]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/rtc/rtc-bfin.c
Blackfin RTC Driver: move irq request/free out of open/release and into probe/remove...
[net-next-2.6.git] / drivers / rtc / rtc-bfin.c
CommitLineData
8cc75c9a
WB
1/*
2 * Blackfin On-Chip Real Time Clock Driver
095b9d54 3 * Supports BF52[257]/BF53[123]/BF53[467]/BF54[24789]
8cc75c9a 4 *
813006f4 5 * Copyright 2004-2008 Analog Devices Inc.
8cc75c9a
WB
6 *
7 * Enter bugs at http://blackfin.uclinux.org/
8 *
9 * Licensed under the GPL-2 or later.
10 */
11
12/* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
21 *
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
30 *
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
33 */
34
26cb8bb2
MF
35/* It may seem odd that there is no SWCNT code in here (which would be exposed
36 * via the periodic interrupt event, or PIE). Since the Blackfin RTC peripheral
37 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
38 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
39 * The same exact behavior can be accomplished by using the update interrupt
40 * event (UIE). Maybe down the line the RTC peripheral will suck less in which
41 * case we can re-introduce PIE support.
42 */
43
8cc75c9a 44#include <linux/bcd.h>
095b9d54
MF
45#include <linux/completion.h>
46#include <linux/delay.h>
8cc75c9a 47#include <linux/init.h>
095b9d54
MF
48#include <linux/interrupt.h>
49#include <linux/kernel.h>
50#include <linux/module.h>
8cc75c9a 51#include <linux/platform_device.h>
095b9d54 52#include <linux/rtc.h>
8cc75c9a 53#include <linux/seq_file.h>
8cc75c9a
WB
54
55#include <asm/blackfin.h>
56
5438de44 57#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
8cc75c9a
WB
58
59struct bfin_rtc {
60 struct rtc_device *rtc_dev;
61 struct rtc_time rtc_alarm;
095b9d54 62 u16 rtc_wrote_regs;
8cc75c9a
WB
63};
64
65/* Bit values for the ISTAT / ICTL registers */
66#define RTC_ISTAT_WRITE_COMPLETE 0x8000
67#define RTC_ISTAT_WRITE_PENDING 0x4000
68#define RTC_ISTAT_ALARM_DAY 0x0040
69#define RTC_ISTAT_24HR 0x0020
70#define RTC_ISTAT_HOUR 0x0010
71#define RTC_ISTAT_MIN 0x0008
72#define RTC_ISTAT_SEC 0x0004
73#define RTC_ISTAT_ALARM 0x0002
74#define RTC_ISTAT_STOPWATCH 0x0001
75
76/* Shift values for RTC_STAT register */
77#define DAY_BITS_OFF 17
78#define HOUR_BITS_OFF 12
79#define MIN_BITS_OFF 6
80#define SEC_BITS_OFF 0
81
82/* Some helper functions to convert between the common RTC notion of time
5c236343 83 * and the internal Blackfin notion that is encoded in 32bits.
8cc75c9a
WB
84 */
85static inline u32 rtc_time_to_bfin(unsigned long now)
86{
87 u32 sec = (now % 60);
88 u32 min = (now % (60 * 60)) / 60;
89 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
90 u32 days = (now / (60 * 60 * 24));
91 return (sec << SEC_BITS_OFF) +
92 (min << MIN_BITS_OFF) +
93 (hour << HOUR_BITS_OFF) +
94 (days << DAY_BITS_OFF);
95}
96static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
97{
98 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
99 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
100 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
101 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
102}
103static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
104{
105 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
106}
107
095b9d54
MF
108/**
109 * bfin_rtc_sync_pending - make sure pending writes have complete
110 *
111 * Wait for the previous write to a RTC register to complete.
8cc75c9a
WB
112 * Unfortunately, we can't sleep here as that introduces a race condition when
113 * turning on interrupt events. Consider this:
114 * - process sets alarm
115 * - process enables alarm
116 * - process sleeps while waiting for rtc write to sync
117 * - interrupt fires while process is sleeping
118 * - interrupt acks the event by writing to ISTAT
119 * - interrupt sets the WRITE PENDING bit
120 * - interrupt handler finishes
121 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
122 * - interrupt fires while process is sleeping
123 * If anyone can point out the obvious solution here, i'm listening :). This
124 * shouldn't be an issue on an SMP or preempt system as this function should
125 * only be called with the rtc lock held.
