;
512}
513
514/**
515 * get_ep_limit - get the maximum data legnth for this endpoint
516 * @hs_ep: The endpoint
517 *
518 * Return the maximum data that can be queued in one go on a given endpoint
519 * so that transfers that are too long can be split.
520 */
521static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
522{
523 int index = hs_ep->index;
524 unsigned maxsize;
525 unsigned maxpkt;
526
527 if (index != 0) {
528 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
529 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
530 } else {
531 if (hs_ep->dir_in) {
532 /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
533 maxsize = 64+64+1;
534 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
535 } else {
536 maxsize = 0x3f;
537 maxpkt = 2;
538 }
539 }
540
541 /* we made the constant loading easier above by using +1 */
542 maxpkt--;
543 maxsize--;
544
545 /* constrain by packet count if maxpkts*pktsize is greater
546 * than the length register size. */
547
548 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
549 maxsize = maxpkt * hs_ep->ep.maxpacket;
550
551 return maxsize;
552}
553
554/**
555 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
556 * @hsotg: The controller state.
557 * @hs_ep: The endpoint to process a request for
558 * @hs_req: The request to start.
559 * @continuing: True if we are doing more for the current request.
560 *
561 * Start the given request running by setting the endpoint registers
562 * appropriately, and writing any data to the FIFOs.
563 */
564static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
565 struct s3c_hsotg_ep *hs_ep,
566 struct s3c_hsotg_req *hs_req,
567 bool continuing)
568{
569 struct usb_request *ureq = &hs_req->req;
570 int index = hs_ep->index;
571 int dir_in = hs_ep->dir_in;
572 u32 epctrl_reg;
573 u32 epsize_reg;
574 u32 epsize;
575 u32 ctrl;
576 unsigned length;
577 unsigned packets;
578 unsigned maxreq;
579
580 if (index != 0) {
581 if (hs_ep->req && !continuing) {
582 dev_err(hsotg->dev, "%s: active request\n", __func__);
583 WARN_ON(1);
584 return;
585 } else if (hs_ep->req != hs_req && continuing) {
586 dev_err(hsotg->dev,
587 "%s: continue different req\n", __func__);
588 WARN_ON(1);
589 return;
590 }
591 }
592
593 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
594 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
595
596 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
597 __func__, readl(hsotg->regs + epctrl_reg), index,
598 hs_ep->dir_in ? "in" : "out");
599
600 length = ureq->length - ureq->actual;
601
602 if (0)
603 dev_dbg(hsotg->dev,
604 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
605 ureq->buf, length, ureq->dma,
606 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
607
608 maxreq = get_ep_limit(hs_ep);
609 if (length > maxreq) {
610 int round = maxreq % hs_ep->ep.maxpacket;
611
612 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
613 __func__, length, maxreq, round);
614
615 /* round down to multiple of packets */
616 if (round)
617 maxreq -= round;
618
619 length = maxreq;
620 }
621
622 if (length)
623 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
624 else
625 packets = 1; /* send one packet if length is zero. */
626
627 if (dir_in && index != 0)
628 epsize = S3C_DxEPTSIZ_MC(1);
629 else
630 epsize = 0;
631
632 if (index != 0 && ureq->zero) {
633 /* test for the packets being exactly right for the
634 * transfer */
635
636 if (length == (packets * hs_ep->ep.maxpacket))
637 packets++;
638 }
639
640 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
641 epsize |= S3C_DxEPTSIZ_XferSize(length);
642
643 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
644 __func__, packets, length, ureq->length, epsize, epsize_reg);
645
646 /* store the request as the current one we're doing */
647 hs_ep->req = hs_req;
648
649 /* write size / packets */
650 writel(epsize, hsotg->regs + epsize_reg);
651
652 ctrl = readl(hsotg->regs + epctrl_reg);
653
654 if (ctrl & S3C_DxEPCTL_Stall) {
655 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
656
657 /* not sure what we can do here, if it is EP0 then we should
658 * get this cleared once the endpoint has transmitted the
659 * STALL packet, otherwise it needs to be cleared by the
660 * host.
661 */
662 }
663
664 if (using_dma(hsotg)) {
665 unsigned int dma_reg;
666
667 /* write DMA address to control register, buffer already
668 * synced by s3c_hsotg_ep_queue(). */
669
670 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
671 writel(ureq->dma, hsotg->regs + dma_reg);
672
673 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
674 __func__, ureq->dma, dma_reg);
675 }
676
677 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
678 ctrl |= S3C_DxEPCTL_USBActEp;
679 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
680
681 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
682 writel(ctrl, hsotg->regs + epctrl_reg);
683
684 /* set these, it seems that DMA support increments past the end
685 * of the packet buffer so we need to calculate the length from
686 * this information. */
687 hs_ep->size_loaded = length;
688 hs_ep->last_load = ureq->actual;
689
690 if (dir_in && !using_dma(hsotg)) {
691 /* set these anyway, we may need them for non-periodic in */
692 hs_ep->fifo_load = 0;
693
694 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
695 }
696
697 /* clear the INTknTXFEmpMsk when we start request, more as a aide
698 * to debugging to see what is going on. */
699 if (dir_in)
700 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
701 hsotg->regs + S3C_DIEPINT(index));
702
703 /* Note, trying to clear the NAK here causes problems with transmit
704 * on the S3C6400 ending up with the TXFIFO becomming full. */
705
706 /* check ep is enabled */
707 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
708 dev_warn(hsotg->dev,
709 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
710 index, readl(hsotg->regs + epctrl_reg));
711
712 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
713 __func__, readl(hsotg->regs + epctrl_reg));
714}
715
716/**
717 * s3c_hsotg_map_dma - map the DMA memory being used for the request
718 * @hsotg: The device state.
719 * @hs_ep: The endpoint the request is on.
720 * @req: The request being processed.
721 *
722 * We've been asked to queue a request, so ensure that the memory buffer
723 * is correctly setup for DMA. If we've been passed an extant DMA address
724 * then ensure the buffer has been synced to memory. If our buffer has no
725 * DMA memory, then we map the memory and mark our request to allow us to
726 * cleanup on completion.
727*/
728static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
729 struct s3c_hsotg_ep *hs_ep,
730 struct usb_request *req)
731{
732 enum dma_data_direction dir;
733 struct s3c_hsotg_req *hs_req = our_req(req);
734
735 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
736
737 /* if the length is zero, ignore the DMA data */
738 if (hs_req->req.length == 0)
739 return 0;
740
741 if (req->dma == DMA_ADDR_INVALID) {
742 dma_addr_t dma;
743
744 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
745
746 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
747 goto dma_error;
748
749 if (dma & 3) {
750 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
751 __func__);
752
753 dma_unmap_single(hsotg->dev, dma, req->length, dir);
754 return -EINVAL;
755 }
756
757 hs_req->mapped = 1;
758 req->dma = dma;
759 } else {
5b520259 760 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
761 hs_req->mapped = 0;
762 }
763
764 return 0;
765
766dma_error:
767 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
768 __func__, req->buf, req->length);
769
770 return -EIO;
771}
772
773static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
774 gfp_t gfp_flags)
775{
776 struct s3c_hsotg_req *hs_req = our_req(req);
777 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
778 struct s3c_hsotg *hs = hs_ep->parent;
779 unsigned long irqflags;
780 bool first;
781
782 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
783 ep->name, req, req->length, req->buf, req->no_interrupt,
784 req->zero, req->short_not_ok);
785
786 /* initialise status of the request */
787 INIT_LIST_HEAD(&hs_req->queue);
788 req->actual = 0;
789 req->status = -EINPROGRESS;
790
791 /* if we're using DMA, sync the buffers as necessary */
792 if (using_dma(hs)) {
793 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
794 if (ret)
795 return ret;
796 }
797
798 spin_lock_irqsave(&hs_ep->lock, irqflags);
799
800 first = list_empty(&hs_ep->queue);
801 list_add_tail(&hs_req->queue, &hs_ep->queue);
802
803 if (first)
804 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
805
806 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
807
808 return 0;
809}
810
811static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
812 struct usb_request *req)
813{
814 struct s3c_hsotg_req *hs_req = our_req(req);
815
816 kfree(hs_req);
817}
818
819/**
820 * s3c_hsotg_complete_oursetup - setup completion callback
821 * @ep: The endpoint the request was on.
822 * @req: The request completed.
823 *
824 * Called on completion of any requests the driver itself
825 * submitted that need cleaning up.
826 */
827static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
828 struct usb_request *req)
829{
830 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
831 struct s3c_hsotg *hsotg = hs_ep->parent;
832
833 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
834
835 s3c_hsotg_ep_free_request(ep, req);
836}
837
838/**
839 * ep_from_windex - convert control wIndex value to endpoint
840 * @hsotg: The driver state.
841 * @windex: The control request wIndex field (in host order).
842 *
843 * Convert the given wIndex into a pointer to an driver endpoint
844 * structure, or return NULL if it is not a valid endpoint.
845*/
846static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
847 u32 windex)
848{
849 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
850 int dir = (windex & USB_DIR_IN) ? 1 : 0;
851 int idx = windex & 0x7F;
852
853 if (windex >= 0x100)
854 return NULL;
855
856 if (idx > S3C_HSOTG_EPS)
857 return NULL;
858
859 if (idx && ep->dir_in != dir)
860 return NULL;
861
862 return ep;
863}
864
865/**
866 * s3c_hsotg_send_reply - send reply to control request
867 * @hsotg: The device state
868 * @ep: Endpoint 0
869 * @buff: Buffer for request
870 * @length: Length of reply.
