]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/parisc/ccio-dma.c
scm: lower SCM_MAX_FD
[net-next-2.6.git] / drivers / parisc / ccio-dma.c
CommitLineData
1da177e4
LT
1/*
2** ccio-dma.c:
3** DMA management routines for first generation cache-coherent machines.
4** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5**
6** (c) Copyright 2000 Grant Grundler
7** (c) Copyright 2000 Ryan Bradetich
8** (c) Copyright 2000 Hewlett-Packard Company
9**
10** This program is free software; you can redistribute it and/or modify
11** it under the terms of the GNU General Public License as published by
12** the Free Software Foundation; either version 2 of the License, or
13** (at your option) any later version.
14**
15**
16** "Real Mode" operation refers to U2/Uturn chip operation.
17** U2/Uturn were designed to perform coherency checks w/o using
18** the I/O MMU - basically what x86 does.
19**
20** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23**
24** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25**
26** Drawbacks of using Real Mode are:
27** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29** o Ability to do scatter/gather in HW is lost.
30** o Doesn't work under PCX-U/U+ machines since they didn't follow
31** the coherency design originally worked out. Only PCX-W does.
32*/
33
1da177e4 34#include <linux/types.h>
3cb1d958 35#include <linux/kernel.h>
1da177e4
LT
36#include <linux/init.h>
37#include <linux/mm.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/string.h>
41#include <linux/pci.h>
42#include <linux/reboot.h>
f823bcae
KM
43#include <linux/proc_fs.h>
44#include <linux/seq_file.h>
b61e8f48 45#include <linux/scatterlist.h>
46663448 46#include <linux/iommu-helper.h>
1da177e4
LT
47
48#include <asm/byteorder.h>
49#include <asm/cache.h> /* for L1_CACHE_BYTES */
50#include <asm/uaccess.h>
51#include <asm/page.h>
52#include <asm/dma.h>
53#include <asm/io.h>
54#include <asm/hardware.h> /* for register_module() */
55#include <asm/parisc-device.h>
56
57/*
58** Choose "ccio" since that's what HP-UX calls it.
59** Make it easier for folks to migrate from one to the other :^)
60*/
61#define MODULE_NAME "ccio"
62
63#undef DEBUG_CCIO_RES
64#undef DEBUG_CCIO_RUN
65#undef DEBUG_CCIO_INIT
66#undef DEBUG_CCIO_RUN_SG
67
68#ifdef CONFIG_PROC_FS
1e22166c
KM
69/* depends on proc fs support. But costs CPU performance. */
70#undef CCIO_COLLECT_STATS
1da177e4
LT
71#endif
72
1da177e4
LT
73#include <asm/runway.h> /* for proc_runway_root */
74
75#ifdef DEBUG_CCIO_INIT
76#define DBG_INIT(x...) printk(x)
77#else
78#define DBG_INIT(x...)
79#endif
80
81#ifdef DEBUG_CCIO_RUN
82#define DBG_RUN(x...) printk(x)
83#else
84#define DBG_RUN(x...)
85#endif
86
87#ifdef DEBUG_CCIO_RES
88#define DBG_RES(x...) printk(x)
89#else
90#define DBG_RES(x...)
91#endif
92
93#ifdef DEBUG_CCIO_RUN_SG
94#define DBG_RUN_SG(x...) printk(x)
95#else
96#define DBG_RUN_SG(x...)
97#endif
98
86a61ee9
GG
99#define CCIO_INLINE inline
100#define WRITE_U32(value, addr) __raw_writel(value, addr)
101#define READ_U32(addr) __raw_readl(addr)
1da177e4
LT
102
103#define U2_IOA_RUNWAY 0x580
104#define U2_BC_GSC 0x501
105#define UTURN_IOA_RUNWAY 0x581
106#define UTURN_BC_GSC 0x502
107
108#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
109#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
110#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
111
112struct ioa_registers {
113 /* Runway Supervisory Set */
86a61ee9
GG
114 int32_t unused1[12];
115 uint32_t io_command; /* Offset 12 */
116 uint32_t io_status; /* Offset 13 */
117 uint32_t io_control; /* Offset 14 */
118 int32_t unused2[1];
1da177e4
LT
119
120 /* Runway Auxiliary Register Set */
86a61ee9
GG
121 uint32_t io_err_resp; /* Offset 0 */
122 uint32_t io_err_info; /* Offset 1 */
123 uint32_t io_err_req; /* Offset 2 */
124 uint32_t io_err_resp_hi; /* Offset 3 */
125 uint32_t io_tlb_entry_m; /* Offset 4 */
126 uint32_t io_tlb_entry_l; /* Offset 5 */
127 uint32_t unused3[1];
128 uint32_t io_pdir_base; /* Offset 7 */
129 uint32_t io_io_low_hv; /* Offset 8 */
130 uint32_t io_io_high_hv; /* Offset 9 */
131 uint32_t unused4[1];
132 uint32_t io_chain_id_mask; /* Offset 11 */
133 uint32_t unused5[2];
134 uint32_t io_io_low; /* Offset 14 */
135 uint32_t io_io_high; /* Offset 15 */
1da177e4
LT
136};
137
138/*
139** IOA Registers
140** -------------
141**
142** Runway IO_CONTROL Register (+0x38)
143**
144** The Runway IO_CONTROL register controls the forwarding of transactions.
145**
146** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
147** | HV | TLB | reserved | HV | mode | reserved |
148**
149** o mode field indicates the address translation of transactions
150** forwarded from Runway to GSC+:
151** Mode Name Value Definition
152** Off (default) 0 Opaque to matching addresses.
153** Include 1 Transparent for matching addresses.
154** Peek 3 Map matching addresses.
155**
156** + "Off" mode: Runway transactions which match the I/O range
157** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
158** + "Include" mode: all addresses within the I/O range specified
159** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
160** forwarded. This is the I/O Adapter's normal operating mode.
161** + "Peek" mode: used during system configuration to initialize the
162** GSC+ bus. Runway Write_Shorts in the address range specified by
163** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
164** *AND* the GSC+ address is remapped to the Broadcast Physical
165** Address space by setting the 14 high order address bits of the
166** 32 bit GSC+ address to ones.
167**
168** o TLB field affects transactions which are forwarded from GSC+ to Runway.
169** "Real" mode is the poweron default.
170**
171** TLB Mode Value Description
172** Real 0 No TLB translation. Address is directly mapped and the
173** virtual address is composed of selected physical bits.
174** Error 1 Software fills the TLB manually.
175** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
176**
177**
178** IO_IO_LOW_HV +0x60 (HV dependent)
179** IO_IO_HIGH_HV +0x64 (HV dependent)
180** IO_IO_LOW +0x78 (Architected register)
181** IO_IO_HIGH +0x7c (Architected register)
182**
183** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
184** I/O Adapter address space, respectively.
185**
186** 0 ... 7 | 8 ... 15 | 16 ... 31 |
187** 11111111 | 11111111 | address |
188**
189** Each LOW/HIGH pair describes a disjoint address space region.
190** (2 per GSC+ port). Each incoming Runway transaction address is compared
191** with both sets of LOW/HIGH registers. If the address is in the range
192** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
193** for forwarded to the respective GSC+ bus.
194** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
195** an address space region.
196**
197** In order for a Runway address to reside within GSC+ extended address space:
198** Runway Address [0:7] must identically compare to 8'b11111111
199** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
200** Runway Address [12:23] must be greater than or equal to
201** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
202** Runway Address [24:39] is not used in the comparison.
203**
204** When the Runway transaction is forwarded to GSC+, the GSC+ address is
205** as follows:
206** GSC+ Address[0:3] 4'b1111
207** GSC+ Address[4:29] Runway Address[12:37]
208** GSC+ Address[30:31] 2'b00
209**
210** All 4 Low/High registers must be initialized (by PDC) once the lower bus
211** is interrogated and address space is defined. The operating system will
212** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
213** the PDC initialization. However, the hardware version dependent IO_IO_LOW
214** and IO_IO_HIGH registers should not be subsequently altered by the OS.
215**
216** Writes to both sets of registers will take effect immediately, bypassing
217** the queues, which ensures that subsequent Runway transactions are checked
218** against the updated bounds values. However reads are queued, introducing
219** the possibility of a read being bypassed by a subsequent write to the same
220** register. This sequence can be avoided by having software wait for read
221** returns before issuing subsequent writes.
222*/
223
224struct ioc {
86a61ee9 225 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
1da177e4
LT
226 u8 *res_map; /* resource map, bit == pdir entry */
227 u64 *pdir_base; /* physical base address */
228 u32 pdir_size; /* bytes, function of IOV Space size */
229 u32 res_hint; /* next available IOVP -
230 circular search */
231 u32 res_size; /* size of resource map in bytes */
232 spinlock_t res_lock;
233
1e22166c 234#ifdef CCIO_COLLECT_STATS
1da177e4
LT
235#define CCIO_SEARCH_SAMPLE 0x100
236 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
237 unsigned long avg_idx; /* current index into avg_search */
1da177e4
LT
238 unsigned long used_pages;
239 unsigned long msingle_calls;
240 unsigned long msingle_pages;
241 unsigned long msg_calls;
242 unsigned long msg_pages;
243 unsigned long usingle_calls;
244 unsigned long usingle_pages;
245 unsigned long usg_calls;
246 unsigned long usg_pages;
247#endif
248 unsigned short cujo20_bug;
249
250 /* STUFF We don't need in performance path */
251 u32 chainid_shift; /* specify bit location of chain_id */
252 struct ioc *next; /* Linked list of discovered iocs */
253 const char *name; /* device name from firmware */
254 unsigned int hw_path; /* the hardware path this ioc is associatd with */
255 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
256 struct resource mmio_region[2]; /* The "routed" MMIO regions */
257};
258
259static struct ioc *ioc_list;
260static int ioc_count;
261
262/**************************************************************
263*
264* I/O Pdir Resource Management
265*
266* Bits set in the resource map are in use.
267* Each bit can represent a number of pages.
268* LSbs represent lower addresses (IOVA's).
269*
270* This was was copied from sba_iommu.c. Don't try to unify
271* the two resource managers unless a way to have different
272* allocation policies is also adjusted. We'd like to avoid
273* I/O TLB thrashing by having resource allocation policy
274* match the I/O TLB replacement policy.
275*
276***************************************************************/
277#define IOVP_SIZE PAGE_SIZE
278#define IOVP_SHIFT PAGE_SHIFT
279#define IOVP_MASK PAGE_MASK
280
281/* Convert from IOVP to IOVA and vice versa. */
282#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
283#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
284
285#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
286#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
287#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
1da177e4
LT
288
289/*
290** Don't worry about the 150% average search length on a miss.
291** If the search wraps around, and passes the res_hint, it will
292** cause the kernel to panic anyhow.
293*/
294#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
295 for(; res_ptr < res_end; ++res_ptr) { \
46663448
FT
296 int ret;\
297 unsigned int idx;\
298 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
299 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
300 if ((0 == (*res_ptr & mask)) && !ret) { \
301 *res_ptr |= mask; \
302 res_idx = idx;\
303 ioc->res_hint = res_idx + (size >> 3); \
304 goto resource_found; \
305 } \
306 }
1da177e4
LT
307
308#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
309 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
310 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
311 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
312 res_ptr = (u##size *)&(ioc)->res_map[0]; \
313 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
314
315/*
316** Find available bit in this ioa's resource map.
317** Use a "circular" search:
318** o Most IOVA's are "temporary" - avg search time should be small.
319** o keep a history of what happened for debugging
320** o KISS.
321**
322** Perf optimizations:
323** o search for log2(size) bits at a time.
324** o search for available resource bits using byte/word/whatever.
325** o use different search for "large" (eg > 4 pages) or "very large"
326** (eg > 16 pages) mappings.
327*/
328
329/**
330 * ccio_alloc_range - Allocate pages in the ioc's resource map.
331 * @ioc: The I/O Controller.
332 * @pages_needed: The requested number of pages to be mapped into the
333 * I/O Pdir...
334 *
335 * This function searches the resource map of the ioc to locate a range
336 * of available pages for the requested size.
337 */
338static int
7c8cda62 339ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
1da177e4
LT
340{
341 unsigned int pages_needed = size >> IOVP_SHIFT;
342 unsigned int res_idx;
46663448 343 unsigned long boundary_size;
1e22166c 344#ifdef CCIO_COLLECT_STATS
1da177e4
LT
345 unsigned long cr_start = mfctl(16);
346#endif
347
348 BUG_ON(pages_needed == 0);
349 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
350
351 DBG_RES("%s() size: %d pages_needed %d\n",
a8043ecb 352 __func__, size, pages_needed);
1da177e4
LT
353
354 /*
355 ** "seek and ye shall find"...praying never hurts either...
356 ** ggg sacrifices another 710 to the computer gods.
