]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/wireless/ath/ath5k/base.c
ath5k: reorder base.c to remove fwd decls
[net-next-2.6.git] / drivers / net / wireless / ath / ath5k / base.c
CommitLineData
fa1c114f
JS
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
fa1c114f
JS
43#include <linux/module.h>
44#include <linux/delay.h>
274c7c36 45#include <linux/hardirq.h>
fa1c114f 46#include <linux/if.h>
274c7c36 47#include <linux/io.h>
fa1c114f
JS
48#include <linux/netdevice.h>
49#include <linux/cache.h>
50#include <linux/pci.h>
6ccf15a1 51#include <linux/pci-aspm.h>
fa1c114f
JS
52#include <linux/ethtool.h>
53#include <linux/uaccess.h>
5a0e3ad6 54#include <linux/slab.h>
fa1c114f
JS
55
56#include <net/ieee80211_radiotap.h>
57
58#include <asm/unaligned.h>
59
60#include "base.h"
61#include "reg.h"
62#include "debug.h"
2111ac0d 63#include "ani.h"
fa1c114f 64
9ad9a26e 65static int modparam_nohwcrypt;
46802a4f 66module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
9ad9a26e 67MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
fa1c114f 68
42639fcd 69static int modparam_all_channels;
46802a4f 70module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
42639fcd
BC
71MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
72
fa1c114f
JS
73/* Module info */
74MODULE_AUTHOR("Jiri Slaby");
75MODULE_AUTHOR("Nick Kossifidis");
76MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
77MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
78MODULE_LICENSE("Dual BSD/GPL");
0d5f0316 79MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
fa1c114f 80
8a63facc
BC
81static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
82static int ath5k_beacon_update(struct ieee80211_hw *hw,
83 struct ieee80211_vif *vif);
84static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
fa1c114f
JS
85
86/* Known PCI ids */
a3aa1884 87static DEFINE_PCI_DEVICE_TABLE(ath5k_pci_id_table) = {
97a81f5c
PR
88 { PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
89 { PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
90 { PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
91 { PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
92 { PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
93 { PCI_VDEVICE(3COM_2, 0x0013) }, /* 3com 5212 */
94 { PCI_VDEVICE(3COM, 0x0013) }, /* 3com 3CRDAG675 5212 */
95 { PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
96 { PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
102 { PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
103 { PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
104 { PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
105 { PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
fa1c114f
JS
106 { 0 }
107};
108MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
109
110/* Known SREVs */
2c91108c 111static const struct ath5k_srev_name srev_names[] = {
1bef016a
NK
112 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
113 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
114 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
115 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
116 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
117 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
118 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
119 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
120 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
121 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
122 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
123 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
124 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
125 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
126 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
127 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
128 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
129 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
fa1c114f
JS
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
1bef016a 133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
fa1c114f
JS
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
1bef016a 137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
fa1c114f
JS
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
1bef016a
NK
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
144 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
145 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
fa1c114f
JS
146 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
147 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
148};
149
2c91108c 150static const struct ieee80211_rate ath5k_rates[] = {
63266a65
BR
151 { .bitrate = 10,
152 .hw_value = ATH5K_RATE_CODE_1M, },
153 { .bitrate = 20,
154 .hw_value = ATH5K_RATE_CODE_2M,
155 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
156 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 { .bitrate = 55,
158 .hw_value = ATH5K_RATE_CODE_5_5M,
159 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
160 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 { .bitrate = 110,
162 .hw_value = ATH5K_RATE_CODE_11M,
163 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
164 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 { .bitrate = 60,
166 .hw_value = ATH5K_RATE_CODE_6M,
167 .flags = 0 },
168 { .bitrate = 90,
169 .hw_value = ATH5K_RATE_CODE_9M,
170 .flags = 0 },
171 { .bitrate = 120,
172 .hw_value = ATH5K_RATE_CODE_12M,
173 .flags = 0 },
174 { .bitrate = 180,
175 .hw_value = ATH5K_RATE_CODE_18M,
176 .flags = 0 },
177 { .bitrate = 240,
178 .hw_value = ATH5K_RATE_CODE_24M,
179 .flags = 0 },
180 { .bitrate = 360,
181 .hw_value = ATH5K_RATE_CODE_36M,
182 .flags = 0 },
183 { .bitrate = 480,
184 .hw_value = ATH5K_RATE_CODE_48M,
185 .flags = 0 },
186 { .bitrate = 540,
187 .hw_value = ATH5K_RATE_CODE_54M,
188 .flags = 0 },
189 /* XR missing */
190};
191
9e4e43f2 192static inline void ath5k_txbuf_free_skb(struct ath5k_softc *sc,
fa1c114f
JS
193 struct ath5k_buf *bf)
194{
195 BUG_ON(!bf);
196 if (!bf->skb)
197 return;
198 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
199 PCI_DMA_TODEVICE);
00482973 200 dev_kfree_skb_any(bf->skb);
fa1c114f 201 bf->skb = NULL;
39d63f2a
BR
202 bf->skbaddr = 0;
203 bf->desc->ds_data = 0;
fa1c114f
JS
204}
205
9e4e43f2 206static inline void ath5k_rxbuf_free_skb(struct ath5k_softc *sc,
a6c8d375
FF
207 struct ath5k_buf *bf)
208{
cc861f74
LR
209 struct ath5k_hw *ah = sc->ah;
210 struct ath_common *common = ath5k_hw_common(ah);
211
a6c8d375
FF
212 BUG_ON(!bf);
213 if (!bf->skb)
214 return;
cc861f74 215 pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
a6c8d375
FF
216 PCI_DMA_FROMDEVICE);
217 dev_kfree_skb_any(bf->skb);
218 bf->skb = NULL;
39d63f2a
BR
219 bf->skbaddr = 0;
220 bf->desc->ds_data = 0;
a6c8d375
FF
221}
222
223
fa1c114f
JS
224static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
225{
226 u64 tsf = ath5k_hw_get_tsf64(ah);
227
228 if ((tsf & 0x7fff) < rstamp)
229 tsf -= 0x8000;
230
231 return (tsf & ~0x7fff) | rstamp;
232}
233
fa1c114f
JS
234static const char *
235ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
236{
237 const char *name = "xxxxx";
238 unsigned int i;
239
240 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
241 if (srev_names[i].sr_type != type)
242 continue;
75d0edb8
NK
243
244 if ((val & 0xf0) == srev_names[i].sr_val)
245 name = srev_names[i].sr_name;
246
247 if ((val & 0xff) == srev_names[i].sr_val) {
fa1c114f
JS
248 name = srev_names[i].sr_name;
249 break;
250 }
251 }
252
253 return name;
254}
e5aa8474
LR
255static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
256{
257 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
258 return ath5k_hw_reg_read(ah, reg_offset);
259}
260
261static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
262{
263 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
264 ath5k_hw_reg_write(ah, val, reg_offset);
265}
266
267static const struct ath_ops ath5k_common_ops = {
268 .read = ath5k_ioread32,
269 .write = ath5k_iowrite32,
270};
fa1c114f 271
8a63facc
BC
272/***********************\
273* Driver Initialization *
274\***********************/
275
276static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
fa1c114f 277{
8a63facc
BC
278 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
279 struct ath5k_softc *sc = hw->priv;
280 struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
fa1c114f 281
8a63facc
BC
282 return ath_reg_notifier_apply(wiphy, request, regulatory);
283}
6ccf15a1 284
8a63facc
BC
285/********************\
286* Channel/mode setup *
287\********************/
fa1c114f 288
8a63facc
BC
289/*
290 * Convert IEEE channel number to MHz frequency.
