]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata-eh: implement ata_eh_info and ata_eh_context
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893{
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908}
909
910/**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920void ata_port_flush_task(struct ata_port *ap)
921{
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 951{
77853bf2 952 struct completion *waiting = qc->private_data;
a2a7a662 953
a2a7a662 954 complete(waiting);
a2a7a662
TH
955}
956
957/**
958 * ata_exec_internal - execute libata internal command
a2a7a662
TH
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
d69cf37d 961 * @cdb: CDB for packet command
a2a7a662
TH
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
965 *
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
971 *
972 * LOCKING:
973 * None. Should be called with kernel context, might sleep.
974 */
975
3373efd8 976unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 979{
3373efd8 980 struct ata_port *ap = dev->ap;
a2a7a662
TH
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
2ab7db1f 983 unsigned int tag, preempted_tag;
a2a7a662
TH
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
77853bf2 986 unsigned int err_mask;
d95a717f 987 int rc;
a2a7a662
TH
988
989 spin_lock_irqsave(&ap->host_set->lock, flags);
990
e3180499
TH
991 /* no internal command while frozen */
992 if (ap->flags & ATA_FLAG_FROZEN) {
993 spin_unlock_irqrestore(&ap->host_set->lock, flags);
994 return AC_ERR_SYSTEM;
995 }
996
2ab7db1f 997 /* initialize internal qc */
a2a7a662 998
2ab7db1f
TH
999 /* XXX: Tag 0 is used for drivers with legacy EH as some
1000 * drivers choke if any other tag is given. This breaks
1001 * ata_tag_internal() test for those drivers. Don't use new
1002 * EH stuff without converting to it.
1003 */
1004 if (ap->ops->error_handler)
1005 tag = ATA_TAG_INTERNAL;
1006 else
1007 tag = 0;
1008
1009 if (test_and_set_bit(tag, &ap->qactive))
1010 BUG();
f69499f4 1011 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1012
1013 qc->tag = tag;
1014 qc->scsicmd = NULL;
1015 qc->ap = ap;
1016 qc->dev = dev;
1017 ata_qc_reinit(qc);
1018
1019 preempted_tag = ap->active_tag;
1020 ap->active_tag = ATA_TAG_POISON;
1021
1022 /* prepare & issue qc */
a2a7a662 1023 qc->tf = *tf;
d69cf37d
TH
1024 if (cdb)
1025 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1026 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1027 qc->dma_dir = dma_dir;
1028 if (dma_dir != DMA_NONE) {
1029 ata_sg_init_one(qc, buf, buflen);
1030 qc->nsect = buflen / ATA_SECT_SIZE;
1031 }
1032
77853bf2 1033 qc->private_data = &wait;
a2a7a662
TH
1034 qc->complete_fn = ata_qc_complete_internal;
1035
8e0e694a 1036 ata_qc_issue(qc);
a2a7a662
TH
1037
1038 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1039
d95a717f
TH
1040 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1041
1042 ata_port_flush_task(ap);
41ade50c 1043
d95a717f 1044 if (!rc) {
a2a7a662
TH
1045 spin_lock_irqsave(&ap->host_set->lock, flags);
1046
1047 /* We're racing with irq here. If we lose, the
1048 * following test prevents us from completing the qc
d95a717f
TH
1049 * twice. If we win, the port is frozen and will be
1050 * cleaned up by ->post_internal_cmd().
a2a7a662 1051 */
77853bf2 1052 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1053 qc->err_mask |= AC_ERR_TIMEOUT;
1054
1055 if (ap->ops->error_handler)
1056 ata_port_freeze(ap);
1057 else
1058 ata_qc_complete(qc);
f15a1daf
TH
1059
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1062 }
1063
1064 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1065 }
1066
d95a717f
TH
1067 /* do post_internal_cmd */
1068 if (ap->ops->post_internal_cmd)
1069 ap->ops->post_internal_cmd(qc);
1070
1071 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1072 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1073 "internal command, assuming AC_ERR_OTHER\n");
1074 qc->err_mask |= AC_ERR_OTHER;
1075 }
1076
15869303
TH
1077 /* finish up */
1078 spin_lock_irqsave(&ap->host_set->lock, flags);
1079
e61e0672 1080 *tf = qc->result_tf;
77853bf2
TH
1081 err_mask = qc->err_mask;
1082
1083 ata_qc_free(qc);
2ab7db1f 1084 ap->active_tag = preempted_tag;
77853bf2 1085
1f7dd3e9
TH
1086 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1087 * Until those drivers are fixed, we detect the condition
1088 * here, fail the command with AC_ERR_SYSTEM and reenable the
1089 * port.
1090 *
1091 * Note that this doesn't change any behavior as internal
1092 * command failure results in disabling the device in the
1093 * higher layer for LLDDs without new reset/EH callbacks.
1094 *
1095 * Kill the following code as soon as those drivers are fixed.
1096 */
198e0fed 1097 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1098 err_mask |= AC_ERR_SYSTEM;
1099 ata_port_probe(ap);
1100 }
1101
15869303
TH
1102 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1103
77853bf2 1104 return err_mask;
a2a7a662
TH
1105}
1106
1bc4ccff
AC
1107/**
1108 * ata_pio_need_iordy - check if iordy needed
1109 * @adev: ATA device
1110 *
1111 * Check if the current speed of the device requires IORDY. Used
1112 * by various controllers for chip configuration.
1113 */
1114
1115unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1116{
1117 int pio;
1118 int speed = adev->pio_mode - XFER_PIO_0;
1119
1120 if (speed < 2)
1121 return 0;
1122 if (speed > 2)
1123 return 1;
2e9edbf8 1124
1bc4ccff
AC
1125 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1126
1127 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1128 pio = adev->id[ATA_ID_EIDE_PIO];
1129 /* Is the speed faster than the drive allows non IORDY ? */
1130 if (pio) {
1131 /* This is cycle times not frequency - watch the logic! */
1132 if (pio > 240) /* PIO2 is 240nS per cycle */
1133 return 1;
1134 return 0;
1135 }
1136 }
1137 return 0;
1138}
1139
1da177e4 1140/**
49016aca 1141 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1142 * @dev: target device
1143 * @p_class: pointer to class of the target device (may be changed)
1144 * @post_reset: is this read ID post-reset?
fe635c7e 1145 * @id: buffer to read IDENTIFY data into
1da177e4 1146 *
49016aca
TH
1147 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1148 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1149 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1150 * for pre-ATA4 drives.
1da177e4
LT
1151 *
1152 * LOCKING:
49016aca
TH
1153 * Kernel thread context (may sleep)
1154 *
1155 * RETURNS:
1156 * 0 on success, -errno otherwise.
1da177e4 1157 */
3373efd8
TH
1158static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1159 int post_reset, u16 *id)
1da177e4 1160{
3373efd8 1161 struct ata_port *ap = dev->ap;
49016aca 1162 unsigned int class = *p_class;
a0123703 1163 struct ata_taskfile tf;
49016aca
TH
1164 unsigned int err_mask = 0;
1165 const char *reason;
1166 int rc;
1da177e4 1167
49016aca 1168 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1169
49016aca 1170 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1171
49016aca 1172 retry:
3373efd8 1173 ata_tf_init(dev, &tf);
a0123703 1174
49016aca
TH
1175 switch (class) {
1176 case ATA_DEV_ATA:
a0123703 1177 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1178 break;
1179 case ATA_DEV_ATAPI:
a0123703 1180 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1181 break;
1182 default:
1183 rc = -ENODEV;
1184 reason = "unsupported class";
1185 goto err_out;
1da177e4
LT
1186 }
1187
a0123703 1188 tf.protocol = ATA_PROT_PIO;
1da177e4 1189
3373efd8 1190 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1191 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1192 if (err_mask) {
49016aca
TH
1193 rc = -EIO;
1194 reason = "I/O error";
1da177e4
LT
1195 goto err_out;
1196 }
1197
49016aca 1198 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1199
49016aca 1200 /* sanity check */
692785e7 1201 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1202 rc = -EINVAL;
1203 reason = "device reports illegal type";
1204 goto err_out;
1205 }
1206
1207 if (post_reset && class == ATA_DEV_ATA) {
1208 /*
1209 * The exact sequence expected by certain pre-ATA4 drives is:
1210 * SRST RESET
1211 * IDENTIFY
1212 * INITIALIZE DEVICE PARAMETERS
1213 * anything else..
1214 * Some drives were very specific about that exact sequence.
1215 */
1216 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1217 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1218 if (err_mask) {
1219 rc = -EIO;
1220 reason = "INIT_DEV_PARAMS failed";
1221 goto err_out;
1222 }
1223
1224 /* current CHS translation info (id[53-58]) might be
1225 * changed. reread the identify device info.
1226 */
1227 post_reset = 0;
1228 goto retry;
1229 }
1230 }
1231
1232 *p_class = class;
fe635c7e 1233
49016aca
TH
1234 return 0;
1235
1236 err_out:
f15a1daf
TH
1237 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1238 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1239 return rc;
1240}
1241
3373efd8 1242static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1243{
3373efd8 1244 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1245}
1246
49016aca 1247/**
ffeae418 1248 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1249 * @dev: Target device to configure
4c2d721a 1250 * @print_info: Enable device info printout
ffeae418
TH
1251 *
1252 * Configure @dev according to @dev->id. Generic and low-level
1253 * driver specific fixups are also applied.
49016aca
TH
1254 *
1255 * LOCKING:
ffeae418
TH
1256 * Kernel thread context (may sleep)
1257 *
1258 * RETURNS:
1259 * 0 on success, -errno otherwise
49016aca 1260 */
3373efd8 1261static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1262{
3373efd8 1263 struct ata_port *ap = dev->ap;
1148c3a7 1264 const u16 *id = dev->id;
ff8854b2 1265 unsigned int xfer_mask;
49016aca
TH
1266 int i, rc;
1267
e1211e3f 1268 if (!ata_dev_enabled(dev)) {
49016aca 1269 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1270 ap->id, dev->devno);
1271 return 0;
49016aca
TH
1272 }
1273
ffeae418 1274 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1275
c39f5ebe
TH
1276 /* print device capabilities */
1277 if (print_info)
f15a1daf
TH
1278 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1279 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1280 id[49], id[82], id[83], id[84],
1281 id[85], id[86], id[87], id[88]);
c39f5ebe 1282
208a9933 1283 /* initialize to-be-configured parameters */
ea1dd4e1 1284 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1285 dev->max_sectors = 0;
1286 dev->cdb_len = 0;
1287 dev->n_sectors = 0;
1288 dev->cylinders = 0;
1289 dev->heads = 0;
1290 dev->sectors = 0;
1291
1da177e4
LT
1292 /*
1293 * common ATA, ATAPI feature tests
1294 */
1295
ff8854b2 1296 /* find max transfer mode; for printk only */
1148c3a7 1297 xfer_mask = ata_id_xfermask(id);
1da177e4 1298
1148c3a7 1299 ata_dump_id(id);
1da177e4
LT
1300
1301 /* ATA-specific feature tests */
1302 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1303 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1304
1148c3a7 1305 if (ata_id_has_lba(id)) {
4c2d721a 1306 const char *lba_desc;
8bf62ece 1307
4c2d721a
TH
1308 lba_desc = "LBA";
1309 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1310 if (ata_id_has_lba48(id)) {
8bf62ece 1311 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1312 lba_desc = "LBA48";
1313 }
8bf62ece
AL
1314
1315 /* print device info to dmesg */
4c2d721a 1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1318 "max %s, %Lu sectors: %s\n",
1319 ata_id_major_version(id),
1320 ata_mode_string(xfer_mask),
1321 (unsigned long long)dev->n_sectors,
1322 lba_desc);
ffeae418 1323 } else {
8bf62ece
AL
1324 /* CHS */
1325
1326 /* Default translation */
1148c3a7
TH
1327 dev->cylinders = id[1];
1328 dev->heads = id[3];
1329 dev->sectors = id[6];
8bf62ece 1330
1148c3a7 1331 if (ata_id_current_chs_valid(id)) {
8bf62ece 1332 /* Current CHS translation is valid. */
1148c3a7
TH
1333 dev->cylinders = id[54];
1334 dev->heads = id[55];
1335 dev->sectors = id[56];
8bf62ece
AL
1336 }
1337
1338 /* print device info to dmesg */
4c2d721a 1339 if (print_info)
f15a1daf
TH
1340 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1341 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1342 ata_id_major_version(id),
1343 ata_mode_string(xfer_mask),
1344 (unsigned long long)dev->n_sectors,
1345 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1346 }
1347
6e7846e9 1348 dev->cdb_len = 16;
1da177e4
LT
1349 }
1350
1351 /* ATAPI-specific feature tests */
2c13b7ce 1352 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1353 rc = atapi_cdb_len(id);
1da177e4 1354 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1355 ata_dev_printk(dev, KERN_WARNING,
1356 "unsupported CDB len\n");
ffeae418 1357 rc = -EINVAL;
1da177e4
LT
1358 goto err_out_nosup;
1359 }
6e7846e9 1360 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1361
1362 /* print device info to dmesg */
4c2d721a 1363 if (print_info)
f15a1daf
TH
1364 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s\n",
1365 ata_mode_string(xfer_mask));
1da177e4
LT
1366 }
1367
6e7846e9
TH
1368 ap->host->max_cmd_len = 0;
1369 for (i = 0; i < ATA_MAX_DEVICES; i++)
1370 ap->host->max_cmd_len = max_t(unsigned int,
1371 ap->host->max_cmd_len,
1372 ap->device[i].cdb_len);
1373
4b2f3ede 1374 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1375 if (ata_dev_knobble(dev)) {
4c2d721a 1376 if (print_info)
f15a1daf
TH
1377 ata_dev_printk(dev, KERN_INFO,
1378 "applying bridge limits\n");
5a529139 1379 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1380 dev->max_sectors = ATA_MAX_SECTORS;
1381 }
1382
1383 if (ap->ops->dev_config)
1384 ap->ops->dev_config(ap, dev);
1385
1da177e4 1386 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1387 return 0;
1da177e4
LT
1388
1389err_out_nosup:
1da177e4 1390 DPRINTK("EXIT, err\n");
ffeae418 1391 return rc;
1da177e4
LT
1392}
1393
1394/**
1395 * ata_bus_probe - Reset and probe ATA bus
1396 * @ap: Bus to probe
1397 *
0cba632b
JG
1398 * Master ATA bus probing function. Initiates a hardware-dependent
1399 * bus reset, then attempts to identify any devices found on
1400 * the bus.
1401 *
1da177e4 1402 * LOCKING:
0cba632b 1403 * PCI/etc. bus probe sem.
1da177e4
LT
1404 *
1405 * RETURNS:
96072e69 1406 * Zero on success, negative errno otherwise.
1da177e4
LT
1407 */
1408
1409static int ata_bus_probe(struct ata_port *ap)
1410{
28ca5c57 1411 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1412 int tries[ATA_MAX_DEVICES];
1413 int i, rc, down_xfermask;
e82cbdb9 1414 struct ata_device *dev;
1da177e4 1415
28ca5c57 1416 ata_port_probe(ap);
c19ba8af 1417
14d2bac1
TH
1418 for (i = 0; i < ATA_MAX_DEVICES; i++)
1419 tries[i] = ATA_PROBE_MAX_TRIES;
1420
1421 retry:
1422 down_xfermask = 0;
1423
2044470c
TH
1424 /* reset and determine device classes */
1425 for (i = 0; i < ATA_MAX_DEVICES; i++)
1426 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1427
2044470c 1428 if (ap->ops->probe_reset) {
c19ba8af 1429 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1430 if (rc) {
f15a1daf
TH
1431 ata_port_printk(ap, KERN_ERR,
1432 "reset failed (errno=%d)\n", rc);
28ca5c57 1433 return rc;
c19ba8af 1434 }
28ca5c57 1435 } else {
c19ba8af
TH
1436 ap->ops->phy_reset(ap);
1437
f8c2c420
TH
1438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1439 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1440 classes[i] = ap->device[i].class;
f8c2c420
TH
1441 ap->device[i].class = ATA_DEV_UNKNOWN;
1442 }
2044470c 1443
28ca5c57
TH
1444 ata_port_probe(ap);
1445 }
1da177e4 1446
2044470c
TH
1447 for (i = 0; i < ATA_MAX_DEVICES; i++)
1448 if (classes[i] == ATA_DEV_UNKNOWN)
1449 classes[i] = ATA_DEV_NONE;
1450
28ca5c57 1451 /* read IDENTIFY page and configure devices */
1da177e4 1452 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1453 dev = &ap->device[i];
28ca5c57 1454
ec573755
TH
1455 if (tries[i])
1456 dev->class = classes[i];
ffeae418 1457
14d2bac1 1458 if (!ata_dev_enabled(dev))
ffeae418 1459 continue;
ffeae418 1460
3373efd8 1461 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1462 if (rc)
1463 goto fail;
1464
3373efd8 1465 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1466 if (rc)
1467 goto fail;
1da177e4
LT
1468 }
1469
e82cbdb9 1470 /* configure transfer mode */
3adcebb2 1471 rc = ata_set_mode(ap, &dev);
51713d35
TH
1472 if (rc) {
1473 down_xfermask = 1;
1474 goto fail;
e82cbdb9 1475 }
1da177e4 1476
e82cbdb9
TH
1477 for (i = 0; i < ATA_MAX_DEVICES; i++)
1478 if (ata_dev_enabled(&ap->device[i]))
1479 return 0;
1da177e4 1480
e82cbdb9
TH
1481 /* no device present, disable port */
1482 ata_port_disable(ap);
1da177e4 1483 ap->ops->port_disable(ap);
96072e69 1484 return -ENODEV;
14d2bac1
TH
1485
1486 fail:
1487 switch (rc) {
1488 case -EINVAL:
1489 case -ENODEV:
1490 tries[dev->devno] = 0;
1491 break;
1492 case -EIO:
3c567b7d 1493 sata_down_spd_limit(ap);
14d2bac1
TH
1494 /* fall through */
1495 default:
1496 tries[dev->devno]--;
1497 if (down_xfermask &&
3373efd8 1498 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1499 tries[dev->devno] = 0;
1500 }
1501
ec573755 1502 if (!tries[dev->devno]) {
3373efd8
TH
1503 ata_down_xfermask_limit(dev, 1);
1504 ata_dev_disable(dev);
ec573755
TH
1505 }
1506
14d2bac1 1507 goto retry;
1da177e4
LT
1508}
1509
1510/**
0cba632b
JG
1511 * ata_port_probe - Mark port as enabled
1512 * @ap: Port for which we indicate enablement
1da177e4 1513 *
0cba632b
JG
1514 * Modify @ap data structure such that the system
1515 * thinks that the entire port is enabled.