871 *
872 * Create a request and queue it on the given endpoint. This is useful as
873 * an internal method of sending replies to certain control requests, etc.
874 */
875static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
876 struct s3c_hsotg_ep *ep,
877 void *buff,
878 int length)
879{
880 struct usb_request *req;
881 int ret;
882
883 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
884
885 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
886 hsotg->ep0_reply = req;
887 if (!req) {
888 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
889 return -ENOMEM;
890 }
891
892 req->buf = hsotg->ep0_buff;
893 req->length = length;
894 req->zero = 1; /* always do zero-length final transfer */
895 req->complete = s3c_hsotg_complete_oursetup;
896
897 if (length)
898 memcpy(req->buf, buff, length);
899 else
900 ep->sent_zlp = 1;
901
902 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
903 if (ret) {
904 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
905 return ret;
906 }
907
908 return 0;
909}
910
911/**
912 * s3c_hsotg_process_req_status - process request GET_STATUS
913 * @hsotg: The device state
914 * @ctrl: USB control request
915 */
916static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
917 struct usb_ctrlrequest *ctrl)
918{
919 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
920 struct s3c_hsotg_ep *ep;
921 __le16 reply;
922 int ret;
923
924 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
925
926 if (!ep0->dir_in) {
927 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
928 return -EINVAL;
929 }
930
931 switch (ctrl->bRequestType & USB_RECIP_MASK) {
932 case USB_RECIP_DEVICE:
933 reply = cpu_to_le16(0); /* bit 0 => self powered,
934 * bit 1 => remote wakeup */
935 break;
936
937 case USB_RECIP_INTERFACE:
938 /* currently, the data result should be zero */
939 reply = cpu_to_le16(0);
940 break;
941
942 case USB_RECIP_ENDPOINT:
943 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
944 if (!ep)
945 return -ENOENT;
946
947 reply = cpu_to_le16(ep->halted ? 1 : 0);
948 break;
949
950 default:
951 return 0;
952 }
953
954 if (le16_to_cpu(ctrl->wLength) != 2)
955 return -EINVAL;
956
957 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
958 if (ret) {
959 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
960 return ret;
961 }
962
963 return 1;
964}
965
966static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
967
968/**
969 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
970 * @hsotg: The device state
971 * @ctrl: USB control request
972 */
973static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
974 struct usb_ctrlrequest *ctrl)
975{
976 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
977 struct s3c_hsotg_ep *ep;
978
979 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
980 __func__, set ? "SET" : "CLEAR");
981
982 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
983 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
984 if (!ep) {
985 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
986 __func__, le16_to_cpu(ctrl->wIndex));
987 return -ENOENT;
988 }
989
990 switch (le16_to_cpu(ctrl->wValue)) {
991 case USB_ENDPOINT_HALT:
992 s3c_hsotg_ep_sethalt(&ep->ep, set);
993 break;
994
995 default:
996 return -ENOENT;
997 }
998 } else
999 return -ENOENT; /* currently only deal with endpoint */
1000
1001 return 1;
1002}
1003
1004/**
1005 * s3c_hsotg_process_control - process a control request
1006 * @hsotg: The device state
1007 * @ctrl: The control request received
1008 *
1009 * The controller has received the SETUP phase of a control request, and
1010 * needs to work out what to do next (and whether to pass it on to the
1011 * gadget driver).
1012 */
1013static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1014 struct usb_ctrlrequest *ctrl)
1015{
1016 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1017 int ret = 0;
1018 u32 dcfg;
1019
1020 ep0->sent_zlp = 0;
1021
1022 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1023 ctrl->bRequest, ctrl->bRequestType,
1024 ctrl->wValue, ctrl->wLength);
1025
1026 /* record the direction of the request, for later use when enquing
1027 * packets onto EP0. */
1028
1029 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1030 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1031
1032 /* if we've no data with this request, then the last part of the
1033 * transaction is going to implicitly be IN. */
1034 if (ctrl->wLength == 0)
1035 ep0->dir_in = 1;
1036
1037 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1038 switch (ctrl->bRequest) {
1039 case USB_REQ_SET_ADDRESS:
1040 dcfg = readl(hsotg->regs + S3C_DCFG);
1041 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1042 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1043 writel(dcfg, hsotg->regs + S3C_DCFG);
1044
1045 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1046
1047 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1048 return;
1049
1050 case USB_REQ_GET_STATUS:
1051 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1052 break;
1053
1054 case USB_REQ_CLEAR_FEATURE:
1055 case USB_REQ_SET_FEATURE:
1056 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1057 break;
1058 }
1059 }
1060
1061 /* as a fallback, try delivering it to the driver to deal with */
1062
1063 if (ret == 0 && hsotg->driver) {
1064 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1065 if (ret < 0)
1066 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1067 }
1068
1069 if (ret > 0) {
1070 if (!ep0->dir_in) {
1071 /* need to generate zlp in reply or take data */
1072 /* todo - deal with any data we might be sent? */
1073 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074 }
1075 }
1076
1077 /* the request is either unhandlable, or is not formatted correctly
1078 * so respond with a STALL for the status stage to indicate failure.
1079 */
1080
1081 if (ret < 0) {
1082 u32 reg;
1083 u32 ctrl;
1084
1085 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1086 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1087
1088 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1089 * taken effect, so no need to clear later. */
1090
1091 ctrl = readl(hsotg->regs + reg);
1092 ctrl |= S3C_DxEPCTL_Stall;
1093 ctrl |= S3C_DxEPCTL_CNAK;
1094 writel(ctrl, hsotg->regs + reg);
1095
1096 dev_dbg(hsotg->dev,
1097 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1098 ctrl, reg, readl(hsotg->regs + reg));
1099
1100 /* don't belive we need to anything more to get the EP
1101 * to reply with a STALL packet */
1102 }
1103}
1104
1105static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1106
1107/**
1108 * s3c_hsotg_complete_setup - completion of a setup transfer
1109 * @ep: The endpoint the request was on.
1110 * @req: The request completed.
1111 *
1112 * Called on completion of any requests the driver itself submitted for
1113 * EP0 setup packets
1114 */
1115static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1116 struct usb_request *req)
1117{
1118 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1119 struct s3c_hsotg *hsotg = hs_ep->parent;
1120
1121 if (req->status < 0) {
1122 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1123 return;
1124 }
1125
1126 if (req->actual == 0)
1127 s3c_hsotg_enqueue_setup(hsotg);
1128 else
1129 s3c_hsotg_process_control(hsotg, req->buf);
1130}
1131
1132/**
1133 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1134 * @hsotg: The device state.
1135 *
1136 * Enqueue a request on EP0 if necessary to received any SETUP packets
1137 * received from the host.
1138 */
1139static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1140{
1141 struct usb_request *req = hsotg->ctrl_req;
1142 struct s3c_hsotg_req *hs_req = our_req(req);
1143 int ret;
1144
1145 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1146
1147 req->zero = 0;
1148 req->length = 8;
1149 req->buf = hsotg->ctrl_buff;
1150 req->complete = s3c_hsotg_complete_setup;
1151
1152 if (!list_empty(&hs_req->queue)) {
1153 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1154 return;
1155 }
1156
1157 hsotg->eps[0].dir_in = 0;
1158
1159 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1160 if (ret < 0) {
1161 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1162 /* Don't think there's much we can do other than watch the
1163 * driver fail. */
1164 }
1165}
1166
1167/**
1168 * get_ep_head - return the first request on the endpoint
1169 * @hs_ep: The controller endpoint to get
1170 *
1171 * Get the first request on the endpoint.
1172*/
1173static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1174{
1175 if (list_empty(&hs_ep->queue))
1176 return NULL;
1177
1178 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1179}
1180
1181/**
1182 * s3c_hsotg_complete_request - complete a request given to us
1183 * @hsotg: The device state.
1184 * @hs_ep: The endpoint the request was on.
1185 * @hs_req: The request to complete.
1186 * @result: The result code (0 => Ok, otherwise errno)
1187 *
1188 * The given request has finished, so call the necessary completion
1189 * if it has one and then look to see if we can start a new request
1190 * on the endpoint.
1191 *
1192 * Note, expects the ep to already be locked as appropriate.
1193*/
1194static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1195 struct s3c_hsotg_ep *hs_ep,
1196 struct s3c_hsotg_req *hs_req,
1197 int result)
1198{
1199 bool restart;
1200
1201 if (!hs_req) {
1202 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1203 return;
1204 }
1205
1206 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1207 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1208
1209 /* only replace the status if we've not already set an error
1210 * from a previous transaction */
1211
1212 if (hs_req->req.status == -EINPROGRESS)
1213 hs_req->req.status = result;
1214
1215 hs_ep->req = NULL;
1216 list_del_init(&hs_req->queue);
1217
1218 if (using_dma(hsotg))
1219 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1220
1221 /* call the complete request with the locks off, just in case the
1222 * request tries to queue more work for this endpoint. */
1223
1224 if (hs_req->req.complete) {
1225 spin_unlock(&hs_ep->lock);
1226 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1227 spin_lock(&hs_ep->lock);
1228 }
1229
1230 /* Look to see if there is anything else to do. Note, the completion
1231 * of the previous request may have caused a new request to be started
1232 * so be careful when doing this. */
1233
1234 if (!hs_ep->req && result >= 0) {
1235 restart = !list_empty(&hs_ep->queue);
1236 if (restart) {
1237 hs_req = get_ep_head(hs_ep);
1238 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1239 }
1240 }
1241}
1242
1243/**
1244 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1245 * @hsotg: The device state.