357 */
358
4a0d3f3a
FT
359 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
360 1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
46663448 361
1da177e4
LT
362 if (pages_needed <= 8) {
363 /*
364 * LAN traffic will not thrash the TLB IFF the same NIC
4f63ba17 365 * uses 8 adjacent pages to map separate payload data.
1da177e4
LT
366 * ie the same byte in the resource bit map.
367 */
368#if 0
369 /* FIXME: bit search should shift it's way through
370 * an unsigned long - not byte at a time. As it is now,
371 * we effectively allocate this byte to this mapping.
372 */
373 unsigned long mask = ~(~0UL >> pages_needed);
374 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
375#else
376 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
377#endif
378 } else if (pages_needed <= 16) {
379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380 } else if (pages_needed <= 32) {
381 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
382#ifdef __LP64__
383 } else if (pages_needed <= 64) {
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
385#endif
386 } else {
387 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
a8043ecb 388 __FILE__, __func__, pages_needed);
1da177e4
LT
389 }
390
391 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
a8043ecb 392 __func__);
1da177e4
LT
393
394resource_found:
395
396 DBG_RES("%s() res_idx %d res_hint: %d\n",
a8043ecb 397 __func__, res_idx, ioc->res_hint);
1da177e4 398
1e22166c 399#ifdef CCIO_COLLECT_STATS
1da177e4
LT
400 {
401 unsigned long cr_end = mfctl(16);
402 unsigned long tmp = cr_end - cr_start;
403 /* check for roll over */
404 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
405 }
406 ioc->avg_search[ioc->avg_idx++] = cr_start;
407 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
1da177e4
LT
408 ioc->used_pages += pages_needed;
409#endif
410 /*
411 ** return the bit address.
412 */
413 return res_idx << 3;
414}
415
416#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
417 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
418 BUG_ON((*res_ptr & mask) != mask); \
419 *res_ptr &= ~(mask);
420
421/**
422 * ccio_free_range - Free pages from the ioc's resource map.
423 * @ioc: The I/O Controller.
424 * @iova: The I/O Virtual Address.
425 * @pages_mapped: The requested number of pages to be freed from the
426 * I/O Pdir.
427 *
428 * This function frees the resouces allocated for the iova.
429 */
430static void
431ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
432{
433 unsigned long iovp = CCIO_IOVP(iova);
434 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
435
436 BUG_ON(pages_mapped == 0);
437 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
438 BUG_ON(pages_mapped > BITS_PER_LONG);
439
440 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
a8043ecb 441 __func__, res_idx, pages_mapped);
1da177e4 442
1e22166c 443#ifdef CCIO_COLLECT_STATS
1da177e4
LT
444 ioc->used_pages -= pages_mapped;
445#endif
446
447 if(pages_mapped <= 8) {
448#if 0
449 /* see matching comments in alloc_range */
450 unsigned long mask = ~(~0UL >> pages_mapped);
451 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
452#else
c18b4608 453 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
1da177e4
LT
454#endif
455 } else if(pages_mapped <= 16) {
c18b4608 456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
1da177e4
LT
457 } else if(pages_mapped <= 32) {
458 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
459#ifdef __LP64__
460 } else if(pages_mapped <= 64) {
461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
462#endif
463 } else {
464 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
a8043ecb 465 __func__);
1da177e4
LT
466 }
467}
468
469/****************************************************************
470**
471** CCIO dma_ops support routines
472**
473*****************************************************************/
474
475typedef unsigned long space_t;
476#define KERNEL_SPACE 0
477
478/*
479** DMA "Page Type" and Hints
480** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
481** set for subcacheline DMA transfers since we don't want to damage the
482** other part of a cacheline.
483** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
484** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
485** data can avoid this if the mapping covers full cache lines.
486** o STOP_MOST is needed for atomicity across cachelines.
0779bf2d 487** Apparently only "some EISA devices" need this.
1da177e4
LT
488** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
489** to use this hint iff the EISA devices needs this feature.
490** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
491** o PREFETCH should *not* be set for cases like Multiple PCI devices
492** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
493** device can be fetched and multiply DMA streams will thrash the
494** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
495** and Invalidation of Prefetch Entries".
496**
497** FIXME: the default hints need to be per GSC device - not global.
498**
499** HP-UX dorks: linux device driver programming model is totally different
500** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
501** do special things to work on non-coherent platforms...linux has to
502** be much more careful with this.
503*/
504#define IOPDIR_VALID 0x01UL
505#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
506#ifdef CONFIG_EISA
507#define HINT_STOP_MOST 0x04UL /* LSL support */
508#else
509#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
510#endif
511#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
512#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
513
514
515/*
516** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
517** ccio_alloc_consistent() depends on this to get SAFE_DMA
518** when it passes in BIDIRECTIONAL flag.
519*/
520static u32 hint_lookup[] = {
521 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
522 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
523 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
524};
525
526/**
527 * ccio_io_pdir_entry - Initialize an I/O Pdir.
528 * @pdir_ptr: A pointer into I/O Pdir.
529 * @sid: The Space Identifier.
530 * @vba: The virtual address.
531 * @hints: The DMA Hint.
532 *
533 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
534 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
535 * entry consists of 8 bytes as shown below (MSB == bit 0):
536 *
537 *
538 * WORD 0:
539 * +------+----------------+-----------------------------------------------+
540 * | Phys | Virtual Index | Phys |
541 * | 0:3 | 0:11 | 4:19 |
542 * |4 bits| 12 bits | 16 bits |
543 * +------+----------------+-----------------------------------------------+
544 * WORD 1:
545 * +-----------------------+-----------------------------------------------+
546 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
547 * | 20:39 | | Enable |Enable | |Enable|DMA | |
548 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
549 * +-----------------------+-----------------------------------------------+
550 *
551 * The virtual index field is filled with the results of the LCI
552 * (Load Coherence Index) instruction. The 8 bits used for the virtual
553 * index are bits 12:19 of the value returned by LCI.
554 */
df8e5bc6 555static void CCIO_INLINE
1da177e4
LT
556ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
557 unsigned long hints)
558{
559 register unsigned long pa;
560 register unsigned long ci; /* coherent index */
561
562 /* We currently only support kernel addresses */
563 BUG_ON(sid != KERNEL_SPACE);
564
565 mtsp(sid,1);
566
567 /*
568 ** WORD 1 - low order word
569 ** "hints" parm includes the VALID bit!
570 ** "dep" clobbers the physical address offset bits as well.