1516 *
1517 * LOCKING: host_set lock, or some other form of
1518 * serialization.
1da177e4
LT
1519 */
1520
1521void ata_port_probe(struct ata_port *ap)
1522{
198e0fed 1523 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1524}
1525
3be680b7
TH
1526/**
1527 * sata_print_link_status - Print SATA link status
1528 * @ap: SATA port to printk link status about
1529 *
1530 * This function prints link speed and status of a SATA link.
1531 *
1532 * LOCKING:
1533 * None.
1534 */
1535static void sata_print_link_status(struct ata_port *ap)
1536{
6d5f9732 1537 u32 sstatus, scontrol, tmp;
3be680b7 1538
81952c54 1539 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1540 return;
81952c54 1541 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1542
81952c54 1543 if (ata_port_online(ap)) {
3be680b7 1544 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1545 ata_port_printk(ap, KERN_INFO,
1546 "SATA link up %s (SStatus %X SControl %X)\n",
1547 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1548 } else {
f15a1daf
TH
1549 ata_port_printk(ap, KERN_INFO,
1550 "SATA link down (SStatus %X SControl %X)\n",
1551 sstatus, scontrol);
3be680b7
TH
1552 }
1553}
1554
1da177e4 1555/**
780a87f7
JG
1556 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1557 * @ap: SATA port associated with target SATA PHY.
1da177e4 1558 *
780a87f7
JG
1559 * This function issues commands to standard SATA Sxxx
1560 * PHY registers, to wake up the phy (and device), and
1561 * clear any reset condition.
1da177e4
LT
1562 *
1563 * LOCKING:
0cba632b 1564 * PCI/etc. bus probe sem.
1da177e4
LT
1565 *
1566 */
1567void __sata_phy_reset(struct ata_port *ap)
1568{
1569 u32 sstatus;
1570 unsigned long timeout = jiffies + (HZ * 5);
1571
1572 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1573 /* issue phy wake/reset */
81952c54 1574 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1575 /* Couldn't find anything in SATA I/II specs, but
1576 * AHCI-1.1 10.4.2 says at least 1 ms. */
1577 mdelay(1);
1da177e4 1578 }
81952c54
TH
1579 /* phy wake/clear reset */
1580 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1581
1582 /* wait for phy to become ready, if necessary */
1583 do {
1584 msleep(200);
81952c54 1585 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1586 if ((sstatus & 0xf) != 1)
1587 break;
1588 } while (time_before(jiffies, timeout));
1589
3be680b7
TH
1590 /* print link status */
1591 sata_print_link_status(ap);
656563e3 1592
3be680b7 1593 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1594 if (!ata_port_offline(ap))
1da177e4 1595 ata_port_probe(ap);
3be680b7 1596 else
1da177e4 1597 ata_port_disable(ap);
1da177e4 1598
198e0fed 1599 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1600 return;
1601
1602 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1603 ata_port_disable(ap);
1604 return;
1605 }
1606
1607 ap->cbl = ATA_CBL_SATA;
1608}
1609
1610/**
780a87f7
JG
1611 * sata_phy_reset - Reset SATA bus.
1612 * @ap: SATA port associated with target SATA PHY.
1da177e4 1613 *
780a87f7
JG
1614 * This function resets the SATA bus, and then probes
1615 * the bus for devices.
1da177e4
LT
1616 *
1617 * LOCKING:
0cba632b 1618 * PCI/etc. bus probe sem.
1da177e4
LT
1619 *
1620 */
1621void sata_phy_reset(struct ata_port *ap)
1622{
1623 __sata_phy_reset(ap);
198e0fed 1624 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1625 return;
1626 ata_bus_reset(ap);
1627}
1628
ebdfca6e
AC
1629/**
1630 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1631 * @adev: device
1632 *
1633 * Obtain the other device on the same cable, or if none is
1634 * present NULL is returned
1635 */
2e9edbf8 1636
3373efd8 1637struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1638{
3373efd8 1639 struct ata_port *ap = adev->ap;
ebdfca6e 1640 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1641 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1642 return NULL;
1643 return pair;
1644}
1645
1da177e4 1646/**
780a87f7
JG
1647 * ata_port_disable - Disable port.
1648 * @ap: Port to be disabled.
1da177e4 1649 *
780a87f7
JG
1650 * Modify @ap data structure such that the system
1651 * thinks that the entire port is disabled, and should
1652 * never attempt to probe or communicate with devices
1653 * on this port.
1654 *
1655 * LOCKING: host_set lock, or some other form of
1656 * serialization.
1da177e4
LT
1657 */
1658
1659void ata_port_disable(struct ata_port *ap)
1660{
1661 ap->device[0].class = ATA_DEV_NONE;
1662 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1663 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1664}
1665
1c3fae4d 1666/**
3c567b7d 1667 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1668 * @ap: Port to adjust SATA spd limit for
1669 *
1670 * Adjust SATA spd limit of @ap downward. Note that this
1671 * function only adjusts the limit. The change must be applied
3c567b7d 1672 * using sata_set_spd().
1c3fae4d
TH
1673 *
1674 * LOCKING:
1675 * Inherited from caller.
1676 *
1677 * RETURNS:
1678 * 0 on success, negative errno on failure
1679 */
3c567b7d 1680int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1681{
81952c54
TH
1682 u32 sstatus, spd, mask;
1683 int rc, highbit;
1c3fae4d 1684
81952c54
TH
1685 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1686 if (rc)
1687 return rc;
1c3fae4d
TH
1688
1689 mask = ap->sata_spd_limit;
1690 if (mask <= 1)
1691 return -EINVAL;
1692 highbit = fls(mask) - 1;
1693 mask &= ~(1 << highbit);
1694
81952c54 1695 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1696 if (spd <= 1)
1697 return -EINVAL;
1698 spd--;
1699 mask &= (1 << spd) - 1;
1700 if (!mask)
1701 return -EINVAL;
1702
1703 ap->sata_spd_limit = mask;
1704
f15a1daf
TH
1705 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1706 sata_spd_string(fls(mask)));
1c3fae4d
TH
1707
1708 return 0;
1709}
1710
3c567b7d 1711static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1712{
1713 u32 spd, limit;
1714
1715 if (ap->sata_spd_limit == UINT_MAX)
1716 limit = 0;
1717 else
1718 limit = fls(ap->sata_spd_limit);
1719
1720 spd = (*scontrol >> 4) & 0xf;
1721 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1722
1723 return spd != limit;
1724}
1725
1726/**
3c567b7d 1727 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1728 * @ap: Port in question
1729 *
1730 * Test whether the spd limit in SControl matches
1731 * @ap->sata_spd_limit. This function is used to determine
1732 * whether hardreset is necessary to apply SATA spd
1733 * configuration.
1734 *
1735 * LOCKING:
1736 * Inherited from caller.
1737 *
1738 * RETURNS:
1739 * 1 if SATA spd configuration is needed, 0 otherwise.
1740 */
3c567b7d 1741int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1742{
1743 u32 scontrol;
1744
81952c54 1745 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1746 return 0;
1747
3c567b7d 1748 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1749}
1750
1751/**
3c567b7d 1752 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1753 * @ap: Port to set SATA spd for
1754 *
1755 * Set SATA spd of @ap according to sata_spd_limit.
1756 *
1757 * LOCKING:
1758 * Inherited from caller.
1759 *
1760 * RETURNS:
1761 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1762 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1763 */
3c567b7d 1764int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1765{
1766 u32 scontrol;
81952c54 1767 int rc;
1c3fae4d 1768
81952c54
TH
1769 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1770 return rc;
1c3fae4d 1771
3c567b7d 1772 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1773 return 0;
1774
81952c54
TH
1775 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1776 return rc;
1777
1c3fae4d
TH
1778 return 1;
1779}
1780
452503f9
AC
1781/*
1782 * This mode timing computation functionality is ported over from
1783 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1784 */
1785/*
1786 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1787 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1788 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1789 * is currently supported only by Maxtor drives.
452503f9
AC
1790 */
1791
1792static const struct ata_timing ata_timing[] = {
1793
1794 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1795 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1796 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1797 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1798
1799 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1800 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1801 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1802
1803/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1804
452503f9
AC
1805 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1806 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1807 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1808
452503f9
AC
1809 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1810 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1811 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1812
1813/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1814 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1815 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1816
1817 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1818 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1819 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1820
1821/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1822
1823 { 0xFF }
1824};
1825
1826#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1827#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1828
1829static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1830{
1831 q->setup = EZ(t->setup * 1000, T);
1832 q->act8b = EZ(t->act8b * 1000, T);
1833 q->rec8b = EZ(t->rec8b * 1000, T);
1834 q->cyc8b = EZ(t->cyc8b * 1000, T);
1835 q->active = EZ(t->active * 1000, T);
1836 q->recover = EZ(t->recover * 1000, T);
1837 q->cycle = EZ(t->cycle * 1000, T);
1838 q->udma = EZ(t->udma * 1000, UT);
1839}
1840
1841void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1842 struct ata_timing *m, unsigned int what)
1843{
1844 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1845 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1846 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1847 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1848 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1849 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1850 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1851 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1852}
1853
1854static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1855{
1856 const struct ata_timing *t;
1857
1858 for (t = ata_timing; t->mode != speed; t++)
91190758 1859 if (t->mode == 0xFF)
452503f9 1860 return NULL;
2e9edbf8 1861 return t;
452503f9
AC
1862}
1863
1864int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1865 struct ata_timing *t, int T, int UT)
1866{
1867 const struct ata_timing *s;
1868 struct ata_timing p;
1869
1870 /*
2e9edbf8 1871 * Find the mode.
75b1f2f8 1872 */
452503f9
AC
1873
1874 if (!(s = ata_timing_find_mode(speed)))
1875 return -EINVAL;
1876
75b1f2f8
AL
1877 memcpy(t, s, sizeof(*s));
1878
452503f9
AC
1879 /*
1880 * If the drive is an EIDE drive, it can tell us it needs extended
1881 * PIO/MW_DMA cycle timing.
1882 */
1883
1884 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1885 memset(&p, 0, sizeof(p));
1886 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1887 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1888 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1889 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1890 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1891 }
1892 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1893 }
1894
1895 /*
1896 * Convert the timing to bus clock counts.
1897 */
1898
75b1f2f8 1899 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1900
1901 /*
c893a3ae
RD
1902 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1903 * S.M.A.R.T * and some other commands. We have to ensure that the
1904 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1905 */
1906
1907 if (speed > XFER_PIO_4) {
1908 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1909 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1910 }
1911
1912 /*
c893a3ae 1913 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1914 */
1915
1916 if (t->act8b + t->rec8b < t->cyc8b) {
1917 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1918 t->rec8b = t->cyc8b - t->act8b;
1919 }
1920
1921 if (t->active + t->recover < t->cycle) {
1922 t->active += (t->cycle - (t->active + t->recover)) / 2;
1923 t->recover = t->cycle - t->active;
1924 }
1925
1926 return 0;
1927}
1928
cf176e1a
TH
1929/**
1930 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1931 * @dev: Device to adjust xfer masks
1932 * @force_pio0: Force PIO0
1933 *
1934 * Adjust xfer masks of @dev downward. Note that this function
1935 * does not apply the change. Invoking ata_set_mode() afterwards
1936 * will apply the limit.
1937 *
1938 * LOCKING:
1939 * Inherited from caller.
1940 *
1941 * RETURNS:
1942 * 0 on success, negative errno on failure
1943 */
3373efd8 1944int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1945{
1946 unsigned long xfer_mask;
1947 int highbit;
1948
1949 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1950 dev->udma_mask);
1951
1952 if (!xfer_mask)
1953 goto fail;
1954 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1955 if (xfer_mask & ATA_MASK_UDMA)
1956 xfer_mask &= ~ATA_MASK_MWDMA;
1957
1958 highbit = fls(xfer_mask) - 1;
1959 xfer_mask &= ~(1 << highbit);
1960 if (force_pio0)
1961 xfer_mask &= 1 << ATA_SHIFT_PIO;
1962 if (!xfer_mask)
1963 goto fail;
1964
1965 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1966 &dev->udma_mask);
1967
f15a1daf
TH
1968 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1969 ata_mode_string(xfer_mask));
cf176e1a
TH
1970
1971 return 0;
1972
1973 fail:
1974 return -EINVAL;
1975}
1976
3373efd8 1977static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 1978{
83206a29
TH
1979 unsigned int err_mask;
1980 int rc;
1da177e4 1981
e8384607 1982 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1983 if (dev->xfer_shift == ATA_SHIFT_PIO)
1984 dev->flags |= ATA_DFLAG_PIO;
1985
3373efd8 1986 err_mask = ata_dev_set_xfermode(dev);
83206a29 1987 if (err_mask) {
f15a1daf
TH
1988 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
1989 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
1990 return -EIO;
1991 }
1da177e4 1992
3373efd8 1993 rc = ata_dev_revalidate(dev, 0);
5eb45c02 1994 if (rc)
83206a29 1995 return rc;
48a8a14f 1996
23e71c3d
TH
1997 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1998 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 1999
f15a1daf
TH
2000 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2001 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2002 return 0;
1da177e4
LT
2003}
2004
1da177e4
LT
2005/**
2006 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2007 * @ap: port on which timings will be programmed
e82cbdb9 2008 * @r_failed_dev: out paramter for failed device
1da177e4 2009 *
e82cbdb9
TH
2010 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2011 * ata_set_mode() fails, pointer to the failing device is
2012 * returned in @r_failed_dev.
780a87f7 2013 *
1da177e4 2014 * LOCKING:
0cba632b 2015 * PCI/etc. bus probe sem.
e82cbdb9
TH
2016 *
2017 * RETURNS:
2018 * 0 on success, negative errno otherwise
1da177e4 2019 */
1ad8e7f9 2020int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2021{
e8e0619f 2022 struct ata_device *dev;
e82cbdb9 2023 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2024
3adcebb2
TH
2025 /* has private set_mode? */
2026 if (ap->ops->set_mode) {
2027 /* FIXME: make ->set_mode handle no device case and
2028 * return error code and failing device on failure.
2029 */
2030 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2031 if (ata_dev_enabled(&ap->device[i])) {
2032 ap->ops->set_mode(ap);
2033 break;
2034 }
2035 }
2036 return 0;
2037 }
2038
a6d5a51c
TH
2039 /* step 1: calculate xfer_mask */
2040 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2041 unsigned int pio_mask, dma_mask;
a6d5a51c 2042
e8e0619f
TH
2043 dev = &ap->device[i];
2044
e1211e3f 2045 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2046 continue;
2047
3373efd8 2048 ata_dev_xfermask(dev);
1da177e4 2049
acf356b1
TH
2050 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2051 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2052 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2053 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2054
4f65977d 2055 found = 1;
5444a6f4
AC
2056 if (dev->dma_mode)
2057 used_dma = 1;
a6d5a51c 2058 }
4f65977d 2059 if (!found)
e82cbdb9 2060 goto out;
a6d5a51c
TH
2061
2062 /* step 2: always set host PIO timings */
e8e0619f
TH
2063 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2064 dev = &ap->device[i];
2065 if (!ata_dev_enabled(dev))
2066 continue;
2067
2068 if (!dev->pio_mode) {
f15a1daf 2069 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2070 rc = -EINVAL;
e82cbdb9 2071 goto out;
e8e0619f
TH
2072 }
2073
2074 dev->xfer_mode = dev->pio_mode;
2075 dev->xfer_shift = ATA_SHIFT_PIO;
2076 if (ap->ops->set_piomode)
2077 ap->ops->set_piomode(ap, dev);
2078 }
1da177e4 2079
a6d5a51c 2080 /* step 3: set host DMA timings */
e8e0619f
TH
2081 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2082 dev = &ap->device[i];
2083
2084 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2085 continue;
2086
2087 dev->xfer_mode = dev->dma_mode;
2088 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2089 if (ap->ops->set_dmamode)
2090 ap->ops->set_dmamode(ap, dev);
2091 }
1da177e4
LT
2092
2093 /* step 4: update devices' xfer mode */
83206a29 2094 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2095 dev = &ap->device[i];
1da177e4 2096
e1211e3f 2097 if (!ata_dev_enabled(dev))
83206a29
TH
2098 continue;
2099
3373efd8 2100 rc = ata_dev_set_mode(dev);
5bbc53f4 2101 if (rc)
e82cbdb9 2102 goto out;
83206a29 2103 }
1da177e4 2104
e8e0619f
TH
2105 /* Record simplex status. If we selected DMA then the other
2106 * host channels are not permitted to do so.
