]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] ahci: disable NCQ support on vt8251
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
d7bb4cc7
TH
64/* debounce timing parameters in msecs { interval, duration, timeout } */
65const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
3373efd8
TH
69static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
453b07ac
TH
77struct workqueue_struct *ata_aux_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
95de719a
AL
83int atapi_dmadir = 0;
84module_param(atapi_dmadir, int, 0444);
85MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
c3c013a2
JG
87int libata_fua = 0;
88module_param_named(fua, libata_fua, int, 0444);
89MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
1da177e4
LT
91MODULE_AUTHOR("Jeff Garzik");
92MODULE_DESCRIPTION("Library module for ATA devices");
93MODULE_LICENSE("GPL");
94MODULE_VERSION(DRV_VERSION);
95
0baab86b 96
1da177e4
LT
97/**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
057ace5e 110void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
111{
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137}
138
139/**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
e12a1be6 144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
057ace5e 150void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
151{
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166}
167
8cbd6df1
AL
168static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 0,
8cbd6df1
AL
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
9a3dccc4
TH
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 196};
1da177e4
LT
197
198/**
8cbd6df1
AL
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
1da177e4 201 *
2e9edbf8 202 * Examine the device configuration and tf->flags to calculate
8cbd6df1 203 * the proper read/write commands and protocol to use.
1da177e4
LT
204 *
205 * LOCKING:
206 * caller.
207 */
9a3dccc4 208int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 209{
8cbd6df1
AL
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
9a3dccc4 212 u8 cmd;
1da177e4 213
9a3dccc4 214 int index, fua, lba48, write;
2e9edbf8 215
9a3dccc4 216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 219
8cbd6df1
AL
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
9a3dccc4 222 index = dev->multi_count ? 0 : 8;
8d238e01
AC
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
0565c26d 226 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
227 } else {
228 tf->protocol = ATA_PROT_DMA;
9a3dccc4 229 index = 16;
8cbd6df1 230 }
1da177e4 231
9a3dccc4
TH
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
1da177e4
LT
238}
239
cb95d562
TH
240/**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258{
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262}
263
c0489e4e
TH
264/**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278{
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285}
286
cb95d562 287static const struct ata_xfer_ent {
be9a50c8 288 int shift, bits;
cb95d562
TH
289 u8 base;
290} ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295};
296
297/**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311{
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319}
320
321/**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334{
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341}
342
343/**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355static int ata_xfer_mode2shift(unsigned int xfer_mode)
356{
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363}
364
1da177e4 365/**
1da7b0d0
TH
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
368 *
369 * Determine string which represents the highest speed
1da7b0d0 370 * (highest bit in @modemask).
1da177e4
LT
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
1da7b0d0 377 * @mode_mask, or the constant C string "<n/a>".
1da177e4 378 */
1da7b0d0 379static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 380{
75f554bc
TH
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
1da7b0d0 399 int highbit;
1da177e4 400
1da7b0d0
TH
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
1da177e4 404 return "<n/a>";
1da177e4
LT
405}
406
4c360c81
TH
407static const char *sata_spd_string(unsigned int spd)
408{
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417}
418
3373efd8 419void ata_dev_disable(struct ata_device *dev)
0b8efb0a 420{
e1211e3f 421 if (ata_dev_enabled(dev)) {
f15a1daf 422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
423 dev->class++;
424 }
425}
426
1da177e4
LT
427/**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447{
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469}
470
471/**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491{
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513}
514
515/**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530{
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534}
535
536/**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
057ace5e 552unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
553{
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573}
574
575/**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
b4dc7623 579 * @r_err: Value of error register on completion
1da177e4
LT
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
b4dc7623
TH
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
595 */
596
b4dc7623
TH
597static unsigned int
598ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 599{
1da177e4
LT
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
1da177e4 608 ap->ops->tf_read(ap, &tf);
0169e284 609 err = tf.feature;
b4dc7623
TH
610 if (r_err)
611 *r_err = err;
1da177e4
LT
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620
b4dc7623 621 /* determine if device is ATA or ATAPI */
1da177e4 622 class = ata_dev_classify(&tf);
b4dc7623 623
1da177e4 624 if (class == ATA_DEV_UNKNOWN)
b4dc7623 625 return ATA_DEV_NONE;
1da177e4 626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
627 return ATA_DEV_NONE;
628 return class;
1da177e4
LT
629}
630
631/**
6a62a04d 632 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
6a62a04d
TH
646void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
1da177e4
LT
648{
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663}
664
0e949ff3 665/**
6a62a04d 666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
6a62a04d 672 * This function is identical to ata_id_string except that it
0e949ff3
TH
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
6a62a04d
TH
679void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
0e949ff3
TH
681{
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
6a62a04d 686 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692}
0baab86b 693
2940740b
TH
694static u64 ata_id_n_sectors(const u16 *id)
695{
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707}
708
0baab86b
EF
709/**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
1da177e4
LT
721void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722{
723}
724
0baab86b 725
1da177e4
LT
726/**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
0baab86b
EF
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
736 *
737 * LOCKING:
738 * caller.
739 */
740
741void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742{
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756}
757
758/**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779{
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793}
794
795/**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 797 * @id: IDENTIFY DEVICE page to dump
1da177e4 798 *
0bd3300a
TH
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
1da177e4
LT
801 *
802 * LOCKING:
803 * caller.
804 */
805
0bd3300a 806static inline void ata_dump_id(const u16 *id)
1da177e4
LT
807{
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
0bd3300a
TH
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
1da177e4
LT
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
0bd3300a
TH
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
1da177e4
LT
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
0bd3300a
TH
830 id[88],
831 id[93]);
1da177e4
LT
832}
833
cb95d562
TH
834/**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849static unsigned int ata_id_xfermask(const u16 *id)
850{
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880}
881
86e45b6b
TH
882/**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
86e45b6b
TH
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903{
904 int rc;
905
2e755f68 906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918}
919
920/**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930void ata_port_flush_task(struct ata_port *ap)
931{
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
936 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
953 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
956
957 DPRINTK("EXIT\n");
958}
959
77853bf2 960void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 961{
77853bf2 962 struct completion *waiting = qc->private_data;
a2a7a662 963
a2a7a662 964 complete(waiting);
a2a7a662
TH
965}
966
967/**
968 * ata_exec_internal - execute libata internal command
a2a7a662
TH
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
d69cf37d 971 * @cdb: CDB for packet command
a2a7a662
TH
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
551e8889
TH
984 *
985 * RETURNS:
986 * Zero on success, AC_ERR_* mask on failure
a2a7a662 987 */
3373efd8 988unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
989 struct ata_taskfile *tf, const u8 *cdb,
990 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 991{
3373efd8 992 struct ata_port *ap = dev->ap;
a2a7a662
TH
993 u8 command = tf->command;
994 struct ata_queued_cmd *qc;
2ab7db1f 995 unsigned int tag, preempted_tag;
dedaf2b0 996 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
997 DECLARE_COMPLETION(wait);
998 unsigned long flags;
77853bf2 999 unsigned int err_mask;
d95a717f 1000 int rc;
a2a7a662
TH
1001
1002 spin_lock_irqsave(&ap->host_set->lock, flags);
1003
e3180499
TH
1004 /* no internal command while frozen */
1005 if (ap->flags & ATA_FLAG_FROZEN) {
1006 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1007 return AC_ERR_SYSTEM;
1008 }
1009
2ab7db1f 1010 /* initialize internal qc */
a2a7a662 1011
2ab7db1f
TH
1012 /* XXX: Tag 0 is used for drivers with legacy EH as some
1013 * drivers choke if any other tag is given. This breaks
1014 * ata_tag_internal() test for those drivers. Don't use new
1015 * EH stuff without converting to it.
1016 */
1017 if (ap->ops->error_handler)
1018 tag = ATA_TAG_INTERNAL;
1019 else
1020 tag = 0;
1021
6cec4a39 1022 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1023 BUG();
f69499f4 1024 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1025
1026 qc->tag = tag;
1027 qc->scsicmd = NULL;
1028 qc->ap = ap;
1029 qc->dev = dev;
1030 ata_qc_reinit(qc);
1031
1032 preempted_tag = ap->active_tag;
dedaf2b0
TH
1033 preempted_sactive = ap->sactive;
1034 preempted_qc_active = ap->qc_active;
2ab7db1f 1035 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1036 ap->sactive = 0;
1037 ap->qc_active = 0;
2ab7db1f
TH
1038
1039 /* prepare & issue qc */
a2a7a662 1040 qc->tf = *tf;
d69cf37d
TH
1041 if (cdb)
1042 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1043 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1044 qc->dma_dir = dma_dir;
1045 if (dma_dir != DMA_NONE) {
1046 ata_sg_init_one(qc, buf, buflen);
1047 qc->nsect = buflen / ATA_SECT_SIZE;
1048 }
1049
77853bf2 1050 qc->private_data = &wait;
a2a7a662
TH
1051 qc->complete_fn = ata_qc_complete_internal;
1052
8e0e694a 1053 ata_qc_issue(qc);
a2a7a662
TH
1054
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
d95a717f
TH
1057 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1058
1059 ata_port_flush_task(ap);
41ade50c 1060
d95a717f 1061 if (!rc) {
a2a7a662
TH
1062 spin_lock_irqsave(&ap->host_set->lock, flags);
1063
1064 /* We're racing with irq here. If we lose, the
1065 * following test prevents us from completing the qc
d95a717f
TH
1066 * twice. If we win, the port is frozen and will be
1067 * cleaned up by ->post_internal_cmd().
a2a7a662 1068 */
77853bf2 1069 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1070 qc->err_mask |= AC_ERR_TIMEOUT;
1071
1072 if (ap->ops->error_handler)
1073 ata_port_freeze(ap);
1074 else
1075 ata_qc_complete(qc);
f15a1daf
TH
1076
1077 ata_dev_printk(dev, KERN_WARNING,
1078 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1079 }
1080
1081 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1082 }
1083
d95a717f
TH
1084 /* do post_internal_cmd */
1085 if (ap->ops->post_internal_cmd)
1086 ap->ops->post_internal_cmd(qc);
1087
1088 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1089 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1090 "internal command, assuming AC_ERR_OTHER\n");
1091 qc->err_mask |= AC_ERR_OTHER;
1092 }
1093
15869303
TH
1094 /* finish up */
1095 spin_lock_irqsave(&ap->host_set->lock, flags);
1096
e61e0672 1097 *tf = qc->result_tf;
77853bf2
TH
1098 err_mask = qc->err_mask;
1099
1100 ata_qc_free(qc);
2ab7db1f 1101 ap->active_tag = preempted_tag;
dedaf2b0
TH
1102 ap->sactive = preempted_sactive;
1103 ap->qc_active = preempted_qc_active;
77853bf2 1104
1f7dd3e9
TH
1105 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1106 * Until those drivers are fixed, we detect the condition
1107 * here, fail the command with AC_ERR_SYSTEM and reenable the
1108 * port.
1109 *
1110 * Note that this doesn't change any behavior as internal
1111 * command failure results in disabling the device in the
1112 * higher layer for LLDDs without new reset/EH callbacks.
1113 *
1114 * Kill the following code as soon as those drivers are fixed.
1115 */
198e0fed 1116 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1117 err_mask |= AC_ERR_SYSTEM;
1118 ata_port_probe(ap);
1119 }
1120
15869303
TH
1121 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1122
77853bf2 1123 return err_mask;
a2a7a662
TH
1124}
1125
1bc4ccff
AC
1126/**
1127 * ata_pio_need_iordy - check if iordy needed
1128 * @adev: ATA device
1129 *
1130 * Check if the current speed of the device requires IORDY. Used
1131 * by various controllers for chip configuration.
1132 */
1133
1134unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1135{
1136 int pio;
1137 int speed = adev->pio_mode - XFER_PIO_0;
1138
1139 if (speed < 2)
1140 return 0;
1141 if (speed > 2)
1142 return 1;
2e9edbf8 1143
1bc4ccff
AC
1144 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1145
1146 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1147 pio = adev->id[ATA_ID_EIDE_PIO];
1148 /* Is the speed faster than the drive allows non IORDY ? */
1149 if (pio) {
1150 /* This is cycle times not frequency - watch the logic! */
1151 if (pio > 240) /* PIO2 is 240nS per cycle */
1152 return 1;
1153 return 0;
1154 }
1155 }
1156 return 0;
1157}
1158
1da177e4 1159/**
49016aca 1160 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1161 * @dev: target device
1162 * @p_class: pointer to class of the target device (may be changed)
1163 * @post_reset: is this read ID post-reset?
fe635c7e 1164 * @id: buffer to read IDENTIFY data into
1da177e4 1165 *
49016aca
TH
1166 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1167 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1168 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1169 * for pre-ATA4 drives.
1da177e4
LT
1170 *
1171 * LOCKING:
49016aca
TH
1172 * Kernel thread context (may sleep)
1173 *
1174 * RETURNS:
1175 * 0 on success, -errno otherwise.
1da177e4 1176 */
a9beec95
TH
1177int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1178 int post_reset, u16 *id)
1da177e4 1179{
3373efd8 1180 struct ata_port *ap = dev->ap;
49016aca 1181 unsigned int class = *p_class;
a0123703 1182 struct ata_taskfile tf;
49016aca
TH
1183 unsigned int err_mask = 0;
1184 const char *reason;
1185 int rc;
1da177e4 1186
49016aca 1187 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1188
49016aca 1189 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1190
49016aca 1191 retry:
3373efd8 1192 ata_tf_init(dev, &tf);
a0123703 1193
49016aca
TH
1194 switch (class) {
1195 case ATA_DEV_ATA:
a0123703 1196 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1197 break;
1198 case ATA_DEV_ATAPI:
a0123703 1199 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1200 break;
1201 default:
1202 rc = -ENODEV;
1203 reason = "unsupported class";
1204 goto err_out;
1da177e4
LT
1205 }
1206
a0123703 1207 tf.protocol = ATA_PROT_PIO;
1da177e4 1208
3373efd8 1209 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1210 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1211 if (err_mask) {
49016aca
TH
1212 rc = -EIO;
1213 reason = "I/O error";
1da177e4
LT
1214 goto err_out;
1215 }
1216
49016aca 1217 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1218
49016aca 1219 /* sanity check */
692785e7 1220 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1221 rc = -EINVAL;
1222 reason = "device reports illegal type";
1223 goto err_out;
1224 }
1225
1226 if (post_reset && class == ATA_DEV_ATA) {
1227 /*
1228 * The exact sequence expected by certain pre-ATA4 drives is:
1229 * SRST RESET
1230 * IDENTIFY
1231 * INITIALIZE DEVICE PARAMETERS
1232 * anything else..
1233 * Some drives were very specific about that exact sequence.
1234 */
1235 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1236 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1237 if (err_mask) {
1238 rc = -EIO;
1239 reason = "INIT_DEV_PARAMS failed";
1240 goto err_out;
1241 }
1242
1243 /* current CHS translation info (id[53-58]) might be
1244 * changed. reread the identify device info.
1245 */
1246 post_reset = 0;
1247 goto retry;
1248 }
1249 }
1250
1251 *p_class = class;
fe635c7e 1252
49016aca
TH
1253 return 0;
1254
1255 err_out:
f15a1daf
TH
1256 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1257 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1258 return rc;
1259}
1260
3373efd8 1261static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1262{
3373efd8 1263 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1264}
1265
a6e6ce8e
TH
1266static void ata_dev_config_ncq(struct ata_device *dev,
1267 char *desc, size_t desc_sz)
1268{
1269 struct ata_port *ap = dev->ap;
1270 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1271
1272 if (!ata_id_has_ncq(dev->id)) {
1273 desc[0] = '\0';
1274 return;
1275 }
1276
1277 if (ap->flags & ATA_FLAG_NCQ) {
1278 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1279 dev->flags |= ATA_DFLAG_NCQ;
1280 }
1281
1282 if (hdepth >= ddepth)
1283 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1284 else
1285 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1286}
1287
49016aca 1288/**
ffeae418 1289 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1290 * @dev: Target device to configure
4c2d721a 1291 * @print_info: Enable device info printout
ffeae418
TH
1292 *
1293 * Configure @dev according to @dev->id. Generic and low-level
1294 * driver specific fixups are also applied.
49016aca
TH
1295 *
1296 * LOCKING:
ffeae418
TH
1297 * Kernel thread context (may sleep)
1298 *
1299 * RETURNS:
1300 * 0 on success, -errno otherwise
49016aca 1301 */
a9beec95 1302int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1303{
3373efd8 1304 struct ata_port *ap = dev->ap;
1148c3a7 1305 const u16 *id = dev->id;
ff8854b2 1306 unsigned int xfer_mask;
49016aca
TH
1307 int i, rc;
1308
e1211e3f 1309 if (!ata_dev_enabled(dev)) {
49016aca 1310 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1311 ap->id, dev->devno);
1312 return 0;
49016aca
TH
1313 }
1314
ffeae418 1315 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1316
c39f5ebe
TH
1317 /* print device capabilities */
1318 if (print_info)
f15a1daf
TH
1319 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1320 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1321 id[49], id[82], id[83], id[84],
1322 id[85], id[86], id[87], id[88]);
c39f5ebe 1323
208a9933 1324 /* initialize to-be-configured parameters */
ea1dd4e1 1325 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1326 dev->max_sectors = 0;
1327 dev->cdb_len = 0;
1328 dev->n_sectors = 0;
1329 dev->cylinders = 0;
1330 dev->heads = 0;
1331 dev->sectors = 0;
1332
1da177e4
LT
1333 /*
1334 * common ATA, ATAPI feature tests
1335 */
1336
ff8854b2 1337 /* find max transfer mode; for printk only */
1148c3a7 1338 xfer_mask = ata_id_xfermask(id);
1da177e4 1339
1148c3a7 1340 ata_dump_id(id);
1da177e4
LT
1341
1342 /* ATA-specific feature tests */
1343 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1344 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1345
1148c3a7 1346 if (ata_id_has_lba(id)) {
4c2d721a 1347 const char *lba_desc;
a6e6ce8e 1348 char ncq_desc[20];
8bf62ece 1349
4c2d721a
TH
1350 lba_desc = "LBA";
1351 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1352 if (ata_id_has_lba48(id)) {
8bf62ece 1353 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1354 lba_desc = "LBA48";
1355 }
8bf62ece 1356
a6e6ce8e
TH
1357 /* config NCQ */
1358 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1359
8bf62ece 1360 /* print device info to dmesg */
4c2d721a 1361 if (print_info)
f15a1daf 1362 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1363 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1364 ata_id_major_version(id),
1365 ata_mode_string(xfer_mask),
1366 (unsigned long long)dev->n_sectors,
a6e6ce8e 1367 lba_desc, ncq_desc);
ffeae418 1368 } else {
8bf62ece
AL
1369 /* CHS */
1370
1371 /* Default translation */
1148c3a7
TH
1372 dev->cylinders = id[1];
1373 dev->heads = id[3];
1374 dev->sectors = id[6];
8bf62ece 1375
1148c3a7 1376 if (ata_id_current_chs_valid(id)) {
8bf62ece 1377 /* Current CHS translation is valid. */
1148c3a7
TH
1378 dev->cylinders = id[54];
1379 dev->heads = id[55];
1380 dev->sectors = id[56];
8bf62ece
AL
1381 }
1382
1383 /* print device info to dmesg */
4c2d721a 1384 if (print_info)
f15a1daf
TH
1385 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1386 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1387 ata_id_major_version(id),
1388 ata_mode_string(xfer_mask),
1389 (unsigned long long)dev->n_sectors,
1390 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1391 }
1392
07f6f7d0
AL
1393 if (dev->id[59] & 0x100) {
1394 dev->multi_count = dev->id[59] & 0xff;
1395 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1396 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1397 }
1398
6e7846e9 1399 dev->cdb_len = 16;
1da177e4
LT
1400 }
1401
1402 /* ATAPI-specific feature tests */
2c13b7ce 1403 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1404 char *cdb_intr_string = "";
1405
1148c3a7 1406 rc = atapi_cdb_len(id);
1da177e4 1407 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1408 ata_dev_printk(dev, KERN_WARNING,
1409 "unsupported CDB len\n");
ffeae418 1410 rc = -EINVAL;
1da177e4
LT
1411 goto err_out_nosup;
1412 }
6e7846e9 1413 dev->cdb_len = (unsigned int) rc;
1da177e4 1414
08a556db 1415 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1416 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1417 cdb_intr_string = ", CDB intr";
1418 }
312f7da2 1419
1da177e4 1420 /* print device info to dmesg */
4c2d721a 1421 if (print_info)
12436c30
TH
1422 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1423 ata_mode_string(xfer_mask),
1424 cdb_intr_string);
1da177e4
LT
1425 }
1426
6e7846e9
TH
1427 ap->host->max_cmd_len = 0;
1428 for (i = 0; i < ATA_MAX_DEVICES; i++)
1429 ap->host->max_cmd_len = max_t(unsigned int,
1430 ap->host->max_cmd_len,
1431 ap->device[i].cdb_len);
1432
4b2f3ede 1433 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1434 if (ata_dev_knobble(dev)) {
4c2d721a 1435 if (print_info)
f15a1daf
TH
1436 ata_dev_printk(dev, KERN_INFO,
1437 "applying bridge limits\n");
5a529139 1438 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1439 dev->max_sectors = ATA_MAX_SECTORS;
1440 }
1441
1442 if (ap->ops->dev_config)
1443 ap->ops->dev_config(ap, dev);
1444
1da177e4 1445 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1446 return 0;
1da177e4
LT
1447
1448err_out_nosup:
1da177e4 1449 DPRINTK("EXIT, err\n");
ffeae418 1450 return rc;
1da177e4
LT
1451}
1452
1453/**
1454 * ata_bus_probe - Reset and probe ATA bus
1455 * @ap: Bus to probe
1456 *
0cba632b
JG
1457 * Master ATA bus probing function. Initiates a hardware-dependent
1458 * bus reset, then attempts to identify any devices found on
1459 * the bus.
