]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/regulator/core.c
regulator: Additional diagnostics for machine constraints
[net-next-2.6.git] / drivers / regulator / core.c
CommitLineData
414c70cb
LG
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
a5766f11 5 * Copyright 2008 SlimLogic Ltd.
414c70cb 6 *
a5766f11 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
414c70cb
LG
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/**
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37struct regulator_dev {
38 struct regulator_desc *desc;
39 int use_count;
40
41 /* lists we belong to */
42 struct list_head list; /* list of all regulators */
43 struct list_head slist; /* list of supplied regulators */
44
45 /* lists we own */
46 struct list_head consumer_list; /* consumers we supply */
47 struct list_head supply_list; /* regulators we supply */
48
49 struct blocking_notifier_head notifier;
50 struct mutex mutex; /* consumer lock */
51 struct module *owner;
52 struct device dev;
53 struct regulation_constraints *constraints;
54 struct regulator_dev *supply; /* for tree */
55
56 void *reg_data; /* regulator_dev data */
57};
58
59/**
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65 struct list_head list;
66 struct device *dev;
67 const char *supply;
a5766f11 68 struct regulator_dev *regulator;
414c70cb
LG
69};
70
414c70cb
LG
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77 struct device *dev;
78 struct list_head list;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 int enabled; /* client has called enabled */
83 char *supply_name;
84 struct device_attribute dev_attr;
85 struct regulator_dev *rdev;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95
96/* gets the regulator for a given consumer device */
97static struct regulator *get_device_regulator(struct device *dev)
98{
99 struct regulator *regulator = NULL;
100 struct regulator_dev *rdev;
101
102 mutex_lock(&regulator_list_mutex);
103 list_for_each_entry(rdev, &regulator_list, list) {
104 mutex_lock(&rdev->mutex);
105 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106 if (regulator->dev == dev) {
107 mutex_unlock(&rdev->mutex);
108 mutex_unlock(&regulator_list_mutex);
109 return regulator;
110 }
111 }
112 mutex_unlock(&rdev->mutex);
113 }
114 mutex_unlock(&regulator_list_mutex);
115 return NULL;
116}
117
118/* Platform voltage constraint check */
119static int regulator_check_voltage(struct regulator_dev *rdev,
120 int *min_uV, int *max_uV)
121{
122 BUG_ON(*min_uV > *max_uV);
123
124 if (!rdev->constraints) {
125 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126 rdev->desc->name);
127 return -ENODEV;
128 }
129 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130 printk(KERN_ERR "%s: operation not allowed for %s\n",
131 __func__, rdev->desc->name);
132 return -EPERM;
133 }
134
135 if (*max_uV > rdev->constraints->max_uV)
136 *max_uV = rdev->constraints->max_uV;
137 if (*min_uV < rdev->constraints->min_uV)
138 *min_uV = rdev->constraints->min_uV;
139
140 if (*min_uV > *max_uV)
141 return -EINVAL;
142
143 return 0;
144}
145
146/* current constraint check */
147static int regulator_check_current_limit(struct regulator_dev *rdev,
148 int *min_uA, int *max_uA)
149{
150 BUG_ON(*min_uA > *max_uA);
151
152 if (!rdev->constraints) {
153 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154 rdev->desc->name);
155 return -ENODEV;
156 }
157 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158 printk(KERN_ERR "%s: operation not allowed for %s\n",
159 __func__, rdev->desc->name);
160 return -EPERM;
161 }
162
163 if (*max_uA > rdev->constraints->max_uA)
164 *max_uA = rdev->constraints->max_uA;
165 if (*min_uA < rdev->constraints->min_uA)
166 *min_uA = rdev->constraints->min_uA;
167
168 if (*min_uA > *max_uA)
169 return -EINVAL;
170
171 return 0;
172}
173
174/* operating mode constraint check */
175static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176{
177 if (!rdev->constraints) {
178 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179 rdev->desc->name);
180 return -ENODEV;
181 }
182 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183 printk(KERN_ERR "%s: operation not allowed for %s\n",
184 __func__, rdev->desc->name);
185 return -EPERM;
186 }
187 if (!(rdev->constraints->valid_modes_mask & mode)) {
188 printk(KERN_ERR "%s: invalid mode %x for %s\n",
189 __func__, mode, rdev->desc->name);
190 return -EINVAL;
191 }
192 return 0;
193}
194
195/* dynamic regulator mode switching constraint check */
196static int regulator_check_drms(struct regulator_dev *rdev)
197{
198 if (!rdev->constraints) {
199 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200 rdev->desc->name);
201 return -ENODEV;
202 }
203 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204 printk(KERN_ERR "%s: operation not allowed for %s\n",
205 __func__, rdev->desc->name);
206 return -EPERM;
207 }
208 return 0;
209}
210
211static ssize_t device_requested_uA_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct regulator *regulator;
215
216 regulator = get_device_regulator(dev);
217 if (regulator == NULL)
218 return 0;
219
220 return sprintf(buf, "%d\n", regulator->uA_load);
221}
222
223static ssize_t regulator_uV_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225{
a5766f11 226 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
227 ssize_t ret;
228
229 mutex_lock(&rdev->mutex);
230 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231 mutex_unlock(&rdev->mutex);
232
233 return ret;
234}
235
236static ssize_t regulator_uA_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
238{
a5766f11 239 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
240
241 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242}
243
244static ssize_t regulator_opmode_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
246{
a5766f11 247 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
248 int mode = _regulator_get_mode(rdev);
249
250 switch (mode) {
251 case REGULATOR_MODE_FAST:
252 return sprintf(buf, "fast\n");
253 case REGULATOR_MODE_NORMAL:
254 return sprintf(buf, "normal\n");
255 case REGULATOR_MODE_IDLE:
256 return sprintf(buf, "idle\n");
257 case REGULATOR_MODE_STANDBY:
258 return sprintf(buf, "standby\n");
259 }
260 return sprintf(buf, "unknown\n");
261}
262
263static ssize_t regulator_state_show(struct device *dev,
264 struct device_attribute *attr, char *buf)
265{
a5766f11 266 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
267 int state = _regulator_is_enabled(rdev);
268
269 if (state > 0)
270 return sprintf(buf, "enabled\n");
271 else if (state == 0)
272 return sprintf(buf, "disabled\n");
273 else
274 return sprintf(buf, "unknown\n");
275}
276
277static ssize_t regulator_min_uA_show(struct device *dev,
278 struct device_attribute *attr, char *buf)
279{
a5766f11 280 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
281
282 if (!rdev->constraints)
283 return sprintf(buf, "constraint not defined\n");
284
285 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
286}
287
288static ssize_t regulator_max_uA_show(struct device *dev,
289 struct device_attribute *attr, char *buf)
290{
a5766f11 291 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
