]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata-eh-fw: clear SError in ata_std_postreset()
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893{
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908}
909
910/**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920void ata_port_flush_task(struct ata_port *ap)
921{
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 951{
77853bf2 952 struct completion *waiting = qc->private_data;
a2a7a662 953
a2a7a662 954 complete(waiting);
a2a7a662
TH
955}
956
957/**
958 * ata_exec_internal - execute libata internal command
a2a7a662
TH
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
d69cf37d 961 * @cdb: CDB for packet command
a2a7a662
TH
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
965 *
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
971 *
972 * LOCKING:
973 * None. Should be called with kernel context, might sleep.
974 */
975
3373efd8 976unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 979{
3373efd8 980 struct ata_port *ap = dev->ap;
a2a7a662
TH
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
983 DECLARE_COMPLETION(wait);
984 unsigned long flags;
77853bf2 985 unsigned int err_mask;
a2a7a662
TH
986
987 spin_lock_irqsave(&ap->host_set->lock, flags);
988
3373efd8 989 qc = ata_qc_new_init(dev);
a2a7a662
TH
990 BUG_ON(qc == NULL);
991
992 qc->tf = *tf;
d69cf37d
TH
993 if (cdb)
994 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 995 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
77853bf2 1002 qc->private_data = &wait;
a2a7a662
TH
1003 qc->complete_fn = ata_qc_complete_internal;
1004
8e0e694a 1005 ata_qc_issue(qc);
a2a7a662
TH
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1010 ata_port_flush_task(ap);
1011
a2a7a662
TH
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
77853bf2 1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1021 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662 1022 ata_qc_complete(qc);
f15a1daf
TH
1023
1024 ata_dev_printk(dev, KERN_WARNING,
1025 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1026 }
1027
1028 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1029 }
1030
15869303
TH
1031 /* finish up */
1032 spin_lock_irqsave(&ap->host_set->lock, flags);
1033
e61e0672 1034 *tf = qc->result_tf;
77853bf2
TH
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1f7dd3e9
TH
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
198e0fed 1050 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
15869303
TH
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
77853bf2 1057 return err_mask;
a2a7a662
TH
1058}
1059
1bc4ccff
AC
1060/**
1061 * ata_pio_need_iordy - check if iordy needed
1062 * @adev: ATA device
1063 *
1064 * Check if the current speed of the device requires IORDY. Used
1065 * by various controllers for chip configuration.
1066 */
1067
1068unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069{
1070 int pio;
1071 int speed = adev->pio_mode - XFER_PIO_0;
1072
1073 if (speed < 2)
1074 return 0;
1075 if (speed > 2)
1076 return 1;
2e9edbf8 1077
1bc4ccff
AC
1078 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1079
1080 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1081 pio = adev->id[ATA_ID_EIDE_PIO];
1082 /* Is the speed faster than the drive allows non IORDY ? */
1083 if (pio) {
1084 /* This is cycle times not frequency - watch the logic! */
1085 if (pio > 240) /* PIO2 is 240nS per cycle */
1086 return 1;
1087 return 0;
1088 }
1089 }
1090 return 0;
1091}
1092
1da177e4 1093/**
49016aca 1094 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
fe635c7e 1098 * @id: buffer to read IDENTIFY data into
1da177e4 1099 *
49016aca
TH
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1da177e4
LT
1104 *
1105 * LOCKING:
49016aca
TH
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1da177e4 1110 */
3373efd8
TH
1111static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1112 int post_reset, u16 *id)
1da177e4 1113{
3373efd8 1114 struct ata_port *ap = dev->ap;
49016aca 1115 unsigned int class = *p_class;
a0123703 1116 struct ata_taskfile tf;
49016aca
TH
1117 unsigned int err_mask = 0;
1118 const char *reason;
1119 int rc;
1da177e4 1120
49016aca 1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1122
49016aca 1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1124
49016aca 1125 retry:
3373efd8 1126 ata_tf_init(dev, &tf);
a0123703 1127
49016aca
TH
1128 switch (class) {
1129 case ATA_DEV_ATA:
a0123703 1130 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1131 break;
1132 case ATA_DEV_ATAPI:
a0123703 1133 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1134 break;
1135 default:
1136 rc = -ENODEV;
1137 reason = "unsupported class";
1138 goto err_out;
1da177e4
LT
1139 }
1140
a0123703 1141 tf.protocol = ATA_PROT_PIO;
1da177e4 1142
3373efd8 1143 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1144 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1145 if (err_mask) {
49016aca
TH
1146 rc = -EIO;
1147 reason = "I/O error";
1da177e4
LT
1148 goto err_out;
1149 }
1150
49016aca 1151 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1152
49016aca 1153 /* sanity check */
692785e7 1154 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1155 rc = -EINVAL;
1156 reason = "device reports illegal type";
1157 goto err_out;
1158 }
1159
1160 if (post_reset && class == ATA_DEV_ATA) {
1161 /*
1162 * The exact sequence expected by certain pre-ATA4 drives is:
1163 * SRST RESET
1164 * IDENTIFY
1165 * INITIALIZE DEVICE PARAMETERS
1166 * anything else..
1167 * Some drives were very specific about that exact sequence.
1168 */
1169 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1170 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1171 if (err_mask) {
1172 rc = -EIO;
1173 reason = "INIT_DEV_PARAMS failed";
1174 goto err_out;
1175 }
1176
1177 /* current CHS translation info (id[53-58]) might be
1178 * changed. reread the identify device info.
1179 */
1180 post_reset = 0;
1181 goto retry;
1182 }
1183 }
1184
1185 *p_class = class;
fe635c7e 1186
49016aca
TH
1187 return 0;
1188
1189 err_out:
f15a1daf
TH
1190 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1191 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1192 return rc;
1193}
1194
3373efd8 1195static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1196{
3373efd8 1197 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1198}
1199
49016aca 1200/**
ffeae418 1201 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1202 * @dev: Target device to configure
4c2d721a 1203 * @print_info: Enable device info printout
ffeae418
TH
1204 *
1205 * Configure @dev according to @dev->id. Generic and low-level
1206 * driver specific fixups are also applied.
49016aca
TH
1207 *
1208 * LOCKING:
ffeae418
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise
49016aca 1213 */
3373efd8 1214static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1215{
3373efd8 1216 struct ata_port *ap = dev->ap;
1148c3a7 1217 const u16 *id = dev->id;
ff8854b2 1218 unsigned int xfer_mask;
49016aca
TH
1219 int i, rc;
1220
e1211e3f 1221 if (!ata_dev_enabled(dev)) {
49016aca 1222 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1223 ap->id, dev->devno);
1224 return 0;
49016aca
TH
1225 }
1226
ffeae418 1227 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1228
c39f5ebe
TH
1229 /* print device capabilities */
1230 if (print_info)
f15a1daf
TH
1231 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1232 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1233 id[49], id[82], id[83], id[84],
1234 id[85], id[86], id[87], id[88]);
c39f5ebe 1235
208a9933 1236 /* initialize to-be-configured parameters */
ea1dd4e1 1237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1238 dev->max_sectors = 0;
1239 dev->cdb_len = 0;
1240 dev->n_sectors = 0;
1241 dev->cylinders = 0;
1242 dev->heads = 0;
1243 dev->sectors = 0;
1244
1da177e4
LT
1245 /*
1246 * common ATA, ATAPI feature tests
1247 */
1248
ff8854b2 1249 /* find max transfer mode; for printk only */
1148c3a7 1250 xfer_mask = ata_id_xfermask(id);
1da177e4 1251
1148c3a7 1252 ata_dump_id(id);
1da177e4
LT
1253
1254 /* ATA-specific feature tests */
1255 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1256 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1257
1148c3a7 1258 if (ata_id_has_lba(id)) {
4c2d721a 1259 const char *lba_desc;
8bf62ece 1260
4c2d721a
TH
1261 lba_desc = "LBA";
1262 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1263 if (ata_id_has_lba48(id)) {
8bf62ece 1264 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1265 lba_desc = "LBA48";
1266 }
8bf62ece
AL
1267
1268 /* print device info to dmesg */
4c2d721a 1269 if (print_info)
f15a1daf
TH
1270 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1271 "max %s, %Lu sectors: %s\n",
1272 ata_id_major_version(id),
1273 ata_mode_string(xfer_mask),
1274 (unsigned long long)dev->n_sectors,
1275 lba_desc);
ffeae418 1276 } else {
8bf62ece
AL
1277 /* CHS */
1278
1279 /* Default translation */
1148c3a7
TH
1280 dev->cylinders = id[1];
1281 dev->heads = id[3];
1282 dev->sectors = id[6];
8bf62ece 1283
1148c3a7 1284 if (ata_id_current_chs_valid(id)) {
8bf62ece 1285 /* Current CHS translation is valid. */
1148c3a7
TH
1286 dev->cylinders = id[54];
1287 dev->heads = id[55];
1288 dev->sectors = id[56];
8bf62ece
AL
1289 }
1290
1291 /* print device info to dmesg */
4c2d721a 1292 if (print_info)
f15a1daf
TH
1293 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1294 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1295 ata_id_major_version(id),
1296 ata_mode_string(xfer_mask),
1297 (unsigned long long)dev->n_sectors,
1298 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1299 }
1300
6e7846e9 1301 dev->cdb_len = 16;
1da177e4
LT
1302 }
1303
1304 /* ATAPI-specific feature tests */
2c13b7ce 1305 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1306 rc = atapi_cdb_len(id);
1da177e4 1307 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1308 ata_dev_printk(dev, KERN_WARNING,
1309 "unsupported CDB len\n");
ffeae418 1310 rc = -EINVAL;
1da177e4
LT
1311 goto err_out_nosup;
1312 }
6e7846e9 1313 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1314
1315 /* print device info to dmesg */
4c2d721a 1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s\n",
1318 ata_mode_string(xfer_mask));
1da177e4
LT
1319 }
1320
6e7846e9
TH
1321 ap->host->max_cmd_len = 0;
1322 for (i = 0; i < ATA_MAX_DEVICES; i++)
1323 ap->host->max_cmd_len = max_t(unsigned int,
1324 ap->host->max_cmd_len,
1325 ap->device[i].cdb_len);
1326
4b2f3ede 1327 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1328 if (ata_dev_knobble(dev)) {
4c2d721a 1329 if (print_info)
f15a1daf
TH
1330 ata_dev_printk(dev, KERN_INFO,
1331 "applying bridge limits\n");
5a529139 1332 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1333 dev->max_sectors = ATA_MAX_SECTORS;
1334 }
1335
1336 if (ap->ops->dev_config)
1337 ap->ops->dev_config(ap, dev);
1338
1da177e4 1339 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1340 return 0;
1da177e4
LT
1341
1342err_out_nosup:
1da177e4 1343 DPRINTK("EXIT, err\n");
ffeae418 1344 return rc;
1da177e4
LT
1345}
1346
1347/**
1348 * ata_bus_probe - Reset and probe ATA bus
1349 * @ap: Bus to probe
1350 *
0cba632b
JG
1351 * Master ATA bus probing function. Initiates a hardware-dependent
1352 * bus reset, then attempts to identify any devices found on
1353 * the bus.
1354 *
1da177e4 1355 * LOCKING:
0cba632b 1356 * PCI/etc. bus probe sem.
1da177e4
LT
1357 *
1358 * RETURNS:
96072e69 1359 * Zero on success, negative errno otherwise.
1da177e4
LT
1360 */
1361
1362static int ata_bus_probe(struct ata_port *ap)
1363{
28ca5c57 1364 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1365 int tries[ATA_MAX_DEVICES];
1366 int i, rc, down_xfermask;
e82cbdb9 1367 struct ata_device *dev;
1da177e4 1368
28ca5c57 1369 ata_port_probe(ap);
c19ba8af 1370
14d2bac1
TH
1371 for (i = 0; i < ATA_MAX_DEVICES; i++)
1372 tries[i] = ATA_PROBE_MAX_TRIES;
1373
1374 retry:
1375 down_xfermask = 0;
1376
2044470c
TH
1377 /* reset and determine device classes */
1378 for (i = 0; i < ATA_MAX_DEVICES; i++)
1379 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1380
2044470c 1381 if (ap->ops->probe_reset) {
c19ba8af 1382 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1383 if (rc) {
f15a1daf
TH
1384 ata_port_printk(ap, KERN_ERR,
1385 "reset failed (errno=%d)\n", rc);
28ca5c57 1386 return rc;
c19ba8af 1387 }
28ca5c57 1388 } else {
c19ba8af
TH
1389 ap->ops->phy_reset(ap);
1390
f8c2c420
TH
1391 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1392 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1393 classes[i] = ap->device[i].class;
f8c2c420
TH
1394 ap->device[i].class = ATA_DEV_UNKNOWN;
1395 }
2044470c 1396
28ca5c57
TH
1397 ata_port_probe(ap);
1398 }
1da177e4 1399
2044470c
TH
1400 for (i = 0; i < ATA_MAX_DEVICES; i++)
1401 if (classes[i] == ATA_DEV_UNKNOWN)
1402 classes[i] = ATA_DEV_NONE;
1403
28ca5c57 1404 /* read IDENTIFY page and configure devices */
1da177e4 1405 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1406 dev = &ap->device[i];
28ca5c57 1407
ec573755
TH
1408 if (tries[i])
1409 dev->class = classes[i];
ffeae418 1410
14d2bac1 1411 if (!ata_dev_enabled(dev))
ffeae418 1412 continue;
ffeae418 1413
3373efd8 1414 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1415 if (rc)
1416 goto fail;
1417
3373efd8 1418 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1419 if (rc)
1420 goto fail;
1da177e4
LT
1421 }
1422
e82cbdb9 1423 /* configure transfer mode */
3adcebb2 1424 rc = ata_set_mode(ap, &dev);
51713d35
TH
1425 if (rc) {
1426 down_xfermask = 1;
1427 goto fail;
e82cbdb9 1428 }
1da177e4 1429
e82cbdb9
TH
1430 for (i = 0; i < ATA_MAX_DEVICES; i++)
1431 if (ata_dev_enabled(&ap->device[i]))
1432 return 0;
1da177e4 1433
e82cbdb9
TH
1434 /* no device present, disable port */
1435 ata_port_disable(ap);
1da177e4 1436 ap->ops->port_disable(ap);
96072e69 1437 return -ENODEV;
14d2bac1
TH
1438
1439 fail:
1440 switch (rc) {
1441 case -EINVAL:
1442 case -ENODEV:
1443 tries[dev->devno] = 0;
1444 break;
1445 case -EIO:
3c567b7d 1446 sata_down_spd_limit(ap);
14d2bac1
TH
1447 /* fall through */
1448 default:
1449 tries[dev->devno]--;
1450 if (down_xfermask &&
3373efd8 1451 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1452 tries[dev->devno] = 0;
1453 }
1454
ec573755 1455 if (!tries[dev->devno]) {
3373efd8
TH
1456 ata_down_xfermask_limit(dev, 1);
1457 ata_dev_disable(dev);
ec573755
TH
1458 }
1459
14d2bac1 1460 goto retry;
1da177e4
LT
1461}
1462
1463/**
0cba632b
JG
1464 * ata_port_probe - Mark port as enabled
1465 * @ap: Port for which we indicate enablement
1da177e4 1466 *
0cba632b
JG
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is enabled.
1469 *
1470 * LOCKING: host_set lock, or some other form of
1471 * serialization.
1da177e4
LT
1472 */
1473
1474void ata_port_probe(struct ata_port *ap)
1475{
198e0fed 1476 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1477}
1478
3be680b7
TH
1479/**
1480 * sata_print_link_status - Print SATA link status
1481 * @ap: SATA port to printk link status about
1482 *
1483 * This function prints link speed and status of a SATA link.
1484 *
1485 * LOCKING:
1486 * None.
1487 */
1488static void sata_print_link_status(struct ata_port *ap)
1489{
6d5f9732 1490 u32 sstatus, scontrol, tmp;
3be680b7 1491
81952c54 1492 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1493 return;
81952c54 1494 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1495
81952c54 1496 if (ata_port_online(ap)) {
3be680b7 1497 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1498 ata_port_printk(ap, KERN_INFO,
1499 "SATA link up %s (SStatus %X SControl %X)\n",
1500 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1501 } else {
f15a1daf
TH
1502 ata_port_printk(ap, KERN_INFO,
1503 "SATA link down (SStatus %X SControl %X)\n",
1504 sstatus, scontrol);
3be680b7
TH
1505 }
1506}
1507
1da177e4 1508/**
780a87f7
JG
1509 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1510 * @ap: SATA port associated with target SATA PHY.