1460 *
1da177e4 1461 * LOCKING:
0cba632b 1462 * PCI/etc. bus probe sem.
1da177e4
LT
1463 *
1464 * RETURNS:
96072e69 1465 * Zero on success, negative errno otherwise.
1da177e4
LT
1466 */
1467
1468static int ata_bus_probe(struct ata_port *ap)
1469{
28ca5c57 1470 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1471 int tries[ATA_MAX_DEVICES];
1472 int i, rc, down_xfermask;
e82cbdb9 1473 struct ata_device *dev;
1da177e4 1474
28ca5c57 1475 ata_port_probe(ap);
c19ba8af 1476
14d2bac1
TH
1477 for (i = 0; i < ATA_MAX_DEVICES; i++)
1478 tries[i] = ATA_PROBE_MAX_TRIES;
1479
1480 retry:
1481 down_xfermask = 0;
1482
2044470c 1483 /* reset and determine device classes */
52783c5d 1484 ap->ops->phy_reset(ap);
2061a47a 1485
52783c5d
TH
1486 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1487 dev = &ap->device[i];
c19ba8af 1488
52783c5d
TH
1489 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1490 dev->class != ATA_DEV_UNKNOWN)
1491 classes[dev->devno] = dev->class;
1492 else
1493 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1494
52783c5d 1495 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1496 }
1da177e4 1497
52783c5d 1498 ata_port_probe(ap);
2044470c 1499
b6079ca4
AC
1500 /* after the reset the device state is PIO 0 and the controller
1501 state is undefined. Record the mode */
1502
1503 for (i = 0; i < ATA_MAX_DEVICES; i++)
1504 ap->device[i].pio_mode = XFER_PIO_0;
1505
28ca5c57 1506 /* read IDENTIFY page and configure devices */
1da177e4 1507 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1508 dev = &ap->device[i];
28ca5c57 1509
ec573755
TH
1510 if (tries[i])
1511 dev->class = classes[i];
ffeae418 1512
14d2bac1 1513 if (!ata_dev_enabled(dev))
ffeae418 1514 continue;
ffeae418 1515
3373efd8 1516 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1517 if (rc)
1518 goto fail;
1519
3373efd8 1520 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1521 if (rc)
1522 goto fail;
1da177e4
LT
1523 }
1524
e82cbdb9 1525 /* configure transfer mode */
3adcebb2 1526 rc = ata_set_mode(ap, &dev);
51713d35
TH
1527 if (rc) {
1528 down_xfermask = 1;
1529 goto fail;
e82cbdb9 1530 }
1da177e4 1531
e82cbdb9
TH
1532 for (i = 0; i < ATA_MAX_DEVICES; i++)
1533 if (ata_dev_enabled(&ap->device[i]))
1534 return 0;
1da177e4 1535
e82cbdb9
TH
1536 /* no device present, disable port */
1537 ata_port_disable(ap);
1da177e4 1538 ap->ops->port_disable(ap);
96072e69 1539 return -ENODEV;
14d2bac1
TH
1540
1541 fail:
1542 switch (rc) {
1543 case -EINVAL:
1544 case -ENODEV:
1545 tries[dev->devno] = 0;
1546 break;
1547 case -EIO:
3c567b7d 1548 sata_down_spd_limit(ap);
14d2bac1
TH
1549 /* fall through */
1550 default:
1551 tries[dev->devno]--;
1552 if (down_xfermask &&
3373efd8 1553 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1554 tries[dev->devno] = 0;
1555 }
1556
ec573755 1557 if (!tries[dev->devno]) {
3373efd8
TH
1558 ata_down_xfermask_limit(dev, 1);
1559 ata_dev_disable(dev);
ec573755
TH
1560 }
1561
14d2bac1 1562 goto retry;
1da177e4
LT
1563}
1564
1565/**
0cba632b
JG
1566 * ata_port_probe - Mark port as enabled
1567 * @ap: Port for which we indicate enablement
1da177e4 1568 *
0cba632b
JG
1569 * Modify @ap data structure such that the system
1570 * thinks that the entire port is enabled.
1571 *
1572 * LOCKING: host_set lock, or some other form of
1573 * serialization.
1da177e4
LT
1574 */
1575
1576void ata_port_probe(struct ata_port *ap)
1577{
198e0fed 1578 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1579}
1580
3be680b7
TH
1581/**
1582 * sata_print_link_status - Print SATA link status
1583 * @ap: SATA port to printk link status about
1584 *
1585 * This function prints link speed and status of a SATA link.
1586 *
1587 * LOCKING:
1588 * None.
1589 */
1590static void sata_print_link_status(struct ata_port *ap)
1591{
6d5f9732 1592 u32 sstatus, scontrol, tmp;
3be680b7 1593
81952c54 1594 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1595 return;
81952c54 1596 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1597
81952c54 1598 if (ata_port_online(ap)) {
3be680b7 1599 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1600 ata_port_printk(ap, KERN_INFO,
1601 "SATA link up %s (SStatus %X SControl %X)\n",
1602 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1603 } else {
f15a1daf
TH
1604 ata_port_printk(ap, KERN_INFO,
1605 "SATA link down (SStatus %X SControl %X)\n",
1606 sstatus, scontrol);
3be680b7
TH
1607 }
1608}
1609
1da177e4 1610/**
780a87f7
JG
1611 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1612 * @ap: SATA port associated with target SATA PHY.
1da177e4 1613 *
780a87f7
JG
1614 * This function issues commands to standard SATA Sxxx
1615 * PHY registers, to wake up the phy (and device), and
1616 * clear any reset condition.
1da177e4
LT
1617 *
1618 * LOCKING:
0cba632b 1619 * PCI/etc. bus probe sem.
1da177e4
LT
1620 *
1621 */
1622void __sata_phy_reset(struct ata_port *ap)
1623{
1624 u32 sstatus;
1625 unsigned long timeout = jiffies + (HZ * 5);
1626
1627 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1628 /* issue phy wake/reset */
81952c54 1629 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1630 /* Couldn't find anything in SATA I/II specs, but
1631 * AHCI-1.1 10.4.2 says at least 1 ms. */
1632 mdelay(1);
1da177e4 1633 }
81952c54
TH
1634 /* phy wake/clear reset */
1635 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1636
1637 /* wait for phy to become ready, if necessary */
1638 do {
1639 msleep(200);
81952c54 1640 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1641 if ((sstatus & 0xf) != 1)
1642 break;
1643 } while (time_before(jiffies, timeout));
1644
3be680b7
TH
1645 /* print link status */
1646 sata_print_link_status(ap);
656563e3 1647
3be680b7 1648 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1649 if (!ata_port_offline(ap))
1da177e4 1650 ata_port_probe(ap);
3be680b7 1651 else
1da177e4 1652 ata_port_disable(ap);
1da177e4 1653
198e0fed 1654 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1655 return;
1656
1657 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1658 ata_port_disable(ap);
1659 return;
1660 }
1661
1662 ap->cbl = ATA_CBL_SATA;
1663}
1664
1665/**
780a87f7
JG
1666 * sata_phy_reset - Reset SATA bus.
1667 * @ap: SATA port associated with target SATA PHY.
1da177e4 1668 *
780a87f7
JG
1669 * This function resets the SATA bus, and then probes
1670 * the bus for devices.
1da177e4
LT
1671 *
1672 * LOCKING:
0cba632b 1673 * PCI/etc. bus probe sem.
1da177e4
LT
1674 *
1675 */
1676void sata_phy_reset(struct ata_port *ap)
1677{
1678 __sata_phy_reset(ap);
198e0fed 1679 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1680 return;
1681 ata_bus_reset(ap);
1682}
1683
ebdfca6e
AC
1684/**
1685 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1686 * @adev: device
1687 *
1688 * Obtain the other device on the same cable, or if none is
1689 * present NULL is returned
1690 */
2e9edbf8 1691
3373efd8 1692struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1693{
3373efd8 1694 struct ata_port *ap = adev->ap;
ebdfca6e 1695 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1696 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1697 return NULL;
1698 return pair;
1699}
1700
1da177e4 1701/**
780a87f7
JG
1702 * ata_port_disable - Disable port.
1703 * @ap: Port to be disabled.
1da177e4 1704 *
780a87f7
JG
1705 * Modify @ap data structure such that the system
1706 * thinks that the entire port is disabled, and should
1707 * never attempt to probe or communicate with devices
1708 * on this port.
1709 *
1710 * LOCKING: host_set lock, or some other form of
1711 * serialization.
1da177e4
LT
1712 */
1713
1714void ata_port_disable(struct ata_port *ap)
1715{
1716 ap->device[0].class = ATA_DEV_NONE;
1717 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1718 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1719}
1720
1c3fae4d 1721/**
3c567b7d 1722 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1723 * @ap: Port to adjust SATA spd limit for
1724 *
1725 * Adjust SATA spd limit of @ap downward. Note that this
1726 * function only adjusts the limit. The change must be applied
3c567b7d 1727 * using sata_set_spd().
1c3fae4d
TH
1728 *
1729 * LOCKING:
1730 * Inherited from caller.
1731 *
1732 * RETURNS:
1733 * 0 on success, negative errno on failure
1734 */
3c567b7d 1735int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1736{
81952c54
TH
1737 u32 sstatus, spd, mask;
1738 int rc, highbit;
1c3fae4d 1739
81952c54
TH
1740 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1741 if (rc)
1742 return rc;
1c3fae4d
TH
1743
1744 mask = ap->sata_spd_limit;
1745 if (mask <= 1)
1746 return -EINVAL;
1747 highbit = fls(mask) - 1;
1748 mask &= ~(1 << highbit);
1749
81952c54 1750 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1751 if (spd <= 1)
1752 return -EINVAL;
1753 spd--;
1754 mask &= (1 << spd) - 1;
1755 if (!mask)
1756 return -EINVAL;
1757
1758 ap->sata_spd_limit = mask;
1759
f15a1daf
TH
1760 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1761 sata_spd_string(fls(mask)));
1c3fae4d
TH
1762
1763 return 0;
1764}
1765
3c567b7d 1766static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1767{
1768 u32 spd, limit;
1769
1770 if (ap->sata_spd_limit == UINT_MAX)
1771 limit = 0;
1772 else
1773 limit = fls(ap->sata_spd_limit);
1774
1775 spd = (*scontrol >> 4) & 0xf;
1776 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1777
1778 return spd != limit;
1779}
1780
1781/**
3c567b7d 1782 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1783 * @ap: Port in question
1784 *
1785 * Test whether the spd limit in SControl matches
1786 * @ap->sata_spd_limit. This function is used to determine
1787 * whether hardreset is necessary to apply SATA spd
1788 * configuration.
1789 *
1790 * LOCKING:
1791 * Inherited from caller.
1792 *
1793 * RETURNS:
1794 * 1 if SATA spd configuration is needed, 0 otherwise.
1795 */
3c567b7d 1796int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1797{
1798 u32 scontrol;
1799
81952c54 1800 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1801 return 0;
1802
3c567b7d 1803 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1804}
1805
1806/**
3c567b7d 1807 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1808 * @ap: Port to set SATA spd for
1809 *
1810 * Set SATA spd of @ap according to sata_spd_limit.
1811 *
1812 * LOCKING:
1813 * Inherited from caller.
1814 *
1815 * RETURNS:
1816 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1817 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1818 */
3c567b7d 1819int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1820{
1821 u32 scontrol;
81952c54 1822 int rc;
1c3fae4d 1823
81952c54
TH
1824 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1825 return rc;
1c3fae4d 1826
3c567b7d 1827 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1828 return 0;
1829
81952c54
TH
1830 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1831 return rc;
1832
1c3fae4d
TH
1833 return 1;
1834}
1835
452503f9
AC
1836/*
1837 * This mode timing computation functionality is ported over from
1838 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1839 */
1840/*
1841 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1842 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1843 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1844 * is currently supported only by Maxtor drives.
452503f9
AC
1845 */
1846
1847static const struct ata_timing ata_timing[] = {
1848
1849 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1850 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1851 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1852 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1853
1854 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1855 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1856 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1857
1858/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1859
452503f9
AC
1860 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1861 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1862 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1863
452503f9
AC
1864 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1865 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1866 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1867
1868/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1869 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1870 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1871
1872 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1873 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1874 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1875
1876/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1877
1878 { 0xFF }
1879};
1880
1881#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1882#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1883
1884static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1885{
1886 q->setup = EZ(t->setup * 1000, T);
1887 q->act8b = EZ(t->act8b * 1000, T);
1888 q->rec8b = EZ(t->rec8b * 1000, T);
1889 q->cyc8b = EZ(t->cyc8b * 1000, T);
1890 q->active = EZ(t->active * 1000, T);
1891 q->recover = EZ(t->recover * 1000, T);
1892 q->cycle = EZ(t->cycle * 1000, T);
1893 q->udma = EZ(t->udma * 1000, UT);
1894}
1895
1896void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1897 struct ata_timing *m, unsigned int what)
1898{
1899 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1900 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1901 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1902 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1903 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1904 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1905 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1906 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1907}
1908
1909static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1910{
1911 const struct ata_timing *t;
1912
1913 for (t = ata_timing; t->mode != speed; t++)
91190758 1914 if (t->mode == 0xFF)
452503f9 1915 return NULL;
2e9edbf8 1916 return t;
452503f9
AC
1917}
1918
1919int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1920 struct ata_timing *t, int T, int UT)
1921{
1922 const struct ata_timing *s;
1923 struct ata_timing p;
1924
1925 /*
2e9edbf8 1926 * Find the mode.
75b1f2f8 1927 */
452503f9
AC
1928
1929 if (!(s = ata_timing_find_mode(speed)))
1930 return -EINVAL;
1931
75b1f2f8
AL
1932 memcpy(t, s, sizeof(*s));
1933
452503f9
AC
1934 /*
1935 * If the drive is an EIDE drive, it can tell us it needs extended
1936 * PIO/MW_DMA cycle timing.
1937 */
1938
1939 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1940 memset(&p, 0, sizeof(p));
1941 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1942 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1943 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1944 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1945 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1946 }
1947 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1948 }
1949
1950 /*
1951 * Convert the timing to bus clock counts.
1952 */
1953
75b1f2f8 1954 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1955
1956 /*
c893a3ae
RD
1957 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1958 * S.M.A.R.T * and some other commands. We have to ensure that the
1959 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1960 */
1961
1962 if (speed > XFER_PIO_4) {
1963 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1964 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1965 }
1966
1967 /*
c893a3ae 1968 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1969 */
1970
1971 if (t->act8b + t->rec8b < t->cyc8b) {
1972 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1973 t->rec8b = t->cyc8b - t->act8b;
1974 }
1975
1976 if (t->active + t->recover < t->cycle) {
1977 t->active += (t->cycle - (t->active + t->recover)) / 2;
1978 t->recover = t->cycle - t->active;
1979 }
1980
1981 return 0;
1982}
1983
cf176e1a
TH
1984/**
1985 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1986 * @dev: Device to adjust xfer masks
1987 * @force_pio0: Force PIO0
1988 *
1989 * Adjust xfer masks of @dev downward. Note that this function
1990 * does not apply the change. Invoking ata_set_mode() afterwards
1991 * will apply the limit.
1992 *
1993 * LOCKING:
1994 * Inherited from caller.
1995 *
1996 * RETURNS:
1997 * 0 on success, negative errno on failure
1998 */
3373efd8 1999int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2000{
2001 unsigned long xfer_mask;
2002 int highbit;
2003
2004 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2005 dev->udma_mask);
2006
2007 if (!xfer_mask)
2008 goto fail;
2009 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2010 if (xfer_mask & ATA_MASK_UDMA)
2011 xfer_mask &= ~ATA_MASK_MWDMA;
2012
2013 highbit = fls(xfer_mask) - 1;
2014 xfer_mask &= ~(1 << highbit);
2015 if (force_pio0)
2016 xfer_mask &= 1 << ATA_SHIFT_PIO;
2017 if (!xfer_mask)
2018 goto fail;
2019
2020 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2021 &dev->udma_mask);
2022
f15a1daf
TH
2023 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2024 ata_mode_string(xfer_mask));
cf176e1a
TH
2025
2026 return 0;
2027
2028 fail:
2029 return -EINVAL;
2030}
2031
3373efd8 2032static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2033{
83206a29
TH
2034 unsigned int err_mask;
2035 int rc;
1da177e4 2036
e8384607 2037 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2038 if (dev->xfer_shift == ATA_SHIFT_PIO)
2039 dev->flags |= ATA_DFLAG_PIO;
2040
3373efd8 2041 err_mask = ata_dev_set_xfermode(dev);
83206a29 2042 if (err_mask) {
f15a1daf
TH
2043 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2044 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2045 return -EIO;
2046 }
1da177e4 2047
3373efd8 2048 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2049 if (rc)
83206a29 2050 return rc;
48a8a14f 2051
23e71c3d
TH
2052 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2053 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2054
f15a1daf
TH
2055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2056 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2057 return 0;
1da177e4
LT
2058}
2059
1da177e4
LT
2060/**
2061 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2062 * @ap: port on which timings will be programmed
e82cbdb9 2063 * @r_failed_dev: out paramter for failed device
1da177e4 2064 *
e82cbdb9
TH
2065 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2066 * ata_set_mode() fails, pointer to the failing device is
2067 * returned in @r_failed_dev.
780a87f7 2068 *
1da177e4 2069 * LOCKING:
0cba632b 2070 * PCI/etc. bus probe sem.
e82cbdb9
TH
2071 *
2072 * RETURNS:
2073 * 0 on success, negative errno otherwise
1da177e4 2074 */
1ad8e7f9 2075int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2076{
e8e0619f 2077 struct ata_device *dev;
e82cbdb9 2078 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2079
3adcebb2
TH
2080 /* has private set_mode? */
2081 if (ap->ops->set_mode) {
2082 /* FIXME: make ->set_mode handle no device case and
2083 * return error code and failing device on failure.