292
293 if (!rdev->constraints)
294 return sprintf(buf, "constraint not defined\n");
295
296 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
297}
298
299static ssize_t regulator_min_uV_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301{
a5766f11 302 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
303
304 if (!rdev->constraints)
305 return sprintf(buf, "constraint not defined\n");
306
307 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
308}
309
310static ssize_t regulator_max_uV_show(struct device *dev,
311 struct device_attribute *attr, char *buf)
312{
a5766f11 313 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
314
315 if (!rdev->constraints)
316 return sprintf(buf, "constraint not defined\n");
317
318 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
319}
320
321static ssize_t regulator_total_uA_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323{
a5766f11 324 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
325 struct regulator *regulator;
326 int uA = 0;
327
328 mutex_lock(&rdev->mutex);
329 list_for_each_entry(regulator, &rdev->consumer_list, list)
330 uA += regulator->uA_load;
331 mutex_unlock(&rdev->mutex);
332 return sprintf(buf, "%d\n", uA);
333}
334
335static ssize_t regulator_num_users_show(struct device *dev,
336 struct device_attribute *attr, char *buf)
337{
a5766f11 338 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
339 return sprintf(buf, "%d\n", rdev->use_count);
340}
341
342static ssize_t regulator_type_show(struct device *dev,
343 struct device_attribute *attr, char *buf)
344{
a5766f11 345 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
346
347 switch (rdev->desc->type) {
348 case REGULATOR_VOLTAGE:
349 return sprintf(buf, "voltage\n");
350 case REGULATOR_CURRENT:
351 return sprintf(buf, "current\n");
352 }
353 return sprintf(buf, "unknown\n");
354}
355
356static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
357 struct device_attribute *attr, char *buf)
358{
a5766f11 359 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
360
361 if (!rdev->constraints)
362 return sprintf(buf, "not defined\n");
363 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
364}
365
366static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368{
a5766f11 369 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
370
371 if (!rdev->constraints)
372 return sprintf(buf, "not defined\n");
373 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
374}
375
376static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
378{
a5766f11 379 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
380
381 if (!rdev->constraints)
382 return sprintf(buf, "not defined\n");
383 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
384}
385
386static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
387 unsigned int mode, char *buf)
388{
389 switch (mode) {
390 case REGULATOR_MODE_FAST:
391 return sprintf(buf, "fast\n");
392 case REGULATOR_MODE_NORMAL:
393 return sprintf(buf, "normal\n");
394 case REGULATOR_MODE_IDLE:
395 return sprintf(buf, "idle\n");
396 case REGULATOR_MODE_STANDBY:
397 return sprintf(buf, "standby\n");
398 }
399 return sprintf(buf, "unknown\n");
400}
401
402static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
404{
a5766f11 405 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
406
407 if (!rdev->constraints)
408 return sprintf(buf, "not defined\n");
409 return suspend_opmode_show(rdev,
410 rdev->constraints->state_mem.mode, buf);
411}
412
413static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
a5766f11 416 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
417
418 if (!rdev->constraints)
419 return sprintf(buf, "not defined\n");
420 return suspend_opmode_show(rdev,
421 rdev->constraints->state_disk.mode, buf);
422}
423
424static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426{
a5766f11 427 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
428
429 if (!rdev->constraints)
430 return sprintf(buf, "not defined\n");
431 return suspend_opmode_show(rdev,
432 rdev->constraints->state_standby.mode, buf);
433}
434
435static ssize_t regulator_suspend_mem_state_show(struct device *dev,
436 struct device_attribute *attr, char *buf)
437{
a5766f11 438 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
439
440 if (!rdev->constraints)
441 return sprintf(buf, "not defined\n");
442
443 if (rdev->constraints->state_mem.enabled)
444 return sprintf(buf, "enabled\n");
445 else
446 return sprintf(buf, "disabled\n");
447}
448
449static ssize_t regulator_suspend_disk_state_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451{
a5766f11 452 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
453
454 if (!rdev->constraints)
455 return sprintf(buf, "not defined\n");
456
457 if (rdev->constraints->state_disk.enabled)
458 return sprintf(buf, "enabled\n");
459 else
460 return sprintf(buf, "disabled\n");
461}
462
463static ssize_t regulator_suspend_standby_state_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465{
a5766f11 466 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
467
468 if (!rdev->constraints)
469 return sprintf(buf, "not defined\n");
470
471 if (rdev->constraints->state_standby.enabled)
472 return sprintf(buf, "enabled\n");
473 else
474 return sprintf(buf, "disabled\n");
475}
476static struct device_attribute regulator_dev_attrs[] = {
477 __ATTR(microvolts, 0444, regulator_uV_show, NULL),
478 __ATTR(microamps, 0444, regulator_uA_show, NULL),
479 __ATTR(opmode, 0444, regulator_opmode_show, NULL),
480 __ATTR(state, 0444, regulator_state_show, NULL),
481 __ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
482 __ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
483 __ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
484 __ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
485 __ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
486 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
487 __ATTR(type, 0444, regulator_type_show, NULL),
488 __ATTR(suspend_mem_microvolts, 0444,
489 regulator_suspend_mem_uV_show, NULL),
490 __ATTR(suspend_disk_microvolts, 0444,
491 regulator_suspend_disk_uV_show, NULL),
492 __ATTR(suspend_standby_microvolts, 0444,
493 regulator_suspend_standby_uV_show, NULL),
494 __ATTR(suspend_mem_mode, 0444,
495 regulator_suspend_mem_mode_show, NULL),
496 __ATTR(suspend_disk_mode, 0444,
497 regulator_suspend_disk_mode_show, NULL),
498 __ATTR(suspend_standby_mode, 0444,
499 regulator_suspend_standby_mode_show, NULL),
500 __ATTR(suspend_mem_state, 0444,
501 regulator_suspend_mem_state_show, NULL),
502 __ATTR(suspend_disk_state, 0444,
503 regulator_suspend_disk_state_show, NULL),
504 __ATTR(suspend_standby_state, 0444,
505 regulator_suspend_standby_state_show, NULL),
506 __ATTR_NULL,
507};
508
509static void regulator_dev_release(struct device *dev)
510{
a5766f11 511 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
512 kfree(rdev);
513}
514
515static struct class regulator_class = {
516 .name = "regulator",
517 .dev_release = regulator_dev_release,
518 .dev_attrs = regulator_dev_attrs,
519};
520
521/* Calculate the new optimum regulator operating mode based on the new total