5c236343
MF
126 *
127 * Other options:
128 * - disable PREN so the sync happens at 32.768kHZ ... but this changes the
129 * inc rate for all RTC registers from 1HZ to 32.768kHZ ...
130 * - use the write complete IRQ
8cc75c9a 131 */
095b9d54
MF
132/*
133static void bfin_rtc_sync_pending_polled(void)
8cc75c9a 134{
095b9d54 135 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
8cc75c9a
WB
136 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
137 break;
8cc75c9a
WB
138 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
139}
095b9d54
MF
140*/
141static DECLARE_COMPLETION(bfin_write_complete);
142static void bfin_rtc_sync_pending(struct device *dev)
143{
144 dev_dbg_stamp(dev);
145 while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
146 wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
147 dev_dbg_stamp(dev);
148}
8cc75c9a 149
095b9d54
MF
150/**
151 * bfin_rtc_reset - set RTC to sane/known state
152 *
153 * Initialize the RTC. Enable pre-scaler to scale RTC clock
154 * to 1Hz and clear interrupt/status registers.
155 */
3b128fe0 156static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
8cc75c9a 157{
5438de44 158 struct bfin_rtc *rtc = dev_get_drvdata(dev);
095b9d54
MF
159 dev_dbg_stamp(dev);
160 bfin_rtc_sync_pending(dev);
8cc75c9a 161 bfin_write_RTC_PREN(0x1);
3b128fe0 162 bfin_write_RTC_ICTL(rtc_ictl);
8cc75c9a
WB
163 bfin_write_RTC_ALARM(0);
164 bfin_write_RTC_ISTAT(0xFFFF);
095b9d54 165 rtc->rtc_wrote_regs = 0;
8cc75c9a
WB
166}
167
095b9d54
MF
168/**
169 * bfin_rtc_interrupt - handle interrupt from RTC
170 *
171 * Since we handle all RTC events here, we have to make sure the requested
172 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
173 * always gets updated regardless of the interrupt being enabled. So when one
174 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
175 * and say that other events have happened as well (e.g. second). We do not
176 * have to worry about pending writes to the RTC_ICTL register as interrupts
177 * only fire if they are enabled in the RTC_ICTL register.
178 */
8cc75c9a
WB
179static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
180{
d7827d88
MF
181 struct device *dev = dev_id;
182 struct bfin_rtc *rtc = dev_get_drvdata(dev);
8cc75c9a 183 unsigned long events = 0;
095b9d54
MF
184 bool write_complete = false;
185 u16 rtc_istat, rtc_ictl;
8cc75c9a 186
5438de44 187 dev_dbg_stamp(dev);
8cc75c9a 188
8cc75c9a 189 rtc_istat = bfin_read_RTC_ISTAT();
095b9d54 190 rtc_ictl = bfin_read_RTC_ICTL();
8cc75c9a 191
095b9d54
MF
192 if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) {
193 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
194 write_complete = true;
195 complete(&bfin_write_complete);
8cc75c9a
WB
196 }
197
095b9d54
MF
198 if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
199 if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
200 bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
201 events |= RTC_AF | RTC_IRQF;
202 }
8cc75c9a
WB
203 }
204
095b9d54
MF
205 if (rtc_ictl & RTC_ISTAT_SEC) {
206 if (rtc_istat & RTC_ISTAT_SEC) {
207 bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
208 events |= RTC_UF | RTC_IRQF;
209 }
210 }
8cc75c9a 211
095b9d54
MF
212 if (events)
213 rtc_update_irq(rtc->rtc_dev, 1, events);
8cc75c9a 214
095b9d54
MF
215 if (write_complete || events)
216 return IRQ_HANDLED;
217 else
218 return IRQ_NONE;
8cc75c9a
WB
219}
220
605eb8b3 221static void bfin_rtc_int_set(u16 rtc_int)
095b9d54
MF
222{
223 bfin_write_RTC_ISTAT(rtc_int);
224 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
225}
605eb8b3 226static void bfin_rtc_int_clear(u16 rtc_int)
095b9d54
MF
227{
228 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
229}
230static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
231{
232 /* Blackfin has different bits for whether the alarm is
233 * more than 24 hours away.
