]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: update ata_do_simple_cmd()
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
1da177e4
LT
91MODULE_AUTHOR("Jeff Garzik");
92MODULE_DESCRIPTION("Library module for ATA devices");
93MODULE_LICENSE("GPL");
94MODULE_VERSION(DRV_VERSION);
95
0baab86b 96
1da177e4
LT
97/**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
057ace5e 110void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
111{
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137}
138
139/**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
e12a1be6 144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
057ace5e 150void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
151{
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166}
167
8cbd6df1
AL
168static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 0,
8cbd6df1
AL
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
9a3dccc4
TH
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 196};
1da177e4
LT
197
198/**
8cbd6df1
AL
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
1da177e4 201 *
2e9edbf8 202 * Examine the device configuration and tf->flags to calculate
8cbd6df1 203 * the proper read/write commands and protocol to use.
1da177e4
LT
204 *
205 * LOCKING:
206 * caller.
207 */
9a3dccc4 208int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 209{
8cbd6df1
AL
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
9a3dccc4 212 u8 cmd;
1da177e4 213
9a3dccc4 214 int index, fua, lba48, write;
2e9edbf8 215
9a3dccc4 216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 219
8cbd6df1
AL
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
9a3dccc4 222 index = dev->multi_count ? 0 : 8;
8d238e01
AC
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
0565c26d 226 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
227 } else {
228 tf->protocol = ATA_PROT_DMA;
9a3dccc4 229 index = 16;
8cbd6df1 230 }
1da177e4 231
9a3dccc4
TH
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
1da177e4
LT
238}
239
cb95d562
TH
240/**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258{
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262}
263
c0489e4e
TH
264/**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278{
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285}
286
cb95d562 287static const struct ata_xfer_ent {
be9a50c8 288 int shift, bits;
cb95d562
TH
289 u8 base;
290} ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295};
296
297/**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311{
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319}
320
321/**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334{
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341}
342
343/**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355static int ata_xfer_mode2shift(unsigned int xfer_mode)
356{
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363}
364
1da177e4 365/**
1da7b0d0
TH
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
368 *
369 * Determine string which represents the highest speed
1da7b0d0 370 * (highest bit in @modemask).
1da177e4
LT
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
1da7b0d0 377 * @mode_mask, or the constant C string "<n/a>".
1da177e4 378 */
1da7b0d0 379static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 380{
75f554bc
TH
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
1da7b0d0 399 int highbit;
1da177e4 400
1da7b0d0
TH
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
1da177e4 404 return "<n/a>";
1da177e4
LT
405}
406
4c360c81
TH
407static const char *sata_spd_string(unsigned int spd)
408{
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417}
418
3373efd8 419void ata_dev_disable(struct ata_device *dev)
0b8efb0a 420{
0dd4b21f 421 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
423 dev->class++;
424 }
425}
426
1da177e4
LT
427/**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447{
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469}
470
471/**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491{
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513}
514
515/**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530{
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534}
535
536/**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
057ace5e 552unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
553{
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573}
574
575/**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
b4dc7623 579 * @r_err: Value of error register on completion
1da177e4
LT
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
b4dc7623
TH
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
595 */
596
b4dc7623
TH
597static unsigned int
598ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 599{
1da177e4
LT
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
1da177e4 608 ap->ops->tf_read(ap, &tf);
0169e284 609 err = tf.feature;
b4dc7623
TH
610 if (r_err)
611 *r_err = err;
1da177e4
LT
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620
b4dc7623 621 /* determine if device is ATA or ATAPI */
1da177e4 622 class = ata_dev_classify(&tf);
b4dc7623 623
1da177e4 624 if (class == ATA_DEV_UNKNOWN)
b4dc7623 625 return ATA_DEV_NONE;
1da177e4 626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
627 return ATA_DEV_NONE;
628 return class;
1da177e4
LT
629}
630
631/**
6a62a04d 632 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
6a62a04d
TH
646void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
1da177e4
LT
648{
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663}
664
0e949ff3 665/**
6a62a04d 666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
6a62a04d 672 * This function is identical to ata_id_string except that it
0e949ff3
TH
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
6a62a04d
TH
679void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
0e949ff3
TH
681{
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
6a62a04d 686 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692}
0baab86b 693
2940740b
TH
694static u64 ata_id_n_sectors(const u16 *id)
695{
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707}
708
0baab86b
EF
709/**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
1da177e4
LT
721void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722{
723}
724
0baab86b 725
1da177e4
LT
726/**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
0baab86b
EF
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
736 *
737 * LOCKING:
738 * caller.
739 */
740
741void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742{
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756}
757
758/**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779{
0dd4b21f
BP
780 if (ata_msg_probe(ap)) {
781 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
782 "device %u, wait %u\n",
783 ap->id, device, wait);
784 }
1da177e4
LT
785
786 if (wait)
787 ata_wait_idle(ap);
788
789 ap->ops->dev_select(ap, device);
790
791 if (wait) {
792 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 msleep(150);
794 ata_wait_idle(ap);
795 }
796}
797
798/**
799 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 800 * @id: IDENTIFY DEVICE page to dump
1da177e4 801 *
0bd3300a
TH
802 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 * page.
1da177e4
LT
804 *
805 * LOCKING:
806 * caller.
807 */
808
0bd3300a 809static inline void ata_dump_id(const u16 *id)
1da177e4
LT
810{
811 DPRINTK("49==0x%04x "
812 "53==0x%04x "
813 "63==0x%04x "
814 "64==0x%04x "
815 "75==0x%04x \n",
0bd3300a
TH
816 id[49],
817 id[53],
818 id[63],
819 id[64],
820 id[75]);
1da177e4
LT
821 DPRINTK("80==0x%04x "
822 "81==0x%04x "
823 "82==0x%04x "
824 "83==0x%04x "
825 "84==0x%04x \n",
0bd3300a
TH
826 id[80],
827 id[81],
828 id[82],
829 id[83],
830 id[84]);
1da177e4
LT
831 DPRINTK("88==0x%04x "
832 "93==0x%04x\n",
0bd3300a
TH
833 id[88],
834 id[93]);
1da177e4
LT
835}
836
cb95d562
TH
837/**
838 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
839 * @id: IDENTIFY data to compute xfer mask from
840 *
841 * Compute the xfermask for this device. This is not as trivial
842 * as it seems if we must consider early devices correctly.
843 *
844 * FIXME: pre IDE drive timing (do we care ?).
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Computed xfermask
851 */
852static unsigned int ata_id_xfermask(const u16 *id)
853{
854 unsigned int pio_mask, mwdma_mask, udma_mask;
855
856 /* Usual case. Word 53 indicates word 64 is valid */
857 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
858 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
859 pio_mask <<= 3;
860 pio_mask |= 0x7;
861 } else {
862 /* If word 64 isn't valid then Word 51 high byte holds
863 * the PIO timing number for the maximum. Turn it into
864 * a mask.
865 */
866 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
867
868 /* But wait.. there's more. Design your standards by
869 * committee and you too can get a free iordy field to
870 * process. However its the speeds not the modes that
871 * are supported... Note drivers using the timing API
872 * will get this right anyway
873 */
874 }
875
876 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
877
878 udma_mask = 0;
879 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
880 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
881
882 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883}
884
86e45b6b
TH
885/**
886 * ata_port_queue_task - Queue port_task
887 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
888 * @fn: workqueue function to be scheduled
889 * @data: data value to pass to workqueue function
890 * @delay: delay time for workqueue function
86e45b6b
TH
891 *
892 * Schedule @fn(@data) for execution after @delay jiffies using
893 * port_task. There is one port_task per port and it's the
894 * user(low level driver)'s responsibility to make sure that only
895 * one task is active at any given time.
896 *
897 * libata core layer takes care of synchronization between
898 * port_task and EH. ata_port_queue_task() may be ignored for EH
899 * synchronization.
900 *
901 * LOCKING:
902 * Inherited from caller.
903 */
904void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
905 unsigned long delay)
906{
907 int rc;
908
2e755f68 909 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
910 return;
911
912 PREPARE_WORK(&ap->port_task, fn, data);
913
914 if (!delay)
915 rc = queue_work(ata_wq, &ap->port_task);
916 else
917 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
918
919 /* rc == 0 means that another user is using port task */
920 WARN_ON(rc == 0);
921}
922
923/**
924 * ata_port_flush_task - Flush port_task
925 * @ap: The ata_port to flush port_task for
926 *
927 * After this function completes, port_task is guranteed not to
928 * be running or scheduled.
929 *
930 * LOCKING:
931 * Kernel thread context (may sleep)
932 */
933void ata_port_flush_task(struct ata_port *ap)
934{
935 unsigned long flags;
936
937 DPRINTK("ENTER\n");
938
ba6a1308 939 spin_lock_irqsave(ap->lock, flags);
2e755f68 940 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 941 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
942
943 DPRINTK("flush #1\n");
944 flush_workqueue(ata_wq);
945
946 /*
947 * At this point, if a task is running, it's guaranteed to see
948 * the FLUSH flag; thus, it will never queue pio tasks again.
949 * Cancel and flush.
950 */
951 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f
BP
952 if (ata_msg_ctl(ap))
953 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
86e45b6b
TH
954 flush_workqueue(ata_wq);
955 }
956
ba6a1308 957 spin_lock_irqsave(ap->lock, flags);
2e755f68 958 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 959 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 960
0dd4b21f
BP
961 if (ata_msg_ctl(ap))
962 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
963}
964
77853bf2 965void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 966{
77853bf2 967 struct completion *waiting = qc->private_data;
a2a7a662 968
a2a7a662 969 complete(waiting);
a2a7a662
TH
970}
971
972/**
973 * ata_exec_internal - execute libata internal command
a2a7a662
TH
974 * @dev: Device to which the command is sent
975 * @tf: Taskfile registers for the command and the result
d69cf37d 976 * @cdb: CDB for packet command
a2a7a662
TH
977 * @dma_dir: Data tranfer direction of the command
978 * @buf: Data buffer of the command
979 * @buflen: Length of data buffer
980 *
981 * Executes libata internal command with timeout. @tf contains
982 * command on entry and result on return. Timeout and error
983 * conditions are reported via return value. No recovery action
984 * is taken after a command times out. It's caller's duty to
985 * clean up after timeout.
986 *
987 * LOCKING:
988 * None. Should be called with kernel context, might sleep.
551e8889
TH
989 *
990 * RETURNS:
991 * Zero on success, AC_ERR_* mask on failure
a2a7a662 992 */
3373efd8 993unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
994 struct ata_taskfile *tf, const u8 *cdb,
995 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 996{
3373efd8 997 struct ata_port *ap = dev->ap;
a2a7a662
TH
998 u8 command = tf->command;
999 struct ata_queued_cmd *qc;
2ab7db1f 1000 unsigned int tag, preempted_tag;
dedaf2b0 1001 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
1002 DECLARE_COMPLETION(wait);
1003 unsigned long flags;
77853bf2 1004 unsigned int err_mask;
d95a717f 1005 int rc;
a2a7a662 1006
ba6a1308 1007 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1008
e3180499
TH
1009 /* no internal command while frozen */
1010 if (ap->flags & ATA_FLAG_FROZEN) {
ba6a1308 1011 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1012 return AC_ERR_SYSTEM;
1013 }
1014
2ab7db1f 1015 /* initialize internal qc */
a2a7a662 1016
2ab7db1f
TH
1017 /* XXX: Tag 0 is used for drivers with legacy EH as some
1018 * drivers choke if any other tag is given. This breaks
1019 * ata_tag_internal() test for those drivers. Don't use new
1020 * EH stuff without converting to it.
1021 */
1022 if (ap->ops->error_handler)
1023 tag = ATA_TAG_INTERNAL;
1024 else
1025 tag = 0;
1026
6cec4a39 1027 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1028 BUG();
f69499f4 1029 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1030
1031 qc->tag = tag;
1032 qc->scsicmd = NULL;
1033 qc->ap = ap;
1034 qc->dev = dev;
1035 ata_qc_reinit(qc);
1036
1037 preempted_tag = ap->active_tag;
dedaf2b0
TH
1038 preempted_sactive = ap->sactive;
1039 preempted_qc_active = ap->qc_active;
2ab7db1f 1040 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1041 ap->sactive = 0;
1042 ap->qc_active = 0;
2ab7db1f
TH
1043
1044 /* prepare & issue qc */
a2a7a662 1045 qc->tf = *tf;
d69cf37d
TH
1046 if (cdb)
1047 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1048 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1049 qc->dma_dir = dma_dir;
1050 if (dma_dir != DMA_NONE) {
1051 ata_sg_init_one(qc, buf, buflen);
1052 qc->nsect = buflen / ATA_SECT_SIZE;
1053 }
1054
77853bf2 1055 qc->private_data = &wait;
a2a7a662
TH
1056 qc->complete_fn = ata_qc_complete_internal;
1057
8e0e694a 1058 ata_qc_issue(qc);
a2a7a662 1059
ba6a1308 1060 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1061
d95a717f
TH
1062 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1063
1064 ata_port_flush_task(ap);
41ade50c 1065
d95a717f 1066 if (!rc) {
ba6a1308 1067 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1068
1069 /* We're racing with irq here. If we lose, the
1070 * following test prevents us from completing the qc
d95a717f
TH
1071 * twice. If we win, the port is frozen and will be
1072 * cleaned up by ->post_internal_cmd().
a2a7a662 1073 */
77853bf2 1074 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1075 qc->err_mask |= AC_ERR_TIMEOUT;
1076
1077 if (ap->ops->error_handler)
1078 ata_port_freeze(ap);
1079 else
1080 ata_qc_complete(qc);
f15a1daf 1081
0dd4b21f
BP
1082 if (ata_msg_warn(ap))
1083 ata_dev_printk(dev, KERN_WARNING,
f15a1daf 1084 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1085 }
1086
ba6a1308 1087 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1088 }
1089
d95a717f
TH
1090 /* do post_internal_cmd */
1091 if (ap->ops->post_internal_cmd)
1092 ap->ops->post_internal_cmd(qc);
1093
1094 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f
BP
1095 if (ata_msg_warn(ap))
1096 ata_dev_printk(dev, KERN_WARNING,
1097 "zero err_mask for failed "
d95a717f
TH
1098 "internal command, assuming AC_ERR_OTHER\n");
1099 qc->err_mask |= AC_ERR_OTHER;
1100 }
1101
15869303 1102 /* finish up */
ba6a1308 1103 spin_lock_irqsave(ap->lock, flags);
15869303 1104
e61e0672 1105 *tf = qc->result_tf;
77853bf2
TH
1106 err_mask = qc->err_mask;
1107
1108 ata_qc_free(qc);
2ab7db1f 1109 ap->active_tag = preempted_tag;
dedaf2b0
TH
1110 ap->sactive = preempted_sactive;
1111 ap->qc_active = preempted_qc_active;
77853bf2 1112
1f7dd3e9
TH
1113 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1114 * Until those drivers are fixed, we detect the condition
1115 * here, fail the command with AC_ERR_SYSTEM and reenable the
1116 * port.
1117 *
1118 * Note that this doesn't change any behavior as internal
1119 * command failure results in disabling the device in the
1120 * higher layer for LLDDs without new reset/EH callbacks.
1121 *
1122 * Kill the following code as soon as those drivers are fixed.
1123 */
198e0fed 1124 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1125 err_mask |= AC_ERR_SYSTEM;
1126 ata_port_probe(ap);
1127 }
1128
ba6a1308 1129 spin_unlock_irqrestore(ap->lock, flags);
15869303 1130
77853bf2 1131 return err_mask;
a2a7a662
TH
1132}
1133
977e6b9f
TH
1134/**
1135 * ata_do_simple_cmd - execute simple internal command
1136 * @dev: Device to which the command is sent
1137 * @cmd: Opcode to execute
1138 *
1139 * Execute a 'simple' command, that only consists of the opcode
1140 * 'cmd' itself, without filling any other registers
1141 *
1142 * LOCKING:
1143 * Kernel thread context (may sleep).
1144 *
1145 * RETURNS:
1146 * Zero on success, AC_ERR_* mask on failure
e58eb583 1147 */
977e6b9f 1148static unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1149{
1150 struct ata_taskfile tf;
e58eb583
TH
1151
1152 ata_tf_init(dev, &tf);
1153
1154 tf.command = cmd;
1155 tf.flags |= ATA_TFLAG_DEVICE;
1156 tf.protocol = ATA_PROT_NODATA;
1157
977e6b9f 1158 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1159}
1160
1bc4ccff
AC
1161/**
1162 * ata_pio_need_iordy - check if iordy needed
1163 * @adev: ATA device
1164 *
1165 * Check if the current speed of the device requires IORDY. Used
1166 * by various controllers for chip configuration.
1167 */
1168
1169unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1170{
1171 int pio;
1172 int speed = adev->pio_mode - XFER_PIO_0;
1173
1174 if (speed < 2)
1175 return 0;
1176 if (speed > 2)
1177 return 1;
2e9edbf8 1178
1bc4ccff
AC
1179 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1180
1181 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1182 pio = adev->id[ATA_ID_EIDE_PIO];
1183 /* Is the speed faster than the drive allows non IORDY ? */
1184 if (pio) {
1185 /* This is cycle times not frequency - watch the logic! */
1186 if (pio > 240) /* PIO2 is 240nS per cycle */
1187 return 1;
1188 return 0;
1189 }
1190 }
1191 return 0;
1192}
1193
1da177e4 1194/**
49016aca 1195 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1196 * @dev: target device
1197 * @p_class: pointer to class of the target device (may be changed)
1198 * @post_reset: is this read ID post-reset?
fe635c7e 1199 * @id: buffer to read IDENTIFY data into
1da177e4 1200 *
49016aca
TH
1201 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1202 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1203 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1204 * for pre-ATA4 drives.
1da177e4
LT
1205 *
1206 * LOCKING:
49016aca
TH
1207 * Kernel thread context (may sleep)
1208 *
1209 * RETURNS:
1210 * 0 on success, -errno otherwise.
1da177e4 1211 */
a9beec95
TH
1212int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1213 int post_reset, u16 *id)
1da177e4 1214{
3373efd8 1215 struct ata_port *ap = dev->ap;
49016aca 1216 unsigned int class = *p_class;
a0123703 1217 struct ata_taskfile tf;
49016aca
TH
1218 unsigned int err_mask = 0;
1219 const char *reason;
1220 int rc;
1da177e4 1221
0dd4b21f
BP
1222 if (ata_msg_ctl(ap))
1223 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1224 __FUNCTION__, ap->id, dev->devno);
1da177e4 1225
49016aca 1226 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1227
49016aca 1228 retry:
3373efd8 1229 ata_tf_init(dev, &tf);
a0123703 1230
49016aca
TH
1231 switch (class) {
1232 case ATA_DEV_ATA:
a0123703 1233 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1234 break;
1235 case ATA_DEV_ATAPI:
a0123703 1236 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1237 break;
1238 default:
1239 rc = -ENODEV;
1240 reason = "unsupported class";
1241 goto err_out;
1da177e4
LT
1242 }
1243
a0123703 1244 tf.protocol = ATA_PROT_PIO;
1da177e4 1245
3373efd8 1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1247 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1248 if (err_mask) {
49016aca
TH
1249 rc = -EIO;
1250 reason = "I/O error";
1da177e4
LT
1251 goto err_out;
1252 }
1253
49016aca 1254 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1255
49016aca 1256 /* sanity check */
692785e7 1257 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1258 rc = -EINVAL;
1259 reason = "device reports illegal type";
1260 goto err_out;
1261 }
1262
1263 if (post_reset && class == ATA_DEV_ATA) {
1264 /*
1265 * The exact sequence expected by certain pre-ATA4 drives is:
1266 * SRST RESET
1267 * IDENTIFY
1268 * INITIALIZE DEVICE PARAMETERS
1269 * anything else..
1270 * Some drives were very specific about that exact sequence.
1271 */
1272 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1273 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1274 if (err_mask) {
1275 rc = -EIO;
1276 reason = "INIT_DEV_PARAMS failed";
1277 goto err_out;
1278 }
1279
1280 /* current CHS translation info (id[53-58]) might be
1281 * changed. reread the identify device info.