522 * consumer load. All locks held by caller */
523static void drms_uA_update(struct regulator_dev *rdev)
524{
525 struct regulator *sibling;
526 int current_uA = 0, output_uV, input_uV, err;
527 unsigned int mode;
528
529 err = regulator_check_drms(rdev);
530 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
531 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
532 return;
533
534 /* get output voltage */
535 output_uV = rdev->desc->ops->get_voltage(rdev);
536 if (output_uV <= 0)
537 return;
538
539 /* get input voltage */
540 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
541 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
542 else
543 input_uV = rdev->constraints->input_uV;
544 if (input_uV <= 0)
545 return;
546
547 /* calc total requested load */
548 list_for_each_entry(sibling, &rdev->consumer_list, list)
549 current_uA += sibling->uA_load;
550
551 /* now get the optimum mode for our new total regulator load */
552 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
553 output_uV, current_uA);
554
555 /* check the new mode is allowed */
556 err = regulator_check_mode(rdev, mode);
557 if (err == 0)
558 rdev->desc->ops->set_mode(rdev, mode);
559}
560
561static int suspend_set_state(struct regulator_dev *rdev,
562 struct regulator_state *rstate)
563{
564 int ret = 0;
565
566 /* enable & disable are mandatory for suspend control */
567 if (!rdev->desc->ops->set_suspend_enable ||
a5766f11
LG
568 !rdev->desc->ops->set_suspend_disable) {
569 printk(KERN_ERR "%s: no way to set suspend state\n",
570 __func__);
414c70cb 571 return -EINVAL;
a5766f11 572 }
414c70cb
LG
573
574 if (rstate->enabled)
575 ret = rdev->desc->ops->set_suspend_enable(rdev);
576 else
577 ret = rdev->desc->ops->set_suspend_disable(rdev);
578 if (ret < 0) {
579 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
580 return ret;
581 }
582
583 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
584 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
585 if (ret < 0) {
586 printk(KERN_ERR "%s: failed to set voltage\n",
587 __func__);
588 return ret;
589 }
590 }
591
592 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
593 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
594 if (ret < 0) {
595 printk(KERN_ERR "%s: failed to set mode\n", __func__);
596 return ret;
597 }
598 }
599 return ret;
600}
601
602/* locks held by caller */
603static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
604{
605 if (!rdev->constraints)
606 return -EINVAL;
607
608 switch (state) {
609 case PM_SUSPEND_STANDBY:
610 return suspend_set_state(rdev,
611 &rdev->constraints->state_standby);
612 case PM_SUSPEND_MEM:
613 return suspend_set_state(rdev,
614 &rdev->constraints->state_mem);
615 case PM_SUSPEND_MAX:
616 return suspend_set_state(rdev,
617 &rdev->constraints->state_disk);
618 default:
619 return -EINVAL;
620 }
621}
622
623static void print_constraints(struct regulator_dev *rdev)
624{
625 struct regulation_constraints *constraints = rdev->constraints;
626 char buf[80];
627 int count;
628
629 if (rdev->desc->type == REGULATOR_VOLTAGE) {
630 if (constraints->min_uV == constraints->max_uV)
631 count = sprintf(buf, "%d mV ",
632 constraints->min_uV / 1000);
633 else
634 count = sprintf(buf, "%d <--> %d mV ",
635 constraints->min_uV / 1000,
636 constraints->max_uV / 1000);
637 } else {
638 if (constraints->min_uA == constraints->max_uA)
639 count = sprintf(buf, "%d mA ",
640 constraints->min_uA / 1000);
641 else
642 count = sprintf(buf, "%d <--> %d mA ",
643 constraints->min_uA / 1000,
644 constraints->max_uA / 1000);
645 }
646 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
647 count += sprintf(buf + count, "fast ");
648 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
649 count += sprintf(buf + count, "normal ");
650 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
651 count += sprintf(buf + count, "idle ");
652 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
653 count += sprintf(buf + count, "standby");
654
655 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
656}
657
a5766f11
LG
658/**
659 * set_machine_constraints - sets regulator constraints
660 * @regulator: regulator source
661 *
662 * Allows platform initialisation code to define and constrain
663 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
664 * Constraints *must* be set by platform code in order for some
665 * regulator operations to proceed i.e. set_voltage, set_current_limit,
666 * set_mode.
667 */
668static int set_machine_constraints(struct regulator_dev *rdev,
669 struct regulation_constraints *constraints)
670{
671 int ret = 0;
e06f5b4f
MB
672 const char *name;
673
674 if (constraints->name)
675 name = constraints->name;
676 else if (rdev->desc->name)
677 name = rdev->desc->name;
678 else
679 name = "regulator";
a5766f11
LG
680
681 rdev->constraints = constraints;
682
683 /* do we need to apply the constraint voltage */
684 if (rdev->constraints->apply_uV &&
685 rdev->constraints->min_uV == rdev->constraints->max_uV &&
686 rdev->desc->ops->set_voltage) {
687 ret = rdev->desc->ops->set_voltage(rdev,
688 rdev->constraints->min_uV, rdev->constraints->max_uV);
689 if (ret < 0) {
e06f5b4f
MB
690 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
691 __func__,
692 rdev->constraints->min_uV, name);
a5766f11
LG
693 rdev->constraints = NULL;
694 goto out;
695 }
696 }
697
698 /* are we enabled at boot time by firmware / bootloader */
699 if (rdev->constraints->boot_on)
700 rdev->use_count = 1;
701
702 /* do we need to setup our suspend state */
e06f5b4f 703 if (constraints->initial_state) {
a5766f11 704 ret = suspend_prepare(rdev, constraints->initial_state);
e06f5b4f
MB
705 if (ret < 0) {
706 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
707 __func__, name);
708 rdev->constraints = NULL;
709 goto out;
710 }
711 }
a5766f11
LG
712
713 print_constraints(rdev);
714out:
715 return ret;
716}
717
718/**
719 * set_supply - set regulator supply regulator
720 * @regulator: regulator name
721 * @supply: supply regulator name
722 *
723 * Called by platform initialisation code to set the supply regulator for this
724 * regulator. This ensures that a regulators supply will also be enabled by the
725 * core if it's child is enabled.
726 */
727static int set_supply(struct regulator_dev *rdev,
728 struct regulator_dev *supply_rdev)
729{
730 int err;
731
732 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
733 "supply");
734 if (err) {
735 printk(KERN_ERR
736 "%s: could not add device link %s err %d\n",
737 __func__, supply_rdev->dev.kobj.name, err);
738 goto out;
739 }
740 rdev->supply = supply_rdev;
741 list_add(&rdev->slist, &supply_rdev->supply_list);
742out:
743 return err;
744}
745
746/**
747 * set_consumer_device_supply: Bind a regulator to a symbolic supply
748 * @regulator: regulator source
749 * @dev: device the supply applies to
750 * @supply: symbolic name for supply
751 *
752 * Allows platform initialisation code to map physical regulator
753 * sources to symbolic names for supplies for use by devices. Devices
754 * should use these symbolic names to request regulators, avoiding the
755 * need to provide board-specific regulator names as platform data.