5444a6f4 2107 */
5444a6f4
AC
2108 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2109 ap->host_set->simplex_claimed = 1;
2110
e8e0619f 2111 /* step5: chip specific finalisation */
1da177e4
LT
2112 if (ap->ops->post_set_mode)
2113 ap->ops->post_set_mode(ap);
2114
e82cbdb9
TH
2115 out:
2116 if (rc)
2117 *r_failed_dev = dev;
2118 return rc;
1da177e4
LT
2119}
2120
1fdffbce
JG
2121/**
2122 * ata_tf_to_host - issue ATA taskfile to host controller
2123 * @ap: port to which command is being issued
2124 * @tf: ATA taskfile register set
2125 *
2126 * Issues ATA taskfile register set to ATA host controller,
2127 * with proper synchronization with interrupt handler and
2128 * other threads.
2129 *
2130 * LOCKING:
2131 * spin_lock_irqsave(host_set lock)
2132 */
2133
2134static inline void ata_tf_to_host(struct ata_port *ap,
2135 const struct ata_taskfile *tf)
2136{
2137 ap->ops->tf_load(ap, tf);
2138 ap->ops->exec_command(ap, tf);
2139}
2140
1da177e4
LT
2141/**
2142 * ata_busy_sleep - sleep until BSY clears, or timeout
2143 * @ap: port containing status register to be polled
2144 * @tmout_pat: impatience timeout
2145 * @tmout: overall timeout
2146 *
780a87f7
JG
2147 * Sleep until ATA Status register bit BSY clears,
2148 * or a timeout occurs.
2149 *
2150 * LOCKING: None.
1da177e4
LT
2151 */
2152
6f8b9958
TH
2153unsigned int ata_busy_sleep (struct ata_port *ap,
2154 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2155{
2156 unsigned long timer_start, timeout;
2157 u8 status;
2158
2159 status = ata_busy_wait(ap, ATA_BUSY, 300);
2160 timer_start = jiffies;
2161 timeout = timer_start + tmout_pat;
2162 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2163 msleep(50);
2164 status = ata_busy_wait(ap, ATA_BUSY, 3);
2165 }
2166
2167 if (status & ATA_BUSY)
f15a1daf
TH
2168 ata_port_printk(ap, KERN_WARNING,
2169 "port is slow to respond, please be patient\n");
1da177e4
LT
2170
2171 timeout = timer_start + tmout;
2172 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2173 msleep(50);
2174 status = ata_chk_status(ap);
2175 }
2176
2177 if (status & ATA_BUSY) {
f15a1daf
TH
2178 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2179 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2180 return 1;
2181 }
2182
2183 return 0;
2184}
2185
2186static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2187{
2188 struct ata_ioports *ioaddr = &ap->ioaddr;
2189 unsigned int dev0 = devmask & (1 << 0);
2190 unsigned int dev1 = devmask & (1 << 1);
2191 unsigned long timeout;
2192
2193 /* if device 0 was found in ata_devchk, wait for its
2194 * BSY bit to clear
2195 */
2196 if (dev0)
2197 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2198
2199 /* if device 1 was found in ata_devchk, wait for
2200 * register access, then wait for BSY to clear
2201 */
2202 timeout = jiffies + ATA_TMOUT_BOOT;
2203 while (dev1) {
2204 u8 nsect, lbal;
2205
2206 ap->ops->dev_select(ap, 1);
2207 if (ap->flags & ATA_FLAG_MMIO) {
2208 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2209 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2210 } else {
2211 nsect = inb(ioaddr->nsect_addr);
2212 lbal = inb(ioaddr->lbal_addr);
2213 }
2214 if ((nsect == 1) && (lbal == 1))
2215 break;
2216 if (time_after(jiffies, timeout)) {
2217 dev1 = 0;
2218 break;
2219 }
2220 msleep(50); /* give drive a breather */
2221 }
2222 if (dev1)
2223 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2224
2225 /* is all this really necessary? */
2226 ap->ops->dev_select(ap, 0);
2227 if (dev1)
2228 ap->ops->dev_select(ap, 1);
2229 if (dev0)
2230 ap->ops->dev_select(ap, 0);
2231}
2232
1da177e4
LT
2233static unsigned int ata_bus_softreset(struct ata_port *ap,
2234 unsigned int devmask)
2235{
2236 struct ata_ioports *ioaddr = &ap->ioaddr;
2237
2238 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2239
2240 /* software reset. causes dev0 to be selected */
2241 if (ap->flags & ATA_FLAG_MMIO) {
2242 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2243 udelay(20); /* FIXME: flush */
2244 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2245 udelay(20); /* FIXME: flush */
2246 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2247 } else {
2248 outb(ap->ctl, ioaddr->ctl_addr);
2249 udelay(10);
2250 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2251 udelay(10);
2252 outb(ap->ctl, ioaddr->ctl_addr);
2253 }
2254
2255 /* spec mandates ">= 2ms" before checking status.
2256 * We wait 150ms, because that was the magic delay used for
2257 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2258 * between when the ATA command register is written, and then
2259 * status is checked. Because waiting for "a while" before
2260 * checking status is fine, post SRST, we perform this magic
2261 * delay here as well.
09c7ad79
AC
2262 *
2263 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2264 */
2265 msleep(150);
2266
2e9edbf8 2267 /* Before we perform post reset processing we want to see if
298a41ca
TH
2268 * the bus shows 0xFF because the odd clown forgets the D7
2269 * pulldown resistor.
2270 */
987d2f05 2271 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2272 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2273 return AC_ERR_OTHER;
987d2f05 2274 }
09c7ad79 2275
1da177e4
LT
2276 ata_bus_post_reset(ap, devmask);
2277
2278 return 0;
2279}
2280
2281/**
2282 * ata_bus_reset - reset host port and associated ATA channel
2283 * @ap: port to reset
2284 *
2285 * This is typically the first time we actually start issuing
2286 * commands to the ATA channel. We wait for BSY to clear, then
2287 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2288 * result. Determine what devices, if any, are on the channel
2289 * by looking at the device 0/1 error register. Look at the signature
2290 * stored in each device's taskfile registers, to determine if
2291 * the device is ATA or ATAPI.
2292 *
2293 * LOCKING:
0cba632b
JG
2294 * PCI/etc. bus probe sem.
2295 * Obtains host_set lock.
1da177e4
LT
2296 *
2297 * SIDE EFFECTS:
198e0fed 2298 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2299 */
2300
2301void ata_bus_reset(struct ata_port *ap)
2302{
2303 struct ata_ioports *ioaddr = &ap->ioaddr;
2304 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2305 u8 err;
aec5c3c1 2306 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2307
2308 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2309
2310 /* determine if device 0/1 are present */
2311 if (ap->flags & ATA_FLAG_SATA_RESET)
2312 dev0 = 1;
2313 else {
2314 dev0 = ata_devchk(ap, 0);
2315 if (slave_possible)
2316 dev1 = ata_devchk(ap, 1);
2317 }
2318
2319 if (dev0)
2320 devmask |= (1 << 0);
2321 if (dev1)
2322 devmask |= (1 << 1);
2323
2324 /* select device 0 again */
2325 ap->ops->dev_select(ap, 0);
2326
2327 /* issue bus reset */
2328 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2329 if (ata_bus_softreset(ap, devmask))
2330 goto err_out;
1da177e4
LT
2331
2332 /*
2333 * determine by signature whether we have ATA or ATAPI devices
2334 */
b4dc7623 2335 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2336 if ((slave_possible) && (err != 0x81))
b4dc7623 2337 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2338
2339 /* re-enable interrupts */
2340 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2341 ata_irq_on(ap);
2342
2343 /* is double-select really necessary? */
2344 if (ap->device[1].class != ATA_DEV_NONE)
2345 ap->ops->dev_select(ap, 1);
2346 if (ap->device[0].class != ATA_DEV_NONE)
2347 ap->ops->dev_select(ap, 0);
2348
2349 /* if no devices were detected, disable this port */
2350 if ((ap->device[0].class == ATA_DEV_NONE) &&
2351 (ap->device[1].class == ATA_DEV_NONE))
2352 goto err_out;
2353
2354 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2355 /* set up device control for ATA_FLAG_SATA_RESET */
2356 if (ap->flags & ATA_FLAG_MMIO)
2357 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2358 else
2359 outb(ap->ctl, ioaddr->ctl_addr);
2360 }
2361
2362 DPRINTK("EXIT\n");
2363 return;
2364
2365err_out:
f15a1daf 2366 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2367 ap->ops->port_disable(ap);
2368
2369 DPRINTK("EXIT\n");
2370}
2371
7a7921e8
TH
2372static int sata_phy_resume(struct ata_port *ap)
2373{
2374 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2375 u32 scontrol, sstatus;
81952c54
TH
2376 int rc;
2377
2378 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2379 return rc;
7a7921e8 2380
852ee16a 2381 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2382
2383 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2384 return rc;
7a7921e8
TH
2385
2386 /* Wait for phy to become ready, if necessary. */
2387 do {
2388 msleep(200);
81952c54
TH
2389 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2390 return rc;
7a7921e8
TH
2391 if ((sstatus & 0xf) != 1)
2392 return 0;
2393 } while (time_before(jiffies, timeout));
2394
81952c54 2395 return -EBUSY;
7a7921e8
TH
2396}
2397
8a19ac89
TH
2398/**
2399 * ata_std_probeinit - initialize probing
2400 * @ap: port to be probed
2401 *
2402 * @ap is about to be probed. Initialize it. This function is
2403 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2404 *
2405 * NOTE!!! Do not use this function as probeinit if a low level
2406 * driver implements only hardreset. Just pass NULL as probeinit
2407 * in that case. Using this function is probably okay but doing
2408 * so makes reset sequence different from the original
2409 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2410 */
17efc5f7 2411void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2412{
81952c54 2413 u32 scontrol;
1c3fae4d 2414
81952c54
TH
2415 /* resume link */
2416 sata_phy_resume(ap);
1c3fae4d 2417
81952c54
TH
2418 /* init sata_spd_limit to the current value */
2419 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2420 int spd = (scontrol >> 4) & 0xf;
2421 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2422 }
81952c54
TH
2423
2424 /* wait for device */
2425 if (ata_port_online(ap))
2426 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2427}
2428
c2bd5804
TH
2429/**
2430 * ata_std_softreset - reset host port via ATA SRST
2431 * @ap: port to reset
c2bd5804
TH
2432 * @classes: resulting classes of attached devices
2433 *
2434 * Reset host port using ATA SRST. This function is to be used
2435 * as standard callback for ata_drive_*_reset() functions.
2436 *
2437 * LOCKING:
2438 * Kernel thread context (may sleep)
2439 *
2440 * RETURNS:
2441 * 0 on success, -errno otherwise.
2442 */
2bf2cb26 2443int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2444{
2445 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2446 unsigned int devmask = 0, err_mask;
2447 u8 err;
2448
2449 DPRINTK("ENTER\n");
2450
81952c54 2451 if (ata_port_offline(ap)) {
3a39746a
TH
2452 classes[0] = ATA_DEV_NONE;
2453 goto out;
2454 }
2455
c2bd5804
TH
2456 /* determine if device 0/1 are present */
2457 if (ata_devchk(ap, 0))
2458 devmask |= (1 << 0);
2459 if (slave_possible && ata_devchk(ap, 1))
2460 devmask |= (1 << 1);
2461
c2bd5804
TH
2462 /* select device 0 again */
2463 ap->ops->dev_select(ap, 0);
2464
2465 /* issue bus reset */
2466 DPRINTK("about to softreset, devmask=%x\n", devmask);
2467 err_mask = ata_bus_softreset(ap, devmask);
2468 if (err_mask) {
f15a1daf
TH
2469 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2470 err_mask);
c2bd5804
TH
2471 return -EIO;
2472 }
2473
2474 /* determine by signature whether we have ATA or ATAPI devices */
2475 classes[0] = ata_dev_try_classify(ap, 0, &err);
2476 if (slave_possible && err != 0x81)
2477 classes[1] = ata_dev_try_classify(ap, 1, &err);
2478
3a39746a 2479 out:
c2bd5804
TH
2480 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2481 return 0;
2482}
2483
2484/**
2485 * sata_std_hardreset - reset host port via SATA phy reset
2486 * @ap: port to reset
c2bd5804
TH
2487 * @class: resulting class of attached device
2488 *
2489 * SATA phy-reset host port using DET bits of SControl register.
2490 * This function is to be used as standard callback for
2491 * ata_drive_*_reset().
2492 *
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2495 *
2496 * RETURNS:
2497 * 0 on success, -errno otherwise.
2498 */
2bf2cb26 2499int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2500{
852ee16a 2501 u32 scontrol;
81952c54 2502 int rc;
852ee16a 2503
c2bd5804
TH
2504 DPRINTK("ENTER\n");
2505
3c567b7d 2506 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2507 /* SATA spec says nothing about how to reconfigure
2508 * spd. To be on the safe side, turn off phy during
2509 * reconfiguration. This works for at least ICH7 AHCI
2510 * and Sil3124.
2511 */
81952c54
TH
2512 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2513 return rc;
2514
1c3fae4d 2515 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2516
2517 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2518 return rc;
1c3fae4d 2519
3c567b7d 2520 sata_set_spd(ap);
1c3fae4d
TH
2521 }
2522
2523 /* issue phy wake/reset */
81952c54
TH
2524 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2525 return rc;
2526
852ee16a 2527 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2528
2529 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2530 return rc;
c2bd5804 2531
1c3fae4d 2532 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2533 * 10.4.2 says at least 1 ms.
2534 */
2535 msleep(1);
2536
1c3fae4d 2537 /* bring phy back */
7a7921e8 2538 sata_phy_resume(ap);
c2bd5804 2539
c2bd5804 2540 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2541 if (ata_port_offline(ap)) {
c2bd5804
TH
2542 *class = ATA_DEV_NONE;
2543 DPRINTK("EXIT, link offline\n");
2544 return 0;
2545 }
2546
2547 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2548 ata_port_printk(ap, KERN_ERR,
2549 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2550 return -EIO;
2551 }
2552
3a39746a
TH
2553 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2554
c2bd5804
TH
2555 *class = ata_dev_try_classify(ap, 0, NULL);
2556
2557 DPRINTK("EXIT, class=%u\n", *class);
2558 return 0;
2559}
2560
2561/**
2562 * ata_std_postreset - standard postreset callback
2563 * @ap: the target ata_port
2564 * @classes: classes of attached devices
2565 *
2566 * This function is invoked after a successful reset. Note that
2567 * the device might have been reset more than once using
2568 * different reset methods before postreset is invoked.
c2bd5804
TH
2569 *
2570 * This function is to be used as standard callback for
2571 * ata_drive_*_reset().
2572 *
2573 * LOCKING:
2574 * Kernel thread context (may sleep)
2575 */
2576void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2577{
dc2b3515
TH
2578 u32 serror;
2579
c2bd5804
TH
2580 DPRINTK("ENTER\n");
2581
c2bd5804 2582 /* print link status */
81952c54 2583 sata_print_link_status(ap);
c2bd5804 2584
dc2b3515
TH
2585 /* clear SError */
2586 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2587 sata_scr_write(ap, SCR_ERROR, serror);
2588
3a39746a 2589 /* re-enable interrupts */
e3180499
TH
2590 if (!ap->ops->error_handler) {
2591 /* FIXME: hack. create a hook instead */
2592 if (ap->ioaddr.ctl_addr)
2593 ata_irq_on(ap);
2594 }
c2bd5804
TH
2595
2596 /* is double-select really necessary? */
2597 if (classes[0] != ATA_DEV_NONE)
2598 ap->ops->dev_select(ap, 1);
2599 if (classes[1] != ATA_DEV_NONE)
2600 ap->ops->dev_select(ap, 0);
2601
3a39746a
TH
2602 /* bail out if no device is present */
2603 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2604 DPRINTK("EXIT, no device\n");
2605 return;
2606 }
2607
2608 /* set up device control */
2609 if (ap->ioaddr.ctl_addr) {
2610 if (ap->flags & ATA_FLAG_MMIO)
2611 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2612 else
2613 outb(ap->ctl, ap->ioaddr.ctl_addr);
2614 }
c2bd5804
TH
2615
2616 DPRINTK("EXIT\n");
2617}
2618
2619/**
2620 * ata_std_probe_reset - standard probe reset method
2621 * @ap: prot to perform probe-reset
2622 * @classes: resulting classes of attached devices
2623 *
2624 * The stock off-the-shelf ->probe_reset method.
2625 *
2626 * LOCKING:
2627 * Kernel thread context (may sleep)
2628 *
2629 * RETURNS:
2630 * 0 on success, -errno otherwise.