1282 */
1283 post_reset = 0;
1284 goto retry;
1285 }
1286 }
1287
1288 *p_class = class;
fe635c7e 1289
49016aca
TH
1290 return 0;
1291
1292 err_out:
0dd4b21f
BP
1293 if (ata_msg_warn(ap))
1294 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
f15a1daf 1295 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1296 return rc;
1297}
1298
3373efd8 1299static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1300{
3373efd8 1301 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1302}
1303
a6e6ce8e
TH
1304static void ata_dev_config_ncq(struct ata_device *dev,
1305 char *desc, size_t desc_sz)
1306{
1307 struct ata_port *ap = dev->ap;
1308 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1309
1310 if (!ata_id_has_ncq(dev->id)) {
1311 desc[0] = '\0';
1312 return;
1313 }
1314
1315 if (ap->flags & ATA_FLAG_NCQ) {
1316 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1317 dev->flags |= ATA_DFLAG_NCQ;
1318 }
1319
1320 if (hdepth >= ddepth)
1321 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1322 else
1323 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1324}
1325
49016aca 1326/**
ffeae418 1327 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1328 * @dev: Target device to configure
4c2d721a 1329 * @print_info: Enable device info printout
ffeae418
TH
1330 *
1331 * Configure @dev according to @dev->id. Generic and low-level
1332 * driver specific fixups are also applied.
49016aca
TH
1333 *
1334 * LOCKING:
ffeae418
TH
1335 * Kernel thread context (may sleep)
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno otherwise
49016aca 1339 */
a9beec95 1340int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1341{
3373efd8 1342 struct ata_port *ap = dev->ap;
1148c3a7 1343 const u16 *id = dev->id;
ff8854b2 1344 unsigned int xfer_mask;
49016aca
TH
1345 int i, rc;
1346
0dd4b21f
BP
1347 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1348 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1349 __FUNCTION__, ap->id, dev->devno);
ffeae418 1350 return 0;
49016aca
TH
1351 }
1352
0dd4b21f
BP
1353 if (ata_msg_probe(ap))
1354 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1355 __FUNCTION__, ap->id, dev->devno);
1da177e4 1356
c39f5ebe 1357 /* print device capabilities */
0dd4b21f
BP
1358 if (ata_msg_probe(ap))
1359 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
f15a1daf 1360 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1361 __FUNCTION__,
f15a1daf
TH
1362 id[49], id[82], id[83], id[84],
1363 id[85], id[86], id[87], id[88]);
c39f5ebe 1364
208a9933 1365 /* initialize to-be-configured parameters */
ea1dd4e1 1366 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1367 dev->max_sectors = 0;
1368 dev->cdb_len = 0;
1369 dev->n_sectors = 0;
1370 dev->cylinders = 0;
1371 dev->heads = 0;
1372 dev->sectors = 0;
1373
1da177e4
LT
1374 /*
1375 * common ATA, ATAPI feature tests
1376 */
1377
ff8854b2 1378 /* find max transfer mode; for printk only */
1148c3a7 1379 xfer_mask = ata_id_xfermask(id);
1da177e4 1380
0dd4b21f
BP
1381 if (ata_msg_probe(ap))
1382 ata_dump_id(id);
1da177e4
LT
1383
1384 /* ATA-specific feature tests */
1385 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1386 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1387
1148c3a7 1388 if (ata_id_has_lba(id)) {
4c2d721a 1389 const char *lba_desc;
a6e6ce8e 1390 char ncq_desc[20];
8bf62ece 1391
4c2d721a
TH
1392 lba_desc = "LBA";
1393 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1394 if (ata_id_has_lba48(id)) {
8bf62ece 1395 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1396 lba_desc = "LBA48";
1397 }
8bf62ece 1398
a6e6ce8e
TH
1399 /* config NCQ */
1400 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1401
8bf62ece 1402 /* print device info to dmesg */
0dd4b21f 1403 if (ata_msg_info(ap))
f15a1daf 1404 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1405 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1406 ata_id_major_version(id),
1407 ata_mode_string(xfer_mask),
1408 (unsigned long long)dev->n_sectors,
a6e6ce8e 1409 lba_desc, ncq_desc);
ffeae418 1410 } else {
8bf62ece
AL
1411 /* CHS */
1412
1413 /* Default translation */
1148c3a7
TH
1414 dev->cylinders = id[1];
1415 dev->heads = id[3];
1416 dev->sectors = id[6];
8bf62ece 1417
1148c3a7 1418 if (ata_id_current_chs_valid(id)) {
8bf62ece 1419 /* Current CHS translation is valid. */
1148c3a7
TH
1420 dev->cylinders = id[54];
1421 dev->heads = id[55];
1422 dev->sectors = id[56];
8bf62ece
AL
1423 }
1424
1425 /* print device info to dmesg */
0dd4b21f 1426 if (ata_msg_info(ap))
f15a1daf
TH
1427 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1428 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1429 ata_id_major_version(id),
1430 ata_mode_string(xfer_mask),
1431 (unsigned long long)dev->n_sectors,
1432 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1433 }
1434
07f6f7d0
AL
1435 if (dev->id[59] & 0x100) {
1436 dev->multi_count = dev->id[59] & 0xff;
0dd4b21f
BP
1437 if (ata_msg_info(ap))
1438 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
999bb6f4 1439 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1440 }
1441
6e7846e9 1442 dev->cdb_len = 16;
1da177e4
LT
1443 }
1444
1445 /* ATAPI-specific feature tests */
2c13b7ce 1446 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1447 char *cdb_intr_string = "";
1448
1148c3a7 1449 rc = atapi_cdb_len(id);
1da177e4 1450 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f
BP
1451 if (ata_msg_warn(ap))
1452 ata_dev_printk(dev, KERN_WARNING,
1453 "unsupported CDB len\n");
ffeae418 1454 rc = -EINVAL;
1da177e4
LT
1455 goto err_out_nosup;
1456 }
6e7846e9 1457 dev->cdb_len = (unsigned int) rc;
1da177e4 1458
08a556db 1459 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1460 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1461 cdb_intr_string = ", CDB intr";
1462 }
312f7da2 1463
1da177e4 1464 /* print device info to dmesg */
0dd4b21f 1465 if (ata_msg_info(ap))
12436c30
TH
1466 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1467 ata_mode_string(xfer_mask),
1468 cdb_intr_string);
1da177e4
LT
1469 }
1470
6e7846e9
TH
1471 ap->host->max_cmd_len = 0;
1472 for (i = 0; i < ATA_MAX_DEVICES; i++)
1473 ap->host->max_cmd_len = max_t(unsigned int,
1474 ap->host->max_cmd_len,
1475 ap->device[i].cdb_len);
1476
4b2f3ede 1477 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1478 if (ata_dev_knobble(dev)) {
0dd4b21f 1479 if (ata_msg_info(ap))
f15a1daf
TH
1480 ata_dev_printk(dev, KERN_INFO,
1481 "applying bridge limits\n");
5a529139 1482 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1483 dev->max_sectors = ATA_MAX_SECTORS;
1484 }
1485
1486 if (ap->ops->dev_config)
1487 ap->ops->dev_config(ap, dev);
1488
0dd4b21f
BP
1489 if (ata_msg_probe(ap))
1490 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1491 __FUNCTION__, ata_chk_status(ap));
ffeae418 1492 return 0;
1da177e4
LT
1493
1494err_out_nosup:
0dd4b21f
BP
1495 if (ata_msg_probe(ap))
1496 ata_dev_printk(dev, KERN_DEBUG,
1497 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1498 return rc;
1da177e4
LT
1499}
1500
1501/**
1502 * ata_bus_probe - Reset and probe ATA bus
1503 * @ap: Bus to probe
1504 *
0cba632b
JG
1505 * Master ATA bus probing function. Initiates a hardware-dependent
1506 * bus reset, then attempts to identify any devices found on
1507 * the bus.
1508 *
1da177e4 1509 * LOCKING:
0cba632b 1510 * PCI/etc. bus probe sem.
1da177e4
LT
1511 *
1512 * RETURNS:
96072e69 1513 * Zero on success, negative errno otherwise.
1da177e4
LT
1514 */
1515
1516static int ata_bus_probe(struct ata_port *ap)
1517{
28ca5c57 1518 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1519 int tries[ATA_MAX_DEVICES];
1520 int i, rc, down_xfermask;
e82cbdb9 1521 struct ata_device *dev;
1da177e4 1522
28ca5c57 1523 ata_port_probe(ap);
c19ba8af 1524
14d2bac1
TH
1525 for (i = 0; i < ATA_MAX_DEVICES; i++)
1526 tries[i] = ATA_PROBE_MAX_TRIES;
1527
1528 retry:
1529 down_xfermask = 0;
1530
2044470c 1531 /* reset and determine device classes */
52783c5d 1532 ap->ops->phy_reset(ap);
2061a47a 1533
52783c5d
TH
1534 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1535 dev = &ap->device[i];
c19ba8af 1536
52783c5d
TH
1537 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1538 dev->class != ATA_DEV_UNKNOWN)
1539 classes[dev->devno] = dev->class;
1540 else
1541 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1542
52783c5d 1543 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1544 }
1da177e4 1545
52783c5d 1546 ata_port_probe(ap);
2044470c 1547
b6079ca4
AC
1548 /* after the reset the device state is PIO 0 and the controller
1549 state is undefined. Record the mode */
1550
1551 for (i = 0; i < ATA_MAX_DEVICES; i++)
1552 ap->device[i].pio_mode = XFER_PIO_0;
1553
28ca5c57 1554 /* read IDENTIFY page and configure devices */
1da177e4 1555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1556 dev = &ap->device[i];
28ca5c57 1557
ec573755
TH
1558 if (tries[i])
1559 dev->class = classes[i];
ffeae418 1560
14d2bac1 1561 if (!ata_dev_enabled(dev))
ffeae418 1562 continue;
ffeae418 1563
3373efd8 1564 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1565 if (rc)
1566 goto fail;
1567
3373efd8 1568 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1569 if (rc)
1570 goto fail;
1da177e4
LT
1571 }
1572
e82cbdb9 1573 /* configure transfer mode */
3adcebb2 1574 rc = ata_set_mode(ap, &dev);
51713d35
TH
1575 if (rc) {
1576 down_xfermask = 1;
1577 goto fail;
e82cbdb9 1578 }
1da177e4 1579
e82cbdb9
TH
1580 for (i = 0; i < ATA_MAX_DEVICES; i++)
1581 if (ata_dev_enabled(&ap->device[i]))
1582 return 0;
1da177e4 1583
e82cbdb9
TH
1584 /* no device present, disable port */
1585 ata_port_disable(ap);
1da177e4 1586 ap->ops->port_disable(ap);
96072e69 1587 return -ENODEV;
14d2bac1
TH
1588
1589 fail:
1590 switch (rc) {
1591 case -EINVAL:
1592 case -ENODEV:
1593 tries[dev->devno] = 0;
1594 break;
1595 case -EIO:
3c567b7d 1596 sata_down_spd_limit(ap);
14d2bac1
TH
1597 /* fall through */
1598 default:
1599 tries[dev->devno]--;
1600 if (down_xfermask &&
3373efd8 1601 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1602 tries[dev->devno] = 0;
1603 }
1604
ec573755 1605 if (!tries[dev->devno]) {
3373efd8
TH
1606 ata_down_xfermask_limit(dev, 1);
1607 ata_dev_disable(dev);
ec573755
TH
1608 }
1609
14d2bac1 1610 goto retry;
1da177e4
LT
1611}
1612
1613/**
0cba632b
JG
1614 * ata_port_probe - Mark port as enabled
1615 * @ap: Port for which we indicate enablement
1da177e4 1616 *
0cba632b
JG
1617 * Modify @ap data structure such that the system
1618 * thinks that the entire port is enabled.
1619 *
1620 * LOCKING: host_set lock, or some other form of
1621 * serialization.
1da177e4
LT
1622 */
1623
1624void ata_port_probe(struct ata_port *ap)
1625{
198e0fed 1626 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1627}
1628
3be680b7
TH
1629/**
1630 * sata_print_link_status - Print SATA link status
1631 * @ap: SATA port to printk link status about
1632 *
1633 * This function prints link speed and status of a SATA link.
1634 *
1635 * LOCKING:
1636 * None.
1637 */
1638static void sata_print_link_status(struct ata_port *ap)
1639{
6d5f9732 1640 u32 sstatus, scontrol, tmp;
3be680b7 1641
81952c54 1642 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1643 return;
81952c54 1644 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1645
81952c54 1646 if (ata_port_online(ap)) {
3be680b7 1647 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1648 ata_port_printk(ap, KERN_INFO,
1649 "SATA link up %s (SStatus %X SControl %X)\n",
1650 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1651 } else {
f15a1daf
TH
1652 ata_port_printk(ap, KERN_INFO,
1653 "SATA link down (SStatus %X SControl %X)\n",
1654 sstatus, scontrol);
3be680b7
TH
1655 }
1656}
1657
1da177e4 1658/**
780a87f7
JG
1659 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1660 * @ap: SATA port associated with target SATA PHY.
1da177e4 1661 *
780a87f7
JG
1662 * This function issues commands to standard SATA Sxxx
1663 * PHY registers, to wake up the phy (and device), and
1664 * clear any reset condition.
1da177e4
LT
1665 *
1666 * LOCKING:
0cba632b 1667 * PCI/etc. bus probe sem.
1da177e4
LT
1668 *
1669 */
1670void __sata_phy_reset(struct ata_port *ap)
1671{
1672 u32 sstatus;
1673 unsigned long timeout = jiffies + (HZ * 5);
1674
1675 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1676 /* issue phy wake/reset */
81952c54 1677 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1678 /* Couldn't find anything in SATA I/II specs, but
1679 * AHCI-1.1 10.4.2 says at least 1 ms. */
1680 mdelay(1);
1da177e4 1681 }
81952c54
TH
1682 /* phy wake/clear reset */
1683 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1684
1685 /* wait for phy to become ready, if necessary */
1686 do {
1687 msleep(200);
81952c54 1688 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1689 if ((sstatus & 0xf) != 1)
1690 break;
1691 } while (time_before(jiffies, timeout));
1692
3be680b7
TH
1693 /* print link status */
1694 sata_print_link_status(ap);
656563e3 1695
3be680b7 1696 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1697 if (!ata_port_offline(ap))
1da177e4 1698 ata_port_probe(ap);
3be680b7 1699 else
1da177e4 1700 ata_port_disable(ap);
1da177e4 1701
198e0fed 1702 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1703 return;
1704
1705 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1706 ata_port_disable(ap);
1707 return;
1708 }
1709
1710 ap->cbl = ATA_CBL_SATA;
1711}
1712
1713/**
780a87f7
JG
1714 * sata_phy_reset - Reset SATA bus.
1715 * @ap: SATA port associated with target SATA PHY.
1da177e4 1716 *
780a87f7
JG
1717 * This function resets the SATA bus, and then probes
1718 * the bus for devices.
1da177e4
LT
1719 *
1720 * LOCKING:
0cba632b 1721 * PCI/etc. bus probe sem.
1da177e4
LT
1722 *
1723 */
1724void sata_phy_reset(struct ata_port *ap)
1725{
1726 __sata_phy_reset(ap);
198e0fed 1727 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1728 return;
1729 ata_bus_reset(ap);
1730}
1731
ebdfca6e
AC
1732/**
1733 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1734 * @adev: device
1735 *
1736 * Obtain the other device on the same cable, or if none is
1737 * present NULL is returned
1738 */
2e9edbf8 1739
3373efd8 1740struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1741{
3373efd8 1742 struct ata_port *ap = adev->ap;
ebdfca6e 1743 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1744 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1745 return NULL;
1746 return pair;
1747}
1748
1da177e4 1749/**
780a87f7
JG
1750 * ata_port_disable - Disable port.
1751 * @ap: Port to be disabled.
1da177e4 1752 *
780a87f7
JG
1753 * Modify @ap data structure such that the system
1754 * thinks that the entire port is disabled, and should
1755 * never attempt to probe or communicate with devices
1756 * on this port.
1757 *
1758 * LOCKING: host_set lock, or some other form of
1759 * serialization.
1da177e4
LT
1760 */
1761
1762void ata_port_disable(struct ata_port *ap)
1763{
1764 ap->device[0].class = ATA_DEV_NONE;
1765 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1766 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1767}
1768
1c3fae4d 1769/**
3c567b7d 1770 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1771 * @ap: Port to adjust SATA spd limit for
1772 *
1773 * Adjust SATA spd limit of @ap downward. Note that this
1774 * function only adjusts the limit. The change must be applied
3c567b7d 1775 * using sata_set_spd().
1c3fae4d
TH
1776 *
1777 * LOCKING:
1778 * Inherited from caller.
1779 *
1780 * RETURNS:
1781 * 0 on success, negative errno on failure
1782 */
3c567b7d 1783int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1784{
81952c54
TH
1785 u32 sstatus, spd, mask;
1786 int rc, highbit;
1c3fae4d 1787
81952c54
TH
1788 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1789 if (rc)
1790 return rc;
1c3fae4d
TH
1791
1792 mask = ap->sata_spd_limit;
1793 if (mask <= 1)
1794 return -EINVAL;
1795 highbit = fls(mask) - 1;
1796 mask &= ~(1 << highbit);
1797
81952c54 1798 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1799 if (spd <= 1)
1800 return -EINVAL;
1801 spd--;
1802 mask &= (1 << spd) - 1;
1803 if (!mask)
1804 return -EINVAL;
1805
1806 ap->sata_spd_limit = mask;
1807
f15a1daf
TH
1808 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1809 sata_spd_string(fls(mask)));
1c3fae4d
TH
1810
1811 return 0;
1812}
1813
3c567b7d 1814static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1815{
1816 u32 spd, limit;
1817
1818 if (ap->sata_spd_limit == UINT_MAX)
1819 limit = 0;
1820 else
1821 limit = fls(ap->sata_spd_limit);
1822
1823 spd = (*scontrol >> 4) & 0xf;
1824 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1825
1826 return spd != limit;
1827}
1828
1829/**
3c567b7d 1830 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1831 * @ap: Port in question
1832 *
1833 * Test whether the spd limit in SControl matches
1834 * @ap->sata_spd_limit. This function is used to determine
1835 * whether hardreset is necessary to apply SATA spd
1836 * configuration.
1837 *
1838 * LOCKING:
1839 * Inherited from caller.
1840 *
1841 * RETURNS:
1842 * 1 if SATA spd configuration is needed, 0 otherwise.
1843 */
3c567b7d 1844int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1845{
1846 u32 scontrol;
1847
81952c54 1848 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1849 return 0;
1850
3c567b7d 1851 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1852}
1853
1854/**
3c567b7d 1855 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1856 * @ap: Port to set SATA spd for
1857 *
1858 * Set SATA spd of @ap according to sata_spd_limit.
1859 *
1860 * LOCKING:
1861 * Inherited from caller.
1862 *
1863 * RETURNS:
1864 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1865 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1866 */
3c567b7d 1867int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1868{
1869 u32 scontrol;
81952c54 1870 int rc;
1c3fae4d 1871
81952c54
TH
1872 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1873 return rc;
1c3fae4d 1874
3c567b7d 1875 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1876 return 0;
1877
81952c54
TH
1878 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1879 return rc;
1880
1c3fae4d
TH
1881 return 1;
1882}
1883
452503f9
AC
1884/*
1885 * This mode timing computation functionality is ported over from
1886 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1887 */
1888/*
1889 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1890 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1891 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1892 * is currently supported only by Maxtor drives.
452503f9
AC
1893 */
1894
1895static const struct ata_timing ata_timing[] = {
1896
1897 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1898 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1899 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1900 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1901
1902 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1903 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1904 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1905
1906/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1907
452503f9
AC
1908 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1909 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1910 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1911
452503f9
AC
1912 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1913 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1914 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1915
1916/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1917 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1918 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1919
1920 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1921 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1922 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1923
1924/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1925
1926 { 0xFF }
1927};
1928
1929#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1930#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1931
1932static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1933{
1934 q->setup = EZ(t->setup * 1000, T);
1935 q->act8b = EZ(t->act8b * 1000, T);
1936 q->rec8b = EZ(t->rec8b * 1000, T);
1937 q->cyc8b = EZ(t->cyc8b * 1000, T);
1938 q->active = EZ(t->active * 1000, T);
1939 q->recover = EZ(t->recover * 1000, T);
1940 q->cycle = EZ(t->cycle * 1000, T);
1941 q->udma = EZ(t->udma * 1000, UT);
1942}
1943
1944void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1945 struct ata_timing *m, unsigned int what)
1946{
1947 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1948 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1949 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1950 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1951 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1952 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1953 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1954 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1955}
1956
1957static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1958{
1959 const struct ata_timing *t;
1960
1961 for (t = ata_timing; t->mode != speed; t++)
91190758 1962 if (t->mode == 0xFF)
452503f9 1963 return NULL;
2e9edbf8 1964 return t;
452503f9
AC
1965}
1966
1967int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1968 struct ata_timing *t, int T, int UT)
1969{
1970 const struct ata_timing *s;
1971 struct ata_timing p;
1972
1973 /*
2e9edbf8 1974 * Find the mode.