756 */
757static int set_consumer_device_supply(struct regulator_dev *rdev,
758 struct device *consumer_dev, const char *supply)
759{
760 struct regulator_map *node;
761
762 if (supply == NULL)
763 return -EINVAL;
764
765 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
766 if (node == NULL)
767 return -ENOMEM;
768
769 node->regulator = rdev;
770 node->dev = consumer_dev;
771 node->supply = supply;
772
773 list_add(&node->list, &regulator_map_list);
774 return 0;
775}
776
777static void unset_consumer_device_supply(struct regulator_dev *rdev,
778 struct device *consumer_dev)
779{
780 struct regulator_map *node, *n;
781
782 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
783 if (rdev == node->regulator &&
784 consumer_dev == node->dev) {
785 list_del(&node->list);
786 kfree(node);
787 return;
788 }
789 }
790}
791
414c70cb
LG
792#define REG_STR_SIZE 32
793
794static struct regulator *create_regulator(struct regulator_dev *rdev,
795 struct device *dev,
796 const char *supply_name)
797{
798 struct regulator *regulator;
799 char buf[REG_STR_SIZE];
800 int err, size;
801
802 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
803 if (regulator == NULL)
804 return NULL;
805
806 mutex_lock(&rdev->mutex);
807 regulator->rdev = rdev;
808 list_add(&regulator->list, &rdev->consumer_list);
809
810 if (dev) {
811 /* create a 'requested_microamps_name' sysfs entry */
812 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
813 supply_name);
814 if (size >= REG_STR_SIZE)
815 goto overflow_err;
816
817 regulator->dev = dev;
818 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
819 if (regulator->dev_attr.attr.name == NULL)
820 goto attr_name_err;
821
822 regulator->dev_attr.attr.owner = THIS_MODULE;
823 regulator->dev_attr.attr.mode = 0444;
824 regulator->dev_attr.show = device_requested_uA_show;
825 err = device_create_file(dev, &regulator->dev_attr);
826 if (err < 0) {
827 printk(KERN_WARNING "%s: could not add regulator_dev"
828 " load sysfs\n", __func__);
829 goto attr_name_err;
830 }
831
832 /* also add a link to the device sysfs entry */
833 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
834 dev->kobj.name, supply_name);
835 if (size >= REG_STR_SIZE)
836 goto attr_err;
837
838 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
839 if (regulator->supply_name == NULL)
840 goto attr_err;
841
842 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
843 buf);
844 if (err) {
845 printk(KERN_WARNING
846 "%s: could not add device link %s err %d\n",
847 __func__, dev->kobj.name, err);
848 device_remove_file(dev, &regulator->dev_attr);
849 goto link_name_err;
850 }
851 }
852 mutex_unlock(&rdev->mutex);
853 return regulator;
854link_name_err:
855 kfree(regulator->supply_name);
856attr_err:
857 device_remove_file(regulator->dev, &regulator->dev_attr);
858attr_name_err:
859 kfree(regulator->dev_attr.attr.name);
860overflow_err:
861 list_del(&regulator->list);
862 kfree(regulator);
863 mutex_unlock(&rdev->mutex);
864 return NULL;
865}
866
867/**
868 * regulator_get - lookup and obtain a reference to a regulator.
869 * @dev: device for regulator "consumer"
870 * @id: Supply name or regulator ID.
871 *
872 * Returns a struct regulator corresponding to the regulator producer,
873 * or IS_ERR() condition containing errno. Use of supply names
874 * configured via regulator_set_device_supply() is strongly
875 * encouraged.
876 */
877struct regulator *regulator_get(struct device *dev, const char *id)
878{
879 struct regulator_dev *rdev;
880 struct regulator_map *map;
881 struct regulator *regulator = ERR_PTR(-ENODEV);
414c70cb
LG
882
883 if (id == NULL) {
884 printk(KERN_ERR "regulator: get() with no identifier\n");
885 return regulator;
886 }
887
888 mutex_lock(&regulator_list_mutex);
889
890 list_for_each_entry(map, &regulator_map_list, list) {
891 if (dev == map->dev &&
892 strcmp(map->supply, id) == 0) {
a5766f11 893 rdev = map->regulator;
414c70cb 894 goto found;
a5766f11 895 }
414c70cb
LG
896 }
897 printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
898 id);
899 mutex_unlock(&regulator_list_mutex);
900 return regulator;
901
902found:
a5766f11
LG
903 if (!try_module_get(rdev->owner))
904 goto out;
905
414c70cb
LG
906 regulator = create_regulator(rdev, dev, id);
907 if (regulator == NULL) {
908 regulator = ERR_PTR(-ENOMEM);
909 module_put(rdev->owner);
910 }
911
a5766f11 912out:
414c70cb
LG
913 mutex_unlock(&regulator_list_mutex);
914 return regulator;
915}
916EXPORT_SYMBOL_GPL(regulator_get);
917
918/**
919 * regulator_put - "free" the regulator source
920 * @regulator: regulator source
921 *
922 * Note: drivers must ensure that all regulator_enable calls made on this
923 * regulator source are balanced by regulator_disable calls prior to calling
924 * this function.
925 */
926void regulator_put(struct regulator *regulator)
927{
928 struct regulator_dev *rdev;
929
930 if (regulator == NULL || IS_ERR(regulator))
931 return;
932
933 if (regulator->enabled) {
934 printk(KERN_WARNING "Releasing supply %s while enabled\n",
935 regulator->supply_name);
936 WARN_ON(regulator->enabled);
937 regulator_disable(regulator);
938 }
939
940 mutex_lock(&regulator_list_mutex);
941 rdev = regulator->rdev;
942
943 /* remove any sysfs entries */
944 if (regulator->dev) {
945 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
946 kfree(regulator->supply_name);
947 device_remove_file(regulator->dev, &regulator->dev_attr);
948 kfree(regulator->dev_attr.attr.name);
949 }
950 list_del(&regulator->list);
951 kfree(regulator);
952
953 module_put(rdev->owner);
954 mutex_unlock(&regulator_list_mutex);
955}
956EXPORT_SYMBOL_GPL(regulator_put);
957
958/* locks held by regulator_enable() */
959static int _regulator_enable(struct regulator_dev *rdev)
960{
961 int ret = -EINVAL;
962
963 if (!rdev->constraints) {
964 printk(KERN_ERR "%s: %s has no constraints\n",
965 __func__, rdev->desc->name);
966 return ret;
967 }
968
969 /* do we need to enable the supply regulator first */
970 if (rdev->supply) {
971 ret = _regulator_enable(rdev->supply);
972 if (ret < 0) {
973 printk(KERN_ERR "%s: failed to enable %s: %d\n",
974 __func__, rdev->desc->name, ret);
975 return ret;
976 }
977 }
978
979 /* check voltage and requested load before enabling */
980 if (rdev->desc->ops->enable) {
981
982 if (rdev->constraints &&
983 (rdev->constraints->valid_ops_mask &
984 REGULATOR_CHANGE_DRMS))
985 drms_uA_update(rdev);
986
987 ret = rdev->desc->ops->enable(rdev);
988 if (ret < 0) {
989 printk(KERN_ERR "%s: failed to enable %s: %d\n",
990 __func__, rdev->desc->name, ret);
991 return ret;
992 }
993 rdev->use_count++;
994 return ret;
995 }
996
997 return ret;
998}
999
1000/**
1001 * regulator_enable - enable regulator output
1002 * @regulator: regulator source
1003 *
1004 * Enable the regulator output at the predefined voltage or current value.
1005 * NOTE: the output value can be set by other drivers, boot loader or may be
1006 * hardwired in the regulator.
1007 * NOTE: calls to regulator_enable() must be balanced with calls to
1008 * regulator_disable().