291 */
292static inline short
293ath5k_ieee2mhz(short chan)
294{
295 if (chan <= 14 || chan >= 27)
296 return ieee80211chan2mhz(chan);
297 else
298 return 2212 + chan * 20;
299}
fa1c114f 300
8a63facc
BC
301/*
302 * Returns true for the channel numbers used without all_channels modparam.
303 */
304static bool ath5k_is_standard_channel(short chan)
305{
306 return ((chan <= 14) ||
307 /* UNII 1,2 */
308 ((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
309 /* midband */
310 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
311 /* UNII-3 */
312 ((chan & 3) == 1 && chan >= 149 && chan <= 165));
313}
fa1c114f 314
8a63facc
BC
315static unsigned int
316ath5k_copy_channels(struct ath5k_hw *ah,
317 struct ieee80211_channel *channels,
318 unsigned int mode,
319 unsigned int max)
320{
321 unsigned int i, count, size, chfreq, freq, ch;
fa1c114f 322
8a63facc
BC
323 if (!test_bit(mode, ah->ah_modes))
324 return 0;
fa1c114f 325
8a63facc
BC
326 switch (mode) {
327 case AR5K_MODE_11A:
328 case AR5K_MODE_11A_TURBO:
329 /* 1..220, but 2GHz frequencies are filtered by check_channel */
330 size = 220 ;
331 chfreq = CHANNEL_5GHZ;
332 break;
333 case AR5K_MODE_11B:
334 case AR5K_MODE_11G:
335 case AR5K_MODE_11G_TURBO:
336 size = 26;
337 chfreq = CHANNEL_2GHZ;
338 break;
339 default:
340 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
341 return 0;
fa1c114f
JS
342 }
343
8a63facc
BC
344 for (i = 0, count = 0; i < size && max > 0; i++) {
345 ch = i + 1 ;
346 freq = ath5k_ieee2mhz(ch);
fa1c114f 347
8a63facc
BC
348 /* Check if channel is supported by the chipset */
349 if (!ath5k_channel_ok(ah, freq, chfreq))
350 continue;
f59ac048 351
8a63facc
BC
352 if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
353 continue;
f59ac048 354
8a63facc
BC
355 /* Write channel info and increment counter */
356 channels[count].center_freq = freq;
357 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
358 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
359 switch (mode) {
360 case AR5K_MODE_11A:
361 case AR5K_MODE_11G:
362 channels[count].hw_value = chfreq | CHANNEL_OFDM;
363 break;
364 case AR5K_MODE_11A_TURBO:
365 case AR5K_MODE_11G_TURBO:
366 channels[count].hw_value = chfreq |
367 CHANNEL_OFDM | CHANNEL_TURBO;
368 break;
369 case AR5K_MODE_11B:
370 channels[count].hw_value = CHANNEL_B;
371 }
fa1c114f 372
8a63facc
BC
373 count++;
374 max--;
375 }
fa1c114f 376
8a63facc
BC
377 return count;
378}
fa1c114f 379
8a63facc
BC
380static void
381ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
382{
383 u8 i;
fa1c114f 384
8a63facc
BC
385 for (i = 0; i < AR5K_MAX_RATES; i++)
386 sc->rate_idx[b->band][i] = -1;
fa1c114f 387
8a63facc
BC
388 for (i = 0; i < b->n_bitrates; i++) {
389 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
390 if (b->bitrates[i].hw_value_short)
391 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
fa1c114f 392 }
8a63facc 393}
fa1c114f 394
8a63facc
BC
395static int
396ath5k_setup_bands(struct ieee80211_hw *hw)
397{
398 struct ath5k_softc *sc = hw->priv;
399 struct ath5k_hw *ah = sc->ah;
400 struct ieee80211_supported_band *sband;
401 int max_c, count_c = 0;
402 int i;
fa1c114f 403
8a63facc
BC
404 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
405 max_c = ARRAY_SIZE(sc->channels);
db719718 406
8a63facc
BC
407 /* 2GHz band */
408 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
409 sband->band = IEEE80211_BAND_2GHZ;
410 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
9adca126 411
8a63facc
BC
412 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
413 /* G mode */
414 memcpy(sband->bitrates, &ath5k_rates[0],
415 sizeof(struct ieee80211_rate) * 12);
416 sband->n_bitrates = 12;
2f7fe870 417
8a63facc
BC
418 sband->channels = sc->channels;
419 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
420 AR5K_MODE_11G, max_c);
fa1c114f 421
8a63facc
BC
422 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
423 count_c = sband->n_channels;
424 max_c -= count_c;
425 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
426 /* B mode */
427 memcpy(sband->bitrates, &ath5k_rates[0],
428 sizeof(struct ieee80211_rate) * 4);
429 sband->n_bitrates = 4;
fa1c114f 430
8a63facc
BC
431 /* 5211 only supports B rates and uses 4bit rate codes
432 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
433 * fix them up here:
434 */
435 if (ah->ah_version == AR5K_AR5211) {
436 for (i = 0; i < 4; i++) {
437 sband->bitrates[i].hw_value =
438 sband->bitrates[i].hw_value & 0xF;
439 sband->bitrates[i].hw_value_short =
440 sband->bitrates[i].hw_value_short & 0xF;
fa1c114f
JS
441 }
442 }
fa1c114f 443
8a63facc
BC
444 sband->channels = sc->channels;
445 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
446 AR5K_MODE_11B, max_c);
fa1c114f 447
8a63facc
BC
448 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
449 count_c = sband->n_channels;
450 max_c -= count_c;
451 }
452 ath5k_setup_rate_idx(sc, sband);
fa1c114f 453
8a63facc
BC
454 /* 5GHz band, A mode */
455 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
456 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
457 sband->band = IEEE80211_BAND_5GHZ;
458 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
fa1c114f 459
8a63facc
BC
460 memcpy(sband->bitrates, &ath5k_rates[4],
461 sizeof(struct ieee80211_rate) * 8);
462 sband->n_bitrates = 8;
fa1c114f 463
8a63facc
BC
464 sband->channels = &sc->channels[count_c];
465 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
466 AR5K_MODE_11A, max_c);
fa1c114f 467
8a63facc
BC
468 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
469 }
470 ath5k_setup_rate_idx(sc, sband);
471
472 ath5k_debug_dump_bands(sc);
fa1c114f 473
fa1c114f
JS
474 return 0;
475}
476
8a63facc
BC
477/*
478 * Set/change channels. We always reset the chip.
479 * To accomplish this we must first cleanup any pending DMA,
480 * then restart stuff after a la ath5k_init.
481 *
482 * Called with sc->lock.
483 */
484static int
485ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
486{
487 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
488 "channel set, resetting (%u -> %u MHz)\n",
489 sc->curchan->center_freq, chan->center_freq);
490
8451d22d 491 /*
8a63facc
BC
492 * To switch channels clear any pending DMA operations;
493 * wait long enough for the RX fifo to drain, reset the
494 * hardware at the new frequency, and then re-enable
495 * the relevant bits of the h/w.