1246 * @hs_ep: The endpoint the request was on.
1247 * @hs_req: The request to complete.
1248 * @result: The result code (0 => Ok, otherwise errno)
1249 *
1250 * See s3c_hsotg_complete_request(), but called with the endpoint's
1251 * lock held.
1252*/
1253static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1254 struct s3c_hsotg_ep *hs_ep,
1255 struct s3c_hsotg_req *hs_req,
1256 int result)
1257{
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&hs_ep->lock, flags);
1261 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1262 spin_unlock_irqrestore(&hs_ep->lock, flags);
1263}
1264
1265/**
1266 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1267 * @hsotg: The device state.
1268 * @ep_idx: The endpoint index for the data
1269 * @size: The size of data in the fifo, in bytes
1270 *
1271 * The FIFO status shows there is data to read from the FIFO for a given
1272 * endpoint, so sort out whether we need to read the data into a request
1273 * that has been made for that endpoint.
1274 */
1275static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1276{
1277 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1278 struct s3c_hsotg_req *hs_req = hs_ep->req;
1279 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1280 int to_read;
1281 int max_req;
1282 int read_ptr;
1283
1284 if (!hs_req) {
1285 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1286 int ptr;
1287
1288 dev_warn(hsotg->dev,
1289 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1290 __func__, size, ep_idx, epctl);
1291
1292 /* dump the data from the FIFO, we've nothing we can do */
1293 for (ptr = 0; ptr < size; ptr += 4)
1294 (void)readl(fifo);
1295
1296 return;
1297 }
1298
1299 spin_lock(&hs_ep->lock);
1300
1301 to_read = size;
1302 read_ptr = hs_req->req.actual;
1303 max_req = hs_req->req.length - read_ptr;
1304
1305 if (to_read > max_req) {
1306 /* more data appeared than we where willing
1307 * to deal with in this request.
1308 */
1309
1310 /* currently we don't deal this */
1311 WARN_ON_ONCE(1);
1312 }
1313
1314 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1315 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1316
1317 hs_ep->total_data += to_read;
1318 hs_req->req.actual += to_read;
1319 to_read = DIV_ROUND_UP(to_read, 4);
1320
1321 /* note, we might over-write the buffer end by 3 bytes depending on
1322 * alignment of the data. */
1323 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1324
1325 spin_unlock(&hs_ep->lock);
1326}
1327
1328/**
1329 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1330 * @hsotg: The device instance
1331 * @req: The request currently on this endpoint
1332 *
1333 * Generate a zero-length IN packet request for terminating a SETUP
1334 * transaction.
1335 *
1336 * Note, since we don't write any data to the TxFIFO, then it is
1337 * currently belived that we do not need to wait for any space in
1338 * the TxFIFO.
1339 */
1340static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1341 struct s3c_hsotg_req *req)
1342{
1343 u32 ctrl;
1344
1345 if (!req) {
1346 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1347 return;
1348 }
1349
1350 if (req->req.length == 0) {
1351 hsotg->eps[0].sent_zlp = 1;
1352 s3c_hsotg_enqueue_setup(hsotg);
1353 return;
1354 }
1355
1356 hsotg->eps[0].dir_in = 1;
1357 hsotg->eps[0].sent_zlp = 1;
1358
1359 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1360
1361 /* issue a zero-sized packet to terminate this */
1362 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1363 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1364
1365 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1366 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1367 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1368 ctrl |= S3C_DxEPCTL_USBActEp;
1369 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1370}
1371
1372/**
1373 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1374 * @hsotg: The device instance
1375 * @epnum: The endpoint received from
1376 * @was_setup: Set if processing a SetupDone event.
1377 *
1378 * The RXFIFO has delivered an OutDone event, which means that the data
1379 * transfer for an OUT endpoint has been completed, either by a short
1380 * packet or by the finish of a transfer.
1381*/
1382static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1383 int epnum, bool was_setup)
1384{
1385 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1386 struct s3c_hsotg_req *hs_req = hs_ep->req;
1387 struct usb_request *req = &hs_req->req;
1388 int result = 0;
1389
1390 if (!hs_req) {
1391 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1392 return;
1393 }
1394
1395 if (using_dma(hsotg)) {
1396 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1397 unsigned size_done;
1398 unsigned size_left;
1399
1400 /* Calculate the size of the transfer by checking how much
1401 * is left in the endpoint size register and then working it
1402 * out from the amount we loaded for the transfer.
1403 *
1404 * We need to do this as DMA pointers are always 32bit aligned
1405 * so may overshoot/undershoot the transfer.
1406 */
1407
1408 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1409
1410 size_done = hs_ep->size_loaded - size_left;
1411 size_done += hs_ep->last_load;
1412
1413 req->actual = size_done;
1414 }
1415
1416 if (req->actual < req->length && req->short_not_ok) {
1417 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1418 __func__, req->actual, req->length);
1419
1420 /* todo - what should we return here? there's no one else
1421 * even bothering to check the status. */
1422 }
1423
1424 if (epnum == 0) {
1425 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1426 s3c_hsotg_send_zlp(hsotg, hs_req);
1427 }
1428
1429 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1430}
1431
1432/**
1433 * s3c_hsotg_read_frameno - read current frame number
1434 * @hsotg: The device instance
1435 *
1436 * Return the current frame number
1437*/
1438static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1439{
1440 u32 dsts;
1441
1442 dsts = readl(hsotg->regs + S3C_DSTS);
1443 dsts &= S3C_DSTS_SOFFN_MASK;
1444 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1445
1446 return dsts;
1447}
1448
1449/**
1450 * s3c_hsotg_handle_rx - RX FIFO has data
1451 * @hsotg: The device instance
1452 *
1453 * The IRQ handler has detected that the RX FIFO has some data in it
1454 * that requires processing, so find out what is in there and do the
1455 * appropriate read.
1456 *
1457 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1458 * chunks, so if you have x packets received on an endpoint you'll get x
1459 * FIFO events delivered, each with a packet's worth of data in it.
1460 *
1461 * When using DMA, we should not be processing events from the RXFIFO
1462 * as the actual data should be sent to the memory directly and we turn
1463 * on the completion interrupts to get notifications of transfer completion.
1464 */
0978f8c5 1465static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6
BD
1466{
1467 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1468 u32 epnum, status, size;
1469
1470 WARN_ON(using_dma(hsotg));
1471
1472 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1473 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1474
1475 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1476 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1477
1478 if (1)
1479 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1480 __func__, grxstsr, size, epnum);
1481
1482#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1483
1484 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1485 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1486 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1487 break;
1488
1489 case __status(S3C_GRXSTS_PktSts_OutDone):
1490 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1491 s3c_hsotg_read_frameno(hsotg));
1492
1493 if (!using_dma(hsotg))
1494 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1495 break;
1496
1497 case __status(S3C_GRXSTS_PktSts_SetupDone):
1498 dev_dbg(hsotg->dev,
1499 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1500 s3c_hsotg_read_frameno(hsotg),
1501 readl(hsotg->regs + S3C_DOEPCTL(0)));
1502
1503 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1504 break;
1505
1506 case __status(S3C_GRXSTS_PktSts_OutRX):
1507 s3c_hsotg_rx_data(hsotg, epnum, size);
1508 break;
1509
1510 case __status(S3C_GRXSTS_PktSts_SetupRX):
1511 dev_dbg(hsotg->dev,
1512 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1513 s3c_hsotg_read_frameno(hsotg),
1514 readl(hsotg->regs + S3C_DOEPCTL(0)));
1515
1516 s3c_hsotg_rx_data(hsotg, epnum, size);
1517 break;
1518
1519 default:
1520 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1521 __func__, grxstsr);
1522
1523 s3c_hsotg_dump(hsotg);
1524 break;
1525 }
1526}
1527
1528/**
1529 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1530 * @mps: The maximum packet size in bytes.
1531*/
1532static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1533{
1534 switch (mps) {
1535 case 64:
1536 return S3C_D0EPCTL_MPS_64;
1537 case 32:
1538 return S3C_D0EPCTL_MPS_32;
1539 case 16:
1540 return S3C_D0EPCTL_MPS_16;
1541 case 8:
1542 return S3C_D0EPCTL_MPS_8;
1543 }
1544
1545 /* bad max packet size, warn and return invalid result */
1546 WARN_ON(1);
1547 return (u32)-1;
1548}
1549
1550/**
1551 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1552 * @hsotg: The driver state.
1553 * @ep: The index number of the endpoint
1554 * @mps: The maximum packet size in bytes
1555 *
1556 * Configure the maximum packet size for the given endpoint, updating
1557 * the hardware control registers to reflect this.
1558 */
1559static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1560 unsigned int ep, unsigned int mps)
1561{
1562 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1563 void __iomem *regs = hsotg->regs;
1564 u32 mpsval;
1565 u32 reg;
1566
1567 if (ep == 0) {
1568 /* EP0 is a special case */
1569 mpsval = s3c_hsotg_ep0_mps(mps);
1570 if (mpsval > 3)
1571 goto bad_mps;
1572 } else {
1573 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1574 goto bad_mps;
1575
1576 mpsval = mps;
1577 }
1578
1579 hs_ep->ep.maxpacket = mps;
1580
1581 /* update both the in and out endpoint controldir_ registers, even
1582 * if one of the directions may not be in use. */
1583
1584 reg = readl(regs + S3C_DIEPCTL(ep));
1585 reg &= ~S3C_DxEPCTL_MPS_MASK;
1586 reg |= mpsval;
1587 writel(reg, regs + S3C_DIEPCTL(ep));
1588
1589 reg = readl(regs + S3C_DOEPCTL(ep));
1590 reg &= ~S3C_DxEPCTL_MPS_MASK;
1591 reg |= mpsval;
1592 writel(reg, regs + S3C_DOEPCTL(ep));
1593
1594 return;
1595
1596bad_mps:
1597 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1598}
1599
1600
1601/**
1602 * s3c_hsotg_trytx - check to see if anything needs transmitting
1603 * @hsotg: The driver state
1604 * @hs_ep: The driver endpoint to check.