2084 */
2085 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2086 if (ata_dev_enabled(&ap->device[i])) {
2087 ap->ops->set_mode(ap);
2088 break;
2089 }
2090 }
2091 return 0;
2092 }
2093
a6d5a51c
TH
2094 /* step 1: calculate xfer_mask */
2095 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2096 unsigned int pio_mask, dma_mask;
a6d5a51c 2097
e8e0619f
TH
2098 dev = &ap->device[i];
2099
e1211e3f 2100 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2101 continue;
2102
3373efd8 2103 ata_dev_xfermask(dev);
1da177e4 2104
acf356b1
TH
2105 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2106 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2107 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2108 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2109
4f65977d 2110 found = 1;
5444a6f4
AC
2111 if (dev->dma_mode)
2112 used_dma = 1;
a6d5a51c 2113 }
4f65977d 2114 if (!found)
e82cbdb9 2115 goto out;
a6d5a51c
TH
2116
2117 /* step 2: always set host PIO timings */
e8e0619f
TH
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2120 if (!ata_dev_enabled(dev))
2121 continue;
2122
2123 if (!dev->pio_mode) {
f15a1daf 2124 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2125 rc = -EINVAL;
e82cbdb9 2126 goto out;
e8e0619f
TH
2127 }
2128
2129 dev->xfer_mode = dev->pio_mode;
2130 dev->xfer_shift = ATA_SHIFT_PIO;
2131 if (ap->ops->set_piomode)
2132 ap->ops->set_piomode(ap, dev);
2133 }
1da177e4 2134
a6d5a51c 2135 /* step 3: set host DMA timings */
e8e0619f
TH
2136 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2137 dev = &ap->device[i];
2138
2139 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2140 continue;
2141
2142 dev->xfer_mode = dev->dma_mode;
2143 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2144 if (ap->ops->set_dmamode)
2145 ap->ops->set_dmamode(ap, dev);
2146 }
1da177e4
LT
2147
2148 /* step 4: update devices' xfer mode */
83206a29 2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2150 dev = &ap->device[i];
1da177e4 2151
e1211e3f 2152 if (!ata_dev_enabled(dev))
83206a29
TH
2153 continue;
2154
3373efd8 2155 rc = ata_dev_set_mode(dev);
5bbc53f4 2156 if (rc)
e82cbdb9 2157 goto out;
83206a29 2158 }
1da177e4 2159
e8e0619f
TH
2160 /* Record simplex status. If we selected DMA then the other
2161 * host channels are not permitted to do so.
5444a6f4 2162 */
5444a6f4
AC
2163 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2164 ap->host_set->simplex_claimed = 1;
2165
e8e0619f 2166 /* step5: chip specific finalisation */
1da177e4
LT
2167 if (ap->ops->post_set_mode)
2168 ap->ops->post_set_mode(ap);
2169
e82cbdb9
TH
2170 out:
2171 if (rc)
2172 *r_failed_dev = dev;
2173 return rc;
1da177e4
LT
2174}
2175
1fdffbce
JG
2176/**
2177 * ata_tf_to_host - issue ATA taskfile to host controller
2178 * @ap: port to which command is being issued
2179 * @tf: ATA taskfile register set
2180 *
2181 * Issues ATA taskfile register set to ATA host controller,
2182 * with proper synchronization with interrupt handler and
2183 * other threads.
2184 *
2185 * LOCKING:
2186 * spin_lock_irqsave(host_set lock)
2187 */
2188
2189static inline void ata_tf_to_host(struct ata_port *ap,
2190 const struct ata_taskfile *tf)
2191{
2192 ap->ops->tf_load(ap, tf);
2193 ap->ops->exec_command(ap, tf);
2194}
2195
1da177e4
LT
2196/**
2197 * ata_busy_sleep - sleep until BSY clears, or timeout
2198 * @ap: port containing status register to be polled
2199 * @tmout_pat: impatience timeout
2200 * @tmout: overall timeout
2201 *
780a87f7
JG
2202 * Sleep until ATA Status register bit BSY clears,
2203 * or a timeout occurs.
2204 *
2205 * LOCKING: None.
1da177e4
LT
2206 */
2207
6f8b9958
TH
2208unsigned int ata_busy_sleep (struct ata_port *ap,
2209 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2210{
2211 unsigned long timer_start, timeout;
2212 u8 status;
2213
2214 status = ata_busy_wait(ap, ATA_BUSY, 300);
2215 timer_start = jiffies;
2216 timeout = timer_start + tmout_pat;
2217 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2218 msleep(50);
2219 status = ata_busy_wait(ap, ATA_BUSY, 3);
2220 }
2221
2222 if (status & ATA_BUSY)
f15a1daf
TH
2223 ata_port_printk(ap, KERN_WARNING,
2224 "port is slow to respond, please be patient\n");
1da177e4
LT
2225
2226 timeout = timer_start + tmout;
2227 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2228 msleep(50);
2229 status = ata_chk_status(ap);
2230 }
2231
2232 if (status & ATA_BUSY) {
f15a1daf
TH
2233 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2234 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2235 return 1;
2236 }
2237
2238 return 0;
2239}
2240
2241static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2242{
2243 struct ata_ioports *ioaddr = &ap->ioaddr;
2244 unsigned int dev0 = devmask & (1 << 0);
2245 unsigned int dev1 = devmask & (1 << 1);
2246 unsigned long timeout;
2247
2248 /* if device 0 was found in ata_devchk, wait for its
2249 * BSY bit to clear
2250 */
2251 if (dev0)
2252 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2253
2254 /* if device 1 was found in ata_devchk, wait for
2255 * register access, then wait for BSY to clear
2256 */
2257 timeout = jiffies + ATA_TMOUT_BOOT;
2258 while (dev1) {
2259 u8 nsect, lbal;
2260
2261 ap->ops->dev_select(ap, 1);
2262 if (ap->flags & ATA_FLAG_MMIO) {
2263 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2264 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2265 } else {
2266 nsect = inb(ioaddr->nsect_addr);
2267 lbal = inb(ioaddr->lbal_addr);
2268 }
2269 if ((nsect == 1) && (lbal == 1))
2270 break;
2271 if (time_after(jiffies, timeout)) {
2272 dev1 = 0;
2273 break;
2274 }
2275 msleep(50); /* give drive a breather */
2276 }
2277 if (dev1)
2278 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2279
2280 /* is all this really necessary? */
2281 ap->ops->dev_select(ap, 0);
2282 if (dev1)
2283 ap->ops->dev_select(ap, 1);
2284 if (dev0)
2285 ap->ops->dev_select(ap, 0);
2286}
2287
1da177e4
LT
2288static unsigned int ata_bus_softreset(struct ata_port *ap,
2289 unsigned int devmask)
2290{
2291 struct ata_ioports *ioaddr = &ap->ioaddr;
2292
2293 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2294
2295 /* software reset. causes dev0 to be selected */
2296 if (ap->flags & ATA_FLAG_MMIO) {
2297 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2298 udelay(20); /* FIXME: flush */
2299 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2300 udelay(20); /* FIXME: flush */
2301 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2302 } else {
2303 outb(ap->ctl, ioaddr->ctl_addr);
2304 udelay(10);
2305 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2306 udelay(10);
2307 outb(ap->ctl, ioaddr->ctl_addr);
2308 }
2309
2310 /* spec mandates ">= 2ms" before checking status.
2311 * We wait 150ms, because that was the magic delay used for
2312 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2313 * between when the ATA command register is written, and then
2314 * status is checked. Because waiting for "a while" before
2315 * checking status is fine, post SRST, we perform this magic
2316 * delay here as well.
09c7ad79
AC
2317 *
2318 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2319 */
2320 msleep(150);
2321
2e9edbf8 2322 /* Before we perform post reset processing we want to see if
298a41ca
TH
2323 * the bus shows 0xFF because the odd clown forgets the D7
2324 * pulldown resistor.
2325 */
987d2f05 2326 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2327 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2328 return AC_ERR_OTHER;
987d2f05 2329 }
09c7ad79 2330
1da177e4
LT
2331 ata_bus_post_reset(ap, devmask);
2332
2333 return 0;
2334}
2335
2336/**
2337 * ata_bus_reset - reset host port and associated ATA channel
2338 * @ap: port to reset
2339 *
2340 * This is typically the first time we actually start issuing
2341 * commands to the ATA channel. We wait for BSY to clear, then
2342 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2343 * result. Determine what devices, if any, are on the channel
2344 * by looking at the device 0/1 error register. Look at the signature
2345 * stored in each device's taskfile registers, to determine if
2346 * the device is ATA or ATAPI.
2347 *
2348 * LOCKING:
0cba632b
JG
2349 * PCI/etc. bus probe sem.
2350 * Obtains host_set lock.
1da177e4
LT
2351 *
2352 * SIDE EFFECTS:
198e0fed 2353 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2354 */
2355
2356void ata_bus_reset(struct ata_port *ap)
2357{
2358 struct ata_ioports *ioaddr = &ap->ioaddr;
2359 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2360 u8 err;
aec5c3c1 2361 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2362
2363 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2364
2365 /* determine if device 0/1 are present */
2366 if (ap->flags & ATA_FLAG_SATA_RESET)
2367 dev0 = 1;
2368 else {
2369 dev0 = ata_devchk(ap, 0);
2370 if (slave_possible)
2371 dev1 = ata_devchk(ap, 1);
2372 }
2373
2374 if (dev0)
2375 devmask |= (1 << 0);
2376 if (dev1)
2377 devmask |= (1 << 1);
2378
2379 /* select device 0 again */
2380 ap->ops->dev_select(ap, 0);
2381
2382 /* issue bus reset */
2383 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2384 if (ata_bus_softreset(ap, devmask))
2385 goto err_out;
1da177e4
LT
2386
2387 /*
2388 * determine by signature whether we have ATA or ATAPI devices
2389 */
b4dc7623 2390 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2391 if ((slave_possible) && (err != 0x81))
b4dc7623 2392 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2393
2394 /* re-enable interrupts */
2395 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2396 ata_irq_on(ap);
2397
2398 /* is double-select really necessary? */
2399 if (ap->device[1].class != ATA_DEV_NONE)
2400 ap->ops->dev_select(ap, 1);
2401 if (ap->device[0].class != ATA_DEV_NONE)
2402 ap->ops->dev_select(ap, 0);
2403
2404 /* if no devices were detected, disable this port */
2405 if ((ap->device[0].class == ATA_DEV_NONE) &&
2406 (ap->device[1].class == ATA_DEV_NONE))
2407 goto err_out;
2408
2409 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2410 /* set up device control for ATA_FLAG_SATA_RESET */
2411 if (ap->flags & ATA_FLAG_MMIO)
2412 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2413 else
2414 outb(ap->ctl, ioaddr->ctl_addr);
2415 }
2416
2417 DPRINTK("EXIT\n");
2418 return;
2419
2420err_out:
f15a1daf 2421 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2422 ap->ops->port_disable(ap);
2423
2424 DPRINTK("EXIT\n");
2425}
2426
d7bb4cc7
TH
2427/**
2428 * sata_phy_debounce - debounce SATA phy status
2429 * @ap: ATA port to debounce SATA phy status for
2430 * @params: timing parameters { interval, duratinon, timeout } in msec
2431 *
2432 * Make sure SStatus of @ap reaches stable state, determined by
2433 * holding the same value where DET is not 1 for @duration polled
2434 * every @interval, before @timeout. Timeout constraints the
2435 * beginning of the stable state. Because, after hot unplugging,
2436 * DET gets stuck at 1 on some controllers, this functions waits
2437 * until timeout then returns 0 if DET is stable at 1.
2438 *
2439 * LOCKING:
2440 * Kernel thread context (may sleep)
2441 *
2442 * RETURNS:
2443 * 0 on success, -errno on failure.
2444 */
2445int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2446{
d7bb4cc7
TH
2447 unsigned long interval_msec = params[0];
2448 unsigned long duration = params[1] * HZ / 1000;
2449 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2450 unsigned long last_jiffies;
2451 u32 last, cur;
2452 int rc;
2453
2454 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2455 return rc;
2456 cur &= 0xf;
2457
2458 last = cur;
2459 last_jiffies = jiffies;
2460
2461 while (1) {
2462 msleep(interval_msec);
2463 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2464 return rc;
2465 cur &= 0xf;
2466
2467 /* DET stable? */
2468 if (cur == last) {
2469 if (cur == 1 && time_before(jiffies, timeout))
2470 continue;
2471 if (time_after(jiffies, last_jiffies + duration))
2472 return 0;
2473 continue;
2474 }
2475
2476 /* unstable, start over */
2477 last = cur;
2478 last_jiffies = jiffies;
2479
2480 /* check timeout */
2481 if (time_after(jiffies, timeout))
2482 return -EBUSY;
2483 }
2484}
2485
2486/**
2487 * sata_phy_resume - resume SATA phy
2488 * @ap: ATA port to resume SATA phy for
2489 * @params: timing parameters { interval, duratinon, timeout } in msec
2490 *
2491 * Resume SATA phy of @ap and debounce it.
2492 *
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2495 *
2496 * RETURNS:
2497 * 0 on success, -errno on failure.
2498 */
2499int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2500{
2501 u32 scontrol;
81952c54
TH
2502 int rc;
2503
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
7a7921e8 2506
852ee16a 2507 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2508
2509 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2510 return rc;
7a7921e8 2511
d7bb4cc7
TH
2512 /* Some PHYs react badly if SStatus is pounded immediately
2513 * after resuming. Delay 200ms before debouncing.
2514 */
2515 msleep(200);
7a7921e8 2516
d7bb4cc7 2517 return sata_phy_debounce(ap, params);
7a7921e8
TH
2518}
2519
f5914a46
TH
2520static void ata_wait_spinup(struct ata_port *ap)
2521{
2522 struct ata_eh_context *ehc = &ap->eh_context;
2523 unsigned long end, secs;
2524 int rc;
2525
2526 /* first, debounce phy if SATA */
2527 if (ap->cbl == ATA_CBL_SATA) {
2528 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2529
2530 /* if debounced successfully and offline, no need to wait */
2531 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2532 return;
2533 }
2534
2535 /* okay, let's give the drive time to spin up */
2536 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2537 secs = ((end - jiffies) + HZ - 1) / HZ;
2538
2539 if (time_after(jiffies, end))
2540 return;
2541
2542 if (secs > 5)
2543 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2544 "(%lu secs)\n", secs);
2545
2546 schedule_timeout_uninterruptible(end - jiffies);
2547}
2548
2549/**
2550 * ata_std_prereset - prepare for reset
2551 * @ap: ATA port to be reset
2552 *
2553 * @ap is about to be reset. Initialize it.
2554 *
2555 * LOCKING:
2556 * Kernel thread context (may sleep)
2557 *
2558 * RETURNS:
2559 * 0 on success, -errno otherwise.
2560 */
2561int ata_std_prereset(struct ata_port *ap)
2562{
2563 struct ata_eh_context *ehc = &ap->eh_context;
2564 const unsigned long *timing;
2565 int rc;
2566
2567 /* hotplug? */
2568 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2569 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2570 ehc->i.action |= ATA_EH_HARDRESET;
2571 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2572 ata_wait_spinup(ap);
2573 }
2574
2575 /* if we're about to do hardreset, nothing more to do */
2576 if (ehc->i.action & ATA_EH_HARDRESET)
2577 return 0;
2578
2579 /* if SATA, resume phy */
2580 if (ap->cbl == ATA_CBL_SATA) {
2581 if (ap->flags & ATA_FLAG_LOADING)
2582 timing = sata_deb_timing_boot;
2583 else
2584 timing = sata_deb_timing_eh;
2585
2586 rc = sata_phy_resume(ap, timing);
2587 if (rc && rc != -EOPNOTSUPP) {
2588 /* phy resume failed */
2589 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2590 "link for reset (errno=%d)\n", rc);
2591 return rc;
2592 }
2593 }
2594
2595 /* Wait for !BSY if the controller can wait for the first D2H
2596 * Reg FIS and we don't know that no device is attached.
2597 */
2598 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2599 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2600
2601 return 0;
2602}
2603
c2bd5804
TH
2604/**
2605 * ata_std_softreset - reset host port via ATA SRST
2606 * @ap: port to reset
c2bd5804
TH
2607 * @classes: resulting classes of attached devices
2608 *
52783c5d 2609 * Reset host port using ATA SRST.
c2bd5804
TH
2610 *
2611 * LOCKING:
2612 * Kernel thread context (may sleep)
2613 *
2614 * RETURNS:
2615 * 0 on success, -errno otherwise.
2616 */
2bf2cb26 2617int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2618{
2619 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2620 unsigned int devmask = 0, err_mask;
2621 u8 err;
2622
2623 DPRINTK("ENTER\n");
2624
81952c54 2625 if (ata_port_offline(ap)) {
3a39746a
TH
2626 classes[0] = ATA_DEV_NONE;
2627 goto out;
2628 }
2629
c2bd5804
TH
2630 /* determine if device 0/1 are present */
2631 if (ata_devchk(ap, 0))
2632 devmask |= (1 << 0);
2633 if (slave_possible && ata_devchk(ap, 1))
2634 devmask |= (1 << 1);
2635
c2bd5804
TH
2636 /* select device 0 again */
2637 ap->ops->dev_select(ap, 0);
2638
2639 /* issue bus reset */
2640 DPRINTK("about to softreset, devmask=%x\n", devmask);
2641 err_mask = ata_bus_softreset(ap, devmask);
2642 if (err_mask) {
f15a1daf
TH
2643 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2644 err_mask);
c2bd5804
TH
2645 return -EIO;
2646 }
2647
2648 /* determine by signature whether we have ATA or ATAPI devices */
2649 classes[0] = ata_dev_try_classify(ap, 0, &err);
2650 if (slave_possible && err != 0x81)
2651 classes[1] = ata_dev_try_classify(ap, 1, &err);
2652
3a39746a 2653 out:
c2bd5804
TH
2654 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2655 return 0;
2656}
2657
2658/**
2659 * sata_std_hardreset - reset host port via SATA phy reset
2660 * @ap: port to reset
c2bd5804
TH
2661 * @class: resulting class of attached device
2662 *
2663 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2664 *
2665 * LOCKING:
2666 * Kernel thread context (may sleep)
2667 *
2668 * RETURNS:
2669 * 0 on success, -errno otherwise.
2670 */
2bf2cb26 2671int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2672{
852ee16a 2673 u32 scontrol;
81952c54 2674 int rc;
852ee16a 2675
c2bd5804
TH
2676 DPRINTK("ENTER\n");
2677
3c567b7d 2678 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2679 /* SATA spec says nothing about how to reconfigure
2680 * spd. To be on the safe side, turn off phy during
2681 * reconfiguration. This works for at least ICH7 AHCI
2682 * and Sil3124.
2683 */
81952c54
TH
2684 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2685 return rc;
2686
1c3fae4d 2687 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2688
2689 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2690 return rc;
1c3fae4d 2691
3c567b7d 2692 sata_set_spd(ap);
1c3fae4d
TH
2693 }
2694
2695 /* issue phy wake/reset */
81952c54
TH
2696 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2697 return rc;
2698
852ee16a 2699 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2700
2701 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2702 return rc;
c2bd5804 2703
1c3fae4d 2704 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2705 * 10.4.2 says at least 1 ms.