1da177e4 1511 *
780a87f7
JG
1512 * This function issues commands to standard SATA Sxxx
1513 * PHY registers, to wake up the phy (and device), and
1514 * clear any reset condition.
1da177e4
LT
1515 *
1516 * LOCKING:
0cba632b 1517 * PCI/etc. bus probe sem.
1da177e4
LT
1518 *
1519 */
1520void __sata_phy_reset(struct ata_port *ap)
1521{
1522 u32 sstatus;
1523 unsigned long timeout = jiffies + (HZ * 5);
1524
1525 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1526 /* issue phy wake/reset */
81952c54 1527 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1528 /* Couldn't find anything in SATA I/II specs, but
1529 * AHCI-1.1 10.4.2 says at least 1 ms. */
1530 mdelay(1);
1da177e4 1531 }
81952c54
TH
1532 /* phy wake/clear reset */
1533 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1534
1535 /* wait for phy to become ready, if necessary */
1536 do {
1537 msleep(200);
81952c54 1538 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1539 if ((sstatus & 0xf) != 1)
1540 break;
1541 } while (time_before(jiffies, timeout));
1542
3be680b7
TH
1543 /* print link status */
1544 sata_print_link_status(ap);
656563e3 1545
3be680b7 1546 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1547 if (!ata_port_offline(ap))
1da177e4 1548 ata_port_probe(ap);
3be680b7 1549 else
1da177e4 1550 ata_port_disable(ap);
1da177e4 1551
198e0fed 1552 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1553 return;
1554
1555 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1556 ata_port_disable(ap);
1557 return;
1558 }
1559
1560 ap->cbl = ATA_CBL_SATA;
1561}
1562
1563/**
780a87f7
JG
1564 * sata_phy_reset - Reset SATA bus.
1565 * @ap: SATA port associated with target SATA PHY.
1da177e4 1566 *
780a87f7
JG
1567 * This function resets the SATA bus, and then probes
1568 * the bus for devices.
1da177e4
LT
1569 *
1570 * LOCKING:
0cba632b 1571 * PCI/etc. bus probe sem.
1da177e4
LT
1572 *
1573 */
1574void sata_phy_reset(struct ata_port *ap)
1575{
1576 __sata_phy_reset(ap);
198e0fed 1577 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1578 return;
1579 ata_bus_reset(ap);
1580}
1581
ebdfca6e
AC
1582/**
1583 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1584 * @adev: device
1585 *
1586 * Obtain the other device on the same cable, or if none is
1587 * present NULL is returned
1588 */
2e9edbf8 1589
3373efd8 1590struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1591{
3373efd8 1592 struct ata_port *ap = adev->ap;
ebdfca6e 1593 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1594 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1595 return NULL;
1596 return pair;
1597}
1598
1da177e4 1599/**
780a87f7
JG
1600 * ata_port_disable - Disable port.
1601 * @ap: Port to be disabled.
1da177e4 1602 *
780a87f7
JG
1603 * Modify @ap data structure such that the system
1604 * thinks that the entire port is disabled, and should
1605 * never attempt to probe or communicate with devices
1606 * on this port.
1607 *
1608 * LOCKING: host_set lock, or some other form of
1609 * serialization.
1da177e4
LT
1610 */
1611
1612void ata_port_disable(struct ata_port *ap)
1613{
1614 ap->device[0].class = ATA_DEV_NONE;
1615 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1616 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1617}
1618
1c3fae4d 1619/**
3c567b7d 1620 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1621 * @ap: Port to adjust SATA spd limit for
1622 *
1623 * Adjust SATA spd limit of @ap downward. Note that this
1624 * function only adjusts the limit. The change must be applied
3c567b7d 1625 * using sata_set_spd().
1c3fae4d
TH
1626 *
1627 * LOCKING:
1628 * Inherited from caller.
1629 *
1630 * RETURNS:
1631 * 0 on success, negative errno on failure
1632 */
3c567b7d 1633int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1634{
81952c54
TH
1635 u32 sstatus, spd, mask;
1636 int rc, highbit;
1c3fae4d 1637
81952c54
TH
1638 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1639 if (rc)
1640 return rc;
1c3fae4d
TH
1641
1642 mask = ap->sata_spd_limit;
1643 if (mask <= 1)
1644 return -EINVAL;
1645 highbit = fls(mask) - 1;
1646 mask &= ~(1 << highbit);
1647
81952c54 1648 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1649 if (spd <= 1)
1650 return -EINVAL;
1651 spd--;
1652 mask &= (1 << spd) - 1;
1653 if (!mask)
1654 return -EINVAL;
1655
1656 ap->sata_spd_limit = mask;
1657
f15a1daf
TH
1658 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1659 sata_spd_string(fls(mask)));
1c3fae4d
TH
1660
1661 return 0;
1662}
1663
3c567b7d 1664static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1665{
1666 u32 spd, limit;
1667
1668 if (ap->sata_spd_limit == UINT_MAX)
1669 limit = 0;
1670 else
1671 limit = fls(ap->sata_spd_limit);
1672
1673 spd = (*scontrol >> 4) & 0xf;
1674 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1675
1676 return spd != limit;
1677}
1678
1679/**
3c567b7d 1680 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1681 * @ap: Port in question
1682 *
1683 * Test whether the spd limit in SControl matches
1684 * @ap->sata_spd_limit. This function is used to determine
1685 * whether hardreset is necessary to apply SATA spd
1686 * configuration.
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 *
1691 * RETURNS:
1692 * 1 if SATA spd configuration is needed, 0 otherwise.
1693 */
3c567b7d 1694int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1695{
1696 u32 scontrol;
1697
81952c54 1698 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1699 return 0;
1700
3c567b7d 1701 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1702}
1703
1704/**
3c567b7d 1705 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1706 * @ap: Port to set SATA spd for
1707 *
1708 * Set SATA spd of @ap according to sata_spd_limit.
1709 *
1710 * LOCKING:
1711 * Inherited from caller.
1712 *
1713 * RETURNS:
1714 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1715 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1716 */
3c567b7d 1717int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1718{
1719 u32 scontrol;
81952c54 1720 int rc;
1c3fae4d 1721
81952c54
TH
1722 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1723 return rc;
1c3fae4d 1724
3c567b7d 1725 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1726 return 0;
1727
81952c54
TH
1728 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1729 return rc;
1730
1c3fae4d
TH
1731 return 1;
1732}
1733
452503f9
AC
1734/*
1735 * This mode timing computation functionality is ported over from
1736 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1737 */
1738/*
1739 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1740 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1741 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1742 * is currently supported only by Maxtor drives.
452503f9
AC
1743 */
1744
1745static const struct ata_timing ata_timing[] = {
1746
1747 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1748 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1749 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1750 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1751
1752 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1753 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1754 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1755
1756/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1757
452503f9
AC
1758 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1759 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1760 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1761
452503f9
AC
1762 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1763 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1764 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1765
1766/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1767 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1768 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1769
1770 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1771 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1772 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1773
1774/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1775
1776 { 0xFF }
1777};
1778
1779#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1780#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1781
1782static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1783{
1784 q->setup = EZ(t->setup * 1000, T);
1785 q->act8b = EZ(t->act8b * 1000, T);
1786 q->rec8b = EZ(t->rec8b * 1000, T);
1787 q->cyc8b = EZ(t->cyc8b * 1000, T);
1788 q->active = EZ(t->active * 1000, T);
1789 q->recover = EZ(t->recover * 1000, T);
1790 q->cycle = EZ(t->cycle * 1000, T);
1791 q->udma = EZ(t->udma * 1000, UT);
1792}
1793
1794void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1795 struct ata_timing *m, unsigned int what)
1796{
1797 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1798 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1799 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1800 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1801 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1802 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1803 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1804 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1805}
1806
1807static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1808{
1809 const struct ata_timing *t;
1810
1811 for (t = ata_timing; t->mode != speed; t++)
91190758 1812 if (t->mode == 0xFF)
452503f9 1813 return NULL;
2e9edbf8 1814 return t;
452503f9
AC
1815}
1816
1817int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1818 struct ata_timing *t, int T, int UT)
1819{
1820 const struct ata_timing *s;
1821 struct ata_timing p;
1822
1823 /*
2e9edbf8 1824 * Find the mode.
75b1f2f8 1825 */
452503f9
AC
1826
1827 if (!(s = ata_timing_find_mode(speed)))
1828 return -EINVAL;
1829
75b1f2f8
AL
1830 memcpy(t, s, sizeof(*s));
1831
452503f9
AC
1832 /*
1833 * If the drive is an EIDE drive, it can tell us it needs extended
1834 * PIO/MW_DMA cycle timing.
1835 */
1836
1837 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1838 memset(&p, 0, sizeof(p));
1839 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1840 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1841 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1842 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1843 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1844 }
1845 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1846 }
1847
1848 /*
1849 * Convert the timing to bus clock counts.
1850 */
1851
75b1f2f8 1852 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1853
1854 /*
c893a3ae
RD
1855 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1856 * S.M.A.R.T * and some other commands. We have to ensure that the
1857 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1858 */
1859
1860 if (speed > XFER_PIO_4) {
1861 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1862 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1863 }
1864
1865 /*
c893a3ae 1866 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1867 */
1868
1869 if (t->act8b + t->rec8b < t->cyc8b) {
1870 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1871 t->rec8b = t->cyc8b - t->act8b;
1872 }
1873
1874 if (t->active + t->recover < t->cycle) {
1875 t->active += (t->cycle - (t->active + t->recover)) / 2;
1876 t->recover = t->cycle - t->active;
1877 }
1878
1879 return 0;
1880}
1881
cf176e1a
TH
1882/**
1883 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1884 * @dev: Device to adjust xfer masks
1885 * @force_pio0: Force PIO0
1886 *
1887 * Adjust xfer masks of @dev downward. Note that this function
1888 * does not apply the change. Invoking ata_set_mode() afterwards
1889 * will apply the limit.
1890 *
1891 * LOCKING:
1892 * Inherited from caller.
1893 *
1894 * RETURNS:
1895 * 0 on success, negative errno on failure
1896 */
3373efd8 1897int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1898{
1899 unsigned long xfer_mask;
1900 int highbit;
1901
1902 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1903 dev->udma_mask);
1904
1905 if (!xfer_mask)
1906 goto fail;
1907 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1908 if (xfer_mask & ATA_MASK_UDMA)
1909 xfer_mask &= ~ATA_MASK_MWDMA;
1910
1911 highbit = fls(xfer_mask) - 1;
1912 xfer_mask &= ~(1 << highbit);
1913 if (force_pio0)
1914 xfer_mask &= 1 << ATA_SHIFT_PIO;
1915 if (!xfer_mask)
1916 goto fail;
1917
1918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1919 &dev->udma_mask);
1920
f15a1daf
TH
1921 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1922 ata_mode_string(xfer_mask));
cf176e1a
TH
1923
1924 return 0;
1925
1926 fail:
1927 return -EINVAL;
1928}
1929
3373efd8 1930static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 1931{
83206a29
TH
1932 unsigned int err_mask;
1933 int rc;
1da177e4 1934
e8384607 1935 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1936 if (dev->xfer_shift == ATA_SHIFT_PIO)
1937 dev->flags |= ATA_DFLAG_PIO;
1938
3373efd8 1939 err_mask = ata_dev_set_xfermode(dev);
83206a29 1940 if (err_mask) {
f15a1daf
TH
1941 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
1942 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
1943 return -EIO;
1944 }
1da177e4 1945
3373efd8 1946 rc = ata_dev_revalidate(dev, 0);
5eb45c02 1947 if (rc)
83206a29 1948 return rc;
48a8a14f 1949
23e71c3d
TH
1950 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1951 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 1952
f15a1daf
TH
1953 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1954 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1955 return 0;
1da177e4
LT
1956}
1957
1da177e4
LT
1958/**
1959 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1960 * @ap: port on which timings will be programmed
e82cbdb9 1961 * @r_failed_dev: out paramter for failed device
1da177e4 1962 *
e82cbdb9
TH
1963 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1964 * ata_set_mode() fails, pointer to the failing device is
1965 * returned in @r_failed_dev.
780a87f7 1966 *
1da177e4 1967 * LOCKING:
0cba632b 1968 * PCI/etc. bus probe sem.
e82cbdb9
TH
1969 *
1970 * RETURNS:
1971 * 0 on success, negative errno otherwise
1da177e4 1972 */
1ad8e7f9 1973int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1974{
e8e0619f 1975 struct ata_device *dev;
e82cbdb9 1976 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1977
3adcebb2
TH
1978 /* has private set_mode? */
1979 if (ap->ops->set_mode) {
1980 /* FIXME: make ->set_mode handle no device case and
1981 * return error code and failing device on failure.
1982 */
1983 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1984 if (ata_dev_enabled(&ap->device[i])) {
1985 ap->ops->set_mode(ap);
1986 break;
1987 }
1988 }
1989 return 0;
1990 }
1991
a6d5a51c
TH
1992 /* step 1: calculate xfer_mask */
1993 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1994 unsigned int pio_mask, dma_mask;
a6d5a51c 1995
e8e0619f
TH
1996 dev = &ap->device[i];
1997
e1211e3f 1998 if (!ata_dev_enabled(dev))
a6d5a51c
TH
1999 continue;
2000
3373efd8 2001 ata_dev_xfermask(dev);
1da177e4 2002
acf356b1
TH
2003 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2004 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2005 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2006 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2007
4f65977d 2008 found = 1;
5444a6f4
AC
2009 if (dev->dma_mode)
2010 used_dma = 1;
a6d5a51c 2011 }
4f65977d 2012 if (!found)
e82cbdb9 2013 goto out;
a6d5a51c
TH
2014
2015 /* step 2: always set host PIO timings */
e8e0619f
TH
2016 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2017 dev = &ap->device[i];
2018 if (!ata_dev_enabled(dev))
2019 continue;
2020
2021 if (!dev->pio_mode) {
f15a1daf 2022 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2023 rc = -EINVAL;
e82cbdb9 2024 goto out;
e8e0619f
TH
2025 }
2026
2027 dev->xfer_mode = dev->pio_mode;
2028 dev->xfer_shift = ATA_SHIFT_PIO;
2029 if (ap->ops->set_piomode)
2030 ap->ops->set_piomode(ap, dev);
2031 }
1da177e4 2032
a6d5a51c 2033 /* step 3: set host DMA timings */
e8e0619f
TH
2034 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2035 dev = &ap->device[i];
2036
2037 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2038 continue;
2039
2040 dev->xfer_mode = dev->dma_mode;
2041 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2042 if (ap->ops->set_dmamode)
2043 ap->ops->set_dmamode(ap, dev);
2044 }
1da177e4
LT
2045
2046 /* step 4: update devices' xfer mode */
83206a29 2047 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2048 dev = &ap->device[i];
1da177e4 2049
e1211e3f 2050 if (!ata_dev_enabled(dev))
83206a29
TH
2051 continue;
2052
3373efd8 2053 rc = ata_dev_set_mode(dev);
5bbc53f4 2054 if (rc)
e82cbdb9 2055 goto out;
83206a29 2056 }
1da177e4 2057
e8e0619f
TH
2058 /* Record simplex status. If we selected DMA then the other
2059 * host channels are not permitted to do so.
5444a6f4 2060 */
5444a6f4
AC
2061 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2062 ap->host_set->simplex_claimed = 1;
2063
e8e0619f 2064 /* step5: chip specific finalisation */
1da177e4
LT
2065 if (ap->ops->post_set_mode)
2066 ap->ops->post_set_mode(ap);
2067
e82cbdb9
TH
2068 out:
2069 if (rc)
2070 *r_failed_dev = dev;
2071 return rc;
1da177e4
LT
2072}
2073
1fdffbce
JG
2074/**
2075 * ata_tf_to_host - issue ATA taskfile to host controller
2076 * @ap: port to which command is being issued
2077 * @tf: ATA taskfile register set
2078 *
2079 * Issues ATA taskfile register set to ATA host controller,
2080 * with proper synchronization with interrupt handler and
2081 * other threads.