234 */
605eb8b3 235 bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
095b9d54 236}
8cc75c9a
WB
237static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
238{
239 struct bfin_rtc *rtc = dev_get_drvdata(dev);
095b9d54 240 int ret = 0;
8cc75c9a 241
5438de44 242 dev_dbg_stamp(dev);
8cc75c9a 243
095b9d54
MF
244 bfin_rtc_sync_pending(dev);
245
8cc75c9a 246 switch (cmd) {
8cc75c9a 247 case RTC_UIE_ON:
5438de44 248 dev_dbg_stamp(dev);
605eb8b3 249 bfin_rtc_int_set(RTC_ISTAT_SEC);
095b9d54 250 break;
8cc75c9a 251 case RTC_UIE_OFF:
5438de44 252 dev_dbg_stamp(dev);
605eb8b3 253 bfin_rtc_int_clear(~RTC_ISTAT_SEC);
095b9d54 254 break;
8cc75c9a 255
095b9d54 256 case RTC_AIE_ON:
5438de44 257 dev_dbg_stamp(dev);
095b9d54
MF
258 bfin_rtc_int_set_alarm(rtc);
259 break;
8cc75c9a 260 case RTC_AIE_OFF:
5438de44 261 dev_dbg_stamp(dev);
605eb8b3 262 bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
095b9d54
MF
263 break;
264
265 default:
266 dev_dbg_stamp(dev);
267 ret = -ENOIOCTLCMD;
8cc75c9a
WB
268 }
269
095b9d54 270 return ret;
8cc75c9a
WB
271}
272
273static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
274{
275 struct bfin_rtc *rtc = dev_get_drvdata(dev);
276
5438de44 277 dev_dbg_stamp(dev);
8cc75c9a 278
095b9d54
MF
279 if (rtc->rtc_wrote_regs & 0x1)
280 bfin_rtc_sync_pending(dev);
281
8cc75c9a 282 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
8cc75c9a
WB
283
284 return 0;
285}
286
287static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
288{
289 struct bfin_rtc *rtc = dev_get_drvdata(dev);
290 int ret;
291 unsigned long now;
292
5438de44 293 dev_dbg_stamp(dev);
8cc75c9a 294
8cc75c9a
WB
295 ret = rtc_tm_to_time(tm, &now);
296 if (ret == 0) {
095b9d54
MF
297 if (rtc->rtc_wrote_regs & 0x1)
298 bfin_rtc_sync_pending(dev);
8cc75c9a 299 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
095b9d54 300 rtc->rtc_wrote_regs = 0x1;
8cc75c9a
WB
301 }
302
8cc75c9a
WB
303 return ret;
304}
305
306static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
307{
308 struct bfin_rtc *rtc = dev_get_drvdata(dev);
5438de44 309 dev_dbg_stamp(dev);
48c1a56b 310 alrm->time = rtc->rtc_alarm;
095b9d54 311 bfin_rtc_sync_pending(dev);
68db3047 312 alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
8cc75c9a
WB
313 return 0;
314}
315
316static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
317{
318 struct bfin_rtc *rtc = dev_get_drvdata(dev);
095b9d54
MF
319 unsigned long rtc_alarm;
320
5438de44 321 dev_dbg_stamp(dev);
095b9d54
MF
322
323 if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
324 return -EINVAL;
325
68db3047 326 rtc->rtc_alarm = alrm->time;
095b9d54
MF
327
328 bfin_rtc_sync_pending(dev);
329 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
330 if (alrm->enabled)
331 bfin_rtc_int_set_alarm(rtc);
332
8cc75c9a
WB
333 return 0;
334}
335
336static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
337{
64061160 338#define yesno(x) ((x) ? "yes" : "no")
8cc75c9a 339 u16 ictl = bfin_read_RTC_ICTL();
5438de44 340 dev_dbg_stamp(dev);
64061160
MF
341 seq_printf(seq,
342 "alarm_IRQ\t: %s\n"
343 "wkalarm_IRQ\t: %s\n"
26cb8bb2 344 "seconds_IRQ\t: %s\n",
64061160
MF
345 yesno(ictl & RTC_ISTAT_ALARM),
346 yesno(ictl & RTC_ISTAT_ALARM_DAY),
26cb8bb2 347 yesno(ictl & RTC_ISTAT_SEC));
8cc75c9a 348 return 0;
64061160 349#undef yesno
8cc75c9a
WB
350}
351