2706 */
2707 msleep(1);
2708
1c3fae4d 2709 /* bring phy back */
d7bb4cc7 2710 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2711
c2bd5804 2712 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2713 if (ata_port_offline(ap)) {
c2bd5804
TH
2714 *class = ATA_DEV_NONE;
2715 DPRINTK("EXIT, link offline\n");
2716 return 0;
2717 }
2718
2719 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2720 ata_port_printk(ap, KERN_ERR,
2721 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2722 return -EIO;
2723 }
2724
3a39746a
TH
2725 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2726
c2bd5804
TH
2727 *class = ata_dev_try_classify(ap, 0, NULL);
2728
2729 DPRINTK("EXIT, class=%u\n", *class);
2730 return 0;
2731}
2732
2733/**
2734 * ata_std_postreset - standard postreset callback
2735 * @ap: the target ata_port
2736 * @classes: classes of attached devices
2737 *
2738 * This function is invoked after a successful reset. Note that
2739 * the device might have been reset more than once using
2740 * different reset methods before postreset is invoked.
c2bd5804 2741 *
c2bd5804
TH
2742 * LOCKING:
2743 * Kernel thread context (may sleep)
2744 */
2745void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2746{
dc2b3515
TH
2747 u32 serror;
2748
c2bd5804
TH
2749 DPRINTK("ENTER\n");
2750
c2bd5804 2751 /* print link status */
81952c54 2752 sata_print_link_status(ap);
c2bd5804 2753
dc2b3515
TH
2754 /* clear SError */
2755 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2756 sata_scr_write(ap, SCR_ERROR, serror);
2757
3a39746a 2758 /* re-enable interrupts */
e3180499
TH
2759 if (!ap->ops->error_handler) {
2760 /* FIXME: hack. create a hook instead */
2761 if (ap->ioaddr.ctl_addr)
2762 ata_irq_on(ap);
2763 }
c2bd5804
TH
2764
2765 /* is double-select really necessary? */
2766 if (classes[0] != ATA_DEV_NONE)
2767 ap->ops->dev_select(ap, 1);
2768 if (classes[1] != ATA_DEV_NONE)
2769 ap->ops->dev_select(ap, 0);
2770
3a39746a
TH
2771 /* bail out if no device is present */
2772 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2773 DPRINTK("EXIT, no device\n");
2774 return;
2775 }
2776
2777 /* set up device control */
2778 if (ap->ioaddr.ctl_addr) {
2779 if (ap->flags & ATA_FLAG_MMIO)
2780 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2781 else
2782 outb(ap->ctl, ap->ioaddr.ctl_addr);
2783 }
c2bd5804
TH
2784
2785 DPRINTK("EXIT\n");
2786}
2787
623a3128
TH
2788/**
2789 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2790 * @dev: device to compare against
2791 * @new_class: class of the new device
2792 * @new_id: IDENTIFY page of the new device
2793 *
2794 * Compare @new_class and @new_id against @dev and determine
2795 * whether @dev is the device indicated by @new_class and
2796 * @new_id.
2797 *
2798 * LOCKING:
2799 * None.
2800 *
2801 * RETURNS:
2802 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2803 */
3373efd8
TH
2804static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2805 const u16 *new_id)
623a3128
TH
2806{
2807 const u16 *old_id = dev->id;
2808 unsigned char model[2][41], serial[2][21];
2809 u64 new_n_sectors;
2810
2811 if (dev->class != new_class) {
f15a1daf
TH
2812 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2813 dev->class, new_class);
623a3128
TH
2814 return 0;
2815 }
2816
2817 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2818 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2819 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2820 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2821 new_n_sectors = ata_id_n_sectors(new_id);
2822
2823 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2824 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2825 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2826 return 0;
2827 }
2828
2829 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2830 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2831 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2832 return 0;
2833 }
2834
2835 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2836 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2837 "%llu != %llu\n",
2838 (unsigned long long)dev->n_sectors,
2839 (unsigned long long)new_n_sectors);
623a3128
TH
2840 return 0;
2841 }
2842
2843 return 1;
2844}
2845
2846/**
2847 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2848 * @dev: device to revalidate
2849 * @post_reset: is this revalidation after reset?
2850 *
2851 * Re-read IDENTIFY page and make sure @dev is still attached to
2852 * the port.
2853 *
2854 * LOCKING:
2855 * Kernel thread context (may sleep)
2856 *
2857 * RETURNS:
2858 * 0 on success, negative errno otherwise
2859 */
3373efd8 2860int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2861{
5eb45c02 2862 unsigned int class = dev->class;
f15a1daf 2863 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2864 int rc;
2865
5eb45c02
TH
2866 if (!ata_dev_enabled(dev)) {
2867 rc = -ENODEV;
2868 goto fail;
2869 }
623a3128 2870
fe635c7e 2871 /* read ID data */
3373efd8 2872 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2873 if (rc)
2874 goto fail;
2875
2876 /* is the device still there? */
3373efd8 2877 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2878 rc = -ENODEV;
2879 goto fail;
2880 }
2881
fe635c7e 2882 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2883
2884 /* configure device according to the new ID */
3373efd8 2885 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2886 if (rc == 0)
2887 return 0;
623a3128
TH
2888
2889 fail:
f15a1daf 2890 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2891 return rc;
2892}
2893
98ac62de 2894static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2895 "WDC AC11000H", NULL,
2896 "WDC AC22100H", NULL,
2897 "WDC AC32500H", NULL,
2898 "WDC AC33100H", NULL,
2899 "WDC AC31600H", NULL,
2900 "WDC AC32100H", "24.09P07",
2901 "WDC AC23200L", "21.10N21",
2902 "Compaq CRD-8241B", NULL,
2903 "CRD-8400B", NULL,
2904 "CRD-8480B", NULL,
2905 "CRD-8482B", NULL,
2906 "CRD-84", NULL,
2907 "SanDisk SDP3B", NULL,
2908 "SanDisk SDP3B-64", NULL,
2909 "SANYO CD-ROM CRD", NULL,
2910 "HITACHI CDR-8", NULL,
2e9edbf8 2911 "HITACHI CDR-8335", NULL,
f4b15fef 2912 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2913 "Toshiba CD-ROM XM-6202B", NULL,
2914 "TOSHIBA CD-ROM XM-1702BC", NULL,
2915 "CD-532E-A", NULL,
2916 "E-IDE CD-ROM CR-840", NULL,
2917 "CD-ROM Drive/F5A", NULL,
2918 "WPI CDD-820", NULL,
f4b15fef 2919 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2920 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2921 "SanDisk SDP3B-64", NULL,
2922 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2923 "_NEC DV5800A", NULL,
2924 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2925};
2e9edbf8 2926
f4b15fef
AC
2927static int ata_strim(char *s, size_t len)
2928{
2929 len = strnlen(s, len);
2930
2931 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2932 while ((len > 0) && (s[len - 1] == ' ')) {
2933 len--;
2934 s[len] = 0;
2935 }
2936 return len;
2937}
1da177e4 2938
057ace5e 2939static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2940{
f4b15fef
AC
2941 unsigned char model_num[40];
2942 unsigned char model_rev[16];
2943 unsigned int nlen, rlen;
1da177e4
LT
2944 int i;
2945
f4b15fef
AC
2946 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2947 sizeof(model_num));
2948 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2949 sizeof(model_rev));
2950 nlen = ata_strim(model_num, sizeof(model_num));
2951 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2952
f4b15fef
AC
2953 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2954 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2955 if (ata_dma_blacklist[i+1] == NULL)
2956 return 1;
2957 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2958 return 1;
2959 }
2960 }
1da177e4
LT
2961 return 0;
2962}
2963
a6d5a51c
TH
2964/**
2965 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2966 * @dev: Device to compute xfermask for
2967 *
acf356b1
TH
2968 * Compute supported xfermask of @dev and store it in
2969 * dev->*_mask. This function is responsible for applying all
2970 * known limits including host controller limits, device
2971 * blacklist, etc...
a6d5a51c 2972 *
600511e8
TH
2973 * FIXME: The current implementation limits all transfer modes to
2974 * the fastest of the lowested device on the port. This is not
05c8e0ac 2975 * required on most controllers.
600511e8 2976 *
a6d5a51c
TH
2977 * LOCKING:
2978 * None.
a6d5a51c 2979 */
3373efd8 2980static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2981{
3373efd8 2982 struct ata_port *ap = dev->ap;
5444a6f4 2983 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2984 unsigned long xfer_mask;
2985 int i;
1da177e4 2986
565083e1
TH
2987 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2988 ap->mwdma_mask, ap->udma_mask);
2989
2990 /* Apply cable rule here. Don't apply it early because when
2991 * we handle hot plug the cable type can itself change.
2992 */
2993 if (ap->cbl == ATA_CBL_PATA40)
2994 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2995
5444a6f4 2996 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2997 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2998 struct ata_device *d = &ap->device[i];
565083e1
TH
2999
3000 if (ata_dev_absent(d))
3001 continue;
3002
3003 if (ata_dev_disabled(d)) {
3004 /* to avoid violating device selection timing */
3005 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3006 UINT_MAX, UINT_MAX);
a6d5a51c 3007 continue;
565083e1
TH
3008 }
3009
3010 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3011 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3012 xfer_mask &= ata_id_xfermask(d->id);
3013 if (ata_dma_blacklisted(d))
3014 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3015 }
3016
a6d5a51c 3017 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3018 ata_dev_printk(dev, KERN_WARNING,
3019 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3020
5444a6f4
AC
3021 if (hs->flags & ATA_HOST_SIMPLEX) {
3022 if (hs->simplex_claimed)
3023 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3024 }
565083e1 3025
5444a6f4
AC
3026 if (ap->ops->mode_filter)
3027 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3028
565083e1
TH
3029 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3030 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3031}
3032
1da177e4
LT
3033/**
3034 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3035 * @dev: Device to which command will be sent
3036 *
780a87f7
JG
3037 * Issue SET FEATURES - XFER MODE command to device @dev
3038 * on port @ap.
3039 *
1da177e4 3040 * LOCKING:
0cba632b 3041 * PCI/etc. bus probe sem.
83206a29
TH
3042 *
3043 * RETURNS:
3044 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3045 */
3046
3373efd8 3047static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3048{
a0123703 3049 struct ata_taskfile tf;
83206a29 3050 unsigned int err_mask;
1da177e4
LT
3051
3052 /* set up set-features taskfile */
3053 DPRINTK("set features - xfer mode\n");
3054
3373efd8 3055 ata_tf_init(dev, &tf);
a0123703
TH
3056 tf.command = ATA_CMD_SET_FEATURES;
3057 tf.feature = SETFEATURES_XFER;
3058 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3059 tf.protocol = ATA_PROT_NODATA;
3060 tf.nsect = dev->xfer_mode;
1da177e4 3061
3373efd8 3062 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3063
83206a29
TH
3064 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3065 return err_mask;
1da177e4
LT
3066}
3067
8bf62ece
AL
3068/**
3069 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3070 * @dev: Device to which command will be sent
e2a7f77a
RD
3071 * @heads: Number of heads (taskfile parameter)
3072 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3073 *
3074 * LOCKING:
6aff8f1f
TH
3075 * Kernel thread context (may sleep)
3076 *
3077 * RETURNS:
3078 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3079 */
3373efd8
TH
3080static unsigned int ata_dev_init_params(struct ata_device *dev,
3081 u16 heads, u16 sectors)
8bf62ece 3082{
a0123703 3083 struct ata_taskfile tf;
6aff8f1f 3084 unsigned int err_mask;
8bf62ece
AL
3085
3086 /* Number of sectors per track 1-255. Number of heads 1-16 */
3087 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3088 return AC_ERR_INVALID;
8bf62ece
AL
3089
3090 /* set up init dev params taskfile */
3091 DPRINTK("init dev params \n");
3092
3373efd8 3093 ata_tf_init(dev, &tf);
a0123703
TH
3094 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3095 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3096 tf.protocol = ATA_PROT_NODATA;
3097 tf.nsect = sectors;
3098 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3099
3373efd8 3100 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3101
6aff8f1f
TH
3102 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3103 return err_mask;
8bf62ece
AL
3104}
3105
1da177e4 3106/**
0cba632b
JG
3107 * ata_sg_clean - Unmap DMA memory associated with command
3108 * @qc: Command containing DMA memory to be released
3109 *
3110 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3111 *
3112 * LOCKING:
0cba632b 3113 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3114 */
3115
3116static void ata_sg_clean(struct ata_queued_cmd *qc)
3117{
3118 struct ata_port *ap = qc->ap;
cedc9a47 3119 struct scatterlist *sg = qc->__sg;
1da177e4 3120 int dir = qc->dma_dir;
cedc9a47 3121 void *pad_buf = NULL;
1da177e4 3122
a4631474
TH
3123 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3124 WARN_ON(sg == NULL);
1da177e4
LT
3125
3126 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3127 WARN_ON(qc->n_elem > 1);
1da177e4 3128
2c13b7ce 3129 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3130
cedc9a47
JG
3131 /* if we padded the buffer out to 32-bit bound, and data
3132 * xfer direction is from-device, we must copy from the
3133 * pad buffer back into the supplied buffer
3134 */
3135 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3136 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3137
3138 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3139 if (qc->n_elem)
2f1f610b 3140 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3141 /* restore last sg */
3142 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3143 if (pad_buf) {
3144 struct scatterlist *psg = &qc->pad_sgent;
3145 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3146 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3147 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3148 }
3149 } else {
2e242fa9 3150 if (qc->n_elem)
2f1f610b 3151 dma_unmap_single(ap->dev,
e1410f2d
JG
3152 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3153 dir);
cedc9a47
JG
3154 /* restore sg */
3155 sg->length += qc->pad_len;
3156 if (pad_buf)
3157 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3158 pad_buf, qc->pad_len);
3159 }
1da177e4
LT
3160
3161 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3162 qc->__sg = NULL;
1da177e4
LT
3163}
3164
3165/**
3166 * ata_fill_sg - Fill PCI IDE PRD table
3167 * @qc: Metadata associated with taskfile to be transferred
3168 *
780a87f7
JG
3169 * Fill PCI IDE PRD (scatter-gather) table with segments
3170 * associated with the current disk command.
3171 *
1da177e4 3172 * LOCKING:
780a87f7 3173 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3174 *
3175 */
3176static void ata_fill_sg(struct ata_queued_cmd *qc)
3177{
1da177e4 3178 struct ata_port *ap = qc->ap;
cedc9a47
JG
3179 struct scatterlist *sg;
3180 unsigned int idx;
1da177e4 3181
a4631474 3182 WARN_ON(qc->__sg == NULL);
f131883e 3183 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3184
3185 idx = 0;
cedc9a47 3186 ata_for_each_sg(sg, qc) {
1da177e4
LT
3187 u32 addr, offset;
3188 u32 sg_len, len;
3189
3190 /* determine if physical DMA addr spans 64K boundary.
3191 * Note h/w doesn't support 64-bit, so we unconditionally
3192 * truncate dma_addr_t to u32.
3193 */
3194 addr = (u32) sg_dma_address(sg);
3195 sg_len = sg_dma_len(sg);
3196
3197 while (sg_len) {
3198 offset = addr & 0xffff;
3199 len = sg_len;
3200 if ((offset + sg_len) > 0x10000)
3201 len = 0x10000 - offset;
3202
3203 ap->prd[idx].addr = cpu_to_le32(addr);
3204 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3205 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3206
3207 idx++;
3208 sg_len -= len;
3209 addr += len;
3210 }
3211 }
3212
3213 if (idx)
3214 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3215}
3216/**
3217 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3218 * @qc: Metadata associated with taskfile to check
3219 *
780a87f7
JG
3220 * Allow low-level driver to filter ATA PACKET commands, returning
3221 * a status indicating whether or not it is OK to use DMA for the
3222 * supplied PACKET command.
3223 *
1da177e4 3224 * LOCKING:
0cba632b
JG
3225 * spin_lock_irqsave(host_set lock)
3226 *
1da177e4
LT
3227 * RETURNS: 0 when ATAPI DMA can be used
3228 * nonzero otherwise
3229 */
3230int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3231{
3232 struct ata_port *ap = qc->ap;
3233 int rc = 0; /* Assume ATAPI DMA is OK by default */
3234
3235 if (ap->ops->check_atapi_dma)
3236 rc = ap->ops->check_atapi_dma(qc);
3237
c2bbc551
AL
3238 /* We don't support polling DMA.
3239 * Use PIO if the LLDD handles only interrupts in
3240 * the HSM_ST_LAST state and the ATAPI device
3241 * generates CDB interrupts.
3242 */
3243 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3244 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3245 rc = 1;
3246
1da177e4
LT
3247 return rc;
3248}
3249/**
3250 * ata_qc_prep - Prepare taskfile for submission
3251 * @qc: Metadata associated with taskfile to be prepared
3252 *
780a87f7
JG
3253 * Prepare ATA taskfile for submission.
3254 *
1da177e4
LT
3255 * LOCKING:
3256 * spin_lock_irqsave(host_set lock)
3257 */
3258void ata_qc_prep(struct ata_queued_cmd *qc)
3259{
3260 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3261 return;
3262
3263 ata_fill_sg(qc);
3264}
3265
e46834cd
BK
3266void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3267
0cba632b
JG
3268/**
3269 * ata_sg_init_one - Associate command with memory buffer
3270 * @qc: Command to be associated
3271 * @buf: Memory buffer
3272 * @buflen: Length of memory buffer, in bytes.
3273 *
3274 * Initialize the data-related elements of queued_cmd @qc
3275 * to point to a single memory buffer, @buf of byte length @buflen.
3276 *
3277 * LOCKING:
3278 * spin_lock_irqsave(host_set lock)
3279 */
3280
1da177e4
LT
3281void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3282{
3283 struct scatterlist *sg;
3284
3285 qc->flags |= ATA_QCFLAG_SINGLE;
3286
3287 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3288 qc->__sg = &qc->sgent;
1da177e4 3289 qc->n_elem = 1;
cedc9a47 3290 qc->orig_n_elem = 1;
1da177e4 3291 qc->buf_virt = buf;
233277ca 3292 qc->nbytes = buflen;
1da177e4 3293
cedc9a47 3294 sg = qc->__sg;
f0612bbc 3295 sg_init_one(sg, buf, buflen);
1da177e4
LT
3296}
3297
0cba632b
JG
3298/**
3299 * ata_sg_init - Associate command with scatter-gather table.
3300 * @qc: Command to be associated
3301 * @sg: Scatter-gather table.
3302 * @n_elem: Number of elements in s/g table.
3303 *
3304 * Initialize the data-related elements of queued_cmd @qc
3305 * to point to a scatter-gather table @sg, containing @n_elem
3306 * elements.
3307 *
3308 * LOCKING:
3309 * spin_lock_irqsave(host_set lock)
3310 */
3311
1da177e4
LT
3312void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3313 unsigned int n_elem)
3314{
3315 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3316 qc->__sg = sg;
1da177e4 3317 qc->n_elem = n_elem;
cedc9a47 3318 qc->orig_n_elem = n_elem;
1da177e4
LT
3319}
3320
3321/**
0cba632b
JG
3322 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3323 * @qc: Command with memory buffer to be mapped.
3324 *
3325 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3326 *
3327 * LOCKING:
3328 * spin_lock_irqsave(host_set lock)
3329 *
3330 * RETURNS:
0cba632b 3331 * Zero on success, negative on error.