2082 *
2083 * LOCKING:
2084 * spin_lock_irqsave(host_set lock)
2085 */
2086
2087static inline void ata_tf_to_host(struct ata_port *ap,
2088 const struct ata_taskfile *tf)
2089{
2090 ap->ops->tf_load(ap, tf);
2091 ap->ops->exec_command(ap, tf);
2092}
2093
1da177e4
LT
2094/**
2095 * ata_busy_sleep - sleep until BSY clears, or timeout
2096 * @ap: port containing status register to be polled
2097 * @tmout_pat: impatience timeout
2098 * @tmout: overall timeout
2099 *
780a87f7
JG
2100 * Sleep until ATA Status register bit BSY clears,
2101 * or a timeout occurs.
2102 *
2103 * LOCKING: None.
1da177e4
LT
2104 */
2105
6f8b9958
TH
2106unsigned int ata_busy_sleep (struct ata_port *ap,
2107 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2108{
2109 unsigned long timer_start, timeout;
2110 u8 status;
2111
2112 status = ata_busy_wait(ap, ATA_BUSY, 300);
2113 timer_start = jiffies;
2114 timeout = timer_start + tmout_pat;
2115 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2116 msleep(50);
2117 status = ata_busy_wait(ap, ATA_BUSY, 3);
2118 }
2119
2120 if (status & ATA_BUSY)
f15a1daf
TH
2121 ata_port_printk(ap, KERN_WARNING,
2122 "port is slow to respond, please be patient\n");
1da177e4
LT
2123
2124 timeout = timer_start + tmout;
2125 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2126 msleep(50);
2127 status = ata_chk_status(ap);
2128 }
2129
2130 if (status & ATA_BUSY) {
f15a1daf
TH
2131 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2132 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2133 return 1;
2134 }
2135
2136 return 0;
2137}
2138
2139static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2140{
2141 struct ata_ioports *ioaddr = &ap->ioaddr;
2142 unsigned int dev0 = devmask & (1 << 0);
2143 unsigned int dev1 = devmask & (1 << 1);
2144 unsigned long timeout;
2145
2146 /* if device 0 was found in ata_devchk, wait for its
2147 * BSY bit to clear
2148 */
2149 if (dev0)
2150 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2151
2152 /* if device 1 was found in ata_devchk, wait for
2153 * register access, then wait for BSY to clear
2154 */
2155 timeout = jiffies + ATA_TMOUT_BOOT;
2156 while (dev1) {
2157 u8 nsect, lbal;
2158
2159 ap->ops->dev_select(ap, 1);
2160 if (ap->flags & ATA_FLAG_MMIO) {
2161 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2162 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2163 } else {
2164 nsect = inb(ioaddr->nsect_addr);
2165 lbal = inb(ioaddr->lbal_addr);
2166 }
2167 if ((nsect == 1) && (lbal == 1))
2168 break;
2169 if (time_after(jiffies, timeout)) {
2170 dev1 = 0;
2171 break;
2172 }
2173 msleep(50); /* give drive a breather */
2174 }
2175 if (dev1)
2176 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2177
2178 /* is all this really necessary? */
2179 ap->ops->dev_select(ap, 0);
2180 if (dev1)
2181 ap->ops->dev_select(ap, 1);
2182 if (dev0)
2183 ap->ops->dev_select(ap, 0);
2184}
2185
1da177e4
LT
2186static unsigned int ata_bus_softreset(struct ata_port *ap,
2187 unsigned int devmask)
2188{
2189 struct ata_ioports *ioaddr = &ap->ioaddr;
2190
2191 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2192
2193 /* software reset. causes dev0 to be selected */
2194 if (ap->flags & ATA_FLAG_MMIO) {
2195 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2196 udelay(20); /* FIXME: flush */
2197 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2198 udelay(20); /* FIXME: flush */
2199 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2200 } else {
2201 outb(ap->ctl, ioaddr->ctl_addr);
2202 udelay(10);
2203 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2204 udelay(10);
2205 outb(ap->ctl, ioaddr->ctl_addr);
2206 }
2207
2208 /* spec mandates ">= 2ms" before checking status.
2209 * We wait 150ms, because that was the magic delay used for
2210 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2211 * between when the ATA command register is written, and then
2212 * status is checked. Because waiting for "a while" before
2213 * checking status is fine, post SRST, we perform this magic
2214 * delay here as well.
09c7ad79
AC
2215 *
2216 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2217 */
2218 msleep(150);
2219
2e9edbf8 2220 /* Before we perform post reset processing we want to see if
298a41ca
TH
2221 * the bus shows 0xFF because the odd clown forgets the D7
2222 * pulldown resistor.
2223 */
987d2f05 2224 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2225 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2226 return AC_ERR_OTHER;
987d2f05 2227 }
09c7ad79 2228
1da177e4
LT
2229 ata_bus_post_reset(ap, devmask);
2230
2231 return 0;
2232}
2233
2234/**
2235 * ata_bus_reset - reset host port and associated ATA channel
2236 * @ap: port to reset
2237 *
2238 * This is typically the first time we actually start issuing
2239 * commands to the ATA channel. We wait for BSY to clear, then
2240 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2241 * result. Determine what devices, if any, are on the channel
2242 * by looking at the device 0/1 error register. Look at the signature
2243 * stored in each device's taskfile registers, to determine if
2244 * the device is ATA or ATAPI.
2245 *
2246 * LOCKING:
0cba632b
JG
2247 * PCI/etc. bus probe sem.
2248 * Obtains host_set lock.
1da177e4
LT
2249 *
2250 * SIDE EFFECTS:
198e0fed 2251 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2252 */
2253
2254void ata_bus_reset(struct ata_port *ap)
2255{
2256 struct ata_ioports *ioaddr = &ap->ioaddr;
2257 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2258 u8 err;
aec5c3c1 2259 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2260
2261 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2262
2263 /* determine if device 0/1 are present */
2264 if (ap->flags & ATA_FLAG_SATA_RESET)
2265 dev0 = 1;
2266 else {
2267 dev0 = ata_devchk(ap, 0);
2268 if (slave_possible)
2269 dev1 = ata_devchk(ap, 1);
2270 }
2271
2272 if (dev0)
2273 devmask |= (1 << 0);
2274 if (dev1)
2275 devmask |= (1 << 1);
2276
2277 /* select device 0 again */
2278 ap->ops->dev_select(ap, 0);
2279
2280 /* issue bus reset */
2281 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2282 if (ata_bus_softreset(ap, devmask))
2283 goto err_out;
1da177e4
LT
2284
2285 /*
2286 * determine by signature whether we have ATA or ATAPI devices
2287 */
b4dc7623 2288 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2289 if ((slave_possible) && (err != 0x81))
b4dc7623 2290 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2291
2292 /* re-enable interrupts */
2293 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2294 ata_irq_on(ap);
2295
2296 /* is double-select really necessary? */
2297 if (ap->device[1].class != ATA_DEV_NONE)
2298 ap->ops->dev_select(ap, 1);
2299 if (ap->device[0].class != ATA_DEV_NONE)
2300 ap->ops->dev_select(ap, 0);
2301
2302 /* if no devices were detected, disable this port */
2303 if ((ap->device[0].class == ATA_DEV_NONE) &&
2304 (ap->device[1].class == ATA_DEV_NONE))
2305 goto err_out;
2306
2307 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2308 /* set up device control for ATA_FLAG_SATA_RESET */
2309 if (ap->flags & ATA_FLAG_MMIO)
2310 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2311 else
2312 outb(ap->ctl, ioaddr->ctl_addr);
2313 }
2314
2315 DPRINTK("EXIT\n");
2316 return;
2317
2318err_out:
f15a1daf 2319 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2320 ap->ops->port_disable(ap);
2321
2322 DPRINTK("EXIT\n");
2323}
2324
7a7921e8
TH
2325static int sata_phy_resume(struct ata_port *ap)
2326{
2327 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2328 u32 scontrol, sstatus;
81952c54
TH
2329 int rc;
2330
2331 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2332 return rc;
7a7921e8 2333
852ee16a 2334 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2335
2336 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2337 return rc;
7a7921e8
TH
2338
2339 /* Wait for phy to become ready, if necessary. */
2340 do {
2341 msleep(200);
81952c54
TH
2342 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2343 return rc;
7a7921e8
TH
2344 if ((sstatus & 0xf) != 1)
2345 return 0;
2346 } while (time_before(jiffies, timeout));
2347
81952c54 2348 return -EBUSY;
7a7921e8
TH
2349}
2350
8a19ac89
TH
2351/**
2352 * ata_std_probeinit - initialize probing
2353 * @ap: port to be probed
2354 *
2355 * @ap is about to be probed. Initialize it. This function is
2356 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2357 *
2358 * NOTE!!! Do not use this function as probeinit if a low level
2359 * driver implements only hardreset. Just pass NULL as probeinit
2360 * in that case. Using this function is probably okay but doing
2361 * so makes reset sequence different from the original
2362 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2363 */
17efc5f7 2364void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2365{
81952c54 2366 u32 scontrol;
1c3fae4d 2367
81952c54
TH
2368 /* resume link */
2369 sata_phy_resume(ap);
1c3fae4d 2370
81952c54
TH
2371 /* init sata_spd_limit to the current value */
2372 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2373 int spd = (scontrol >> 4) & 0xf;
2374 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2375 }
81952c54
TH
2376
2377 /* wait for device */
2378 if (ata_port_online(ap))
2379 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2380}
2381
c2bd5804
TH
2382/**
2383 * ata_std_softreset - reset host port via ATA SRST
2384 * @ap: port to reset
c2bd5804
TH
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2bf2cb26 2396int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2397{
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
81952c54 2404 if (ata_port_offline(ap)) {
3a39746a
TH
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
c2bd5804
TH
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
c2bd5804
TH
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
f15a1daf
TH
2422 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2423 err_mask);
c2bd5804
TH
2424 return -EIO;
2425 }
2426
2427 /* determine by signature whether we have ATA or ATAPI devices */
2428 classes[0] = ata_dev_try_classify(ap, 0, &err);
2429 if (slave_possible && err != 0x81)
2430 classes[1] = ata_dev_try_classify(ap, 1, &err);
2431
3a39746a 2432 out:
c2bd5804
TH
2433 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2434 return 0;
2435}
2436
2437/**
2438 * sata_std_hardreset - reset host port via SATA phy reset
2439 * @ap: port to reset
c2bd5804
TH
2440 * @class: resulting class of attached device
2441 *
2442 * SATA phy-reset host port using DET bits of SControl register.
2443 * This function is to be used as standard callback for
2444 * ata_drive_*_reset().
2445 *
2446 * LOCKING:
2447 * Kernel thread context (may sleep)
2448 *
2449 * RETURNS:
2450 * 0 on success, -errno otherwise.
2451 */
2bf2cb26 2452int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2453{
852ee16a 2454 u32 scontrol;
81952c54 2455 int rc;
852ee16a 2456
c2bd5804
TH
2457 DPRINTK("ENTER\n");
2458
3c567b7d 2459 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2460 /* SATA spec says nothing about how to reconfigure
2461 * spd. To be on the safe side, turn off phy during
2462 * reconfiguration. This works for at least ICH7 AHCI
2463 * and Sil3124.
2464 */
81952c54
TH
2465 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2466 return rc;
2467
1c3fae4d 2468 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2469
2470 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2471 return rc;
1c3fae4d 2472
3c567b7d 2473 sata_set_spd(ap);
1c3fae4d
TH
2474 }
2475
2476 /* issue phy wake/reset */
81952c54
TH
2477 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2478 return rc;
2479
852ee16a 2480 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2481
2482 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2483 return rc;
c2bd5804 2484
1c3fae4d 2485 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2486 * 10.4.2 says at least 1 ms.
2487 */
2488 msleep(1);
2489
1c3fae4d 2490 /* bring phy back */
7a7921e8 2491 sata_phy_resume(ap);
c2bd5804 2492
c2bd5804 2493 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2494 if (ata_port_offline(ap)) {
c2bd5804
TH
2495 *class = ATA_DEV_NONE;
2496 DPRINTK("EXIT, link offline\n");
2497 return 0;
2498 }
2499
2500 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2501 ata_port_printk(ap, KERN_ERR,
2502 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2503 return -EIO;
2504 }
2505
3a39746a
TH
2506 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2507
c2bd5804
TH
2508 *class = ata_dev_try_classify(ap, 0, NULL);
2509
2510 DPRINTK("EXIT, class=%u\n", *class);
2511 return 0;
2512}
2513
2514/**
2515 * ata_std_postreset - standard postreset callback
2516 * @ap: the target ata_port
2517 * @classes: classes of attached devices
2518 *
2519 * This function is invoked after a successful reset. Note that
2520 * the device might have been reset more than once using
2521 * different reset methods before postreset is invoked.
c2bd5804
TH
2522 *
2523 * This function is to be used as standard callback for
2524 * ata_drive_*_reset().
2525 *
2526 * LOCKING:
2527 * Kernel thread context (may sleep)
2528 */
2529void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2530{
dc2b3515
TH
2531 u32 serror;
2532
c2bd5804
TH
2533 DPRINTK("ENTER\n");
2534
c2bd5804 2535 /* print link status */
81952c54 2536 sata_print_link_status(ap);
c2bd5804 2537
dc2b3515
TH
2538 /* clear SError */
2539 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2540 sata_scr_write(ap, SCR_ERROR, serror);
2541
3a39746a
TH
2542 /* re-enable interrupts */
2543 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2544 ata_irq_on(ap);
c2bd5804
TH
2545
2546 /* is double-select really necessary? */
2547 if (classes[0] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 1);
2549 if (classes[1] != ATA_DEV_NONE)
2550 ap->ops->dev_select(ap, 0);
2551
3a39746a
TH
2552 /* bail out if no device is present */
2553 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2554 DPRINTK("EXIT, no device\n");
2555 return;
2556 }
2557
2558 /* set up device control */
2559 if (ap->ioaddr.ctl_addr) {
2560 if (ap->flags & ATA_FLAG_MMIO)
2561 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2562 else
2563 outb(ap->ctl, ap->ioaddr.ctl_addr);
2564 }
c2bd5804
TH
2565
2566 DPRINTK("EXIT\n");
2567}
2568
2569/**
2570 * ata_std_probe_reset - standard probe reset method
2571 * @ap: prot to perform probe-reset
2572 * @classes: resulting classes of attached devices
2573 *
2574 * The stock off-the-shelf ->probe_reset method.
2575 *
2576 * LOCKING:
2577 * Kernel thread context (may sleep)
2578 *
2579 * RETURNS:
2580 * 0 on success, -errno otherwise.
2581 */
2582int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2583{
2584 ata_reset_fn_t hardreset;
2585
2586 hardreset = NULL;
81952c54 2587 if (sata_scr_valid(ap))
c2bd5804
TH
2588 hardreset = sata_std_hardreset;
2589
8a19ac89 2590 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2591 ata_std_softreset, hardreset,
c2bd5804
TH
2592 ata_std_postreset, classes);
2593}
2594
2bf2cb26 2595int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2596 unsigned int *classes)
a62c0fc5
TH
2597{
2598 int i, rc;
2599
2600 for (i = 0; i < ATA_MAX_DEVICES; i++)
2601 classes[i] = ATA_DEV_UNKNOWN;
2602
2bf2cb26 2603 rc = reset(ap, classes);
a62c0fc5
TH
2604 if (rc)
2605 return rc;
2606
2607 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2608 * is complete and convert all ATA_DEV_UNKNOWN to
2609 * ATA_DEV_NONE.
2610 */
2611 for (i = 0; i < ATA_MAX_DEVICES; i++)
2612 if (classes[i] != ATA_DEV_UNKNOWN)
2613 break;
2614
2615 if (i < ATA_MAX_DEVICES)
2616 for (i = 0; i < ATA_MAX_DEVICES; i++)
2617 if (classes[i] == ATA_DEV_UNKNOWN)
2618 classes[i] = ATA_DEV_NONE;
2619
9974e7cc 2620 return 0;
a62c0fc5
TH
2621}
2622
2623/**
2624 * ata_drive_probe_reset - Perform probe reset with given methods
2625 * @ap: port to reset
7944ea95 2626 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2627 * @softreset: softreset method (can be NULL)
2628 * @hardreset: hardreset method (can be NULL)
2629 * @postreset: postreset method (can be NULL)
2630 * @classes: resulting classes of attached devices
2631 *
2632 * Reset the specified port and classify attached devices using
2633 * given methods. This function prefers softreset but tries all
2634 * possible reset sequences to reset and classify devices. This
2635 * function is intended to be used for constructing ->probe_reset
2636 * callback by low level drivers.
2637 *
2638 * Reset methods should follow the following rules.