8cc75c9a 352static struct rtc_class_ops bfin_rtc_ops = {
8cc75c9a
WB
353 .ioctl = bfin_rtc_ioctl,
354 .read_time = bfin_rtc_read_time,
355 .set_time = bfin_rtc_set_time,
356 .read_alarm = bfin_rtc_read_alarm,
357 .set_alarm = bfin_rtc_set_alarm,
358 .proc = bfin_rtc_proc,
8cc75c9a
WB
359};
360
361static int __devinit bfin_rtc_probe(struct platform_device *pdev)
362{
363 struct bfin_rtc *rtc;
fe2e1cf8 364 struct device *dev = &pdev->dev;
8cc75c9a
WB
365 int ret = 0;
366
fe2e1cf8 367 dev_dbg_stamp(dev);
8cc75c9a 368
fe2e1cf8 369 /* Allocate memory for our RTC struct */
8cc75c9a
WB
370 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
371 if (unlikely(!rtc))
372 return -ENOMEM;
fe2e1cf8 373 platform_set_drvdata(pdev, rtc);
8cc75c9a 374
fe2e1cf8
MF
375 /* Grab the IRQ and init the hardware */
376 ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_SHARED, pdev->name, dev);
377 if (unlikely(ret))
8cc75c9a 378 goto err;
fe2e1cf8 379 bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
26cb8bb2 380 bfin_write_RTC_SWCNT(0);
8cc75c9a 381
fe2e1cf8
MF
382 /* Register our RTC with the RTC framework */
383 rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops, THIS_MODULE);
384 if (unlikely(IS_ERR(rtc))) {
385 ret = PTR_ERR(rtc->rtc_dev);
386 goto err_irq;
387 }
8cc75c9a 388
fe2e1cf8 389 device_init_wakeup(dev, 1);
813006f4 390
8cc75c9a
WB
391 return 0;
392
fe2e1cf8
MF
393 err_irq:
394 free_irq(IRQ_RTC, dev);
5c236343 395 err:
8cc75c9a
WB
396 kfree(rtc);
397 return ret;
398}
399
400static int __devexit bfin_rtc_remove(struct platform_device *pdev)
401{
402 struct bfin_rtc *rtc = platform_get_drvdata(pdev);
fe2e1cf8 403 struct device *dev = &pdev->dev;
8cc75c9a 404
fe2e1cf8
MF
405 bfin_rtc_reset(dev, 0);
406 free_irq(IRQ_RTC, dev);
8cc75c9a
WB
407 rtc_device_unregister(rtc->rtc_dev);
408 platform_set_drvdata(pdev, NULL);
409 kfree(rtc);
410
411 return 0;
412}
413
5aeb776d
SZ
414#ifdef CONFIG_PM
415static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
416{
140fab14 417 if (device_may_wakeup(&pdev->dev)) {
813006f4 418 enable_irq_wake(IRQ_RTC);
140fab14
MF
419 bfin_rtc_sync_pending(&pdev->dev);
420 } else
605eb8b3 421 bfin_rtc_int_clear(-1);
813006f4 422
5aeb776d
SZ
423 return 0;
424}
425
426static int bfin_rtc_resume(struct platform_device *pdev)
427{
813006f4
MF
428 if (device_may_wakeup(&pdev->dev))
429 disable_irq_wake(IRQ_RTC);
430 else
431 bfin_write_RTC_ISTAT(-1);
432
5aeb776d
SZ
433 return 0;
434}
813006f4
MF
435#else
436# define bfin_rtc_suspend NULL
437# define bfin_rtc_resume NULL
5aeb776d
SZ
438#endif
439
8cc75c9a
WB
440static struct platform_driver bfin_rtc_driver = {
441 .driver = {
442 .name = "rtc-bfin",
443 .owner = THIS_MODULE,
444 },
445 .probe = bfin_rtc_probe,
446 .remove = __devexit_p(bfin_rtc_remove),
5aeb776d
SZ
447 .suspend = bfin_rtc_suspend,
448 .resume = bfin_rtc_resume,
8cc75c9a
WB
449};
450
451static int __init bfin_rtc_init(void)
452{
8cc75c9a
WB
453 return platform_driver_register(&bfin_rtc_driver);
454}
455
456static void __exit bfin_rtc_exit(void)
457{
458 platform_driver_unregister(&bfin_rtc_driver);
459}
460
461module_init(bfin_rtc_init);
462module_exit(bfin_rtc_exit);
463
464MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
465MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
466MODULE_LICENSE("GPL");
ad28a07b 467MODULE_ALIAS("platform:rtc-bfin");