1009 */
1010int regulator_enable(struct regulator *regulator)
1011{
1012 int ret;
1013
1014 if (regulator->enabled) {
1015 printk(KERN_CRIT "Regulator %s already enabled\n",
1016 regulator->supply_name);
1017 WARN_ON(regulator->enabled);
1018 return 0;
1019 }
1020
1021 mutex_lock(&regulator->rdev->mutex);
1022 regulator->enabled = 1;
1023 ret = _regulator_enable(regulator->rdev);
1024 if (ret != 0)
1025 regulator->enabled = 0;
1026 mutex_unlock(&regulator->rdev->mutex);
1027 return ret;
1028}
1029EXPORT_SYMBOL_GPL(regulator_enable);
1030
1031/* locks held by regulator_disable() */
1032static int _regulator_disable(struct regulator_dev *rdev)
1033{
1034 int ret = 0;
1035
1036 /* are we the last user and permitted to disable ? */
1037 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1038
1039 /* we are last user */
1040 if (rdev->desc->ops->disable) {
1041 ret = rdev->desc->ops->disable(rdev);
1042 if (ret < 0) {
1043 printk(KERN_ERR "%s: failed to disable %s\n",
1044 __func__, rdev->desc->name);
1045 return ret;
1046 }
1047 }
1048
1049 /* decrease our supplies ref count and disable if required */
1050 if (rdev->supply)
1051 _regulator_disable(rdev->supply);
1052
1053 rdev->use_count = 0;
1054 } else if (rdev->use_count > 1) {
1055
1056 if (rdev->constraints &&
1057 (rdev->constraints->valid_ops_mask &
1058 REGULATOR_CHANGE_DRMS))
1059 drms_uA_update(rdev);
1060
1061 rdev->use_count--;
1062 }
1063 return ret;
1064}
1065
1066/**
1067 * regulator_disable - disable regulator output
1068 * @regulator: regulator source
1069 *
1070 * Disable the regulator output voltage or current.
1071 * NOTE: this will only disable the regulator output if no other consumer
1072 * devices have it enabled.
1073 * NOTE: calls to regulator_enable() must be balanced with calls to
1074 * regulator_disable().
1075 */
1076int regulator_disable(struct regulator *regulator)
1077{
1078 int ret;
1079
1080 if (!regulator->enabled) {
1081 printk(KERN_ERR "%s: not in use by this consumer\n",
1082 __func__);
1083 return 0;
1084 }
1085
1086 mutex_lock(&regulator->rdev->mutex);
1087 regulator->enabled = 0;
1088 regulator->uA_load = 0;
1089 ret = _regulator_disable(regulator->rdev);
1090 mutex_unlock(&regulator->rdev->mutex);
1091 return ret;
1092}
1093EXPORT_SYMBOL_GPL(regulator_disable);
1094
1095/* locks held by regulator_force_disable() */
1096static int _regulator_force_disable(struct regulator_dev *rdev)
1097{
1098 int ret = 0;
1099
1100 /* force disable */
1101 if (rdev->desc->ops->disable) {
1102 /* ah well, who wants to live forever... */
1103 ret = rdev->desc->ops->disable(rdev);
1104 if (ret < 0) {
1105 printk(KERN_ERR "%s: failed to force disable %s\n",
1106 __func__, rdev->desc->name);
1107 return ret;
1108 }
1109 /* notify other consumers that power has been forced off */
1110 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1111 NULL);
1112 }
1113
1114 /* decrease our supplies ref count and disable if required */
1115 if (rdev->supply)
1116 _regulator_disable(rdev->supply);
1117
1118 rdev->use_count = 0;
1119 return ret;
1120}
1121
1122/**
1123 * regulator_force_disable - force disable regulator output
1124 * @regulator: regulator source
1125 *
1126 * Forcibly disable the regulator output voltage or current.
1127 * NOTE: this *will* disable the regulator output even if other consumer
1128 * devices have it enabled. This should be used for situations when device
1129 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1130 */
1131int regulator_force_disable(struct regulator *regulator)
1132{
1133 int ret;
1134
1135 mutex_lock(&regulator->rdev->mutex);
1136 regulator->enabled = 0;
1137 regulator->uA_load = 0;
1138 ret = _regulator_force_disable(regulator->rdev);
1139 mutex_unlock(&regulator->rdev->mutex);
1140 return ret;
1141}
1142EXPORT_SYMBOL_GPL(regulator_force_disable);
1143
1144static int _regulator_is_enabled(struct regulator_dev *rdev)
1145{
1146 int ret;
1147
1148 mutex_lock(&rdev->mutex);
1149
1150 /* sanity check */
1151 if (!rdev->desc->ops->is_enabled) {
1152 ret = -EINVAL;
1153 goto out;
1154 }
1155
1156 ret = rdev->desc->ops->is_enabled(rdev);
1157out:
1158 mutex_unlock(&rdev->mutex);
1159 return ret;
1160}
1161
1162/**
1163 * regulator_is_enabled - is the regulator output enabled
1164 * @regulator: regulator source
1165 *
1166 * Returns zero for disabled otherwise return number of enable requests.
1167 */
1168int regulator_is_enabled(struct regulator *regulator)
1169{
1170 return _regulator_is_enabled(regulator->rdev);
1171}
1172EXPORT_SYMBOL_GPL(regulator_is_enabled);
1173
1174/**
1175 * regulator_set_voltage - set regulator output voltage
1176 * @regulator: regulator source
1177 * @min_uV: Minimum required voltage in uV
1178 * @max_uV: Maximum acceptable voltage in uV
1179 *
1180 * Sets a voltage regulator to the desired output voltage. This can be set
1181 * during any regulator state. IOW, regulator can be disabled or enabled.
1182 *
1183 * If the regulator is enabled then the voltage will change to the new value
1184 * immediately otherwise if the regulator is disabled the regulator will
1185 * output at the new voltage when enabled.
1186 *
1187 * NOTE: If the regulator is shared between several devices then the lowest
1188 * request voltage that meets the system constraints will be used.
1189 * NOTE: Regulator system constraints must be set for this regulator before
1190 * calling this function otherwise this call will fail.
1191 */
1192int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1193{
1194 struct regulator_dev *rdev = regulator->rdev;
1195 int ret;
1196
1197 mutex_lock(&rdev->mutex);
1198
1199 /* sanity check */
1200 if (!rdev->desc->ops->set_voltage) {
1201 ret = -EINVAL;
1202 goto out;
1203 }
1204
1205 /* constraints check */
1206 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1207 if (ret < 0)
1208 goto out;
1209 regulator->min_uV = min_uV;
1210 regulator->max_uV = max_uV;
1211 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1212
1213out:
1214 mutex_unlock(&rdev->mutex);
1215 return ret;
1216}
1217EXPORT_SYMBOL_GPL(regulator_set_voltage);
1218
1219static int _regulator_get_voltage(struct regulator_dev *rdev)
1220{
1221 /* sanity check */
1222 if (rdev->desc->ops->get_voltage)
1223 return rdev->desc->ops->get_voltage(rdev);
1224 else
1225 return -EINVAL;
1226}
1227
1228/**
1229 * regulator_get_voltage - get regulator output voltage
1230 * @regulator: regulator source
1231 *
1232 * This returns the current regulator voltage in uV.
1233 *
1234 * NOTE: If the regulator is disabled it will return the voltage value. This
1235 * function should not be used to determine regulator state.