8451d22d 496 */
8a63facc 497 return ath5k_reset(sc, chan);
fa1c114f 498}
fa1c114f 499
8a63facc
BC
500static void
501ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
f769c36b 502{
8a63facc 503 sc->curmode = mode;
f769c36b 504
8a63facc
BC
505 if (mode == AR5K_MODE_11A) {
506 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
507 } else {
508 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
509 }
f769c36b
BC
510}
511
8a63facc
BC
512static void
513ath5k_mode_setup(struct ath5k_softc *sc)
fa1c114f 514{
fa1c114f 515 struct ath5k_hw *ah = sc->ah;
8a63facc 516 u32 rfilt;
fa1c114f 517
8a63facc
BC
518 /* configure rx filter */
519 rfilt = sc->filter_flags;
520 ath5k_hw_set_rx_filter(ah, rfilt);
fa1c114f 521
8a63facc
BC
522 if (ath5k_hw_hasbssidmask(ah))
523 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
a6668193 524
8a63facc
BC
525 /* configure operational mode */
526 ath5k_hw_set_opmode(ah, sc->opmode);
fa1c114f 527
8a63facc
BC
528 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d\n", sc->opmode);
529 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
530}
fa1c114f 531
8a63facc
BC
532static inline int
533ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
534{
535 int rix;
fa1c114f 536
8a63facc
BC
537 /* return base rate on errors */
538 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
539 "hw_rix out of bounds: %x\n", hw_rix))
540 return 0;
541
542 rix = sc->rate_idx[sc->curband->band][hw_rix];
543 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
544 rix = 0;
545
546 return rix;
547}
548
549/***************\
550* Buffers setup *
551\***************/
552
553static
554struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
555{
556 struct ath_common *common = ath5k_hw_common(sc->ah);
557 struct sk_buff *skb;
fa1c114f
JS
558
559 /*
8a63facc
BC
560 * Allocate buffer with headroom_needed space for the
561 * fake physical layer header at the start.
fa1c114f 562 */
8a63facc
BC
563 skb = ath_rxbuf_alloc(common,
564 common->rx_bufsize,
565 GFP_ATOMIC);
fa1c114f 566
8a63facc
BC
567 if (!skb) {
568 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
569 common->rx_bufsize);
570 return NULL;
fa1c114f
JS
571 }
572
8a63facc
BC
573 *skb_addr = pci_map_single(sc->pdev,
574 skb->data, common->rx_bufsize,
575 PCI_DMA_FROMDEVICE);
576 if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
577 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
578 dev_kfree_skb(skb);
579 return NULL;
0e149cf5 580 }
8a63facc
BC
581 return skb;
582}
0e149cf5 583
8a63facc
BC
584static int
585ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
586{
587 struct ath5k_hw *ah = sc->ah;
588 struct sk_buff *skb = bf->skb;
589 struct ath5k_desc *ds;
590 int ret;
fa1c114f 591
8a63facc
BC
592 if (!skb) {
593 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
594 if (!skb)
595 return -ENOMEM;
596 bf->skb = skb;
f769c36b
BC
597 }
598
8a63facc
BC
599 /*
600 * Setup descriptors. For receive we always terminate
601 * the descriptor list with a self-linked entry so we'll
602 * not get overrun under high load (as can happen with a
603 * 5212 when ANI processing enables PHY error frames).
604 *
605 * To ensure the last descriptor is self-linked we create
606 * each descriptor as self-linked and add it to the end. As
607 * each additional descriptor is added the previous self-linked
608 * entry is "fixed" naturally. This should be safe even
609 * if DMA is happening. When processing RX interrupts we
610 * never remove/process the last, self-linked, entry on the
611 * descriptor list. This ensures the hardware always has
612 * someplace to write a new frame.
613 */
614 ds = bf->desc;
615 ds->ds_link = bf->daddr; /* link to self */
616 ds->ds_data = bf->skbaddr;
617 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
fa1c114f 618 if (ret) {
8a63facc
BC
619 ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
620 return ret;
fa1c114f
JS
621 }
622
8a63facc
BC
623 if (sc->rxlink != NULL)
624 *sc->rxlink = bf->daddr;
625 sc->rxlink = &ds->ds_link;
fa1c114f 626 return 0;
fa1c114f
JS
627}
628
8a63facc 629static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
fa1c114f 630{
8a63facc
BC
631 struct ieee80211_hdr *hdr;
632 enum ath5k_pkt_type htype;
633 __le16 fc;
fa1c114f 634
8a63facc
BC
635 hdr = (struct ieee80211_hdr *)skb->data;
636 fc = hdr->frame_control;
fa1c114f 637
8a63facc
BC
638 if (ieee80211_is_beacon(fc))
639 htype = AR5K_PKT_TYPE_BEACON;
640 else if (ieee80211_is_probe_resp(fc))
641 htype = AR5K_PKT_TYPE_PROBE_RESP;
642 else if (ieee80211_is_atim(fc))
643 htype = AR5K_PKT_TYPE_ATIM;
644 else if (ieee80211_is_pspoll(fc))
645 htype = AR5K_PKT_TYPE_PSPOLL;
fa1c114f 646 else
8a63facc 647 htype = AR5K_PKT_TYPE_NORMAL;
fa1c114f 648
8a63facc 649 return htype;
42639fcd
BC
650}
651
8a63facc
BC
652static int
653ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
654 struct ath5k_txq *txq, int padsize)
fa1c114f 655{
8a63facc
BC
656 struct ath5k_hw *ah = sc->ah;
657 struct ath5k_desc *ds = bf->desc;
658 struct sk_buff *skb = bf->skb;
659 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
660 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
661 struct ieee80211_rate *rate;
662 unsigned int mrr_rate[3], mrr_tries[3];
663 int i, ret;
664 u16 hw_rate;
665 u16 cts_rate = 0;
666 u16 duration = 0;
667 u8 rc_flags;
fa1c114f 668
8a63facc 669 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
fa1c114f 670
8a63facc
BC
671 /* XXX endianness */
672 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
673 PCI_DMA_TODEVICE);
fa1c114f 674
8a63facc 675 rate = ieee80211_get_tx_rate(sc->hw, info);
fa1c114f 676
8a63facc
BC
677 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
678 flags |= AR5K_TXDESC_NOACK;
fa1c114f 679
8a63facc
BC
680 rc_flags = info->control.rates[0].flags;
681 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
682 rate->hw_value_short : rate->hw_value;
42639fcd 683
8a63facc
BC
684 pktlen = skb->len;
685
686 /* FIXME: If we are in g mode and rate is a CCK rate
687 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
688 * from tx power (value is in dB units already) */
689 if (info->control.hw_key) {
690 keyidx = info->control.hw_key->hw_key_idx;
691 pktlen += info->control.hw_key->icv_len;
692 }
693 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
694 flags |= AR5K_TXDESC_RTSENA;
695 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
696 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
697 sc->vif, pktlen, info));
698 }
699 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
700 flags |= AR5K_TXDESC_CTSENA;
701 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
702 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
703 sc->vif, pktlen, info));
704 }
705 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
706 ieee80211_get_hdrlen_from_skb(skb), padsize,
707 get_hw_packet_type(skb),
708 (sc->power_level * 2),