571 */
572 pa = virt_to_phys(vba);
573 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
574 ((u32 *)pdir_ptr)[1] = (u32) pa;
575
576 /*
577 ** WORD 0 - high order word
578 */
579
580#ifdef __LP64__
581 /*
582 ** get bits 12:15 of physical address
583 ** shift bits 16:31 of physical address
584 ** and deposit them
585 */
586 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
587 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
588 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
589#else
590 pa = 0;
591#endif
592 /*
593 ** get CPU coherency index bits
594 ** Grab virtual index [0:11]
595 ** Deposit virt_idx bits into I/O PDIR word
596 */
86a61ee9 597 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
1da177e4
LT
598 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
599 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
600
601 ((u32 *)pdir_ptr)[0] = (u32) pa;
602
603
604 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
605 ** PCX-U/U+ do. (eg C200/C240)
606 ** PCX-T'? Don't know. (eg C110 or similar K-class)
607 **
608 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
609 ** Hopefully we can patch (NOP) these out at boot time somehow.
610 **
611 ** "Since PCX-U employs an offset hash that is incompatible with
612 ** the real mode coherence index generation of U2, the PDIR entry
613 ** must be flushed to memory to retain coherence."
614 */
86a61ee9 615 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
1da177e4
LT
616 asm volatile("sync");
617}
618
619/**
620 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
621 * @ioc: The I/O Controller.
622 * @iovp: The I/O Virtual Page.
623 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
624 *
625 * Purge invalid I/O PDIR entries from the I/O TLB.
626 *
627 * FIXME: Can we change the byte_cnt to pages_mapped?
628 */
629static CCIO_INLINE void
630ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
631{
632 u32 chain_size = 1 << ioc->chainid_shift;
633
634 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
635 byte_cnt += chain_size;
636
637 while(byte_cnt > chain_size) {
86a61ee9 638 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
1da177e4
LT
639 iovp += chain_size;
640 byte_cnt -= chain_size;
641 }
642}
643
644/**
645 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
646 * @ioc: The I/O Controller.
647 * @iova: The I/O Virtual Address.
648 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
649 *
650 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
651 * TLB entries.
652 *
af901ca1 653 * FIXME: at some threshold it might be "cheaper" to just blow
1da177e4
LT
654 * away the entire I/O TLB instead of individual entries.
655 *
656 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
657 * PDIR entry - just once for each possible TLB entry.
658 * (We do need to maker I/O PDIR entries invalid regardless).
659 *
660 * FIXME: Can we change byte_cnt to pages_mapped?
661 */
662static CCIO_INLINE void
663ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
664{
665 u32 iovp = (u32)CCIO_IOVP(iova);
666 size_t saved_byte_cnt;
667
668 /* round up to nearest page size */
3cb1d958 669 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
1da177e4
LT
670
671 while(byte_cnt > 0) {
672 /* invalidate one page at a time */
673 unsigned int idx = PDIR_INDEX(iovp);
674 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
675
676 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
677 pdir_ptr[7] = 0; /* clear only VALID bit */
678 /*
679 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
680 ** PCX-U/U+ do. (eg C200/C240)
681 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
682 **
683 ** Hopefully someone figures out how to patch (NOP) the
684 ** FDC/SYNC out at boot time.
685 */
86a61ee9 686 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
1da177e4
LT
687
688 iovp += IOVP_SIZE;
689 byte_cnt -= IOVP_SIZE;
690 }
691
692 asm volatile("sync");
693 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
694}
695
696/****************************************************************
697**
698** CCIO dma_ops
699**
700*****************************************************************/
701
702/**
703 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
704 * @dev: The PCI device.
705 * @mask: A bit mask describing the DMA address range of the device.
706 *
707 * This function implements the pci_dma_supported function.
708 */
709static int
710ccio_dma_supported(struct device *dev, u64 mask)
711{
712 if(dev == NULL) {
713 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
714 BUG();
715 return 0;
716 }
717
718 /* only support 32-bit devices (ie PCI/GSC) */
719 return (int)(mask == 0xffffffffUL);
720}
721
722/**
723 * ccio_map_single - Map an address range into the IOMMU.
724 * @dev: The PCI device.
725 * @addr: The start address of the DMA region.
726 * @size: The length of the DMA region.
727 * @direction: The direction of the DMA transaction (to/from device).
728 *
729 * This function implements the pci_map_single function.
730 */
731static dma_addr_t
732ccio_map_single(struct device *dev, void *addr, size_t size,
733 enum dma_data_direction direction)
734{
735 int idx;
736 struct ioc *ioc;
737 unsigned long flags;
738 dma_addr_t iovp;
739 dma_addr_t offset;
740 u64 *pdir_start;
741 unsigned long hint = hint_lookup[(int)direction];
742
743 BUG_ON(!dev);
744 ioc = GET_IOC(dev);
745
746 BUG_ON(size <= 0);
747
748 /* save offset bits */
749 offset = ((unsigned long) addr) & ~IOVP_MASK;
750
751 /* round up to nearest IOVP_SIZE */
3cb1d958 752 size = ALIGN(size + offset, IOVP_SIZE);
1da177e4
LT
753 spin_lock_irqsave(&ioc->res_lock, flags);
754
1e22166c 755#ifdef CCIO_COLLECT_STATS
1da177e4
LT
756 ioc->msingle_calls++;
757 ioc->msingle_pages += size >> IOVP_SHIFT;
758#endif
759
7c8cda62 760 idx = ccio_alloc_range(ioc, dev, size);
1da177e4
LT
761 iovp = (dma_addr_t)MKIOVP(idx);
762
763 pdir_start = &(ioc->pdir_base[idx]);
764
765 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
a8043ecb 766 __func__, addr, (long)iovp | offset, size);
1da177e4
LT
767
768 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
769 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
770 hint |= HINT_SAFE_DMA;
771
772 while(size > 0) {
773 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
774
775 DBG_RUN(" pdir %p %08x%08x\n",
776 pdir_start,
777 (u32) (((u32 *) pdir_start)[0]),
778 (u32) (((u32 *) pdir_start)[1]));
779 ++pdir_start;
780 addr += IOVP_SIZE;
781 size -= IOVP_SIZE;
782 }
783
784 spin_unlock_irqrestore(&ioc->res_lock, flags);
785
786 /* form complete address */
787 return CCIO_IOVA(iovp, offset);
788}
789
790/**
791 * ccio_unmap_single - Unmap an address range from the IOMMU.
792 * @dev: The PCI device.
793 * @addr: The start address of the DMA region.
794 * @size: The length of the DMA region.
795 * @direction: The direction of the DMA transaction (to/from device).
796 *
797 * This function implements the pci_unmap_single function.