75b1f2f8 1975 */
452503f9
AC
1976
1977 if (!(s = ata_timing_find_mode(speed)))
1978 return -EINVAL;
1979
75b1f2f8
AL
1980 memcpy(t, s, sizeof(*s));
1981
452503f9
AC
1982 /*
1983 * If the drive is an EIDE drive, it can tell us it needs extended
1984 * PIO/MW_DMA cycle timing.
1985 */
1986
1987 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1988 memset(&p, 0, sizeof(p));
1989 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1990 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1991 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1992 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1993 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1994 }
1995 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1996 }
1997
1998 /*
1999 * Convert the timing to bus clock counts.
2000 */
2001
75b1f2f8 2002 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2003
2004 /*
c893a3ae
RD
2005 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2006 * S.M.A.R.T * and some other commands. We have to ensure that the
2007 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2008 */
2009
2010 if (speed > XFER_PIO_4) {
2011 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2012 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2013 }
2014
2015 /*
c893a3ae 2016 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2017 */
2018
2019 if (t->act8b + t->rec8b < t->cyc8b) {
2020 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2021 t->rec8b = t->cyc8b - t->act8b;
2022 }
2023
2024 if (t->active + t->recover < t->cycle) {
2025 t->active += (t->cycle - (t->active + t->recover)) / 2;
2026 t->recover = t->cycle - t->active;
2027 }
2028
2029 return 0;
2030}
2031
cf176e1a
TH
2032/**
2033 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2034 * @dev: Device to adjust xfer masks
2035 * @force_pio0: Force PIO0
2036 *
2037 * Adjust xfer masks of @dev downward. Note that this function
2038 * does not apply the change. Invoking ata_set_mode() afterwards
2039 * will apply the limit.
2040 *
2041 * LOCKING:
2042 * Inherited from caller.
2043 *
2044 * RETURNS:
2045 * 0 on success, negative errno on failure
2046 */
3373efd8 2047int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2048{
2049 unsigned long xfer_mask;
2050 int highbit;
2051
2052 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2053 dev->udma_mask);
2054
2055 if (!xfer_mask)
2056 goto fail;
2057 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2058 if (xfer_mask & ATA_MASK_UDMA)
2059 xfer_mask &= ~ATA_MASK_MWDMA;
2060
2061 highbit = fls(xfer_mask) - 1;
2062 xfer_mask &= ~(1 << highbit);
2063 if (force_pio0)
2064 xfer_mask &= 1 << ATA_SHIFT_PIO;
2065 if (!xfer_mask)
2066 goto fail;
2067
2068 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2069 &dev->udma_mask);
2070
f15a1daf
TH
2071 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2072 ata_mode_string(xfer_mask));
cf176e1a
TH
2073
2074 return 0;
2075
2076 fail:
2077 return -EINVAL;
2078}
2079
3373efd8 2080static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2081{
83206a29
TH
2082 unsigned int err_mask;
2083 int rc;
1da177e4 2084
e8384607 2085 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2086 if (dev->xfer_shift == ATA_SHIFT_PIO)
2087 dev->flags |= ATA_DFLAG_PIO;
2088
3373efd8 2089 err_mask = ata_dev_set_xfermode(dev);
83206a29 2090 if (err_mask) {
f15a1daf
TH
2091 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2092 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2093 return -EIO;
2094 }
1da177e4 2095
3373efd8 2096 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2097 if (rc)
83206a29 2098 return rc;
48a8a14f 2099
23e71c3d
TH
2100 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2101 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2102
f15a1daf
TH
2103 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2104 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2105 return 0;
1da177e4
LT
2106}
2107
1da177e4
LT
2108/**
2109 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2110 * @ap: port on which timings will be programmed
e82cbdb9 2111 * @r_failed_dev: out paramter for failed device
1da177e4 2112 *
e82cbdb9
TH
2113 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2114 * ata_set_mode() fails, pointer to the failing device is
2115 * returned in @r_failed_dev.
780a87f7 2116 *
1da177e4 2117 * LOCKING:
0cba632b 2118 * PCI/etc. bus probe sem.
e82cbdb9
TH
2119 *
2120 * RETURNS:
2121 * 0 on success, negative errno otherwise
1da177e4 2122 */
1ad8e7f9 2123int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2124{
e8e0619f 2125 struct ata_device *dev;
e82cbdb9 2126 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2127
3adcebb2
TH
2128 /* has private set_mode? */
2129 if (ap->ops->set_mode) {
2130 /* FIXME: make ->set_mode handle no device case and
2131 * return error code and failing device on failure.
2132 */
2133 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2134 if (ata_dev_enabled(&ap->device[i])) {
2135 ap->ops->set_mode(ap);
2136 break;
2137 }
2138 }
2139 return 0;
2140 }
2141
a6d5a51c
TH
2142 /* step 1: calculate xfer_mask */
2143 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2144 unsigned int pio_mask, dma_mask;
a6d5a51c 2145
e8e0619f
TH
2146 dev = &ap->device[i];
2147
e1211e3f 2148 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2149 continue;
2150
3373efd8 2151 ata_dev_xfermask(dev);
1da177e4 2152
acf356b1
TH
2153 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2154 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2155 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2156 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2157
4f65977d 2158 found = 1;
5444a6f4
AC
2159 if (dev->dma_mode)
2160 used_dma = 1;
a6d5a51c 2161 }
4f65977d 2162 if (!found)
e82cbdb9 2163 goto out;
a6d5a51c
TH
2164
2165 /* step 2: always set host PIO timings */
e8e0619f
TH
2166 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2167 dev = &ap->device[i];
2168 if (!ata_dev_enabled(dev))
2169 continue;
2170
2171 if (!dev->pio_mode) {
f15a1daf 2172 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2173 rc = -EINVAL;
e82cbdb9 2174 goto out;
e8e0619f
TH
2175 }
2176
2177 dev->xfer_mode = dev->pio_mode;
2178 dev->xfer_shift = ATA_SHIFT_PIO;
2179 if (ap->ops->set_piomode)
2180 ap->ops->set_piomode(ap, dev);
2181 }
1da177e4 2182
a6d5a51c 2183 /* step 3: set host DMA timings */
e8e0619f
TH
2184 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2185 dev = &ap->device[i];
2186
2187 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2188 continue;
2189
2190 dev->xfer_mode = dev->dma_mode;
2191 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2192 if (ap->ops->set_dmamode)
2193 ap->ops->set_dmamode(ap, dev);
2194 }
1da177e4
LT
2195
2196 /* step 4: update devices' xfer mode */
83206a29 2197 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2198 dev = &ap->device[i];
1da177e4 2199
e1211e3f 2200 if (!ata_dev_enabled(dev))
83206a29
TH
2201 continue;
2202
3373efd8 2203 rc = ata_dev_set_mode(dev);
5bbc53f4 2204 if (rc)
e82cbdb9 2205 goto out;
83206a29 2206 }
1da177e4 2207
e8e0619f
TH
2208 /* Record simplex status. If we selected DMA then the other
2209 * host channels are not permitted to do so.
5444a6f4 2210 */
5444a6f4
AC
2211 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2212 ap->host_set->simplex_claimed = 1;
2213
e8e0619f 2214 /* step5: chip specific finalisation */
1da177e4
LT
2215 if (ap->ops->post_set_mode)
2216 ap->ops->post_set_mode(ap);
2217
e82cbdb9
TH
2218 out:
2219 if (rc)
2220 *r_failed_dev = dev;
2221 return rc;
1da177e4
LT
2222}
2223
1fdffbce
JG
2224/**
2225 * ata_tf_to_host - issue ATA taskfile to host controller
2226 * @ap: port to which command is being issued
2227 * @tf: ATA taskfile register set
2228 *
2229 * Issues ATA taskfile register set to ATA host controller,
2230 * with proper synchronization with interrupt handler and
2231 * other threads.
2232 *
2233 * LOCKING:
2234 * spin_lock_irqsave(host_set lock)
2235 */
2236
2237static inline void ata_tf_to_host(struct ata_port *ap,
2238 const struct ata_taskfile *tf)
2239{
2240 ap->ops->tf_load(ap, tf);
2241 ap->ops->exec_command(ap, tf);
2242}
2243
1da177e4
LT
2244/**
2245 * ata_busy_sleep - sleep until BSY clears, or timeout
2246 * @ap: port containing status register to be polled
2247 * @tmout_pat: impatience timeout
2248 * @tmout: overall timeout
2249 *
780a87f7
JG
2250 * Sleep until ATA Status register bit BSY clears,
2251 * or a timeout occurs.
2252 *
2253 * LOCKING: None.
1da177e4
LT
2254 */
2255
6f8b9958
TH
2256unsigned int ata_busy_sleep (struct ata_port *ap,
2257 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2258{
2259 unsigned long timer_start, timeout;
2260 u8 status;
2261
2262 status = ata_busy_wait(ap, ATA_BUSY, 300);
2263 timer_start = jiffies;
2264 timeout = timer_start + tmout_pat;
2265 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2266 msleep(50);
2267 status = ata_busy_wait(ap, ATA_BUSY, 3);
2268 }
2269
2270 if (status & ATA_BUSY)
f15a1daf
TH
2271 ata_port_printk(ap, KERN_WARNING,
2272 "port is slow to respond, please be patient\n");
1da177e4
LT
2273
2274 timeout = timer_start + tmout;
2275 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2276 msleep(50);
2277 status = ata_chk_status(ap);
2278 }
2279
2280 if (status & ATA_BUSY) {
f15a1daf
TH
2281 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2282 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2283 return 1;
2284 }
2285
2286 return 0;
2287}
2288
2289static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2290{
2291 struct ata_ioports *ioaddr = &ap->ioaddr;
2292 unsigned int dev0 = devmask & (1 << 0);
2293 unsigned int dev1 = devmask & (1 << 1);
2294 unsigned long timeout;
2295
2296 /* if device 0 was found in ata_devchk, wait for its
2297 * BSY bit to clear
2298 */
2299 if (dev0)
2300 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2301
2302 /* if device 1 was found in ata_devchk, wait for
2303 * register access, then wait for BSY to clear
2304 */
2305 timeout = jiffies + ATA_TMOUT_BOOT;
2306 while (dev1) {
2307 u8 nsect, lbal;
2308
2309 ap->ops->dev_select(ap, 1);
2310 if (ap->flags & ATA_FLAG_MMIO) {
2311 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2312 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2313 } else {
2314 nsect = inb(ioaddr->nsect_addr);
2315 lbal = inb(ioaddr->lbal_addr);
2316 }
2317 if ((nsect == 1) && (lbal == 1))
2318 break;
2319 if (time_after(jiffies, timeout)) {
2320 dev1 = 0;
2321 break;
2322 }
2323 msleep(50); /* give drive a breather */
2324 }
2325 if (dev1)
2326 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2327
2328 /* is all this really necessary? */
2329 ap->ops->dev_select(ap, 0);
2330 if (dev1)
2331 ap->ops->dev_select(ap, 1);
2332 if (dev0)
2333 ap->ops->dev_select(ap, 0);
2334}
2335
1da177e4
LT
2336static unsigned int ata_bus_softreset(struct ata_port *ap,
2337 unsigned int devmask)
2338{
2339 struct ata_ioports *ioaddr = &ap->ioaddr;
2340
2341 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2342
2343 /* software reset. causes dev0 to be selected */
2344 if (ap->flags & ATA_FLAG_MMIO) {
2345 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2346 udelay(20); /* FIXME: flush */
2347 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2348 udelay(20); /* FIXME: flush */
2349 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2350 } else {
2351 outb(ap->ctl, ioaddr->ctl_addr);
2352 udelay(10);
2353 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2354 udelay(10);
2355 outb(ap->ctl, ioaddr->ctl_addr);
2356 }
2357
2358 /* spec mandates ">= 2ms" before checking status.
2359 * We wait 150ms, because that was the magic delay used for
2360 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2361 * between when the ATA command register is written, and then
2362 * status is checked. Because waiting for "a while" before
2363 * checking status is fine, post SRST, we perform this magic
2364 * delay here as well.
09c7ad79
AC
2365 *
2366 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2367 */
2368 msleep(150);
2369
2e9edbf8 2370 /* Before we perform post reset processing we want to see if
298a41ca
TH
2371 * the bus shows 0xFF because the odd clown forgets the D7
2372 * pulldown resistor.
2373 */
987d2f05 2374 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2375 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2376 return AC_ERR_OTHER;
987d2f05 2377 }
09c7ad79 2378
1da177e4
LT
2379 ata_bus_post_reset(ap, devmask);
2380
2381 return 0;
2382}
2383
2384/**
2385 * ata_bus_reset - reset host port and associated ATA channel
2386 * @ap: port to reset
2387 *
2388 * This is typically the first time we actually start issuing
2389 * commands to the ATA channel. We wait for BSY to clear, then
2390 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2391 * result. Determine what devices, if any, are on the channel
2392 * by looking at the device 0/1 error register. Look at the signature
2393 * stored in each device's taskfile registers, to determine if
2394 * the device is ATA or ATAPI.
2395 *
2396 * LOCKING:
0cba632b
JG
2397 * PCI/etc. bus probe sem.
2398 * Obtains host_set lock.
1da177e4
LT
2399 *
2400 * SIDE EFFECTS:
198e0fed 2401 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2402 */
2403
2404void ata_bus_reset(struct ata_port *ap)
2405{
2406 struct ata_ioports *ioaddr = &ap->ioaddr;
2407 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2408 u8 err;
aec5c3c1 2409 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2410
2411 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2412
2413 /* determine if device 0/1 are present */
2414 if (ap->flags & ATA_FLAG_SATA_RESET)
2415 dev0 = 1;
2416 else {
2417 dev0 = ata_devchk(ap, 0);
2418 if (slave_possible)
2419 dev1 = ata_devchk(ap, 1);
2420 }
2421
2422 if (dev0)
2423 devmask |= (1 << 0);
2424 if (dev1)
2425 devmask |= (1 << 1);
2426
2427 /* select device 0 again */
2428 ap->ops->dev_select(ap, 0);
2429
2430 /* issue bus reset */
2431 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2432 if (ata_bus_softreset(ap, devmask))
2433 goto err_out;
1da177e4
LT
2434
2435 /*
2436 * determine by signature whether we have ATA or ATAPI devices
2437 */
b4dc7623 2438 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2439 if ((slave_possible) && (err != 0x81))
b4dc7623 2440 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2441
2442 /* re-enable interrupts */
2443 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2444 ata_irq_on(ap);
2445
2446 /* is double-select really necessary? */
2447 if (ap->device[1].class != ATA_DEV_NONE)
2448 ap->ops->dev_select(ap, 1);
2449 if (ap->device[0].class != ATA_DEV_NONE)
2450 ap->ops->dev_select(ap, 0);
2451
2452 /* if no devices were detected, disable this port */
2453 if ((ap->device[0].class == ATA_DEV_NONE) &&
2454 (ap->device[1].class == ATA_DEV_NONE))
2455 goto err_out;
2456
2457 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2458 /* set up device control for ATA_FLAG_SATA_RESET */
2459 if (ap->flags & ATA_FLAG_MMIO)
2460 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2461 else
2462 outb(ap->ctl, ioaddr->ctl_addr);
2463 }
2464
2465 DPRINTK("EXIT\n");
2466 return;
2467
2468err_out:
f15a1daf 2469 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2470 ap->ops->port_disable(ap);
2471
2472 DPRINTK("EXIT\n");
2473}
2474
d7bb4cc7
TH
2475/**
2476 * sata_phy_debounce - debounce SATA phy status
2477 * @ap: ATA port to debounce SATA phy status for
2478 * @params: timing parameters { interval, duratinon, timeout } in msec
2479 *
2480 * Make sure SStatus of @ap reaches stable state, determined by
2481 * holding the same value where DET is not 1 for @duration polled
2482 * every @interval, before @timeout. Timeout constraints the
2483 * beginning of the stable state. Because, after hot unplugging,
2484 * DET gets stuck at 1 on some controllers, this functions waits
2485 * until timeout then returns 0 if DET is stable at 1.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -errno on failure.
2492 */
2493int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2494{
d7bb4cc7
TH
2495 unsigned long interval_msec = params[0];
2496 unsigned long duration = params[1] * HZ / 1000;
2497 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2498 unsigned long last_jiffies;
2499 u32 last, cur;
2500 int rc;
2501
2502 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2503 return rc;
2504 cur &= 0xf;
2505
2506 last = cur;
2507 last_jiffies = jiffies;
2508
2509 while (1) {
2510 msleep(interval_msec);
2511 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2512 return rc;
2513 cur &= 0xf;
2514
2515 /* DET stable? */
2516 if (cur == last) {
2517 if (cur == 1 && time_before(jiffies, timeout))
2518 continue;
2519 if (time_after(jiffies, last_jiffies + duration))
2520 return 0;
2521 continue;
2522 }
2523
2524 /* unstable, start over */
2525 last = cur;
2526 last_jiffies = jiffies;
2527
2528 /* check timeout */
2529 if (time_after(jiffies, timeout))
2530 return -EBUSY;
2531 }
2532}
2533
2534/**
2535 * sata_phy_resume - resume SATA phy
2536 * @ap: ATA port to resume SATA phy for
2537 * @params: timing parameters { interval, duratinon, timeout } in msec
2538 *
2539 * Resume SATA phy of @ap and debounce it.
2540 *
2541 * LOCKING:
2542 * Kernel thread context (may sleep)
2543 *
2544 * RETURNS:
2545 * 0 on success, -errno on failure.
2546 */
2547int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2548{
2549 u32 scontrol;
81952c54
TH
2550 int rc;
2551
2552 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2553 return rc;
7a7921e8 2554
852ee16a 2555 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2556
2557 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2558 return rc;
7a7921e8 2559
d7bb4cc7
TH
2560 /* Some PHYs react badly if SStatus is pounded immediately
2561 * after resuming. Delay 200ms before debouncing.
2562 */
2563 msleep(200);
7a7921e8 2564
d7bb4cc7 2565 return sata_phy_debounce(ap, params);
7a7921e8
TH
2566}
2567
f5914a46
TH
2568static void ata_wait_spinup(struct ata_port *ap)
2569{
2570 struct ata_eh_context *ehc = &ap->eh_context;
2571 unsigned long end, secs;
2572 int rc;
2573
2574 /* first, debounce phy if SATA */
2575 if (ap->cbl == ATA_CBL_SATA) {
2576 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2577
2578 /* if debounced successfully and offline, no need to wait */
2579 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2580 return;
2581 }
2582
2583 /* okay, let's give the drive time to spin up */
2584 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2585 secs = ((end - jiffies) + HZ - 1) / HZ;
2586
2587 if (time_after(jiffies, end))
2588 return;
2589
2590 if (secs > 5)
2591 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2592 "(%lu secs)\n", secs);
2593
2594 schedule_timeout_uninterruptible(end - jiffies);
2595}
2596
2597/**
2598 * ata_std_prereset - prepare for reset
2599 * @ap: ATA port to be reset
2600 *
2601 * @ap is about to be reset. Initialize it.
2602 *
2603 * LOCKING:
2604 * Kernel thread context (may sleep)
2605 *
2606 * RETURNS:
2607 * 0 on success, -errno otherwise.
2608 */
2609int ata_std_prereset(struct ata_port *ap)
2610{
2611 struct ata_eh_context *ehc = &ap->eh_context;
2612 const unsigned long *timing;
2613 int rc;
2614
2615 /* hotplug? */
2616 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2617 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2618 ehc->i.action |= ATA_EH_HARDRESET;
2619 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2620 ata_wait_spinup(ap);
2621 }
2622
2623 /* if we're about to do hardreset, nothing more to do */
2624 if (ehc->i.action & ATA_EH_HARDRESET)
2625 return 0;
2626
2627 /* if SATA, resume phy */
2628 if (ap->cbl == ATA_CBL_SATA) {
2629 if (ap->flags & ATA_FLAG_LOADING)
2630 timing = sata_deb_timing_boot;
2631 else
2632 timing = sata_deb_timing_eh;
2633
2634 rc = sata_phy_resume(ap, timing);
2635 if (rc && rc != -EOPNOTSUPP) {
2636 /* phy resume failed */
2637 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2638 "link for reset (errno=%d)\n", rc);
2639 return rc;
2640 }
2641 }
2642
2643 /* Wait for !BSY if the controller can wait for the first D2H
2644 * Reg FIS and we don't know that no device is attached.