1605 *
1606 * Check to see if there is a request that has data to send, and if so
1607 * make an attempt to write data into the FIFO.
1608 */
1609static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1610 struct s3c_hsotg_ep *hs_ep)
1611{
1612 struct s3c_hsotg_req *hs_req = hs_ep->req;
1613
1614 if (!hs_ep->dir_in || !hs_req)
1615 return 0;
1616
1617 if (hs_req->req.actual < hs_req->req.length) {
1618 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1619 hs_ep->index);
1620 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1621 }
1622
1623 return 0;
1624}
1625
1626/**
1627 * s3c_hsotg_complete_in - complete IN transfer
1628 * @hsotg: The device state.
1629 * @hs_ep: The endpoint that has just completed.
1630 *
1631 * An IN transfer has been completed, update the transfer's state and then
1632 * call the relevant completion routines.
1633 */
1634static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1635 struct s3c_hsotg_ep *hs_ep)
1636{
1637 struct s3c_hsotg_req *hs_req = hs_ep->req;
1638 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1639 int size_left, size_done;
1640
1641 if (!hs_req) {
1642 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1643 return;
1644 }
1645
1646 /* Calculate the size of the transfer by checking how much is left
1647 * in the endpoint size register and then working it out from
1648 * the amount we loaded for the transfer.
1649 *
1650 * We do this even for DMA, as the transfer may have incremented
1651 * past the end of the buffer (DMA transfers are always 32bit
1652 * aligned).
1653 */
1654
1655 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1656
1657 size_done = hs_ep->size_loaded - size_left;
1658 size_done += hs_ep->last_load;
1659
1660 if (hs_req->req.actual != size_done)
1661 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1662 __func__, hs_req->req.actual, size_done);
1663
1664 hs_req->req.actual = size_done;
1665
1666 /* if we did all of the transfer, and there is more data left
1667 * around, then try restarting the rest of the request */
1668
1669 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1670 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1671 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1672 } else
1673 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1674}
1675
1676/**
1677 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1678 * @hsotg: The driver state
1679 * @idx: The index for the endpoint (0..15)
1680 * @dir_in: Set if this is an IN endpoint
1681 *
1682 * Process and clear any interrupt pending for an individual endpoint
1683*/
1684static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1685 int dir_in)
1686{
1687 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1688 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1689 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1690 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1691 u32 ints;
1692 u32 clear = 0;
1693
1694 ints = readl(hsotg->regs + epint_reg);
1695
1696 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1697 __func__, idx, dir_in ? "in" : "out", ints);
1698
1699 if (ints & S3C_DxEPINT_XferCompl) {
1700 dev_dbg(hsotg->dev,
1701 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1702 __func__, readl(hsotg->regs + epctl_reg),
1703 readl(hsotg->regs + epsiz_reg));
1704
1705 /* we get OutDone from the FIFO, so we only need to look
1706 * at completing IN requests here */
1707 if (dir_in) {
1708 s3c_hsotg_complete_in(hsotg, hs_ep);
1709
1710 if (idx == 0)
1711 s3c_hsotg_enqueue_setup(hsotg);
1712 } else if (using_dma(hsotg)) {
1713 /* We're using DMA, we need to fire an OutDone here
1714 * as we ignore the RXFIFO. */
1715
1716 s3c_hsotg_handle_outdone(hsotg, idx, false);
1717 }
1718
1719 clear |= S3C_DxEPINT_XferCompl;
1720 }
1721
1722 if (ints & S3C_DxEPINT_EPDisbld) {
1723 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1724 clear |= S3C_DxEPINT_EPDisbld;
1725 }
1726
1727 if (ints & S3C_DxEPINT_AHBErr) {
1728 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1729 clear |= S3C_DxEPINT_AHBErr;
1730 }
1731
1732 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1733 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1734
1735 if (using_dma(hsotg) && idx == 0) {
1736 /* this is the notification we've received a
1737 * setup packet. In non-DMA mode we'd get this
1738 * from the RXFIFO, instead we need to process
1739 * the setup here. */
1740
1741 if (dir_in)
1742 WARN_ON_ONCE(1);
1743 else
1744 s3c_hsotg_handle_outdone(hsotg, 0, true);
1745 }
1746
1747 clear |= S3C_DxEPINT_Setup;
1748 }
1749
1750 if (ints & S3C_DxEPINT_Back2BackSetup) {
1751 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1752 clear |= S3C_DxEPINT_Back2BackSetup;
1753 }
1754
1755 if (dir_in) {
1756 /* not sure if this is important, but we'll clear it anyway
1757 */
1758 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1759 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1760 __func__, idx);
1761 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1762 }
1763
1764 /* this probably means something bad is happening */
1765 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1766 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1767 __func__, idx);
1768 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1769 }
1770 }
1771
1772 writel(clear, hsotg->regs + epint_reg);
1773}
1774
1775/**
1776 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1777 * @hsotg: The device state.
1778 *
1779 * Handle updating the device settings after the enumeration phase has
1780 * been completed.
1781*/
1782static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1783{
1784 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1785 int ep0_mps = 0, ep_mps;
1786
1787 /* This should signal the finish of the enumeration phase
1788 * of the USB handshaking, so we should now know what rate
1789 * we connected at. */
1790
1791 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1792
1793 /* note, since we're limited by the size of transfer on EP0, and
1794 * it seems IN transfers must be a even number of packets we do
1795 * not advertise a 64byte MPS on EP0. */
1796
1797 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1798 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1799 case S3C_DSTS_EnumSpd_FS:
1800 case S3C_DSTS_EnumSpd_FS48:
1801 hsotg->gadget.speed = USB_SPEED_FULL;
1802 dev_info(hsotg->dev, "new device is full-speed\n");
1803
1804 ep0_mps = EP0_MPS_LIMIT;
1805 ep_mps = 64;
1806 break;
1807
1808 case S3C_DSTS_EnumSpd_HS:
1809 dev_info(hsotg->dev, "new device is high-speed\n");
1810 hsotg->gadget.speed = USB_SPEED_HIGH;
1811
1812 ep0_mps = EP0_MPS_LIMIT;
1813 ep_mps = 512;
1814 break;
1815
1816 case S3C_DSTS_EnumSpd_LS:
1817 hsotg->gadget.speed = USB_SPEED_LOW;
1818 dev_info(hsotg->dev, "new device is low-speed\n");
1819
1820 /* note, we don't actually support LS in this driver at the
1821 * moment, and the documentation seems to imply that it isn't
1822 * supported by the PHYs on some of the devices.
1823 */
1824 break;
1825 }
1826
1827 /* we should now know the maximum packet size for an
1828 * endpoint, so set the endpoints to a default value. */
1829
1830 if (ep0_mps) {
1831 int i;
1832 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1833 for (i = 1; i < S3C_HSOTG_EPS; i++)
1834 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1835 }
1836
1837 /* ensure after enumeration our EP0 is active */
1838
1839 s3c_hsotg_enqueue_setup(hsotg);
1840
1841 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1842 readl(hsotg->regs + S3C_DIEPCTL0),
1843 readl(hsotg->regs + S3C_DOEPCTL0));
1844}
1845
1846/**
1847 * kill_all_requests - remove all requests from the endpoint's queue
1848 * @hsotg: The device state.
1849 * @ep: The endpoint the requests may be on.
1850 * @result: The result code to use.
1851 * @force: Force removal of any current requests
1852 *
1853 * Go through the requests on the given endpoint and mark them
1854 * completed with the given result code.
1855 */
1856static void kill_all_requests(struct s3c_hsotg *hsotg,
1857 struct s3c_hsotg_ep *ep,
1858 int result, bool force)
1859{
1860 struct s3c_hsotg_req *req, *treq;
1861 unsigned long flags;
1862
1863 spin_lock_irqsave(&ep->lock, flags);
1864
1865 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1866 /* currently, we can't do much about an already
1867 * running request on an in endpoint */
1868
1869 if (ep->req == req && ep->dir_in && !force)
1870 continue;
1871
1872 s3c_hsotg_complete_request(hsotg, ep, req,
1873 result);
1874 }
1875
1876 spin_unlock_irqrestore(&ep->lock, flags);
1877}
1878
1879#define call_gadget(_hs, _entry) \
1880 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1881 (_hs)->driver && (_hs)->driver->_entry) \
1882 (_hs)->driver->_entry(&(_hs)->gadget);
1883
1884/**
1885 * s3c_hsotg_disconnect_irq - disconnect irq service
1886 * @hsotg: The device state.
1887 *
1888 * A disconnect IRQ has been received, meaning that the host has
1889 * lost contact with the bus. Remove all current transactions
1890 * and signal the gadget driver that this has happened.