2631 */
2632int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2633{
2634 ata_reset_fn_t hardreset;
2635
2636 hardreset = NULL;
81952c54 2637 if (sata_scr_valid(ap))
c2bd5804
TH
2638 hardreset = sata_std_hardreset;
2639
8a19ac89 2640 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2641 ata_std_softreset, hardreset,
c2bd5804
TH
2642 ata_std_postreset, classes);
2643}
2644
2bf2cb26 2645int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2646 unsigned int *classes)
a62c0fc5
TH
2647{
2648 int i, rc;
2649
2650 for (i = 0; i < ATA_MAX_DEVICES; i++)
2651 classes[i] = ATA_DEV_UNKNOWN;
2652
2bf2cb26 2653 rc = reset(ap, classes);
a62c0fc5
TH
2654 if (rc)
2655 return rc;
2656
2657 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2658 * is complete and convert all ATA_DEV_UNKNOWN to
2659 * ATA_DEV_NONE.
2660 */
2661 for (i = 0; i < ATA_MAX_DEVICES; i++)
2662 if (classes[i] != ATA_DEV_UNKNOWN)
2663 break;
2664
2665 if (i < ATA_MAX_DEVICES)
2666 for (i = 0; i < ATA_MAX_DEVICES; i++)
2667 if (classes[i] == ATA_DEV_UNKNOWN)
2668 classes[i] = ATA_DEV_NONE;
2669
9974e7cc 2670 return 0;
a62c0fc5
TH
2671}
2672
2673/**
2674 * ata_drive_probe_reset - Perform probe reset with given methods
2675 * @ap: port to reset
7944ea95 2676 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2677 * @softreset: softreset method (can be NULL)
2678 * @hardreset: hardreset method (can be NULL)
2679 * @postreset: postreset method (can be NULL)
2680 * @classes: resulting classes of attached devices
2681 *
2682 * Reset the specified port and classify attached devices using
2683 * given methods. This function prefers softreset but tries all
2684 * possible reset sequences to reset and classify devices. This
2685 * function is intended to be used for constructing ->probe_reset
2686 * callback by low level drivers.
2687 *
2688 * Reset methods should follow the following rules.
2689 *
2690 * - Return 0 on sucess, -errno on failure.
2691 * - If classification is supported, fill classes[] with
2692 * recognized class codes.
2693 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2694 *
2695 * LOCKING:
2696 * Kernel thread context (may sleep)
2697 *
2698 * RETURNS:
2699 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2700 * if classification fails, and any error code from reset
2701 * methods.
2702 */
7944ea95 2703int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2704 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2705 ata_postreset_fn_t postreset, unsigned int *classes)
2706{
2707 int rc = -EINVAL;
2708
e3180499
TH
2709 ata_eh_freeze_port(ap);
2710
7944ea95
TH
2711 if (probeinit)
2712 probeinit(ap);
2713
3c567b7d 2714 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2715 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2716 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2717 goto done;
f15a1daf
TH
2718 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2719 "will try hardreset in 5 secs\n");
edbabd86 2720 ssleep(5);
a62c0fc5
TH
2721 }
2722
2723 if (!hardreset)
9974e7cc 2724 goto done;
a62c0fc5 2725
90dac02c 2726 while (1) {
96bd39ec 2727 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2728 if (rc == 0) {
2729 if (classes[0] != ATA_DEV_UNKNOWN)
2730 goto done;
2731 break;
2732 }
2733
3c567b7d 2734 if (sata_down_spd_limit(ap))
90dac02c 2735 goto done;
edbabd86 2736
f15a1daf
TH
2737 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2738 "will retry in 5 secs\n");
edbabd86 2739 ssleep(5);
90dac02c 2740 }
a62c0fc5 2741
edbabd86 2742 if (softreset) {
f15a1daf
TH
2743 ata_port_printk(ap, KERN_INFO,
2744 "hardreset succeeded without classification, "
2745 "will retry softreset in 5 secs\n");
edbabd86
TH
2746 ssleep(5);
2747
96bd39ec 2748 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2749 }
a62c0fc5 2750
9974e7cc 2751 done:
96bd39ec
TH
2752 if (rc == 0) {
2753 if (postreset)
2754 postreset(ap, classes);
e3180499
TH
2755
2756 ata_eh_thaw_port(ap);
2757
96bd39ec
TH
2758 if (classes[0] == ATA_DEV_UNKNOWN)
2759 rc = -ENODEV;
2760 }
a62c0fc5
TH
2761 return rc;
2762}
2763
623a3128
TH
2764/**
2765 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2766 * @dev: device to compare against
2767 * @new_class: class of the new device
2768 * @new_id: IDENTIFY page of the new device
2769 *
2770 * Compare @new_class and @new_id against @dev and determine
2771 * whether @dev is the device indicated by @new_class and
2772 * @new_id.
2773 *
2774 * LOCKING:
2775 * None.
2776 *
2777 * RETURNS:
2778 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2779 */
3373efd8
TH
2780static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2781 const u16 *new_id)
623a3128
TH
2782{
2783 const u16 *old_id = dev->id;
2784 unsigned char model[2][41], serial[2][21];
2785 u64 new_n_sectors;
2786
2787 if (dev->class != new_class) {
f15a1daf
TH
2788 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2789 dev->class, new_class);
623a3128
TH
2790 return 0;
2791 }
2792
2793 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2794 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2795 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2796 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2797 new_n_sectors = ata_id_n_sectors(new_id);
2798
2799 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2800 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2801 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2802 return 0;
2803 }
2804
2805 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2806 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2807 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2808 return 0;
2809 }
2810
2811 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2812 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2813 "%llu != %llu\n",
2814 (unsigned long long)dev->n_sectors,
2815 (unsigned long long)new_n_sectors);
623a3128
TH
2816 return 0;
2817 }
2818
2819 return 1;
2820}
2821
2822/**
2823 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2824 * @dev: device to revalidate
2825 * @post_reset: is this revalidation after reset?
2826 *
2827 * Re-read IDENTIFY page and make sure @dev is still attached to
2828 * the port.
2829 *
2830 * LOCKING:
2831 * Kernel thread context (may sleep)
2832 *
2833 * RETURNS:
2834 * 0 on success, negative errno otherwise
2835 */
3373efd8 2836int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2837{
5eb45c02 2838 unsigned int class = dev->class;
f15a1daf 2839 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2840 int rc;
2841
5eb45c02
TH
2842 if (!ata_dev_enabled(dev)) {
2843 rc = -ENODEV;
2844 goto fail;
2845 }
623a3128 2846
fe635c7e 2847 /* read ID data */
3373efd8 2848 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2849 if (rc)
2850 goto fail;
2851
2852 /* is the device still there? */
3373efd8 2853 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2854 rc = -ENODEV;
2855 goto fail;
2856 }
2857
fe635c7e 2858 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2859
2860 /* configure device according to the new ID */
3373efd8 2861 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2862 if (rc == 0)
2863 return 0;
623a3128
TH
2864
2865 fail:
f15a1daf 2866 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2867 return rc;
2868}
2869
98ac62de 2870static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2871 "WDC AC11000H", NULL,
2872 "WDC AC22100H", NULL,
2873 "WDC AC32500H", NULL,
2874 "WDC AC33100H", NULL,
2875 "WDC AC31600H", NULL,
2876 "WDC AC32100H", "24.09P07",
2877 "WDC AC23200L", "21.10N21",
2878 "Compaq CRD-8241B", NULL,
2879 "CRD-8400B", NULL,
2880 "CRD-8480B", NULL,
2881 "CRD-8482B", NULL,
2882 "CRD-84", NULL,
2883 "SanDisk SDP3B", NULL,
2884 "SanDisk SDP3B-64", NULL,
2885 "SANYO CD-ROM CRD", NULL,
2886 "HITACHI CDR-8", NULL,
2e9edbf8 2887 "HITACHI CDR-8335", NULL,
f4b15fef 2888 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2889 "Toshiba CD-ROM XM-6202B", NULL,
2890 "TOSHIBA CD-ROM XM-1702BC", NULL,
2891 "CD-532E-A", NULL,
2892 "E-IDE CD-ROM CR-840", NULL,
2893 "CD-ROM Drive/F5A", NULL,
2894 "WPI CDD-820", NULL,
f4b15fef 2895 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2896 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2897 "SanDisk SDP3B-64", NULL,
2898 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2899 "_NEC DV5800A", NULL,
2900 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2901};
2e9edbf8 2902
f4b15fef
AC
2903static int ata_strim(char *s, size_t len)
2904{
2905 len = strnlen(s, len);
2906
2907 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2908 while ((len > 0) && (s[len - 1] == ' ')) {
2909 len--;
2910 s[len] = 0;
2911 }
2912 return len;
2913}
1da177e4 2914
057ace5e 2915static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2916{
f4b15fef
AC
2917 unsigned char model_num[40];
2918 unsigned char model_rev[16];
2919 unsigned int nlen, rlen;
1da177e4
LT
2920 int i;
2921
f4b15fef
AC
2922 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2923 sizeof(model_num));
2924 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2925 sizeof(model_rev));
2926 nlen = ata_strim(model_num, sizeof(model_num));
2927 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2928
f4b15fef
AC
2929 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2930 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2931 if (ata_dma_blacklist[i+1] == NULL)
2932 return 1;
2933 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2934 return 1;
2935 }
2936 }
1da177e4
LT
2937 return 0;
2938}
2939
a6d5a51c
TH
2940/**
2941 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2942 * @dev: Device to compute xfermask for
2943 *
acf356b1
TH
2944 * Compute supported xfermask of @dev and store it in
2945 * dev->*_mask. This function is responsible for applying all
2946 * known limits including host controller limits, device
2947 * blacklist, etc...
a6d5a51c 2948 *
600511e8
TH
2949 * FIXME: The current implementation limits all transfer modes to
2950 * the fastest of the lowested device on the port. This is not
05c8e0ac 2951 * required on most controllers.
600511e8 2952 *
a6d5a51c
TH
2953 * LOCKING:
2954 * None.
a6d5a51c 2955 */
3373efd8 2956static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2957{
3373efd8 2958 struct ata_port *ap = dev->ap;
5444a6f4 2959 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2960 unsigned long xfer_mask;
2961 int i;
1da177e4 2962
565083e1
TH
2963 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2964 ap->mwdma_mask, ap->udma_mask);
2965
2966 /* Apply cable rule here. Don't apply it early because when
2967 * we handle hot plug the cable type can itself change.
2968 */
2969 if (ap->cbl == ATA_CBL_PATA40)
2970 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2971
5444a6f4 2972 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2973 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2974 struct ata_device *d = &ap->device[i];
565083e1
TH
2975
2976 if (ata_dev_absent(d))
2977 continue;
2978
2979 if (ata_dev_disabled(d)) {
2980 /* to avoid violating device selection timing */
2981 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2982 UINT_MAX, UINT_MAX);
a6d5a51c 2983 continue;
565083e1
TH
2984 }
2985
2986 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2987 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2988 xfer_mask &= ata_id_xfermask(d->id);
2989 if (ata_dma_blacklisted(d))
2990 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2991 }
2992
a6d5a51c 2993 if (ata_dma_blacklisted(dev))
f15a1daf
TH
2994 ata_dev_printk(dev, KERN_WARNING,
2995 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 2996
5444a6f4
AC
2997 if (hs->flags & ATA_HOST_SIMPLEX) {
2998 if (hs->simplex_claimed)
2999 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3000 }
565083e1 3001
5444a6f4
AC
3002 if (ap->ops->mode_filter)
3003 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3004
565083e1
TH
3005 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3006 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3007}
3008
1da177e4
LT
3009/**
3010 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3011 * @dev: Device to which command will be sent
3012 *
780a87f7
JG
3013 * Issue SET FEATURES - XFER MODE command to device @dev
3014 * on port @ap.
3015 *
1da177e4 3016 * LOCKING:
0cba632b 3017 * PCI/etc. bus probe sem.
83206a29
TH
3018 *
3019 * RETURNS:
3020 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3021 */
3022
3373efd8 3023static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3024{
a0123703 3025 struct ata_taskfile tf;
83206a29 3026 unsigned int err_mask;
1da177e4
LT
3027
3028 /* set up set-features taskfile */
3029 DPRINTK("set features - xfer mode\n");
3030
3373efd8 3031 ata_tf_init(dev, &tf);
a0123703
TH
3032 tf.command = ATA_CMD_SET_FEATURES;
3033 tf.feature = SETFEATURES_XFER;
3034 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3035 tf.protocol = ATA_PROT_NODATA;
3036 tf.nsect = dev->xfer_mode;
1da177e4 3037
3373efd8 3038 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3039
83206a29
TH
3040 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3041 return err_mask;
1da177e4
LT
3042}
3043
8bf62ece
AL
3044/**
3045 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3046 * @dev: Device to which command will be sent
3373efd8
TH
3047 * @heads: Number of heads
3048 * @sectors: Number of sectors
8bf62ece
AL
3049 *
3050 * LOCKING:
6aff8f1f
TH
3051 * Kernel thread context (may sleep)
3052 *
3053 * RETURNS:
3054 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3055 */
3373efd8
TH
3056static unsigned int ata_dev_init_params(struct ata_device *dev,
3057 u16 heads, u16 sectors)
8bf62ece 3058{
a0123703 3059 struct ata_taskfile tf;
6aff8f1f 3060 unsigned int err_mask;
8bf62ece
AL
3061
3062 /* Number of sectors per track 1-255. Number of heads 1-16 */
3063 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3064 return AC_ERR_INVALID;
8bf62ece
AL
3065
3066 /* set up init dev params taskfile */
3067 DPRINTK("init dev params \n");
3068
3373efd8 3069 ata_tf_init(dev, &tf);
a0123703
TH
3070 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3071 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3072 tf.protocol = ATA_PROT_NODATA;
3073 tf.nsect = sectors;
3074 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3075
3373efd8 3076 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3077
6aff8f1f
TH
3078 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3079 return err_mask;
8bf62ece
AL
3080}
3081
1da177e4 3082/**
0cba632b
JG
3083 * ata_sg_clean - Unmap DMA memory associated with command
3084 * @qc: Command containing DMA memory to be released
3085 *
3086 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3087 *
3088 * LOCKING:
0cba632b 3089 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3090 */
3091
3092static void ata_sg_clean(struct ata_queued_cmd *qc)
3093{
3094 struct ata_port *ap = qc->ap;
cedc9a47 3095 struct scatterlist *sg = qc->__sg;
1da177e4 3096 int dir = qc->dma_dir;
cedc9a47 3097 void *pad_buf = NULL;
1da177e4 3098
a4631474
TH
3099 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3100 WARN_ON(sg == NULL);
1da177e4
LT
3101
3102 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3103 WARN_ON(qc->n_elem > 1);
1da177e4 3104
2c13b7ce 3105 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3106
cedc9a47
JG
3107 /* if we padded the buffer out to 32-bit bound, and data
3108 * xfer direction is from-device, we must copy from the
3109 * pad buffer back into the supplied buffer
3110 */
3111 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3112 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3113
3114 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3115 if (qc->n_elem)
2f1f610b 3116 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3117 /* restore last sg */
3118 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3119 if (pad_buf) {
3120 struct scatterlist *psg = &qc->pad_sgent;
3121 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3122 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3123 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3124 }
3125 } else {
2e242fa9 3126 if (qc->n_elem)
2f1f610b 3127 dma_unmap_single(ap->dev,
e1410f2d
JG
3128 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3129 dir);
cedc9a47
JG
3130 /* restore sg */
3131 sg->length += qc->pad_len;
3132 if (pad_buf)
3133 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3134 pad_buf, qc->pad_len);
3135 }
1da177e4
LT
3136
3137 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3138 qc->__sg = NULL;
1da177e4
LT
3139}
3140
3141/**
3142 * ata_fill_sg - Fill PCI IDE PRD table
3143 * @qc: Metadata associated with taskfile to be transferred
3144 *
780a87f7
JG
3145 * Fill PCI IDE PRD (scatter-gather) table with segments
3146 * associated with the current disk command.
3147 *
1da177e4 3148 * LOCKING:
780a87f7 3149 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3150 *
3151 */
3152static void ata_fill_sg(struct ata_queued_cmd *qc)
3153{
1da177e4 3154 struct ata_port *ap = qc->ap;
cedc9a47
JG
3155 struct scatterlist *sg;
3156 unsigned int idx;
1da177e4 3157
a4631474 3158 WARN_ON(qc->__sg == NULL);
f131883e 3159 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3160
3161 idx = 0;
cedc9a47 3162 ata_for_each_sg(sg, qc) {
1da177e4
LT
3163 u32 addr, offset;
3164 u32 sg_len, len;
3165
3166 /* determine if physical DMA addr spans 64K boundary.
3167 * Note h/w doesn't support 64-bit, so we unconditionally
3168 * truncate dma_addr_t to u32.
3169 */
3170 addr = (u32) sg_dma_address(sg);
3171 sg_len = sg_dma_len(sg);
3172
3173 while (sg_len) {
3174 offset = addr & 0xffff;
3175 len = sg_len;
3176 if ((offset + sg_len) > 0x10000)
3177 len = 0x10000 - offset;
3178
3179 ap->prd[idx].addr = cpu_to_le32(addr);
3180 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3181 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3182
3183 idx++;
3184 sg_len -= len;
3185 addr += len;
3186 }
3187 }
3188
3189 if (idx)
3190 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3191}
3192/**
3193 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3194 * @qc: Metadata associated with taskfile to check
3195 *
780a87f7
JG
3196 * Allow low-level driver to filter ATA PACKET commands, returning
3197 * a status indicating whether or not it is OK to use DMA for the
3198 * supplied PACKET command.