709 hw_rate,
710 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
711 cts_rate, duration);
712 if (ret)
713 goto err_unmap;
714
715 memset(mrr_rate, 0, sizeof(mrr_rate));
716 memset(mrr_tries, 0, sizeof(mrr_tries));
717 for (i = 0; i < 3; i++) {
718 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
719 if (!rate)
400ec45a 720 break;
fa1c114f 721
8a63facc
BC
722 mrr_rate[i] = rate->hw_value;
723 mrr_tries[i] = info->control.rates[i + 1].count;
fa1c114f
JS
724 }
725
8a63facc
BC
726 ath5k_hw_setup_mrr_tx_desc(ah, ds,
727 mrr_rate[0], mrr_tries[0],
728 mrr_rate[1], mrr_tries[1],
729 mrr_rate[2], mrr_tries[2]);
fa1c114f 730
8a63facc
BC
731 ds->ds_link = 0;
732 ds->ds_data = bf->skbaddr;
63266a65 733
8a63facc
BC
734 spin_lock_bh(&txq->lock);
735 list_add_tail(&bf->list, &txq->q);
736 if (txq->link == NULL) /* is this first packet? */
737 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
738 else /* no, so only link it */
739 *txq->link = bf->daddr;
63266a65 740
8a63facc
BC
741 txq->link = &ds->ds_link;
742 ath5k_hw_start_tx_dma(ah, txq->qnum);
743 mmiowb();
744 spin_unlock_bh(&txq->lock);
745
746 return 0;
747err_unmap:
748 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
749 return ret;
63266a65
BR
750}
751
8a63facc
BC
752/*******************\
753* Descriptors setup *
754\*******************/
755
d8ee398d 756static int
8a63facc 757ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
fa1c114f 758{
8a63facc
BC
759 struct ath5k_desc *ds;
760 struct ath5k_buf *bf;
761 dma_addr_t da;
762 unsigned int i;
763 int ret;
d8ee398d 764
8a63facc
BC
765 /* allocate descriptors */
766 sc->desc_len = sizeof(struct ath5k_desc) *
767 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
768 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
769 if (sc->desc == NULL) {
770 ATH5K_ERR(sc, "can't allocate descriptors\n");
771 ret = -ENOMEM;
772 goto err;
773 }
774 ds = sc->desc;
775 da = sc->desc_daddr;
776 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
777 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
fa1c114f 778
8a63facc
BC
779 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
780 sizeof(struct ath5k_buf), GFP_KERNEL);
781 if (bf == NULL) {
782 ATH5K_ERR(sc, "can't allocate bufptr\n");
783 ret = -ENOMEM;
784 goto err_free;
785 }
786 sc->bufptr = bf;
fa1c114f 787
8a63facc
BC
788 INIT_LIST_HEAD(&sc->rxbuf);
789 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
790 bf->desc = ds;
791 bf->daddr = da;
792 list_add_tail(&bf->list, &sc->rxbuf);
793 }
d8ee398d 794
8a63facc
BC
795 INIT_LIST_HEAD(&sc->txbuf);
796 sc->txbuf_len = ATH_TXBUF;
797 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
798 da += sizeof(*ds)) {
799 bf->desc = ds;
800 bf->daddr = da;
801 list_add_tail(&bf->list, &sc->txbuf);
fa1c114f
JS
802 }
803
8a63facc
BC
804 /* beacon buffer */
805 bf->desc = ds;
806 bf->daddr = da;
807 sc->bbuf = bf;
fa1c114f 808
8a63facc
BC
809 return 0;
810err_free:
811 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
812err:
813 sc->desc = NULL;
814 return ret;
815}
fa1c114f 816
8a63facc
BC
817static void
818ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
819{
820 struct ath5k_buf *bf;
d8ee398d 821
8a63facc
BC
822 ath5k_txbuf_free_skb(sc, sc->bbuf);
823 list_for_each_entry(bf, &sc->txbuf, list)
824 ath5k_txbuf_free_skb(sc, bf);
825 list_for_each_entry(bf, &sc->rxbuf, list)
826 ath5k_rxbuf_free_skb(sc, bf);
d8ee398d 827
8a63facc
BC
828 /* Free memory associated with all descriptors */
829 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
830 sc->desc = NULL;
831 sc->desc_daddr = 0;
d8ee398d 832
8a63facc
BC
833 kfree(sc->bufptr);
834 sc->bufptr = NULL;
835 sc->bbuf = NULL;
fa1c114f
JS
836}
837
8a63facc
BC
838
839/**************\
840* Queues setup *
841\**************/
842
843static struct ath5k_txq *
844ath5k_txq_setup(struct ath5k_softc *sc,
845 int qtype, int subtype)
fa1c114f 846{
8a63facc
BC
847 struct ath5k_hw *ah = sc->ah;
848 struct ath5k_txq *txq;
849 struct ath5k_txq_info qi = {
850 .tqi_subtype = subtype,
851 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
852 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
853 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
854 };
855 int qnum;
d8ee398d 856
e30eb4ab 857 /*
8a63facc
BC
858 * Enable interrupts only for EOL and DESC conditions.
859 * We mark tx descriptors to receive a DESC interrupt
860 * when a tx queue gets deep; otherwise we wait for the
861 * EOL to reap descriptors. Note that this is done to
862 * reduce interrupt load and this only defers reaping
863 * descriptors, never transmitting frames. Aside from
864 * reducing interrupts this also permits more concurrency.
865 * The only potential downside is if the tx queue backs
866 * up in which case the top half of the kernel may backup
867 * due to a lack of tx descriptors.
e30eb4ab 868 */
8a63facc
BC
869 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
870 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
871 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
872 if (qnum < 0) {
873 /*
874 * NB: don't print a message, this happens
875 * normally on parts with too few tx queues
876 */
877 return ERR_PTR(qnum);
878 }
879 if (qnum >= ARRAY_SIZE(sc->txqs)) {
880 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
881 qnum, ARRAY_SIZE(sc->txqs));
882 ath5k_hw_release_tx_queue(ah, qnum);
883 return ERR_PTR(-EINVAL);
884 }
885 txq = &sc->txqs[qnum];
886 if (!txq->setup) {
887 txq->qnum = qnum;
888 txq->link = NULL;
889 INIT_LIST_HEAD(&txq->q);
890 spin_lock_init(&txq->lock);
891 txq->setup = true;
892 }
893 return &sc->txqs[qnum];
fa1c114f
JS
894}
895
8a63facc
BC
896static int
897ath5k_beaconq_setup(struct ath5k_hw *ah)
fa1c114f 898{
8a63facc
BC
899 struct ath5k_txq_info qi = {
900 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
901 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
902 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
903 /* NB: for dynamic turbo, don't enable any other interrupts */
904 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
905 };
d8ee398d 906
8a63facc 907 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
fa1c114f
JS
908}
909
8a63facc
BC
910static int
911ath5k_beaconq_config(struct ath5k_softc *sc)
fa1c114f
JS
912{
913 struct ath5k_hw *ah = sc->ah;
8a63facc
BC
914 struct ath5k_txq_info qi;
915 int ret;
fa1c114f 916
8a63facc
BC
917 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
918 if (ret)
919 goto err;
fa1c114f 920
8a63facc
BC
921 if (sc->opmode == NL80211_IFTYPE_AP ||
922 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
923 /*
924 * Always burst out beacon and CAB traffic
925 * (aifs = cwmin = cwmax = 0)
926 */
927 qi.tqi_aifs = 0;
928 qi.tqi_cw_min = 0;
929 qi.tqi_cw_max = 0;
930 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
931 /*
932 * Adhoc mode; backoff between 0 and (2 * cw_min).