798 */
799static void
800ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
801 enum dma_data_direction direction)
802{
803 struct ioc *ioc;
804 unsigned long flags;
805 dma_addr_t offset = iova & ~IOVP_MASK;
806
807 BUG_ON(!dev);
808 ioc = GET_IOC(dev);
809
810 DBG_RUN("%s() iovp 0x%lx/%x\n",
a8043ecb 811 __func__, (long)iova, size);
1da177e4
LT
812
813 iova ^= offset; /* clear offset bits */
814 size += offset;
3cb1d958 815 size = ALIGN(size, IOVP_SIZE);
1da177e4
LT
816
817 spin_lock_irqsave(&ioc->res_lock, flags);
818
1e22166c 819#ifdef CCIO_COLLECT_STATS
1da177e4
LT
820 ioc->usingle_calls++;
821 ioc->usingle_pages += size >> IOVP_SHIFT;
822#endif
823
824 ccio_mark_invalid(ioc, iova, size);
825 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
826 spin_unlock_irqrestore(&ioc->res_lock, flags);
827}
828
829/**
830 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
831 * @dev: The PCI device.
832 * @size: The length of the DMA region.
833 * @dma_handle: The DMA address handed back to the device (not the cpu).
834 *
835 * This function implements the pci_alloc_consistent function.
836 */
837static void *
5c1fb41f 838ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
1da177e4
LT
839{
840 void *ret;
841#if 0
842/* GRANT Need to establish hierarchy for non-PCI devs as well
843** and then provide matching gsc_map_xxx() functions for them as well.
844*/
845 if(!hwdev) {
846 /* only support PCI */
847 *dma_handle = 0;
848 return 0;
849 }
850#endif
851 ret = (void *) __get_free_pages(flag, get_order(size));
852
853 if (ret) {
854 memset(ret, 0, size);
855 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
856 }
857
858 return ret;
859}
860
861/**
862 * ccio_free_consistent - Free a consistent DMA mapping.
863 * @dev: The PCI device.
864 * @size: The length of the DMA region.
865 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
866 * @dma_handle: The device address returned from the ccio_alloc_consistent.
867 *
868 * This function implements the pci_free_consistent function.
869 */
870static void
871ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
872 dma_addr_t dma_handle)
873{
874 ccio_unmap_single(dev, dma_handle, size, 0);
875 free_pages((unsigned long)cpu_addr, get_order(size));
876}
877
878/*
879** Since 0 is a valid pdir_base index value, can't use that
880** to determine if a value is valid or not. Use a flag to indicate
881** the SG list entry contains a valid pdir index.
882*/
883#define PIDE_FLAG 0x80000000UL
884
1e22166c 885#ifdef CCIO_COLLECT_STATS
1da177e4
LT
886#define IOMMU_MAP_STATS
887#endif
888#include "iommu-helpers.h"
889
890/**
891 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
892 * @dev: The PCI device.
893 * @sglist: The scatter/gather list to be mapped in the IOMMU.
894 * @nents: The number of entries in the scatter/gather list.
895 * @direction: The direction of the DMA transaction (to/from device).
896 *
897 * This function implements the pci_map_sg function.
898 */
899static int
900ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
901 enum dma_data_direction direction)
902{
903 struct ioc *ioc;
904 int coalesced, filled = 0;
905 unsigned long flags;
906 unsigned long hint = hint_lookup[(int)direction];
907 unsigned long prev_len = 0, current_len = 0;
908 int i;
909
910 BUG_ON(!dev);
911 ioc = GET_IOC(dev);
912
a8043ecb 913 DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
1da177e4
LT
914
915 /* Fast path single entry scatterlists. */
916 if (nents == 1) {
917 sg_dma_address(sglist) = ccio_map_single(dev,
918 (void *)sg_virt_addr(sglist), sglist->length,
919 direction);
920 sg_dma_len(sglist) = sglist->length;
921 return 1;
922 }
923
924 for(i = 0; i < nents; i++)
925 prev_len += sglist[i].length;
926
927 spin_lock_irqsave(&ioc->res_lock, flags);
928
1e22166c 929#ifdef CCIO_COLLECT_STATS
1da177e4
LT
930 ioc->msg_calls++;
931#endif
932
933 /*
934 ** First coalesce the chunks and allocate I/O pdir space
935 **
936 ** If this is one DMA stream, we can properly map using the
937 ** correct virtual address associated with each DMA page.
938 ** w/o this association, we wouldn't have coherent DMA!
939 ** Access to the virtual address is what forces a two pass algorithm.
940 */
d1b51632 941 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
1da177e4
LT
942
943 /*
944 ** Program the I/O Pdir
945 **
946 ** map the virtual addresses to the I/O Pdir
947 ** o dma_address will contain the pdir index
948 ** o dma_len will contain the number of bytes to map
949 ** o page/offset contain the virtual address.
950 */
951 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
952
953 spin_unlock_irqrestore(&ioc->res_lock, flags);
954
955 BUG_ON(coalesced != filled);
956
a8043ecb 957 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1da177e4
LT
958
959 for (i = 0; i < filled; i++)
960 current_len += sg_dma_len(sglist + i);
961
962 BUG_ON(current_len != prev_len);
963
964 return filled;
965}
966
967/**
968 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
969 * @dev: The PCI device.
970 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
971 * @nents: The number of entries in the scatter/gather list.
972 * @direction: The direction of the DMA transaction (to/from device).
973 *
974 * This function implements the pci_unmap_sg function.