2639 *
2640 * - Return 0 on sucess, -errno on failure.
2641 * - If classification is supported, fill classes[] with
2642 * recognized class codes.
2643 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2644 *
2645 * LOCKING:
2646 * Kernel thread context (may sleep)
2647 *
2648 * RETURNS:
2649 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2650 * if classification fails, and any error code from reset
2651 * methods.
2652 */
7944ea95 2653int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2654 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2655 ata_postreset_fn_t postreset, unsigned int *classes)
2656{
2657 int rc = -EINVAL;
2658
7944ea95
TH
2659 if (probeinit)
2660 probeinit(ap);
2661
3c567b7d 2662 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2663 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2664 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2665 goto done;
f15a1daf
TH
2666 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2667 "will try hardreset in 5 secs\n");
edbabd86 2668 ssleep(5);
a62c0fc5
TH
2669 }
2670
2671 if (!hardreset)
9974e7cc 2672 goto done;
a62c0fc5 2673
90dac02c 2674 while (1) {
96bd39ec 2675 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2676 if (rc == 0) {
2677 if (classes[0] != ATA_DEV_UNKNOWN)
2678 goto done;
2679 break;
2680 }
2681
3c567b7d 2682 if (sata_down_spd_limit(ap))
90dac02c 2683 goto done;
edbabd86 2684
f15a1daf
TH
2685 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2686 "will retry in 5 secs\n");
edbabd86 2687 ssleep(5);
90dac02c 2688 }
a62c0fc5 2689
edbabd86 2690 if (softreset) {
f15a1daf
TH
2691 ata_port_printk(ap, KERN_INFO,
2692 "hardreset succeeded without classification, "
2693 "will retry softreset in 5 secs\n");
edbabd86
TH
2694 ssleep(5);
2695
96bd39ec 2696 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2697 }
a62c0fc5 2698
9974e7cc 2699 done:
96bd39ec
TH
2700 if (rc == 0) {
2701 if (postreset)
2702 postreset(ap, classes);
2703 if (classes[0] == ATA_DEV_UNKNOWN)
2704 rc = -ENODEV;
2705 }
a62c0fc5
TH
2706 return rc;
2707}
2708
623a3128
TH
2709/**
2710 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2711 * @dev: device to compare against
2712 * @new_class: class of the new device
2713 * @new_id: IDENTIFY page of the new device
2714 *
2715 * Compare @new_class and @new_id against @dev and determine
2716 * whether @dev is the device indicated by @new_class and
2717 * @new_id.
2718 *
2719 * LOCKING:
2720 * None.
2721 *
2722 * RETURNS:
2723 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2724 */
3373efd8
TH
2725static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2726 const u16 *new_id)
623a3128
TH
2727{
2728 const u16 *old_id = dev->id;
2729 unsigned char model[2][41], serial[2][21];
2730 u64 new_n_sectors;
2731
2732 if (dev->class != new_class) {
f15a1daf
TH
2733 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2734 dev->class, new_class);
623a3128
TH
2735 return 0;
2736 }
2737
2738 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2739 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2740 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2741 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2742 new_n_sectors = ata_id_n_sectors(new_id);
2743
2744 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2745 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2746 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2747 return 0;
2748 }
2749
2750 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2751 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2752 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2753 return 0;
2754 }
2755
2756 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2757 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2758 "%llu != %llu\n",
2759 (unsigned long long)dev->n_sectors,
2760 (unsigned long long)new_n_sectors);
623a3128
TH
2761 return 0;
2762 }
2763
2764 return 1;
2765}
2766
2767/**
2768 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2769 * @dev: device to revalidate
2770 * @post_reset: is this revalidation after reset?
2771 *
2772 * Re-read IDENTIFY page and make sure @dev is still attached to
2773 * the port.
2774 *
2775 * LOCKING:
2776 * Kernel thread context (may sleep)
2777 *
2778 * RETURNS:
2779 * 0 on success, negative errno otherwise
2780 */
3373efd8 2781int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2782{
5eb45c02 2783 unsigned int class = dev->class;
f15a1daf 2784 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2785 int rc;
2786
5eb45c02
TH
2787 if (!ata_dev_enabled(dev)) {
2788 rc = -ENODEV;
2789 goto fail;
2790 }
623a3128 2791
fe635c7e 2792 /* read ID data */
3373efd8 2793 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2794 if (rc)
2795 goto fail;
2796
2797 /* is the device still there? */
3373efd8 2798 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2799 rc = -ENODEV;
2800 goto fail;
2801 }
2802
fe635c7e 2803 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2804
2805 /* configure device according to the new ID */
3373efd8 2806 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2807 if (rc == 0)
2808 return 0;
623a3128
TH
2809
2810 fail:
f15a1daf 2811 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2812 return rc;
2813}
2814
98ac62de 2815static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2816 "WDC AC11000H", NULL,
2817 "WDC AC22100H", NULL,
2818 "WDC AC32500H", NULL,
2819 "WDC AC33100H", NULL,
2820 "WDC AC31600H", NULL,
2821 "WDC AC32100H", "24.09P07",
2822 "WDC AC23200L", "21.10N21",
2823 "Compaq CRD-8241B", NULL,
2824 "CRD-8400B", NULL,
2825 "CRD-8480B", NULL,
2826 "CRD-8482B", NULL,
2827 "CRD-84", NULL,
2828 "SanDisk SDP3B", NULL,
2829 "SanDisk SDP3B-64", NULL,
2830 "SANYO CD-ROM CRD", NULL,
2831 "HITACHI CDR-8", NULL,
2e9edbf8 2832 "HITACHI CDR-8335", NULL,
f4b15fef 2833 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2834 "Toshiba CD-ROM XM-6202B", NULL,
2835 "TOSHIBA CD-ROM XM-1702BC", NULL,
2836 "CD-532E-A", NULL,
2837 "E-IDE CD-ROM CR-840", NULL,
2838 "CD-ROM Drive/F5A", NULL,
2839 "WPI CDD-820", NULL,
f4b15fef 2840 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2841 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2842 "SanDisk SDP3B-64", NULL,
2843 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2844 "_NEC DV5800A", NULL,
2845 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2846};
2e9edbf8 2847
f4b15fef
AC
2848static int ata_strim(char *s, size_t len)
2849{
2850 len = strnlen(s, len);
2851
2852 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2853 while ((len > 0) && (s[len - 1] == ' ')) {
2854 len--;
2855 s[len] = 0;
2856 }
2857 return len;
2858}
1da177e4 2859
057ace5e 2860static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2861{
f4b15fef
AC
2862 unsigned char model_num[40];
2863 unsigned char model_rev[16];
2864 unsigned int nlen, rlen;
1da177e4
LT
2865 int i;
2866
f4b15fef
AC
2867 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2868 sizeof(model_num));
2869 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2870 sizeof(model_rev));
2871 nlen = ata_strim(model_num, sizeof(model_num));
2872 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2873
f4b15fef
AC
2874 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2875 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2876 if (ata_dma_blacklist[i+1] == NULL)
2877 return 1;
2878 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2879 return 1;
2880 }
2881 }
1da177e4
LT
2882 return 0;
2883}
2884
a6d5a51c
TH
2885/**
2886 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2887 * @dev: Device to compute xfermask for
2888 *
acf356b1
TH
2889 * Compute supported xfermask of @dev and store it in
2890 * dev->*_mask. This function is responsible for applying all
2891 * known limits including host controller limits, device
2892 * blacklist, etc...
a6d5a51c 2893 *
600511e8
TH
2894 * FIXME: The current implementation limits all transfer modes to
2895 * the fastest of the lowested device on the port. This is not
05c8e0ac 2896 * required on most controllers.
600511e8 2897 *
a6d5a51c
TH
2898 * LOCKING:
2899 * None.
a6d5a51c 2900 */
3373efd8 2901static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2902{
3373efd8 2903 struct ata_port *ap = dev->ap;
5444a6f4 2904 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2905 unsigned long xfer_mask;
2906 int i;
1da177e4 2907
565083e1
TH
2908 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2909 ap->mwdma_mask, ap->udma_mask);
2910
2911 /* Apply cable rule here. Don't apply it early because when
2912 * we handle hot plug the cable type can itself change.
2913 */
2914 if (ap->cbl == ATA_CBL_PATA40)
2915 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2916
5444a6f4 2917 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2918 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2919 struct ata_device *d = &ap->device[i];
565083e1
TH
2920
2921 if (ata_dev_absent(d))
2922 continue;
2923
2924 if (ata_dev_disabled(d)) {
2925 /* to avoid violating device selection timing */
2926 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2927 UINT_MAX, UINT_MAX);
a6d5a51c 2928 continue;
565083e1
TH
2929 }
2930
2931 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2932 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2933 xfer_mask &= ata_id_xfermask(d->id);
2934 if (ata_dma_blacklisted(d))
2935 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2936 }
2937
a6d5a51c 2938 if (ata_dma_blacklisted(dev))
f15a1daf
TH
2939 ata_dev_printk(dev, KERN_WARNING,
2940 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 2941
5444a6f4
AC
2942 if (hs->flags & ATA_HOST_SIMPLEX) {
2943 if (hs->simplex_claimed)
2944 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2945 }
565083e1 2946
5444a6f4
AC
2947 if (ap->ops->mode_filter)
2948 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2949
565083e1
TH
2950 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2951 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2952}
2953
1da177e4
LT
2954/**
2955 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
2956 * @dev: Device to which command will be sent
2957 *
780a87f7
JG
2958 * Issue SET FEATURES - XFER MODE command to device @dev
2959 * on port @ap.
2960 *
1da177e4 2961 * LOCKING:
0cba632b 2962 * PCI/etc. bus probe sem.
83206a29
TH
2963 *
2964 * RETURNS:
2965 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2966 */
2967
3373efd8 2968static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 2969{
a0123703 2970 struct ata_taskfile tf;
83206a29 2971 unsigned int err_mask;
1da177e4
LT
2972
2973 /* set up set-features taskfile */
2974 DPRINTK("set features - xfer mode\n");
2975
3373efd8 2976 ata_tf_init(dev, &tf);
a0123703
TH
2977 tf.command = ATA_CMD_SET_FEATURES;
2978 tf.feature = SETFEATURES_XFER;
2979 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2980 tf.protocol = ATA_PROT_NODATA;
2981 tf.nsect = dev->xfer_mode;
1da177e4 2982
3373efd8 2983 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2984
83206a29
TH
2985 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2986 return err_mask;
1da177e4
LT
2987}
2988
8bf62ece
AL
2989/**
2990 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 2991 * @dev: Device to which command will be sent
3373efd8
TH
2992 * @heads: Number of heads
2993 * @sectors: Number of sectors
8bf62ece
AL
2994 *
2995 * LOCKING:
6aff8f1f
TH
2996 * Kernel thread context (may sleep)
2997 *
2998 * RETURNS:
2999 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3000 */
3373efd8
TH
3001static unsigned int ata_dev_init_params(struct ata_device *dev,
3002 u16 heads, u16 sectors)
8bf62ece 3003{
a0123703 3004 struct ata_taskfile tf;
6aff8f1f 3005 unsigned int err_mask;
8bf62ece
AL
3006
3007 /* Number of sectors per track 1-255. Number of heads 1-16 */
3008 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3009 return AC_ERR_INVALID;
8bf62ece
AL
3010
3011 /* set up init dev params taskfile */
3012 DPRINTK("init dev params \n");
3013
3373efd8 3014 ata_tf_init(dev, &tf);
a0123703
TH
3015 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3016 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3017 tf.protocol = ATA_PROT_NODATA;
3018 tf.nsect = sectors;
3019 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3020
3373efd8 3021 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3022
6aff8f1f
TH
3023 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3024 return err_mask;
8bf62ece
AL
3025}
3026
1da177e4 3027/**
0cba632b
JG
3028 * ata_sg_clean - Unmap DMA memory associated with command
3029 * @qc: Command containing DMA memory to be released
3030 *
3031 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3032 *
3033 * LOCKING:
0cba632b 3034 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3035 */
3036
3037static void ata_sg_clean(struct ata_queued_cmd *qc)
3038{
3039 struct ata_port *ap = qc->ap;
cedc9a47 3040 struct scatterlist *sg = qc->__sg;
1da177e4 3041 int dir = qc->dma_dir;
cedc9a47 3042 void *pad_buf = NULL;
1da177e4 3043
a4631474
TH
3044 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3045 WARN_ON(sg == NULL);
1da177e4
LT
3046
3047 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3048 WARN_ON(qc->n_elem > 1);
1da177e4 3049
2c13b7ce 3050 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3051
cedc9a47
JG
3052 /* if we padded the buffer out to 32-bit bound, and data
3053 * xfer direction is from-device, we must copy from the
3054 * pad buffer back into the supplied buffer
3055 */
3056 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3057 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3058
3059 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3060 if (qc->n_elem)
2f1f610b 3061 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3062 /* restore last sg */
3063 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3064 if (pad_buf) {
3065 struct scatterlist *psg = &qc->pad_sgent;
3066 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3067 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3068 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3069 }
3070 } else {
2e242fa9 3071 if (qc->n_elem)
2f1f610b 3072 dma_unmap_single(ap->dev,
e1410f2d
JG
3073 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3074 dir);
cedc9a47
JG
3075 /* restore sg */
3076 sg->length += qc->pad_len;
3077 if (pad_buf)
3078 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3079 pad_buf, qc->pad_len);
3080 }
1da177e4
LT
3081
3082 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3083 qc->__sg = NULL;
1da177e4
LT
3084}
3085
3086/**
3087 * ata_fill_sg - Fill PCI IDE PRD table
3088 * @qc: Metadata associated with taskfile to be transferred
3089 *
780a87f7
JG
3090 * Fill PCI IDE PRD (scatter-gather) table with segments
3091 * associated with the current disk command.
3092 *
1da177e4 3093 * LOCKING:
780a87f7 3094 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3095 *
3096 */
3097static void ata_fill_sg(struct ata_queued_cmd *qc)
3098{
1da177e4 3099 struct ata_port *ap = qc->ap;
cedc9a47
JG
3100 struct scatterlist *sg;
3101 unsigned int idx;
1da177e4 3102
a4631474 3103 WARN_ON(qc->__sg == NULL);
f131883e 3104 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3105
3106 idx = 0;
cedc9a47 3107 ata_for_each_sg(sg, qc) {
1da177e4
LT
3108 u32 addr, offset;
3109 u32 sg_len, len;
3110
3111 /* determine if physical DMA addr spans 64K boundary.
3112 * Note h/w doesn't support 64-bit, so we unconditionally
3113 * truncate dma_addr_t to u32.
3114 */
3115 addr = (u32) sg_dma_address(sg);
3116 sg_len = sg_dma_len(sg);
3117
3118 while (sg_len) {
3119 offset = addr & 0xffff;
3120 len = sg_len;
3121 if ((offset + sg_len) > 0x10000)
3122 len = 0x10000 - offset;
3123
3124 ap->prd[idx].addr = cpu_to_le32(addr);
3125 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3126 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3127
3128 idx++;
3129 sg_len -= len;
3130 addr += len;
3131 }
3132 }
3133
3134 if (idx)
3135 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3136}
3137/**
3138 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3139 * @qc: Metadata associated with taskfile to check
3140 *
780a87f7
JG
3141 * Allow low-level driver to filter ATA PACKET commands, returning
3142 * a status indicating whether or not it is OK to use DMA for the
3143 * supplied PACKET command.
3144 *
1da177e4 3145 * LOCKING:
0cba632b
JG
3146 * spin_lock_irqsave(host_set lock)
3147 *
1da177e4
LT
3148 * RETURNS: 0 when ATAPI DMA can be used
3149 * nonzero otherwise
3150 */
3151int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3152{
3153 struct ata_port *ap = qc->ap;
3154 int rc = 0; /* Assume ATAPI DMA is OK by default */
3155
3156 if (ap->ops->check_atapi_dma)
3157 rc = ap->ops->check_atapi_dma(qc);
3158
3159 return rc;
3160}
3161/**
3162 * ata_qc_prep - Prepare taskfile for submission
3163 * @qc: Metadata associated with taskfile to be prepared
3164 *
780a87f7
JG
3165 * Prepare ATA taskfile for submission.