2645 */
2646 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2647 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2648
2649 return 0;
2650}
2651
c2bd5804
TH
2652/**
2653 * ata_std_softreset - reset host port via ATA SRST
2654 * @ap: port to reset
c2bd5804
TH
2655 * @classes: resulting classes of attached devices
2656 *
52783c5d 2657 * Reset host port using ATA SRST.
c2bd5804
TH
2658 *
2659 * LOCKING:
2660 * Kernel thread context (may sleep)
2661 *
2662 * RETURNS:
2663 * 0 on success, -errno otherwise.
2664 */
2bf2cb26 2665int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2666{
2667 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2668 unsigned int devmask = 0, err_mask;
2669 u8 err;
2670
2671 DPRINTK("ENTER\n");
2672
81952c54 2673 if (ata_port_offline(ap)) {
3a39746a
TH
2674 classes[0] = ATA_DEV_NONE;
2675 goto out;
2676 }
2677
c2bd5804
TH
2678 /* determine if device 0/1 are present */
2679 if (ata_devchk(ap, 0))
2680 devmask |= (1 << 0);
2681 if (slave_possible && ata_devchk(ap, 1))
2682 devmask |= (1 << 1);
2683
c2bd5804
TH
2684 /* select device 0 again */
2685 ap->ops->dev_select(ap, 0);
2686
2687 /* issue bus reset */
2688 DPRINTK("about to softreset, devmask=%x\n", devmask);
2689 err_mask = ata_bus_softreset(ap, devmask);
2690 if (err_mask) {
f15a1daf
TH
2691 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2692 err_mask);
c2bd5804
TH
2693 return -EIO;
2694 }
2695
2696 /* determine by signature whether we have ATA or ATAPI devices */
2697 classes[0] = ata_dev_try_classify(ap, 0, &err);
2698 if (slave_possible && err != 0x81)
2699 classes[1] = ata_dev_try_classify(ap, 1, &err);
2700
3a39746a 2701 out:
c2bd5804
TH
2702 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2703 return 0;
2704}
2705
2706/**
2707 * sata_std_hardreset - reset host port via SATA phy reset
2708 * @ap: port to reset
c2bd5804
TH
2709 * @class: resulting class of attached device
2710 *
2711 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2712 *
2713 * LOCKING:
2714 * Kernel thread context (may sleep)
2715 *
2716 * RETURNS:
2717 * 0 on success, -errno otherwise.
2718 */
2bf2cb26 2719int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2720{
852ee16a 2721 u32 scontrol;
81952c54 2722 int rc;
852ee16a 2723
c2bd5804
TH
2724 DPRINTK("ENTER\n");
2725
3c567b7d 2726 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2727 /* SATA spec says nothing about how to reconfigure
2728 * spd. To be on the safe side, turn off phy during
2729 * reconfiguration. This works for at least ICH7 AHCI
2730 * and Sil3124.
2731 */
81952c54
TH
2732 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2733 return rc;
2734
1c3fae4d 2735 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2736
2737 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2738 return rc;
1c3fae4d 2739
3c567b7d 2740 sata_set_spd(ap);
1c3fae4d
TH
2741 }
2742
2743 /* issue phy wake/reset */
81952c54
TH
2744 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2745 return rc;
2746
852ee16a 2747 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2748
2749 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2750 return rc;
c2bd5804 2751
1c3fae4d 2752 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2753 * 10.4.2 says at least 1 ms.
2754 */
2755 msleep(1);
2756
1c3fae4d 2757 /* bring phy back */
d7bb4cc7 2758 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2759
c2bd5804 2760 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2761 if (ata_port_offline(ap)) {
c2bd5804
TH
2762 *class = ATA_DEV_NONE;
2763 DPRINTK("EXIT, link offline\n");
2764 return 0;
2765 }
2766
2767 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2768 ata_port_printk(ap, KERN_ERR,
2769 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2770 return -EIO;
2771 }
2772
3a39746a
TH
2773 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2774
c2bd5804
TH
2775 *class = ata_dev_try_classify(ap, 0, NULL);
2776
2777 DPRINTK("EXIT, class=%u\n", *class);
2778 return 0;
2779}
2780
2781/**
2782 * ata_std_postreset - standard postreset callback
2783 * @ap: the target ata_port
2784 * @classes: classes of attached devices
2785 *
2786 * This function is invoked after a successful reset. Note that
2787 * the device might have been reset more than once using
2788 * different reset methods before postreset is invoked.
c2bd5804 2789 *
c2bd5804
TH
2790 * LOCKING:
2791 * Kernel thread context (may sleep)
2792 */
2793void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2794{
dc2b3515
TH
2795 u32 serror;
2796
c2bd5804
TH
2797 DPRINTK("ENTER\n");
2798
c2bd5804 2799 /* print link status */
81952c54 2800 sata_print_link_status(ap);
c2bd5804 2801
dc2b3515
TH
2802 /* clear SError */
2803 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2804 sata_scr_write(ap, SCR_ERROR, serror);
2805
3a39746a 2806 /* re-enable interrupts */
e3180499
TH
2807 if (!ap->ops->error_handler) {
2808 /* FIXME: hack. create a hook instead */
2809 if (ap->ioaddr.ctl_addr)
2810 ata_irq_on(ap);
2811 }
c2bd5804
TH
2812
2813 /* is double-select really necessary? */
2814 if (classes[0] != ATA_DEV_NONE)
2815 ap->ops->dev_select(ap, 1);
2816 if (classes[1] != ATA_DEV_NONE)
2817 ap->ops->dev_select(ap, 0);
2818
3a39746a
TH
2819 /* bail out if no device is present */
2820 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2821 DPRINTK("EXIT, no device\n");
2822 return;
2823 }
2824
2825 /* set up device control */
2826 if (ap->ioaddr.ctl_addr) {
2827 if (ap->flags & ATA_FLAG_MMIO)
2828 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2829 else
2830 outb(ap->ctl, ap->ioaddr.ctl_addr);
2831 }
c2bd5804
TH
2832
2833 DPRINTK("EXIT\n");
2834}
2835
623a3128
TH
2836/**
2837 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2838 * @dev: device to compare against
2839 * @new_class: class of the new device
2840 * @new_id: IDENTIFY page of the new device
2841 *
2842 * Compare @new_class and @new_id against @dev and determine
2843 * whether @dev is the device indicated by @new_class and
2844 * @new_id.
2845 *
2846 * LOCKING:
2847 * None.
2848 *
2849 * RETURNS:
2850 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2851 */
3373efd8
TH
2852static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2853 const u16 *new_id)
623a3128
TH
2854{
2855 const u16 *old_id = dev->id;
2856 unsigned char model[2][41], serial[2][21];
2857 u64 new_n_sectors;
2858
2859 if (dev->class != new_class) {
f15a1daf
TH
2860 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2861 dev->class, new_class);
623a3128
TH
2862 return 0;
2863 }
2864
2865 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2866 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2867 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2868 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2869 new_n_sectors = ata_id_n_sectors(new_id);
2870
2871 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2872 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2873 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2874 return 0;
2875 }
2876
2877 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2878 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2879 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2880 return 0;
2881 }
2882
2883 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2884 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2885 "%llu != %llu\n",
2886 (unsigned long long)dev->n_sectors,
2887 (unsigned long long)new_n_sectors);
623a3128
TH
2888 return 0;
2889 }
2890
2891 return 1;
2892}
2893
2894/**
2895 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2896 * @dev: device to revalidate
2897 * @post_reset: is this revalidation after reset?
2898 *
2899 * Re-read IDENTIFY page and make sure @dev is still attached to
2900 * the port.
2901 *
2902 * LOCKING:
2903 * Kernel thread context (may sleep)
2904 *
2905 * RETURNS:
2906 * 0 on success, negative errno otherwise
2907 */
3373efd8 2908int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2909{
5eb45c02 2910 unsigned int class = dev->class;
f15a1daf 2911 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2912 int rc;
2913
5eb45c02
TH
2914 if (!ata_dev_enabled(dev)) {
2915 rc = -ENODEV;
2916 goto fail;
2917 }
623a3128 2918
fe635c7e 2919 /* read ID data */
3373efd8 2920 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2921 if (rc)
2922 goto fail;
2923
2924 /* is the device still there? */
3373efd8 2925 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2926 rc = -ENODEV;
2927 goto fail;
2928 }
2929
fe635c7e 2930 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2931
2932 /* configure device according to the new ID */
3373efd8 2933 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2934 if (rc == 0)
2935 return 0;
623a3128
TH
2936
2937 fail:
f15a1daf 2938 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2939 return rc;
2940}
2941
98ac62de 2942static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2943 "WDC AC11000H", NULL,
2944 "WDC AC22100H", NULL,
2945 "WDC AC32500H", NULL,
2946 "WDC AC33100H", NULL,
2947 "WDC AC31600H", NULL,
2948 "WDC AC32100H", "24.09P07",
2949 "WDC AC23200L", "21.10N21",
2950 "Compaq CRD-8241B", NULL,
2951 "CRD-8400B", NULL,
2952 "CRD-8480B", NULL,
2953 "CRD-8482B", NULL,
2954 "CRD-84", NULL,
2955 "SanDisk SDP3B", NULL,
2956 "SanDisk SDP3B-64", NULL,
2957 "SANYO CD-ROM CRD", NULL,
2958 "HITACHI CDR-8", NULL,
2e9edbf8 2959 "HITACHI CDR-8335", NULL,
f4b15fef 2960 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2961 "Toshiba CD-ROM XM-6202B", NULL,
2962 "TOSHIBA CD-ROM XM-1702BC", NULL,
2963 "CD-532E-A", NULL,
2964 "E-IDE CD-ROM CR-840", NULL,
2965 "CD-ROM Drive/F5A", NULL,
2966 "WPI CDD-820", NULL,
f4b15fef 2967 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2968 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2969 "SanDisk SDP3B-64", NULL,
2970 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2971 "_NEC DV5800A", NULL,
2972 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2973};
2e9edbf8 2974
f4b15fef
AC
2975static int ata_strim(char *s, size_t len)
2976{
2977 len = strnlen(s, len);
2978
2979 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2980 while ((len > 0) && (s[len - 1] == ' ')) {
2981 len--;
2982 s[len] = 0;
2983 }
2984 return len;
2985}
1da177e4 2986
057ace5e 2987static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2988{
f4b15fef
AC
2989 unsigned char model_num[40];
2990 unsigned char model_rev[16];
2991 unsigned int nlen, rlen;
1da177e4
LT
2992 int i;
2993
3a778275
AL
2994 /* We don't support polling DMA.
2995 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2996 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2997 */
2998 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2999 (dev->flags & ATA_DFLAG_CDB_INTR))
3000 return 1;
3001
f4b15fef
AC
3002 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3003 sizeof(model_num));
3004 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3005 sizeof(model_rev));
3006 nlen = ata_strim(model_num, sizeof(model_num));
3007 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3008
f4b15fef
AC
3009 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3010 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3011 if (ata_dma_blacklist[i+1] == NULL)
3012 return 1;
3013 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3014 return 1;
3015 }
3016 }
1da177e4
LT
3017 return 0;
3018}
3019
a6d5a51c
TH
3020/**
3021 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3022 * @dev: Device to compute xfermask for
3023 *
acf356b1
TH
3024 * Compute supported xfermask of @dev and store it in
3025 * dev->*_mask. This function is responsible for applying all
3026 * known limits including host controller limits, device
3027 * blacklist, etc...
a6d5a51c 3028 *
600511e8
TH
3029 * FIXME: The current implementation limits all transfer modes to
3030 * the fastest of the lowested device on the port. This is not
05c8e0ac 3031 * required on most controllers.
600511e8 3032 *
a6d5a51c
TH
3033 * LOCKING:
3034 * None.
a6d5a51c 3035 */
3373efd8 3036static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3037{
3373efd8 3038 struct ata_port *ap = dev->ap;
5444a6f4 3039 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3040 unsigned long xfer_mask;
3041 int i;
1da177e4 3042
565083e1
TH
3043 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3044 ap->mwdma_mask, ap->udma_mask);
3045
3046 /* Apply cable rule here. Don't apply it early because when
3047 * we handle hot plug the cable type can itself change.
3048 */
3049 if (ap->cbl == ATA_CBL_PATA40)
3050 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3051
5444a6f4 3052 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3053 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3054 struct ata_device *d = &ap->device[i];
565083e1
TH
3055
3056 if (ata_dev_absent(d))
3057 continue;
3058
3059 if (ata_dev_disabled(d)) {
3060 /* to avoid violating device selection timing */
3061 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3062 UINT_MAX, UINT_MAX);
a6d5a51c 3063 continue;
565083e1
TH
3064 }
3065
3066 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3067 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3068 xfer_mask &= ata_id_xfermask(d->id);
3069 if (ata_dma_blacklisted(d))
3070 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3071 }
3072
a6d5a51c 3073 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3074 ata_dev_printk(dev, KERN_WARNING,
3075 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3076
5444a6f4
AC
3077 if (hs->flags & ATA_HOST_SIMPLEX) {
3078 if (hs->simplex_claimed)
3079 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3080 }
565083e1 3081
5444a6f4
AC
3082 if (ap->ops->mode_filter)
3083 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3084
565083e1
TH
3085 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3086 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3087}
3088
1da177e4
LT
3089/**
3090 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3091 * @dev: Device to which command will be sent
3092 *
780a87f7
JG
3093 * Issue SET FEATURES - XFER MODE command to device @dev
3094 * on port @ap.
3095 *
1da177e4 3096 * LOCKING:
0cba632b 3097 * PCI/etc. bus probe sem.
83206a29
TH
3098 *
3099 * RETURNS:
3100 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3101 */
3102
3373efd8 3103static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3104{
a0123703 3105 struct ata_taskfile tf;
83206a29 3106 unsigned int err_mask;
1da177e4
LT
3107
3108 /* set up set-features taskfile */
3109 DPRINTK("set features - xfer mode\n");
3110
3373efd8 3111 ata_tf_init(dev, &tf);
a0123703
TH
3112 tf.command = ATA_CMD_SET_FEATURES;
3113 tf.feature = SETFEATURES_XFER;
3114 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3115 tf.protocol = ATA_PROT_NODATA;
3116 tf.nsect = dev->xfer_mode;
1da177e4 3117
3373efd8 3118 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3119
83206a29
TH
3120 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3121 return err_mask;
1da177e4
LT
3122}
3123
8bf62ece
AL
3124/**
3125 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3126 * @dev: Device to which command will be sent
e2a7f77a
RD
3127 * @heads: Number of heads (taskfile parameter)
3128 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3129 *
3130 * LOCKING:
6aff8f1f
TH
3131 * Kernel thread context (may sleep)
3132 *
3133 * RETURNS:
3134 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3135 */
3373efd8
TH
3136static unsigned int ata_dev_init_params(struct ata_device *dev,
3137 u16 heads, u16 sectors)
8bf62ece 3138{
a0123703 3139 struct ata_taskfile tf;
6aff8f1f 3140 unsigned int err_mask;
8bf62ece
AL
3141
3142 /* Number of sectors per track 1-255. Number of heads 1-16 */
3143 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3144 return AC_ERR_INVALID;
8bf62ece
AL
3145
3146 /* set up init dev params taskfile */
3147 DPRINTK("init dev params \n");
3148
3373efd8 3149 ata_tf_init(dev, &tf);
a0123703
TH
3150 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3151 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3152 tf.protocol = ATA_PROT_NODATA;
3153 tf.nsect = sectors;
3154 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3155
3373efd8 3156 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3157
6aff8f1f
TH
3158 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3159 return err_mask;
8bf62ece
AL
3160}
3161
1da177e4 3162/**
0cba632b
JG
3163 * ata_sg_clean - Unmap DMA memory associated with command
3164 * @qc: Command containing DMA memory to be released
3165 *
3166 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3167 *
3168 * LOCKING:
0cba632b 3169 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3170 */
3171
3172static void ata_sg_clean(struct ata_queued_cmd *qc)
3173{
3174 struct ata_port *ap = qc->ap;
cedc9a47 3175 struct scatterlist *sg = qc->__sg;
1da177e4 3176 int dir = qc->dma_dir;
cedc9a47 3177 void *pad_buf = NULL;
1da177e4 3178
a4631474
TH
3179 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3180 WARN_ON(sg == NULL);
1da177e4
LT
3181
3182 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3183 WARN_ON(qc->n_elem > 1);
1da177e4 3184
2c13b7ce 3185 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3186
cedc9a47
JG
3187 /* if we padded the buffer out to 32-bit bound, and data
3188 * xfer direction is from-device, we must copy from the
3189 * pad buffer back into the supplied buffer
3190 */
3191 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3192 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3193
3194 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3195 if (qc->n_elem)
2f1f610b 3196 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3197 /* restore last sg */
3198 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3199 if (pad_buf) {
3200 struct scatterlist *psg = &qc->pad_sgent;
3201 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3202 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3203 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3204 }
3205 } else {
2e242fa9 3206 if (qc->n_elem)
2f1f610b 3207 dma_unmap_single(ap->dev,
e1410f2d
JG
3208 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3209 dir);
cedc9a47
JG
3210 /* restore sg */
3211 sg->length += qc->pad_len;
3212 if (pad_buf)
3213 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3214 pad_buf, qc->pad_len);
3215 }
1da177e4
LT
3216
3217 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3218 qc->__sg = NULL;
1da177e4
LT
3219}
3220
3221/**
3222 * ata_fill_sg - Fill PCI IDE PRD table
3223 * @qc: Metadata associated with taskfile to be transferred
3224 *
780a87f7
JG
3225 * Fill PCI IDE PRD (scatter-gather) table with segments
3226 * associated with the current disk command.
3227 *
1da177e4 3228 * LOCKING:
780a87f7 3229 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3230 *
3231 */
3232static void ata_fill_sg(struct ata_queued_cmd *qc)
3233{
1da177e4 3234 struct ata_port *ap = qc->ap;
cedc9a47
JG
3235 struct scatterlist *sg;
3236 unsigned int idx;
1da177e4 3237
a4631474 3238 WARN_ON(qc->__sg == NULL);
f131883e 3239 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3240
3241 idx = 0;
cedc9a47 3242 ata_for_each_sg(sg, qc) {
1da177e4
LT
3243 u32 addr, offset;
3244 u32 sg_len, len;
3245
3246 /* determine if physical DMA addr spans 64K boundary.
3247 * Note h/w doesn't support 64-bit, so we unconditionally
3248 * truncate dma_addr_t to u32.
3249 */
3250 addr = (u32) sg_dma_address(sg);
3251 sg_len = sg_dma_len(sg);
3252
3253 while (sg_len) {
3254 offset = addr & 0xffff;
3255 len = sg_len;
3256 if ((offset + sg_len) > 0x10000)
3257 len = 0x10000 - offset;
3258
3259 ap->prd[idx].addr = cpu_to_le32(addr);
3260 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3261 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3262
3263 idx++;
3264 sg_len -= len;
3265 addr += len;
3266 }
3267 }
3268
3269 if (idx)
3270 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3271}
3272/**
3273 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3274 * @qc: Metadata associated with taskfile to check
3275 *
780a87f7
JG
3276 * Allow low-level driver to filter ATA PACKET commands, returning
3277 * a status indicating whether or not it is OK to use DMA for the
3278 * supplied PACKET command.
3279 *
1da177e4 3280 * LOCKING:
0cba632b
JG
3281 * spin_lock_irqsave(host_set lock)
3282 *
1da177e4
LT
3283 * RETURNS: 0 when ATAPI DMA can be used
3284 * nonzero otherwise
3285 */
3286int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3287{
3288 struct ata_port *ap = qc->ap;
3289 int rc = 0; /* Assume ATAPI DMA is OK by default */
3290
3291 if (ap->ops->check_atapi_dma)
3292 rc = ap->ops->check_atapi_dma(qc);
3293
3294 return rc;
3295}
3296/**
3297 * ata_qc_prep - Prepare taskfile for submission
3298 * @qc: Metadata associated with taskfile to be prepared
3299 *
780a87f7
JG
3300 * Prepare ATA taskfile for submission.
3301 *
1da177e4
LT
3302 * LOCKING:
3303 * spin_lock_irqsave(host_set lock)
3304 */
3305void ata_qc_prep(struct ata_queued_cmd *qc)
3306{
3307 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3308 return;
3309
3310 ata_fill_sg(qc);
3311}
3312
e46834cd
BK
3313void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3314
0cba632b
JG
3315/**
3316 * ata_sg_init_one - Associate command with memory buffer
3317 * @qc: Command to be associated
3318 * @buf: Memory buffer
3319 * @buflen: Length of memory buffer, in bytes.