975 */
976static void
977ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
978 enum dma_data_direction direction)
979{
980 struct ioc *ioc;
981
982 BUG_ON(!dev);
983 ioc = GET_IOC(dev);
984
985 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
a8043ecb 986 __func__, nents, sg_virt_addr(sglist), sglist->length);
1da177e4 987
1e22166c 988#ifdef CCIO_COLLECT_STATS
1da177e4
LT
989 ioc->usg_calls++;
990#endif
991
992 while(sg_dma_len(sglist) && nents--) {
993
1e22166c 994#ifdef CCIO_COLLECT_STATS
1da177e4
LT
995 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
996#endif
997 ccio_unmap_single(dev, sg_dma_address(sglist),
998 sg_dma_len(sglist), direction);
999 ++sglist;
1000 }
1001
a8043ecb 1002 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1da177e4
LT
1003}
1004
1005static struct hppa_dma_ops ccio_ops = {
1006 .dma_supported = ccio_dma_supported,
1007 .alloc_consistent = ccio_alloc_consistent,
1008 .alloc_noncoherent = ccio_alloc_consistent,
1009 .free_consistent = ccio_free_consistent,
1010 .map_single = ccio_map_single,
1011 .unmap_single = ccio_unmap_single,
1012 .map_sg = ccio_map_sg,
1013 .unmap_sg = ccio_unmap_sg,
1014 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1015 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1016 .dma_sync_sg_for_cpu = NULL, /* ditto */
1017 .dma_sync_sg_for_device = NULL, /* ditto */
1018};
1019
1020#ifdef CONFIG_PROC_FS
f823bcae 1021static int ccio_proc_info(struct seq_file *m, void *p)
1da177e4 1022{
f823bcae 1023 int len = 0;
1da177e4
LT
1024 struct ioc *ioc = ioc_list;
1025
1026 while (ioc != NULL) {
1027 unsigned int total_pages = ioc->res_size << 3;
c18b4608 1028#ifdef CCIO_COLLECT_STATS
1da177e4 1029 unsigned long avg = 0, min, max;
f823bcae 1030 int j;
c18b4608 1031#endif
1da177e4 1032
f823bcae 1033 len += seq_printf(m, "%s\n", ioc->name);
1da177e4 1034
f823bcae
KM
1035 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1036 (ioc->cujo20_bug ? "yes" : "no"));
1da177e4 1037
f823bcae
KM
1038 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1039 total_pages * 8, total_pages);
1040
1e22166c 1041#ifdef CCIO_COLLECT_STATS
f823bcae
KM
1042 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1043 total_pages - ioc->used_pages, ioc->used_pages,
1044 (int)(ioc->used_pages * 100 / total_pages));
1da177e4 1045#endif
f823bcae
KM
1046
1047 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1048 ioc->res_size, total_pages);
1049
1e22166c 1050#ifdef CCIO_COLLECT_STATS
1da177e4
LT
1051 min = max = ioc->avg_search[0];
1052 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1053 avg += ioc->avg_search[j];
1054 if(ioc->avg_search[j] > max)
1055 max = ioc->avg_search[j];
1056 if(ioc->avg_search[j] < min)
1057 min = ioc->avg_search[j];
1058 }
1059 avg /= CCIO_SEARCH_SAMPLE;
f823bcae
KM
1060 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1061 min, avg, max);
c18b4608 1062
f823bcae
KM
1063 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1064 ioc->msingle_calls, ioc->msingle_pages,
1065 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1da177e4
LT
1066
1067 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1068 min = ioc->usingle_calls - ioc->usg_calls;
1069 max = ioc->usingle_pages - ioc->usg_pages;
f823bcae
KM
1070 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1071 min, max, (int)((max * 1000)/min));
1da177e4 1072
f823bcae
KM
1073 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1074 ioc->msg_calls, ioc->msg_pages,
1075 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1076
1077 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1078 ioc->usg_calls, ioc->usg_pages,
1079 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1e22166c 1080#endif /* CCIO_COLLECT_STATS */
f823bcae 1081
1da177e4
LT
1082 ioc = ioc->next;
1083 }
1084
f823bcae
KM
1085 return 0;
1086}
1087
1088static int ccio_proc_info_open(struct inode *inode, struct file *file)
1089{
1090 return single_open(file, &ccio_proc_info, NULL);
1da177e4
LT
1091}
1092
d54b1fdb 1093static const struct file_operations ccio_proc_info_fops = {
f823bcae
KM
1094 .owner = THIS_MODULE,
1095 .open = ccio_proc_info_open,
1096 .read = seq_read,
1097 .llseek = seq_lseek,
1098 .release = single_release,
1099};
1100
1101static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1da177e4 1102{
f823bcae 1103 int len = 0;
1da177e4
LT
1104 struct ioc *ioc = ioc_list;
1105
1da177e4
LT
1106 while (ioc != NULL) {
1107 u32 *res_ptr = (u32 *)ioc->res_map;
1108 int j;
1109
1110 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1111 if ((j & 7) == 0)
f823bcae
KM
1112 len += seq_puts(m, "\n ");
1113 len += seq_printf(m, "%08x", *res_ptr);
1da177e4
LT
1114 res_ptr++;
1115 }
f823bcae 1116 len += seq_puts(m, "\n\n");
1da177e4
LT
1117 ioc = ioc->next;
1118 break; /* XXX - remove me */
1119 }
1120
f823bcae 1121 return 0;
1da177e4 1122}
f823bcae
KM
1123
1124static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1125{
1126 return single_open(file, &ccio_proc_bitmap_info, NULL);
1127}
1128
d54b1fdb 1129static const struct file_operations ccio_proc_bitmap_fops = {
f823bcae
KM
1130 .owner = THIS_MODULE,
1131 .open = ccio_proc_bitmap_open,
1132 .read = seq_read,
1133 .llseek = seq_lseek,
1134 .release = single_release,
1135};
8d2d00dd 1136#endif /* CONFIG_PROC_FS */
1da177e4
LT
1137
1138/**
1139 * ccio_find_ioc - Find the ioc in the ioc_list
1140 * @hw_path: The hardware path of the ioc.
1141 *
1142 * This function searches the ioc_list for an ioc that matches
1143 * the provide hardware path.
1144 */
1145static struct ioc * ccio_find_ioc(int hw_path)
1146{
1147 int i;
1148 struct ioc *ioc;
1149
1150 ioc = ioc_list;
1151 for (i = 0; i < ioc_count; i++) {
1152 if (ioc->hw_path == hw_path)
1153 return ioc;
1154
1155 ioc = ioc->next;
1156 }
1157
1158 return NULL;
1159}
1160
1161/**
1162 * ccio_get_iommu - Find the iommu which controls this device
1163 * @dev: The parisc device.
1164 *
1165 * This function searches through the registered IOMMU's and returns
1166 * the appropriate IOMMU for the device based on its hardware path.
1167 */
1168void * ccio_get_iommu(const struct parisc_device *dev)
1169{
1170 dev = find_pa_parent_type(dev, HPHW_IOA);
1171 if (!dev)
1172 return NULL;
1173
1174 return ccio_find_ioc(dev->hw_path);
1175}
1176
1177#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1178
1179/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1180 * to/from certain pages. To avoid this happening, we mark these pages
1181 * as `used', and ensure that nothing will try to allocate from them.
1182 */
1183void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1184{
1185 unsigned int idx;
1186 struct parisc_device *dev = parisc_parent(cujo);
1187 struct ioc *ioc = ccio_get_iommu(dev);
1188 u8 *res_ptr;
1189
1190 ioc->cujo20_bug = 1;
1191 res_ptr = ioc->res_map;
1192 idx = PDIR_INDEX(iovp) >> 3;
1193
1194 while (idx < ioc->res_size) {
1195 res_ptr[idx] |= 0xff;
1196 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1197 }
1198}
1199
1200#if 0
1201/* GRANT - is this needed for U2 or not? */
1202
1203/*
1204** Get the size of the I/O TLB for this I/O MMU.