3199 *
1da177e4 3200 * LOCKING:
0cba632b
JG
3201 * spin_lock_irqsave(host_set lock)
3202 *
1da177e4
LT
3203 * RETURNS: 0 when ATAPI DMA can be used
3204 * nonzero otherwise
3205 */
3206int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3207{
3208 struct ata_port *ap = qc->ap;
3209 int rc = 0; /* Assume ATAPI DMA is OK by default */
3210
3211 if (ap->ops->check_atapi_dma)
3212 rc = ap->ops->check_atapi_dma(qc);
3213
3214 return rc;
3215}
3216/**
3217 * ata_qc_prep - Prepare taskfile for submission
3218 * @qc: Metadata associated with taskfile to be prepared
3219 *
780a87f7
JG
3220 * Prepare ATA taskfile for submission.
3221 *
1da177e4
LT
3222 * LOCKING:
3223 * spin_lock_irqsave(host_set lock)
3224 */
3225void ata_qc_prep(struct ata_queued_cmd *qc)
3226{
3227 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3228 return;
3229
3230 ata_fill_sg(qc);
3231}
3232
e46834cd
BK
3233void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3234
0cba632b
JG
3235/**
3236 * ata_sg_init_one - Associate command with memory buffer
3237 * @qc: Command to be associated
3238 * @buf: Memory buffer
3239 * @buflen: Length of memory buffer, in bytes.
3240 *
3241 * Initialize the data-related elements of queued_cmd @qc
3242 * to point to a single memory buffer, @buf of byte length @buflen.
3243 *
3244 * LOCKING:
3245 * spin_lock_irqsave(host_set lock)
3246 */
3247
1da177e4
LT
3248void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3249{
3250 struct scatterlist *sg;
3251
3252 qc->flags |= ATA_QCFLAG_SINGLE;
3253
3254 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3255 qc->__sg = &qc->sgent;
1da177e4 3256 qc->n_elem = 1;
cedc9a47 3257 qc->orig_n_elem = 1;
1da177e4
LT
3258 qc->buf_virt = buf;
3259
cedc9a47 3260 sg = qc->__sg;
f0612bbc 3261 sg_init_one(sg, buf, buflen);
1da177e4
LT
3262}
3263
0cba632b
JG
3264/**
3265 * ata_sg_init - Associate command with scatter-gather table.
3266 * @qc: Command to be associated
3267 * @sg: Scatter-gather table.
3268 * @n_elem: Number of elements in s/g table.
3269 *
3270 * Initialize the data-related elements of queued_cmd @qc
3271 * to point to a scatter-gather table @sg, containing @n_elem
3272 * elements.
3273 *
3274 * LOCKING:
3275 * spin_lock_irqsave(host_set lock)
3276 */
3277
1da177e4
LT
3278void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3279 unsigned int n_elem)
3280{
3281 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3282 qc->__sg = sg;
1da177e4 3283 qc->n_elem = n_elem;
cedc9a47 3284 qc->orig_n_elem = n_elem;
1da177e4
LT
3285}
3286
3287/**
0cba632b
JG
3288 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3289 * @qc: Command with memory buffer to be mapped.
3290 *
3291 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3292 *
3293 * LOCKING:
3294 * spin_lock_irqsave(host_set lock)
3295 *
3296 * RETURNS:
0cba632b 3297 * Zero on success, negative on error.
1da177e4
LT
3298 */
3299
3300static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3301{
3302 struct ata_port *ap = qc->ap;
3303 int dir = qc->dma_dir;
cedc9a47 3304 struct scatterlist *sg = qc->__sg;
1da177e4 3305 dma_addr_t dma_address;
2e242fa9 3306 int trim_sg = 0;
1da177e4 3307
cedc9a47
JG
3308 /* we must lengthen transfers to end on a 32-bit boundary */
3309 qc->pad_len = sg->length & 3;
3310 if (qc->pad_len) {
3311 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3312 struct scatterlist *psg = &qc->pad_sgent;
3313
a4631474 3314 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3315
3316 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3317
3318 if (qc->tf.flags & ATA_TFLAG_WRITE)
3319 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3320 qc->pad_len);
3321
3322 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3323 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3324 /* trim sg */
3325 sg->length -= qc->pad_len;
2e242fa9
TH
3326 if (sg->length == 0)
3327 trim_sg = 1;
cedc9a47
JG
3328
3329 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3330 sg->length, qc->pad_len);
3331 }
3332
2e242fa9
TH
3333 if (trim_sg) {
3334 qc->n_elem--;
e1410f2d
JG
3335 goto skip_map;
3336 }
3337
2f1f610b 3338 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3339 sg->length, dir);
537a95d9
TH
3340 if (dma_mapping_error(dma_address)) {
3341 /* restore sg */
3342 sg->length += qc->pad_len;
1da177e4 3343 return -1;
537a95d9 3344 }
1da177e4
LT
3345
3346 sg_dma_address(sg) = dma_address;
32529e01 3347 sg_dma_len(sg) = sg->length;
1da177e4 3348
2e242fa9 3349skip_map:
1da177e4
LT
3350 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3351 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3352
3353 return 0;
3354}
3355
3356/**
0cba632b
JG
3357 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3358 * @qc: Command with scatter-gather table to be mapped.
3359 *
3360 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3361 *
3362 * LOCKING:
3363 * spin_lock_irqsave(host_set lock)
3364 *
3365 * RETURNS:
0cba632b 3366 * Zero on success, negative on error.
1da177e4
LT
3367 *
3368 */
3369
3370static int ata_sg_setup(struct ata_queued_cmd *qc)
3371{
3372 struct ata_port *ap = qc->ap;
cedc9a47
JG
3373 struct scatterlist *sg = qc->__sg;
3374 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3375 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3376
3377 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3378 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3379
cedc9a47
JG
3380 /* we must lengthen transfers to end on a 32-bit boundary */
3381 qc->pad_len = lsg->length & 3;
3382 if (qc->pad_len) {
3383 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3384 struct scatterlist *psg = &qc->pad_sgent;
3385 unsigned int offset;
3386
a4631474 3387 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3388
3389 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3390
3391 /*
3392 * psg->page/offset are used to copy to-be-written
3393 * data in this function or read data in ata_sg_clean.
3394 */
3395 offset = lsg->offset + lsg->length - qc->pad_len;
3396 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3397 psg->offset = offset_in_page(offset);
3398
3399 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3400 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3401 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3402 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3403 }
3404
3405 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3406 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3407 /* trim last sg */
3408 lsg->length -= qc->pad_len;
e1410f2d
JG
3409 if (lsg->length == 0)
3410 trim_sg = 1;
cedc9a47
JG
3411
3412 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3413 qc->n_elem - 1, lsg->length, qc->pad_len);
3414 }
3415
e1410f2d
JG
3416 pre_n_elem = qc->n_elem;
3417 if (trim_sg && pre_n_elem)
3418 pre_n_elem--;
3419
3420 if (!pre_n_elem) {
3421 n_elem = 0;
3422 goto skip_map;
3423 }
3424
1da177e4 3425 dir = qc->dma_dir;
2f1f610b 3426 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3427 if (n_elem < 1) {
3428 /* restore last sg */
3429 lsg->length += qc->pad_len;
1da177e4 3430 return -1;
537a95d9 3431 }
1da177e4
LT
3432
3433 DPRINTK("%d sg elements mapped\n", n_elem);
3434
e1410f2d 3435skip_map:
1da177e4
LT
3436 qc->n_elem = n_elem;
3437
3438 return 0;
3439}
3440
40e8c82c
TH
3441/**
3442 * ata_poll_qc_complete - turn irq back on and finish qc
3443 * @qc: Command to complete
8e8b77dd 3444 * @err_mask: ATA status register content
40e8c82c
TH
3445 *
3446 * LOCKING:
3447 * None. (grabs host lock)
3448 */
a22e2eb0 3449void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3450{
3451 struct ata_port *ap = qc->ap;
b8f6153e 3452 unsigned long flags;
40e8c82c 3453
b8f6153e 3454 spin_lock_irqsave(&ap->host_set->lock, flags);
dafadcde
TH
3455
3456 if (ap->ops->error_handler) {
3457 /* EH might have kicked in while host_set lock is released */
3458 qc = ata_qc_from_tag(ap, qc->tag);
3459 if (qc) {
3460 if (!(qc->err_mask & AC_ERR_HSM)) {
3461 ap->flags &= ~ATA_FLAG_NOINTR;
3462 ata_irq_on(ap);
3463 ata_qc_complete(qc);
3464 } else
3465 ata_port_freeze(ap);
3466 }
3467 } else {
3468 /* old EH */
3469 ap->flags &= ~ATA_FLAG_NOINTR;
3470 ata_irq_on(ap);
3471 ata_qc_complete(qc);
3472 }
3473
b8f6153e 3474 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3475}
3476
1da177e4 3477/**
c893a3ae 3478 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3479 * @qc: qc in progress
1da177e4
LT
3480 *
3481 * LOCKING:
0cba632b 3482 * None. (executing in kernel thread context)
1da177e4
LT
3483 *
3484 * RETURNS:
6f0ef4fa 3485 * timeout value to use
1da177e4 3486 */
c91af2c8 3487static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3488{
c91af2c8 3489 struct ata_port *ap = qc->ap;
1da177e4 3490 u8 status;
14be71f4
AL
3491 unsigned int poll_state = HSM_ST_UNKNOWN;
3492 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3493
3494 switch (ap->hsm_task_state) {
3495 case HSM_ST:
3496 case HSM_ST_POLL:
3497 poll_state = HSM_ST_POLL;
3498 reg_state = HSM_ST;
1da177e4 3499 break;
14be71f4
AL
3500 case HSM_ST_LAST:
3501 case HSM_ST_LAST_POLL:
3502 poll_state = HSM_ST_LAST_POLL;
3503 reg_state = HSM_ST_LAST;
1da177e4
LT
3504 break;
3505 default:
3506 BUG();
3507 break;
3508 }
3509
3510 status = ata_chk_status(ap);
3511 if (status & ATA_BUSY) {
3512 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3513 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3514 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3515 return 0;
3516 }
14be71f4 3517 ap->hsm_task_state = poll_state;
1da177e4
LT
3518 return ATA_SHORT_PAUSE;
3519 }
3520
14be71f4 3521 ap->hsm_task_state = reg_state;
1da177e4
LT
3522 return 0;
3523}
3524
3525/**
6f0ef4fa 3526 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3527 * @qc: qc to complete
1da177e4
LT
3528 *
3529 * LOCKING:
0cba632b 3530 * None. (executing in kernel thread context)
7fb6ec28
JG
3531 *
3532 * RETURNS:
3533 * Non-zero if qc completed, zero otherwise.
1da177e4 3534 */
c91af2c8 3535static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3536{
c91af2c8 3537 struct ata_port *ap = qc->ap;
1da177e4
LT
3538 u8 drv_stat;
3539
3540 /*
31433ea3
AC
3541 * This is purely heuristic. This is a fast path. Sometimes when
3542 * we enter, BSY will be cleared in a chk-status or two. If not,
3543 * the drive is probably seeking or something. Snooze for a couple
3544 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3545 * HSM_ST_POLL state.
1da177e4 3546 */
fe79e683
AL
3547 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3548 if (drv_stat & ATA_BUSY) {
1da177e4 3549 msleep(2);
fe79e683
AL
3550 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3551 if (drv_stat & ATA_BUSY) {
14be71f4 3552 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3553 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3554 return 0;
1da177e4
LT
3555 }
3556 }
3557
3558 drv_stat = ata_wait_idle(ap);
3559 if (!ata_ok(drv_stat)) {
1c848984 3560 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3561 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3562 return 0;
1da177e4
LT
3563 }
3564
14be71f4 3565 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3566
a4631474 3567 WARN_ON(qc->err_mask);
a22e2eb0 3568 ata_poll_qc_complete(qc);
7fb6ec28
JG
3569
3570 /* another command may start at this point */
3571
3572 return 1;
1da177e4
LT
3573}
3574
0baab86b
EF
3575
3576/**
c893a3ae 3577 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3578 * @buf: Buffer to swap
3579 * @buf_words: Number of 16-bit words in buffer.
3580 *
3581 * Swap halves of 16-bit words if needed to convert from
3582 * little-endian byte order to native cpu byte order, or
3583 * vice-versa.
3584 *
3585 * LOCKING:
6f0ef4fa 3586 * Inherited from caller.
0baab86b 3587 */
1da177e4
LT
3588void swap_buf_le16(u16 *buf, unsigned int buf_words)
3589{
3590#ifdef __BIG_ENDIAN
3591 unsigned int i;
3592
3593 for (i = 0; i < buf_words; i++)
3594 buf[i] = le16_to_cpu(buf[i]);
3595#endif /* __BIG_ENDIAN */
3596}
3597
6ae4cfb5
AL
3598/**
3599 * ata_mmio_data_xfer - Transfer data by MMIO
3600 * @ap: port to read/write
3601 * @buf: data buffer
3602 * @buflen: buffer length
344babaa 3603 * @write_data: read/write
6ae4cfb5
AL
3604 *
3605 * Transfer data from/to the device data register by MMIO.
3606 *
3607 * LOCKING:
3608 * Inherited from caller.
6ae4cfb5
AL
3609 */
3610
1da177e4
LT
3611static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3612 unsigned int buflen, int write_data)
3613{
3614 unsigned int i;
3615 unsigned int words = buflen >> 1;
3616 u16 *buf16 = (u16 *) buf;
3617 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3618
6ae4cfb5 3619 /* Transfer multiple of 2 bytes */
1da177e4
LT
3620 if (write_data) {
3621 for (i = 0; i < words; i++)
3622 writew(le16_to_cpu(buf16[i]), mmio);
3623 } else {
3624 for (i = 0; i < words; i++)
3625 buf16[i] = cpu_to_le16(readw(mmio));
3626 }
6ae4cfb5
AL
3627
3628 /* Transfer trailing 1 byte, if any. */
3629 if (unlikely(buflen & 0x01)) {
3630 u16 align_buf[1] = { 0 };
3631 unsigned char *trailing_buf = buf + buflen - 1;
3632
3633 if (write_data) {
3634 memcpy(align_buf, trailing_buf, 1);
3635 writew(le16_to_cpu(align_buf[0]), mmio);
3636 } else {
3637 align_buf[0] = cpu_to_le16(readw(mmio));
3638 memcpy(trailing_buf, align_buf, 1);
3639 }
3640 }
1da177e4
LT
3641}
3642
6ae4cfb5
AL
3643/**
3644 * ata_pio_data_xfer - Transfer data by PIO
3645 * @ap: port to read/write
3646 * @buf: data buffer
3647 * @buflen: buffer length
344babaa 3648 * @write_data: read/write
6ae4cfb5
AL
3649 *
3650 * Transfer data from/to the device data register by PIO.
3651 *
3652 * LOCKING:
3653 * Inherited from caller.
6ae4cfb5
AL
3654 */
3655
1da177e4
LT
3656static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3657 unsigned int buflen, int write_data)
3658{
6ae4cfb5 3659 unsigned int words = buflen >> 1;
1da177e4 3660
6ae4cfb5 3661 /* Transfer multiple of 2 bytes */
1da177e4 3662 if (write_data)
6ae4cfb5 3663 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3664 else
6ae4cfb5
AL
3665 insw(ap->ioaddr.data_addr, buf, words);
3666
3667 /* Transfer trailing 1 byte, if any. */
3668 if (unlikely(buflen & 0x01)) {
3669 u16 align_buf[1] = { 0 };
3670 unsigned char *trailing_buf = buf + buflen - 1;
3671
3672 if (write_data) {
3673 memcpy(align_buf, trailing_buf, 1);
3674 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3675 } else {
3676 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3677 memcpy(trailing_buf, align_buf, 1);
3678 }
3679 }
1da177e4
LT
3680}
3681
6ae4cfb5
AL
3682/**
3683 * ata_data_xfer - Transfer data from/to the data register.
3684 * @ap: port to read/write
3685 * @buf: data buffer
3686 * @buflen: buffer length
3687 * @do_write: read/write
3688 *
3689 * Transfer data from/to the device data register.
3690 *
3691 * LOCKING:
3692 * Inherited from caller.
6ae4cfb5
AL
3693 */
3694
1da177e4
LT
3695static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3696 unsigned int buflen, int do_write)
3697{
a1bd9e68
AC
3698 /* Make the crap hardware pay the costs not the good stuff */
3699 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3700 unsigned long flags;
3701 local_irq_save(flags);
3702 if (ap->flags & ATA_FLAG_MMIO)
3703 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3704 else
3705 ata_pio_data_xfer(ap, buf, buflen, do_write);
3706 local_irq_restore(flags);
3707 } else {
3708 if (ap->flags & ATA_FLAG_MMIO)
3709 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3710 else
3711 ata_pio_data_xfer(ap, buf, buflen, do_write);
3712 }
1da177e4
LT
3713}
3714
6ae4cfb5
AL
3715/**
3716 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3717 * @qc: Command on going
3718 *
3719 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3720 *
3721 * LOCKING:
3722 * Inherited from caller.