3166 *
1da177e4
LT
3167 * LOCKING:
3168 * spin_lock_irqsave(host_set lock)
3169 */
3170void ata_qc_prep(struct ata_queued_cmd *qc)
3171{
3172 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3173 return;
3174
3175 ata_fill_sg(qc);
3176}
3177
e46834cd
BK
3178void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3179
0cba632b
JG
3180/**
3181 * ata_sg_init_one - Associate command with memory buffer
3182 * @qc: Command to be associated
3183 * @buf: Memory buffer
3184 * @buflen: Length of memory buffer, in bytes.
3185 *
3186 * Initialize the data-related elements of queued_cmd @qc
3187 * to point to a single memory buffer, @buf of byte length @buflen.
3188 *
3189 * LOCKING:
3190 * spin_lock_irqsave(host_set lock)
3191 */
3192
1da177e4
LT
3193void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3194{
3195 struct scatterlist *sg;
3196
3197 qc->flags |= ATA_QCFLAG_SINGLE;
3198
3199 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3200 qc->__sg = &qc->sgent;
1da177e4 3201 qc->n_elem = 1;
cedc9a47 3202 qc->orig_n_elem = 1;
1da177e4
LT
3203 qc->buf_virt = buf;
3204
cedc9a47 3205 sg = qc->__sg;
f0612bbc 3206 sg_init_one(sg, buf, buflen);
1da177e4
LT
3207}
3208
0cba632b
JG
3209/**
3210 * ata_sg_init - Associate command with scatter-gather table.
3211 * @qc: Command to be associated
3212 * @sg: Scatter-gather table.
3213 * @n_elem: Number of elements in s/g table.
3214 *
3215 * Initialize the data-related elements of queued_cmd @qc
3216 * to point to a scatter-gather table @sg, containing @n_elem
3217 * elements.
3218 *
3219 * LOCKING:
3220 * spin_lock_irqsave(host_set lock)
3221 */
3222
1da177e4
LT
3223void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3224 unsigned int n_elem)
3225{
3226 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3227 qc->__sg = sg;
1da177e4 3228 qc->n_elem = n_elem;
cedc9a47 3229 qc->orig_n_elem = n_elem;
1da177e4
LT
3230}
3231
3232/**
0cba632b
JG
3233 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3234 * @qc: Command with memory buffer to be mapped.
3235 *
3236 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3237 *
3238 * LOCKING:
3239 * spin_lock_irqsave(host_set lock)
3240 *
3241 * RETURNS:
0cba632b 3242 * Zero on success, negative on error.
1da177e4
LT
3243 */
3244
3245static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3246{
3247 struct ata_port *ap = qc->ap;
3248 int dir = qc->dma_dir;
cedc9a47 3249 struct scatterlist *sg = qc->__sg;
1da177e4 3250 dma_addr_t dma_address;
2e242fa9 3251 int trim_sg = 0;
1da177e4 3252
cedc9a47
JG
3253 /* we must lengthen transfers to end on a 32-bit boundary */
3254 qc->pad_len = sg->length & 3;
3255 if (qc->pad_len) {
3256 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3257 struct scatterlist *psg = &qc->pad_sgent;
3258
a4631474 3259 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3260
3261 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3262
3263 if (qc->tf.flags & ATA_TFLAG_WRITE)
3264 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3265 qc->pad_len);
3266
3267 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3268 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3269 /* trim sg */
3270 sg->length -= qc->pad_len;
2e242fa9
TH
3271 if (sg->length == 0)
3272 trim_sg = 1;
cedc9a47
JG
3273
3274 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3275 sg->length, qc->pad_len);
3276 }
3277
2e242fa9
TH
3278 if (trim_sg) {
3279 qc->n_elem--;
e1410f2d
JG
3280 goto skip_map;
3281 }
3282
2f1f610b 3283 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3284 sg->length, dir);
537a95d9
TH
3285 if (dma_mapping_error(dma_address)) {
3286 /* restore sg */
3287 sg->length += qc->pad_len;
1da177e4 3288 return -1;
537a95d9 3289 }
1da177e4
LT
3290
3291 sg_dma_address(sg) = dma_address;
32529e01 3292 sg_dma_len(sg) = sg->length;
1da177e4 3293
2e242fa9 3294skip_map:
1da177e4
LT
3295 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3296 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3297
3298 return 0;
3299}
3300
3301/**
0cba632b
JG
3302 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3303 * @qc: Command with scatter-gather table to be mapped.
3304 *
3305 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3306 *
3307 * LOCKING:
3308 * spin_lock_irqsave(host_set lock)
3309 *
3310 * RETURNS:
0cba632b 3311 * Zero on success, negative on error.
1da177e4
LT
3312 *
3313 */
3314
3315static int ata_sg_setup(struct ata_queued_cmd *qc)
3316{
3317 struct ata_port *ap = qc->ap;
cedc9a47
JG
3318 struct scatterlist *sg = qc->__sg;
3319 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3320 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3321
3322 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3323 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3324
cedc9a47
JG
3325 /* we must lengthen transfers to end on a 32-bit boundary */
3326 qc->pad_len = lsg->length & 3;
3327 if (qc->pad_len) {
3328 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3329 struct scatterlist *psg = &qc->pad_sgent;
3330 unsigned int offset;
3331
a4631474 3332 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3333
3334 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3335
3336 /*
3337 * psg->page/offset are used to copy to-be-written
3338 * data in this function or read data in ata_sg_clean.
3339 */
3340 offset = lsg->offset + lsg->length - qc->pad_len;
3341 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3342 psg->offset = offset_in_page(offset);
3343
3344 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3345 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3346 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3347 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3348 }
3349
3350 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3351 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3352 /* trim last sg */
3353 lsg->length -= qc->pad_len;
e1410f2d
JG
3354 if (lsg->length == 0)
3355 trim_sg = 1;
cedc9a47
JG
3356
3357 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3358 qc->n_elem - 1, lsg->length, qc->pad_len);
3359 }
3360
e1410f2d
JG
3361 pre_n_elem = qc->n_elem;
3362 if (trim_sg && pre_n_elem)
3363 pre_n_elem--;
3364
3365 if (!pre_n_elem) {
3366 n_elem = 0;
3367 goto skip_map;
3368 }
3369
1da177e4 3370 dir = qc->dma_dir;
2f1f610b 3371 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3372 if (n_elem < 1) {
3373 /* restore last sg */
3374 lsg->length += qc->pad_len;
1da177e4 3375 return -1;
537a95d9 3376 }
1da177e4
LT
3377
3378 DPRINTK("%d sg elements mapped\n", n_elem);
3379
e1410f2d 3380skip_map:
1da177e4
LT
3381 qc->n_elem = n_elem;
3382
3383 return 0;
3384}
3385
40e8c82c
TH
3386/**
3387 * ata_poll_qc_complete - turn irq back on and finish qc
3388 * @qc: Command to complete
8e8b77dd 3389 * @err_mask: ATA status register content
40e8c82c
TH
3390 *
3391 * LOCKING:
3392 * None. (grabs host lock)
3393 */
3394
a22e2eb0 3395void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3396{
3397 struct ata_port *ap = qc->ap;
b8f6153e 3398 unsigned long flags;
40e8c82c 3399
b8f6153e 3400 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3401 ap->flags &= ~ATA_FLAG_NOINTR;
3402 ata_irq_on(ap);
a22e2eb0 3403 ata_qc_complete(qc);
b8f6153e 3404 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3405}
3406
1da177e4 3407/**
c893a3ae 3408 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3409 * @qc: qc in progress
1da177e4
LT
3410 *
3411 * LOCKING:
0cba632b 3412 * None. (executing in kernel thread context)
1da177e4
LT
3413 *
3414 * RETURNS:
6f0ef4fa 3415 * timeout value to use
1da177e4 3416 */
c91af2c8 3417static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3418{
c91af2c8 3419 struct ata_port *ap = qc->ap;
1da177e4 3420 u8 status;
14be71f4
AL
3421 unsigned int poll_state = HSM_ST_UNKNOWN;
3422 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3423
3424 switch (ap->hsm_task_state) {
3425 case HSM_ST:
3426 case HSM_ST_POLL:
3427 poll_state = HSM_ST_POLL;
3428 reg_state = HSM_ST;
1da177e4 3429 break;
14be71f4
AL
3430 case HSM_ST_LAST:
3431 case HSM_ST_LAST_POLL:
3432 poll_state = HSM_ST_LAST_POLL;
3433 reg_state = HSM_ST_LAST;
1da177e4
LT
3434 break;
3435 default:
3436 BUG();
3437 break;
3438 }
3439
3440 status = ata_chk_status(ap);
3441 if (status & ATA_BUSY) {
3442 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3443 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3444 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3445 return 0;
3446 }
14be71f4 3447 ap->hsm_task_state = poll_state;
1da177e4
LT
3448 return ATA_SHORT_PAUSE;
3449 }
3450
14be71f4 3451 ap->hsm_task_state = reg_state;
1da177e4
LT
3452 return 0;
3453}
3454
3455/**
6f0ef4fa 3456 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3457 * @qc: qc to complete
1da177e4
LT
3458 *
3459 * LOCKING:
0cba632b 3460 * None. (executing in kernel thread context)
7fb6ec28
JG
3461 *
3462 * RETURNS:
3463 * Non-zero if qc completed, zero otherwise.
1da177e4 3464 */
c91af2c8 3465static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3466{
c91af2c8 3467 struct ata_port *ap = qc->ap;
1da177e4
LT
3468 u8 drv_stat;
3469
3470 /*
31433ea3
AC
3471 * This is purely heuristic. This is a fast path. Sometimes when
3472 * we enter, BSY will be cleared in a chk-status or two. If not,
3473 * the drive is probably seeking or something. Snooze for a couple
3474 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3475 * HSM_ST_POLL state.
1da177e4 3476 */
fe79e683
AL
3477 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3478 if (drv_stat & ATA_BUSY) {
1da177e4 3479 msleep(2);
fe79e683
AL
3480 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3481 if (drv_stat & ATA_BUSY) {
14be71f4 3482 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3483 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3484 return 0;
1da177e4
LT
3485 }
3486 }
3487
3488 drv_stat = ata_wait_idle(ap);
3489 if (!ata_ok(drv_stat)) {
1c848984 3490 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3491 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3492 return 0;
1da177e4
LT
3493 }
3494
14be71f4 3495 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3496
a4631474 3497 WARN_ON(qc->err_mask);
a22e2eb0 3498 ata_poll_qc_complete(qc);
7fb6ec28
JG
3499
3500 /* another command may start at this point */
3501
3502 return 1;
1da177e4
LT
3503}
3504
0baab86b
EF
3505
3506/**
c893a3ae 3507 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3508 * @buf: Buffer to swap
3509 * @buf_words: Number of 16-bit words in buffer.
3510 *
3511 * Swap halves of 16-bit words if needed to convert from
3512 * little-endian byte order to native cpu byte order, or
3513 * vice-versa.
3514 *
3515 * LOCKING:
6f0ef4fa 3516 * Inherited from caller.
0baab86b 3517 */
1da177e4
LT
3518void swap_buf_le16(u16 *buf, unsigned int buf_words)
3519{
3520#ifdef __BIG_ENDIAN
3521 unsigned int i;
3522
3523 for (i = 0; i < buf_words; i++)
3524 buf[i] = le16_to_cpu(buf[i]);
3525#endif /* __BIG_ENDIAN */
3526}
3527
6ae4cfb5
AL
3528/**
3529 * ata_mmio_data_xfer - Transfer data by MMIO
3530 * @ap: port to read/write
3531 * @buf: data buffer
3532 * @buflen: buffer length
344babaa 3533 * @write_data: read/write
6ae4cfb5
AL
3534 *
3535 * Transfer data from/to the device data register by MMIO.
3536 *
3537 * LOCKING:
3538 * Inherited from caller.
6ae4cfb5
AL
3539 */
3540
1da177e4
LT
3541static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3542 unsigned int buflen, int write_data)
3543{
3544 unsigned int i;
3545 unsigned int words = buflen >> 1;
3546 u16 *buf16 = (u16 *) buf;
3547 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3548
6ae4cfb5 3549 /* Transfer multiple of 2 bytes */
1da177e4
LT
3550 if (write_data) {
3551 for (i = 0; i < words; i++)
3552 writew(le16_to_cpu(buf16[i]), mmio);
3553 } else {
3554 for (i = 0; i < words; i++)
3555 buf16[i] = cpu_to_le16(readw(mmio));
3556 }
6ae4cfb5
AL
3557
3558 /* Transfer trailing 1 byte, if any. */
3559 if (unlikely(buflen & 0x01)) {
3560 u16 align_buf[1] = { 0 };
3561 unsigned char *trailing_buf = buf + buflen - 1;
3562
3563 if (write_data) {
3564 memcpy(align_buf, trailing_buf, 1);
3565 writew(le16_to_cpu(align_buf[0]), mmio);
3566 } else {
3567 align_buf[0] = cpu_to_le16(readw(mmio));
3568 memcpy(trailing_buf, align_buf, 1);
3569 }
3570 }
1da177e4
LT
3571}
3572
6ae4cfb5
AL
3573/**
3574 * ata_pio_data_xfer - Transfer data by PIO
3575 * @ap: port to read/write
3576 * @buf: data buffer
3577 * @buflen: buffer length
344babaa 3578 * @write_data: read/write
6ae4cfb5
AL
3579 *
3580 * Transfer data from/to the device data register by PIO.
3581 *
3582 * LOCKING:
3583 * Inherited from caller.
6ae4cfb5
AL
3584 */
3585
1da177e4
LT
3586static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3587 unsigned int buflen, int write_data)
3588{
6ae4cfb5 3589 unsigned int words = buflen >> 1;
1da177e4 3590
6ae4cfb5 3591 /* Transfer multiple of 2 bytes */
1da177e4 3592 if (write_data)
6ae4cfb5 3593 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3594 else
6ae4cfb5
AL
3595 insw(ap->ioaddr.data_addr, buf, words);
3596
3597 /* Transfer trailing 1 byte, if any. */
3598 if (unlikely(buflen & 0x01)) {
3599 u16 align_buf[1] = { 0 };
3600 unsigned char *trailing_buf = buf + buflen - 1;
3601
3602 if (write_data) {
3603 memcpy(align_buf, trailing_buf, 1);
3604 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3605 } else {
3606 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3607 memcpy(trailing_buf, align_buf, 1);
3608 }
3609 }
1da177e4
LT
3610}
3611
6ae4cfb5
AL
3612/**
3613 * ata_data_xfer - Transfer data from/to the data register.
3614 * @ap: port to read/write
3615 * @buf: data buffer
3616 * @buflen: buffer length
3617 * @do_write: read/write
3618 *
3619 * Transfer data from/to the device data register.
3620 *
3621 * LOCKING:
3622 * Inherited from caller.
6ae4cfb5
AL
3623 */
3624
1da177e4
LT
3625static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3626 unsigned int buflen, int do_write)
3627{
a1bd9e68
AC
3628 /* Make the crap hardware pay the costs not the good stuff */
3629 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3630 unsigned long flags;
3631 local_irq_save(flags);
3632 if (ap->flags & ATA_FLAG_MMIO)
3633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3634 else
3635 ata_pio_data_xfer(ap, buf, buflen, do_write);
3636 local_irq_restore(flags);
3637 } else {
3638 if (ap->flags & ATA_FLAG_MMIO)
3639 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3640 else
3641 ata_pio_data_xfer(ap, buf, buflen, do_write);
3642 }
1da177e4
LT
3643}
3644
6ae4cfb5
AL
3645/**
3646 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3647 * @qc: Command on going
3648 *
3649 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3650 *
3651 * LOCKING:
3652 * Inherited from caller.
3653 */
3654
1da177e4
LT
3655static void ata_pio_sector(struct ata_queued_cmd *qc)
3656{
3657 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3658 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3659 struct ata_port *ap = qc->ap;
3660 struct page *page;
3661 unsigned int offset;
3662 unsigned char *buf;
3663
3664 if (qc->cursect == (qc->nsect - 1))
14be71f4 3665 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3666
3667 page = sg[qc->cursg].page;
3668 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3669
3670 /* get the current page and offset */
3671 page = nth_page(page, (offset >> PAGE_SHIFT));
3672 offset %= PAGE_SIZE;
3673
3674 buf = kmap(page) + offset;
3675
3676 qc->cursect++;
3677 qc->cursg_ofs++;
3678
32529e01 3679 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3680 qc->cursg++;
3681 qc->cursg_ofs = 0;
3682 }
3683
3684 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3685
3686 /* do the actual data transfer */
3687 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3688 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3689
3690 kunmap(page);
3691}
3692
6ae4cfb5
AL
3693/**
3694 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3695 * @qc: Command on going
3696 * @bytes: number of bytes
3697 *
3698 * Transfer Transfer data from/to the ATAPI device.