1236 */
1237int regulator_get_voltage(struct regulator *regulator)
1238{
1239 int ret;
1240
1241 mutex_lock(&regulator->rdev->mutex);
1242
1243 ret = _regulator_get_voltage(regulator->rdev);
1244
1245 mutex_unlock(&regulator->rdev->mutex);
1246
1247 return ret;
1248}
1249EXPORT_SYMBOL_GPL(regulator_get_voltage);
1250
1251/**
1252 * regulator_set_current_limit - set regulator output current limit
1253 * @regulator: regulator source
1254 * @min_uA: Minimuum supported current in uA
1255 * @max_uA: Maximum supported current in uA
1256 *
1257 * Sets current sink to the desired output current. This can be set during
1258 * any regulator state. IOW, regulator can be disabled or enabled.
1259 *
1260 * If the regulator is enabled then the current will change to the new value
1261 * immediately otherwise if the regulator is disabled the regulator will
1262 * output at the new current when enabled.
1263 *
1264 * NOTE: Regulator system constraints must be set for this regulator before
1265 * calling this function otherwise this call will fail.
1266 */
1267int regulator_set_current_limit(struct regulator *regulator,
1268 int min_uA, int max_uA)
1269{
1270 struct regulator_dev *rdev = regulator->rdev;
1271 int ret;
1272
1273 mutex_lock(&rdev->mutex);
1274
1275 /* sanity check */
1276 if (!rdev->desc->ops->set_current_limit) {
1277 ret = -EINVAL;
1278 goto out;
1279 }
1280
1281 /* constraints check */
1282 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1283 if (ret < 0)
1284 goto out;
1285
1286 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1287out:
1288 mutex_unlock(&rdev->mutex);
1289 return ret;
1290}
1291EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1292
1293static int _regulator_get_current_limit(struct regulator_dev *rdev)
1294{
1295 int ret;
1296
1297 mutex_lock(&rdev->mutex);
1298
1299 /* sanity check */
1300 if (!rdev->desc->ops->get_current_limit) {
1301 ret = -EINVAL;
1302 goto out;
1303 }
1304
1305 ret = rdev->desc->ops->get_current_limit(rdev);
1306out:
1307 mutex_unlock(&rdev->mutex);
1308 return ret;
1309}
1310
1311/**
1312 * regulator_get_current_limit - get regulator output current
1313 * @regulator: regulator source
1314 *
1315 * This returns the current supplied by the specified current sink in uA.
1316 *
1317 * NOTE: If the regulator is disabled it will return the current value. This
1318 * function should not be used to determine regulator state.
1319 */
1320int regulator_get_current_limit(struct regulator *regulator)
1321{
1322 return _regulator_get_current_limit(regulator->rdev);
1323}
1324EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1325
1326/**
1327 * regulator_set_mode - set regulator operating mode
1328 * @regulator: regulator source
1329 * @mode: operating mode - one of the REGULATOR_MODE constants
1330 *
1331 * Set regulator operating mode to increase regulator efficiency or improve
1332 * regulation performance.
1333 *
1334 * NOTE: Regulator system constraints must be set for this regulator before
1335 * calling this function otherwise this call will fail.
1336 */
1337int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1338{
1339 struct regulator_dev *rdev = regulator->rdev;
1340 int ret;
1341
1342 mutex_lock(&rdev->mutex);
1343
1344 /* sanity check */
1345 if (!rdev->desc->ops->set_mode) {
1346 ret = -EINVAL;
1347 goto out;
1348 }
1349
1350 /* constraints check */
1351 ret = regulator_check_mode(rdev, mode);
1352 if (ret < 0)
1353 goto out;
1354
1355 ret = rdev->desc->ops->set_mode(rdev, mode);
1356out:
1357 mutex_unlock(&rdev->mutex);
1358 return ret;
1359}
1360EXPORT_SYMBOL_GPL(regulator_set_mode);
1361
1362static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1363{
1364 int ret;
1365
1366 mutex_lock(&rdev->mutex);
1367
1368 /* sanity check */
1369 if (!rdev->desc->ops->get_mode) {
1370 ret = -EINVAL;
1371 goto out;
1372 }
1373
1374 ret = rdev->desc->ops->get_mode(rdev);
1375out:
1376 mutex_unlock(&rdev->mutex);
1377 return ret;
1378}
1379
1380/**
1381 * regulator_get_mode - get regulator operating mode
1382 * @regulator: regulator source
1383 *
1384 * Get the current regulator operating mode.
1385 */
1386unsigned int regulator_get_mode(struct regulator *regulator)
1387{
1388 return _regulator_get_mode(regulator->rdev);
1389}
1390EXPORT_SYMBOL_GPL(regulator_get_mode);
1391
1392/**
1393 * regulator_set_optimum_mode - set regulator optimum operating mode
1394 * @regulator: regulator source
1395 * @uA_load: load current
1396 *
1397 * Notifies the regulator core of a new device load. This is then used by
1398 * DRMS (if enabled by constraints) to set the most efficient regulator
1399 * operating mode for the new regulator loading.
1400 *
1401 * Consumer devices notify their supply regulator of the maximum power
1402 * they will require (can be taken from device datasheet in the power
1403 * consumption tables) when they change operational status and hence power
1404 * state. Examples of operational state changes that can affect power
1405 * consumption are :-
1406 *
1407 * o Device is opened / closed.
1408 * o Device I/O is about to begin or has just finished.
1409 * o Device is idling in between work.
1410 *
1411 * This information is also exported via sysfs to userspace.
1412 *
1413 * DRMS will sum the total requested load on the regulator and change
1414 * to the most efficient operating mode if platform constraints allow.
1415 *
1416 * Returns the new regulator mode or error.
1417 */
1418int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1419{
1420 struct regulator_dev *rdev = regulator->rdev;
1421 struct regulator *consumer;
1422 int ret, output_uV, input_uV, total_uA_load = 0;
1423 unsigned int mode;
1424
1425 mutex_lock(&rdev->mutex);
1426
1427 regulator->uA_load = uA_load;
1428 ret = regulator_check_drms(rdev);
1429 if (ret < 0)
1430 goto out;
1431 ret = -EINVAL;
1432
1433 /* sanity check */
1434 if (!rdev->desc->ops->get_optimum_mode)
1435 goto out;
1436
1437 /* get output voltage */
1438 output_uV = rdev->desc->ops->get_voltage(rdev);
1439 if (output_uV <= 0) {
1440 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1441 __func__, rdev->desc->name);
1442 goto out;
1443 }
1444
1445 /* get input voltage */
1446 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1447 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1448 else
1449 input_uV = rdev->constraints->input_uV;
1450 if (input_uV <= 0) {
1451 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1452 __func__, rdev->desc->name);
1453 goto out;
1454 }
1455
1456 /* calc total requested load for this regulator */
1457 list_for_each_entry(consumer, &rdev->consumer_list, list)
1458 total_uA_load += consumer->uA_load;
1459
1460 mode = rdev->desc->ops->get_optimum_mode(rdev,
1461 input_uV, output_uV,
1462 total_uA_load);
1463 if (ret <= 0) {
1464 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1465 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1466 total_uA_load, input_uV, output_uV);
1467 goto out;
1468 }
1469
1470 ret = rdev->desc->ops->set_mode(rdev, mode);
1471 if (ret <= 0) {
1472 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1473 __func__, mode, rdev->desc->name);
1474 goto out;
1475 }
1476 ret = mode;
1477out:
1478 mutex_unlock(&rdev->mutex);
1479 return ret;
1480}
1481EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1482
1483/**
1484 * regulator_register_notifier - register regulator event notifier
1485 * @regulator: regulator source
1486 * @notifier_block: notifier block
1487 *
1488 * Register notifier block to receive regulator events.