3723 */
3724
1da177e4
LT
3725static void ata_pio_sector(struct ata_queued_cmd *qc)
3726{
3727 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3728 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3729 struct ata_port *ap = qc->ap;
3730 struct page *page;
3731 unsigned int offset;
3732 unsigned char *buf;
3733
3734 if (qc->cursect == (qc->nsect - 1))
14be71f4 3735 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3736
3737 page = sg[qc->cursg].page;
3738 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3739
3740 /* get the current page and offset */
3741 page = nth_page(page, (offset >> PAGE_SHIFT));
3742 offset %= PAGE_SIZE;
3743
3744 buf = kmap(page) + offset;
3745
3746 qc->cursect++;
3747 qc->cursg_ofs++;
3748
32529e01 3749 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3750 qc->cursg++;
3751 qc->cursg_ofs = 0;
3752 }
3753
3754 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3755
3756 /* do the actual data transfer */
3757 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3758 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3759
3760 kunmap(page);
3761}
3762
6ae4cfb5
AL
3763/**
3764 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3765 * @qc: Command on going
3766 * @bytes: number of bytes
3767 *
3768 * Transfer Transfer data from/to the ATAPI device.
3769 *
3770 * LOCKING:
3771 * Inherited from caller.
3772 *
3773 */
3774
1da177e4
LT
3775static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3776{
3777 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3778 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3779 struct ata_port *ap = qc->ap;
3780 struct page *page;
3781 unsigned char *buf;
3782 unsigned int offset, count;
3783
563a6e1f 3784 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3785 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3786
3787next_sg:
563a6e1f 3788 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3789 /*
563a6e1f
AL
3790 * The end of qc->sg is reached and the device expects
3791 * more data to transfer. In order not to overrun qc->sg
3792 * and fulfill length specified in the byte count register,
3793 * - for read case, discard trailing data from the device
3794 * - for write case, padding zero data to the device
3795 */
3796 u16 pad_buf[1] = { 0 };
3797 unsigned int words = bytes >> 1;
3798 unsigned int i;
3799
3800 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3801 ata_dev_printk(qc->dev, KERN_WARNING,
3802 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3803
3804 for (i = 0; i < words; i++)
3805 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3806
14be71f4 3807 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3808 return;
3809 }
3810
cedc9a47 3811 sg = &qc->__sg[qc->cursg];
1da177e4 3812
1da177e4
LT
3813 page = sg->page;
3814 offset = sg->offset + qc->cursg_ofs;
3815
3816 /* get the current page and offset */
3817 page = nth_page(page, (offset >> PAGE_SHIFT));
3818 offset %= PAGE_SIZE;
3819
6952df03 3820 /* don't overrun current sg */
32529e01 3821 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3822
3823 /* don't cross page boundaries */
3824 count = min(count, (unsigned int)PAGE_SIZE - offset);
3825
3826 buf = kmap(page) + offset;
3827
3828 bytes -= count;
3829 qc->curbytes += count;
3830 qc->cursg_ofs += count;
3831
32529e01 3832 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3833 qc->cursg++;
3834 qc->cursg_ofs = 0;
3835 }
3836
3837 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3838
3839 /* do the actual data transfer */
3840 ata_data_xfer(ap, buf, count, do_write);
3841
3842 kunmap(page);
3843
563a6e1f 3844 if (bytes)
1da177e4 3845 goto next_sg;
1da177e4
LT
3846}
3847
6ae4cfb5
AL
3848/**
3849 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3850 * @qc: Command on going
3851 *
3852 * Transfer Transfer data from/to the ATAPI device.
3853 *
3854 * LOCKING:
3855 * Inherited from caller.
6ae4cfb5
AL
3856 */
3857
1da177e4
LT
3858static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3859{
3860 struct ata_port *ap = qc->ap;
3861 struct ata_device *dev = qc->dev;
3862 unsigned int ireason, bc_lo, bc_hi, bytes;
3863 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3864
3865 ap->ops->tf_read(ap, &qc->tf);
3866 ireason = qc->tf.nsect;
3867 bc_lo = qc->tf.lbam;
3868 bc_hi = qc->tf.lbah;
3869 bytes = (bc_hi << 8) | bc_lo;
3870
3871 /* shall be cleared to zero, indicating xfer of data */
3872 if (ireason & (1 << 0))
3873 goto err_out;
3874
3875 /* make sure transfer direction matches expected */
3876 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3877 if (do_write != i_write)
3878 goto err_out;
3879
3880 __atapi_pio_bytes(qc, bytes);
3881
3882 return;
3883
3884err_out:
f15a1daf 3885 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3886 qc->err_mask |= AC_ERR_HSM;
14be71f4 3887 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3888}
3889
3890/**
6f0ef4fa 3891 * ata_pio_block - start PIO on a block
c91af2c8 3892 * @qc: qc to transfer block for
1da177e4
LT
3893 *
3894 * LOCKING:
0cba632b 3895 * None. (executing in kernel thread context)
1da177e4 3896 */
c91af2c8 3897static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3898{
c91af2c8 3899 struct ata_port *ap = qc->ap;
1da177e4
LT
3900 u8 status;
3901
3902 /*
6f0ef4fa 3903 * This is purely heuristic. This is a fast path.
1da177e4
LT
3904 * Sometimes when we enter, BSY will be cleared in
3905 * a chk-status or two. If not, the drive is probably seeking
3906 * or something. Snooze for a couple msecs, then
3907 * chk-status again. If still busy, fall back to
14be71f4 3908 * HSM_ST_POLL state.
1da177e4
LT
3909 */
3910 status = ata_busy_wait(ap, ATA_BUSY, 5);
3911 if (status & ATA_BUSY) {
3912 msleep(2);
3913 status = ata_busy_wait(ap, ATA_BUSY, 10);
3914 if (status & ATA_BUSY) {
14be71f4 3915 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3916 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3917 return;
3918 }
3919 }
3920
fe79e683
AL
3921 /* check error */
3922 if (status & (ATA_ERR | ATA_DF)) {
3923 qc->err_mask |= AC_ERR_DEV;
3924 ap->hsm_task_state = HSM_ST_ERR;
3925 return;
3926 }
3927
3928 /* transfer data if any */
1da177e4 3929 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3930 /* DRQ=0 means no more data to transfer */
1da177e4 3931 if ((status & ATA_DRQ) == 0) {
14be71f4 3932 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3933 return;
3934 }
3935
3936 atapi_pio_bytes(qc);
3937 } else {
3938 /* handle BSY=0, DRQ=0 as error */
3939 if ((status & ATA_DRQ) == 0) {
11a56d24 3940 qc->err_mask |= AC_ERR_HSM;
14be71f4 3941 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3942 return;
3943 }
3944
3945 ata_pio_sector(qc);
3946 }
3947}
3948
c91af2c8 3949static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3950{
c91af2c8 3951 struct ata_port *ap = qc->ap;
1da177e4 3952
0565c26d 3953 if (qc->tf.command != ATA_CMD_PACKET)
f15a1daf 3954 ata_dev_printk(qc->dev, KERN_WARNING, "PIO error\n");
0565c26d 3955
2e9edbf8 3956 /* make sure qc->err_mask is available to
1c848984
AL
3957 * know what's wrong and recover
3958 */
a4631474 3959 WARN_ON(qc->err_mask == 0);
1c848984 3960
14be71f4 3961 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3962
a22e2eb0 3963 ata_poll_qc_complete(qc);
1da177e4
LT
3964}
3965
3966static void ata_pio_task(void *_data)
3967{
c91af2c8
TH
3968 struct ata_queued_cmd *qc = _data;
3969 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3970 unsigned long timeout;
3971 int qc_completed;
3972
3973fsm_start:
3974 timeout = 0;
3975 qc_completed = 0;
1da177e4 3976
14be71f4
AL
3977 switch (ap->hsm_task_state) {
3978 case HSM_ST_IDLE:
1da177e4
LT
3979 return;
3980
14be71f4 3981 case HSM_ST:
c91af2c8 3982 ata_pio_block(qc);
1da177e4
LT
3983 break;
3984
14be71f4 3985 case HSM_ST_LAST:
c91af2c8 3986 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3987 break;
3988
14be71f4
AL
3989 case HSM_ST_POLL:
3990 case HSM_ST_LAST_POLL:
c91af2c8 3991 timeout = ata_pio_poll(qc);
1da177e4
LT
3992 break;
3993
14be71f4
AL
3994 case HSM_ST_TMOUT:
3995 case HSM_ST_ERR:
c91af2c8 3996 ata_pio_error(qc);
1da177e4
LT
3997 return;
3998 }
3999
4000 if (timeout)
c91af2c8 4001 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
4002 else if (!qc_completed)
4003 goto fsm_start;
1da177e4
LT
4004}
4005
8061f5f0
TH
4006/**
4007 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 4008 * @_data: qc in progress
8061f5f0
TH
4009 *
4010 * When device has indicated its readiness to accept
4011 * a CDB, this function is called. Send the CDB.
4012 * If DMA is to be performed, exit immediately.
4013 * Otherwise, we are in polling mode, so poll
4014 * status under operation succeeds or fails.
4015 *
4016 * LOCKING:
4017 * Kernel thread context (may sleep)
4018 */
8061f5f0
TH
4019static void atapi_packet_task(void *_data)
4020{
c91af2c8
TH
4021 struct ata_queued_cmd *qc = _data;
4022 struct ata_port *ap = qc->ap;
8061f5f0
TH
4023 u8 status;
4024
8061f5f0
TH
4025 /* sleep-wait for BSY to clear */
4026 DPRINTK("busy wait\n");
4027 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4028 qc->err_mask |= AC_ERR_TIMEOUT;
4029 goto err_out;
4030 }
4031
4032 /* make sure DRQ is set */
4033 status = ata_chk_status(ap);
4034 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4035 qc->err_mask |= AC_ERR_HSM;
4036 goto err_out;
4037 }
4038
4039 /* send SCSI cdb */
4040 DPRINTK("send cdb\n");
4041 WARN_ON(qc->dev->cdb_len < 12);
4042
4043 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4044 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4045 unsigned long flags;
4046
4047 /* Once we're done issuing command and kicking bmdma,
4048 * irq handler takes over. To not lose irq, we need
4049 * to clear NOINTR flag before sending cdb, but
4050 * interrupt handler shouldn't be invoked before we're
4051 * finished. Hence, the following locking.
4052 */
4053 spin_lock_irqsave(&ap->host_set->lock, flags);
4054 ap->flags &= ~ATA_FLAG_NOINTR;
4055 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4056 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4057 ap->ops->bmdma_start(qc); /* initiate bmdma */
4058 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4059 } else {
4060 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4061
4062 /* PIO commands are handled by polling */
4063 ap->hsm_task_state = HSM_ST;
c91af2c8 4064 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4065 }
4066
4067 return;
4068
4069err_out:
4070 ata_poll_qc_complete(qc);
4071}
4072
1da177e4
LT
4073/**
4074 * ata_qc_new - Request an available ATA command, for queueing
4075 * @ap: Port associated with device @dev
4076 * @dev: Device from whom we request an available command structure
4077 *
4078 * LOCKING:
0cba632b 4079 * None.
1da177e4
LT
4080 */
4081
4082static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4083{
4084 struct ata_queued_cmd *qc = NULL;
4085 unsigned int i;
4086
e3180499
TH
4087 /* no command while frozen */
4088 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4089 return NULL;
4090
2ab7db1f
TH
4091 /* the last tag is reserved for internal command. */
4092 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
1da177e4 4093 if (!test_and_set_bit(i, &ap->qactive)) {
f69499f4 4094 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4095 break;
4096 }
4097
4098 if (qc)
4099 qc->tag = i;
4100
4101 return qc;
4102}
4103
4104/**
4105 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4106 * @dev: Device from whom we request an available command structure
4107 *
4108 * LOCKING:
0cba632b 4109 * None.
1da177e4
LT
4110 */
4111
3373efd8 4112struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4113{
3373efd8 4114 struct ata_port *ap = dev->ap;
1da177e4
LT
4115 struct ata_queued_cmd *qc;
4116
4117 qc = ata_qc_new(ap);
4118 if (qc) {
1da177e4
LT
4119 qc->scsicmd = NULL;
4120 qc->ap = ap;
4121 qc->dev = dev;
1da177e4 4122
2c13b7ce 4123 ata_qc_reinit(qc);
1da177e4
LT
4124 }
4125
4126 return qc;
4127}
4128
1da177e4
LT
4129/**
4130 * ata_qc_free - free unused ata_queued_cmd
4131 * @qc: Command to complete
4132 *
4133 * Designed to free unused ata_queued_cmd object
4134 * in case something prevents using it.
4135 *
4136 * LOCKING:
0cba632b 4137 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4138 */
4139void ata_qc_free(struct ata_queued_cmd *qc)
4140{
4ba946e9
TH
4141 struct ata_port *ap = qc->ap;
4142 unsigned int tag;
4143
a4631474 4144 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4145
4ba946e9
TH
4146 qc->flags = 0;
4147 tag = qc->tag;
4148 if (likely(ata_tag_valid(tag))) {
4ba946e9
TH
4149 qc->tag = ATA_TAG_POISON;
4150 clear_bit(tag, &ap->qactive);
4151 }
1da177e4
LT
4152}
4153
76014427 4154void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4155{
a4631474
TH
4156 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4157 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4158
4159 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4160 ata_sg_clean(qc);
4161
7401abf2
TH
4162 /* command should be marked inactive atomically with qc completion */
4163 qc->ap->active_tag = ATA_TAG_POISON;
4164
3f3791d3
AL
4165 /* atapi: mark qc as inactive to prevent the interrupt handler
4166 * from completing the command twice later, before the error handler
4167 * is called. (when rc != 0 and atapi request sense is needed)
4168 */
4169 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4170
1da177e4 4171 /* call completion callback */
77853bf2 4172 qc->complete_fn(qc);
1da177e4
LT
4173}
4174
f686bcb8
TH
4175/**
4176 * ata_qc_complete - Complete an active ATA command
4177 * @qc: Command to complete
4178 * @err_mask: ATA Status register contents
4179 *
4180 * Indicate to the mid and upper layers that an ATA
4181 * command has completed, with either an ok or not-ok status.
4182 *
4183 * LOCKING:
4184 * spin_lock_irqsave(host_set lock)
4185 */
4186void ata_qc_complete(struct ata_queued_cmd *qc)
4187{
4188 struct ata_port *ap = qc->ap;
4189
4190 /* XXX: New EH and old EH use different mechanisms to
4191 * synchronize EH with regular execution path.
4192 *
4193 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4194 * Normal execution path is responsible for not accessing a
4195 * failed qc. libata core enforces the rule by returning NULL
4196 * from ata_qc_from_tag() for failed qcs.
4197 *
4198 * Old EH depends on ata_qc_complete() nullifying completion
4199 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4200 * not synchronize with interrupt handler. Only PIO task is
4201 * taken care of.
4202 */
4203 if (ap->ops->error_handler) {
4204 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4205
4206 if (unlikely(qc->err_mask))
4207 qc->flags |= ATA_QCFLAG_FAILED;
4208
4209 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4210 if (!ata_tag_internal(qc->tag)) {
4211 /* always fill result TF for failed qc */
4212 ap->ops->tf_read(ap, &qc->result_tf);
4213 ata_qc_schedule_eh(qc);
4214 return;
4215 }
4216 }
4217
4218 /* read result TF if requested */
4219 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4220 ap->ops->tf_read(ap, &qc->result_tf);
4221
4222 __ata_qc_complete(qc);
4223 } else {
4224 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4225 return;
4226
4227 /* read result TF if failed or requested */
4228 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4229 ap->ops->tf_read(ap, &qc->result_tf);
4230
4231 __ata_qc_complete(qc);
4232 }
4233}
4234
1da177e4
LT
4235static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4236{
4237 struct ata_port *ap = qc->ap;
4238
4239 switch (qc->tf.protocol) {
4240 case ATA_PROT_DMA:
4241 case ATA_PROT_ATAPI_DMA:
4242 return 1;
4243
4244 case ATA_PROT_ATAPI:
4245 case ATA_PROT_PIO:
1da177e4
LT
4246 if (ap->flags & ATA_FLAG_PIO_DMA)
4247 return 1;
4248
4249 /* fall through */
4250
4251 default:
4252 return 0;
4253 }
4254
4255 /* never reached */
4256}
4257
4258/**
4259 * ata_qc_issue - issue taskfile to device
4260 * @qc: command to issue to device
4261 *
4262 * Prepare an ATA command to submission to device.
4263 * This includes mapping the data into a DMA-able
4264 * area, filling in the S/G table, and finally
4265 * writing the taskfile to hardware, starting the command.
4266 *
4267 * LOCKING:
4268 * spin_lock_irqsave(host_set lock)
1da177e4 4269 */
8e0e694a 4270void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4271{
4272 struct ata_port *ap = qc->ap;
4273
e4a70e76
TH
4274 qc->ap->active_tag = qc->tag;
4275 qc->flags |= ATA_QCFLAG_ACTIVE;
4276
1da177e4
LT
4277 if (ata_should_dma_map(qc)) {
4278 if (qc->flags & ATA_QCFLAG_SG) {
4279 if (ata_sg_setup(qc))
8e436af9 4280 goto sg_err;
1da177e4
LT
4281 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4282 if (ata_sg_setup_one(qc))
8e436af9 4283 goto sg_err;
1da177e4
LT
4284 }
4285 } else {
4286 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4287 }
4288
4289 ap->ops->qc_prep(qc);
4290
8e0e694a
TH
4291 qc->err_mask |= ap->ops->qc_issue(qc);
4292 if (unlikely(qc->err_mask))
4293 goto err;
4294 return;
1da177e4 4295
8e436af9
TH
4296sg_err:
4297 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4298 qc->err_mask |= AC_ERR_SYSTEM;
4299err:
4300 ata_qc_complete(qc);
1da177e4
LT
4301}
4302
4303/**
4304 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4305 * @qc: command to issue to device
4306 *
4307 * Using various libata functions and hooks, this function
4308 * starts an ATA command. ATA commands are grouped into
4309 * classes called "protocols", and issuing each type of protocol
4310 * is slightly different.