3699 *
3700 * LOCKING:
3701 * Inherited from caller.
3702 *
3703 */
3704
1da177e4
LT
3705static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3706{
3707 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3708 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3709 struct ata_port *ap = qc->ap;
3710 struct page *page;
3711 unsigned char *buf;
3712 unsigned int offset, count;
3713
563a6e1f 3714 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3715 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3716
3717next_sg:
563a6e1f 3718 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3719 /*
563a6e1f
AL
3720 * The end of qc->sg is reached and the device expects
3721 * more data to transfer. In order not to overrun qc->sg
3722 * and fulfill length specified in the byte count register,
3723 * - for read case, discard trailing data from the device
3724 * - for write case, padding zero data to the device
3725 */
3726 u16 pad_buf[1] = { 0 };
3727 unsigned int words = bytes >> 1;
3728 unsigned int i;
3729
3730 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3731 ata_dev_printk(qc->dev, KERN_WARNING,
3732 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3733
3734 for (i = 0; i < words; i++)
3735 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3736
14be71f4 3737 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3738 return;
3739 }
3740
cedc9a47 3741 sg = &qc->__sg[qc->cursg];
1da177e4 3742
1da177e4
LT
3743 page = sg->page;
3744 offset = sg->offset + qc->cursg_ofs;
3745
3746 /* get the current page and offset */
3747 page = nth_page(page, (offset >> PAGE_SHIFT));
3748 offset %= PAGE_SIZE;
3749
6952df03 3750 /* don't overrun current sg */
32529e01 3751 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3752
3753 /* don't cross page boundaries */
3754 count = min(count, (unsigned int)PAGE_SIZE - offset);
3755
3756 buf = kmap(page) + offset;
3757
3758 bytes -= count;
3759 qc->curbytes += count;
3760 qc->cursg_ofs += count;
3761
32529e01 3762 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3763 qc->cursg++;
3764 qc->cursg_ofs = 0;
3765 }
3766
3767 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3768
3769 /* do the actual data transfer */
3770 ata_data_xfer(ap, buf, count, do_write);
3771
3772 kunmap(page);
3773
563a6e1f 3774 if (bytes)
1da177e4 3775 goto next_sg;
1da177e4
LT
3776}
3777
6ae4cfb5
AL
3778/**
3779 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3780 * @qc: Command on going
3781 *
3782 * Transfer Transfer data from/to the ATAPI device.
3783 *
3784 * LOCKING:
3785 * Inherited from caller.
6ae4cfb5
AL
3786 */
3787
1da177e4
LT
3788static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3789{
3790 struct ata_port *ap = qc->ap;
3791 struct ata_device *dev = qc->dev;
3792 unsigned int ireason, bc_lo, bc_hi, bytes;
3793 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3794
3795 ap->ops->tf_read(ap, &qc->tf);
3796 ireason = qc->tf.nsect;
3797 bc_lo = qc->tf.lbam;
3798 bc_hi = qc->tf.lbah;
3799 bytes = (bc_hi << 8) | bc_lo;
3800
3801 /* shall be cleared to zero, indicating xfer of data */
3802 if (ireason & (1 << 0))
3803 goto err_out;
3804
3805 /* make sure transfer direction matches expected */
3806 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3807 if (do_write != i_write)
3808 goto err_out;
3809
3810 __atapi_pio_bytes(qc, bytes);
3811
3812 return;
3813
3814err_out:
f15a1daf 3815 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3816 qc->err_mask |= AC_ERR_HSM;
14be71f4 3817 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3818}
3819
3820/**
6f0ef4fa 3821 * ata_pio_block - start PIO on a block
c91af2c8 3822 * @qc: qc to transfer block for
1da177e4
LT
3823 *
3824 * LOCKING:
0cba632b 3825 * None. (executing in kernel thread context)
1da177e4 3826 */
c91af2c8 3827static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3828{
c91af2c8 3829 struct ata_port *ap = qc->ap;
1da177e4
LT
3830 u8 status;
3831
3832 /*
6f0ef4fa 3833 * This is purely heuristic. This is a fast path.
1da177e4
LT
3834 * Sometimes when we enter, BSY will be cleared in
3835 * a chk-status or two. If not, the drive is probably seeking
3836 * or something. Snooze for a couple msecs, then
3837 * chk-status again. If still busy, fall back to
14be71f4 3838 * HSM_ST_POLL state.
1da177e4
LT
3839 */
3840 status = ata_busy_wait(ap, ATA_BUSY, 5);
3841 if (status & ATA_BUSY) {
3842 msleep(2);
3843 status = ata_busy_wait(ap, ATA_BUSY, 10);
3844 if (status & ATA_BUSY) {
14be71f4 3845 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3846 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3847 return;
3848 }
3849 }
3850
fe79e683
AL
3851 /* check error */
3852 if (status & (ATA_ERR | ATA_DF)) {
3853 qc->err_mask |= AC_ERR_DEV;
3854 ap->hsm_task_state = HSM_ST_ERR;
3855 return;
3856 }
3857
3858 /* transfer data if any */
1da177e4 3859 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3860 /* DRQ=0 means no more data to transfer */
1da177e4 3861 if ((status & ATA_DRQ) == 0) {
14be71f4 3862 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3863 return;
3864 }
3865
3866 atapi_pio_bytes(qc);
3867 } else {
3868 /* handle BSY=0, DRQ=0 as error */
3869 if ((status & ATA_DRQ) == 0) {
11a56d24 3870 qc->err_mask |= AC_ERR_HSM;
14be71f4 3871 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3872 return;
3873 }
3874
3875 ata_pio_sector(qc);
3876 }
3877}
3878
c91af2c8 3879static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3880{
c91af2c8 3881 struct ata_port *ap = qc->ap;
1da177e4 3882
0565c26d 3883 if (qc->tf.command != ATA_CMD_PACKET)
f15a1daf 3884 ata_dev_printk(qc->dev, KERN_WARNING, "PIO error\n");
0565c26d 3885
2e9edbf8 3886 /* make sure qc->err_mask is available to
1c848984
AL
3887 * know what's wrong and recover
3888 */
a4631474 3889 WARN_ON(qc->err_mask == 0);
1c848984 3890
14be71f4 3891 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3892
a22e2eb0 3893 ata_poll_qc_complete(qc);
1da177e4
LT
3894}
3895
3896static void ata_pio_task(void *_data)
3897{
c91af2c8
TH
3898 struct ata_queued_cmd *qc = _data;
3899 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3900 unsigned long timeout;
3901 int qc_completed;
3902
3903fsm_start:
3904 timeout = 0;
3905 qc_completed = 0;
1da177e4 3906
14be71f4
AL
3907 switch (ap->hsm_task_state) {
3908 case HSM_ST_IDLE:
1da177e4
LT
3909 return;
3910
14be71f4 3911 case HSM_ST:
c91af2c8 3912 ata_pio_block(qc);
1da177e4
LT
3913 break;
3914
14be71f4 3915 case HSM_ST_LAST:
c91af2c8 3916 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3917 break;
3918
14be71f4
AL
3919 case HSM_ST_POLL:
3920 case HSM_ST_LAST_POLL:
c91af2c8 3921 timeout = ata_pio_poll(qc);
1da177e4
LT
3922 break;
3923
14be71f4
AL
3924 case HSM_ST_TMOUT:
3925 case HSM_ST_ERR:
c91af2c8 3926 ata_pio_error(qc);
1da177e4
LT
3927 return;
3928 }
3929
3930 if (timeout)
c91af2c8 3931 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3932 else if (!qc_completed)
3933 goto fsm_start;
1da177e4
LT
3934}
3935
8061f5f0
TH
3936/**
3937 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3938 * @_data: qc in progress
8061f5f0
TH
3939 *
3940 * When device has indicated its readiness to accept
3941 * a CDB, this function is called. Send the CDB.
3942 * If DMA is to be performed, exit immediately.
3943 * Otherwise, we are in polling mode, so poll
3944 * status under operation succeeds or fails.
3945 *
3946 * LOCKING:
3947 * Kernel thread context (may sleep)
3948 */
8061f5f0
TH
3949static void atapi_packet_task(void *_data)
3950{
c91af2c8
TH
3951 struct ata_queued_cmd *qc = _data;
3952 struct ata_port *ap = qc->ap;
8061f5f0
TH
3953 u8 status;
3954
8061f5f0
TH
3955 /* sleep-wait for BSY to clear */
3956 DPRINTK("busy wait\n");
3957 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3958 qc->err_mask |= AC_ERR_TIMEOUT;
3959 goto err_out;
3960 }
3961
3962 /* make sure DRQ is set */
3963 status = ata_chk_status(ap);
3964 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3965 qc->err_mask |= AC_ERR_HSM;
3966 goto err_out;
3967 }
3968
3969 /* send SCSI cdb */
3970 DPRINTK("send cdb\n");
3971 WARN_ON(qc->dev->cdb_len < 12);
3972
3973 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3974 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3975 unsigned long flags;
3976
3977 /* Once we're done issuing command and kicking bmdma,
3978 * irq handler takes over. To not lose irq, we need
3979 * to clear NOINTR flag before sending cdb, but
3980 * interrupt handler shouldn't be invoked before we're
3981 * finished. Hence, the following locking.
3982 */
3983 spin_lock_irqsave(&ap->host_set->lock, flags);
3984 ap->flags &= ~ATA_FLAG_NOINTR;
3985 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3986 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3987 ap->ops->bmdma_start(qc); /* initiate bmdma */
3988 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3989 } else {
3990 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3991
3992 /* PIO commands are handled by polling */
3993 ap->hsm_task_state = HSM_ST;
c91af2c8 3994 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
3995 }
3996
3997 return;
3998
3999err_out:
4000 ata_poll_qc_complete(qc);
4001}
4002
1da177e4
LT
4003/**
4004 * ata_qc_new - Request an available ATA command, for queueing
4005 * @ap: Port associated with device @dev
4006 * @dev: Device from whom we request an available command structure
4007 *
4008 * LOCKING:
0cba632b 4009 * None.
1da177e4
LT
4010 */
4011
4012static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4013{
4014 struct ata_queued_cmd *qc = NULL;
4015 unsigned int i;
4016
4017 for (i = 0; i < ATA_MAX_QUEUE; i++)
4018 if (!test_and_set_bit(i, &ap->qactive)) {
4019 qc = ata_qc_from_tag(ap, i);
4020 break;
4021 }
4022
4023 if (qc)
4024 qc->tag = i;
4025
4026 return qc;
4027}
4028
4029/**
4030 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4031 * @dev: Device from whom we request an available command structure
4032 *
4033 * LOCKING:
0cba632b 4034 * None.
1da177e4
LT
4035 */
4036
3373efd8 4037struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4038{
3373efd8 4039 struct ata_port *ap = dev->ap;
1da177e4
LT
4040 struct ata_queued_cmd *qc;
4041
4042 qc = ata_qc_new(ap);
4043 if (qc) {
1da177e4
LT
4044 qc->scsicmd = NULL;
4045 qc->ap = ap;
4046 qc->dev = dev;
1da177e4 4047
2c13b7ce 4048 ata_qc_reinit(qc);
1da177e4
LT
4049 }
4050
4051 return qc;
4052}
4053
1da177e4
LT
4054/**
4055 * ata_qc_free - free unused ata_queued_cmd
4056 * @qc: Command to complete
4057 *
4058 * Designed to free unused ata_queued_cmd object
4059 * in case something prevents using it.
4060 *
4061 * LOCKING:
0cba632b 4062 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4063 */
4064void ata_qc_free(struct ata_queued_cmd *qc)
4065{
4ba946e9
TH
4066 struct ata_port *ap = qc->ap;
4067 unsigned int tag;
4068
a4631474 4069 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4070
4ba946e9
TH
4071 qc->flags = 0;
4072 tag = qc->tag;
4073 if (likely(ata_tag_valid(tag))) {
4ba946e9
TH
4074 qc->tag = ATA_TAG_POISON;
4075 clear_bit(tag, &ap->qactive);
4076 }
1da177e4
LT
4077}
4078
76014427 4079void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4080{
a4631474
TH
4081 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4082 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4083
4084 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4085 ata_sg_clean(qc);
4086
7401abf2
TH
4087 /* command should be marked inactive atomically with qc completion */
4088 qc->ap->active_tag = ATA_TAG_POISON;
4089
3f3791d3
AL
4090 /* atapi: mark qc as inactive to prevent the interrupt handler
4091 * from completing the command twice later, before the error handler
4092 * is called. (when rc != 0 and atapi request sense is needed)
4093 */
4094 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4095
1da177e4 4096 /* call completion callback */
77853bf2 4097 qc->complete_fn(qc);
1da177e4
LT
4098}
4099
4100static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4101{
4102 struct ata_port *ap = qc->ap;
4103
4104 switch (qc->tf.protocol) {
4105 case ATA_PROT_DMA:
4106 case ATA_PROT_ATAPI_DMA:
4107 return 1;
4108
4109 case ATA_PROT_ATAPI:
4110 case ATA_PROT_PIO:
1da177e4
LT
4111 if (ap->flags & ATA_FLAG_PIO_DMA)
4112 return 1;
4113
4114 /* fall through */
4115
4116 default:
4117 return 0;
4118 }
4119
4120 /* never reached */
4121}
4122
4123/**
4124 * ata_qc_issue - issue taskfile to device
4125 * @qc: command to issue to device
4126 *
4127 * Prepare an ATA command to submission to device.
4128 * This includes mapping the data into a DMA-able
4129 * area, filling in the S/G table, and finally
4130 * writing the taskfile to hardware, starting the command.
4131 *
4132 * LOCKING:
4133 * spin_lock_irqsave(host_set lock)
1da177e4 4134 */
8e0e694a 4135void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4136{
4137 struct ata_port *ap = qc->ap;
4138
e4a70e76
TH
4139 qc->ap->active_tag = qc->tag;
4140 qc->flags |= ATA_QCFLAG_ACTIVE;
4141
1da177e4
LT
4142 if (ata_should_dma_map(qc)) {
4143 if (qc->flags & ATA_QCFLAG_SG) {
4144 if (ata_sg_setup(qc))
8e436af9 4145 goto sg_err;
1da177e4
LT
4146 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4147 if (ata_sg_setup_one(qc))
8e436af9 4148 goto sg_err;
1da177e4
LT
4149 }
4150 } else {
4151 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4152 }
4153
4154 ap->ops->qc_prep(qc);
4155
8e0e694a
TH
4156 qc->err_mask |= ap->ops->qc_issue(qc);
4157 if (unlikely(qc->err_mask))
4158 goto err;
4159 return;
1da177e4 4160
8e436af9
TH
4161sg_err:
4162 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4163 qc->err_mask |= AC_ERR_SYSTEM;
4164err:
4165 ata_qc_complete(qc);
1da177e4
LT
4166}
4167
4168/**
4169 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4170 * @qc: command to issue to device
4171 *
4172 * Using various libata functions and hooks, this function
4173 * starts an ATA command. ATA commands are grouped into
4174 * classes called "protocols", and issuing each type of protocol
4175 * is slightly different.
4176 *
0baab86b
EF
4177 * May be used as the qc_issue() entry in ata_port_operations.
4178 *
1da177e4
LT
4179 * LOCKING:
4180 * spin_lock_irqsave(host_set lock)
4181 *
4182 * RETURNS:
9a3d9eb0 4183 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4184 */
4185
9a3d9eb0 4186unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4187{
4188 struct ata_port *ap = qc->ap;
4189
4190 ata_dev_select(ap, qc->dev->devno, 1, 0);
4191
4192 switch (qc->tf.protocol) {
4193 case ATA_PROT_NODATA:
e5338254 4194 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4195 break;
4196
4197 case ATA_PROT_DMA:
4198 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4199 ap->ops->bmdma_setup(qc); /* set up bmdma */
4200 ap->ops->bmdma_start(qc); /* initiate bmdma */
4201 break;
4202
4203 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4204 ata_qc_set_polling(qc);
e5338254 4205 ata_tf_to_host(ap, &qc->tf);
14be71f4 4206 ap->hsm_task_state = HSM_ST;
c91af2c8 4207 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4208 break;
4209
4210 case ATA_PROT_ATAPI:
4211 ata_qc_set_polling(qc);
e5338254 4212 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4213 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4214 break;
4215
4216 case ATA_PROT_ATAPI_NODATA:
c1389503 4217 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4218 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4219 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4220 break;
4221
4222 case ATA_PROT_ATAPI_DMA:
c1389503 4223 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4224 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4225 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4226 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4227 break;
4228
4229 default:
4230 WARN_ON(1);
9a3d9eb0 4231 return AC_ERR_SYSTEM;
1da177e4
LT
4232 }
4233
4234 return 0;
4235}
4236
1da177e4
LT
4237/**
4238 * ata_host_intr - Handle host interrupt for given (port, task)
4239 * @ap: Port on which interrupt arrived (possibly...)