1891*/
1892static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1893{
1894 unsigned ep;
1895
1896 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1897 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1898
1899 call_gadget(hsotg, disconnect);
1900}
1901
1902/**
1903 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1904 * @hsotg: The device state:
1905 * @periodic: True if this is a periodic FIFO interrupt
1906 */
1907static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
1908{
1909 struct s3c_hsotg_ep *ep;
1910 int epno, ret;
1911
1912 /* look through for any more data to transmit */
1913
1914 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
1915 ep = &hsotg->eps[epno];
1916
1917 if (!ep->dir_in)
1918 continue;
1919
1920 if ((periodic && !ep->periodic) ||
1921 (!periodic && ep->periodic))
1922 continue;
1923
1924 ret = s3c_hsotg_trytx(hsotg, ep);
1925 if (ret < 0)
1926 break;
1927 }
1928}
1929
1930static struct s3c_hsotg *our_hsotg;
1931
1932/* IRQ flags which will trigger a retry around the IRQ loop */
1933#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
1934 S3C_GINTSTS_PTxFEmp | \
1935 S3C_GINTSTS_RxFLvl)
1936
1937/**
1938 * s3c_hsotg_irq - handle device interrupt
1939 * @irq: The IRQ number triggered
1940 * @pw: The pw value when registered the handler.
1941 */
1942static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
1943{
1944 struct s3c_hsotg *hsotg = pw;
1945 int retry_count = 8;
1946 u32 gintsts;
1947 u32 gintmsk;
1948
1949irq_retry:
1950 gintsts = readl(hsotg->regs + S3C_GINTSTS);
1951 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
1952
1953 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
1954 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
1955
1956 gintsts &= gintmsk;
1957
1958 if (gintsts & S3C_GINTSTS_OTGInt) {
1959 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
1960
1961 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
1962
1963 writel(otgint, hsotg->regs + S3C_GOTGINT);
1964 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
1965 }
1966
1967 if (gintsts & S3C_GINTSTS_DisconnInt) {
1968 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
1969 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
1970
1971 s3c_hsotg_disconnect_irq(hsotg);
1972 }
1973
1974 if (gintsts & S3C_GINTSTS_SessReqInt) {
1975 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
1976 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
1977 }
1978
1979 if (gintsts & S3C_GINTSTS_EnumDone) {
1980 s3c_hsotg_irq_enumdone(hsotg);
1981 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
1982 }
1983
1984 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
1985 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
1986 readl(hsotg->regs + S3C_DSTS),
1987 readl(hsotg->regs + S3C_GOTGCTL));
1988
1989 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
1990 }
1991
1992 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
1993 u32 daint = readl(hsotg->regs + S3C_DAINT);
1994 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
1995 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
1996 int ep;
1997
1998 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
1999
2000 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2001 if (daint_out & 1)
2002 s3c_hsotg_epint(hsotg, ep, 0);
2003 }
2004
2005 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2006 if (daint_in & 1)
2007 s3c_hsotg_epint(hsotg, ep, 1);
2008 }
2009
2010 writel(daint, hsotg->regs + S3C_DAINT);
2011 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2012 hsotg->regs + S3C_GINTSTS);
2013 }
2014
2015 if (gintsts & S3C_GINTSTS_USBRst) {
2016 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2017 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2018 readl(hsotg->regs + S3C_GNPTXSTS));
2019
2020 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2021
2022 /* it seems after a reset we can end up with a situation
2023 * where the TXFIFO still has data in it... try flushing
2024 * it to remove anything that may still be in it.
2025 */
2026
2027 if (1) {
2028 writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
2029 hsotg->regs + S3C_GRSTCTL);
2030
2031 dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
2032 readl(hsotg->regs + S3C_GNPTXSTS));
2033 }
2034
2035 s3c_hsotg_enqueue_setup(hsotg);
2036
2037 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2038 }
2039
2040 /* check both FIFOs */
2041
2042 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2043 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2044
2045 /* Disable the interrupt to stop it happening again
2046 * unless one of these endpoint routines decides that
2047 * it needs re-enabling */
2048
2049 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2050 s3c_hsotg_irq_fifoempty(hsotg, false);
2051
2052 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2053 }
2054
2055 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2056 dev_dbg(hsotg->dev, "PTxFEmp\n");
2057
2058 /* See note in S3C_GINTSTS_NPTxFEmp */
2059
2060 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2061 s3c_hsotg_irq_fifoempty(hsotg, true);
2062
2063 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2064 }
2065
2066 if (gintsts & S3C_GINTSTS_RxFLvl) {
2067 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2068 * we need to retry s3c_hsotg_handle_rx if this is still
2069 * set. */
2070
2071 s3c_hsotg_handle_rx(hsotg);
2072 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2073 }
2074
2075 if (gintsts & S3C_GINTSTS_ModeMis) {
2076 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2077 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2078 }
2079
2080 if (gintsts & S3C_GINTSTS_USBSusp) {
2081 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2082 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2083
2084 call_gadget(hsotg, suspend);
2085 }
2086
2087 if (gintsts & S3C_GINTSTS_WkUpInt) {
2088 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2089 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2090
2091 call_gadget(hsotg, resume);
2092 }
2093
2094 if (gintsts & S3C_GINTSTS_ErlySusp) {
2095 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2096 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2097 }
2098
2099 /* these next two seem to crop-up occasionally causing the core
2100 * to shutdown the USB transfer, so try clearing them and logging
2101 * the occurence. */
2102
2103 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2104 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2105
2106 s3c_hsotg_dump(hsotg);
2107
2108 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2109 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2110 }
2111
2112 if (gintsts & S3C_GINTSTS_GINNakEff) {
2113 dev_info(hsotg->dev, "GINNakEff triggered\n");
2114
2115 s3c_hsotg_dump(hsotg);
2116
2117 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2118 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2119 }
2120
2121 /* if we've had fifo events, we should try and go around the
2122 * loop again to see if there's any point in returning yet. */
2123
2124 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2125 goto irq_retry;
2126
2127 return IRQ_HANDLED;
2128}
2129
2130/**
2131 * s3c_hsotg_ep_enable - enable the given endpoint
2132 * @ep: The USB endpint to configure
2133 * @desc: The USB endpoint descriptor to configure with.
2134 *
2135 * This is called from the USB gadget code's usb_ep_enable().
2136*/
2137static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2138 const struct usb_endpoint_descriptor *desc)
2139{
2140 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2141 struct s3c_hsotg *hsotg = hs_ep->parent;
2142 unsigned long flags;
2143 int index = hs_ep->index;
2144 u32 epctrl_reg;
2145 u32 epctrl;
2146 u32 mps;
2147 int dir_in;
2148
2149 dev_dbg(hsotg->dev,
2150 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2151 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2152 desc->wMaxPacketSize, desc->bInterval);
2153
2154 /* not to be called for EP0 */
2155 WARN_ON(index == 0);
2156
2157 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2158 if (dir_in != hs_ep->dir_in) {
2159 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2160 return -EINVAL;
2161 }
2162
2163 mps = le16_to_cpu(desc->wMaxPacketSize);
2164
2165 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2166
2167 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2168 epctrl = readl(hsotg->regs + epctrl_reg);
2169
2170 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2171 __func__, epctrl, epctrl_reg);
2172
2173 spin_lock_irqsave(&hs_ep->lock, flags);
2174
2175 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2176 epctrl |= S3C_DxEPCTL_MPS(mps);
2177
2178 /* mark the endpoint as active, otherwise the core may ignore
2179 * transactions entirely for this endpoint */
2180 epctrl |= S3C_DxEPCTL_USBActEp;
2181
2182 /* set the NAK status on the endpoint, otherwise we might try and
2183 * do something with data that we've yet got a request to process
2184 * since the RXFIFO will take data for an endpoint even if the
2185 * size register hasn't been set.
2186 */
2187
2188 epctrl |= S3C_DxEPCTL_SNAK;
2189
2190 /* update the endpoint state */
2191 hs_ep->ep.maxpacket = mps;
2192
2193 /* default, set to non-periodic */
2194 hs_ep->periodic = 0;
2195
2196 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2197 case USB_ENDPOINT_XFER_ISOC:
2198 dev_err(hsotg->dev, "no current ISOC support\n");
2199 return -EINVAL;
2200
2201 case USB_ENDPOINT_XFER_BULK:
2202 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2203 break;
2204
2205 case USB_ENDPOINT_XFER_INT:
2206 if (dir_in) {
2207 /* Allocate our TxFNum by simply using the index
2208 * of the endpoint for the moment. We could do
2209 * something better if the host indicates how
2210 * many FIFOs we are expecting to use. */
2211
2212 hs_ep->periodic = 1;
2213 epctrl |= S3C_DxEPCTL_TxFNum(index);
2214 }
2215
2216 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2217 break;
2218
2219 case USB_ENDPOINT_XFER_CONTROL:
2220 epctrl |= S3C_DxEPCTL_EPType_Control;
2221 break;
2222 }
2223
2224 /* for non control endpoints, set PID to D0 */
2225 if (index)
2226 epctrl |= S3C_DxEPCTL_SetD0PID;
2227
2228 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2229 __func__, epctrl);
2230
2231 writel(epctrl, hsotg->regs + epctrl_reg);
2232 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2233 __func__, readl(hsotg->regs + epctrl_reg));
2234
2235 /* enable the endpoint interrupt */
2236 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2237
2238 spin_unlock_irqrestore(&hs_ep->lock, flags);
2239 return 0;
2240}
2241
2242static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2243{
2244 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2245 struct s3c_hsotg *hsotg = hs_ep->parent;
2246 int dir_in = hs_ep->dir_in;
2247 int index = hs_ep->index;
2248 unsigned long flags;
2249 u32 epctrl_reg;
2250 u32 ctrl;
2251
2252 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2253
2254 if (ep == &hsotg->eps[0].ep) {
2255 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2256 return -EINVAL;
2257 }
2258
2259 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2260
2261 /* terminate all requests with shutdown */
2262 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2263
2264 spin_lock_irqsave(&hs_ep->lock, flags);
2265
2266 ctrl = readl(hsotg->regs + epctrl_reg);
2267 ctrl &= ~S3C_DxEPCTL_EPEna;
2268 ctrl &= ~S3C_DxEPCTL_USBActEp;
2269 ctrl |= S3C_DxEPCTL_SNAK;
2270
2271 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2272 writel(ctrl, hsotg->regs + epctrl_reg);
2273
2274 /* disable endpoint interrupts */
2275 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2276
2277 spin_unlock_irqrestore(&hs_ep->lock, flags);
2278 return 0;
2279}
2280
2281/**
2282 * on_list - check request is on the given endpoint
2283 * @ep: The endpoint to check.