1205**
1206** If spa_shift is non-zero (ie probably U2),
1207** then calculate the I/O TLB size using spa_shift.
1208**
1209** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1210** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1211** I think only Java (K/D/R-class too?) systems don't do this.
1212*/
1213static int
1214ccio_get_iotlb_size(struct parisc_device *dev)
1215{
1216 if (dev->spa_shift == 0) {
a8043ecb 1217 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1da177e4
LT
1218 }
1219 return (1 << dev->spa_shift);
1220}
1221#else
1222
1223/* Uturn supports 256 TLB entries */
1224#define CCIO_CHAINID_SHIFT 8
1225#define CCIO_CHAINID_MASK 0xff
1226#endif /* 0 */
1227
1228/* We *can't* support JAVA (T600). Venture there at your own risk. */
25971f68 1229static const struct parisc_device_id ccio_tbl[] = {
1da177e4
LT
1230 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1231 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1232 { 0, }
1233};
1234
1235static int ccio_probe(struct parisc_device *dev);
1236
1237static struct parisc_driver ccio_driver = {
bdad1f83 1238 .name = "ccio",
1da177e4
LT
1239 .id_table = ccio_tbl,
1240 .probe = ccio_probe,
1241};
1242
1243/**
421f91d2 1244 * ccio_ioc_init - Initialize the I/O Controller
1da177e4
LT
1245 * @ioc: The I/O Controller.
1246 *
421f91d2 1247 * Initialize the I/O Controller which includes setting up the
1da177e4
LT
1248 * I/O Page Directory, the resource map, and initalizing the
1249 * U2/Uturn chip into virtual mode.
1250 */
1251static void
1252ccio_ioc_init(struct ioc *ioc)
1253{
1254 int i;
1255 unsigned int iov_order;
1256 u32 iova_space_size;
1257
1258 /*
1259 ** Determine IOVA Space size from memory size.
1260 **
1261 ** Ideally, PCI drivers would register the maximum number
1262 ** of DMA they can have outstanding for each device they
1263 ** own. Next best thing would be to guess how much DMA
1264 ** can be outstanding based on PCI Class/sub-class. Both
1265 ** methods still require some "extra" to support PCI
1266 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1267 */
1268
4481374c 1269 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1da177e4
LT
1270
1271 /* limit IOVA space size to 1MB-1GB */
1272
1273 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1274 iova_space_size = 1 << (20 - PAGE_SHIFT);
1275#ifdef __LP64__
1276 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1277 iova_space_size = 1 << (30 - PAGE_SHIFT);
1278#endif
1279 }
1280
1281 /*
1282 ** iova space must be log2() in size.
1283 ** thus, pdir/res_map will also be log2().
1284 */
1285
1286 /* We could use larger page sizes in order to *decrease* the number
1287 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1288 **
1289 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1290 ** since the pages must also be physically contiguous - typically
1291 ** this is the case under linux."
1292 */
1293
1294 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1295
1296 /* iova_space_size is now bytes, not pages */
1297 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1298
1299 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1300
86a61ee9 1301 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1da177e4
LT
1302
1303 /* Verify it's a power of two */
1304 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1305
86a61ee9 1306 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
a8043ecb 1307 __func__, ioc->ioc_regs,
4481374c 1308 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1da177e4
LT
1309 iova_space_size>>20,
1310 iov_order + PAGE_SHIFT);
1311
1312 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1313 get_order(ioc->pdir_size));
1314 if(NULL == ioc->pdir_base) {
a8043ecb 1315 panic("%s() could not allocate I/O Page Table\n", __func__);
1da177e4
LT
1316 }
1317 memset(ioc->pdir_base, 0, ioc->pdir_size);
1318
1319 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
86a61ee9 1320 DBG_INIT(" base %p\n", ioc->pdir_base);
1da177e4
LT
1321
1322 /* resource map size dictated by pdir_size */
1323 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
a8043ecb 1324 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1da177e4
LT
1325
1326 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1327 get_order(ioc->res_size));
1328 if(NULL == ioc->res_map) {
a8043ecb 1329 panic("%s() could not allocate resource map\n", __func__);
1da177e4
LT
1330 }
1331 memset(ioc->res_map, 0, ioc->res_size);
1332
1333 /* Initialize the res_hint to 16 */
1334 ioc->res_hint = 16;
1335
1336 /* Initialize the spinlock */
1337 spin_lock_init(&ioc->res_lock);
1338
1339 /*
1340 ** Chainid is the upper most bits of an IOVP used to determine
1341 ** which TLB entry an IOVP will use.
1342 */
1343 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1344 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1345
1346 /*
1347 ** Initialize IOA hardware
1348 */
1349 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
86a61ee9 1350 &ioc->ioc_regs->io_chain_id_mask);
1da177e4
LT
1351
1352 WRITE_U32(virt_to_phys(ioc->pdir_base),
86a61ee9 1353 &ioc->ioc_regs->io_pdir_base);
1da177e4
LT
1354
1355 /*
1356 ** Go to "Virtual Mode"
1357 */
86a61ee9 1358 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1da177e4
LT
1359
1360 /*
1361 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1362 */
86a61ee9
GG
1363 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1364 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1da177e4
LT
1365
1366 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1367 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
86a61ee9 1368 &ioc->ioc_regs->io_command);
1da177e4
LT
1369 }
1370}
1371
25971f68 1372static void __init
86a61ee9 1373ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1da177e4
LT
1374{
1375 int result;
1376
1377 res->parent = NULL;
1378 res->flags = IORESOURCE_MEM;
86a61ee9
GG
1379 /*
1380 * bracing ((signed) ...) are required for 64bit kernel because
1381 * we only want to sign extend the lower 16 bits of the register.
1382 * The upper 16-bits of range registers are hardcoded to 0xffff.
1383 */
1384 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1385 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1da177e4 1386 res->name = name;
86a61ee9
GG
1387 /*
1388 * Check if this MMIO range is disable
1389 */
1da177e4
LT
1390 if (res->end + 1 == res->start)
1391 return;
86a61ee9
GG
1392
1393 /* On some platforms (e.g. K-Class), we have already registered
1394 * resources for devices reported by firmware. Some are children
1395 * of ccio.