4240 * @qc: Taskfile currently active in engine
4241 *
4242 * Handle host interrupt for given queued command. Currently,
4243 * only DMA interrupts are handled. All other commands are
4244 * handled via polling with interrupts disabled (nIEN bit).
4245 *
4246 * LOCKING:
4247 * spin_lock_irqsave(host_set lock)
4248 *
4249 * RETURNS:
4250 * One if interrupt was handled, zero if not (shared irq).
4251 */
4252
4253inline unsigned int ata_host_intr (struct ata_port *ap,
4254 struct ata_queued_cmd *qc)
4255{
4256 u8 status, host_stat;
4257
4258 switch (qc->tf.protocol) {
4259
4260 case ATA_PROT_DMA:
4261 case ATA_PROT_ATAPI_DMA:
4262 case ATA_PROT_ATAPI:
4263 /* check status of DMA engine */
4264 host_stat = ap->ops->bmdma_status(ap);
4265 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4266
4267 /* if it's not our irq... */
4268 if (!(host_stat & ATA_DMA_INTR))
4269 goto idle_irq;
4270
4271 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4272 ap->ops->bmdma_stop(qc);
1da177e4
LT
4273
4274 /* fall through */
4275
4276 case ATA_PROT_ATAPI_NODATA:
4277 case ATA_PROT_NODATA:
4278 /* check altstatus */
4279 status = ata_altstatus(ap);
4280 if (status & ATA_BUSY)
4281 goto idle_irq;
4282
4283 /* check main status, clearing INTRQ */
4284 status = ata_chk_status(ap);
4285 if (unlikely(status & ATA_BUSY))
4286 goto idle_irq;
4287 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4288 ap->id, qc->tf.protocol, status);
4289
4290 /* ack bmdma irq events */
4291 ap->ops->irq_clear(ap);
4292
4293 /* complete taskfile transaction */
a22e2eb0
AL
4294 qc->err_mask |= ac_err_mask(status);
4295 ata_qc_complete(qc);
1da177e4
LT
4296 break;
4297
4298 default:
4299 goto idle_irq;
4300 }
4301
4302 return 1; /* irq handled */
4303
4304idle_irq:
4305 ap->stats.idle_irq++;
4306
4307#ifdef ATA_IRQ_TRAP
4308 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4309 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4310 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4311 return 1;
1da177e4
LT
4312 }
4313#endif
4314 return 0; /* irq not handled */
4315}
4316
4317/**
4318 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4319 * @irq: irq line (unused)
4320 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4321 * @regs: unused
4322 *
0cba632b
JG
4323 * Default interrupt handler for PCI IDE devices. Calls
4324 * ata_host_intr() for each port that is not disabled.
4325 *
1da177e4 4326 * LOCKING:
0cba632b 4327 * Obtains host_set lock during operation.
1da177e4
LT
4328 *
4329 * RETURNS:
0cba632b 4330 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4331 */
4332
4333irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4334{
4335 struct ata_host_set *host_set = dev_instance;
4336 unsigned int i;
4337 unsigned int handled = 0;
4338 unsigned long flags;
4339
4340 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4341 spin_lock_irqsave(&host_set->lock, flags);
4342
4343 for (i = 0; i < host_set->n_ports; i++) {
4344 struct ata_port *ap;
4345
4346 ap = host_set->ports[i];
c1389503 4347 if (ap &&
198e0fed 4348 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4349 struct ata_queued_cmd *qc;
4350
4351 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4352 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4353 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4354 handled |= ata_host_intr(ap, qc);
4355 }
4356 }
4357
4358 spin_unlock_irqrestore(&host_set->lock, flags);
4359
4360 return IRQ_RETVAL(handled);
4361}
4362
34bf2170
TH
4363/**
4364 * sata_scr_valid - test whether SCRs are accessible
4365 * @ap: ATA port to test SCR accessibility for
4366 *
4367 * Test whether SCRs are accessible for @ap.
4368 *
4369 * LOCKING:
4370 * None.
4371 *
4372 * RETURNS:
4373 * 1 if SCRs are accessible, 0 otherwise.
4374 */
4375int sata_scr_valid(struct ata_port *ap)
4376{
4377 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4378}
4379
4380/**
4381 * sata_scr_read - read SCR register of the specified port
4382 * @ap: ATA port to read SCR for
4383 * @reg: SCR to read
4384 * @val: Place to store read value
4385 *
4386 * Read SCR register @reg of @ap into *@val. This function is
4387 * guaranteed to succeed if the cable type of the port is SATA
4388 * and the port implements ->scr_read.
4389 *
4390 * LOCKING:
4391 * None.
4392 *
4393 * RETURNS:
4394 * 0 on success, negative errno on failure.
4395 */
4396int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4397{
4398 if (sata_scr_valid(ap)) {
4399 *val = ap->ops->scr_read(ap, reg);
4400 return 0;
4401 }
4402 return -EOPNOTSUPP;
4403}
4404
4405/**
4406 * sata_scr_write - write SCR register of the specified port
4407 * @ap: ATA port to write SCR for
4408 * @reg: SCR to write
4409 * @val: value to write
4410 *
4411 * Write @val to SCR register @reg of @ap. This function is
4412 * guaranteed to succeed if the cable type of the port is SATA
4413 * and the port implements ->scr_read.
4414 *
4415 * LOCKING:
4416 * None.
4417 *
4418 * RETURNS:
4419 * 0 on success, negative errno on failure.
4420 */
4421int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4422{
4423 if (sata_scr_valid(ap)) {
4424 ap->ops->scr_write(ap, reg, val);
4425 return 0;
4426 }
4427 return -EOPNOTSUPP;
4428}
4429
4430/**
4431 * sata_scr_write_flush - write SCR register of the specified port and flush
4432 * @ap: ATA port to write SCR for
4433 * @reg: SCR to write
4434 * @val: value to write
4435 *
4436 * This function is identical to sata_scr_write() except that this
4437 * function performs flush after writing to the register.
4438 *
4439 * LOCKING:
4440 * None.
4441 *
4442 * RETURNS:
4443 * 0 on success, negative errno on failure.
4444 */
4445int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4446{
4447 if (sata_scr_valid(ap)) {
4448 ap->ops->scr_write(ap, reg, val);
4449 ap->ops->scr_read(ap, reg);
4450 return 0;
4451 }
4452 return -EOPNOTSUPP;
4453}
4454
4455/**
4456 * ata_port_online - test whether the given port is online
4457 * @ap: ATA port to test
4458 *
4459 * Test whether @ap is online. Note that this function returns 0
4460 * if online status of @ap cannot be obtained, so
4461 * ata_port_online(ap) != !ata_port_offline(ap).
4462 *
4463 * LOCKING:
4464 * None.
4465 *
4466 * RETURNS:
4467 * 1 if the port online status is available and online.
4468 */
4469int ata_port_online(struct ata_port *ap)
4470{
4471 u32 sstatus;
4472
4473 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4474 return 1;
4475 return 0;
4476}
4477
4478/**
4479 * ata_port_offline - test whether the given port is offline
4480 * @ap: ATA port to test
4481 *
4482 * Test whether @ap is offline. Note that this function returns
4483 * 0 if offline status of @ap cannot be obtained, so
4484 * ata_port_online(ap) != !ata_port_offline(ap).
4485 *
4486 * LOCKING:
4487 * None.
4488 *
4489 * RETURNS:
4490 * 1 if the port offline status is available and offline.
4491 */
4492int ata_port_offline(struct ata_port *ap)
4493{
4494 u32 sstatus;
4495
4496 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4497 return 1;
4498 return 0;
4499}
0baab86b 4500
9b847548
JA
4501/*
4502 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4503 * without filling any other registers
4504 */
3373efd8 4505static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4506{
4507 struct ata_taskfile tf;
4508 int err;
4509
3373efd8 4510 ata_tf_init(dev, &tf);
9b847548
JA
4511
4512 tf.command = cmd;
4513 tf.flags |= ATA_TFLAG_DEVICE;
4514 tf.protocol = ATA_PROT_NODATA;
4515
3373efd8 4516 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4517 if (err)
f15a1daf
TH
4518 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4519 __FUNCTION__, err);
9b847548
JA
4520
4521 return err;
4522}
4523
3373efd8 4524static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4525{
4526 u8 cmd;
4527
4528 if (!ata_try_flush_cache(dev))
4529 return 0;
4530
4531 if (ata_id_has_flush_ext(dev->id))
4532 cmd = ATA_CMD_FLUSH_EXT;
4533 else
4534 cmd = ATA_CMD_FLUSH;
4535
3373efd8 4536 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4537}
4538
3373efd8 4539static int ata_standby_drive(struct ata_device *dev)
9b847548 4540{
3373efd8 4541 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4542}
4543
3373efd8 4544static int ata_start_drive(struct ata_device *dev)
9b847548 4545{
3373efd8 4546 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4547}
4548
4549/**
4550 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4551 * @dev: the device to resume
9b847548
JA
4552 *
4553 * Kick the drive back into action, by sending it an idle immediate
4554 * command and making sure its transfer mode matches between drive
4555 * and host.
4556 *
4557 */
3373efd8 4558int ata_device_resume(struct ata_device *dev)
9b847548 4559{
3373efd8
TH
4560 struct ata_port *ap = dev->ap;
4561
9b847548 4562 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4563 struct ata_device *failed_dev;
9b847548 4564 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4565 while (ata_set_mode(ap, &failed_dev))
3373efd8 4566 ata_dev_disable(failed_dev);
9b847548 4567 }
e1211e3f 4568 if (!ata_dev_enabled(dev))
9b847548
JA
4569 return 0;
4570 if (dev->class == ATA_DEV_ATA)
3373efd8 4571 ata_start_drive(dev);
9b847548
JA
4572
4573 return 0;
4574}
4575
4576/**
4577 * ata_device_suspend - prepare a device for suspend
c893a3ae 4578 * @dev: the device to suspend
9b847548
JA
4579 *
4580 * Flush the cache on the drive, if appropriate, then issue a
4581 * standbynow command.
9b847548 4582 */
3373efd8 4583int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 4584{
3373efd8
TH
4585 struct ata_port *ap = dev->ap;
4586
e1211e3f 4587 if (!ata_dev_enabled(dev))
9b847548
JA
4588 return 0;
4589 if (dev->class == ATA_DEV_ATA)
3373efd8 4590 ata_flush_cache(dev);
9b847548 4591
082776e4 4592 if (state.event != PM_EVENT_FREEZE)
3373efd8 4593 ata_standby_drive(dev);
9b847548
JA
4594 ap->flags |= ATA_FLAG_SUSPENDED;
4595 return 0;
4596}
4597
c893a3ae
RD
4598/**
4599 * ata_port_start - Set port up for dma.
4600 * @ap: Port to initialize
4601 *
4602 * Called just after data structures for each port are
4603 * initialized. Allocates space for PRD table.
4604 *
4605 * May be used as the port_start() entry in ata_port_operations.
4606 *
4607 * LOCKING:
4608 * Inherited from caller.
4609 */
4610
1da177e4
LT
4611int ata_port_start (struct ata_port *ap)
4612{
2f1f610b 4613 struct device *dev = ap->dev;
6037d6bb 4614 int rc;
1da177e4
LT
4615
4616 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4617 if (!ap->prd)
4618 return -ENOMEM;
4619
6037d6bb
JG
4620 rc = ata_pad_alloc(ap, dev);
4621 if (rc) {
cedc9a47 4622 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4623 return rc;
cedc9a47
JG
4624 }
4625
1da177e4
LT
4626 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4627
4628 return 0;
4629}
4630
0baab86b
EF
4631
4632/**
4633 * ata_port_stop - Undo ata_port_start()
4634 * @ap: Port to shut down
4635 *
4636 * Frees the PRD table.
4637 *
4638 * May be used as the port_stop() entry in ata_port_operations.
4639 *
4640 * LOCKING:
6f0ef4fa 4641 * Inherited from caller.
0baab86b
EF
4642 */
4643
1da177e4
LT
4644void ata_port_stop (struct ata_port *ap)
4645{
2f1f610b 4646 struct device *dev = ap->dev;
1da177e4
LT
4647
4648 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4649 ata_pad_free(ap, dev);
1da177e4
LT
4650}
4651
aa8f0dc6
JG
4652void ata_host_stop (struct ata_host_set *host_set)
4653{
4654 if (host_set->mmio_base)
4655 iounmap(host_set->mmio_base);
4656}
4657
4658
1da177e4
LT
4659/**
4660 * ata_host_remove - Unregister SCSI host structure with upper layers
4661 * @ap: Port to unregister
4662 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4663 *
4664 * LOCKING:
6f0ef4fa 4665 * Inherited from caller.
1da177e4
LT
4666 */
4667
4668static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4669{
4670 struct Scsi_Host *sh = ap->host;
4671
4672 DPRINTK("ENTER\n");
4673
4674 if (do_unregister)
4675 scsi_remove_host(sh);
4676
4677 ap->ops->port_stop(ap);
4678}
4679
4680/**
4681 * ata_host_init - Initialize an ata_port structure
4682 * @ap: Structure to initialize
4683 * @host: associated SCSI mid-layer structure
4684 * @host_set: Collection of hosts to which @ap belongs
4685 * @ent: Probe information provided by low-level driver
4686 * @port_no: Port number associated with this ata_port
4687 *
0cba632b
JG
4688 * Initialize a new ata_port structure, and its associated
4689 * scsi_host.
4690 *
1da177e4 4691 * LOCKING:
0cba632b 4692 * Inherited from caller.
1da177e4
LT
4693 */
4694
4695static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4696 struct ata_host_set *host_set,
057ace5e 4697 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4698{
4699 unsigned int i;
4700
4701 host->max_id = 16;
4702 host->max_lun = 1;
4703 host->max_channel = 1;
4704 host->unique_id = ata_unique_id++;
4705 host->max_cmd_len = 12;
12413197 4706
198e0fed 4707 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4708 ap->id = host->unique_id;
4709 ap->host = host;
4710 ap->ctl = ATA_DEVCTL_OBS;
4711 ap->host_set = host_set;
2f1f610b 4712 ap->dev = ent->dev;
1da177e4
LT
4713 ap->port_no = port_no;
4714 ap->hard_port_no =
4715 ent->legacy_mode ? ent->hard_port_no : port_no;
4716 ap->pio_mask = ent->pio_mask;
4717 ap->mwdma_mask = ent->mwdma_mask;
4718 ap->udma_mask = ent->udma_mask;
4719 ap->flags |= ent->host_flags;
4720 ap->ops = ent->port_ops;
1c3fae4d 4721 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4722 ap->active_tag = ATA_TAG_POISON;
4723 ap->last_ctl = 0xFF;
4724
86e45b6b 4725 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4726 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4727
838df628
TH
4728 /* set cable type */
4729 ap->cbl = ATA_CBL_NONE;
4730 if (ap->flags & ATA_FLAG_SATA)
4731 ap->cbl = ATA_CBL_SATA;
4732
acf356b1
TH
4733 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4734 struct ata_device *dev = &ap->device[i];
38d87234 4735 dev->ap = ap;
acf356b1
TH
4736 dev->devno = i;
4737 dev->pio_mask = UINT_MAX;
4738 dev->mwdma_mask = UINT_MAX;
4739 dev->udma_mask = UINT_MAX;
4740 }
1da177e4
LT
4741
4742#ifdef ATA_IRQ_TRAP
4743 ap->stats.unhandled_irq = 1;
4744 ap->stats.idle_irq = 1;
4745#endif
4746
4747 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4748}
4749
4750/**
4751 * ata_host_add - Attach low-level ATA driver to system
4752 * @ent: Information provided by low-level driver
4753 * @host_set: Collections of ports to which we add
4754 * @port_no: Port number associated with this host
4755 *
0cba632b
JG
4756 * Attach low-level ATA driver to system.