2284 * @test: The request to test if it is on the endpoint.
2285*/
2286static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2287{
2288 struct s3c_hsotg_req *req, *treq;
2289
2290 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2291 if (req == test)
2292 return true;
2293 }
2294
2295 return false;
2296}
2297
2298static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2299{
2300 struct s3c_hsotg_req *hs_req = our_req(req);
2301 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2302 struct s3c_hsotg *hs = hs_ep->parent;
2303 unsigned long flags;
2304
2305 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2306
2307 if (hs_req == hs_ep->req) {
2308 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2309 return -EINPROGRESS;
2310 }
2311
2312 spin_lock_irqsave(&hs_ep->lock, flags);
2313
2314 if (!on_list(hs_ep, hs_req)) {
2315 spin_unlock_irqrestore(&hs_ep->lock, flags);
2316 return -EINVAL;
2317 }
2318
2319 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2320 spin_unlock_irqrestore(&hs_ep->lock, flags);
2321
2322 return 0;
2323}
2324
2325static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2326{
2327 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2328 struct s3c_hsotg *hs = hs_ep->parent;
2329 int index = hs_ep->index;
2330 unsigned long irqflags;
2331 u32 epreg;
2332 u32 epctl;
2333
2334 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2335
2336 spin_lock_irqsave(&hs_ep->lock, irqflags);
2337
2338 /* write both IN and OUT control registers */
2339
2340 epreg = S3C_DIEPCTL(index);
2341 epctl = readl(hs->regs + epreg);
2342
2343 if (value)
2344 epctl |= S3C_DxEPCTL_Stall;
2345 else
2346 epctl &= ~S3C_DxEPCTL_Stall;
2347
2348 writel(epctl, hs->regs + epreg);
2349
2350 epreg = S3C_DOEPCTL(index);
2351 epctl = readl(hs->regs + epreg);
2352
2353 if (value)
2354 epctl |= S3C_DxEPCTL_Stall;
2355 else
2356 epctl &= ~S3C_DxEPCTL_Stall;
2357
2358 writel(epctl, hs->regs + epreg);
2359
2360 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2361
2362 return 0;
2363}
2364
2365static struct usb_ep_ops s3c_hsotg_ep_ops = {
2366 .enable = s3c_hsotg_ep_enable,
2367 .disable = s3c_hsotg_ep_disable,
2368 .alloc_request = s3c_hsotg_ep_alloc_request,
2369 .free_request = s3c_hsotg_ep_free_request,
2370 .queue = s3c_hsotg_ep_queue,
2371 .dequeue = s3c_hsotg_ep_dequeue,
2372 .set_halt = s3c_hsotg_ep_sethalt,
2373 /* note, don't belive we have any call for the fifo routines */
2374};
2375
2376/**
2377 * s3c_hsotg_corereset - issue softreset to the core
2378 * @hsotg: The device state
2379 *
2380 * Issue a soft reset to the core, and await the core finishing it.
2381*/
2382static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2383{
2384 int timeout;
2385 u32 grstctl;
2386
2387 dev_dbg(hsotg->dev, "resetting core\n");
2388
2389 /* issue soft reset */
2390 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2391
2392 timeout = 1000;
2393 do {
2394 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2395 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2396
b7800218 2397 if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
5b7d70c6
BD
2398 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2399 return -EINVAL;
2400 }
2401
2402 timeout = 1000;
2403
2404 while (1) {
2405 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2406
2407 if (timeout-- < 0) {
2408 dev_info(hsotg->dev,
2409 "%s: reset failed, GRSTCTL=%08x\n",
2410 __func__, grstctl);
2411 return -ETIMEDOUT;
2412 }
2413
2414 if (grstctl & S3C_GRSTCTL_CSftRst)
2415 continue;
2416
2417 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2418 continue;
2419
2420 break; /* reset done */
2421 }
2422
2423 dev_dbg(hsotg->dev, "reset successful\n");
2424 return 0;
2425}
2426
2427int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2428{
2429 struct s3c_hsotg *hsotg = our_hsotg;
2430 int ret;
2431
2432 if (!hsotg) {
2433 printk(KERN_ERR "%s: called with no device\n", __func__);
2434 return -ENODEV;
2435 }
2436
2437 if (!driver) {
2438 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2439 return -EINVAL;
2440 }
2441
2442 if (driver->speed != USB_SPEED_HIGH &&
2443 driver->speed != USB_SPEED_FULL) {
2444 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2445 }
2446
2447 if (!driver->bind || !driver->setup) {
2448 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2449 return -EINVAL;
2450 }
2451
2452 WARN_ON(hsotg->driver);
2453
2454 driver->driver.bus = NULL;
2455 hsotg->driver = driver;
2456 hsotg->gadget.dev.driver = &driver->driver;
2457 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2458 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2459
2460 ret = device_add(&hsotg->gadget.dev);
2461 if (ret) {
2462 dev_err(hsotg->dev, "failed to register gadget device\n");
2463 goto err;
2464 }
2465
2466 ret = driver->bind(&hsotg->gadget);
2467 if (ret) {
2468 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2469
2470 hsotg->gadget.dev.driver = NULL;
2471 hsotg->driver = NULL;
2472 goto err;
2473 }
2474
2475 /* we must now enable ep0 ready for host detection and then
2476 * set configuration. */
2477
2478 s3c_hsotg_corereset(hsotg);
2479
2480 /* set the PLL on, remove the HNP/SRP and set the PHY */
2481 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2482 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2483
2484 /* looks like soft-reset changes state of FIFOs */
2485 s3c_hsotg_init_fifo(hsotg);
2486
2487 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2488
2489 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2490
2491 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2492 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2493 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2494 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2495 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2496 S3C_GINTSTS_ErlySusp,
2497 hsotg->regs + S3C_GINTMSK);
2498
2499 if (using_dma(hsotg))
2500 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2501 S3C_GAHBCFG_HBstLen_Incr4,
2502 hsotg->regs + S3C_GAHBCFG);
2503 else
2504 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2505
2506 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2507 * up being flooded with interrupts if the host is polling the
2508 * endpoint to try and read data. */
2509
2510 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2511 S3C_DIEPMSK_INTknEPMisMsk |
2512 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2513 hsotg->regs + S3C_DIEPMSK);
2514
2515 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2516 * DMA mode we may need this. */
2517 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2518 S3C_DOEPMSK_EPDisbldMsk |
b7800218
RK
2519 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2520 S3C_DIEPMSK_TimeOUTMsk) : 0),
5b7d70c6
BD
2521 hsotg->regs + S3C_DOEPMSK);
2522
2523 writel(0, hsotg->regs + S3C_DAINTMSK);
2524
2525 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2526 readl(hsotg->regs + S3C_DIEPCTL0),
2527 readl(hsotg->regs + S3C_DOEPCTL0));
2528
2529 /* enable in and out endpoint interrupts */
2530 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2531
2532 /* Enable the RXFIFO when in slave mode, as this is how we collect
2533 * the data. In DMA mode, we get events from the FIFO but also
2534 * things we cannot process, so do not use it. */
2535 if (!using_dma(hsotg))
2536 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2537
2538 /* Enable interrupts for EP0 in and out */
2539 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2540 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2541
2542 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2543 udelay(10); /* see openiboot */
2544 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2545
2546 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2547
2548 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2549 writing to the EPCTL register.. */
2550
2551 /* set to read 1 8byte packet */
2552 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2553 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2554
2555 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2556 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2557 S3C_DxEPCTL_USBActEp,
2558 hsotg->regs + S3C_DOEPCTL0);
2559
2560 /* enable, but don't activate EP0in */
2561 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2562 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2563
2564 s3c_hsotg_enqueue_setup(hsotg);
2565
2566 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2567 readl(hsotg->regs + S3C_DIEPCTL0),
2568 readl(hsotg->regs + S3C_DOEPCTL0));
2569
2570 /* clear global NAKs */
2571 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2572 hsotg->regs + S3C_DCTL);
2573
2574 /* remove the soft-disconnect and let's go */
2575 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2576
2577 /* report to the user, and return */
2578
2579 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2580 return 0;
2581
2582err:
2583 hsotg->driver = NULL;
2584 hsotg->gadget.dev.driver = NULL;
2585 return ret;
2586}
6feb63b6 2587EXPORT_SYMBOL(usb_gadget_register_driver);
5b7d70c6
BD
2588
2589int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2590{
2591 struct s3c_hsotg *hsotg = our_hsotg;
2592 int ep;
2593
2594 if (!hsotg)
2595 return -ENODEV;
2596
2597 if (!driver || driver != hsotg->driver || !driver->unbind)
2598 return -EINVAL;
2599
2600 /* all endpoints should be shutdown */
2601 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2602 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2603
2604 call_gadget(hsotg, disconnect);
2605
2606 driver->unbind(&hsotg->gadget);
2607 hsotg->driver = NULL;
2608 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2609
2610 device_del(&hsotg->gadget.dev);
2611
2612 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2613 driver->driver.name);
2614
2615 return 0;
2616}
2617EXPORT_SYMBOL(usb_gadget_unregister_driver);
2618
2619static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2620{
2621 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2622}
2623
2624static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2625 .get_frame = s3c_hsotg_gadget_getframe,
2626};
2627
2628/**
2629 * s3c_hsotg_initep - initialise a single endpoint
2630 * @hsotg: The device state.