1396 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1397 */
1398 result = insert_resource(&iomem_resource, res);
1da177e4 1399 if (result < 0) {
86a61ee9 1400 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
c18b4608 1401 __func__, (unsigned long)res->start, (unsigned long)res->end);
1da177e4
LT
1402 }
1403}
1404
1405static void __init ccio_init_resources(struct ioc *ioc)
1406{
1407 struct resource *res = ioc->mmio_region;
1408 char *name = kmalloc(14, GFP_KERNEL);
1409
cb6fc18e 1410 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1da177e4 1411
86a61ee9
GG
1412 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1413 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1da177e4
LT
1414}
1415
1416static int new_ioc_area(struct resource *res, unsigned long size,
1417 unsigned long min, unsigned long max, unsigned long align)
1418{
1419 if (max <= min)
1420 return -EBUSY;
1421
1422 res->start = (max - size + 1) &~ (align - 1);
1423 res->end = res->start + size;
86a61ee9
GG
1424
1425 /* We might be trying to expand the MMIO range to include
1426 * a child device that has already registered it's MMIO space.
1427 * Use "insert" instead of request_resource().
1428 */
1429 if (!insert_resource(&iomem_resource, res))
1da177e4
LT
1430 return 0;
1431
1432 return new_ioc_area(res, size, min, max - size, align);
1433}
1434
1435static int expand_ioc_area(struct resource *res, unsigned long size,
1436 unsigned long min, unsigned long max, unsigned long align)
1437{
1438 unsigned long start, len;
1439
1440 if (!res->parent)
1441 return new_ioc_area(res, size, min, max, align);
1442
1443 start = (res->start - size) &~ (align - 1);
1444 len = res->end - start + 1;
1445 if (start >= min) {
1446 if (!adjust_resource(res, start, len))
1447 return 0;
1448 }
1449
1450 start = res->start;
1451 len = ((size + res->end + align) &~ (align - 1)) - start;
1452 if (start + len <= max) {
1453 if (!adjust_resource(res, start, len))
1454 return 0;
1455 }
1456
1457 return -EBUSY;
1458}
1459
1460/*
1461 * Dino calls this function. Beware that we may get called on systems
1462 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1463 * So it's legal to find no parent IOC.
1464 *
1465 * Some other issues: one of the resources in the ioc may be unassigned.
1466 */
1467int ccio_allocate_resource(const struct parisc_device *dev,
1468 struct resource *res, unsigned long size,
1469 unsigned long min, unsigned long max, unsigned long align)
1470{
1471 struct resource *parent = &iomem_resource;
1472 struct ioc *ioc = ccio_get_iommu(dev);
1473 if (!ioc)
1474 goto out;
1475
1476 parent = ioc->mmio_region;
1477 if (parent->parent &&
1478 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1479 return 0;
1480
1481 if ((parent + 1)->parent &&
1482 !allocate_resource(parent + 1, res, size, min, max, align,
1483 NULL, NULL))
1484 return 0;
1485
1486 if (!expand_ioc_area(parent, size, min, max, align)) {
1487 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1488 &ioc->ioc_regs->io_io_low);
1da177e4 1489 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1490 &ioc->ioc_regs->io_io_high);
1da177e4
LT
1491 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1492 parent++;
1493 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1494 &ioc->ioc_regs->io_io_low_hv);
1da177e4 1495 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1496 &ioc->ioc_regs->io_io_high_hv);
1da177e4
LT
1497 } else {
1498 return -EBUSY;
1499 }
1500
1501 out:
1502 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1503}
1504
1505int ccio_request_resource(const struct parisc_device *dev,
1506 struct resource *res)
1507{
1508 struct resource *parent;
1509 struct ioc *ioc = ccio_get_iommu(dev);
1510
1511 if (!ioc) {
1512 parent = &iomem_resource;
1513 } else if ((ioc->mmio_region->start <= res->start) &&
1514 (res->end <= ioc->mmio_region->end)) {
1515 parent = ioc->mmio_region;
1516 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1517 (res->end <= (ioc->mmio_region + 1)->end)) {
1518 parent = ioc->mmio_region + 1;
1519 } else {
1520 return -EBUSY;
1521 }
1522
86a61ee9
GG
1523 /* "transparent" bus bridges need to register MMIO resources
1524 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1525 * registered their resources in the PDC "bus walk" (See
1526 * arch/parisc/kernel/inventory.c).
1527 */
1528 return insert_resource(parent, res);
1da177e4
LT
1529}
1530
1531/**
1532 * ccio_probe - Determine if ccio should claim this device.
1533 * @dev: The device which has been found
1534 *
1535 * Determine if ccio should claim this chip (return 0) or not (return 1).
1536 * If so, initialize the chip and tell other partners in crime they
1537 * have work to do.
1538 */
25971f68 1539static int __init ccio_probe(struct parisc_device *dev)
1da177e4
LT
1540{
1541 int i;
1542 struct ioc *ioc, **ioc_p = &ioc_list;
0fd68946 1543
cb6fc18e 1544 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1da177e4
LT
1545 if (ioc == NULL) {
1546 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1547 return 1;
1548 }
1da177e4
LT
1549
1550 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1551
c18b4608
AB
1552 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1553 (unsigned long)dev->hpa.start);
1da177e4
LT
1554
1555 for (i = 0; i < ioc_count; i++) {
1556 ioc_p = &(*ioc_p)->next;
1557 }
1558 *ioc_p = ioc;
1559
1560 ioc->hw_path = dev->hw_path;
5076c158 1561 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1da177e4
LT
1562 ccio_ioc_init(ioc);
1563 ccio_init_resources(ioc);
1564 hppa_dma_ops = &ccio_ops;
cb6fc18e 1565 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1da177e4
LT
1566
1567 /* if this fails, no I/O cards will work, so may as well bug */
1568 BUG_ON(dev->dev.platform_data == NULL);
1569 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
8d2d00dd
AB
1570
1571#ifdef CONFIG_PROC_FS
1da177e4 1572 if (ioc_count == 0) {
0fd68946
DL
1573 proc_create(MODULE_NAME, 0, proc_runway_root,
1574 &ccio_proc_info_fops);
1575 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1576 &ccio_proc_bitmap_fops);
1da177e4 1577 }
8d2d00dd 1578#endif
1da177e4
LT
1579 ioc_count++;
1580
1da177e4
LT
1581 parisc_has_iommu();
1582 return 0;
1583}
1584
1585/**
4f63ba17 1586 * ccio_init - ccio initialization procedure.
1da177e4
LT
1587 *
1588 * Register this driver.
1589 */
1590void __init ccio_init(void)
1591{
1592 register_parisc_driver(&ccio_driver);
1593}
1594