4757 *
1da177e4 4758 * LOCKING:
0cba632b 4759 * PCI/etc. bus probe sem.
1da177e4
LT
4760 *
4761 * RETURNS:
0cba632b 4762 * New ata_port on success, for NULL on error.
1da177e4
LT
4763 */
4764
057ace5e 4765static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4766 struct ata_host_set *host_set,
4767 unsigned int port_no)
4768{
4769 struct Scsi_Host *host;
4770 struct ata_port *ap;
4771 int rc;
4772
4773 DPRINTK("ENTER\n");
aec5c3c1
TH
4774
4775 if (!ent->port_ops->probe_reset &&
4776 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4777 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4778 port_no);
4779 return NULL;
4780 }
4781
1da177e4
LT
4782 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4783 if (!host)
4784 return NULL;
4785
30afc84c
TH
4786 host->transportt = &ata_scsi_transport_template;
4787
35bb94b1 4788 ap = ata_shost_to_port(host);
1da177e4
LT
4789
4790 ata_host_init(ap, host, host_set, ent, port_no);
4791
4792 rc = ap->ops->port_start(ap);
4793 if (rc)
4794 goto err_out;
4795
4796 return ap;
4797
4798err_out:
4799 scsi_host_put(host);
4800 return NULL;
4801}
4802
4803/**
0cba632b
JG
4804 * ata_device_add - Register hardware device with ATA and SCSI layers
4805 * @ent: Probe information describing hardware device to be registered
4806 *
4807 * This function processes the information provided in the probe
4808 * information struct @ent, allocates the necessary ATA and SCSI
4809 * host information structures, initializes them, and registers
4810 * everything with requisite kernel subsystems.
4811 *
4812 * This function requests irqs, probes the ATA bus, and probes
4813 * the SCSI bus.
1da177e4
LT
4814 *
4815 * LOCKING:
0cba632b 4816 * PCI/etc. bus probe sem.
1da177e4
LT
4817 *
4818 * RETURNS:
0cba632b 4819 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4820 */
4821
057ace5e 4822int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4823{
4824 unsigned int count = 0, i;
4825 struct device *dev = ent->dev;
4826 struct ata_host_set *host_set;
4827
4828 DPRINTK("ENTER\n");
4829 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4830 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4831 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4832 if (!host_set)
4833 return 0;
1da177e4
LT
4834 spin_lock_init(&host_set->lock);
4835
4836 host_set->dev = dev;
4837 host_set->n_ports = ent->n_ports;
4838 host_set->irq = ent->irq;
4839 host_set->mmio_base = ent->mmio_base;
4840 host_set->private_data = ent->private_data;
4841 host_set->ops = ent->port_ops;
5444a6f4 4842 host_set->flags = ent->host_set_flags;
1da177e4
LT
4843
4844 /* register each port bound to this device */
4845 for (i = 0; i < ent->n_ports; i++) {
4846 struct ata_port *ap;
4847 unsigned long xfer_mode_mask;
4848
4849 ap = ata_host_add(ent, host_set, i);
4850 if (!ap)
4851 goto err_out;
4852
4853 host_set->ports[i] = ap;
4854 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4855 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4856 (ap->pio_mask << ATA_SHIFT_PIO);
4857
4858 /* print per-port info to dmesg */
f15a1daf
TH
4859 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
4860 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
4861 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4862 ata_mode_string(xfer_mode_mask),
4863 ap->ioaddr.cmd_addr,
4864 ap->ioaddr.ctl_addr,
4865 ap->ioaddr.bmdma_addr,
4866 ent->irq);
1da177e4
LT
4867
4868 ata_chk_status(ap);
4869 host_set->ops->irq_clear(ap);
4870 count++;
4871 }
4872
57f3bda8
RD
4873 if (!count)
4874 goto err_free_ret;
1da177e4
LT
4875
4876 /* obtain irq, that is shared between channels */
4877 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4878 DRV_NAME, host_set))
4879 goto err_out;
4880
4881 /* perform each probe synchronously */
4882 DPRINTK("probe begin\n");
4883 for (i = 0; i < count; i++) {
4884 struct ata_port *ap;
4885 int rc;
4886
4887 ap = host_set->ports[i];
4888
c893a3ae 4889 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4890 rc = ata_bus_probe(ap);
c893a3ae 4891 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4892
4893 if (rc) {
4894 /* FIXME: do something useful here?
4895 * Current libata behavior will
4896 * tear down everything when
4897 * the module is removed
4898 * or the h/w is unplugged.
4899 */
4900 }
4901
4902 rc = scsi_add_host(ap->host, dev);
4903 if (rc) {
f15a1daf 4904 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
4905 /* FIXME: do something useful here */
4906 /* FIXME: handle unconditional calls to
4907 * scsi_scan_host and ata_host_remove, below,
4908 * at the very least
4909 */
4910 }
4911 }
4912
4913 /* probes are done, now scan each port's disk(s) */
c893a3ae 4914 DPRINTK("host probe begin\n");
1da177e4
LT
4915 for (i = 0; i < count; i++) {
4916 struct ata_port *ap = host_set->ports[i];
4917
644dd0cc 4918 ata_scsi_scan_host(ap);
1da177e4
LT
4919 }
4920
4921 dev_set_drvdata(dev, host_set);
4922
4923 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4924 return ent->n_ports; /* success */
4925
4926err_out:
4927 for (i = 0; i < count; i++) {
4928 ata_host_remove(host_set->ports[i], 1);
4929 scsi_host_put(host_set->ports[i]->host);
4930 }
57f3bda8 4931err_free_ret:
1da177e4
LT
4932 kfree(host_set);
4933 VPRINTK("EXIT, returning 0\n");
4934 return 0;
4935}
4936
17b14451
AC
4937/**
4938 * ata_host_set_remove - PCI layer callback for device removal
4939 * @host_set: ATA host set that was removed
4940 *
2e9edbf8 4941 * Unregister all objects associated with this host set. Free those
17b14451
AC
4942 * objects.
4943 *
4944 * LOCKING:
4945 * Inherited from calling layer (may sleep).
4946 */
4947
17b14451
AC
4948void ata_host_set_remove(struct ata_host_set *host_set)
4949{
4950 struct ata_port *ap;
4951 unsigned int i;
4952
4953 for (i = 0; i < host_set->n_ports; i++) {
4954 ap = host_set->ports[i];
4955 scsi_remove_host(ap->host);
4956 }
4957
4958 free_irq(host_set->irq, host_set);
4959
4960 for (i = 0; i < host_set->n_ports; i++) {
4961 ap = host_set->ports[i];
4962
4963 ata_scsi_release(ap->host);
4964
4965 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4966 struct ata_ioports *ioaddr = &ap->ioaddr;
4967
4968 if (ioaddr->cmd_addr == 0x1f0)
4969 release_region(0x1f0, 8);
4970 else if (ioaddr->cmd_addr == 0x170)
4971 release_region(0x170, 8);
4972 }
4973
4974 scsi_host_put(ap->host);
4975 }
4976
4977 if (host_set->ops->host_stop)
4978 host_set->ops->host_stop(host_set);
4979
4980 kfree(host_set);
4981}
4982
1da177e4
LT
4983/**
4984 * ata_scsi_release - SCSI layer callback hook for host unload
4985 * @host: libata host to be unloaded
4986 *
4987 * Performs all duties necessary to shut down a libata port...
4988 * Kill port kthread, disable port, and release resources.
4989 *
4990 * LOCKING:
4991 * Inherited from SCSI layer.
4992 *
4993 * RETURNS:
4994 * One.
4995 */
4996
4997int ata_scsi_release(struct Scsi_Host *host)
4998{
35bb94b1 4999 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5000
5001 DPRINTK("ENTER\n");
5002
5003 ap->ops->port_disable(ap);
5004 ata_host_remove(ap, 0);
5005
5006 DPRINTK("EXIT\n");
5007 return 1;
5008}
5009
5010/**
5011 * ata_std_ports - initialize ioaddr with standard port offsets.
5012 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5013 *
5014 * Utility function which initializes data_addr, error_addr,
5015 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5016 * device_addr, status_addr, and command_addr to standard offsets
5017 * relative to cmd_addr.
5018 *
5019 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5020 */
0baab86b 5021
1da177e4
LT
5022void ata_std_ports(struct ata_ioports *ioaddr)
5023{
5024 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5025 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5026 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5027 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5028 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5029 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5030 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5031 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5032 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5033 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5034}
5035
0baab86b 5036
374b1873
JG
5037#ifdef CONFIG_PCI
5038
5039void ata_pci_host_stop (struct ata_host_set *host_set)
5040{
5041 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5042
5043 pci_iounmap(pdev, host_set->mmio_base);
5044}
5045
1da177e4
LT
5046/**
5047 * ata_pci_remove_one - PCI layer callback for device removal
5048 * @pdev: PCI device that was removed
5049 *
5050 * PCI layer indicates to libata via this hook that
6f0ef4fa 5051 * hot-unplug or module unload event has occurred.
1da177e4
LT
5052 * Handle this by unregistering all objects associated
5053 * with this PCI device. Free those objects. Then finally
5054 * release PCI resources and disable device.
5055 *
5056 * LOCKING:
5057 * Inherited from PCI layer (may sleep).
5058 */
5059
5060void ata_pci_remove_one (struct pci_dev *pdev)
5061{
5062 struct device *dev = pci_dev_to_dev(pdev);
5063 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5064
17b14451 5065 ata_host_set_remove(host_set);
1da177e4
LT
5066 pci_release_regions(pdev);
5067 pci_disable_device(pdev);
5068 dev_set_drvdata(dev, NULL);
5069}
5070
5071/* move to PCI subsystem */
057ace5e 5072int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5073{
5074 unsigned long tmp = 0;
5075
5076 switch (bits->width) {
5077 case 1: {
5078 u8 tmp8 = 0;
5079 pci_read_config_byte(pdev, bits->reg, &tmp8);
5080 tmp = tmp8;
5081 break;
5082 }
5083 case 2: {
5084 u16 tmp16 = 0;
5085 pci_read_config_word(pdev, bits->reg, &tmp16);
5086 tmp = tmp16;
5087 break;
5088 }
5089 case 4: {
5090 u32 tmp32 = 0;
5091 pci_read_config_dword(pdev, bits->reg, &tmp32);
5092 tmp = tmp32;
5093 break;
5094 }
5095
5096 default:
5097 return -EINVAL;
5098 }
5099
5100 tmp &= bits->mask;
5101
5102 return (tmp == bits->val) ? 1 : 0;
5103}
9b847548
JA
5104
5105int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5106{
5107 pci_save_state(pdev);
5108 pci_disable_device(pdev);
5109 pci_set_power_state(pdev, PCI_D3hot);
5110 return 0;
5111}
5112
5113int ata_pci_device_resume(struct pci_dev *pdev)
5114{
5115 pci_set_power_state(pdev, PCI_D0);
5116 pci_restore_state(pdev);
5117 pci_enable_device(pdev);
5118 pci_set_master(pdev);
5119 return 0;
5120}
1da177e4
LT
5121#endif /* CONFIG_PCI */
5122
5123
1da177e4
LT
5124static int __init ata_init(void)
5125{
5126 ata_wq = create_workqueue("ata");
5127 if (!ata_wq)
5128 return -ENOMEM;
5129
5130 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5131 return 0;
5132}
5133
5134static void __exit ata_exit(void)
5135{
5136 destroy_workqueue(ata_wq);
5137}
5138
5139module_init(ata_init);
5140module_exit(ata_exit);
5141
67846b30
JG
5142static unsigned long ratelimit_time;
5143static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5144
5145int ata_ratelimit(void)
5146{
5147 int rc;
5148 unsigned long flags;
5149
5150 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5151
5152 if (time_after(jiffies, ratelimit_time)) {
5153 rc = 1;
5154 ratelimit_time = jiffies + (HZ/5);
5155 } else
5156 rc = 0;
5157
5158 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5159
5160 return rc;
5161}
5162
c22daff4
TH
5163/**
5164 * ata_wait_register - wait until register value changes
5165 * @reg: IO-mapped register
5166 * @mask: Mask to apply to read register value
5167 * @val: Wait condition
5168 * @interval_msec: polling interval in milliseconds
5169 * @timeout_msec: timeout in milliseconds
5170 *
5171 * Waiting for some bits of register to change is a common
5172 * operation for ATA controllers. This function reads 32bit LE
5173 * IO-mapped register @reg and tests for the following condition.
5174 *
5175 * (*@reg & mask) != val
5176 *
5177 * If the condition is met, it returns; otherwise, the process is
5178 * repeated after @interval_msec until timeout.
5179 *
5180 * LOCKING:
5181 * Kernel thread context (may sleep)
5182 *
5183 * RETURNS:
5184 * The final register value.
5185 */
5186u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5187 unsigned long interval_msec,
5188 unsigned long timeout_msec)
5189{
5190 unsigned long timeout;
5191 u32 tmp;
5192
5193 tmp = ioread32(reg);
5194
5195 /* Calculate timeout _after_ the first read to make sure
5196 * preceding writes reach the controller before starting to
5197 * eat away the timeout.
5198 */
5199 timeout = jiffies + (timeout_msec * HZ) / 1000;
5200
5201 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5202 msleep(interval_msec);
5203 tmp = ioread32(reg);
5204 }
5205
5206 return tmp;
5207}
5208
1da177e4
LT
5209/*
5210 * libata is essentially a library of internal helper functions for
5211 * low-level ATA host controller drivers. As such, the API/ABI is
5212 * likely to change as new drivers are added and updated.
5213 * Do not depend on ABI/API stability.
5214 */
5215
5216EXPORT_SYMBOL_GPL(ata_std_bios_param);
5217EXPORT_SYMBOL_GPL(ata_std_ports);
5218EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5219EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5220EXPORT_SYMBOL_GPL(ata_sg_init);
5221EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5222EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5223EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5224EXPORT_SYMBOL_GPL(ata_tf_load);
5225EXPORT_SYMBOL_GPL(ata_tf_read);
5226EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5227EXPORT_SYMBOL_GPL(ata_std_dev_select);
5228EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5229EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5230EXPORT_SYMBOL_GPL(ata_check_status);
5231EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5232EXPORT_SYMBOL_GPL(ata_exec_command);
5233EXPORT_SYMBOL_GPL(ata_port_start);
5234EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5235EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5236EXPORT_SYMBOL_GPL(ata_interrupt);
5237EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5238EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5239EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5240EXPORT_SYMBOL_GPL(ata_bmdma_start);
5241EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5242EXPORT_SYMBOL_GPL(ata_bmdma_status);
5243EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5244EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5245EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5246EXPORT_SYMBOL_GPL(sata_phy_reset);
5247EXPORT_SYMBOL_GPL(__sata_phy_reset);
5248EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5249EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5250EXPORT_SYMBOL_GPL(ata_std_softreset);
5251EXPORT_SYMBOL_GPL(sata_std_hardreset);
5252EXPORT_SYMBOL_GPL(ata_std_postreset);
5253EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5254EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5255EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5256EXPORT_SYMBOL_GPL(ata_dev_classify);
5257EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5258EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5259EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5260EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5261EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5262EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5263EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5264EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5265EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5266EXPORT_SYMBOL_GPL(ata_scsi_release);
5267EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5268EXPORT_SYMBOL_GPL(sata_scr_valid);
5269EXPORT_SYMBOL_GPL(sata_scr_read);
5270EXPORT_SYMBOL_GPL(sata_scr_write);
5271EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5272EXPORT_SYMBOL_GPL(ata_port_online);
5273EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5274EXPORT_SYMBOL_GPL(ata_id_string);
5275EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5276EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5277
1bc4ccff 5278EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5279EXPORT_SYMBOL_GPL(ata_timing_compute);
5280EXPORT_SYMBOL_GPL(ata_timing_merge);
5281
1da177e4
LT
5282#ifdef CONFIG_PCI
5283EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5284EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5285EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5286EXPORT_SYMBOL_GPL(ata_pci_init_one);
5287EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5288EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5289EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5290EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5291EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5292#endif /* CONFIG_PCI */
9b847548
JA
5293
5294EXPORT_SYMBOL_GPL(ata_device_suspend);
5295EXPORT_SYMBOL_GPL(ata_device_resume);
5296EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5297EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5298
ece1d636
TH
5299EXPORT_SYMBOL_GPL(ata_eng_timeout);
5300EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5301EXPORT_SYMBOL_GPL(ata_eh_qc_retry);