1da177e4
LT
3332 */
3333
3334static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3335{
3336 struct ata_port *ap = qc->ap;
3337 int dir = qc->dma_dir;
cedc9a47 3338 struct scatterlist *sg = qc->__sg;
1da177e4 3339 dma_addr_t dma_address;
2e242fa9 3340 int trim_sg = 0;
1da177e4 3341
cedc9a47
JG
3342 /* we must lengthen transfers to end on a 32-bit boundary */
3343 qc->pad_len = sg->length & 3;
3344 if (qc->pad_len) {
3345 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3346 struct scatterlist *psg = &qc->pad_sgent;
3347
a4631474 3348 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3349
3350 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3351
3352 if (qc->tf.flags & ATA_TFLAG_WRITE)
3353 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3354 qc->pad_len);
3355
3356 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3357 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3358 /* trim sg */
3359 sg->length -= qc->pad_len;
2e242fa9
TH
3360 if (sg->length == 0)
3361 trim_sg = 1;
cedc9a47
JG
3362
3363 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3364 sg->length, qc->pad_len);
3365 }
3366
2e242fa9
TH
3367 if (trim_sg) {
3368 qc->n_elem--;
e1410f2d
JG
3369 goto skip_map;
3370 }
3371
2f1f610b 3372 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3373 sg->length, dir);
537a95d9
TH
3374 if (dma_mapping_error(dma_address)) {
3375 /* restore sg */
3376 sg->length += qc->pad_len;
1da177e4 3377 return -1;
537a95d9 3378 }
1da177e4
LT
3379
3380 sg_dma_address(sg) = dma_address;
32529e01 3381 sg_dma_len(sg) = sg->length;
1da177e4 3382
2e242fa9 3383skip_map:
1da177e4
LT
3384 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3385 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3386
3387 return 0;
3388}
3389
3390/**
0cba632b
JG
3391 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3392 * @qc: Command with scatter-gather table to be mapped.
3393 *
3394 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3395 *
3396 * LOCKING:
3397 * spin_lock_irqsave(host_set lock)
3398 *
3399 * RETURNS:
0cba632b 3400 * Zero on success, negative on error.
1da177e4
LT
3401 *
3402 */
3403
3404static int ata_sg_setup(struct ata_queued_cmd *qc)
3405{
3406 struct ata_port *ap = qc->ap;
cedc9a47
JG
3407 struct scatterlist *sg = qc->__sg;
3408 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3409 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3410
3411 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3412 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3413
cedc9a47
JG
3414 /* we must lengthen transfers to end on a 32-bit boundary */
3415 qc->pad_len = lsg->length & 3;
3416 if (qc->pad_len) {
3417 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3418 struct scatterlist *psg = &qc->pad_sgent;
3419 unsigned int offset;
3420
a4631474 3421 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3422
3423 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3424
3425 /*
3426 * psg->page/offset are used to copy to-be-written
3427 * data in this function or read data in ata_sg_clean.
3428 */
3429 offset = lsg->offset + lsg->length - qc->pad_len;
3430 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3431 psg->offset = offset_in_page(offset);
3432
3433 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3434 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3435 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3436 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3437 }
3438
3439 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3440 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3441 /* trim last sg */
3442 lsg->length -= qc->pad_len;
e1410f2d
JG
3443 if (lsg->length == 0)
3444 trim_sg = 1;
cedc9a47
JG
3445
3446 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3447 qc->n_elem - 1, lsg->length, qc->pad_len);
3448 }
3449
e1410f2d
JG
3450 pre_n_elem = qc->n_elem;
3451 if (trim_sg && pre_n_elem)
3452 pre_n_elem--;
3453
3454 if (!pre_n_elem) {
3455 n_elem = 0;
3456 goto skip_map;
3457 }
3458
1da177e4 3459 dir = qc->dma_dir;
2f1f610b 3460 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3461 if (n_elem < 1) {
3462 /* restore last sg */
3463 lsg->length += qc->pad_len;
1da177e4 3464 return -1;
537a95d9 3465 }
1da177e4
LT
3466
3467 DPRINTK("%d sg elements mapped\n", n_elem);
3468
e1410f2d 3469skip_map:
1da177e4
LT
3470 qc->n_elem = n_elem;
3471
3472 return 0;
3473}
3474
0baab86b 3475/**
c893a3ae 3476 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3477 * @buf: Buffer to swap
3478 * @buf_words: Number of 16-bit words in buffer.
3479 *
3480 * Swap halves of 16-bit words if needed to convert from
3481 * little-endian byte order to native cpu byte order, or
3482 * vice-versa.
3483 *
3484 * LOCKING:
6f0ef4fa 3485 * Inherited from caller.
0baab86b 3486 */
1da177e4
LT
3487void swap_buf_le16(u16 *buf, unsigned int buf_words)
3488{
3489#ifdef __BIG_ENDIAN
3490 unsigned int i;
3491
3492 for (i = 0; i < buf_words; i++)
3493 buf[i] = le16_to_cpu(buf[i]);
3494#endif /* __BIG_ENDIAN */
3495}
3496
6ae4cfb5
AL
3497/**
3498 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3499 * @adev: device for this I/O
6ae4cfb5
AL
3500 * @buf: data buffer
3501 * @buflen: buffer length
344babaa 3502 * @write_data: read/write
6ae4cfb5
AL
3503 *
3504 * Transfer data from/to the device data register by MMIO.
3505 *
3506 * LOCKING:
3507 * Inherited from caller.
6ae4cfb5
AL
3508 */
3509
a6b2c5d4
AC
3510void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3511 unsigned int buflen, int write_data)
1da177e4 3512{
a6b2c5d4 3513 struct ata_port *ap = adev->ap;
1da177e4
LT
3514 unsigned int i;
3515 unsigned int words = buflen >> 1;
3516 u16 *buf16 = (u16 *) buf;
3517 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3518
6ae4cfb5 3519 /* Transfer multiple of 2 bytes */
1da177e4
LT
3520 if (write_data) {
3521 for (i = 0; i < words; i++)
3522 writew(le16_to_cpu(buf16[i]), mmio);
3523 } else {
3524 for (i = 0; i < words; i++)
3525 buf16[i] = cpu_to_le16(readw(mmio));
3526 }
6ae4cfb5
AL
3527
3528 /* Transfer trailing 1 byte, if any. */
3529 if (unlikely(buflen & 0x01)) {
3530 u16 align_buf[1] = { 0 };
3531 unsigned char *trailing_buf = buf + buflen - 1;
3532
3533 if (write_data) {
3534 memcpy(align_buf, trailing_buf, 1);
3535 writew(le16_to_cpu(align_buf[0]), mmio);
3536 } else {
3537 align_buf[0] = cpu_to_le16(readw(mmio));
3538 memcpy(trailing_buf, align_buf, 1);
3539 }
3540 }
1da177e4
LT
3541}
3542
6ae4cfb5
AL
3543/**
3544 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3545 * @adev: device to target
6ae4cfb5
AL
3546 * @buf: data buffer
3547 * @buflen: buffer length
344babaa 3548 * @write_data: read/write
6ae4cfb5
AL
3549 *
3550 * Transfer data from/to the device data register by PIO.
3551 *
3552 * LOCKING:
3553 * Inherited from caller.
6ae4cfb5
AL
3554 */
3555
a6b2c5d4
AC
3556void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3557 unsigned int buflen, int write_data)
1da177e4 3558{
a6b2c5d4 3559 struct ata_port *ap = adev->ap;
6ae4cfb5 3560 unsigned int words = buflen >> 1;
1da177e4 3561
6ae4cfb5 3562 /* Transfer multiple of 2 bytes */
1da177e4 3563 if (write_data)
6ae4cfb5 3564 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3565 else
6ae4cfb5
AL
3566 insw(ap->ioaddr.data_addr, buf, words);
3567
3568 /* Transfer trailing 1 byte, if any. */
3569 if (unlikely(buflen & 0x01)) {
3570 u16 align_buf[1] = { 0 };
3571 unsigned char *trailing_buf = buf + buflen - 1;
3572
3573 if (write_data) {
3574 memcpy(align_buf, trailing_buf, 1);
3575 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3576 } else {
3577 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3578 memcpy(trailing_buf, align_buf, 1);
3579 }
3580 }
1da177e4
LT
3581}
3582
75e99585
AC
3583/**
3584 * ata_pio_data_xfer_noirq - Transfer data by PIO
3585 * @adev: device to target
3586 * @buf: data buffer
3587 * @buflen: buffer length
3588 * @write_data: read/write
3589 *
3590 * Transfer data from/to the device data register by PIO. Do the
3591 * transfer with interrupts disabled.
3592 *
3593 * LOCKING:
3594 * Inherited from caller.
3595 */
3596
3597void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3598 unsigned int buflen, int write_data)
3599{
3600 unsigned long flags;
3601 local_irq_save(flags);
3602 ata_pio_data_xfer(adev, buf, buflen, write_data);
3603 local_irq_restore(flags);
3604}
3605
3606
6ae4cfb5
AL
3607/**
3608 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3609 * @qc: Command on going
3610 *
3611 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3612 *
3613 * LOCKING:
3614 * Inherited from caller.
3615 */
3616
1da177e4
LT
3617static void ata_pio_sector(struct ata_queued_cmd *qc)
3618{
3619 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3620 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3621 struct ata_port *ap = qc->ap;
3622 struct page *page;
3623 unsigned int offset;
3624 unsigned char *buf;
3625
3626 if (qc->cursect == (qc->nsect - 1))
14be71f4 3627 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3628
3629 page = sg[qc->cursg].page;
3630 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3631
3632 /* get the current page and offset */
3633 page = nth_page(page, (offset >> PAGE_SHIFT));
3634 offset %= PAGE_SIZE;
3635
1da177e4
LT
3636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3637
91b8b313
AL
3638 if (PageHighMem(page)) {
3639 unsigned long flags;
3640
a6b2c5d4 3641 /* FIXME: use a bounce buffer */
91b8b313
AL
3642 local_irq_save(flags);
3643 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3644
91b8b313 3645 /* do the actual data transfer */
a6b2c5d4 3646 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3647
91b8b313
AL
3648 kunmap_atomic(buf, KM_IRQ0);
3649 local_irq_restore(flags);
3650 } else {
3651 buf = page_address(page);
a6b2c5d4 3652 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3653 }
1da177e4
LT
3654
3655 qc->cursect++;
3656 qc->cursg_ofs++;
3657
32529e01 3658 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3659 qc->cursg++;
3660 qc->cursg_ofs = 0;
3661 }
1da177e4 3662}
1da177e4 3663
07f6f7d0
AL
3664/**
3665 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3666 * @qc: Command on going
3667 *
c81e29b4 3668 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3669 * ATA device for the DRQ request.
3670 *
3671 * LOCKING:
3672 * Inherited from caller.
3673 */
1da177e4 3674
07f6f7d0
AL
3675static void ata_pio_sectors(struct ata_queued_cmd *qc)
3676{
3677 if (is_multi_taskfile(&qc->tf)) {
3678 /* READ/WRITE MULTIPLE */
3679 unsigned int nsect;
3680
587005de 3681 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3682
07f6f7d0
AL
3683 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3684 while (nsect--)
3685 ata_pio_sector(qc);
3686 } else
3687 ata_pio_sector(qc);
3688}
3689
c71c1857
AL
3690/**
3691 * atapi_send_cdb - Write CDB bytes to hardware
3692 * @ap: Port to which ATAPI device is attached.
3693 * @qc: Taskfile currently active
3694 *
3695 * When device has indicated its readiness to accept
3696 * a CDB, this function is called. Send the CDB.
3697 *
3698 * LOCKING:
3699 * caller.
3700 */
3701
3702static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3703{
3704 /* send SCSI cdb */
3705 DPRINTK("send cdb\n");
db024d53 3706 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3707
a6b2c5d4 3708 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3709 ata_altstatus(ap); /* flush */
3710
3711 switch (qc->tf.protocol) {
3712 case ATA_PROT_ATAPI:
3713 ap->hsm_task_state = HSM_ST;
3714 break;
3715 case ATA_PROT_ATAPI_NODATA:
3716 ap->hsm_task_state = HSM_ST_LAST;
3717 break;
3718 case ATA_PROT_ATAPI_DMA:
3719 ap->hsm_task_state = HSM_ST_LAST;
3720 /* initiate bmdma */
3721 ap->ops->bmdma_start(qc);
3722 break;
3723 }
1da177e4
LT
3724}
3725
6ae4cfb5
AL
3726/**
3727 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3728 * @qc: Command on going
3729 * @bytes: number of bytes
3730 *
3731 * Transfer Transfer data from/to the ATAPI device.
3732 *
3733 * LOCKING:
3734 * Inherited from caller.
3735 *
3736 */
3737
1da177e4
LT
3738static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3739{
3740 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3741 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3742 struct ata_port *ap = qc->ap;
3743 struct page *page;
3744 unsigned char *buf;
3745 unsigned int offset, count;
3746
563a6e1f 3747 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3748 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3749
3750next_sg:
563a6e1f 3751 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3752 /*
563a6e1f
AL
3753 * The end of qc->sg is reached and the device expects
3754 * more data to transfer. In order not to overrun qc->sg
3755 * and fulfill length specified in the byte count register,
3756 * - for read case, discard trailing data from the device
3757 * - for write case, padding zero data to the device
3758 */
3759 u16 pad_buf[1] = { 0 };
3760 unsigned int words = bytes >> 1;
3761 unsigned int i;
3762
3763 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3764 ata_dev_printk(qc->dev, KERN_WARNING,
3765 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3766
3767 for (i = 0; i < words; i++)
a6b2c5d4 3768 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3769
14be71f4 3770 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3771 return;
3772 }
3773
cedc9a47 3774 sg = &qc->__sg[qc->cursg];
1da177e4 3775
1da177e4
LT
3776 page = sg->page;
3777 offset = sg->offset + qc->cursg_ofs;
3778
3779 /* get the current page and offset */
3780 page = nth_page(page, (offset >> PAGE_SHIFT));
3781 offset %= PAGE_SIZE;
3782
6952df03 3783 /* don't overrun current sg */
32529e01 3784 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3785
3786 /* don't cross page boundaries */
3787 count = min(count, (unsigned int)PAGE_SIZE - offset);
3788
7282aa4b
AL
3789 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3790
91b8b313
AL
3791 if (PageHighMem(page)) {
3792 unsigned long flags;
3793
a6b2c5d4 3794 /* FIXME: use bounce buffer */
91b8b313
AL
3795 local_irq_save(flags);
3796 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3797
91b8b313 3798 /* do the actual data transfer */
a6b2c5d4 3799 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3800
91b8b313
AL
3801 kunmap_atomic(buf, KM_IRQ0);
3802 local_irq_restore(flags);
3803 } else {
3804 buf = page_address(page);
a6b2c5d4 3805 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3806 }
1da177e4
LT
3807
3808 bytes -= count;
3809 qc->curbytes += count;
3810 qc->cursg_ofs += count;
3811
32529e01 3812 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3813 qc->cursg++;
3814 qc->cursg_ofs = 0;
3815 }
3816
563a6e1f 3817 if (bytes)
1da177e4 3818 goto next_sg;
1da177e4
LT
3819}
3820
6ae4cfb5
AL
3821/**
3822 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3823 * @qc: Command on going
3824 *
3825 * Transfer Transfer data from/to the ATAPI device.
3826 *
3827 * LOCKING:
3828 * Inherited from caller.
6ae4cfb5
AL
3829 */
3830
1da177e4
LT
3831static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3832{
3833 struct ata_port *ap = qc->ap;
3834 struct ata_device *dev = qc->dev;
3835 unsigned int ireason, bc_lo, bc_hi, bytes;
3836 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3837
eec4c3f3
AL
3838 /* Abuse qc->result_tf for temp storage of intermediate TF
3839 * here to save some kernel stack usage.
3840 * For normal completion, qc->result_tf is not relevant. For
3841 * error, qc->result_tf is later overwritten by ata_qc_complete().
3842 * So, the correctness of qc->result_tf is not affected.
3843 */
3844 ap->ops->tf_read(ap, &qc->result_tf);
3845 ireason = qc->result_tf.nsect;
3846 bc_lo = qc->result_tf.lbam;
3847 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3848 bytes = (bc_hi << 8) | bc_lo;
3849
3850 /* shall be cleared to zero, indicating xfer of data */
3851 if (ireason & (1 << 0))
3852 goto err_out;
3853
3854 /* make sure transfer direction matches expected */
3855 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3856 if (do_write != i_write)
3857 goto err_out;
3858
312f7da2
AL
3859 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3860
1da177e4
LT
3861 __atapi_pio_bytes(qc, bytes);
3862
3863 return;
3864
3865err_out:
f15a1daf 3866 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3867 qc->err_mask |= AC_ERR_HSM;
14be71f4 3868 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3869}
3870
3871/**
c234fb00
AL
3872 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3873 * @ap: the target ata_port
3874 * @qc: qc on going
1da177e4 3875 *
c234fb00
AL
3876 * RETURNS:
3877 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3878 */
c234fb00
AL
3879
3880static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3881{
c234fb00
AL
3882 if (qc->tf.flags & ATA_TFLAG_POLLING)
3883 return 1;
1da177e4 3884
c234fb00
AL
3885 if (ap->hsm_task_state == HSM_ST_FIRST) {
3886 if (qc->tf.protocol == ATA_PROT_PIO &&
3887 (qc->tf.flags & ATA_TFLAG_WRITE))
3888 return 1;
1da177e4 3889
c234fb00
AL
3890 if (is_atapi_taskfile(&qc->tf) &&
3891 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3892 return 1;
fe79e683
AL
3893 }
3894
c234fb00
AL
3895 return 0;
3896}
1da177e4 3897
c17ea20d
TH
3898/**
3899 * ata_hsm_qc_complete - finish a qc running on standard HSM
3900 * @qc: Command to complete
3901 * @in_wq: 1 if called from workqueue, 0 otherwise
3902 *
3903 * Finish @qc which is running on standard HSM.
3904 *
3905 * LOCKING:
3906 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3907 * Otherwise, none on entry and grabs host lock.
3908 */
3909static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3910{
3911 struct ata_port *ap = qc->ap;
3912 unsigned long flags;
3913
3914 if (ap->ops->error_handler) {
3915 if (in_wq) {
3916 spin_lock_irqsave(&ap->host_set->lock, flags);
3917
3918 /* EH might have kicked in while host_set lock
3919 * is released.
3920 */
3921 qc = ata_qc_from_tag(ap, qc->tag);
3922 if (qc) {
3923 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3924 ata_irq_on(ap);
3925 ata_qc_complete(qc);
3926 } else
3927 ata_port_freeze(ap);
3928 }
3929
3930 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3931 } else {
3932 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3933 ata_qc_complete(qc);
3934 else
3935 ata_port_freeze(ap);
3936 }
3937 } else {
3938 if (in_wq) {
3939 spin_lock_irqsave(&ap->host_set->lock, flags);
3940 ata_irq_on(ap);
3941 ata_qc_complete(qc);
3942 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3943 } else
3944 ata_qc_complete(qc);
3945 }
1da177e4 3946
c81e29b4 3947 ata_altstatus(ap); /* flush */
c17ea20d
TH
3948}
3949
bb5cb290
AL
3950/**
3951 * ata_hsm_move - move the HSM to the next state.
3952 * @ap: the target ata_port
3953 * @qc: qc on going
3954 * @status: current device status
3955 * @in_wq: 1 if called from workqueue, 0 otherwise
3956 *
3957 * RETURNS:
3958 * 1 when poll next status needed, 0 otherwise.
3959 */
9a1004d0
TH
3960int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3961 u8 status, int in_wq)
e2cec771 3962{
bb5cb290
AL
3963 unsigned long flags = 0;
3964 int poll_next;
3965
6912ccd5
AL
3966 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3967
bb5cb290
AL
3968 /* Make sure ata_qc_issue_prot() does not throw things
3969 * like DMA polling into the workqueue. Notice that
3970 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3971 */
c234fb00 3972 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3973
e2cec771 3974fsm_start:
999bb6f4
AL
3975 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3976 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3977
e2cec771
AL
3978 switch (ap->hsm_task_state) {
3979 case HSM_ST_FIRST:
bb5cb290
AL
3980 /* Send first data block or PACKET CDB */
3981
3982 /* If polling, we will stay in the work queue after
3983 * sending the data. Otherwise, interrupt handler
3984 * takes over after sending the data.