1489 */
1490int regulator_register_notifier(struct regulator *regulator,
1491 struct notifier_block *nb)
1492{
1493 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1494 nb);
1495}
1496EXPORT_SYMBOL_GPL(regulator_register_notifier);
1497
1498/**
1499 * regulator_unregister_notifier - unregister regulator event notifier
1500 * @regulator: regulator source
1501 * @notifier_block: notifier block
1502 *
1503 * Unregister regulator event notifier block.
1504 */
1505int regulator_unregister_notifier(struct regulator *regulator,
1506 struct notifier_block *nb)
1507{
1508 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1509 nb);
1510}
1511EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1512
1513/* notify regulator consumers and downstream regulator consumers */
1514static void _notifier_call_chain(struct regulator_dev *rdev,
1515 unsigned long event, void *data)
1516{
1517 struct regulator_dev *_rdev;
1518
1519 /* call rdev chain first */
1520 mutex_lock(&rdev->mutex);
1521 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1522 mutex_unlock(&rdev->mutex);
1523
1524 /* now notify regulator we supply */
1525 list_for_each_entry(_rdev, &rdev->supply_list, slist)
1526 _notifier_call_chain(_rdev, event, data);
1527}
1528
1529/**
1530 * regulator_bulk_get - get multiple regulator consumers
1531 *
1532 * @dev: Device to supply
1533 * @num_consumers: Number of consumers to register
1534 * @consumers: Configuration of consumers; clients are stored here.
1535 *
1536 * @return 0 on success, an errno on failure.
1537 *
1538 * This helper function allows drivers to get several regulator
1539 * consumers in one operation. If any of the regulators cannot be
1540 * acquired then any regulators that were allocated will be freed
1541 * before returning to the caller.
1542 */
1543int regulator_bulk_get(struct device *dev, int num_consumers,
1544 struct regulator_bulk_data *consumers)
1545{
1546 int i;
1547 int ret;
1548
1549 for (i = 0; i < num_consumers; i++)
1550 consumers[i].consumer = NULL;
1551
1552 for (i = 0; i < num_consumers; i++) {
1553 consumers[i].consumer = regulator_get(dev,
1554 consumers[i].supply);
1555 if (IS_ERR(consumers[i].consumer)) {
1556 dev_err(dev, "Failed to get supply '%s'\n",
1557 consumers[i].supply);
1558 ret = PTR_ERR(consumers[i].consumer);
1559 consumers[i].consumer = NULL;
1560 goto err;
1561 }
1562 }
1563
1564 return 0;
1565
1566err:
1567 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1568 regulator_put(consumers[i].consumer);
1569
1570 return ret;
1571}
1572EXPORT_SYMBOL_GPL(regulator_bulk_get);
1573
1574/**
1575 * regulator_bulk_enable - enable multiple regulator consumers
1576 *
1577 * @num_consumers: Number of consumers
1578 * @consumers: Consumer data; clients are stored here.
1579 * @return 0 on success, an errno on failure
1580 *
1581 * This convenience API allows consumers to enable multiple regulator
1582 * clients in a single API call. If any consumers cannot be enabled
1583 * then any others that were enabled will be disabled again prior to
1584 * return.
1585 */
1586int regulator_bulk_enable(int num_consumers,
1587 struct regulator_bulk_data *consumers)
1588{
1589 int i;
1590 int ret;
1591
1592 for (i = 0; i < num_consumers; i++) {
1593 ret = regulator_enable(consumers[i].consumer);
1594 if (ret != 0)
1595 goto err;
1596 }
1597
1598 return 0;
1599
1600err:
1601 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1602 for (i = 0; i < num_consumers; i++)
1603 regulator_disable(consumers[i].consumer);
1604
1605 return ret;
1606}
1607EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1608
1609/**
1610 * regulator_bulk_disable - disable multiple regulator consumers
1611 *
1612 * @num_consumers: Number of consumers
1613 * @consumers: Consumer data; clients are stored here.
1614 * @return 0 on success, an errno on failure
1615 *
1616 * This convenience API allows consumers to disable multiple regulator
1617 * clients in a single API call. If any consumers cannot be enabled
1618 * then any others that were disabled will be disabled again prior to
1619 * return.
1620 */
1621int regulator_bulk_disable(int num_consumers,
1622 struct regulator_bulk_data *consumers)
1623{
1624 int i;
1625 int ret;
1626
1627 for (i = 0; i < num_consumers; i++) {
1628 ret = regulator_disable(consumers[i].consumer);
1629 if (ret != 0)
1630 goto err;
1631 }
1632
1633 return 0;
1634
1635err:
1636 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1637 for (i = 0; i < num_consumers; i++)
1638 regulator_enable(consumers[i].consumer);
1639
1640 return ret;
1641}
1642EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1643
1644/**
1645 * regulator_bulk_free - free multiple regulator consumers
1646 *
1647 * @num_consumers: Number of consumers
1648 * @consumers: Consumer data; clients are stored here.
1649 *
1650 * This convenience API allows consumers to free multiple regulator
1651 * clients in a single API call.
1652 */
1653void regulator_bulk_free(int num_consumers,
1654 struct regulator_bulk_data *consumers)
1655{
1656 int i;
1657
1658 for (i = 0; i < num_consumers; i++) {
1659 regulator_put(consumers[i].consumer);
1660 consumers[i].consumer = NULL;
1661 }
1662}
1663EXPORT_SYMBOL_GPL(regulator_bulk_free);
1664
1665/**
1666 * regulator_notifier_call_chain - call regulator event notifier
1667 * @regulator: regulator source
1668 * @event: notifier block
1669 * @data:
1670 *
1671 * Called by regulator drivers to notify clients a regulator event has
1672 * occurred. We also notify regulator clients downstream.
1673 */
1674int regulator_notifier_call_chain(struct regulator_dev *rdev,
1675 unsigned long event, void *data)
1676{
1677 _notifier_call_chain(rdev, event, data);
1678 return NOTIFY_DONE;
1679
1680}
1681EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1682
1683/**
1684 * regulator_register - register regulator
1685 * @regulator: regulator source
1686 * @reg_data: private regulator data
1687 *
1688 * Called by regulator drivers to register a regulator.
1689 * Returns 0 on success.