3320 *
3321 * Initialize the data-related elements of queued_cmd @qc
3322 * to point to a single memory buffer, @buf of byte length @buflen.
3323 *
3324 * LOCKING:
3325 * spin_lock_irqsave(host_set lock)
3326 */
3327
1da177e4
LT
3328void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3329{
3330 struct scatterlist *sg;
3331
3332 qc->flags |= ATA_QCFLAG_SINGLE;
3333
3334 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3335 qc->__sg = &qc->sgent;
1da177e4 3336 qc->n_elem = 1;
cedc9a47 3337 qc->orig_n_elem = 1;
1da177e4 3338 qc->buf_virt = buf;
233277ca 3339 qc->nbytes = buflen;
1da177e4 3340
cedc9a47 3341 sg = qc->__sg;
f0612bbc 3342 sg_init_one(sg, buf, buflen);
1da177e4
LT
3343}
3344
0cba632b
JG
3345/**
3346 * ata_sg_init - Associate command with scatter-gather table.
3347 * @qc: Command to be associated
3348 * @sg: Scatter-gather table.
3349 * @n_elem: Number of elements in s/g table.
3350 *
3351 * Initialize the data-related elements of queued_cmd @qc
3352 * to point to a scatter-gather table @sg, containing @n_elem
3353 * elements.
3354 *
3355 * LOCKING:
3356 * spin_lock_irqsave(host_set lock)
3357 */
3358
1da177e4
LT
3359void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3360 unsigned int n_elem)
3361{
3362 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3363 qc->__sg = sg;
1da177e4 3364 qc->n_elem = n_elem;
cedc9a47 3365 qc->orig_n_elem = n_elem;
1da177e4
LT
3366}
3367
3368/**
0cba632b
JG
3369 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3370 * @qc: Command with memory buffer to be mapped.
3371 *
3372 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3373 *
3374 * LOCKING:
3375 * spin_lock_irqsave(host_set lock)
3376 *
3377 * RETURNS:
0cba632b 3378 * Zero on success, negative on error.
1da177e4
LT
3379 */
3380
3381static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3382{
3383 struct ata_port *ap = qc->ap;
3384 int dir = qc->dma_dir;
cedc9a47 3385 struct scatterlist *sg = qc->__sg;
1da177e4 3386 dma_addr_t dma_address;
2e242fa9 3387 int trim_sg = 0;
1da177e4 3388
cedc9a47
JG
3389 /* we must lengthen transfers to end on a 32-bit boundary */
3390 qc->pad_len = sg->length & 3;
3391 if (qc->pad_len) {
3392 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3393 struct scatterlist *psg = &qc->pad_sgent;
3394
a4631474 3395 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3396
3397 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3398
3399 if (qc->tf.flags & ATA_TFLAG_WRITE)
3400 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3401 qc->pad_len);
3402
3403 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3404 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3405 /* trim sg */
3406 sg->length -= qc->pad_len;
2e242fa9
TH
3407 if (sg->length == 0)
3408 trim_sg = 1;
cedc9a47
JG
3409
3410 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3411 sg->length, qc->pad_len);
3412 }
3413
2e242fa9
TH
3414 if (trim_sg) {
3415 qc->n_elem--;
e1410f2d
JG
3416 goto skip_map;
3417 }
3418
2f1f610b 3419 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3420 sg->length, dir);
537a95d9
TH
3421 if (dma_mapping_error(dma_address)) {
3422 /* restore sg */
3423 sg->length += qc->pad_len;
1da177e4 3424 return -1;
537a95d9 3425 }
1da177e4
LT
3426
3427 sg_dma_address(sg) = dma_address;
32529e01 3428 sg_dma_len(sg) = sg->length;
1da177e4 3429
2e242fa9 3430skip_map:
1da177e4
LT
3431 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3432 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3433
3434 return 0;
3435}
3436
3437/**
0cba632b
JG
3438 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3439 * @qc: Command with scatter-gather table to be mapped.
3440 *
3441 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3442 *
3443 * LOCKING:
3444 * spin_lock_irqsave(host_set lock)
3445 *
3446 * RETURNS:
0cba632b 3447 * Zero on success, negative on error.
1da177e4
LT
3448 *
3449 */
3450
3451static int ata_sg_setup(struct ata_queued_cmd *qc)
3452{
3453 struct ata_port *ap = qc->ap;
cedc9a47
JG
3454 struct scatterlist *sg = qc->__sg;
3455 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3456 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3457
3458 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3459 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3460
cedc9a47
JG
3461 /* we must lengthen transfers to end on a 32-bit boundary */
3462 qc->pad_len = lsg->length & 3;
3463 if (qc->pad_len) {
3464 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3465 struct scatterlist *psg = &qc->pad_sgent;
3466 unsigned int offset;
3467
a4631474 3468 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3469
3470 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3471
3472 /*
3473 * psg->page/offset are used to copy to-be-written
3474 * data in this function or read data in ata_sg_clean.
3475 */
3476 offset = lsg->offset + lsg->length - qc->pad_len;
3477 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3478 psg->offset = offset_in_page(offset);
3479
3480 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3481 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3482 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3483 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3484 }
3485
3486 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3487 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3488 /* trim last sg */
3489 lsg->length -= qc->pad_len;
e1410f2d
JG
3490 if (lsg->length == 0)
3491 trim_sg = 1;
cedc9a47
JG
3492
3493 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3494 qc->n_elem - 1, lsg->length, qc->pad_len);
3495 }
3496
e1410f2d
JG
3497 pre_n_elem = qc->n_elem;
3498 if (trim_sg && pre_n_elem)
3499 pre_n_elem--;
3500
3501 if (!pre_n_elem) {
3502 n_elem = 0;
3503 goto skip_map;
3504 }
3505
1da177e4 3506 dir = qc->dma_dir;
2f1f610b 3507 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3508 if (n_elem < 1) {
3509 /* restore last sg */
3510 lsg->length += qc->pad_len;
1da177e4 3511 return -1;
537a95d9 3512 }
1da177e4
LT
3513
3514 DPRINTK("%d sg elements mapped\n", n_elem);
3515
e1410f2d 3516skip_map:
1da177e4
LT
3517 qc->n_elem = n_elem;
3518
3519 return 0;
3520}
3521
0baab86b 3522/**
c893a3ae 3523 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3524 * @buf: Buffer to swap
3525 * @buf_words: Number of 16-bit words in buffer.
3526 *
3527 * Swap halves of 16-bit words if needed to convert from
3528 * little-endian byte order to native cpu byte order, or
3529 * vice-versa.
3530 *
3531 * LOCKING:
6f0ef4fa 3532 * Inherited from caller.
0baab86b 3533 */
1da177e4
LT
3534void swap_buf_le16(u16 *buf, unsigned int buf_words)
3535{
3536#ifdef __BIG_ENDIAN
3537 unsigned int i;
3538
3539 for (i = 0; i < buf_words; i++)
3540 buf[i] = le16_to_cpu(buf[i]);
3541#endif /* __BIG_ENDIAN */
3542}
3543
6ae4cfb5
AL
3544/**
3545 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3546 * @adev: device for this I/O
6ae4cfb5
AL
3547 * @buf: data buffer
3548 * @buflen: buffer length
344babaa 3549 * @write_data: read/write
6ae4cfb5
AL
3550 *
3551 * Transfer data from/to the device data register by MMIO.
3552 *
3553 * LOCKING:
3554 * Inherited from caller.
6ae4cfb5
AL
3555 */
3556
a6b2c5d4
AC
3557void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3558 unsigned int buflen, int write_data)
1da177e4 3559{
a6b2c5d4 3560 struct ata_port *ap = adev->ap;
1da177e4
LT
3561 unsigned int i;
3562 unsigned int words = buflen >> 1;
3563 u16 *buf16 = (u16 *) buf;
3564 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3565
6ae4cfb5 3566 /* Transfer multiple of 2 bytes */
1da177e4
LT
3567 if (write_data) {
3568 for (i = 0; i < words; i++)
3569 writew(le16_to_cpu(buf16[i]), mmio);
3570 } else {
3571 for (i = 0; i < words; i++)
3572 buf16[i] = cpu_to_le16(readw(mmio));
3573 }
6ae4cfb5
AL
3574
3575 /* Transfer trailing 1 byte, if any. */
3576 if (unlikely(buflen & 0x01)) {
3577 u16 align_buf[1] = { 0 };
3578 unsigned char *trailing_buf = buf + buflen - 1;
3579
3580 if (write_data) {
3581 memcpy(align_buf, trailing_buf, 1);
3582 writew(le16_to_cpu(align_buf[0]), mmio);
3583 } else {
3584 align_buf[0] = cpu_to_le16(readw(mmio));
3585 memcpy(trailing_buf, align_buf, 1);
3586 }
3587 }
1da177e4
LT
3588}
3589
6ae4cfb5
AL
3590/**
3591 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3592 * @adev: device to target
6ae4cfb5
AL
3593 * @buf: data buffer
3594 * @buflen: buffer length
344babaa 3595 * @write_data: read/write
6ae4cfb5
AL
3596 *
3597 * Transfer data from/to the device data register by PIO.
3598 *
3599 * LOCKING:
3600 * Inherited from caller.
6ae4cfb5
AL
3601 */
3602
a6b2c5d4
AC
3603void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3604 unsigned int buflen, int write_data)
1da177e4 3605{
a6b2c5d4 3606 struct ata_port *ap = adev->ap;
6ae4cfb5 3607 unsigned int words = buflen >> 1;
1da177e4 3608
6ae4cfb5 3609 /* Transfer multiple of 2 bytes */
1da177e4 3610 if (write_data)
6ae4cfb5 3611 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3612 else
6ae4cfb5
AL
3613 insw(ap->ioaddr.data_addr, buf, words);
3614
3615 /* Transfer trailing 1 byte, if any. */
3616 if (unlikely(buflen & 0x01)) {
3617 u16 align_buf[1] = { 0 };
3618 unsigned char *trailing_buf = buf + buflen - 1;
3619
3620 if (write_data) {
3621 memcpy(align_buf, trailing_buf, 1);
3622 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3623 } else {
3624 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3625 memcpy(trailing_buf, align_buf, 1);
3626 }
3627 }
1da177e4
LT
3628}
3629
75e99585
AC
3630/**
3631 * ata_pio_data_xfer_noirq - Transfer data by PIO
3632 * @adev: device to target
3633 * @buf: data buffer
3634 * @buflen: buffer length
3635 * @write_data: read/write
3636 *
3637 * Transfer data from/to the device data register by PIO. Do the
3638 * transfer with interrupts disabled.
3639 *
3640 * LOCKING:
3641 * Inherited from caller.
3642 */
3643
3644void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3645 unsigned int buflen, int write_data)
3646{
3647 unsigned long flags;
3648 local_irq_save(flags);
3649 ata_pio_data_xfer(adev, buf, buflen, write_data);
3650 local_irq_restore(flags);
3651}
3652
3653
6ae4cfb5
AL
3654/**
3655 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3656 * @qc: Command on going
3657 *
3658 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3659 *
3660 * LOCKING:
3661 * Inherited from caller.
3662 */
3663
1da177e4
LT
3664static void ata_pio_sector(struct ata_queued_cmd *qc)
3665{
3666 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3667 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3668 struct ata_port *ap = qc->ap;
3669 struct page *page;
3670 unsigned int offset;
3671 unsigned char *buf;
3672
3673 if (qc->cursect == (qc->nsect - 1))
14be71f4 3674 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3675
3676 page = sg[qc->cursg].page;
3677 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3678
3679 /* get the current page and offset */
3680 page = nth_page(page, (offset >> PAGE_SHIFT));
3681 offset %= PAGE_SIZE;
3682
1da177e4
LT
3683 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3684
91b8b313
AL
3685 if (PageHighMem(page)) {
3686 unsigned long flags;
3687
a6b2c5d4 3688 /* FIXME: use a bounce buffer */
91b8b313
AL
3689 local_irq_save(flags);
3690 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3691
91b8b313 3692 /* do the actual data transfer */
a6b2c5d4 3693 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3694
91b8b313
AL
3695 kunmap_atomic(buf, KM_IRQ0);
3696 local_irq_restore(flags);
3697 } else {
3698 buf = page_address(page);
a6b2c5d4 3699 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3700 }
1da177e4
LT
3701
3702 qc->cursect++;
3703 qc->cursg_ofs++;
3704
32529e01 3705 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3706 qc->cursg++;
3707 qc->cursg_ofs = 0;
3708 }
1da177e4 3709}
1da177e4 3710
07f6f7d0
AL
3711/**
3712 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3713 * @qc: Command on going
3714 *
c81e29b4 3715 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3716 * ATA device for the DRQ request.
3717 *
3718 * LOCKING:
3719 * Inherited from caller.
3720 */
1da177e4 3721
07f6f7d0
AL
3722static void ata_pio_sectors(struct ata_queued_cmd *qc)
3723{
3724 if (is_multi_taskfile(&qc->tf)) {
3725 /* READ/WRITE MULTIPLE */
3726 unsigned int nsect;
3727
587005de 3728 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3729
07f6f7d0
AL
3730 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3731 while (nsect--)
3732 ata_pio_sector(qc);
3733 } else
3734 ata_pio_sector(qc);
3735}
3736
c71c1857
AL
3737/**
3738 * atapi_send_cdb - Write CDB bytes to hardware
3739 * @ap: Port to which ATAPI device is attached.
3740 * @qc: Taskfile currently active
3741 *
3742 * When device has indicated its readiness to accept
3743 * a CDB, this function is called. Send the CDB.
3744 *
3745 * LOCKING:
3746 * caller.
3747 */
3748
3749static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3750{
3751 /* send SCSI cdb */
3752 DPRINTK("send cdb\n");
db024d53 3753 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3754
a6b2c5d4 3755 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3756 ata_altstatus(ap); /* flush */
3757
3758 switch (qc->tf.protocol) {
3759 case ATA_PROT_ATAPI:
3760 ap->hsm_task_state = HSM_ST;
3761 break;
3762 case ATA_PROT_ATAPI_NODATA:
3763 ap->hsm_task_state = HSM_ST_LAST;
3764 break;
3765 case ATA_PROT_ATAPI_DMA:
3766 ap->hsm_task_state = HSM_ST_LAST;
3767 /* initiate bmdma */
3768 ap->ops->bmdma_start(qc);
3769 break;
3770 }
1da177e4
LT
3771}
3772
6ae4cfb5
AL
3773/**
3774 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3775 * @qc: Command on going
3776 * @bytes: number of bytes
3777 *
3778 * Transfer Transfer data from/to the ATAPI device.
3779 *
3780 * LOCKING:
3781 * Inherited from caller.
3782 *
3783 */
3784
1da177e4
LT
3785static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3786{
3787 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3788 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3789 struct ata_port *ap = qc->ap;
3790 struct page *page;
3791 unsigned char *buf;
3792 unsigned int offset, count;
3793
563a6e1f 3794 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3795 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3796
3797next_sg:
563a6e1f 3798 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3799 /*
563a6e1f
AL
3800 * The end of qc->sg is reached and the device expects
3801 * more data to transfer. In order not to overrun qc->sg
3802 * and fulfill length specified in the byte count register,
3803 * - for read case, discard trailing data from the device
3804 * - for write case, padding zero data to the device
3805 */
3806 u16 pad_buf[1] = { 0 };
3807 unsigned int words = bytes >> 1;
3808 unsigned int i;
3809
3810 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3811 ata_dev_printk(qc->dev, KERN_WARNING,
3812 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3813
3814 for (i = 0; i < words; i++)
a6b2c5d4 3815 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3816
14be71f4 3817 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3818 return;
3819 }
3820
cedc9a47 3821 sg = &qc->__sg[qc->cursg];
1da177e4 3822
1da177e4
LT
3823 page = sg->page;
3824 offset = sg->offset + qc->cursg_ofs;
3825
3826 /* get the current page and offset */
3827 page = nth_page(page, (offset >> PAGE_SHIFT));
3828 offset %= PAGE_SIZE;
3829
6952df03 3830 /* don't overrun current sg */
32529e01 3831 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3832
3833 /* don't cross page boundaries */
3834 count = min(count, (unsigned int)PAGE_SIZE - offset);
3835
7282aa4b
AL
3836 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3837
91b8b313
AL
3838 if (PageHighMem(page)) {
3839 unsigned long flags;
3840
a6b2c5d4 3841 /* FIXME: use bounce buffer */
91b8b313
AL
3842 local_irq_save(flags);
3843 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3844
91b8b313 3845 /* do the actual data transfer */
a6b2c5d4 3846 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3847
91b8b313
AL
3848 kunmap_atomic(buf, KM_IRQ0);
3849 local_irq_restore(flags);
3850 } else {
3851 buf = page_address(page);
a6b2c5d4 3852 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3853 }
1da177e4
LT
3854
3855 bytes -= count;
3856 qc->curbytes += count;
3857 qc->cursg_ofs += count;
3858
32529e01 3859 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3860 qc->cursg++;
3861 qc->cursg_ofs = 0;
3862 }
3863
563a6e1f 3864 if (bytes)
1da177e4 3865 goto next_sg;
1da177e4
LT
3866}
3867
6ae4cfb5
AL
3868/**
3869 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3870 * @qc: Command on going
3871 *
3872 * Transfer Transfer data from/to the ATAPI device.
3873 *
3874 * LOCKING:
3875 * Inherited from caller.
6ae4cfb5
AL
3876 */
3877
1da177e4
LT
3878static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3879{
3880 struct ata_port *ap = qc->ap;
3881 struct ata_device *dev = qc->dev;
3882 unsigned int ireason, bc_lo, bc_hi, bytes;
3883 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3884
eec4c3f3
AL
3885 /* Abuse qc->result_tf for temp storage of intermediate TF
3886 * here to save some kernel stack usage.
3887 * For normal completion, qc->result_tf is not relevant. For
3888 * error, qc->result_tf is later overwritten by ata_qc_complete().
3889 * So, the correctness of qc->result_tf is not affected.
3890 */
3891 ap->ops->tf_read(ap, &qc->result_tf);
3892 ireason = qc->result_tf.nsect;
3893 bc_lo = qc->result_tf.lbam;
3894 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3895 bytes = (bc_hi << 8) | bc_lo;
3896
3897 /* shall be cleared to zero, indicating xfer of data */
3898 if (ireason & (1 << 0))
3899 goto err_out;
3900
3901 /* make sure transfer direction matches expected */
3902 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3903 if (do_write != i_write)
3904 goto err_out;
3905
312f7da2
AL
3906 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3907
1da177e4
LT
3908 __atapi_pio_bytes(qc, bytes);
3909
3910 return;
3911
3912err_out:
f15a1daf 3913 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3914 qc->err_mask |= AC_ERR_HSM;
14be71f4 3915 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3916}
3917
3918/**
c234fb00
AL
3919 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3920 * @ap: the target ata_port
3921 * @qc: qc on going
1da177e4 3922 *
c234fb00
AL
3923 * RETURNS:
3924 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3925 */
c234fb00
AL
3926
3927static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3928{
c234fb00
AL
3929 if (qc->tf.flags & ATA_TFLAG_POLLING)
3930 return 1;
1da177e4 3931
c234fb00
AL
3932 if (ap->hsm_task_state == HSM_ST_FIRST) {
3933 if (qc->tf.protocol == ATA_PROT_PIO &&
3934 (qc->tf.flags & ATA_TFLAG_WRITE))
3935 return 1;
1da177e4 3936
c234fb00
AL
3937 if (is_atapi_taskfile(&qc->tf) &&
3938 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3939 return 1;
fe79e683
AL
3940 }
3941
c234fb00
AL
3942 return 0;
3943}
1da177e4 3944
c17ea20d
TH
3945/**
3946 * ata_hsm_qc_complete - finish a qc running on standard HSM
3947 * @qc: Command to complete
3948 * @in_wq: 1 if called from workqueue, 0 otherwise
3949 *
3950 * Finish @qc which is running on standard HSM.
3951 *
3952 * LOCKING:
3953 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3954 * Otherwise, none on entry and grabs host lock.
3955 */
3956static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3957{
3958 struct ata_port *ap = qc->ap;
3959 unsigned long flags;
3960
3961 if (ap->ops->error_handler) {
3962 if (in_wq) {
ba6a1308 3963 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3964
3965 /* EH might have kicked in while host_set lock
3966 * is released.