933 */
934 qi.tqi_aifs = 0;
935 qi.tqi_cw_min = 0;
936 qi.tqi_cw_max = 2 * ah->ah_cw_min;
937 }
fa1c114f 938
8a63facc
BC
939 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
940 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
941 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
fa1c114f 942
8a63facc
BC
943 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
944 if (ret) {
945 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
946 "hardware queue!\n", __func__);
947 goto err;
948 }
949 ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
950 if (ret)
951 goto err;
b7266047 952
8a63facc
BC
953 /* reconfigure cabq with ready time to 80% of beacon_interval */
954 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
955 if (ret)
956 goto err;
b7266047 957
8a63facc
BC
958 qi.tqi_ready_time = (sc->bintval * 80) / 100;
959 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
960 if (ret)
961 goto err;
b7266047 962
8a63facc
BC
963 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
964err:
965 return ret;
d8ee398d
LR
966}
967
8a63facc
BC
968static void
969ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
970{
971 struct ath5k_buf *bf, *bf0;
b6ea0356
BC
972
973 /*
8a63facc
BC
974 * NB: this assumes output has been stopped and
975 * we do not need to block ath5k_tx_tasklet
b6ea0356 976 */
8a63facc
BC
977 spin_lock_bh(&txq->lock);
978 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
979 ath5k_debug_printtxbuf(sc, bf);
b6ea0356 980
8a63facc 981 ath5k_txbuf_free_skb(sc, bf);
b6ea0356 982
8a63facc
BC
983 spin_lock_bh(&sc->txbuflock);
984 list_move_tail(&bf->list, &sc->txbuf);
985 sc->txbuf_len++;
986 spin_unlock_bh(&sc->txbuflock);
b6ea0356 987 }
8a63facc
BC
988 txq->link = NULL;
989 spin_unlock_bh(&txq->lock);
b6ea0356
BC
990}
991
8a63facc
BC
992/*
993 * Drain the transmit queues and reclaim resources.
994 */
995static void
996ath5k_txq_cleanup(struct ath5k_softc *sc)
fa1c114f
JS
997{
998 struct ath5k_hw *ah = sc->ah;
8a63facc 999 unsigned int i;
fa1c114f 1000
8a63facc
BC
1001 /* XXX return value */
1002 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1003 /* don't touch the hardware if marked invalid */
1004 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1005 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1006 ath5k_hw_get_txdp(ah, sc->bhalq));
1007 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1008 if (sc->txqs[i].setup) {
1009 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1010 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1011 "link %p\n",
1012 sc->txqs[i].qnum,
1013 ath5k_hw_get_txdp(ah,
1014 sc->txqs[i].qnum),
1015 sc->txqs[i].link);
1016 }
0452d4a5 1017 }
fa1c114f 1018
8a63facc
BC
1019 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1020 if (sc->txqs[i].setup)
1021 ath5k_txq_drainq(sc, &sc->txqs[i]);
fa1c114f
JS
1022}
1023
8a63facc
BC
1024static void
1025ath5k_txq_release(struct ath5k_softc *sc)
2ac2927a 1026{
8a63facc
BC
1027 struct ath5k_txq *txq = sc->txqs;
1028 unsigned int i;
2ac2927a 1029
8a63facc
BC
1030 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1031 if (txq->setup) {
1032 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1033 txq->setup = false;
1034 }
1035}
2ac2927a 1036
2ac2927a 1037
8a63facc
BC
1038/*************\
1039* RX Handling *
1040\*************/
2ac2927a 1041
8a63facc
BC
1042/*
1043 * Enable the receive h/w following a reset.
1044 */
fa1c114f 1045static int
8a63facc 1046ath5k_rx_start(struct ath5k_softc *sc)
fa1c114f
JS
1047{
1048 struct ath5k_hw *ah = sc->ah;
8a63facc
BC
1049 struct ath_common *common = ath5k_hw_common(ah);
1050 struct ath5k_buf *bf;
1051 int ret;
fa1c114f 1052
8a63facc 1053 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
fa1c114f 1054
8a63facc
BC
1055 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1056 common->cachelsz, common->rx_bufsize);
2f7fe870 1057
8a63facc
BC
1058 spin_lock_bh(&sc->rxbuflock);
1059 sc->rxlink = NULL;
1060 list_for_each_entry(bf, &sc->rxbuf, list) {
1061 ret = ath5k_rxbuf_setup(sc, bf);
1062 if (ret != 0) {
1063 spin_unlock_bh(&sc->rxbuflock);
1064 goto err;
1065 }
2f7fe870 1066 }
8a63facc
BC
1067 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1068 ath5k_hw_set_rxdp(ah, bf->daddr);
1069 spin_unlock_bh(&sc->rxbuflock);
2f7fe870 1070
8a63facc
BC
1071 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1072 ath5k_mode_setup(sc); /* set filters, etc. */
1073 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
fa1c114f
JS
1074
1075 return 0;
8a63facc 1076err:
fa1c114f
JS
1077 return ret;
1078}
1079
8a63facc
BC
1080/*
1081 * Disable the receive h/w in preparation for a reset.
1082 */
1083static void
1084ath5k_rx_stop(struct ath5k_softc *sc)
fa1c114f 1085{
8a63facc 1086 struct ath5k_hw *ah = sc->ah;
fa1c114f 1087
8a63facc
BC
1088 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1089 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1090 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
fa1c114f 1091
8a63facc
BC
1092 ath5k_debug_printrxbuffs(sc, ah);
1093}
fa1c114f 1094
8a63facc
BC
1095static unsigned int
1096ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1097 struct ath5k_rx_status *rs)
1098{
1099 struct ath5k_hw *ah = sc->ah;
1100 struct ath_common *common = ath5k_hw_common(ah);
1101 struct ieee80211_hdr *hdr = (void *)skb->data;
1102 unsigned int keyix, hlen;
fa1c114f 1103
8a63facc
BC
1104 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1105 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1106 return RX_FLAG_DECRYPTED;
fa1c114f 1107
8a63facc
BC
1108 /* Apparently when a default key is used to decrypt the packet
1109 the hw does not set the index used to decrypt. In such cases
1110 get the index from the packet. */
1111 hlen = ieee80211_hdrlen(hdr->frame_control);
1112 if (ieee80211_has_protected(hdr->frame_control) &&
1113 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1114 skb->len >= hlen + 4) {
1115 keyix = skb->data[hlen + 3] >> 6;
1116
1117 if (test_bit(keyix, common->keymap))
1118 return RX_FLAG_DECRYPTED;
1119 }
fa1c114f
JS
1120
1121 return 0;
fa1c114f
JS
1122}
1123
8a63facc 1124
fa1c114f 1125static void
8a63facc
BC
1126ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1127 struct ieee80211_rx_status *rxs)
fa1c114f 1128{
8a63facc
BC
1129 struct ath_common *common = ath5k_hw_common(sc->ah);
1130 u64 tsf, bc_tstamp;
1131 u32 hw_tu;
1132 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
fa1c114f 1133
8a63facc
BC
1134 if (ieee80211_is_beacon(mgmt->frame_control) &&
1135 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1136 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1137 /*
1138 * Received an IBSS beacon with the same BSSID. Hardware *must*
1139 * have updated the local TSF. We have to work around various
1140 * hardware bugs, though...