4311 *
0baab86b
EF
4312 * May be used as the qc_issue() entry in ata_port_operations.
4313 *
1da177e4
LT
4314 * LOCKING:
4315 * spin_lock_irqsave(host_set lock)
4316 *
4317 * RETURNS:
9a3d9eb0 4318 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4319 */
4320
9a3d9eb0 4321unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4322{
4323 struct ata_port *ap = qc->ap;
4324
4325 ata_dev_select(ap, qc->dev->devno, 1, 0);
4326
4327 switch (qc->tf.protocol) {
4328 case ATA_PROT_NODATA:
e5338254 4329 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4330 break;
4331
4332 case ATA_PROT_DMA:
4333 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4334 ap->ops->bmdma_setup(qc); /* set up bmdma */
4335 ap->ops->bmdma_start(qc); /* initiate bmdma */
4336 break;
4337
4338 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4339 ata_qc_set_polling(qc);
e5338254 4340 ata_tf_to_host(ap, &qc->tf);
14be71f4 4341 ap->hsm_task_state = HSM_ST;
c91af2c8 4342 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4343 break;
4344
4345 case ATA_PROT_ATAPI:
4346 ata_qc_set_polling(qc);
e5338254 4347 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4348 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4349 break;
4350
4351 case ATA_PROT_ATAPI_NODATA:
c1389503 4352 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4353 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4354 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4355 break;
4356
4357 case ATA_PROT_ATAPI_DMA:
c1389503 4358 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4359 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4360 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4361 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4362 break;
4363
4364 default:
4365 WARN_ON(1);
9a3d9eb0 4366 return AC_ERR_SYSTEM;
1da177e4
LT
4367 }
4368
4369 return 0;
4370}
4371
1da177e4
LT
4372/**
4373 * ata_host_intr - Handle host interrupt for given (port, task)
4374 * @ap: Port on which interrupt arrived (possibly...)
4375 * @qc: Taskfile currently active in engine
4376 *
4377 * Handle host interrupt for given queued command. Currently,
4378 * only DMA interrupts are handled. All other commands are
4379 * handled via polling with interrupts disabled (nIEN bit).
4380 *
4381 * LOCKING:
4382 * spin_lock_irqsave(host_set lock)
4383 *
4384 * RETURNS:
4385 * One if interrupt was handled, zero if not (shared irq).
4386 */
4387
4388inline unsigned int ata_host_intr (struct ata_port *ap,
4389 struct ata_queued_cmd *qc)
4390{
4391 u8 status, host_stat;
4392
4393 switch (qc->tf.protocol) {
4394
4395 case ATA_PROT_DMA:
4396 case ATA_PROT_ATAPI_DMA:
4397 case ATA_PROT_ATAPI:
4398 /* check status of DMA engine */
4399 host_stat = ap->ops->bmdma_status(ap);
4400 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4401
4402 /* if it's not our irq... */
4403 if (!(host_stat & ATA_DMA_INTR))
4404 goto idle_irq;
4405
4406 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4407 ap->ops->bmdma_stop(qc);
1da177e4
LT
4408
4409 /* fall through */
4410
4411 case ATA_PROT_ATAPI_NODATA:
4412 case ATA_PROT_NODATA:
4413 /* check altstatus */
4414 status = ata_altstatus(ap);
4415 if (status & ATA_BUSY)
4416 goto idle_irq;
4417
4418 /* check main status, clearing INTRQ */
4419 status = ata_chk_status(ap);
4420 if (unlikely(status & ATA_BUSY))
4421 goto idle_irq;
4422 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4423 ap->id, qc->tf.protocol, status);
4424
4425 /* ack bmdma irq events */
4426 ap->ops->irq_clear(ap);
4427
4428 /* complete taskfile transaction */
a22e2eb0
AL
4429 qc->err_mask |= ac_err_mask(status);
4430 ata_qc_complete(qc);
1da177e4
LT
4431 break;
4432
4433 default:
4434 goto idle_irq;
4435 }
4436
4437 return 1; /* irq handled */
4438
4439idle_irq:
4440 ap->stats.idle_irq++;
4441
4442#ifdef ATA_IRQ_TRAP
4443 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4444 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4445 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4446 return 1;
1da177e4
LT
4447 }
4448#endif
4449 return 0; /* irq not handled */
4450}
4451
4452/**
4453 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4454 * @irq: irq line (unused)
4455 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4456 * @regs: unused
4457 *
0cba632b
JG
4458 * Default interrupt handler for PCI IDE devices. Calls
4459 * ata_host_intr() for each port that is not disabled.
4460 *
1da177e4 4461 * LOCKING:
0cba632b 4462 * Obtains host_set lock during operation.
1da177e4
LT
4463 *
4464 * RETURNS:
0cba632b 4465 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4466 */
4467
4468irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4469{
4470 struct ata_host_set *host_set = dev_instance;
4471 unsigned int i;
4472 unsigned int handled = 0;
4473 unsigned long flags;
4474
4475 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4476 spin_lock_irqsave(&host_set->lock, flags);
4477
4478 for (i = 0; i < host_set->n_ports; i++) {
4479 struct ata_port *ap;
4480
4481 ap = host_set->ports[i];
c1389503 4482 if (ap &&
198e0fed 4483 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4484 struct ata_queued_cmd *qc;
4485
4486 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4487 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4488 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4489 handled |= ata_host_intr(ap, qc);
4490 }
4491 }
4492
4493 spin_unlock_irqrestore(&host_set->lock, flags);
4494
4495 return IRQ_RETVAL(handled);
4496}
4497
34bf2170
TH
4498/**
4499 * sata_scr_valid - test whether SCRs are accessible
4500 * @ap: ATA port to test SCR accessibility for
4501 *
4502 * Test whether SCRs are accessible for @ap.
4503 *
4504 * LOCKING:
4505 * None.
4506 *
4507 * RETURNS:
4508 * 1 if SCRs are accessible, 0 otherwise.
4509 */
4510int sata_scr_valid(struct ata_port *ap)
4511{
4512 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4513}
4514
4515/**
4516 * sata_scr_read - read SCR register of the specified port
4517 * @ap: ATA port to read SCR for
4518 * @reg: SCR to read
4519 * @val: Place to store read value
4520 *
4521 * Read SCR register @reg of @ap into *@val. This function is
4522 * guaranteed to succeed if the cable type of the port is SATA
4523 * and the port implements ->scr_read.
4524 *
4525 * LOCKING:
4526 * None.
4527 *
4528 * RETURNS:
4529 * 0 on success, negative errno on failure.
4530 */
4531int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4532{
4533 if (sata_scr_valid(ap)) {
4534 *val = ap->ops->scr_read(ap, reg);
4535 return 0;
4536 }
4537 return -EOPNOTSUPP;
4538}
4539
4540/**
4541 * sata_scr_write - write SCR register of the specified port
4542 * @ap: ATA port to write SCR for
4543 * @reg: SCR to write
4544 * @val: value to write
4545 *
4546 * Write @val to SCR register @reg of @ap. This function is
4547 * guaranteed to succeed if the cable type of the port is SATA
4548 * and the port implements ->scr_read.
4549 *
4550 * LOCKING:
4551 * None.
4552 *
4553 * RETURNS:
4554 * 0 on success, negative errno on failure.
4555 */
4556int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4557{
4558 if (sata_scr_valid(ap)) {
4559 ap->ops->scr_write(ap, reg, val);
4560 return 0;
4561 }
4562 return -EOPNOTSUPP;
4563}
4564
4565/**
4566 * sata_scr_write_flush - write SCR register of the specified port and flush
4567 * @ap: ATA port to write SCR for
4568 * @reg: SCR to write
4569 * @val: value to write
4570 *
4571 * This function is identical to sata_scr_write() except that this
4572 * function performs flush after writing to the register.
4573 *
4574 * LOCKING:
4575 * None.
4576 *
4577 * RETURNS:
4578 * 0 on success, negative errno on failure.
4579 */
4580int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4581{
4582 if (sata_scr_valid(ap)) {
4583 ap->ops->scr_write(ap, reg, val);
4584 ap->ops->scr_read(ap, reg);
4585 return 0;
4586 }
4587 return -EOPNOTSUPP;
4588}
4589
4590/**
4591 * ata_port_online - test whether the given port is online
4592 * @ap: ATA port to test
4593 *
4594 * Test whether @ap is online. Note that this function returns 0
4595 * if online status of @ap cannot be obtained, so
4596 * ata_port_online(ap) != !ata_port_offline(ap).
4597 *
4598 * LOCKING:
4599 * None.
4600 *
4601 * RETURNS:
4602 * 1 if the port online status is available and online.
4603 */
4604int ata_port_online(struct ata_port *ap)
4605{
4606 u32 sstatus;
4607
4608 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4609 return 1;
4610 return 0;
4611}
4612
4613/**
4614 * ata_port_offline - test whether the given port is offline
4615 * @ap: ATA port to test
4616 *
4617 * Test whether @ap is offline. Note that this function returns
4618 * 0 if offline status of @ap cannot be obtained, so
4619 * ata_port_online(ap) != !ata_port_offline(ap).
4620 *
4621 * LOCKING:
4622 * None.
4623 *
4624 * RETURNS:
4625 * 1 if the port offline status is available and offline.
4626 */
4627int ata_port_offline(struct ata_port *ap)
4628{
4629 u32 sstatus;
4630
4631 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4632 return 1;
4633 return 0;
4634}
0baab86b 4635
9b847548
JA
4636/*
4637 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4638 * without filling any other registers
4639 */
3373efd8 4640static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4641{
4642 struct ata_taskfile tf;
4643 int err;
4644
3373efd8 4645 ata_tf_init(dev, &tf);
9b847548
JA
4646
4647 tf.command = cmd;
4648 tf.flags |= ATA_TFLAG_DEVICE;
4649 tf.protocol = ATA_PROT_NODATA;
4650
3373efd8 4651 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4652 if (err)
f15a1daf
TH
4653 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4654 __FUNCTION__, err);
9b847548
JA
4655
4656 return err;
4657}
4658
3373efd8 4659static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4660{
4661 u8 cmd;
4662
4663 if (!ata_try_flush_cache(dev))
4664 return 0;
4665
4666 if (ata_id_has_flush_ext(dev->id))
4667 cmd = ATA_CMD_FLUSH_EXT;
4668 else
4669 cmd = ATA_CMD_FLUSH;
4670
3373efd8 4671 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4672}
4673
3373efd8 4674static int ata_standby_drive(struct ata_device *dev)
9b847548 4675{
3373efd8 4676 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4677}
4678
3373efd8 4679static int ata_start_drive(struct ata_device *dev)
9b847548 4680{
3373efd8 4681 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4682}
4683
4684/**
4685 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4686 * @dev: the device to resume
9b847548
JA
4687 *
4688 * Kick the drive back into action, by sending it an idle immediate
4689 * command and making sure its transfer mode matches between drive
4690 * and host.
4691 *
4692 */
3373efd8 4693int ata_device_resume(struct ata_device *dev)
9b847548 4694{
3373efd8
TH
4695 struct ata_port *ap = dev->ap;
4696
9b847548 4697 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4698 struct ata_device *failed_dev;
9b847548 4699 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4700 while (ata_set_mode(ap, &failed_dev))
3373efd8 4701 ata_dev_disable(failed_dev);
9b847548 4702 }
e1211e3f 4703 if (!ata_dev_enabled(dev))
9b847548
JA
4704 return 0;
4705 if (dev->class == ATA_DEV_ATA)
3373efd8 4706 ata_start_drive(dev);
9b847548
JA
4707
4708 return 0;
4709}
4710
4711/**
4712 * ata_device_suspend - prepare a device for suspend
c893a3ae 4713 * @dev: the device to suspend
9b847548
JA
4714 *
4715 * Flush the cache on the drive, if appropriate, then issue a
4716 * standbynow command.
9b847548 4717 */
3373efd8 4718int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 4719{
3373efd8
TH
4720 struct ata_port *ap = dev->ap;
4721
e1211e3f 4722 if (!ata_dev_enabled(dev))
9b847548
JA
4723 return 0;
4724 if (dev->class == ATA_DEV_ATA)
3373efd8 4725 ata_flush_cache(dev);
9b847548 4726
082776e4 4727 if (state.event != PM_EVENT_FREEZE)
3373efd8 4728 ata_standby_drive(dev);
9b847548
JA
4729 ap->flags |= ATA_FLAG_SUSPENDED;
4730 return 0;
4731}
4732
c893a3ae
RD
4733/**
4734 * ata_port_start - Set port up for dma.
4735 * @ap: Port to initialize
4736 *
4737 * Called just after data structures for each port are
4738 * initialized. Allocates space for PRD table.
4739 *
4740 * May be used as the port_start() entry in ata_port_operations.
4741 *
4742 * LOCKING:
4743 * Inherited from caller.
4744 */
4745
1da177e4
LT
4746int ata_port_start (struct ata_port *ap)
4747{
2f1f610b 4748 struct device *dev = ap->dev;
6037d6bb 4749 int rc;
1da177e4
LT
4750
4751 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4752 if (!ap->prd)
4753 return -ENOMEM;
4754
6037d6bb
JG
4755 rc = ata_pad_alloc(ap, dev);
4756 if (rc) {
cedc9a47 4757 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4758 return rc;
cedc9a47
JG
4759 }
4760
1da177e4
LT
4761 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4762
4763 return 0;
4764}
4765
0baab86b
EF
4766
4767/**
4768 * ata_port_stop - Undo ata_port_start()
4769 * @ap: Port to shut down
4770 *
4771 * Frees the PRD table.
4772 *
4773 * May be used as the port_stop() entry in ata_port_operations.
4774 *
4775 * LOCKING:
6f0ef4fa 4776 * Inherited from caller.
0baab86b
EF
4777 */
4778
1da177e4
LT
4779void ata_port_stop (struct ata_port *ap)
4780{
2f1f610b 4781 struct device *dev = ap->dev;
1da177e4
LT
4782
4783 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4784 ata_pad_free(ap, dev);
1da177e4
LT
4785}
4786
aa8f0dc6
JG
4787void ata_host_stop (struct ata_host_set *host_set)
4788{
4789 if (host_set->mmio_base)
4790 iounmap(host_set->mmio_base);
4791}
4792
4793
1da177e4
LT
4794/**
4795 * ata_host_remove - Unregister SCSI host structure with upper layers
4796 * @ap: Port to unregister
4797 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4798 *
4799 * LOCKING:
6f0ef4fa 4800 * Inherited from caller.
1da177e4
LT
4801 */
4802
4803static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4804{
4805 struct Scsi_Host *sh = ap->host;
4806
4807 DPRINTK("ENTER\n");
4808
4809 if (do_unregister)
4810 scsi_remove_host(sh);
4811
4812 ap->ops->port_stop(ap);
4813}
4814
4815/**
4816 * ata_host_init - Initialize an ata_port structure
4817 * @ap: Structure to initialize
4818 * @host: associated SCSI mid-layer structure
4819 * @host_set: Collection of hosts to which @ap belongs
4820 * @ent: Probe information provided by low-level driver
4821 * @port_no: Port number associated with this ata_port
4822 *
0cba632b
JG
4823 * Initialize a new ata_port structure, and its associated
4824 * scsi_host.
4825 *
1da177e4 4826 * LOCKING:
0cba632b 4827 * Inherited from caller.
1da177e4
LT
4828 */
4829
4830static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4831 struct ata_host_set *host_set,
057ace5e 4832 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4833{
4834 unsigned int i;
4835
4836 host->max_id = 16;
4837 host->max_lun = 1;
4838 host->max_channel = 1;
4839 host->unique_id = ata_unique_id++;
4840 host->max_cmd_len = 12;
12413197 4841
198e0fed 4842 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4843 ap->id = host->unique_id;
4844 ap->host = host;
4845 ap->ctl = ATA_DEVCTL_OBS;
4846 ap->host_set = host_set;
2f1f610b 4847 ap->dev = ent->dev;
1da177e4
LT
4848 ap->port_no = port_no;
4849 ap->hard_port_no =
4850 ent->legacy_mode ? ent->hard_port_no : port_no;
4851 ap->pio_mask = ent->pio_mask;
4852 ap->mwdma_mask = ent->mwdma_mask;
4853 ap->udma_mask = ent->udma_mask;
4854 ap->flags |= ent->host_flags;
4855 ap->ops = ent->port_ops;
1c3fae4d 4856 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4857 ap->active_tag = ATA_TAG_POISON;
4858 ap->last_ctl = 0xFF;
4859
86e45b6b 4860 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4861 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4862
838df628
TH
4863 /* set cable type */
4864 ap->cbl = ATA_CBL_NONE;
4865 if (ap->flags & ATA_FLAG_SATA)
4866 ap->cbl = ATA_CBL_SATA;
4867
acf356b1
TH
4868 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4869 struct ata_device *dev = &ap->device[i];
38d87234 4870 dev->ap = ap;
acf356b1
TH
4871 dev->devno = i;
4872 dev->pio_mask = UINT_MAX;
4873 dev->mwdma_mask = UINT_MAX;
4874 dev->udma_mask = UINT_MAX;
4875 }
1da177e4
LT
4876
4877#ifdef ATA_IRQ_TRAP
4878 ap->stats.unhandled_irq = 1;
4879 ap->stats.idle_irq = 1;
4880#endif
4881
4882 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4883}
4884
4885/**
4886 * ata_host_add - Attach low-level ATA driver to system
4887 * @ent: Information provided by low-level driver
4888 * @host_set: Collections of ports to which we add
4889 * @port_no: Port number associated with this host
4890 *
0cba632b
JG
4891 * Attach low-level ATA driver to system.