3967 */
3968 qc = ata_qc_from_tag(ap, qc->tag);
3969 if (qc) {
3970 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3971 ata_irq_on(ap);
3972 ata_qc_complete(qc);
3973 } else
3974 ata_port_freeze(ap);
3975 }
3976
ba6a1308 3977 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3978 } else {
3979 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3980 ata_qc_complete(qc);
3981 else
3982 ata_port_freeze(ap);
3983 }
3984 } else {
3985 if (in_wq) {
ba6a1308 3986 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3987 ata_irq_on(ap);
3988 ata_qc_complete(qc);
ba6a1308 3989 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3990 } else
3991 ata_qc_complete(qc);
3992 }
1da177e4 3993
c81e29b4 3994 ata_altstatus(ap); /* flush */
c17ea20d
TH
3995}
3996
bb5cb290
AL
3997/**
3998 * ata_hsm_move - move the HSM to the next state.
3999 * @ap: the target ata_port
4000 * @qc: qc on going
4001 * @status: current device status
4002 * @in_wq: 1 if called from workqueue, 0 otherwise
4003 *
4004 * RETURNS:
4005 * 1 when poll next status needed, 0 otherwise.
4006 */
9a1004d0
TH
4007int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4008 u8 status, int in_wq)
e2cec771 4009{
bb5cb290
AL
4010 unsigned long flags = 0;
4011 int poll_next;
4012
6912ccd5
AL
4013 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4014
bb5cb290
AL
4015 /* Make sure ata_qc_issue_prot() does not throw things
4016 * like DMA polling into the workqueue. Notice that
4017 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4018 */
c234fb00 4019 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4020
e2cec771 4021fsm_start:
999bb6f4
AL
4022 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4023 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4024
e2cec771
AL
4025 switch (ap->hsm_task_state) {
4026 case HSM_ST_FIRST:
bb5cb290
AL
4027 /* Send first data block or PACKET CDB */
4028
4029 /* If polling, we will stay in the work queue after
4030 * sending the data. Otherwise, interrupt handler
4031 * takes over after sending the data.
4032 */
4033 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4034
e2cec771 4035 /* check device status */
3655d1d3
AL
4036 if (unlikely((status & ATA_DRQ) == 0)) {
4037 /* handle BSY=0, DRQ=0 as error */
4038 if (likely(status & (ATA_ERR | ATA_DF)))
4039 /* device stops HSM for abort/error */
4040 qc->err_mask |= AC_ERR_DEV;
4041 else
4042 /* HSM violation. Let EH handle this */
4043 qc->err_mask |= AC_ERR_HSM;
4044
14be71f4 4045 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4046 goto fsm_start;
1da177e4
LT
4047 }
4048
71601958
AL
4049 /* Device should not ask for data transfer (DRQ=1)
4050 * when it finds something wrong.
eee6c32f
AL
4051 * We ignore DRQ here and stop the HSM by
4052 * changing hsm_task_state to HSM_ST_ERR and
4053 * let the EH abort the command or reset the device.
71601958
AL
4054 */
4055 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4056 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4057 ap->id, status);
3655d1d3 4058 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4059 ap->hsm_task_state = HSM_ST_ERR;
4060 goto fsm_start;
71601958 4061 }
1da177e4 4062
bb5cb290
AL
4063 /* Send the CDB (atapi) or the first data block (ata pio out).
4064 * During the state transition, interrupt handler shouldn't
4065 * be invoked before the data transfer is complete and
4066 * hsm_task_state is changed. Hence, the following locking.
4067 */
4068 if (in_wq)
ba6a1308 4069 spin_lock_irqsave(ap->lock, flags);
1da177e4 4070
bb5cb290
AL
4071 if (qc->tf.protocol == ATA_PROT_PIO) {
4072 /* PIO data out protocol.
4073 * send first data block.
4074 */
0565c26d 4075
bb5cb290
AL
4076 /* ata_pio_sectors() might change the state
4077 * to HSM_ST_LAST. so, the state is changed here
4078 * before ata_pio_sectors().
4079 */
4080 ap->hsm_task_state = HSM_ST;
4081 ata_pio_sectors(qc);
4082 ata_altstatus(ap); /* flush */
4083 } else
4084 /* send CDB */
4085 atapi_send_cdb(ap, qc);
4086
4087 if (in_wq)
ba6a1308 4088 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4089
4090 /* if polling, ata_pio_task() handles the rest.
4091 * otherwise, interrupt handler takes over from here.
4092 */
e2cec771 4093 break;
1c848984 4094
e2cec771
AL
4095 case HSM_ST:
4096 /* complete command or read/write the data register */
4097 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4098 /* ATAPI PIO protocol */
4099 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4100 /* No more data to transfer or device error.
4101 * Device error will be tagged in HSM_ST_LAST.
4102 */
e2cec771
AL
4103 ap->hsm_task_state = HSM_ST_LAST;
4104 goto fsm_start;
4105 }
1da177e4 4106
71601958
AL
4107 /* Device should not ask for data transfer (DRQ=1)
4108 * when it finds something wrong.
eee6c32f
AL
4109 * We ignore DRQ here and stop the HSM by
4110 * changing hsm_task_state to HSM_ST_ERR and
4111 * let the EH abort the command or reset the device.
71601958
AL
4112 */
4113 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4114 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4115 ap->id, status);
3655d1d3 4116 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4117 ap->hsm_task_state = HSM_ST_ERR;
4118 goto fsm_start;
71601958 4119 }
1da177e4 4120
e2cec771 4121 atapi_pio_bytes(qc);
7fb6ec28 4122
e2cec771
AL
4123 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4124 /* bad ireason reported by device */
4125 goto fsm_start;
1da177e4 4126
e2cec771
AL
4127 } else {
4128 /* ATA PIO protocol */
4129 if (unlikely((status & ATA_DRQ) == 0)) {
4130 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4131 if (likely(status & (ATA_ERR | ATA_DF)))
4132 /* device stops HSM for abort/error */
4133 qc->err_mask |= AC_ERR_DEV;
4134 else
4135 /* HSM violation. Let EH handle this */
4136 qc->err_mask |= AC_ERR_HSM;
4137
e2cec771
AL
4138 ap->hsm_task_state = HSM_ST_ERR;
4139 goto fsm_start;
4140 }
1da177e4 4141
eee6c32f
AL
4142 /* For PIO reads, some devices may ask for
4143 * data transfer (DRQ=1) alone with ERR=1.
4144 * We respect DRQ here and transfer one
4145 * block of junk data before changing the
4146 * hsm_task_state to HSM_ST_ERR.
4147 *
4148 * For PIO writes, ERR=1 DRQ=1 doesn't make
4149 * sense since the data block has been
4150 * transferred to the device.
71601958
AL
4151 */
4152 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4153 /* data might be corrputed */
4154 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4155
4156 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4157 ata_pio_sectors(qc);
4158 ata_altstatus(ap);
4159 status = ata_wait_idle(ap);
4160 }
4161
3655d1d3
AL
4162 if (status & (ATA_BUSY | ATA_DRQ))
4163 qc->err_mask |= AC_ERR_HSM;
4164
eee6c32f
AL
4165 /* ata_pio_sectors() might change the
4166 * state to HSM_ST_LAST. so, the state
4167 * is changed after ata_pio_sectors().
4168 */
4169 ap->hsm_task_state = HSM_ST_ERR;
4170 goto fsm_start;
71601958
AL
4171 }
4172
e2cec771
AL
4173 ata_pio_sectors(qc);
4174
4175 if (ap->hsm_task_state == HSM_ST_LAST &&
4176 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4177 /* all data read */
4178 ata_altstatus(ap);
52a32205 4179 status = ata_wait_idle(ap);
e2cec771
AL
4180 goto fsm_start;
4181 }
4182 }
4183
4184 ata_altstatus(ap); /* flush */
bb5cb290 4185 poll_next = 1;
1da177e4
LT
4186 break;
4187
14be71f4 4188 case HSM_ST_LAST:
6912ccd5
AL
4189 if (unlikely(!ata_ok(status))) {
4190 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4191 ap->hsm_task_state = HSM_ST_ERR;
4192 goto fsm_start;
4193 }
4194
4195 /* no more data to transfer */
4332a771
AL
4196 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4197 ap->id, qc->dev->devno, status);
e2cec771 4198
6912ccd5
AL
4199 WARN_ON(qc->err_mask);
4200
e2cec771 4201 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4202
e2cec771 4203 /* complete taskfile transaction */
c17ea20d 4204 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4205
4206 poll_next = 0;
1da177e4
LT
4207 break;
4208
14be71f4 4209 case HSM_ST_ERR:
e2cec771
AL
4210 /* make sure qc->err_mask is available to
4211 * know what's wrong and recover
4212 */
4213 WARN_ON(qc->err_mask == 0);
4214
4215 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4216
999bb6f4 4217 /* complete taskfile transaction */
c17ea20d 4218 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4219
4220 poll_next = 0;
e2cec771
AL
4221 break;
4222 default:
bb5cb290 4223 poll_next = 0;
6912ccd5 4224 BUG();
1da177e4
LT
4225 }
4226
bb5cb290 4227 return poll_next;
1da177e4
LT
4228}
4229
1da177e4 4230static void ata_pio_task(void *_data)
8061f5f0 4231{
c91af2c8
TH
4232 struct ata_queued_cmd *qc = _data;
4233 struct ata_port *ap = qc->ap;
8061f5f0 4234 u8 status;
a1af3734 4235 int poll_next;
8061f5f0 4236
7fb6ec28 4237fsm_start:
a1af3734 4238 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4239
a1af3734
AL
4240 /*
4241 * This is purely heuristic. This is a fast path.
4242 * Sometimes when we enter, BSY will be cleared in
4243 * a chk-status or two. If not, the drive is probably seeking
4244 * or something. Snooze for a couple msecs, then
4245 * chk-status again. If still busy, queue delayed work.
4246 */
4247 status = ata_busy_wait(ap, ATA_BUSY, 5);
4248 if (status & ATA_BUSY) {
4249 msleep(2);
4250 status = ata_busy_wait(ap, ATA_BUSY, 10);
4251 if (status & ATA_BUSY) {
31ce6dae 4252 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4253 return;
4254 }
8061f5f0
TH
4255 }
4256
a1af3734
AL
4257 /* move the HSM */
4258 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4259
a1af3734
AL
4260 /* another command or interrupt handler
4261 * may be running at this point.
4262 */
4263 if (poll_next)
7fb6ec28 4264 goto fsm_start;
8061f5f0
TH
4265}
4266
1da177e4
LT
4267/**
4268 * ata_qc_new - Request an available ATA command, for queueing
4269 * @ap: Port associated with device @dev
4270 * @dev: Device from whom we request an available command structure
4271 *
4272 * LOCKING:
0cba632b 4273 * None.
1da177e4
LT
4274 */
4275
4276static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4277{
4278 struct ata_queued_cmd *qc = NULL;
4279 unsigned int i;
4280
e3180499
TH
4281 /* no command while frozen */
4282 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4283 return NULL;
4284
2ab7db1f
TH
4285 /* the last tag is reserved for internal command. */
4286 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4287 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4288 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4289 break;
4290 }
4291
4292 if (qc)
4293 qc->tag = i;
4294
4295 return qc;
4296}
4297
4298/**
4299 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4300 * @dev: Device from whom we request an available command structure
4301 *
4302 * LOCKING:
0cba632b 4303 * None.
1da177e4
LT
4304 */
4305
3373efd8 4306struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4307{
3373efd8 4308 struct ata_port *ap = dev->ap;
1da177e4
LT
4309 struct ata_queued_cmd *qc;
4310
4311 qc = ata_qc_new(ap);
4312 if (qc) {
1da177e4
LT
4313 qc->scsicmd = NULL;
4314 qc->ap = ap;
4315 qc->dev = dev;
1da177e4 4316
2c13b7ce 4317 ata_qc_reinit(qc);
1da177e4
LT
4318 }
4319
4320 return qc;
4321}
4322
1da177e4
LT
4323/**
4324 * ata_qc_free - free unused ata_queued_cmd
4325 * @qc: Command to complete
4326 *
4327 * Designed to free unused ata_queued_cmd object
4328 * in case something prevents using it.
4329 *
4330 * LOCKING:
0cba632b 4331 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4332 */
4333void ata_qc_free(struct ata_queued_cmd *qc)
4334{
4ba946e9
TH
4335 struct ata_port *ap = qc->ap;
4336 unsigned int tag;
4337
a4631474 4338 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4339
4ba946e9
TH
4340 qc->flags = 0;
4341 tag = qc->tag;
4342 if (likely(ata_tag_valid(tag))) {
4ba946e9 4343 qc->tag = ATA_TAG_POISON;
6cec4a39 4344 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4345 }
1da177e4
LT
4346}
4347
76014427 4348void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4349{
dedaf2b0
TH
4350 struct ata_port *ap = qc->ap;
4351
a4631474
TH
4352 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4353 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4354
4355 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4356 ata_sg_clean(qc);
4357
7401abf2 4358 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4359 if (qc->tf.protocol == ATA_PROT_NCQ)
4360 ap->sactive &= ~(1 << qc->tag);
4361 else
4362 ap->active_tag = ATA_TAG_POISON;
7401abf2 4363
3f3791d3
AL
4364 /* atapi: mark qc as inactive to prevent the interrupt handler
4365 * from completing the command twice later, before the error handler
4366 * is called. (when rc != 0 and atapi request sense is needed)
4367 */
4368 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4369 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4370
1da177e4 4371 /* call completion callback */
77853bf2 4372 qc->complete_fn(qc);
1da177e4
LT
4373}
4374
f686bcb8
TH
4375/**
4376 * ata_qc_complete - Complete an active ATA command
4377 * @qc: Command to complete
4378 * @err_mask: ATA Status register contents
4379 *
4380 * Indicate to the mid and upper layers that an ATA
4381 * command has completed, with either an ok or not-ok status.
4382 *
4383 * LOCKING:
4384 * spin_lock_irqsave(host_set lock)
4385 */
4386void ata_qc_complete(struct ata_queued_cmd *qc)
4387{
4388 struct ata_port *ap = qc->ap;
4389
4390 /* XXX: New EH and old EH use different mechanisms to
4391 * synchronize EH with regular execution path.
4392 *
4393 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4394 * Normal execution path is responsible for not accessing a
4395 * failed qc. libata core enforces the rule by returning NULL
4396 * from ata_qc_from_tag() for failed qcs.
4397 *
4398 * Old EH depends on ata_qc_complete() nullifying completion
4399 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4400 * not synchronize with interrupt handler. Only PIO task is
4401 * taken care of.
4402 */
4403 if (ap->ops->error_handler) {
4404 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4405
4406 if (unlikely(qc->err_mask))
4407 qc->flags |= ATA_QCFLAG_FAILED;
4408
4409 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4410 if (!ata_tag_internal(qc->tag)) {
4411 /* always fill result TF for failed qc */
4412 ap->ops->tf_read(ap, &qc->result_tf);
4413 ata_qc_schedule_eh(qc);
4414 return;
4415 }
4416 }
4417
4418 /* read result TF if requested */
4419 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4420 ap->ops->tf_read(ap, &qc->result_tf);
4421
4422 __ata_qc_complete(qc);
4423 } else {
4424 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4425 return;
4426
4427 /* read result TF if failed or requested */
4428 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4429 ap->ops->tf_read(ap, &qc->result_tf);
4430
4431 __ata_qc_complete(qc);
4432 }
4433}
4434
dedaf2b0
TH
4435/**
4436 * ata_qc_complete_multiple - Complete multiple qcs successfully
4437 * @ap: port in question
4438 * @qc_active: new qc_active mask
4439 * @finish_qc: LLDD callback invoked before completing a qc
4440 *
4441 * Complete in-flight commands. This functions is meant to be
4442 * called from low-level driver's interrupt routine to complete
4443 * requests normally. ap->qc_active and @qc_active is compared
4444 * and commands are completed accordingly.
4445 *
4446 * LOCKING:
4447 * spin_lock_irqsave(host_set lock)
4448 *
4449 * RETURNS:
4450 * Number of completed commands on success, -errno otherwise.
4451 */
4452int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4453 void (*finish_qc)(struct ata_queued_cmd *))
4454{
4455 int nr_done = 0;
4456 u32 done_mask;
4457 int i;
4458
4459 done_mask = ap->qc_active ^ qc_active;
4460
4461 if (unlikely(done_mask & qc_active)) {
4462 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4463 "(%08x->%08x)\n", ap->qc_active, qc_active);
4464 return -EINVAL;
4465 }
4466
4467 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4468 struct ata_queued_cmd *qc;
4469
4470 if (!(done_mask & (1 << i)))
4471 continue;
4472
4473 if ((qc = ata_qc_from_tag(ap, i))) {
4474 if (finish_qc)
4475 finish_qc(qc);
4476 ata_qc_complete(qc);
4477 nr_done++;
4478 }
4479 }
4480
4481 return nr_done;
4482}
4483
1da177e4
LT
4484static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4485{
4486 struct ata_port *ap = qc->ap;
4487
4488 switch (qc->tf.protocol) {
3dc1d881 4489 case ATA_PROT_NCQ:
1da177e4
LT
4490 case ATA_PROT_DMA:
4491 case ATA_PROT_ATAPI_DMA:
4492 return 1;
4493
4494 case ATA_PROT_ATAPI:
4495 case ATA_PROT_PIO:
1da177e4
LT
4496 if (ap->flags & ATA_FLAG_PIO_DMA)
4497 return 1;
4498
4499 /* fall through */
4500
4501 default:
4502 return 0;
4503 }
4504
4505 /* never reached */
4506}
4507
4508/**
4509 * ata_qc_issue - issue taskfile to device
4510 * @qc: command to issue to device
4511 *
4512 * Prepare an ATA command to submission to device.
4513 * This includes mapping the data into a DMA-able
4514 * area, filling in the S/G table, and finally
4515 * writing the taskfile to hardware, starting the command.
4516 *
4517 * LOCKING:
4518 * spin_lock_irqsave(host_set lock)
1da177e4 4519 */
8e0e694a 4520void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4521{
4522 struct ata_port *ap = qc->ap;
4523
dedaf2b0
TH
4524 /* Make sure only one non-NCQ command is outstanding. The
4525 * check is skipped for old EH because it reuses active qc to
4526 * request ATAPI sense.
4527 */
4528 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4529
4530 if (qc->tf.protocol == ATA_PROT_NCQ) {
4531 WARN_ON(ap->sactive & (1 << qc->tag));
4532 ap->sactive |= 1 << qc->tag;
4533 } else {
4534 WARN_ON(ap->sactive);
4535 ap->active_tag = qc->tag;
4536 }
4537
e4a70e76 4538 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4539 ap->qc_active |= 1 << qc->tag;
e4a70e76 4540
1da177e4
LT
4541 if (ata_should_dma_map(qc)) {
4542 if (qc->flags & ATA_QCFLAG_SG) {
4543 if (ata_sg_setup(qc))
8e436af9 4544 goto sg_err;
1da177e4
LT
4545 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4546 if (ata_sg_setup_one(qc))
8e436af9 4547 goto sg_err;
1da177e4
LT
4548 }
4549 } else {
4550 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4551 }
4552
4553 ap->ops->qc_prep(qc);
4554
8e0e694a
TH
4555 qc->err_mask |= ap->ops->qc_issue(qc);
4556 if (unlikely(qc->err_mask))
4557 goto err;
4558 return;
1da177e4 4559
8e436af9
TH
4560sg_err:
4561 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4562 qc->err_mask |= AC_ERR_SYSTEM;
4563err:
4564 ata_qc_complete(qc);
1da177e4
LT
4565}
4566
4567/**
4568 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4569 * @qc: command to issue to device
4570 *
4571 * Using various libata functions and hooks, this function
4572 * starts an ATA command. ATA commands are grouped into
4573 * classes called "protocols", and issuing each type of protocol
4574 * is slightly different.
4575 *
0baab86b
EF
4576 * May be used as the qc_issue() entry in ata_port_operations.
4577 *
1da177e4
LT
4578 * LOCKING:
4579 * spin_lock_irqsave(host_set lock)
4580 *
4581 * RETURNS:
9a3d9eb0 4582 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4583 */
4584
9a3d9eb0 4585unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4586{
4587 struct ata_port *ap = qc->ap;
4588
e50362ec
AL
4589 /* Use polling pio if the LLD doesn't handle
4590 * interrupt driven pio and atapi CDB interrupt.