1141 */
1142 tsf = ath5k_hw_get_tsf64(sc->ah);
1143 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1144 hw_tu = TSF_TO_TU(tsf);
fa1c114f 1145
8a63facc
BC
1146 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1147 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1148 (unsigned long long)bc_tstamp,
1149 (unsigned long long)rxs->mactime,
1150 (unsigned long long)(rxs->mactime - bc_tstamp),
1151 (unsigned long long)tsf);
fa1c114f 1152
8a63facc
BC
1153 /*
1154 * Sometimes the HW will give us a wrong tstamp in the rx
1155 * status, causing the timestamp extension to go wrong.
1156 * (This seems to happen especially with beacon frames bigger
1157 * than 78 byte (incl. FCS))
1158 * But we know that the receive timestamp must be later than the
1159 * timestamp of the beacon since HW must have synced to that.
1160 *
1161 * NOTE: here we assume mactime to be after the frame was
1162 * received, not like mac80211 which defines it at the start.
1163 */
1164 if (bc_tstamp > rxs->mactime) {
1165 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1166 "fixing mactime from %llx to %llx\n",
1167 (unsigned long long)rxs->mactime,
1168 (unsigned long long)tsf);
1169 rxs->mactime = tsf;
1170 }
fa1c114f 1171
8a63facc
BC
1172 /*
1173 * Local TSF might have moved higher than our beacon timers,
1174 * in that case we have to update them to continue sending
1175 * beacons. This also takes care of synchronizing beacon sending
1176 * times with other stations.
1177 */
1178 if (hw_tu >= sc->nexttbtt)
1179 ath5k_beacon_update_timers(sc, bc_tstamp);
1180 }
1181}
fa1c114f 1182
8a63facc
BC
1183static void
1184ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1185{
1186 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1187 struct ath5k_hw *ah = sc->ah;
1188 struct ath_common *common = ath5k_hw_common(ah);
fa1c114f 1189
8a63facc
BC
1190 /* only beacons from our BSSID */
1191 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1192 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1193 return;
fa1c114f 1194
8a63facc
BC
1195 ah->ah_beacon_rssi_avg = ath5k_moving_average(ah->ah_beacon_rssi_avg,
1196 rssi);
fa1c114f 1197
8a63facc
BC
1198 /* in IBSS mode we should keep RSSI statistics per neighbour */
1199 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1200}
fa1c114f 1201
8a63facc
BC
1202/*
1203 * Compute padding position. skb must contain an IEEE 802.11 frame
1204 */
1205static int ath5k_common_padpos(struct sk_buff *skb)
fa1c114f 1206{
8a63facc
BC
1207 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1208 __le16 frame_control = hdr->frame_control;
1209 int padpos = 24;
fa1c114f 1210
8a63facc
BC
1211 if (ieee80211_has_a4(frame_control)) {
1212 padpos += ETH_ALEN;
fa1c114f 1213 }
8a63facc
BC
1214 if (ieee80211_is_data_qos(frame_control)) {
1215 padpos += IEEE80211_QOS_CTL_LEN;
fa1c114f 1216 }
8a63facc
BC
1217
1218 return padpos;
fa1c114f
JS
1219}
1220
8a63facc
BC
1221/*
1222 * This function expects an 802.11 frame and returns the number of
1223 * bytes added, or -1 if we don't have enough header room.
1224 */
1225static int ath5k_add_padding(struct sk_buff *skb)
fa1c114f 1226{
8a63facc
BC
1227 int padpos = ath5k_common_padpos(skb);
1228 int padsize = padpos & 3;
fa1c114f 1229
8a63facc 1230 if (padsize && skb->len>padpos) {
fa1c114f 1231
8a63facc
BC
1232 if (skb_headroom(skb) < padsize)
1233 return -1;
fa1c114f 1234
8a63facc
BC
1235 skb_push(skb, padsize);
1236 memmove(skb->data, skb->data+padsize, padpos);
1237 return padsize;
1238 }
a951ae21 1239
8a63facc
BC
1240 return 0;
1241}
fa1c114f 1242
8a63facc
BC
1243/*
1244 * The MAC header is padded to have 32-bit boundary if the
1245 * packet payload is non-zero. The general calculation for
1246 * padsize would take into account odd header lengths:
1247 * padsize = 4 - (hdrlen & 3); however, since only
1248 * even-length headers are used, padding can only be 0 or 2
1249 * bytes and we can optimize this a bit. We must not try to
1250 * remove padding from short control frames that do not have a
1251 * payload.
1252 *
1253 * This function expects an 802.11 frame and returns the number of
1254 * bytes removed.
1255 */
1256static int ath5k_remove_padding(struct sk_buff *skb)
1257{
1258 int padpos = ath5k_common_padpos(skb);
1259 int padsize = padpos & 3;
6d91e1d8 1260
8a63facc
BC
1261 if (padsize && skb->len>=padpos+padsize) {
1262 memmove(skb->data + padsize, skb->data, padpos);
1263 skb_pull(skb, padsize);
1264 return padsize;
fa1c114f 1265 }
a951ae21 1266
8a63facc 1267 return 0;
fa1c114f
JS
1268}
1269
1270static void
8a63facc
BC
1271ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1272 struct ath5k_rx_status *rs)
fa1c114f 1273{
8a63facc
BC
1274 struct ieee80211_rx_status *rxs;
1275
1276 ath5k_remove_padding(skb);
1277
1278 rxs = IEEE80211_SKB_RXCB(skb);
1279
1280 rxs->flag = 0;
1281 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1282 rxs->flag |= RX_FLAG_MMIC_ERROR;
fa1c114f
JS
1283
1284 /*
8a63facc
BC
1285 * always extend the mac timestamp, since this information is
1286 * also needed for proper IBSS merging.
1287 *
1288 * XXX: it might be too late to do it here, since rs_tstamp is
1289 * 15bit only. that means TSF extension has to be done within
1290 * 32768usec (about 32ms). it might be necessary to move this to
1291 * the interrupt handler, like it is done in madwifi.
1292 *
1293 * Unfortunately we don't know when the hardware takes the rx
1294 * timestamp (beginning of phy frame, data frame, end of rx?).
1295 * The only thing we know is that it is hardware specific...
1296 * On AR5213 it seems the rx timestamp is at the end of the
1297 * frame, but i'm not sure.
1298 *
1299 * NOTE: mac80211 defines mactime at the beginning of the first
1300 * data symbol. Since we don't have any time references it's
1301 * impossible to comply to that. This affects IBSS merge only
1302 * right now, so it's not too bad...
fa1c114f 1303 */
8a63facc
BC
1304 rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1305 rxs->flag |= RX_FLAG_TSFT;
fa1c114f 1306
8a63facc
BC
1307 rxs->freq = sc->curchan->center_freq;
1308 rxs->band = sc->curband->band;
fa1c114f 1309
8a63facc 1310 rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
fa1c114f 1311
8a63facc 1312 rxs->antenna = rs->rs_antenna;
fa1c114f 1313
8a63facc
BC
1314 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1315 sc->stats.antenna_rx[rs->rs_antenna]++;
1316 else
1317 sc->stats.antenna_rx[0]++; /* invalid */
fa1c114f 1318
8a63facc
BC
1319 rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1320 rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
fa1c114f 1321
8a63facc
BC
1322 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1323 sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1324 rxs->flag |= RX_FLAG_SHORTPRE;
fa1c114f 1325
8a63facc 1326 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
fa1c114f 1327
8a63facc 1328 ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
fa1c114f 1329
8a63facc
BC
1330 /* check beacons in IBSS mode */
1331 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1332 ath5k_check_ibss_tsf(sc, skb, rxs);
fa1c114f 1333
8a63facc
BC
1334 ieee80211_rx(sc->hw, skb);
1335}
fa1c114f 1336
8a63facc
BC
1337/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1338 *
1339 * Check if we want to further process this frame or not. Also update
1340 * statistics. Return true if we want this frame, false if not.