4892 *
1da177e4 4893 * LOCKING:
0cba632b 4894 * PCI/etc. bus probe sem.
1da177e4
LT
4895 *
4896 * RETURNS:
0cba632b 4897 * New ata_port on success, for NULL on error.
1da177e4
LT
4898 */
4899
057ace5e 4900static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4901 struct ata_host_set *host_set,
4902 unsigned int port_no)
4903{
4904 struct Scsi_Host *host;
4905 struct ata_port *ap;
4906 int rc;
4907
4908 DPRINTK("ENTER\n");
aec5c3c1
TH
4909
4910 if (!ent->port_ops->probe_reset &&
4911 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4912 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4913 port_no);
4914 return NULL;
4915 }
4916
1da177e4
LT
4917 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4918 if (!host)
4919 return NULL;
4920
30afc84c
TH
4921 host->transportt = &ata_scsi_transport_template;
4922
35bb94b1 4923 ap = ata_shost_to_port(host);
1da177e4
LT
4924
4925 ata_host_init(ap, host, host_set, ent, port_no);
4926
4927 rc = ap->ops->port_start(ap);
4928 if (rc)
4929 goto err_out;
4930
4931 return ap;
4932
4933err_out:
4934 scsi_host_put(host);
4935 return NULL;
4936}
4937
4938/**
0cba632b
JG
4939 * ata_device_add - Register hardware device with ATA and SCSI layers
4940 * @ent: Probe information describing hardware device to be registered
4941 *
4942 * This function processes the information provided in the probe
4943 * information struct @ent, allocates the necessary ATA and SCSI
4944 * host information structures, initializes them, and registers
4945 * everything with requisite kernel subsystems.
4946 *
4947 * This function requests irqs, probes the ATA bus, and probes
4948 * the SCSI bus.
1da177e4
LT
4949 *
4950 * LOCKING:
0cba632b 4951 * PCI/etc. bus probe sem.
1da177e4
LT
4952 *
4953 * RETURNS:
0cba632b 4954 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4955 */
4956
057ace5e 4957int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4958{
4959 unsigned int count = 0, i;
4960 struct device *dev = ent->dev;
4961 struct ata_host_set *host_set;
4962
4963 DPRINTK("ENTER\n");
4964 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4965 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4966 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4967 if (!host_set)
4968 return 0;
1da177e4
LT
4969 spin_lock_init(&host_set->lock);
4970
4971 host_set->dev = dev;
4972 host_set->n_ports = ent->n_ports;
4973 host_set->irq = ent->irq;
4974 host_set->mmio_base = ent->mmio_base;
4975 host_set->private_data = ent->private_data;
4976 host_set->ops = ent->port_ops;
5444a6f4 4977 host_set->flags = ent->host_set_flags;
1da177e4
LT
4978
4979 /* register each port bound to this device */
4980 for (i = 0; i < ent->n_ports; i++) {
4981 struct ata_port *ap;
4982 unsigned long xfer_mode_mask;
4983
4984 ap = ata_host_add(ent, host_set, i);
4985 if (!ap)
4986 goto err_out;
4987
4988 host_set->ports[i] = ap;
4989 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4990 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4991 (ap->pio_mask << ATA_SHIFT_PIO);
4992
4993 /* print per-port info to dmesg */
f15a1daf
TH
4994 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
4995 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
4996 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4997 ata_mode_string(xfer_mode_mask),
4998 ap->ioaddr.cmd_addr,
4999 ap->ioaddr.ctl_addr,
5000 ap->ioaddr.bmdma_addr,
5001 ent->irq);
1da177e4
LT
5002
5003 ata_chk_status(ap);
5004 host_set->ops->irq_clear(ap);
e3180499 5005 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5006 count++;
5007 }
5008
57f3bda8
RD
5009 if (!count)
5010 goto err_free_ret;
1da177e4
LT
5011
5012 /* obtain irq, that is shared between channels */
5013 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5014 DRV_NAME, host_set))
5015 goto err_out;
5016
5017 /* perform each probe synchronously */
5018 DPRINTK("probe begin\n");
5019 for (i = 0; i < count; i++) {
5020 struct ata_port *ap;
5021 int rc;
5022
5023 ap = host_set->ports[i];
5024
c893a3ae 5025 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 5026 rc = ata_bus_probe(ap);
c893a3ae 5027 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
5028
5029 if (rc) {
5030 /* FIXME: do something useful here?
5031 * Current libata behavior will
5032 * tear down everything when
5033 * the module is removed
5034 * or the h/w is unplugged.
5035 */
5036 }
5037
5038 rc = scsi_add_host(ap->host, dev);
5039 if (rc) {
f15a1daf 5040 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5041 /* FIXME: do something useful here */
5042 /* FIXME: handle unconditional calls to
5043 * scsi_scan_host and ata_host_remove, below,
5044 * at the very least
5045 */
5046 }
5047 }
5048
5049 /* probes are done, now scan each port's disk(s) */
c893a3ae 5050 DPRINTK("host probe begin\n");
1da177e4
LT
5051 for (i = 0; i < count; i++) {
5052 struct ata_port *ap = host_set->ports[i];
5053
644dd0cc 5054 ata_scsi_scan_host(ap);
1da177e4
LT
5055 }
5056
5057 dev_set_drvdata(dev, host_set);
5058
5059 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5060 return ent->n_ports; /* success */
5061
5062err_out:
5063 for (i = 0; i < count; i++) {
5064 ata_host_remove(host_set->ports[i], 1);
5065 scsi_host_put(host_set->ports[i]->host);
5066 }
57f3bda8 5067err_free_ret:
1da177e4
LT
5068 kfree(host_set);
5069 VPRINTK("EXIT, returning 0\n");
5070 return 0;
5071}
5072
17b14451
AC
5073/**
5074 * ata_host_set_remove - PCI layer callback for device removal
5075 * @host_set: ATA host set that was removed
5076 *
2e9edbf8 5077 * Unregister all objects associated with this host set. Free those
17b14451
AC
5078 * objects.
5079 *
5080 * LOCKING:
5081 * Inherited from calling layer (may sleep).
5082 */
5083
17b14451
AC
5084void ata_host_set_remove(struct ata_host_set *host_set)
5085{
5086 struct ata_port *ap;
5087 unsigned int i;
5088
5089 for (i = 0; i < host_set->n_ports; i++) {
5090 ap = host_set->ports[i];
5091 scsi_remove_host(ap->host);
5092 }
5093
5094 free_irq(host_set->irq, host_set);
5095
5096 for (i = 0; i < host_set->n_ports; i++) {
5097 ap = host_set->ports[i];
5098
5099 ata_scsi_release(ap->host);
5100
5101 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5102 struct ata_ioports *ioaddr = &ap->ioaddr;
5103
5104 if (ioaddr->cmd_addr == 0x1f0)
5105 release_region(0x1f0, 8);
5106 else if (ioaddr->cmd_addr == 0x170)
5107 release_region(0x170, 8);
5108 }
5109
5110 scsi_host_put(ap->host);
5111 }
5112
5113 if (host_set->ops->host_stop)
5114 host_set->ops->host_stop(host_set);
5115
5116 kfree(host_set);
5117}
5118
1da177e4
LT
5119/**
5120 * ata_scsi_release - SCSI layer callback hook for host unload
5121 * @host: libata host to be unloaded
5122 *
5123 * Performs all duties necessary to shut down a libata port...
5124 * Kill port kthread, disable port, and release resources.
5125 *
5126 * LOCKING:
5127 * Inherited from SCSI layer.
5128 *
5129 * RETURNS:
5130 * One.
5131 */
5132
5133int ata_scsi_release(struct Scsi_Host *host)
5134{
35bb94b1 5135 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5136
5137 DPRINTK("ENTER\n");
5138
5139 ap->ops->port_disable(ap);
5140 ata_host_remove(ap, 0);
5141
5142 DPRINTK("EXIT\n");
5143 return 1;
5144}
5145
5146/**
5147 * ata_std_ports - initialize ioaddr with standard port offsets.
5148 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5149 *
5150 * Utility function which initializes data_addr, error_addr,
5151 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5152 * device_addr, status_addr, and command_addr to standard offsets
5153 * relative to cmd_addr.
5154 *
5155 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5156 */
0baab86b 5157
1da177e4
LT
5158void ata_std_ports(struct ata_ioports *ioaddr)
5159{
5160 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5161 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5162 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5163 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5164 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5165 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5166 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5167 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5168 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5169 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5170}
5171
0baab86b 5172
374b1873
JG
5173#ifdef CONFIG_PCI
5174
5175void ata_pci_host_stop (struct ata_host_set *host_set)
5176{
5177 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5178
5179 pci_iounmap(pdev, host_set->mmio_base);
5180}
5181
1da177e4
LT
5182/**
5183 * ata_pci_remove_one - PCI layer callback for device removal
5184 * @pdev: PCI device that was removed
5185 *
5186 * PCI layer indicates to libata via this hook that
6f0ef4fa 5187 * hot-unplug or module unload event has occurred.
1da177e4
LT
5188 * Handle this by unregistering all objects associated
5189 * with this PCI device. Free those objects. Then finally
5190 * release PCI resources and disable device.
5191 *
5192 * LOCKING:
5193 * Inherited from PCI layer (may sleep).
5194 */
5195
5196void ata_pci_remove_one (struct pci_dev *pdev)
5197{
5198 struct device *dev = pci_dev_to_dev(pdev);
5199 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5200
17b14451 5201 ata_host_set_remove(host_set);
1da177e4
LT
5202 pci_release_regions(pdev);
5203 pci_disable_device(pdev);
5204 dev_set_drvdata(dev, NULL);
5205}
5206
5207/* move to PCI subsystem */
057ace5e 5208int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5209{
5210 unsigned long tmp = 0;
5211
5212 switch (bits->width) {
5213 case 1: {
5214 u8 tmp8 = 0;
5215 pci_read_config_byte(pdev, bits->reg, &tmp8);
5216 tmp = tmp8;
5217 break;
5218 }
5219 case 2: {
5220 u16 tmp16 = 0;
5221 pci_read_config_word(pdev, bits->reg, &tmp16);
5222 tmp = tmp16;
5223 break;
5224 }
5225 case 4: {
5226 u32 tmp32 = 0;
5227 pci_read_config_dword(pdev, bits->reg, &tmp32);
5228 tmp = tmp32;
5229 break;
5230 }
5231
5232 default:
5233 return -EINVAL;
5234 }
5235
5236 tmp &= bits->mask;
5237
5238 return (tmp == bits->val) ? 1 : 0;
5239}
9b847548
JA
5240
5241int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5242{
5243 pci_save_state(pdev);
5244 pci_disable_device(pdev);
5245 pci_set_power_state(pdev, PCI_D3hot);
5246 return 0;
5247}
5248
5249int ata_pci_device_resume(struct pci_dev *pdev)
5250{
5251 pci_set_power_state(pdev, PCI_D0);
5252 pci_restore_state(pdev);
5253 pci_enable_device(pdev);
5254 pci_set_master(pdev);
5255 return 0;
5256}
1da177e4
LT
5257#endif /* CONFIG_PCI */
5258
5259
1da177e4
LT
5260static int __init ata_init(void)
5261{
5262 ata_wq = create_workqueue("ata");
5263 if (!ata_wq)
5264 return -ENOMEM;
5265
5266 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5267 return 0;
5268}
5269
5270static void __exit ata_exit(void)
5271{
5272 destroy_workqueue(ata_wq);
5273}
5274
5275module_init(ata_init);
5276module_exit(ata_exit);
5277
67846b30
JG
5278static unsigned long ratelimit_time;
5279static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5280
5281int ata_ratelimit(void)
5282{
5283 int rc;
5284 unsigned long flags;
5285
5286 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5287
5288 if (time_after(jiffies, ratelimit_time)) {
5289 rc = 1;
5290 ratelimit_time = jiffies + (HZ/5);
5291 } else
5292 rc = 0;
5293
5294 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5295
5296 return rc;
5297}
5298
c22daff4
TH
5299/**
5300 * ata_wait_register - wait until register value changes
5301 * @reg: IO-mapped register
5302 * @mask: Mask to apply to read register value
5303 * @val: Wait condition
5304 * @interval_msec: polling interval in milliseconds
5305 * @timeout_msec: timeout in milliseconds
5306 *
5307 * Waiting for some bits of register to change is a common
5308 * operation for ATA controllers. This function reads 32bit LE
5309 * IO-mapped register @reg and tests for the following condition.
5310 *
5311 * (*@reg & mask) != val
5312 *
5313 * If the condition is met, it returns; otherwise, the process is
5314 * repeated after @interval_msec until timeout.
5315 *
5316 * LOCKING:
5317 * Kernel thread context (may sleep)
5318 *
5319 * RETURNS:
5320 * The final register value.
5321 */
5322u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5323 unsigned long interval_msec,
5324 unsigned long timeout_msec)
5325{
5326 unsigned long timeout;
5327 u32 tmp;
5328
5329 tmp = ioread32(reg);
5330
5331 /* Calculate timeout _after_ the first read to make sure
5332 * preceding writes reach the controller before starting to
5333 * eat away the timeout.
5334 */
5335 timeout = jiffies + (timeout_msec * HZ) / 1000;
5336
5337 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5338 msleep(interval_msec);
5339 tmp = ioread32(reg);
5340 }
5341
5342 return tmp;
5343}
5344
1da177e4
LT
5345/*
5346 * libata is essentially a library of internal helper functions for
5347 * low-level ATA host controller drivers. As such, the API/ABI is
5348 * likely to change as new drivers are added and updated.
5349 * Do not depend on ABI/API stability.
5350 */
5351
5352EXPORT_SYMBOL_GPL(ata_std_bios_param);
5353EXPORT_SYMBOL_GPL(ata_std_ports);
5354EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5355EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5356EXPORT_SYMBOL_GPL(ata_sg_init);
5357EXPORT_SYMBOL_GPL(ata_sg_init_one);
f686bcb8 5358EXPORT_SYMBOL_GPL(ata_qc_complete);
1da177e4 5359EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5360EXPORT_SYMBOL_GPL(ata_tf_load);
5361EXPORT_SYMBOL_GPL(ata_tf_read);
5362EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5363EXPORT_SYMBOL_GPL(ata_std_dev_select);
5364EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5365EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5366EXPORT_SYMBOL_GPL(ata_check_status);
5367EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5368EXPORT_SYMBOL_GPL(ata_exec_command);
5369EXPORT_SYMBOL_GPL(ata_port_start);
5370EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5371EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5372EXPORT_SYMBOL_GPL(ata_interrupt);
5373EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5374EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5375EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5376EXPORT_SYMBOL_GPL(ata_bmdma_start);
5377EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5378EXPORT_SYMBOL_GPL(ata_bmdma_status);
5379EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5380EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5381EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5382EXPORT_SYMBOL_GPL(sata_phy_reset);
5383EXPORT_SYMBOL_GPL(__sata_phy_reset);
5384EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5385EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5386EXPORT_SYMBOL_GPL(ata_std_softreset);
5387EXPORT_SYMBOL_GPL(sata_std_hardreset);
5388EXPORT_SYMBOL_GPL(ata_std_postreset);
5389EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5390EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5391EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5392EXPORT_SYMBOL_GPL(ata_dev_classify);
5393EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5394EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5395EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5396EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5397EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5398EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5399EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5400EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5401EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5402EXPORT_SYMBOL_GPL(ata_scsi_release);
5403EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5404EXPORT_SYMBOL_GPL(sata_scr_valid);
5405EXPORT_SYMBOL_GPL(sata_scr_read);
5406EXPORT_SYMBOL_GPL(sata_scr_write);
5407EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5408EXPORT_SYMBOL_GPL(ata_port_online);
5409EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5410EXPORT_SYMBOL_GPL(ata_id_string);
5411EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5412EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5413
1bc4ccff 5414EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5415EXPORT_SYMBOL_GPL(ata_timing_compute);
5416EXPORT_SYMBOL_GPL(ata_timing_merge);
5417
1da177e4
LT
5418#ifdef CONFIG_PCI
5419EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5420EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5421EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5422EXPORT_SYMBOL_GPL(ata_pci_init_one);
5423EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5424EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5425EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5426EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5427EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5428#endif /* CONFIG_PCI */
9b847548
JA
5429
5430EXPORT_SYMBOL_GPL(ata_device_suspend);
5431EXPORT_SYMBOL_GPL(ata_device_resume);
5432EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5433EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5434
ece1d636 5435EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5436EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5437EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5438EXPORT_SYMBOL_GPL(ata_port_freeze);
5439EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5440EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5441EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5442EXPORT_SYMBOL_GPL(ata_eh_qc_retry);