4591 */
4592 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4593 switch (qc->tf.protocol) {
4594 case ATA_PROT_PIO:
4595 case ATA_PROT_ATAPI:
4596 case ATA_PROT_ATAPI_NODATA:
4597 qc->tf.flags |= ATA_TFLAG_POLLING;
4598 break;
4599 case ATA_PROT_ATAPI_DMA:
4600 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4601 /* see ata_dma_blacklisted() */
e50362ec
AL
4602 BUG();
4603 break;
4604 default:
4605 break;
4606 }
4607 }
4608
312f7da2 4609 /* select the device */
1da177e4
LT
4610 ata_dev_select(ap, qc->dev->devno, 1, 0);
4611
312f7da2 4612 /* start the command */
1da177e4
LT
4613 switch (qc->tf.protocol) {
4614 case ATA_PROT_NODATA:
312f7da2
AL
4615 if (qc->tf.flags & ATA_TFLAG_POLLING)
4616 ata_qc_set_polling(qc);
4617
e5338254 4618 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4619 ap->hsm_task_state = HSM_ST_LAST;
4620
4621 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4622 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4623
1da177e4
LT
4624 break;
4625
4626 case ATA_PROT_DMA:
587005de 4627 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4628
1da177e4
LT
4629 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4630 ap->ops->bmdma_setup(qc); /* set up bmdma */
4631 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4632 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4633 break;
4634
312f7da2
AL
4635 case ATA_PROT_PIO:
4636 if (qc->tf.flags & ATA_TFLAG_POLLING)
4637 ata_qc_set_polling(qc);
1da177e4 4638
e5338254 4639 ata_tf_to_host(ap, &qc->tf);
312f7da2 4640
54f00389
AL
4641 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4642 /* PIO data out protocol */
4643 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4644 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4645
4646 /* always send first data block using
e27486db 4647 * the ata_pio_task() codepath.
54f00389 4648 */
312f7da2 4649 } else {
54f00389
AL
4650 /* PIO data in protocol */
4651 ap->hsm_task_state = HSM_ST;
4652
4653 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4654 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4655
4656 /* if polling, ata_pio_task() handles the rest.
4657 * otherwise, interrupt handler takes over from here.
4658 */
312f7da2
AL
4659 }
4660
1da177e4
LT
4661 break;
4662
1da177e4 4663 case ATA_PROT_ATAPI:
1da177e4 4664 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4665 if (qc->tf.flags & ATA_TFLAG_POLLING)
4666 ata_qc_set_polling(qc);
4667
e5338254 4668 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4669
312f7da2
AL
4670 ap->hsm_task_state = HSM_ST_FIRST;
4671
4672 /* send cdb by polling if no cdb interrupt */
4673 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4674 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4675 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4676 break;
4677
4678 case ATA_PROT_ATAPI_DMA:
587005de 4679 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4680
1da177e4
LT
4681 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4682 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4683 ap->hsm_task_state = HSM_ST_FIRST;
4684
4685 /* send cdb by polling if no cdb interrupt */
4686 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4687 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4688 break;
4689
4690 default:
4691 WARN_ON(1);
9a3d9eb0 4692 return AC_ERR_SYSTEM;
1da177e4
LT
4693 }
4694
4695 return 0;
4696}
4697
1da177e4
LT
4698/**
4699 * ata_host_intr - Handle host interrupt for given (port, task)
4700 * @ap: Port on which interrupt arrived (possibly...)
4701 * @qc: Taskfile currently active in engine
4702 *
4703 * Handle host interrupt for given queued command. Currently,
4704 * only DMA interrupts are handled. All other commands are
4705 * handled via polling with interrupts disabled (nIEN bit).
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host_set lock)
4709 *
4710 * RETURNS:
4711 * One if interrupt was handled, zero if not (shared irq).
4712 */
4713
4714inline unsigned int ata_host_intr (struct ata_port *ap,
4715 struct ata_queued_cmd *qc)
4716{
312f7da2 4717 u8 status, host_stat = 0;
1da177e4 4718
312f7da2
AL
4719 VPRINTK("ata%u: protocol %d task_state %d\n",
4720 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4721
312f7da2
AL
4722 /* Check whether we are expecting interrupt in this state */
4723 switch (ap->hsm_task_state) {
4724 case HSM_ST_FIRST:
6912ccd5
AL
4725 /* Some pre-ATAPI-4 devices assert INTRQ
4726 * at this state when ready to receive CDB.
4727 */
1da177e4 4728
312f7da2
AL
4729 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4730 * The flag was turned on only for atapi devices.
4731 * No need to check is_atapi_taskfile(&qc->tf) again.
4732 */
4733 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4734 goto idle_irq;
1da177e4 4735 break;
312f7da2
AL
4736 case HSM_ST_LAST:
4737 if (qc->tf.protocol == ATA_PROT_DMA ||
4738 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4739 /* check status of DMA engine */
4740 host_stat = ap->ops->bmdma_status(ap);
4741 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4742
4743 /* if it's not our irq... */
4744 if (!(host_stat & ATA_DMA_INTR))
4745 goto idle_irq;
4746
4747 /* before we do anything else, clear DMA-Start bit */
4748 ap->ops->bmdma_stop(qc);
a4f16610
AL
4749
4750 if (unlikely(host_stat & ATA_DMA_ERR)) {
4751 /* error when transfering data to/from memory */
4752 qc->err_mask |= AC_ERR_HOST_BUS;
4753 ap->hsm_task_state = HSM_ST_ERR;
4754 }
312f7da2
AL
4755 }
4756 break;
4757 case HSM_ST:
4758 break;
1da177e4
LT
4759 default:
4760 goto idle_irq;
4761 }
4762
312f7da2
AL
4763 /* check altstatus */
4764 status = ata_altstatus(ap);
4765 if (status & ATA_BUSY)
4766 goto idle_irq;
1da177e4 4767
312f7da2
AL
4768 /* check main status, clearing INTRQ */
4769 status = ata_chk_status(ap);
4770 if (unlikely(status & ATA_BUSY))
4771 goto idle_irq;
1da177e4 4772
312f7da2
AL
4773 /* ack bmdma irq events */
4774 ap->ops->irq_clear(ap);
1da177e4 4775
bb5cb290 4776 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4777 return 1; /* irq handled */
4778
4779idle_irq:
4780 ap->stats.idle_irq++;
4781
4782#ifdef ATA_IRQ_TRAP
4783 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4784 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4785 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4786 return 1;
1da177e4
LT
4787 }
4788#endif
4789 return 0; /* irq not handled */
4790}
4791
4792/**
4793 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4794 * @irq: irq line (unused)
4795 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4796 * @regs: unused
4797 *
0cba632b
JG
4798 * Default interrupt handler for PCI IDE devices. Calls
4799 * ata_host_intr() for each port that is not disabled.
4800 *
1da177e4 4801 * LOCKING:
0cba632b 4802 * Obtains host_set lock during operation.
1da177e4
LT
4803 *
4804 * RETURNS:
0cba632b 4805 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4806 */
4807
4808irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4809{
4810 struct ata_host_set *host_set = dev_instance;
4811 unsigned int i;
4812 unsigned int handled = 0;
4813 unsigned long flags;
4814
4815 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4816 spin_lock_irqsave(&host_set->lock, flags);
4817
4818 for (i = 0; i < host_set->n_ports; i++) {
4819 struct ata_port *ap;
4820
4821 ap = host_set->ports[i];
c1389503 4822 if (ap &&
029f5468 4823 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4824 struct ata_queued_cmd *qc;
4825
4826 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4827 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4828 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4829 handled |= ata_host_intr(ap, qc);
4830 }
4831 }
4832
4833 spin_unlock_irqrestore(&host_set->lock, flags);
4834
4835 return IRQ_RETVAL(handled);
4836}
4837
34bf2170
TH
4838/**
4839 * sata_scr_valid - test whether SCRs are accessible
4840 * @ap: ATA port to test SCR accessibility for
4841 *
4842 * Test whether SCRs are accessible for @ap.
4843 *
4844 * LOCKING:
4845 * None.
4846 *
4847 * RETURNS:
4848 * 1 if SCRs are accessible, 0 otherwise.
4849 */
4850int sata_scr_valid(struct ata_port *ap)
4851{
4852 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4853}
4854
4855/**
4856 * sata_scr_read - read SCR register of the specified port
4857 * @ap: ATA port to read SCR for
4858 * @reg: SCR to read
4859 * @val: Place to store read value
4860 *
4861 * Read SCR register @reg of @ap into *@val. This function is
4862 * guaranteed to succeed if the cable type of the port is SATA
4863 * and the port implements ->scr_read.
4864 *
4865 * LOCKING:
4866 * None.
4867 *
4868 * RETURNS:
4869 * 0 on success, negative errno on failure.
4870 */
4871int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4872{
4873 if (sata_scr_valid(ap)) {
4874 *val = ap->ops->scr_read(ap, reg);
4875 return 0;
4876 }
4877 return -EOPNOTSUPP;
4878}
4879
4880/**
4881 * sata_scr_write - write SCR register of the specified port
4882 * @ap: ATA port to write SCR for
4883 * @reg: SCR to write
4884 * @val: value to write
4885 *
4886 * Write @val to SCR register @reg of @ap. This function is
4887 * guaranteed to succeed if the cable type of the port is SATA
4888 * and the port implements ->scr_read.
4889 *
4890 * LOCKING:
4891 * None.
4892 *
4893 * RETURNS:
4894 * 0 on success, negative errno on failure.
4895 */
4896int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4897{
4898 if (sata_scr_valid(ap)) {
4899 ap->ops->scr_write(ap, reg, val);
4900 return 0;
4901 }
4902 return -EOPNOTSUPP;
4903}
4904
4905/**
4906 * sata_scr_write_flush - write SCR register of the specified port and flush
4907 * @ap: ATA port to write SCR for
4908 * @reg: SCR to write
4909 * @val: value to write
4910 *
4911 * This function is identical to sata_scr_write() except that this
4912 * function performs flush after writing to the register.
4913 *
4914 * LOCKING:
4915 * None.
4916 *
4917 * RETURNS:
4918 * 0 on success, negative errno on failure.
4919 */
4920int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4921{
4922 if (sata_scr_valid(ap)) {
4923 ap->ops->scr_write(ap, reg, val);
4924 ap->ops->scr_read(ap, reg);
4925 return 0;
4926 }
4927 return -EOPNOTSUPP;
4928}
4929
4930/**
4931 * ata_port_online - test whether the given port is online
4932 * @ap: ATA port to test
4933 *
4934 * Test whether @ap is online. Note that this function returns 0
4935 * if online status of @ap cannot be obtained, so
4936 * ata_port_online(ap) != !ata_port_offline(ap).
4937 *
4938 * LOCKING:
4939 * None.
4940 *
4941 * RETURNS:
4942 * 1 if the port online status is available and online.
4943 */
4944int ata_port_online(struct ata_port *ap)
4945{
4946 u32 sstatus;
4947
4948 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4949 return 1;
4950 return 0;
4951}
4952
4953/**
4954 * ata_port_offline - test whether the given port is offline
4955 * @ap: ATA port to test
4956 *
4957 * Test whether @ap is offline. Note that this function returns
4958 * 0 if offline status of @ap cannot be obtained, so
4959 * ata_port_online(ap) != !ata_port_offline(ap).
4960 *
4961 * LOCKING:
4962 * None.
4963 *
4964 * RETURNS:
4965 * 1 if the port offline status is available and offline.
4966 */
4967int ata_port_offline(struct ata_port *ap)
4968{
4969 u32 sstatus;
4970
4971 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4972 return 1;
4973 return 0;
4974}
0baab86b 4975
3373efd8 4976static int ata_flush_cache(struct ata_device *dev)
9b847548 4977{
977e6b9f 4978 unsigned int err_mask;
9b847548
JA
4979 u8 cmd;
4980
4981 if (!ata_try_flush_cache(dev))
4982 return 0;
4983
4984 if (ata_id_has_flush_ext(dev->id))
4985 cmd = ATA_CMD_FLUSH_EXT;
4986 else
4987 cmd = ATA_CMD_FLUSH;
4988
977e6b9f
TH
4989 err_mask = ata_do_simple_cmd(dev, cmd);
4990 if (err_mask) {
4991 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4992 return -EIO;
4993 }
4994
4995 return 0;
9b847548
JA
4996}
4997
3373efd8 4998static int ata_standby_drive(struct ata_device *dev)
9b847548 4999{
977e6b9f
TH
5000 unsigned int err_mask;
5001
5002 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5003 if (err_mask) {
5004 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5005 "(err_mask=0x%x)\n", err_mask);
5006 return -EIO;
5007 }
5008
5009 return 0;
9b847548
JA
5010}
5011
3373efd8 5012static int ata_start_drive(struct ata_device *dev)
9b847548 5013{
977e6b9f
TH
5014 unsigned int err_mask;
5015
5016 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5017 if (err_mask) {
5018 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5019 "(err_mask=0x%x)\n", err_mask);
5020 return -EIO;
5021 }
5022
5023 return 0;
9b847548
JA
5024}
5025
5026/**
5027 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5028 * @dev: the device to resume
9b847548
JA
5029 *
5030 * Kick the drive back into action, by sending it an idle immediate
5031 * command and making sure its transfer mode matches between drive
5032 * and host.
5033 *
5034 */
3373efd8 5035int ata_device_resume(struct ata_device *dev)
9b847548 5036{
3373efd8
TH
5037 struct ata_port *ap = dev->ap;
5038
9b847548 5039 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5040 struct ata_device *failed_dev;
e42d7be2 5041
1cca0ebb 5042 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
0737ac89 5043 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 5044
9b847548 5045 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5046 while (ata_set_mode(ap, &failed_dev))
3373efd8 5047 ata_dev_disable(failed_dev);
9b847548 5048 }
e1211e3f 5049 if (!ata_dev_enabled(dev))
9b847548
JA
5050 return 0;
5051 if (dev->class == ATA_DEV_ATA)
3373efd8 5052 ata_start_drive(dev);
9b847548
JA
5053
5054 return 0;
5055}
5056
5057/**
5058 * ata_device_suspend - prepare a device for suspend
c893a3ae 5059 * @dev: the device to suspend
e2a7f77a 5060 * @state: target power management state
9b847548
JA
5061 *
5062 * Flush the cache on the drive, if appropriate, then issue a
5063 * standbynow command.
9b847548 5064 */
3373efd8 5065int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5066{
3373efd8
TH
5067 struct ata_port *ap = dev->ap;
5068
e1211e3f 5069 if (!ata_dev_enabled(dev))
9b847548
JA
5070 return 0;
5071 if (dev->class == ATA_DEV_ATA)
3373efd8 5072 ata_flush_cache(dev);
9b847548 5073
082776e4 5074 if (state.event != PM_EVENT_FREEZE)
3373efd8 5075 ata_standby_drive(dev);
9b847548
JA
5076 ap->flags |= ATA_FLAG_SUSPENDED;
5077 return 0;
5078}
5079
c893a3ae
RD
5080/**
5081 * ata_port_start - Set port up for dma.
5082 * @ap: Port to initialize
5083 *
5084 * Called just after data structures for each port are
5085 * initialized. Allocates space for PRD table.
5086 *
5087 * May be used as the port_start() entry in ata_port_operations.
5088 *
5089 * LOCKING:
5090 * Inherited from caller.
5091 */
5092
1da177e4
LT
5093int ata_port_start (struct ata_port *ap)
5094{
2f1f610b 5095 struct device *dev = ap->dev;
6037d6bb 5096 int rc;
1da177e4
LT
5097
5098 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5099 if (!ap->prd)
5100 return -ENOMEM;
5101
6037d6bb
JG
5102 rc = ata_pad_alloc(ap, dev);
5103 if (rc) {
cedc9a47 5104 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5105 return rc;
cedc9a47
JG
5106 }
5107
1da177e4
LT
5108 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5109
5110 return 0;
5111}
5112
0baab86b
EF
5113
5114/**
5115 * ata_port_stop - Undo ata_port_start()
5116 * @ap: Port to shut down
5117 *
5118 * Frees the PRD table.
5119 *
5120 * May be used as the port_stop() entry in ata_port_operations.
5121 *
5122 * LOCKING:
6f0ef4fa 5123 * Inherited from caller.
0baab86b
EF
5124 */
5125
1da177e4
LT
5126void ata_port_stop (struct ata_port *ap)
5127{
2f1f610b 5128 struct device *dev = ap->dev;
1da177e4
LT
5129
5130 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5131 ata_pad_free(ap, dev);
1da177e4
LT
5132}
5133
aa8f0dc6
JG
5134void ata_host_stop (struct ata_host_set *host_set)
5135{
5136 if (host_set->mmio_base)
5137 iounmap(host_set->mmio_base);
5138}
5139
5140
1da177e4
LT
5141/**
5142 * ata_host_remove - Unregister SCSI host structure with upper layers
5143 * @ap: Port to unregister
5144 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5145 *
5146 * LOCKING:
6f0ef4fa 5147 * Inherited from caller.
1da177e4
LT
5148 */
5149
5150static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5151{
5152 struct Scsi_Host *sh = ap->host;
5153
5154 DPRINTK("ENTER\n");
5155
5156 if (do_unregister)
5157 scsi_remove_host(sh);
5158
5159 ap->ops->port_stop(ap);
5160}
5161
3ef3b43d
TH
5162/**
5163 * ata_dev_init - Initialize an ata_device structure
5164 * @dev: Device structure to initialize
5165 *
5166 * Initialize @dev in preparation for probing.
5167 *
5168 * LOCKING:
5169 * Inherited from caller.
5170 */
5171void ata_dev_init(struct ata_device *dev)
5172{
5173 struct ata_port *ap = dev->ap;
72fa4b74
TH
5174 unsigned long flags;
5175
5a04bf4b
TH
5176 /* SATA spd limit is bound to the first device */
5177 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5178
72fa4b74
TH
5179 /* High bits of dev->flags are used to record warm plug
5180 * requests which occur asynchronously. Synchronize using
5181 * host_set lock.
5182 */
ba6a1308 5183 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5184 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5185 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5186
72fa4b74
TH
5187 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5188 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5189 dev->pio_mask = UINT_MAX;
5190 dev->mwdma_mask = UINT_MAX;
5191 dev->udma_mask = UINT_MAX;
5192}
5193
1da177e4
LT
5194/**
5195 * ata_host_init - Initialize an ata_port structure
5196 * @ap: Structure to initialize
5197 * @host: associated SCSI mid-layer structure
5198 * @host_set: Collection of hosts to which @ap belongs
5199 * @ent: Probe information provided by low-level driver
5200 * @port_no: Port number associated with this ata_port
5201 *
0cba632b
JG
5202 * Initialize a new ata_port structure, and its associated
5203 * scsi_host.
5204 *
1da177e4 5205 * LOCKING:
0cba632b 5206 * Inherited from caller.
1da177e4 5207 */
1da177e4
LT
5208static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5209 struct ata_host_set *host_set,
057ace5e 5210 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5211{
5212 unsigned int i;
5213
5214 host->max_id = 16;
5215 host->max_lun = 1;
5216 host->max_channel = 1;
5217 host->unique_id = ata_unique_id++;
5218 host->max_cmd_len = 12;
12413197 5219
ba6a1308 5220 ap->lock = &host_set->lock;
198e0fed 5221 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5222 ap->id = host->unique_id;
5223 ap->host = host;
5224 ap->ctl = ATA_DEVCTL_OBS;
5225 ap->host_set = host_set;
2f1f610b 5226 ap->dev = ent->dev;
1da177e4
LT
5227 ap->port_no = port_no;
5228 ap->hard_port_no =
5229 ent->legacy_mode ? ent->hard_port_no : port_no;
5230 ap->pio_mask = ent->pio_mask;
5231 ap->mwdma_mask = ent->mwdma_mask;
5232 ap->udma_mask = ent->udma_mask;
5233 ap->flags |= ent->host_flags;
5234 ap->ops = ent->port_ops;
5a04bf4b 5235 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5236 ap->active_tag = ATA_TAG_POISON;
5237 ap->last_ctl = 0xFF;
bd5d825c
BP
5238
5239#if defined(ATA_VERBOSE_DEBUG)
5240 /* turn on all debugging levels */
5241 ap->msg_enable = 0x00FF;
5242#elif defined(ATA_DEBUG)
5243 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5244#else
0dd4b21f 5245 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5246#endif
1da177e4 5247
86e45b6b 5248 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5249 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5250 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5251 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5252 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5253
838df628
TH
5254 /* set cable type */
5255 ap->cbl = ATA_CBL_NONE;
5256 if (ap->flags & ATA_FLAG_SATA)
5257 ap->cbl = ATA_CBL_SATA;
5258
acf356b1
TH
5259 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5260 struct ata_device *dev = &ap->device[i];
38d87234 5261 dev->ap = ap;
72fa4b74 5262 dev->devno = i;
3ef3b43d 5263 ata_dev_init(dev);
acf356b1 5264 }
1da177e4
LT
5265
5266#ifdef ATA_IRQ_TRAP
5267 ap->stats.unhandled_irq = 1;
5268 ap->stats.idle_irq = 1;
5269#endif
5270
5271 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5272}
5273
5274/**
5275 * ata_host_add - Attach low-level ATA driver to system
5276 * @ent: Information provided by low-level driver
5277 * @host_set: Collections of ports to which we add
5278 * @port_no: Port number associated with this host
5279 *
0cba632b
JG
5280 * Attach low-level ATA driver to system.