fa1c114f 1341 */
8a63facc
BC
1342static bool
1343ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
fa1c114f 1344{
8a63facc 1345 sc->stats.rx_all_count++;
fa1c114f 1346
8a63facc
BC
1347 if (unlikely(rs->rs_status)) {
1348 if (rs->rs_status & AR5K_RXERR_CRC)
1349 sc->stats.rxerr_crc++;
1350 if (rs->rs_status & AR5K_RXERR_FIFO)
1351 sc->stats.rxerr_fifo++;
1352 if (rs->rs_status & AR5K_RXERR_PHY) {
1353 sc->stats.rxerr_phy++;
1354 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1355 sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1356 return false;
1357 }
1358 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1359 /*
1360 * Decrypt error. If the error occurred
1361 * because there was no hardware key, then
1362 * let the frame through so the upper layers
1363 * can process it. This is necessary for 5210
1364 * parts which have no way to setup a ``clear''
1365 * key cache entry.
1366 *
1367 * XXX do key cache faulting
1368 */
1369 sc->stats.rxerr_decrypt++;
1370 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1371 !(rs->rs_status & AR5K_RXERR_CRC))
1372 return true;
1373 }
1374 if (rs->rs_status & AR5K_RXERR_MIC) {
1375 sc->stats.rxerr_mic++;
1376 return true;
fa1c114f 1377 }
fa1c114f 1378
8a63facc
BC
1379 /* reject any frames with non-crypto errors */
1380 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1381 return false;
1382 }
fa1c114f 1383
8a63facc
BC
1384 if (unlikely(rs->rs_more)) {
1385 sc->stats.rxerr_jumbo++;
1386 return false;
1387 }
1388 return true;
fa1c114f
JS
1389}
1390
fa1c114f 1391static void
8a63facc 1392ath5k_tasklet_rx(unsigned long data)
fa1c114f 1393{
8a63facc
BC
1394 struct ath5k_rx_status rs = {};
1395 struct sk_buff *skb, *next_skb;
1396 dma_addr_t next_skb_addr;
1397 struct ath5k_softc *sc = (void *)data;
dc1e001b
LR
1398 struct ath5k_hw *ah = sc->ah;
1399 struct ath_common *common = ath5k_hw_common(ah);
8a63facc
BC
1400 struct ath5k_buf *bf;
1401 struct ath5k_desc *ds;
1402 int ret;
fa1c114f 1403
8a63facc
BC
1404 spin_lock(&sc->rxbuflock);
1405 if (list_empty(&sc->rxbuf)) {
1406 ATH5K_WARN(sc, "empty rx buf pool\n");
1407 goto unlock;
1408 }
1409 do {
1410 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1411 BUG_ON(bf->skb == NULL);
1412 skb = bf->skb;
1413 ds = bf->desc;
fa1c114f 1414
8a63facc
BC
1415 /* bail if HW is still using self-linked descriptor */
1416 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1417 break;
fa1c114f 1418
8a63facc
BC
1419 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1420 if (unlikely(ret == -EINPROGRESS))
1421 break;
1422 else if (unlikely(ret)) {
1423 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1424 sc->stats.rxerr_proc++;
1425 break;
1426 }
fa1c114f 1427
8a63facc
BC
1428 if (ath5k_receive_frame_ok(sc, &rs)) {
1429 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
fa1c114f 1430
8a63facc
BC
1431 /*
1432 * If we can't replace bf->skb with a new skb under
1433 * memory pressure, just skip this packet
1434 */
1435 if (!next_skb)
1436 goto next;
036cd1ec 1437
8a63facc
BC
1438 pci_unmap_single(sc->pdev, bf->skbaddr,
1439 common->rx_bufsize,
1440 PCI_DMA_FROMDEVICE);
036cd1ec 1441
8a63facc 1442 skb_put(skb, rs.rs_datalen);
6ba81c2c 1443
8a63facc 1444 ath5k_receive_frame(sc, skb, &rs);
6ba81c2c 1445
8a63facc
BC
1446 bf->skb = next_skb;
1447 bf->skbaddr = next_skb_addr;
036cd1ec 1448 }
8a63facc
BC
1449next:
1450 list_move_tail(&bf->list, &sc->rxbuf);
1451 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1452unlock:
1453 spin_unlock(&sc->rxbuflock);
036cd1ec
BR
1454}
1455
b4ea449d 1456
8a63facc
BC
1457/*************\
1458* TX Handling *
1459\*************/
b4ea449d 1460
8a63facc
BC
1461static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1462 struct ath5k_txq *txq)
1463{
1464 struct ath5k_softc *sc = hw->priv;
1465 struct ath5k_buf *bf;
1466 unsigned long flags;
1467 int padsize;
b4ea449d 1468
8a63facc 1469 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
b4ea449d 1470
8a63facc
BC
1471 /*
1472 * The hardware expects the header padded to 4 byte boundaries.
1473 * If this is not the case, we add the padding after the header.
1474 */
1475 padsize = ath5k_add_padding(skb);
1476 if (padsize < 0) {
1477 ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1478 " headroom to pad");
1479 goto drop_packet;
1480 }
8127fbdc 1481
8a63facc
BC
1482 spin_lock_irqsave(&sc->txbuflock, flags);
1483 if (list_empty(&sc->txbuf)) {
1484 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1485 spin_unlock_irqrestore(&sc->txbuflock, flags);
1486 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
1487 goto drop_packet;
8127fbdc 1488 }
8a63facc
BC
1489 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1490 list_del(&bf->list);
1491 sc->txbuf_len--;
1492 if (list_empty(&sc->txbuf))
1493 ieee80211_stop_queues(hw);
1494 spin_unlock_irqrestore(&sc->txbuflock, flags);
1495
1496 bf->skb = skb;
1497
1498 if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1499 bf->skb = NULL;
1500 spin_lock_irqsave(&sc->txbuflock, flags);
1501 list_add_tail(&bf->list, &sc->txbuf);
1502 sc->txbuf_len++;
1503 spin_unlock_irqrestore(&sc->txbuflock, flags);
1504 goto drop_packet;
8127fbdc 1505 }
8a63facc 1506 return NETDEV_TX_OK;
8127fbdc 1507
8a63facc
BC
1508drop_packet:
1509 dev_kfree_skb_any(skb);
1510 return NETDEV_TX_OK;
8127fbdc
BP
1511}
1512
8a63facc
BC
1513
1514static void
1515ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
8127fbdc 1516{
8a63facc
BC
1517 struct ath5k_tx_status ts = {};
1518 struct ath5k_buf *bf, *bf0;
1519 struct ath5k_desc *ds;
1520 struct sk_buff *skb;
1521 struct ieee80211_tx_info *info;
1522 int i, ret;
8127fbdc 1523
8a63facc
BC
1524 spin_lock(&txq->lock);
1525 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1526 ds = bf->desc;
8127fbdc 1527
8a63facc
BC
1528 /*
1529 * It's possible that the hardware can say the buffer is
1530 * completed when it hasn't yet loaded the ds_link from
1531 * host memory and moved on. If there are more TX
1532 * descriptors in the queue, wait for TXDP to change
1533 * before processing this one.