2631 * @hs_ep: The endpoint to be initialised.
2632 * @epnum: The endpoint number
2633 *
2634 * Initialise the given endpoint (as part of the probe and device state
2635 * creation) to give to the gadget driver. Setup the endpoint name, any
2636 * direction information and other state that may be required.
2637 */
2638static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2639 struct s3c_hsotg_ep *hs_ep,
2640 int epnum)
2641{
2642 u32 ptxfifo;
2643 char *dir;
2644
2645 if (epnum == 0)
2646 dir = "";
2647 else if ((epnum % 2) == 0) {
2648 dir = "out";
2649 } else {
2650 dir = "in";
2651 hs_ep->dir_in = 1;
2652 }
2653
2654 hs_ep->index = epnum;
2655
2656 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2657
2658 INIT_LIST_HEAD(&hs_ep->queue);
2659 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2660
2661 spin_lock_init(&hs_ep->lock);
2662
2663 /* add to the list of endpoints known by the gadget driver */
2664 if (epnum)
2665 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2666
2667 hs_ep->parent = hsotg;
2668 hs_ep->ep.name = hs_ep->name;
2669 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2670 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2671
2672 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2673 * an OUT endpoint, we may as well do this if in future the
2674 * code is changed to make each endpoint's direction changeable.
2675 */
2676
2677 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2678 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
2679
2680 /* if we're using dma, we need to set the next-endpoint pointer
2681 * to be something valid.
2682 */
2683
2684 if (using_dma(hsotg)) {
2685 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2686 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2687 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2688 }
2689}
2690
2691/**
2692 * s3c_hsotg_otgreset - reset the OtG phy block
2693 * @hsotg: The host state.
2694 *
2695 * Power up the phy, set the basic configuration and start the PHY.
2696 */
2697static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2698{
2699 u32 osc;
2700
2701 writel(0, S3C_PHYPWR);
2702 mdelay(1);
2703
2704 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2705
2706 writel(osc | 0x10, S3C_PHYCLK);
2707
2708 /* issue a full set of resets to the otg and core */
2709
2710 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2711 udelay(20); /* at-least 10uS */
2712 writel(0, S3C_RSTCON);
2713}
2714
2715
2716static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2717{
2718 /* unmask subset of endpoint interrupts */
2719
2720 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2721 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2722 hsotg->regs + S3C_DIEPMSK);
2723
2724 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2725 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2726 hsotg->regs + S3C_DOEPMSK);
2727
2728 writel(0, hsotg->regs + S3C_DAINTMSK);
2729
2730 if (0) {
2731 /* post global nak until we're ready */
2732 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2733 hsotg->regs + S3C_DCTL);
2734 }
2735
2736 /* setup fifos */
2737
2738 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2739 readl(hsotg->regs + S3C_GRXFSIZ),
2740 readl(hsotg->regs + S3C_GNPTXFSIZ));
2741
2742 s3c_hsotg_init_fifo(hsotg);
2743
2744 /* set the PLL on, remove the HNP/SRP and set the PHY */
2745 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2746 hsotg->regs + S3C_GUSBCFG);
2747
2748 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2749 hsotg->regs + S3C_GAHBCFG);
2750}
2751
2752static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2753{
2754 struct device *dev = hsotg->dev;
2755 void __iomem *regs = hsotg->regs;
2756 u32 val;
2757 int idx;
2758
2759 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2760 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2761 readl(regs + S3C_DIEPMSK));
2762
2763 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2764 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2765
2766 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2767 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2768
2769 /* show periodic fifo settings */
2770
2771 for (idx = 1; idx <= 15; idx++) {
2772 val = readl(regs + S3C_DPTXFSIZn(idx));
2773 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2774 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2775 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2776 }
2777
2778 for (idx = 0; idx < 15; idx++) {
2779 dev_info(dev,
2780 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2781 readl(regs + S3C_DIEPCTL(idx)),
2782 readl(regs + S3C_DIEPTSIZ(idx)),
2783 readl(regs + S3C_DIEPDMA(idx)));
2784
2785 val = readl(regs + S3C_DOEPCTL(idx));
2786 dev_info(dev,
2787 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2788 idx, readl(regs + S3C_DOEPCTL(idx)),
2789 readl(regs + S3C_DOEPTSIZ(idx)),
2790 readl(regs + S3C_DOEPDMA(idx)));
2791
2792 }
2793
2794 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2795 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2796}
2797
2798
2799/**
2800 * state_show - debugfs: show overall driver and device state.
2801 * @seq: The seq file to write to.
2802 * @v: Unused parameter.
2803 *
2804 * This debugfs entry shows the overall state of the hardware and
2805 * some general information about each of the endpoints available
2806 * to the system.
2807 */
2808static int state_show(struct seq_file *seq, void *v)
2809{
2810 struct s3c_hsotg *hsotg = seq->private;
2811 void __iomem *regs = hsotg->regs;
2812 int idx;
2813
2814 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2815 readl(regs + S3C_DCFG),
2816 readl(regs + S3C_DCTL),
2817 readl(regs + S3C_DSTS));
2818
2819 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2820 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2821
2822 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2823 readl(regs + S3C_GINTMSK),
2824 readl(regs + S3C_GINTSTS));
2825
2826 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2827 readl(regs + S3C_DAINTMSK),
2828 readl(regs + S3C_DAINT));
2829
2830 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2831 readl(regs + S3C_GNPTXSTS),
2832 readl(regs + S3C_GRXSTSR));
2833
2834 seq_printf(seq, "\nEndpoint status:\n");
2835
2836 for (idx = 0; idx < 15; idx++) {
2837 u32 in, out;
2838
2839 in = readl(regs + S3C_DIEPCTL(idx));
2840 out = readl(regs + S3C_DOEPCTL(idx));
2841
2842 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2843 idx, in, out);
2844
2845 in = readl(regs + S3C_DIEPTSIZ(idx));
2846 out = readl(regs + S3C_DOEPTSIZ(idx));
2847
2848 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2849 in, out);
2850
2851 seq_printf(seq, "\n");
2852 }
2853
2854 return 0;
2855}
2856
2857static int state_open(struct inode *inode, struct file *file)
2858{
2859 return single_open(file, state_show, inode->i_private);
2860}
2861
2862static const struct file_operations state_fops = {
2863 .owner = THIS_MODULE,
2864 .open = state_open,
2865 .read = seq_read,
2866 .llseek = seq_lseek,
2867 .release = single_release,
2868};
2869
2870/**
2871 * fifo_show - debugfs: show the fifo information
2872 * @seq: The seq_file to write data to.
2873 * @v: Unused parameter.
2874 *
2875 * Show the FIFO information for the overall fifo and all the
2876 * periodic transmission FIFOs.
2877*/
2878static int fifo_show(struct seq_file *seq, void *v)
2879{
2880 struct s3c_hsotg *hsotg = seq->private;
2881 void __iomem *regs = hsotg->regs;
2882 u32 val;
2883 int idx;
2884
2885 seq_printf(seq, "Non-periodic FIFOs:\n");
2886 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
2887
2888 val = readl(regs + S3C_GNPTXFSIZ);
2889 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
2890 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
2891 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
2892
2893 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
2894
2895 for (idx = 1; idx <= 15; idx++) {
2896 val = readl(regs + S3C_DPTXFSIZn(idx));
2897
2898 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
2899 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2900 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2901 }
2902
2903 return 0;
2904}
2905
2906static int fifo_open(struct inode *inode, struct file *file)
2907{
2908 return single_open(file, fifo_show, inode->i_private);
2909}
2910
2911static const struct file_operations fifo_fops = {
2912 .owner = THIS_MODULE,
2913 .open = fifo_open,
2914 .read = seq_read,
2915 .llseek = seq_lseek,
2916 .release = single_release,
2917};
2918
2919
2920static const char *decode_direction(int is_in)
2921{
2922 return is_in ? "in" : "out";
2923}
2924
2925/**
2926 * ep_show - debugfs: show the state of an endpoint.
2927 * @seq: The seq_file to write data to.
2928 * @v: Unused parameter.
2929 *
2930 * This debugfs entry shows the state of the given endpoint (one is
2931 * registered for each available).