1690 */
1691struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
a5766f11 1692 struct device *dev, void *driver_data)
414c70cb
LG
1693{
1694 static atomic_t regulator_no = ATOMIC_INIT(0);
1695 struct regulator_dev *rdev;
a5766f11
LG
1696 struct regulator_init_data *init_data = dev->platform_data;
1697 int ret, i;
414c70cb
LG
1698
1699 if (regulator_desc == NULL)
1700 return ERR_PTR(-EINVAL);
1701
1702 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1703 return ERR_PTR(-EINVAL);
1704
1705 if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1706 !regulator_desc->type == REGULATOR_CURRENT)
1707 return ERR_PTR(-EINVAL);
1708
46fabe1e
MB
1709 if (!init_data)
1710 return ERR_PTR(-EINVAL);
1711
414c70cb
LG
1712 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1713 if (rdev == NULL)
1714 return ERR_PTR(-ENOMEM);
1715
1716 mutex_lock(&regulator_list_mutex);
1717
1718 mutex_init(&rdev->mutex);
a5766f11 1719 rdev->reg_data = driver_data;
414c70cb
LG
1720 rdev->owner = regulator_desc->owner;
1721 rdev->desc = regulator_desc;
1722 INIT_LIST_HEAD(&rdev->consumer_list);
1723 INIT_LIST_HEAD(&rdev->supply_list);
1724 INIT_LIST_HEAD(&rdev->list);
1725 INIT_LIST_HEAD(&rdev->slist);
1726 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1727
a5766f11
LG
1728 /* preform any regulator specific init */
1729 if (init_data->regulator_init) {
1730 ret = init_data->regulator_init(rdev->reg_data);
1731 if (ret < 0) {
1732 kfree(rdev);
1733 rdev = ERR_PTR(ret);
1734 goto out;
1735 }
1736 }
1737
1738 /* set regulator constraints */
1739 ret = set_machine_constraints(rdev, &init_data->constraints);
1740 if (ret < 0) {
1741 kfree(rdev);
1742 rdev = ERR_PTR(ret);
1743 goto out;
1744 }
1745
1746 /* register with sysfs */
414c70cb 1747 rdev->dev.class = &regulator_class;
a5766f11 1748 rdev->dev.parent = dev;
414c70cb 1749 snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
a5766f11
LG
1750 "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1751 ret = device_register(&rdev->dev);
1752 if (ret != 0) {
414c70cb
LG
1753 kfree(rdev);
1754 rdev = ERR_PTR(ret);
a5766f11
LG
1755 goto out;
1756 }
1757
1758 dev_set_drvdata(&rdev->dev, rdev);
1759
1760 /* set supply regulator if it exists */
1761 if (init_data->supply_regulator_dev) {
1762 ret = set_supply(rdev,
1763 dev_get_drvdata(init_data->supply_regulator_dev));
1764 if (ret < 0) {
1765 device_unregister(&rdev->dev);
1766 kfree(rdev);
1767 rdev = ERR_PTR(ret);
1768 goto out;
1769 }
1770 }
1771
1772 /* add consumers devices */
1773 for (i = 0; i < init_data->num_consumer_supplies; i++) {
1774 ret = set_consumer_device_supply(rdev,
1775 init_data->consumer_supplies[i].dev,
1776 init_data->consumer_supplies[i].supply);
1777 if (ret < 0) {
1778 for (--i; i >= 0; i--)
1779 unset_consumer_device_supply(rdev,
1780 init_data->consumer_supplies[i].dev);
1781 device_unregister(&rdev->dev);
1782 kfree(rdev);
1783 rdev = ERR_PTR(ret);
1784 goto out;
1785 }
414c70cb 1786 }
a5766f11
LG
1787
1788 list_add(&rdev->list, &regulator_list);
1789out:
414c70cb
LG
1790 mutex_unlock(&regulator_list_mutex);
1791 return rdev;
1792}
1793EXPORT_SYMBOL_GPL(regulator_register);
1794
1795/**
1796 * regulator_unregister - unregister regulator
1797 * @regulator: regulator source
1798 *
1799 * Called by regulator drivers to unregister a regulator.
1800 */
1801void regulator_unregister(struct regulator_dev *rdev)
1802{
1803 if (rdev == NULL)
1804 return;
1805
1806 mutex_lock(&regulator_list_mutex);
1807 list_del(&rdev->list);
1808 if (rdev->supply)
1809 sysfs_remove_link(&rdev->dev.kobj, "supply");
1810 device_unregister(&rdev->dev);
1811 mutex_unlock(&regulator_list_mutex);
1812}
1813EXPORT_SYMBOL_GPL(regulator_unregister);
1814
414c70cb
LG
1815/**
1816 * regulator_suspend_prepare: prepare regulators for system wide suspend
1817 * @state: system suspend state
1818 *
1819 * Configure each regulator with it's suspend operating parameters for state.
1820 * This will usually be called by machine suspend code prior to supending.
1821 */
1822int regulator_suspend_prepare(suspend_state_t state)
1823{
1824 struct regulator_dev *rdev;
1825 int ret = 0;
1826
1827 /* ON is handled by regulator active state */
1828 if (state == PM_SUSPEND_ON)
1829 return -EINVAL;
1830
1831 mutex_lock(&regulator_list_mutex);
1832 list_for_each_entry(rdev, &regulator_list, list) {
1833
1834 mutex_lock(&rdev->mutex);
1835 ret = suspend_prepare(rdev, state);
1836 mutex_unlock(&rdev->mutex);
1837
1838 if (ret < 0) {
1839 printk(KERN_ERR "%s: failed to prepare %s\n",
1840 __func__, rdev->desc->name);
1841 goto out;
1842 }
1843 }
1844out:
1845 mutex_unlock(&regulator_list_mutex);
1846 return ret;
1847}
1848EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1849
1850/**
1851 * rdev_get_drvdata - get rdev regulator driver data
1852 * @regulator: regulator
1853 *
1854 * Get rdev regulator driver private data. This call can be used in the
1855 * regulator driver context.
1856 */
1857void *rdev_get_drvdata(struct regulator_dev *rdev)
1858{
1859 return rdev->reg_data;
1860}
1861EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1862
1863/**
1864 * regulator_get_drvdata - get regulator driver data
1865 * @regulator: regulator
1866 *
1867 * Get regulator driver private data. This call can be used in the consumer
1868 * driver context when non API regulator specific functions need to be called.
1869 */
1870void *regulator_get_drvdata(struct regulator *regulator)
1871{
1872 return regulator->rdev->reg_data;
1873}
1874EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1875
1876/**
1877 * regulator_set_drvdata - set regulator driver data
1878 * @regulator: regulator
1879 * @data: data
1880 */
1881void regulator_set_drvdata(struct regulator *regulator, void *data)
1882{
1883 regulator->rdev->reg_data = data;
1884}
1885EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1886
1887/**
1888 * regulator_get_id - get regulator ID
1889 * @regulator: regulator
1890 */
1891int rdev_get_id(struct regulator_dev *rdev)
1892{
1893 return rdev->desc->id;
1894}
1895EXPORT_SYMBOL_GPL(rdev_get_id);
1896
a5766f11
LG
1897struct device *rdev_get_dev(struct regulator_dev *rdev)
1898{
1899 return &rdev->dev;
1900}
1901EXPORT_SYMBOL_GPL(rdev_get_dev);
1902
1903void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1904{
1905 return reg_init_data->driver_data;
1906}
1907EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1908
414c70cb
LG
1909static int __init regulator_init(void)
1910{
1911 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1912 return class_register(&regulator_class);
1913}
1914
1915/* init early to allow our consumers to complete system booting */
1916core_initcall(regulator_init);