3985 */
3986 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3987
e2cec771 3988 /* check device status */
3655d1d3
AL
3989 if (unlikely((status & ATA_DRQ) == 0)) {
3990 /* handle BSY=0, DRQ=0 as error */
3991 if (likely(status & (ATA_ERR | ATA_DF)))
3992 /* device stops HSM for abort/error */
3993 qc->err_mask |= AC_ERR_DEV;
3994 else
3995 /* HSM violation. Let EH handle this */
3996 qc->err_mask |= AC_ERR_HSM;
3997
14be71f4 3998 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 3999 goto fsm_start;
1da177e4
LT
4000 }
4001
71601958
AL
4002 /* Device should not ask for data transfer (DRQ=1)
4003 * when it finds something wrong.
eee6c32f
AL
4004 * We ignore DRQ here and stop the HSM by
4005 * changing hsm_task_state to HSM_ST_ERR and
4006 * let the EH abort the command or reset the device.
71601958
AL
4007 */
4008 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4009 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4010 ap->id, status);
3655d1d3 4011 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4012 ap->hsm_task_state = HSM_ST_ERR;
4013 goto fsm_start;
71601958 4014 }
1da177e4 4015
bb5cb290
AL
4016 /* Send the CDB (atapi) or the first data block (ata pio out).
4017 * During the state transition, interrupt handler shouldn't
4018 * be invoked before the data transfer is complete and
4019 * hsm_task_state is changed. Hence, the following locking.
4020 */
4021 if (in_wq)
4022 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4023
bb5cb290
AL
4024 if (qc->tf.protocol == ATA_PROT_PIO) {
4025 /* PIO data out protocol.
4026 * send first data block.
4027 */
0565c26d 4028
bb5cb290
AL
4029 /* ata_pio_sectors() might change the state
4030 * to HSM_ST_LAST. so, the state is changed here
4031 * before ata_pio_sectors().
4032 */
4033 ap->hsm_task_state = HSM_ST;
4034 ata_pio_sectors(qc);
4035 ata_altstatus(ap); /* flush */
4036 } else
4037 /* send CDB */
4038 atapi_send_cdb(ap, qc);
4039
4040 if (in_wq)
4041 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4042
4043 /* if polling, ata_pio_task() handles the rest.
4044 * otherwise, interrupt handler takes over from here.
4045 */
e2cec771 4046 break;
1c848984 4047
e2cec771
AL
4048 case HSM_ST:
4049 /* complete command or read/write the data register */
4050 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4051 /* ATAPI PIO protocol */
4052 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4053 /* No more data to transfer or device error.
4054 * Device error will be tagged in HSM_ST_LAST.
4055 */
e2cec771
AL
4056 ap->hsm_task_state = HSM_ST_LAST;
4057 goto fsm_start;
4058 }
1da177e4 4059
71601958
AL
4060 /* Device should not ask for data transfer (DRQ=1)
4061 * when it finds something wrong.
eee6c32f
AL
4062 * We ignore DRQ here and stop the HSM by
4063 * changing hsm_task_state to HSM_ST_ERR and
4064 * let the EH abort the command or reset the device.
71601958
AL
4065 */
4066 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4067 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4068 ap->id, status);
3655d1d3 4069 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4070 ap->hsm_task_state = HSM_ST_ERR;
4071 goto fsm_start;
71601958 4072 }
1da177e4 4073
e2cec771 4074 atapi_pio_bytes(qc);
7fb6ec28 4075
e2cec771
AL
4076 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4077 /* bad ireason reported by device */
4078 goto fsm_start;
1da177e4 4079
e2cec771
AL
4080 } else {
4081 /* ATA PIO protocol */
4082 if (unlikely((status & ATA_DRQ) == 0)) {
4083 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4084 if (likely(status & (ATA_ERR | ATA_DF)))
4085 /* device stops HSM for abort/error */
4086 qc->err_mask |= AC_ERR_DEV;
4087 else
4088 /* HSM violation. Let EH handle this */
4089 qc->err_mask |= AC_ERR_HSM;
4090
e2cec771
AL
4091 ap->hsm_task_state = HSM_ST_ERR;
4092 goto fsm_start;
4093 }
1da177e4 4094
eee6c32f
AL
4095 /* For PIO reads, some devices may ask for
4096 * data transfer (DRQ=1) alone with ERR=1.
4097 * We respect DRQ here and transfer one
4098 * block of junk data before changing the
4099 * hsm_task_state to HSM_ST_ERR.
4100 *
4101 * For PIO writes, ERR=1 DRQ=1 doesn't make
4102 * sense since the data block has been
4103 * transferred to the device.
71601958
AL
4104 */
4105 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4106 /* data might be corrputed */
4107 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4108
4109 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4110 ata_pio_sectors(qc);
4111 ata_altstatus(ap);
4112 status = ata_wait_idle(ap);
4113 }
4114
3655d1d3
AL
4115 if (status & (ATA_BUSY | ATA_DRQ))
4116 qc->err_mask |= AC_ERR_HSM;
4117
eee6c32f
AL
4118 /* ata_pio_sectors() might change the
4119 * state to HSM_ST_LAST. so, the state
4120 * is changed after ata_pio_sectors().
4121 */
4122 ap->hsm_task_state = HSM_ST_ERR;
4123 goto fsm_start;
71601958
AL
4124 }
4125
e2cec771
AL
4126 ata_pio_sectors(qc);
4127
4128 if (ap->hsm_task_state == HSM_ST_LAST &&
4129 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4130 /* all data read */
4131 ata_altstatus(ap);
52a32205 4132 status = ata_wait_idle(ap);
e2cec771
AL
4133 goto fsm_start;
4134 }
4135 }
4136
4137 ata_altstatus(ap); /* flush */
bb5cb290 4138 poll_next = 1;
1da177e4
LT
4139 break;
4140
14be71f4 4141 case HSM_ST_LAST:
6912ccd5
AL
4142 if (unlikely(!ata_ok(status))) {
4143 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4144 ap->hsm_task_state = HSM_ST_ERR;
4145 goto fsm_start;
4146 }
4147
4148 /* no more data to transfer */
4332a771
AL
4149 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4150 ap->id, qc->dev->devno, status);
e2cec771 4151
6912ccd5
AL
4152 WARN_ON(qc->err_mask);
4153
e2cec771 4154 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4155
e2cec771 4156 /* complete taskfile transaction */
c17ea20d 4157 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4158
4159 poll_next = 0;
1da177e4
LT
4160 break;
4161
14be71f4 4162 case HSM_ST_ERR:
e2cec771
AL
4163 /* make sure qc->err_mask is available to
4164 * know what's wrong and recover
4165 */
4166 WARN_ON(qc->err_mask == 0);
4167
4168 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4169
999bb6f4 4170 /* complete taskfile transaction */
c17ea20d 4171 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4172
4173 poll_next = 0;
e2cec771
AL
4174 break;
4175 default:
bb5cb290 4176 poll_next = 0;
6912ccd5 4177 BUG();
1da177e4
LT
4178 }
4179
bb5cb290 4180 return poll_next;
1da177e4
LT
4181}
4182
1da177e4 4183static void ata_pio_task(void *_data)
8061f5f0 4184{
c91af2c8
TH
4185 struct ata_queued_cmd *qc = _data;
4186 struct ata_port *ap = qc->ap;
8061f5f0 4187 u8 status;
a1af3734 4188 int poll_next;
8061f5f0 4189
7fb6ec28 4190fsm_start:
a1af3734 4191 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4192
a1af3734
AL
4193 /*
4194 * This is purely heuristic. This is a fast path.
4195 * Sometimes when we enter, BSY will be cleared in
4196 * a chk-status or two. If not, the drive is probably seeking
4197 * or something. Snooze for a couple msecs, then
4198 * chk-status again. If still busy, queue delayed work.
4199 */
4200 status = ata_busy_wait(ap, ATA_BUSY, 5);
4201 if (status & ATA_BUSY) {
4202 msleep(2);
4203 status = ata_busy_wait(ap, ATA_BUSY, 10);
4204 if (status & ATA_BUSY) {
31ce6dae 4205 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4206 return;
4207 }
8061f5f0
TH
4208 }
4209
a1af3734
AL
4210 /* move the HSM */
4211 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4212
a1af3734
AL
4213 /* another command or interrupt handler
4214 * may be running at this point.
4215 */
4216 if (poll_next)
7fb6ec28 4217 goto fsm_start;
8061f5f0
TH
4218}
4219
1da177e4
LT
4220/**
4221 * ata_qc_new - Request an available ATA command, for queueing
4222 * @ap: Port associated with device @dev
4223 * @dev: Device from whom we request an available command structure
4224 *
4225 * LOCKING:
0cba632b 4226 * None.
1da177e4
LT
4227 */
4228
4229static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4230{
4231 struct ata_queued_cmd *qc = NULL;
4232 unsigned int i;
4233
e3180499
TH
4234 /* no command while frozen */
4235 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4236 return NULL;
4237
2ab7db1f
TH
4238 /* the last tag is reserved for internal command. */
4239 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4240 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4241 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4242 break;
4243 }
4244
4245 if (qc)
4246 qc->tag = i;
4247
4248 return qc;
4249}
4250
4251/**
4252 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4253 * @dev: Device from whom we request an available command structure
4254 *
4255 * LOCKING:
0cba632b 4256 * None.
1da177e4
LT
4257 */
4258
3373efd8 4259struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4260{
3373efd8 4261 struct ata_port *ap = dev->ap;
1da177e4
LT
4262 struct ata_queued_cmd *qc;
4263
4264 qc = ata_qc_new(ap);
4265 if (qc) {
1da177e4
LT
4266 qc->scsicmd = NULL;
4267 qc->ap = ap;
4268 qc->dev = dev;
1da177e4 4269
2c13b7ce 4270 ata_qc_reinit(qc);
1da177e4
LT
4271 }
4272
4273 return qc;
4274}
4275
1da177e4
LT
4276/**
4277 * ata_qc_free - free unused ata_queued_cmd
4278 * @qc: Command to complete
4279 *
4280 * Designed to free unused ata_queued_cmd object
4281 * in case something prevents using it.
4282 *
4283 * LOCKING:
0cba632b 4284 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4285 */
4286void ata_qc_free(struct ata_queued_cmd *qc)
4287{
4ba946e9
TH
4288 struct ata_port *ap = qc->ap;
4289 unsigned int tag;
4290
a4631474 4291 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4292
4ba946e9
TH
4293 qc->flags = 0;
4294 tag = qc->tag;
4295 if (likely(ata_tag_valid(tag))) {
4ba946e9 4296 qc->tag = ATA_TAG_POISON;
6cec4a39 4297 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4298 }
1da177e4
LT
4299}
4300
76014427 4301void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4302{
dedaf2b0
TH
4303 struct ata_port *ap = qc->ap;
4304
a4631474
TH
4305 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4306 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4307
4308 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4309 ata_sg_clean(qc);
4310
7401abf2 4311 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4312 if (qc->tf.protocol == ATA_PROT_NCQ)
4313 ap->sactive &= ~(1 << qc->tag);
4314 else
4315 ap->active_tag = ATA_TAG_POISON;
7401abf2 4316
3f3791d3
AL
4317 /* atapi: mark qc as inactive to prevent the interrupt handler
4318 * from completing the command twice later, before the error handler
4319 * is called. (when rc != 0 and atapi request sense is needed)
4320 */
4321 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4322 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4323
1da177e4 4324 /* call completion callback */
77853bf2 4325 qc->complete_fn(qc);
1da177e4
LT
4326}
4327
f686bcb8
TH
4328/**
4329 * ata_qc_complete - Complete an active ATA command
4330 * @qc: Command to complete
4331 * @err_mask: ATA Status register contents
4332 *
4333 * Indicate to the mid and upper layers that an ATA
4334 * command has completed, with either an ok or not-ok status.
4335 *
4336 * LOCKING:
4337 * spin_lock_irqsave(host_set lock)
4338 */
4339void ata_qc_complete(struct ata_queued_cmd *qc)
4340{
4341 struct ata_port *ap = qc->ap;
4342
4343 /* XXX: New EH and old EH use different mechanisms to
4344 * synchronize EH with regular execution path.
4345 *
4346 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4347 * Normal execution path is responsible for not accessing a
4348 * failed qc. libata core enforces the rule by returning NULL
4349 * from ata_qc_from_tag() for failed qcs.
4350 *
4351 * Old EH depends on ata_qc_complete() nullifying completion
4352 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4353 * not synchronize with interrupt handler. Only PIO task is
4354 * taken care of.
4355 */
4356 if (ap->ops->error_handler) {
4357 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4358
4359 if (unlikely(qc->err_mask))
4360 qc->flags |= ATA_QCFLAG_FAILED;
4361
4362 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4363 if (!ata_tag_internal(qc->tag)) {
4364 /* always fill result TF for failed qc */
4365 ap->ops->tf_read(ap, &qc->result_tf);
4366 ata_qc_schedule_eh(qc);
4367 return;
4368 }
4369 }
4370
4371 /* read result TF if requested */
4372 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4373 ap->ops->tf_read(ap, &qc->result_tf);
4374
4375 __ata_qc_complete(qc);
4376 } else {
4377 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4378 return;
4379
4380 /* read result TF if failed or requested */
4381 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4382 ap->ops->tf_read(ap, &qc->result_tf);
4383
4384 __ata_qc_complete(qc);
4385 }
4386}
4387
dedaf2b0
TH
4388/**
4389 * ata_qc_complete_multiple - Complete multiple qcs successfully
4390 * @ap: port in question
4391 * @qc_active: new qc_active mask
4392 * @finish_qc: LLDD callback invoked before completing a qc
4393 *
4394 * Complete in-flight commands. This functions is meant to be
4395 * called from low-level driver's interrupt routine to complete
4396 * requests normally. ap->qc_active and @qc_active is compared
4397 * and commands are completed accordingly.
4398 *
4399 * LOCKING:
4400 * spin_lock_irqsave(host_set lock)
4401 *
4402 * RETURNS:
4403 * Number of completed commands on success, -errno otherwise.
4404 */
4405int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4406 void (*finish_qc)(struct ata_queued_cmd *))
4407{
4408 int nr_done = 0;
4409 u32 done_mask;
4410 int i;
4411
4412 done_mask = ap->qc_active ^ qc_active;
4413
4414 if (unlikely(done_mask & qc_active)) {
4415 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4416 "(%08x->%08x)\n", ap->qc_active, qc_active);
4417 return -EINVAL;
4418 }
4419
4420 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4421 struct ata_queued_cmd *qc;
4422
4423 if (!(done_mask & (1 << i)))
4424 continue;
4425
4426 if ((qc = ata_qc_from_tag(ap, i))) {
4427 if (finish_qc)
4428 finish_qc(qc);
4429 ata_qc_complete(qc);
4430 nr_done++;
4431 }
4432 }
4433
4434 return nr_done;
4435}
4436
1da177e4
LT
4437static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4438{
4439 struct ata_port *ap = qc->ap;
4440
4441 switch (qc->tf.protocol) {
3dc1d881 4442 case ATA_PROT_NCQ:
1da177e4
LT
4443 case ATA_PROT_DMA:
4444 case ATA_PROT_ATAPI_DMA:
4445 return 1;
4446
4447 case ATA_PROT_ATAPI:
4448 case ATA_PROT_PIO:
1da177e4
LT
4449 if (ap->flags & ATA_FLAG_PIO_DMA)
4450 return 1;
4451
4452 /* fall through */
4453
4454 default:
4455 return 0;
4456 }
4457
4458 /* never reached */
4459}
4460
4461/**
4462 * ata_qc_issue - issue taskfile to device
4463 * @qc: command to issue to device
4464 *
4465 * Prepare an ATA command to submission to device.
4466 * This includes mapping the data into a DMA-able
4467 * area, filling in the S/G table, and finally
4468 * writing the taskfile to hardware, starting the command.
4469 *
4470 * LOCKING:
4471 * spin_lock_irqsave(host_set lock)
1da177e4 4472 */
8e0e694a 4473void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4474{
4475 struct ata_port *ap = qc->ap;
4476
dedaf2b0
TH
4477 /* Make sure only one non-NCQ command is outstanding. The
4478 * check is skipped for old EH because it reuses active qc to
4479 * request ATAPI sense.
4480 */
4481 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4482
4483 if (qc->tf.protocol == ATA_PROT_NCQ) {
4484 WARN_ON(ap->sactive & (1 << qc->tag));
4485 ap->sactive |= 1 << qc->tag;
4486 } else {
4487 WARN_ON(ap->sactive);
4488 ap->active_tag = qc->tag;
4489 }
4490
e4a70e76 4491 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4492 ap->qc_active |= 1 << qc->tag;
e4a70e76 4493
1da177e4
LT
4494 if (ata_should_dma_map(qc)) {
4495 if (qc->flags & ATA_QCFLAG_SG) {
4496 if (ata_sg_setup(qc))
8e436af9 4497 goto sg_err;
1da177e4
LT
4498 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4499 if (ata_sg_setup_one(qc))
8e436af9 4500 goto sg_err;
1da177e4
LT
4501 }
4502 } else {
4503 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4504 }
4505
4506 ap->ops->qc_prep(qc);
4507
8e0e694a
TH
4508 qc->err_mask |= ap->ops->qc_issue(qc);
4509 if (unlikely(qc->err_mask))
4510 goto err;
4511 return;
1da177e4 4512
8e436af9
TH
4513sg_err:
4514 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4515 qc->err_mask |= AC_ERR_SYSTEM;
4516err:
4517 ata_qc_complete(qc);
1da177e4
LT
4518}
4519
4520/**
4521 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4522 * @qc: command to issue to device
4523 *
4524 * Using various libata functions and hooks, this function
4525 * starts an ATA command. ATA commands are grouped into
4526 * classes called "protocols", and issuing each type of protocol
4527 * is slightly different.
4528 *
0baab86b
EF
4529 * May be used as the qc_issue() entry in ata_port_operations.
4530 *
1da177e4
LT
4531 * LOCKING:
4532 * spin_lock_irqsave(host_set lock)
4533 *
4534 * RETURNS:
9a3d9eb0 4535 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4536 */
4537
9a3d9eb0 4538unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4539{
4540 struct ata_port *ap = qc->ap;
4541
e50362ec
AL
4542 /* Use polling pio if the LLD doesn't handle
4543 * interrupt driven pio and atapi CDB interrupt.
4544 */
4545 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4546 switch (qc->tf.protocol) {
4547 case ATA_PROT_PIO:
4548 case ATA_PROT_ATAPI:
4549 case ATA_PROT_ATAPI_NODATA:
4550 qc->tf.flags |= ATA_TFLAG_POLLING;
4551 break;
4552 case ATA_PROT_ATAPI_DMA:
4553 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4554 /* see ata_check_atapi_dma() */
e50362ec
AL
4555 BUG();
4556 break;
4557 default:
4558 break;
4559 }
4560 }
4561
312f7da2 4562 /* select the device */
1da177e4
LT
4563 ata_dev_select(ap, qc->dev->devno, 1, 0);
4564
312f7da2 4565 /* start the command */
1da177e4
LT
4566 switch (qc->tf.protocol) {
4567 case ATA_PROT_NODATA:
312f7da2
AL
4568 if (qc->tf.flags & ATA_TFLAG_POLLING)
4569 ata_qc_set_polling(qc);
4570
e5338254 4571 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4572 ap->hsm_task_state = HSM_ST_LAST;
4573
4574 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4575 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4576
1da177e4
LT
4577 break;
4578
4579 case ATA_PROT_DMA:
587005de 4580 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4581
1da177e4
LT
4582 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4583 ap->ops->bmdma_setup(qc); /* set up bmdma */
4584 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4585 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4586 break;
4587
312f7da2
AL
4588 case ATA_PROT_PIO:
4589 if (qc->tf.flags & ATA_TFLAG_POLLING)
4590 ata_qc_set_polling(qc);
1da177e4 4591
e5338254 4592 ata_tf_to_host(ap, &qc->tf);
312f7da2 4593
54f00389
AL
4594 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4595 /* PIO data out protocol */
4596 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4597 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4598
4599 /* always send first data block using
e27486db 4600 * the ata_pio_task() codepath.