5281 *
1da177e4 5282 * LOCKING:
0cba632b 5283 * PCI/etc. bus probe sem.
1da177e4
LT
5284 *
5285 * RETURNS:
0cba632b 5286 * New ata_port on success, for NULL on error.
1da177e4
LT
5287 */
5288
057ace5e 5289static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5290 struct ata_host_set *host_set,
5291 unsigned int port_no)
5292{
5293 struct Scsi_Host *host;
5294 struct ata_port *ap;
5295 int rc;
5296
5297 DPRINTK("ENTER\n");
aec5c3c1 5298
52783c5d 5299 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5300 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5301 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5302 port_no);
5303 return NULL;
5304 }
5305
1da177e4
LT
5306 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5307 if (!host)
5308 return NULL;
5309
30afc84c
TH
5310 host->transportt = &ata_scsi_transport_template;
5311
35bb94b1 5312 ap = ata_shost_to_port(host);
1da177e4
LT
5313
5314 ata_host_init(ap, host, host_set, ent, port_no);
5315
5316 rc = ap->ops->port_start(ap);
5317 if (rc)
5318 goto err_out;
5319
5320 return ap;
5321
5322err_out:
5323 scsi_host_put(host);
5324 return NULL;
5325}
5326
5327/**
0cba632b
JG
5328 * ata_device_add - Register hardware device with ATA and SCSI layers
5329 * @ent: Probe information describing hardware device to be registered
5330 *
5331 * This function processes the information provided in the probe
5332 * information struct @ent, allocates the necessary ATA and SCSI
5333 * host information structures, initializes them, and registers
5334 * everything with requisite kernel subsystems.
5335 *
5336 * This function requests irqs, probes the ATA bus, and probes
5337 * the SCSI bus.
1da177e4
LT
5338 *
5339 * LOCKING:
0cba632b 5340 * PCI/etc. bus probe sem.
1da177e4
LT
5341 *
5342 * RETURNS:
0cba632b 5343 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5344 */
057ace5e 5345int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5346{
5347 unsigned int count = 0, i;
5348 struct device *dev = ent->dev;
5349 struct ata_host_set *host_set;
39b07ce6 5350 int rc;
1da177e4
LT
5351
5352 DPRINTK("ENTER\n");
5353 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5354 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5355 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5356 if (!host_set)
5357 return 0;
1da177e4
LT
5358 spin_lock_init(&host_set->lock);
5359
5360 host_set->dev = dev;
5361 host_set->n_ports = ent->n_ports;
5362 host_set->irq = ent->irq;
5363 host_set->mmio_base = ent->mmio_base;
5364 host_set->private_data = ent->private_data;
5365 host_set->ops = ent->port_ops;
5444a6f4 5366 host_set->flags = ent->host_set_flags;
1da177e4
LT
5367
5368 /* register each port bound to this device */
5369 for (i = 0; i < ent->n_ports; i++) {
5370 struct ata_port *ap;
5371 unsigned long xfer_mode_mask;
5372
5373 ap = ata_host_add(ent, host_set, i);
5374 if (!ap)
5375 goto err_out;
5376
5377 host_set->ports[i] = ap;
5378 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5379 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5380 (ap->pio_mask << ATA_SHIFT_PIO);
5381
5382 /* print per-port info to dmesg */
f15a1daf
TH
5383 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5384 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5385 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5386 ata_mode_string(xfer_mode_mask),
5387 ap->ioaddr.cmd_addr,
5388 ap->ioaddr.ctl_addr,
5389 ap->ioaddr.bmdma_addr,
5390 ent->irq);
1da177e4
LT
5391
5392 ata_chk_status(ap);
5393 host_set->ops->irq_clear(ap);
e3180499 5394 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5395 count++;
5396 }
5397
57f3bda8
RD
5398 if (!count)
5399 goto err_free_ret;
1da177e4
LT
5400
5401 /* obtain irq, that is shared between channels */
39b07ce6
JG
5402 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5403 DRV_NAME, host_set);
5404 if (rc) {
5405 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5406 ent->irq, rc);
1da177e4 5407 goto err_out;
39b07ce6 5408 }
1da177e4
LT
5409
5410 /* perform each probe synchronously */
5411 DPRINTK("probe begin\n");
5412 for (i = 0; i < count; i++) {
5413 struct ata_port *ap;
5a04bf4b 5414 u32 scontrol;
1da177e4
LT
5415 int rc;
5416
5417 ap = host_set->ports[i];
5418
5a04bf4b
TH
5419 /* init sata_spd_limit to the current value */
5420 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5421 int spd = (scontrol >> 4) & 0xf;
5422 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5423 }
5424 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5425
1da177e4
LT
5426 rc = scsi_add_host(ap->host, dev);
5427 if (rc) {
f15a1daf 5428 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5429 /* FIXME: do something useful here */
5430 /* FIXME: handle unconditional calls to
5431 * scsi_scan_host and ata_host_remove, below,
5432 * at the very least
5433 */
5434 }
3e706399 5435
52783c5d 5436 if (ap->ops->error_handler) {
3e706399
TH
5437 unsigned long flags;
5438
5439 ata_port_probe(ap);
5440
5441 /* kick EH for boot probing */
ba6a1308 5442 spin_lock_irqsave(ap->lock, flags);
3e706399
TH
5443
5444 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5445 ap->eh_info.action |= ATA_EH_SOFTRESET;
5446
5447 ap->flags |= ATA_FLAG_LOADING;
5448 ata_port_schedule_eh(ap);
5449
ba6a1308 5450 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5451
5452 /* wait for EH to finish */
5453 ata_port_wait_eh(ap);
5454 } else {
5455 DPRINTK("ata%u: bus probe begin\n", ap->id);
5456 rc = ata_bus_probe(ap);
5457 DPRINTK("ata%u: bus probe end\n", ap->id);
5458
5459 if (rc) {
5460 /* FIXME: do something useful here?
5461 * Current libata behavior will
5462 * tear down everything when
5463 * the module is removed
5464 * or the h/w is unplugged.
5465 */
5466 }
5467 }
1da177e4
LT
5468 }
5469
5470 /* probes are done, now scan each port's disk(s) */
c893a3ae 5471 DPRINTK("host probe begin\n");
1da177e4
LT
5472 for (i = 0; i < count; i++) {
5473 struct ata_port *ap = host_set->ports[i];
5474
644dd0cc 5475 ata_scsi_scan_host(ap);
1da177e4
LT
5476 }
5477
5478 dev_set_drvdata(dev, host_set);
5479
5480 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5481 return ent->n_ports; /* success */
5482
5483err_out:
5484 for (i = 0; i < count; i++) {
5485 ata_host_remove(host_set->ports[i], 1);
5486 scsi_host_put(host_set->ports[i]->host);
5487 }
57f3bda8 5488err_free_ret:
1da177e4
LT
5489 kfree(host_set);
5490 VPRINTK("EXIT, returning 0\n");
5491 return 0;
5492}
5493
720ba126
TH
5494/**
5495 * ata_port_detach - Detach ATA port in prepration of device removal
5496 * @ap: ATA port to be detached
5497 *
5498 * Detach all ATA devices and the associated SCSI devices of @ap;
5499 * then, remove the associated SCSI host. @ap is guaranteed to
5500 * be quiescent on return from this function.
5501 *
5502 * LOCKING:
5503 * Kernel thread context (may sleep).
5504 */
5505void ata_port_detach(struct ata_port *ap)
5506{
5507 unsigned long flags;
5508 int i;
5509
5510 if (!ap->ops->error_handler)
5511 return;
5512
5513 /* tell EH we're leaving & flush EH */
ba6a1308 5514 spin_lock_irqsave(ap->lock, flags);
720ba126 5515 ap->flags |= ATA_FLAG_UNLOADING;
ba6a1308 5516 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5517
5518 ata_port_wait_eh(ap);
5519
5520 /* EH is now guaranteed to see UNLOADING, so no new device
5521 * will be attached. Disable all existing devices.
5522 */
ba6a1308 5523 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5524
5525 for (i = 0; i < ATA_MAX_DEVICES; i++)
5526 ata_dev_disable(&ap->device[i]);
5527
ba6a1308 5528 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5529
5530 /* Final freeze & EH. All in-flight commands are aborted. EH
5531 * will be skipped and retrials will be terminated with bad
5532 * target.
5533 */
ba6a1308 5534 spin_lock_irqsave(ap->lock, flags);
720ba126 5535 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5536 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5537
5538 ata_port_wait_eh(ap);
5539
5540 /* Flush hotplug task. The sequence is similar to
5541 * ata_port_flush_task().
5542 */
5543 flush_workqueue(ata_aux_wq);
5544 cancel_delayed_work(&ap->hotplug_task);
5545 flush_workqueue(ata_aux_wq);
5546
5547 /* remove the associated SCSI host */
5548 scsi_remove_host(ap->host);
5549}
5550
17b14451
AC
5551/**
5552 * ata_host_set_remove - PCI layer callback for device removal
5553 * @host_set: ATA host set that was removed
5554 *
2e9edbf8 5555 * Unregister all objects associated with this host set. Free those
17b14451
AC
5556 * objects.
5557 *
5558 * LOCKING:
5559 * Inherited from calling layer (may sleep).
5560 */
5561
17b14451
AC
5562void ata_host_set_remove(struct ata_host_set *host_set)
5563{
17b14451
AC
5564 unsigned int i;
5565
720ba126
TH
5566 for (i = 0; i < host_set->n_ports; i++)
5567 ata_port_detach(host_set->ports[i]);
17b14451
AC
5568
5569 free_irq(host_set->irq, host_set);
5570
5571 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5572 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5573
5574 ata_scsi_release(ap->host);
5575
5576 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5577 struct ata_ioports *ioaddr = &ap->ioaddr;
5578
5579 if (ioaddr->cmd_addr == 0x1f0)
5580 release_region(0x1f0, 8);
5581 else if (ioaddr->cmd_addr == 0x170)
5582 release_region(0x170, 8);
5583 }
5584
5585 scsi_host_put(ap->host);
5586 }
5587
5588 if (host_set->ops->host_stop)
5589 host_set->ops->host_stop(host_set);
5590
5591 kfree(host_set);
5592}
5593
1da177e4
LT
5594/**
5595 * ata_scsi_release - SCSI layer callback hook for host unload
5596 * @host: libata host to be unloaded
5597 *
5598 * Performs all duties necessary to shut down a libata port...
5599 * Kill port kthread, disable port, and release resources.
5600 *
5601 * LOCKING:
5602 * Inherited from SCSI layer.
5603 *
5604 * RETURNS:
5605 * One.
5606 */
5607
5608int ata_scsi_release(struct Scsi_Host *host)
5609{
35bb94b1 5610 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5611
5612 DPRINTK("ENTER\n");
5613
5614 ap->ops->port_disable(ap);
5615 ata_host_remove(ap, 0);
5616
5617 DPRINTK("EXIT\n");
5618 return 1;
5619}
5620
5621/**
5622 * ata_std_ports - initialize ioaddr with standard port offsets.
5623 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5624 *
5625 * Utility function which initializes data_addr, error_addr,
5626 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5627 * device_addr, status_addr, and command_addr to standard offsets
5628 * relative to cmd_addr.
5629 *
5630 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5631 */
0baab86b 5632
1da177e4
LT
5633void ata_std_ports(struct ata_ioports *ioaddr)
5634{
5635 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5636 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5637 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5638 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5639 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5640 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5641 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5642 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5643 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5644 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5645}
5646
0baab86b 5647
374b1873
JG
5648#ifdef CONFIG_PCI
5649
5650void ata_pci_host_stop (struct ata_host_set *host_set)
5651{
5652 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5653
5654 pci_iounmap(pdev, host_set->mmio_base);
5655}
5656
1da177e4
LT
5657/**
5658 * ata_pci_remove_one - PCI layer callback for device removal
5659 * @pdev: PCI device that was removed
5660 *
5661 * PCI layer indicates to libata via this hook that
6f0ef4fa 5662 * hot-unplug or module unload event has occurred.
1da177e4
LT
5663 * Handle this by unregistering all objects associated
5664 * with this PCI device. Free those objects. Then finally
5665 * release PCI resources and disable device.
5666 *
5667 * LOCKING:
5668 * Inherited from PCI layer (may sleep).
5669 */
5670
5671void ata_pci_remove_one (struct pci_dev *pdev)
5672{
5673 struct device *dev = pci_dev_to_dev(pdev);
5674 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5675 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5676
17b14451 5677 ata_host_set_remove(host_set);
f0eb62b8
TH
5678 if (host_set2)
5679 ata_host_set_remove(host_set2);
5680
1da177e4
LT
5681 pci_release_regions(pdev);
5682 pci_disable_device(pdev);
5683 dev_set_drvdata(dev, NULL);
5684}
5685
5686/* move to PCI subsystem */
057ace5e 5687int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5688{
5689 unsigned long tmp = 0;
5690
5691 switch (bits->width) {
5692 case 1: {
5693 u8 tmp8 = 0;
5694 pci_read_config_byte(pdev, bits->reg, &tmp8);
5695 tmp = tmp8;
5696 break;
5697 }
5698 case 2: {
5699 u16 tmp16 = 0;
5700 pci_read_config_word(pdev, bits->reg, &tmp16);
5701 tmp = tmp16;
5702 break;
5703 }
5704 case 4: {
5705 u32 tmp32 = 0;
5706 pci_read_config_dword(pdev, bits->reg, &tmp32);
5707 tmp = tmp32;
5708 break;
5709 }
5710
5711 default:
5712 return -EINVAL;
5713 }
5714
5715 tmp &= bits->mask;
5716
5717 return (tmp == bits->val) ? 1 : 0;
5718}
9b847548
JA
5719
5720int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5721{
5722 pci_save_state(pdev);
5723 pci_disable_device(pdev);
5724 pci_set_power_state(pdev, PCI_D3hot);
5725 return 0;
5726}
5727
5728int ata_pci_device_resume(struct pci_dev *pdev)
5729{
5730 pci_set_power_state(pdev, PCI_D0);
5731 pci_restore_state(pdev);
5732 pci_enable_device(pdev);
5733 pci_set_master(pdev);
5734 return 0;
5735}
1da177e4
LT
5736#endif /* CONFIG_PCI */
5737
5738
1da177e4
LT
5739static int __init ata_init(void)
5740{
5741 ata_wq = create_workqueue("ata");
5742 if (!ata_wq)
5743 return -ENOMEM;
5744
453b07ac
TH
5745 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5746 if (!ata_aux_wq) {
5747 destroy_workqueue(ata_wq);
5748 return -ENOMEM;
5749 }
5750
1da177e4
LT
5751 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5752 return 0;
5753}
5754
5755static void __exit ata_exit(void)
5756{
5757 destroy_workqueue(ata_wq);
453b07ac 5758 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5759}
5760
5761module_init(ata_init);
5762module_exit(ata_exit);
5763
67846b30
JG
5764static unsigned long ratelimit_time;
5765static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5766
5767int ata_ratelimit(void)
5768{
5769 int rc;
5770 unsigned long flags;
5771
5772 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5773
5774 if (time_after(jiffies, ratelimit_time)) {
5775 rc = 1;
5776 ratelimit_time = jiffies + (HZ/5);
5777 } else
5778 rc = 0;
5779
5780 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5781
5782 return rc;
5783}
5784
c22daff4
TH
5785/**
5786 * ata_wait_register - wait until register value changes
5787 * @reg: IO-mapped register
5788 * @mask: Mask to apply to read register value
5789 * @val: Wait condition
5790 * @interval_msec: polling interval in milliseconds
5791 * @timeout_msec: timeout in milliseconds
5792 *
5793 * Waiting for some bits of register to change is a common
5794 * operation for ATA controllers. This function reads 32bit LE
5795 * IO-mapped register @reg and tests for the following condition.
5796 *
5797 * (*@reg & mask) != val
5798 *
5799 * If the condition is met, it returns; otherwise, the process is
5800 * repeated after @interval_msec until timeout.
5801 *
5802 * LOCKING:
5803 * Kernel thread context (may sleep)
5804 *
5805 * RETURNS:
5806 * The final register value.
5807 */
5808u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5809 unsigned long interval_msec,
5810 unsigned long timeout_msec)
5811{
5812 unsigned long timeout;
5813 u32 tmp;
5814
5815 tmp = ioread32(reg);
5816
5817 /* Calculate timeout _after_ the first read to make sure
5818 * preceding writes reach the controller before starting to
5819 * eat away the timeout.
5820 */
5821 timeout = jiffies + (timeout_msec * HZ) / 1000;
5822
5823 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5824 msleep(interval_msec);
5825 tmp = ioread32(reg);
5826 }
5827
5828 return tmp;
5829}
5830
1da177e4
LT
5831/*
5832 * libata is essentially a library of internal helper functions for
5833 * low-level ATA host controller drivers. As such, the API/ABI is
5834 * likely to change as new drivers are added and updated.
5835 * Do not depend on ABI/API stability.
5836 */
5837
d7bb4cc7
TH
5838EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5839EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5840EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5841EXPORT_SYMBOL_GPL(ata_std_bios_param);
5842EXPORT_SYMBOL_GPL(ata_std_ports);
5843EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5844EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5845EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5846EXPORT_SYMBOL_GPL(ata_sg_init);
5847EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5848EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5849EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5850EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5851EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5852EXPORT_SYMBOL_GPL(ata_tf_load);
5853EXPORT_SYMBOL_GPL(ata_tf_read);
5854EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5855EXPORT_SYMBOL_GPL(ata_std_dev_select);
5856EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5857EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5858EXPORT_SYMBOL_GPL(ata_check_status);
5859EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5860EXPORT_SYMBOL_GPL(ata_exec_command);
5861EXPORT_SYMBOL_GPL(ata_port_start);
5862EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5863EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5864EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5865EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5866EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5867EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5868EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5869EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5870EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5871EXPORT_SYMBOL_GPL(ata_bmdma_start);
5872EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5873EXPORT_SYMBOL_GPL(ata_bmdma_status);
5874EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5875EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5876EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5877EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5878EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5879EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5880EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5881EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5882EXPORT_SYMBOL_GPL(sata_phy_debounce);
5883EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5884EXPORT_SYMBOL_GPL(sata_phy_reset);
5885EXPORT_SYMBOL_GPL(__sata_phy_reset);
5886EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5887EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5888EXPORT_SYMBOL_GPL(ata_std_softreset);
5889EXPORT_SYMBOL_GPL(sata_std_hardreset);
5890EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5891EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5892EXPORT_SYMBOL_GPL(ata_dev_classify);
5893EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5894EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5895EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5896EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5897EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5898EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5899EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5900EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5901EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5902EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5903EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5904EXPORT_SYMBOL_GPL(ata_scsi_release);
5905EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5906EXPORT_SYMBOL_GPL(sata_scr_valid);
5907EXPORT_SYMBOL_GPL(sata_scr_read);
5908EXPORT_SYMBOL_GPL(sata_scr_write);
5909EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5910EXPORT_SYMBOL_GPL(ata_port_online);
5911EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5912EXPORT_SYMBOL_GPL(ata_id_string);
5913EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5914EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5915
1bc4ccff 5916EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5917EXPORT_SYMBOL_GPL(ata_timing_compute);
5918EXPORT_SYMBOL_GPL(ata_timing_merge);
5919
1da177e4
LT
5920#ifdef CONFIG_PCI
5921EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5922EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5923EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5924EXPORT_SYMBOL_GPL(ata_pci_init_one);
5925EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5926EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5927EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5928EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5929EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5930#endif /* CONFIG_PCI */
9b847548
JA
5931
5932EXPORT_SYMBOL_GPL(ata_device_suspend);
5933EXPORT_SYMBOL_GPL(ata_device_resume);
5934EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5935EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5936
ece1d636 5937EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5938EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5939EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5940EXPORT_SYMBOL_GPL(ata_port_freeze);
5941EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5942EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5943EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5944EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5945EXPORT_SYMBOL_GPL(ata_do_eh);