2932*/
2933static int ep_show(struct seq_file *seq, void *v)
2934{
2935 struct s3c_hsotg_ep *ep = seq->private;
2936 struct s3c_hsotg *hsotg = ep->parent;
2937 struct s3c_hsotg_req *req;
2938 void __iomem *regs = hsotg->regs;
2939 int index = ep->index;
2940 int show_limit = 15;
2941 unsigned long flags;
2942
2943 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
2944 ep->index, ep->ep.name, decode_direction(ep->dir_in));
2945
2946 /* first show the register state */
2947
2948 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
2949 readl(regs + S3C_DIEPCTL(index)),
2950 readl(regs + S3C_DOEPCTL(index)));
2951
2952 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
2953 readl(regs + S3C_DIEPDMA(index)),
2954 readl(regs + S3C_DOEPDMA(index)));
2955
2956 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
2957 readl(regs + S3C_DIEPINT(index)),
2958 readl(regs + S3C_DOEPINT(index)));
2959
2960 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
2961 readl(regs + S3C_DIEPTSIZ(index)),
2962 readl(regs + S3C_DOEPTSIZ(index)));
2963
2964 seq_printf(seq, "\n");
2965 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
2966 seq_printf(seq, "total_data=%ld\n", ep->total_data);
2967
2968 seq_printf(seq, "request list (%p,%p):\n",
2969 ep->queue.next, ep->queue.prev);
2970
2971 spin_lock_irqsave(&ep->lock, flags);
2972
2973 list_for_each_entry(req, &ep->queue, queue) {
2974 if (--show_limit < 0) {
2975 seq_printf(seq, "not showing more requests...\n");
2976 break;
2977 }
2978
2979 seq_printf(seq, "%c req %p: %d bytes @%p, ",
2980 req == ep->req ? '*' : ' ',
2981 req, req->req.length, req->req.buf);
2982 seq_printf(seq, "%d done, res %d\n",
2983 req->req.actual, req->req.status);
2984 }
2985
2986 spin_unlock_irqrestore(&ep->lock, flags);
2987
2988 return 0;
2989}
2990
2991static int ep_open(struct inode *inode, struct file *file)
2992{
2993 return single_open(file, ep_show, inode->i_private);
2994}
2995
2996static const struct file_operations ep_fops = {
2997 .owner = THIS_MODULE,
2998 .open = ep_open,
2999 .read = seq_read,
3000 .llseek = seq_lseek,
3001 .release = single_release,
3002};
3003
3004/**
3005 * s3c_hsotg_create_debug - create debugfs directory and files
3006 * @hsotg: The driver state
3007 *
3008 * Create the debugfs files to allow the user to get information
3009 * about the state of the system. The directory name is created
3010 * with the same name as the device itself, in case we end up
3011 * with multiple blocks in future systems.
3012*/
3013static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3014{
3015 struct dentry *root;
3016 unsigned epidx;
3017
3018 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3019 hsotg->debug_root = root;
3020 if (IS_ERR(root)) {
3021 dev_err(hsotg->dev, "cannot create debug root\n");
3022 return;
3023 }
3024
3025 /* create general state file */
3026
3027 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3028 hsotg, &state_fops);
3029
3030 if (IS_ERR(hsotg->debug_file))
3031 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3032
3033 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3034 hsotg, &fifo_fops);
3035
3036 if (IS_ERR(hsotg->debug_fifo))
3037 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3038
3039 /* create one file for each endpoint */
3040
3041 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3042 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3043
3044 ep->debugfs = debugfs_create_file(ep->name, 0444,
3045 root, ep, &ep_fops);
3046
3047 if (IS_ERR(ep->debugfs))
3048 dev_err(hsotg->dev, "failed to create %s debug file\n",
3049 ep->name);
3050 }
3051}
3052
3053/**
3054 * s3c_hsotg_delete_debug - cleanup debugfs entries
3055 * @hsotg: The driver state
3056 *
3057 * Cleanup (remove) the debugfs files for use on module exit.
3058*/
3059static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3060{
3061 unsigned epidx;
3062
3063 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3064 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3065 debugfs_remove(ep->debugfs);
3066 }
3067
3068 debugfs_remove(hsotg->debug_file);
3069 debugfs_remove(hsotg->debug_fifo);
3070 debugfs_remove(hsotg->debug_root);
3071}
3072
3073/**
3074 * s3c_hsotg_gate - set the hardware gate for the block
3075 * @pdev: The device we bound to
3076 * @on: On or off.
3077 *
3078 * Set the hardware gate setting into the block. If we end up on
3079 * something other than an S3C64XX, then we might need to change this
3080 * to using a platform data callback, or some other mechanism.
3081 */
3082static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3083{
3084 unsigned long flags;
3085 u32 others;
3086
3087 local_irq_save(flags);
3088
3089 others = __raw_readl(S3C64XX_OTHERS);
3090 if (on)
3091 others |= S3C64XX_OTHERS_USBMASK;
3092 else
3093 others &= ~S3C64XX_OTHERS_USBMASK;
3094 __raw_writel(others, S3C64XX_OTHERS);
3095
3096 local_irq_restore(flags);
3097}
3098
0978f8c5 3099static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
5b7d70c6
BD
3100
3101static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3102{
3103 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3104 struct device *dev = &pdev->dev;
3105 struct s3c_hsotg *hsotg;
3106 struct resource *res;
3107 int epnum;
3108 int ret;
3109
3110 if (!plat)
3111 plat = &s3c_hsotg_default_pdata;
3112
3113 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3114 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3115 GFP_KERNEL);
3116 if (!hsotg) {
3117 dev_err(dev, "cannot get memory\n");
3118 return -ENOMEM;
3119 }
3120
3121 hsotg->dev = dev;
3122 hsotg->plat = plat;
3123
3124 platform_set_drvdata(pdev, hsotg);
3125
3126 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3127 if (!res) {
3128 dev_err(dev, "cannot find register resource 0\n");
3129 ret = -EINVAL;
3130 goto err_mem;
3131 }
3132
3133 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3134 dev_name(dev));
3135 if (!hsotg->regs_res) {
3136 dev_err(dev, "cannot reserve registers\n");
3137 ret = -ENOENT;
3138 goto err_mem;
3139 }
3140
3141 hsotg->regs = ioremap(res->start, resource_size(res));
3142 if (!hsotg->regs) {
3143 dev_err(dev, "cannot map registers\n");
3144 ret = -ENXIO;
3145 goto err_regs_res;
3146 }
3147
3148 ret = platform_get_irq(pdev, 0);
3149 if (ret < 0) {
3150 dev_err(dev, "cannot find IRQ\n");
3151 goto err_regs;
3152 }
3153
3154 hsotg->irq = ret;
3155
3156 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3157 if (ret < 0) {
3158 dev_err(dev, "cannot claim IRQ\n");
3159 goto err_regs;
3160 }
3161
3162 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3163
3164 device_initialize(&hsotg->gadget.dev);
3165
3166 dev_set_name(&hsotg->gadget.dev, "gadget");
3167
3168 hsotg->gadget.is_dualspeed = 1;
3169 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3170 hsotg->gadget.name = dev_name(dev);
3171
3172 hsotg->gadget.dev.parent = dev;
3173 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3174
3175 /* setup endpoint information */
3176
3177 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3178 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3179
3180 /* allocate EP0 request */
3181
3182 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3183 GFP_KERNEL);
3184 if (!hsotg->ctrl_req) {
3185 dev_err(dev, "failed to allocate ctrl req\n");
3186 goto err_regs;
3187 }
3188
3189 /* reset the system */
3190
3191 s3c_hsotg_gate(pdev, true);
3192
3193 s3c_hsotg_otgreset(hsotg);
3194 s3c_hsotg_corereset(hsotg);
3195 s3c_hsotg_init(hsotg);
3196
3197 /* initialise the endpoints now the core has been initialised */
3198 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3199 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3200
3201 s3c_hsotg_create_debug(hsotg);
3202
3203 s3c_hsotg_dump(hsotg);
3204
3205 our_hsotg = hsotg;
3206 return 0;
3207
3208err_regs:
3209 iounmap(hsotg->regs);
3210
3211err_regs_res:
3212 release_resource(hsotg->regs_res);
3213 kfree(hsotg->regs_res);
3214
3215err_mem:
3216 kfree(hsotg);
3217 return ret;
3218}
3219
3220static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3221{
3222 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3223
3224 s3c_hsotg_delete_debug(hsotg);
3225
3226 usb_gadget_unregister_driver(hsotg->driver);
3227
3228 free_irq(hsotg->irq, hsotg);
3229 iounmap(hsotg->regs);
3230
3231 release_resource(hsotg->regs_res);
3232 kfree(hsotg->regs_res);
3233
3234 s3c_hsotg_gate(pdev, false);
3235
3236 kfree(hsotg);
3237 return 0;
3238}
3239
3240#if 1
3241#define s3c_hsotg_suspend NULL
3242#define s3c_hsotg_resume NULL
3243#endif
3244
3245static struct platform_driver s3c_hsotg_driver = {
3246 .driver = {
3247 .name = "s3c-hsotg",
3248 .owner = THIS_MODULE,
3249 },
3250 .probe = s3c_hsotg_probe,
3251 .remove = __devexit_p(s3c_hsotg_remove),
3252 .suspend = s3c_hsotg_suspend,
3253 .resume = s3c_hsotg_resume,
3254};
3255
3256static int __init s3c_hsotg_modinit(void)
3257{
3258 return platform_driver_register(&s3c_hsotg_driver);
3259}
3260
3261static void __exit s3c_hsotg_modexit(void)
3262{
3263 platform_driver_unregister(&s3c_hsotg_driver);
3264}
3265
3266module_init(s3c_hsotg_modinit);
3267module_exit(s3c_hsotg_modexit);
3268
3269MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3270MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3271MODULE_LICENSE("GPL");
3272MODULE_ALIAS("platform:s3c-hsotg");