54f00389 4601 */
312f7da2 4602 } else {
54f00389
AL
4603 /* PIO data in protocol */
4604 ap->hsm_task_state = HSM_ST;
4605
4606 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4607 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4608
4609 /* if polling, ata_pio_task() handles the rest.
4610 * otherwise, interrupt handler takes over from here.
4611 */
312f7da2
AL
4612 }
4613
1da177e4
LT
4614 break;
4615
1da177e4 4616 case ATA_PROT_ATAPI:
1da177e4 4617 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4618 if (qc->tf.flags & ATA_TFLAG_POLLING)
4619 ata_qc_set_polling(qc);
4620
e5338254 4621 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4622
312f7da2
AL
4623 ap->hsm_task_state = HSM_ST_FIRST;
4624
4625 /* send cdb by polling if no cdb interrupt */
4626 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4627 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4628 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4629 break;
4630
4631 case ATA_PROT_ATAPI_DMA:
587005de 4632 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4633
1da177e4
LT
4634 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4635 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4636 ap->hsm_task_state = HSM_ST_FIRST;
4637
4638 /* send cdb by polling if no cdb interrupt */
4639 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4640 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4641 break;
4642
4643 default:
4644 WARN_ON(1);
9a3d9eb0 4645 return AC_ERR_SYSTEM;
1da177e4
LT
4646 }
4647
4648 return 0;
4649}
4650
1da177e4
LT
4651/**
4652 * ata_host_intr - Handle host interrupt for given (port, task)
4653 * @ap: Port on which interrupt arrived (possibly...)
4654 * @qc: Taskfile currently active in engine
4655 *
4656 * Handle host interrupt for given queued command. Currently,
4657 * only DMA interrupts are handled. All other commands are
4658 * handled via polling with interrupts disabled (nIEN bit).
4659 *
4660 * LOCKING:
4661 * spin_lock_irqsave(host_set lock)
4662 *
4663 * RETURNS:
4664 * One if interrupt was handled, zero if not (shared irq).
4665 */
4666
4667inline unsigned int ata_host_intr (struct ata_port *ap,
4668 struct ata_queued_cmd *qc)
4669{
312f7da2 4670 u8 status, host_stat = 0;
1da177e4 4671
312f7da2
AL
4672 VPRINTK("ata%u: protocol %d task_state %d\n",
4673 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4674
312f7da2
AL
4675 /* Check whether we are expecting interrupt in this state */
4676 switch (ap->hsm_task_state) {
4677 case HSM_ST_FIRST:
6912ccd5
AL
4678 /* Some pre-ATAPI-4 devices assert INTRQ
4679 * at this state when ready to receive CDB.
4680 */
1da177e4 4681
312f7da2
AL
4682 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4683 * The flag was turned on only for atapi devices.
4684 * No need to check is_atapi_taskfile(&qc->tf) again.
4685 */
4686 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4687 goto idle_irq;
1da177e4 4688 break;
312f7da2
AL
4689 case HSM_ST_LAST:
4690 if (qc->tf.protocol == ATA_PROT_DMA ||
4691 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4692 /* check status of DMA engine */
4693 host_stat = ap->ops->bmdma_status(ap);
4694 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4695
4696 /* if it's not our irq... */
4697 if (!(host_stat & ATA_DMA_INTR))
4698 goto idle_irq;
4699
4700 /* before we do anything else, clear DMA-Start bit */
4701 ap->ops->bmdma_stop(qc);
a4f16610
AL
4702
4703 if (unlikely(host_stat & ATA_DMA_ERR)) {
4704 /* error when transfering data to/from memory */
4705 qc->err_mask |= AC_ERR_HOST_BUS;
4706 ap->hsm_task_state = HSM_ST_ERR;
4707 }
312f7da2
AL
4708 }
4709 break;
4710 case HSM_ST:
4711 break;
1da177e4
LT
4712 default:
4713 goto idle_irq;
4714 }
4715
312f7da2
AL
4716 /* check altstatus */
4717 status = ata_altstatus(ap);
4718 if (status & ATA_BUSY)
4719 goto idle_irq;
1da177e4 4720
312f7da2
AL
4721 /* check main status, clearing INTRQ */
4722 status = ata_chk_status(ap);
4723 if (unlikely(status & ATA_BUSY))
4724 goto idle_irq;
1da177e4 4725
312f7da2
AL
4726 /* ack bmdma irq events */
4727 ap->ops->irq_clear(ap);
1da177e4 4728
bb5cb290 4729 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4730 return 1; /* irq handled */
4731
4732idle_irq:
4733 ap->stats.idle_irq++;
4734
4735#ifdef ATA_IRQ_TRAP
4736 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4737 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4738 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4739 return 1;
1da177e4
LT
4740 }
4741#endif
4742 return 0; /* irq not handled */
4743}
4744
4745/**
4746 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4747 * @irq: irq line (unused)
4748 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4749 * @regs: unused
4750 *
0cba632b
JG
4751 * Default interrupt handler for PCI IDE devices. Calls
4752 * ata_host_intr() for each port that is not disabled.
4753 *
1da177e4 4754 * LOCKING:
0cba632b 4755 * Obtains host_set lock during operation.
1da177e4
LT
4756 *
4757 * RETURNS:
0cba632b 4758 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4759 */
4760
4761irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4762{
4763 struct ata_host_set *host_set = dev_instance;
4764 unsigned int i;
4765 unsigned int handled = 0;
4766 unsigned long flags;
4767
4768 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4769 spin_lock_irqsave(&host_set->lock, flags);
4770
4771 for (i = 0; i < host_set->n_ports; i++) {
4772 struct ata_port *ap;
4773
4774 ap = host_set->ports[i];
c1389503 4775 if (ap &&
029f5468 4776 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4777 struct ata_queued_cmd *qc;
4778
4779 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4780 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4781 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4782 handled |= ata_host_intr(ap, qc);
4783 }
4784 }
4785
4786 spin_unlock_irqrestore(&host_set->lock, flags);
4787
4788 return IRQ_RETVAL(handled);
4789}
4790
34bf2170
TH
4791/**
4792 * sata_scr_valid - test whether SCRs are accessible
4793 * @ap: ATA port to test SCR accessibility for
4794 *
4795 * Test whether SCRs are accessible for @ap.
4796 *
4797 * LOCKING:
4798 * None.
4799 *
4800 * RETURNS:
4801 * 1 if SCRs are accessible, 0 otherwise.
4802 */
4803int sata_scr_valid(struct ata_port *ap)
4804{
4805 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4806}
4807
4808/**
4809 * sata_scr_read - read SCR register of the specified port
4810 * @ap: ATA port to read SCR for
4811 * @reg: SCR to read
4812 * @val: Place to store read value
4813 *
4814 * Read SCR register @reg of @ap into *@val. This function is
4815 * guaranteed to succeed if the cable type of the port is SATA
4816 * and the port implements ->scr_read.
4817 *
4818 * LOCKING:
4819 * None.
4820 *
4821 * RETURNS:
4822 * 0 on success, negative errno on failure.
4823 */
4824int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4825{
4826 if (sata_scr_valid(ap)) {
4827 *val = ap->ops->scr_read(ap, reg);
4828 return 0;
4829 }
4830 return -EOPNOTSUPP;
4831}
4832
4833/**
4834 * sata_scr_write - write SCR register of the specified port
4835 * @ap: ATA port to write SCR for
4836 * @reg: SCR to write
4837 * @val: value to write
4838 *
4839 * Write @val to SCR register @reg of @ap. This function is
4840 * guaranteed to succeed if the cable type of the port is SATA
4841 * and the port implements ->scr_read.
4842 *
4843 * LOCKING:
4844 * None.
4845 *
4846 * RETURNS:
4847 * 0 on success, negative errno on failure.
4848 */
4849int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4850{
4851 if (sata_scr_valid(ap)) {
4852 ap->ops->scr_write(ap, reg, val);
4853 return 0;
4854 }
4855 return -EOPNOTSUPP;
4856}
4857
4858/**
4859 * sata_scr_write_flush - write SCR register of the specified port and flush
4860 * @ap: ATA port to write SCR for
4861 * @reg: SCR to write
4862 * @val: value to write
4863 *
4864 * This function is identical to sata_scr_write() except that this
4865 * function performs flush after writing to the register.
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * 0 on success, negative errno on failure.
4872 */
4873int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4874{
4875 if (sata_scr_valid(ap)) {
4876 ap->ops->scr_write(ap, reg, val);
4877 ap->ops->scr_read(ap, reg);
4878 return 0;
4879 }
4880 return -EOPNOTSUPP;
4881}
4882
4883/**
4884 * ata_port_online - test whether the given port is online
4885 * @ap: ATA port to test
4886 *
4887 * Test whether @ap is online. Note that this function returns 0
4888 * if online status of @ap cannot be obtained, so
4889 * ata_port_online(ap) != !ata_port_offline(ap).
4890 *
4891 * LOCKING:
4892 * None.
4893 *
4894 * RETURNS:
4895 * 1 if the port online status is available and online.
4896 */
4897int ata_port_online(struct ata_port *ap)
4898{
4899 u32 sstatus;
4900
4901 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4902 return 1;
4903 return 0;
4904}
4905
4906/**
4907 * ata_port_offline - test whether the given port is offline
4908 * @ap: ATA port to test
4909 *
4910 * Test whether @ap is offline. Note that this function returns
4911 * 0 if offline status of @ap cannot be obtained, so
4912 * ata_port_online(ap) != !ata_port_offline(ap).
4913 *
4914 * LOCKING:
4915 * None.
4916 *
4917 * RETURNS:
4918 * 1 if the port offline status is available and offline.
4919 */
4920int ata_port_offline(struct ata_port *ap)
4921{
4922 u32 sstatus;
4923
4924 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4925 return 1;
4926 return 0;
4927}
0baab86b 4928
9b847548
JA
4929/*
4930 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4931 * without filling any other registers
4932 */
3373efd8 4933static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4934{
4935 struct ata_taskfile tf;
4936 int err;
4937
3373efd8 4938 ata_tf_init(dev, &tf);
9b847548
JA
4939
4940 tf.command = cmd;
4941 tf.flags |= ATA_TFLAG_DEVICE;
4942 tf.protocol = ATA_PROT_NODATA;
4943
3373efd8 4944 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4945 if (err)
f15a1daf
TH
4946 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4947 __FUNCTION__, err);
9b847548
JA
4948
4949 return err;
4950}
4951
3373efd8 4952static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4953{
4954 u8 cmd;
4955
4956 if (!ata_try_flush_cache(dev))
4957 return 0;
4958
4959 if (ata_id_has_flush_ext(dev->id))
4960 cmd = ATA_CMD_FLUSH_EXT;
4961 else
4962 cmd = ATA_CMD_FLUSH;
4963
3373efd8 4964 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4965}
4966
3373efd8 4967static int ata_standby_drive(struct ata_device *dev)
9b847548 4968{
3373efd8 4969 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4970}
4971
3373efd8 4972static int ata_start_drive(struct ata_device *dev)
9b847548 4973{
3373efd8 4974 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4975}
4976
4977/**
4978 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4979 * @dev: the device to resume
9b847548
JA
4980 *
4981 * Kick the drive back into action, by sending it an idle immediate
4982 * command and making sure its transfer mode matches between drive
4983 * and host.
4984 *
4985 */
3373efd8 4986int ata_device_resume(struct ata_device *dev)
9b847548 4987{
3373efd8
TH
4988 struct ata_port *ap = dev->ap;
4989
9b847548 4990 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4991 struct ata_device *failed_dev;
e42d7be2 4992
1cca0ebb 4993 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
0737ac89 4994 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 4995
9b847548 4996 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4997 while (ata_set_mode(ap, &failed_dev))
3373efd8 4998 ata_dev_disable(failed_dev);
9b847548 4999 }
e1211e3f 5000 if (!ata_dev_enabled(dev))
9b847548
JA
5001 return 0;
5002 if (dev->class == ATA_DEV_ATA)
3373efd8 5003 ata_start_drive(dev);
9b847548
JA
5004
5005 return 0;
5006}
5007
5008/**
5009 * ata_device_suspend - prepare a device for suspend
c893a3ae 5010 * @dev: the device to suspend
e2a7f77a 5011 * @state: target power management state
9b847548
JA
5012 *
5013 * Flush the cache on the drive, if appropriate, then issue a
5014 * standbynow command.
9b847548 5015 */
3373efd8 5016int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5017{
3373efd8
TH
5018 struct ata_port *ap = dev->ap;
5019
e1211e3f 5020 if (!ata_dev_enabled(dev))
9b847548
JA
5021 return 0;
5022 if (dev->class == ATA_DEV_ATA)
3373efd8 5023 ata_flush_cache(dev);
9b847548 5024
082776e4 5025 if (state.event != PM_EVENT_FREEZE)
3373efd8 5026 ata_standby_drive(dev);
9b847548
JA
5027 ap->flags |= ATA_FLAG_SUSPENDED;
5028 return 0;
5029}
5030
c893a3ae
RD
5031/**
5032 * ata_port_start - Set port up for dma.
5033 * @ap: Port to initialize
5034 *
5035 * Called just after data structures for each port are
5036 * initialized. Allocates space for PRD table.
5037 *
5038 * May be used as the port_start() entry in ata_port_operations.
5039 *
5040 * LOCKING:
5041 * Inherited from caller.
5042 */
5043
1da177e4
LT
5044int ata_port_start (struct ata_port *ap)
5045{
2f1f610b 5046 struct device *dev = ap->dev;
6037d6bb 5047 int rc;
1da177e4
LT
5048
5049 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5050 if (!ap->prd)
5051 return -ENOMEM;
5052
6037d6bb
JG
5053 rc = ata_pad_alloc(ap, dev);
5054 if (rc) {
cedc9a47 5055 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5056 return rc;
cedc9a47
JG
5057 }
5058
1da177e4
LT
5059 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5060
5061 return 0;
5062}
5063
0baab86b
EF
5064
5065/**
5066 * ata_port_stop - Undo ata_port_start()
5067 * @ap: Port to shut down
5068 *
5069 * Frees the PRD table.
5070 *
5071 * May be used as the port_stop() entry in ata_port_operations.
5072 *
5073 * LOCKING:
6f0ef4fa 5074 * Inherited from caller.
0baab86b
EF
5075 */
5076
1da177e4
LT
5077void ata_port_stop (struct ata_port *ap)
5078{
2f1f610b 5079 struct device *dev = ap->dev;
1da177e4
LT
5080
5081 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5082 ata_pad_free(ap, dev);
1da177e4
LT
5083}
5084
aa8f0dc6
JG
5085void ata_host_stop (struct ata_host_set *host_set)
5086{
5087 if (host_set->mmio_base)
5088 iounmap(host_set->mmio_base);
5089}
5090
5091
1da177e4
LT
5092/**
5093 * ata_host_remove - Unregister SCSI host structure with upper layers
5094 * @ap: Port to unregister
5095 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5096 *
5097 * LOCKING:
6f0ef4fa 5098 * Inherited from caller.
1da177e4
LT
5099 */
5100
5101static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5102{
5103 struct Scsi_Host *sh = ap->host;
5104
5105 DPRINTK("ENTER\n");
5106
5107 if (do_unregister)
5108 scsi_remove_host(sh);
5109
5110 ap->ops->port_stop(ap);
5111}
5112
3ef3b43d
TH
5113/**
5114 * ata_dev_init - Initialize an ata_device structure
5115 * @dev: Device structure to initialize
5116 *
5117 * Initialize @dev in preparation for probing.
5118 *
5119 * LOCKING:
5120 * Inherited from caller.
5121 */
5122void ata_dev_init(struct ata_device *dev)
5123{
5124 struct ata_port *ap = dev->ap;
72fa4b74
TH
5125 unsigned long flags;
5126
5a04bf4b
TH
5127 /* SATA spd limit is bound to the first device */
5128 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5129
72fa4b74
TH
5130 /* High bits of dev->flags are used to record warm plug
5131 * requests which occur asynchronously. Synchronize using
5132 * host_set lock.
5133 */
5134 spin_lock_irqsave(&ap->host_set->lock, flags);
5135 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5136 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3ef3b43d 5137
72fa4b74
TH
5138 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5139 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5140 dev->pio_mask = UINT_MAX;
5141 dev->mwdma_mask = UINT_MAX;
5142 dev->udma_mask = UINT_MAX;
5143}
5144
1da177e4
LT
5145/**
5146 * ata_host_init - Initialize an ata_port structure
5147 * @ap: Structure to initialize
5148 * @host: associated SCSI mid-layer structure
5149 * @host_set: Collection of hosts to which @ap belongs
5150 * @ent: Probe information provided by low-level driver
5151 * @port_no: Port number associated with this ata_port
5152 *
0cba632b
JG
5153 * Initialize a new ata_port structure, and its associated
5154 * scsi_host.
5155 *
1da177e4 5156 * LOCKING:
0cba632b 5157 * Inherited from caller.
1da177e4 5158 */
1da177e4
LT
5159static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5160 struct ata_host_set *host_set,
057ace5e 5161 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5162{
5163 unsigned int i;
5164
5165 host->max_id = 16;
5166 host->max_lun = 1;
5167 host->max_channel = 1;
5168 host->unique_id = ata_unique_id++;
5169 host->max_cmd_len = 12;
12413197 5170
198e0fed 5171 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5172 ap->id = host->unique_id;
5173 ap->host = host;
5174 ap->ctl = ATA_DEVCTL_OBS;
5175 ap->host_set = host_set;
2f1f610b 5176 ap->dev = ent->dev;
1da177e4
LT
5177 ap->port_no = port_no;
5178 ap->hard_port_no =
5179 ent->legacy_mode ? ent->hard_port_no : port_no;
5180 ap->pio_mask = ent->pio_mask;
5181 ap->mwdma_mask = ent->mwdma_mask;
5182 ap->udma_mask = ent->udma_mask;
5183 ap->flags |= ent->host_flags;
5184 ap->ops = ent->port_ops;
5a04bf4b 5185 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5186 ap->active_tag = ATA_TAG_POISON;
5187 ap->last_ctl = 0xFF;
bd5d825c
BP
5188
5189#if defined(ATA_VERBOSE_DEBUG)
5190 /* turn on all debugging levels */
5191 ap->msg_enable = 0x00FF;
5192#elif defined(ATA_DEBUG)
5193 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5194#else
5195 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR;
5196#endif
1da177e4 5197
86e45b6b 5198 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5199 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5200 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5201 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5202 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5203
838df628
TH
5204 /* set cable type */
5205 ap->cbl = ATA_CBL_NONE;
5206 if (ap->flags & ATA_FLAG_SATA)
5207 ap->cbl = ATA_CBL_SATA;
5208
acf356b1
TH
5209 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5210 struct ata_device *dev = &ap->device[i];
38d87234 5211 dev->ap = ap;
72fa4b74 5212 dev->devno = i;
3ef3b43d 5213 ata_dev_init(dev);
acf356b1 5214 }
1da177e4
LT
5215
5216#ifdef ATA_IRQ_TRAP
5217 ap->stats.unhandled_irq = 1;
5218 ap->stats.idle_irq = 1;
5219#endif
5220
5221 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5222}
5223
5224/**
5225 * ata_host_add - Attach low-level ATA driver to system
5226 * @ent: Information provided by low-level driver
5227 * @host_set: Collections of ports to which we add
5228 * @port_no: Port number associated with this host
5229 *
0cba632b
JG
5230 * Attach low-level ATA driver to system.
5231 *
1da177e4 5232 * LOCKING:
0cba632b 5233 * PCI/etc. bus probe sem.
1da177e4
LT
5234 *
5235 * RETURNS:
0cba632b 5236 * New ata_port on success, for NULL on error.
1da177e4
LT
5237 */
5238
057ace5e 5239static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5240 struct ata_host_set *host_set,
5241 unsigned int port_no)
5242{
5243 struct Scsi_Host *host;
5244 struct ata_port *ap;
5245 int rc;
5246
5247 DPRINTK("ENTER\n");
aec5c3c1 5248
52783c5d 5249 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5250 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5251 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5252 port_no);
5253 return NULL;
5254 }
5255
1da177e4
LT
5256 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5257 if (!host)
5258 return NULL;
5259
30afc84c
TH
5260 host->transportt = &ata_scsi_transport_template;
5261
35bb94b1 5262 ap = ata_shost_to_port(host);
1da177e4
LT
5263
5264 ata_host_init(ap, host, host_set, ent, port_no);
5265
5266 rc = ap->ops->port_start(ap);
5267 if (rc)
5268 goto err_out;
5269
5270 return ap;
5271
5272err_out:
5273 scsi_host_put(host);
5274 return NULL;
5275}
5276
5277/**
0cba632b
JG
5278 * ata_device_add - Register hardware device with ATA and SCSI layers
5279 * @ent: Probe information describing hardware device to be registered
5280 *
5281 * This function processes the information provided in the probe
5282 * information struct @ent, allocates the necessary ATA and SCSI
5283 * host information structures, initializes them, and registers
5284 * everything with requisite kernel subsystems.
5285 *
5286 * This function requests irqs, probes the ATA bus, and probes
5287 * the SCSI bus.
1da177e4
LT
5288 *
5289 * LOCKING:
0cba632b 5290 * PCI/etc. bus probe sem.
1da177e4
LT
5291 *
5292 * RETURNS:
0cba632b 5293 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5294 */
057ace5e 5295int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5296{
5297 unsigned int count = 0, i;
5298 struct device *dev = ent->dev;
5299 struct ata_host_set *host_set;
39b07ce6 5300 int rc;
1da177e4
LT
5301
5302 DPRINTK("ENTER\n");
5303 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5304 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5305 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5306 if (!host_set)
5307 return 0;
1da177e4
LT
5308 spin_lock_init(&host_set->lock);
5309
5310 host_set->dev = dev;
5311 host_set->n_ports = ent->n_ports;
5312 host_set->irq = ent->irq;
5313 host_set->mmio_base = ent->mmio_base;
5314 host_set->private_data = ent->private_data;
5315 host_set->ops = ent->port_ops;
5444a6f4 5316 host_set->flags = ent->host_set_flags;
1da177e4
LT
5317
5318 /* register each port bound to this device */
5319 for (i = 0; i < ent->n_ports; i++) {
5320 struct ata_port *ap;
5321 unsigned long xfer_mode_mask;
5322
5323 ap = ata_host_add(ent, host_set, i);
5324 if (!ap)
5325 goto err_out;
5326
5327 host_set->ports[i] = ap;
5328 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5329 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5330 (ap->pio_mask << ATA_SHIFT_PIO);
5331
5332 /* print per-port info to dmesg */
f15a1daf
TH
5333 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5334 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5335 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5336 ata_mode_string(xfer_mode_mask),
5337 ap->ioaddr.cmd_addr,
5338 ap->ioaddr.ctl_addr,
5339 ap->ioaddr.bmdma_addr,
5340 ent->irq);
1da177e4
LT
5341
5342 ata_chk_status(ap);
5343 host_set->ops->irq_clear(ap);
e3180499 5344 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5345 count++;
5346 }
5347
57f3bda8
RD
5348 if (!count)
5349 goto err_free_ret;
1da177e4
LT
5350
5351 /* obtain irq, that is shared between channels */
39b07ce6
JG
5352 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5353 DRV_NAME, host_set);
5354 if (rc) {
5355 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5356 ent->irq, rc);
1da177e4 5357 goto err_out;
39b07ce6 5358 }
1da177e4
LT
5359
5360 /* perform each probe synchronously */
5361 DPRINTK("probe begin\n");
5362 for (i = 0; i < count; i++) {
5363 struct ata_port *ap;
5a04bf4b 5364 u32 scontrol;
1da177e4
LT
5365 int rc;
5366
5367 ap = host_set->ports[i];
5368
5a04bf4b
TH
5369 /* init sata_spd_limit to the current value */
5370 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5371 int spd = (scontrol >> 4) & 0xf;
5372 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5373 }
5374 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5375
1da177e4
LT
5376 rc = scsi_add_host(ap->host, dev);
5377 if (rc) {
f15a1daf 5378 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5379 /* FIXME: do something useful here */
5380 /* FIXME: handle unconditional calls to
5381 * scsi_scan_host and ata_host_remove, below,
5382 * at the very least
5383 */
5384 }
3e706399 5385
52783c5d 5386 if (ap->ops->error_handler) {
3e706399
TH
5387 unsigned long flags;
5388
5389 ata_port_probe(ap);
5390
5391 /* kick EH for boot probing */
5392 spin_lock_irqsave(&ap->host_set->lock, flags);
5393
5394 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5395 ap->eh_info.action |= ATA_EH_SOFTRESET;
5396
5397 ap->flags |= ATA_FLAG_LOADING;
5398 ata_port_schedule_eh(ap);
5399
5400 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5401
5402 /* wait for EH to finish */
5403 ata_port_wait_eh(ap);
5404 } else {
5405 DPRINTK("ata%u: bus probe begin\n", ap->id);
5406 rc = ata_bus_probe(ap);
5407 DPRINTK("ata%u: bus probe end\n", ap->id);
5408
5409 if (rc) {
5410 /* FIXME: do something useful here?
5411 * Current libata behavior will
5412 * tear down everything when
5413 * the module is removed
5414 * or the h/w is unplugged.
5415 */
5416 }
5417 }
1da177e4
LT
5418 }
5419
5420 /* probes are done, now scan each port's disk(s) */
c893a3ae 5421 DPRINTK("host probe begin\n");
1da177e4
LT
5422 for (i = 0; i < count; i++) {
5423 struct ata_port *ap = host_set->ports[i];
5424
644dd0cc 5425 ata_scsi_scan_host(ap);
1da177e4
LT
5426 }
5427
5428 dev_set_drvdata(dev, host_set);
5429
5430 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5431 return ent->n_ports; /* success */
5432
5433err_out:
5434 for (i = 0; i < count; i++) {
5435 ata_host_remove(host_set->ports[i], 1);
5436 scsi_host_put(host_set->ports[i]->host);
5437 }
57f3bda8 5438err_free_ret:
1da177e4
LT
5439 kfree(host_set);
5440 VPRINTK("EXIT, returning 0\n");
5441 return 0;
5442}
5443
720ba126
TH
5444/**
5445 * ata_port_detach - Detach ATA port in prepration of device removal
5446 * @ap: ATA port to be detached
5447 *
5448 * Detach all ATA devices and the associated SCSI devices of @ap;
5449 * then, remove the associated SCSI host. @ap is guaranteed to
5450 * be quiescent on return from this function.
5451 *
5452 * LOCKING:
5453 * Kernel thread context (may sleep).
5454 */
5455void ata_port_detach(struct ata_port *ap)
5456{
5457 unsigned long flags;
5458 int i;
5459
5460 if (!ap->ops->error_handler)
5461 return;
5462
5463 /* tell EH we're leaving & flush EH */
5464 spin_lock_irqsave(&ap->host_set->lock, flags);
5465 ap->flags |= ATA_FLAG_UNLOADING;
5466 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5467
5468 ata_port_wait_eh(ap);
5469
5470 /* EH is now guaranteed to see UNLOADING, so no new device
5471 * will be attached. Disable all existing devices.
5472 */
5473 spin_lock_irqsave(&ap->host_set->lock, flags);
5474
5475 for (i = 0; i < ATA_MAX_DEVICES; i++)
5476 ata_dev_disable(&ap->device[i]);
5477
5478 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5479
5480 /* Final freeze & EH. All in-flight commands are aborted. EH
5481 * will be skipped and retrials will be terminated with bad
5482 * target.
5483 */
5484 spin_lock_irqsave(&ap->host_set->lock, flags);
5485 ata_port_freeze(ap); /* won't be thawed */
5486 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5487
5488 ata_port_wait_eh(ap);
5489
5490 /* Flush hotplug task. The sequence is similar to
5491 * ata_port_flush_task().
5492 */
5493 flush_workqueue(ata_aux_wq);
5494 cancel_delayed_work(&ap->hotplug_task);
5495 flush_workqueue(ata_aux_wq);
5496
5497 /* remove the associated SCSI host */
5498 scsi_remove_host(ap->host);
5499}
5500
17b14451
AC
5501/**
5502 * ata_host_set_remove - PCI layer callback for device removal
5503 * @host_set: ATA host set that was removed
5504 *
2e9edbf8 5505 * Unregister all objects associated with this host set. Free those
17b14451
AC
5506 * objects.
5507 *
5508 * LOCKING:
5509 * Inherited from calling layer (may sleep).
5510 */
5511
17b14451
AC
5512void ata_host_set_remove(struct ata_host_set *host_set)
5513{
17b14451
AC
5514 unsigned int i;
5515
720ba126
TH
5516 for (i = 0; i < host_set->n_ports; i++)
5517 ata_port_detach(host_set->ports[i]);
17b14451
AC
5518
5519 free_irq(host_set->irq, host_set);
5520
5521 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5522 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5523
5524 ata_scsi_release(ap->host);
5525
5526 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5527 struct ata_ioports *ioaddr = &ap->ioaddr;
5528
5529 if (ioaddr->cmd_addr == 0x1f0)
5530 release_region(0x1f0, 8);
5531 else if (ioaddr->cmd_addr == 0x170)
5532 release_region(0x170, 8);
5533 }
5534
5535 scsi_host_put(ap->host);
5536 }
5537
5538 if (host_set->ops->host_stop)
5539 host_set->ops->host_stop(host_set);
5540
5541 kfree(host_set);
5542}
5543
1da177e4
LT
5544/**
5545 * ata_scsi_release - SCSI layer callback hook for host unload
5546 * @host: libata host to be unloaded
5547 *
5548 * Performs all duties necessary to shut down a libata port...
5549 * Kill port kthread, disable port, and release resources.
5550 *
5551 * LOCKING:
5552 * Inherited from SCSI layer.
5553 *
5554 * RETURNS:
5555 * One.
5556 */
5557
5558int ata_scsi_release(struct Scsi_Host *host)
5559{
35bb94b1 5560 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5561
5562 DPRINTK("ENTER\n");
5563
5564 ap->ops->port_disable(ap);
5565 ata_host_remove(ap, 0);
5566
5567 DPRINTK("EXIT\n");
5568 return 1;
5569}
5570
5571/**
5572 * ata_std_ports - initialize ioaddr with standard port offsets.
5573 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5574 *
5575 * Utility function which initializes data_addr, error_addr,
5576 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5577 * device_addr, status_addr, and command_addr to standard offsets
5578 * relative to cmd_addr.
5579 *
5580 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5581 */
0baab86b 5582
1da177e4
LT
5583void ata_std_ports(struct ata_ioports *ioaddr)
5584{
5585 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5586 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5587 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5588 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5589 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5590 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5591 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5592 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5593 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5594 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5595}
5596
0baab86b 5597
374b1873
JG
5598#ifdef CONFIG_PCI
5599
5600void ata_pci_host_stop (struct ata_host_set *host_set)
5601{
5602 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5603
5604 pci_iounmap(pdev, host_set->mmio_base);
5605}
5606
1da177e4
LT
5607/**
5608 * ata_pci_remove_one - PCI layer callback for device removal
5609 * @pdev: PCI device that was removed
5610 *
5611 * PCI layer indicates to libata via this hook that
6f0ef4fa 5612 * hot-unplug or module unload event has occurred.
1da177e4
LT
5613 * Handle this by unregistering all objects associated
5614 * with this PCI device. Free those objects. Then finally
5615 * release PCI resources and disable device.
5616 *
5617 * LOCKING:
5618 * Inherited from PCI layer (may sleep).
5619 */
5620
5621void ata_pci_remove_one (struct pci_dev *pdev)
5622{
5623 struct device *dev = pci_dev_to_dev(pdev);
5624 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5625 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5626
17b14451 5627 ata_host_set_remove(host_set);
f0eb62b8
TH
5628 if (host_set2)
5629 ata_host_set_remove(host_set2);
5630
1da177e4
LT
5631 pci_release_regions(pdev);
5632 pci_disable_device(pdev);
5633 dev_set_drvdata(dev, NULL);
5634}
5635
5636/* move to PCI subsystem */
057ace5e 5637int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5638{
5639 unsigned long tmp = 0;
5640
5641 switch (bits->width) {
5642 case 1: {
5643 u8 tmp8 = 0;
5644 pci_read_config_byte(pdev, bits->reg, &tmp8);
5645 tmp = tmp8;
5646 break;
5647 }
5648 case 2: {
5649 u16 tmp16 = 0;
5650 pci_read_config_word(pdev, bits->reg, &tmp16);
5651 tmp = tmp16;
5652 break;
5653 }
5654 case 4: {
5655 u32 tmp32 = 0;
5656 pci_read_config_dword(pdev, bits->reg, &tmp32);
5657 tmp = tmp32;
5658 break;
5659 }
5660
5661 default:
5662 return -EINVAL;
5663 }
5664
5665 tmp &= bits->mask;
5666
5667 return (tmp == bits->val) ? 1 : 0;
5668}
9b847548
JA
5669
5670int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5671{
5672 pci_save_state(pdev);
5673 pci_disable_device(pdev);
5674 pci_set_power_state(pdev, PCI_D3hot);
5675 return 0;
5676}
5677
5678int ata_pci_device_resume(struct pci_dev *pdev)
5679{
5680 pci_set_power_state(pdev, PCI_D0);
5681 pci_restore_state(pdev);
5682 pci_enable_device(pdev);
5683 pci_set_master(pdev);
5684 return 0;
5685}
1da177e4
LT
5686#endif /* CONFIG_PCI */
5687
5688
1da177e4
LT
5689static int __init ata_init(void)
5690{
5691 ata_wq = create_workqueue("ata");
5692 if (!ata_wq)
5693 return -ENOMEM;
5694
453b07ac
TH
5695 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5696 if (!ata_aux_wq) {
5697 destroy_workqueue(ata_wq);
5698 return -ENOMEM;
5699 }
5700
1da177e4
LT
5701 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5702 return 0;
5703}
5704
5705static void __exit ata_exit(void)
5706{
5707 destroy_workqueue(ata_wq);
453b07ac 5708 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5709}
5710
5711module_init(ata_init);
5712module_exit(ata_exit);
5713
67846b30
JG
5714static unsigned long ratelimit_time;
5715static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5716
5717int ata_ratelimit(void)
5718{
5719 int rc;
5720 unsigned long flags;
5721
5722 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5723
5724 if (time_after(jiffies, ratelimit_time)) {
5725 rc = 1;
5726 ratelimit_time = jiffies + (HZ/5);
5727 } else
5728 rc = 0;
5729
5730 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5731
5732 return rc;
5733}
5734
c22daff4
TH
5735/**
5736 * ata_wait_register - wait until register value changes
5737 * @reg: IO-mapped register
5738 * @mask: Mask to apply to read register value
5739 * @val: Wait condition
5740 * @interval_msec: polling interval in milliseconds
5741 * @timeout_msec: timeout in milliseconds
5742 *
5743 * Waiting for some bits of register to change is a common
5744 * operation for ATA controllers. This function reads 32bit LE
5745 * IO-mapped register @reg and tests for the following condition.
5746 *
5747 * (*@reg & mask) != val
5748 *
5749 * If the condition is met, it returns; otherwise, the process is
5750 * repeated after @interval_msec until timeout.
5751 *
5752 * LOCKING:
5753 * Kernel thread context (may sleep)
5754 *
5755 * RETURNS:
5756 * The final register value.
5757 */
5758u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5759 unsigned long interval_msec,
5760 unsigned long timeout_msec)
5761{
5762 unsigned long timeout;
5763 u32 tmp;
5764
5765 tmp = ioread32(reg);
5766
5767 /* Calculate timeout _after_ the first read to make sure
5768 * preceding writes reach the controller before starting to
5769 * eat away the timeout.
5770 */
5771 timeout = jiffies + (timeout_msec * HZ) / 1000;
5772
5773 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5774 msleep(interval_msec);
5775 tmp = ioread32(reg);
5776 }
5777
5778 return tmp;
5779}
5780
1da177e4
LT
5781/*
5782 * libata is essentially a library of internal helper functions for
5783 * low-level ATA host controller drivers. As such, the API/ABI is
5784 * likely to change as new drivers are added and updated.
5785 * Do not depend on ABI/API stability.
5786 */
5787
d7bb4cc7
TH
5788EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5789EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5790EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5791EXPORT_SYMBOL_GPL(ata_std_bios_param);
5792EXPORT_SYMBOL_GPL(ata_std_ports);
5793EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5794EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5795EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5796EXPORT_SYMBOL_GPL(ata_sg_init);
5797EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5798EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5799EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5800EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5801EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5802EXPORT_SYMBOL_GPL(ata_tf_load);
5803EXPORT_SYMBOL_GPL(ata_tf_read);
5804EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5805EXPORT_SYMBOL_GPL(ata_std_dev_select);
5806EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5807EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5808EXPORT_SYMBOL_GPL(ata_check_status);
5809EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5810EXPORT_SYMBOL_GPL(ata_exec_command);
5811EXPORT_SYMBOL_GPL(ata_port_start);
5812EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5813EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5814EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5815EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5816EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5817EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5818EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5819EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5820EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5821EXPORT_SYMBOL_GPL(ata_bmdma_start);
5822EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5823EXPORT_SYMBOL_GPL(ata_bmdma_status);
5824EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5825EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5826EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5827EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5828EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5829EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5830EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5831EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5832EXPORT_SYMBOL_GPL(sata_phy_debounce);
5833EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5834EXPORT_SYMBOL_GPL(sata_phy_reset);
5835EXPORT_SYMBOL_GPL(__sata_phy_reset);
5836EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5837EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5838EXPORT_SYMBOL_GPL(ata_std_softreset);
5839EXPORT_SYMBOL_GPL(sata_std_hardreset);
5840EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5841EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5842EXPORT_SYMBOL_GPL(ata_dev_classify);
5843EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5844EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5845EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5846EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5847EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5848EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5849EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5850EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5851EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5852EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5853EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5854EXPORT_SYMBOL_GPL(ata_scsi_release);
5855EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5856EXPORT_SYMBOL_GPL(sata_scr_valid);
5857EXPORT_SYMBOL_GPL(sata_scr_read);
5858EXPORT_SYMBOL_GPL(sata_scr_write);
5859EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5860EXPORT_SYMBOL_GPL(ata_port_online);
5861EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5862EXPORT_SYMBOL_GPL(ata_id_string);
5863EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5864EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5865
1bc4ccff 5866EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5867EXPORT_SYMBOL_GPL(ata_timing_compute);
5868EXPORT_SYMBOL_GPL(ata_timing_merge);
5869
1da177e4
LT
5870#ifdef CONFIG_PCI
5871EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5872EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5873EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5874EXPORT_SYMBOL_GPL(ata_pci_init_one);
5875EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5876EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5877EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5878EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5879EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5880#endif /* CONFIG_PCI */
9b847548
JA
5881
5882EXPORT_SYMBOL_GPL(ata_device_suspend);
5883EXPORT_SYMBOL_GPL(ata_device_resume);
5884EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5885EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5886
ece1d636 5887EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5888EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5889EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5890EXPORT_SYMBOL_GPL(ata_port_freeze);
5891EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5892EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5893EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5894EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5895EXPORT_SYMBOL_GPL(ata_do_eh);