1534 */
1535 if (ath5k_hw_get_txdp(sc->ah, txq->qnum) == bf->daddr &&
1536 !list_is_last(&bf->list, &txq->q))
1537 break;
8127fbdc 1538
8a63facc
BC
1539 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1540 if (unlikely(ret == -EINPROGRESS))
1541 break;
1542 else if (unlikely(ret)) {
1543 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1544 ret, txq->qnum);
1545 break;
1546 }
8127fbdc 1547
8a63facc
BC
1548 sc->stats.tx_all_count++;
1549 skb = bf->skb;
1550 info = IEEE80211_SKB_CB(skb);
1551 bf->skb = NULL;
e039fa4a 1552
fa1c114f
JS
1553 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1554 PCI_DMA_TODEVICE);
1555
e6a9854b 1556 ieee80211_tx_info_clear_status(info);
2f7fe870 1557 for (i = 0; i < 4; i++) {
e6a9854b
JB
1558 struct ieee80211_tx_rate *r =
1559 &info->status.rates[i];
2f7fe870
FF
1560
1561 if (ts.ts_rate[i]) {
e6a9854b
JB
1562 r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1563 r->count = ts.ts_retry[i];
2f7fe870 1564 } else {
e6a9854b
JB
1565 r->idx = -1;
1566 r->count = 0;
2f7fe870
FF
1567 }
1568 }
1569
e6a9854b
JB
1570 /* count the successful attempt as well */
1571 info->status.rates[ts.ts_final_idx].count++;
1572
b47f407b 1573 if (unlikely(ts.ts_status)) {
495391d7 1574 sc->stats.ack_fail++;
7644395f 1575 if (ts.ts_status & AR5K_TXERR_FILT) {
e039fa4a 1576 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
7644395f
BR
1577 sc->stats.txerr_filt++;
1578 }
1579 if (ts.ts_status & AR5K_TXERR_XRETRY)
1580 sc->stats.txerr_retry++;
1581 if (ts.ts_status & AR5K_TXERR_FIFO)
1582 sc->stats.txerr_fifo++;
fa1c114f 1583 } else {
e039fa4a
JB
1584 info->flags |= IEEE80211_TX_STAT_ACK;
1585 info->status.ack_signal = ts.ts_rssi;
fa1c114f
JS
1586 }
1587
8127fbdc
BP
1588 /*
1589 * Remove MAC header padding before giving the frame
1590 * back to mac80211.
1591 */
1592 ath5k_remove_padding(skb);
1593
604eeadd
BR
1594 if (ts.ts_antenna > 0 && ts.ts_antenna < 5)
1595 sc->stats.antenna_tx[ts.ts_antenna]++;
1596 else
1597 sc->stats.antenna_tx[0]++; /* invalid */
1598
e039fa4a 1599 ieee80211_tx_status(sc->hw, skb);
fa1c114f
JS
1600
1601 spin_lock(&sc->txbuflock);
fa1c114f
JS
1602 list_move_tail(&bf->list, &sc->txbuf);
1603 sc->txbuf_len++;
1604 spin_unlock(&sc->txbuflock);
1605 }
1606 if (likely(list_empty(&txq->q)))
1607 txq->link = NULL;
1608 spin_unlock(&txq->lock);
1609 if (sc->txbuf_len > ATH_TXBUF / 5)
1610 ieee80211_wake_queues(sc->hw);
1611}
1612
1613static void
1614ath5k_tasklet_tx(unsigned long data)
1615{
8784d2ee 1616 int i;
fa1c114f
JS
1617 struct ath5k_softc *sc = (void *)data;
1618
8784d2ee
BC
1619 for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1620 if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1621 ath5k_tx_processq(sc, &sc->txqs[i]);
fa1c114f
JS
1622}
1623
1624
fa1c114f
JS
1625/*****************\
1626* Beacon handling *
1627\*****************/
1628
1629/*
1630 * Setup the beacon frame for transmit.
1631 */
1632static int
e039fa4a 1633ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
fa1c114f
JS
1634{
1635 struct sk_buff *skb = bf->skb;
a888d52d 1636 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
fa1c114f
JS
1637 struct ath5k_hw *ah = sc->ah;
1638 struct ath5k_desc *ds;
2bed03eb
NK
1639 int ret = 0;
1640 u8 antenna;
fa1c114f 1641 u32 flags;
8127fbdc 1642 const int padsize = 0;
fa1c114f
JS
1643
1644 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1645 PCI_DMA_TODEVICE);
1646 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1647 "skbaddr %llx\n", skb, skb->data, skb->len,
1648 (unsigned long long)bf->skbaddr);
8d8bb39b 1649 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
fa1c114f
JS
1650 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1651 return -EIO;
1652 }
1653
1654 ds = bf->desc;
2bed03eb 1655 antenna = ah->ah_tx_ant;
fa1c114f
JS
1656
1657 flags = AR5K_TXDESC_NOACK;
05c914fe 1658 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
fa1c114f
JS
1659 ds->ds_link = bf->daddr; /* self-linked */
1660 flags |= AR5K_TXDESC_VEOL;
2bed03eb 1661 } else
fa1c114f 1662 ds->ds_link = 0;
2bed03eb
NK
1663
1664 /*
1665 * If we use multiple antennas on AP and use
1666 * the Sectored AP scenario, switch antenna every
1667 * 4 beacons to make sure everybody hears our AP.
1668 * When a client tries to associate, hw will keep
1669 * track of the tx antenna to be used for this client
1670 * automaticaly, based on ACKed packets.
1671 *
1672 * Note: AP still listens and transmits RTS on the
1673 * default antenna which is supposed to be an omni.
1674 *
1675 * Note2: On sectored scenarios it's possible to have
a180a130
BC
1676 * multiple antennas (1 omni -- the default -- and 14
1677 * sectors), so if we choose to actually support this
1678 * mode, we need to allow the user to set how many antennas
1679 * we have and tweak the code below to send beacons
1680 * on all of them.
2bed03eb
NK
1681 */
1682 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1683 antenna = sc->bsent & 4 ? 2 : 1;
1684
fa1c114f 1685
8f655dde
NK
1686 /* FIXME: If we are in g mode and rate is a CCK rate
1687 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1688 * from tx power (value is in dB units already) */
fa1c114f 1689 ds->ds_data = bf->skbaddr;
281c56dd 1690 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
8127fbdc 1691 ieee80211_get_hdrlen_from_skb(skb), padsize,
400ec45a 1692 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
e039fa4a 1693 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2e92e6f2 1694 1, AR5K_TXKEYIX_INVALID,
400ec45a 1695 antenna, flags, 0, 0);
fa1c114f
JS
1696 if (ret)
1697 goto err_unmap;
1698
1699 return 0;
1700err_unmap:
1701 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1702 return ret;
1703}
1704
8a63facc
BC
1705/*
1706 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1707 * this is called only once at config_bss time, for AP we do it every
1708 * SWBA interrupt so that the TIM will reflect buffered frames.
1709 *
1710 * Called with the beacon lock.
1711 */
1712static int
1713ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1714{
1715 int ret;
1716 struct ath5k_softc *sc = hw->priv;
1717 struct sk_buff *skb;
1718
1719 if (WARN_ON(!vif)) {
1720 ret = -EINVAL;
1721 goto out;
1722 }
1723
1724 skb = ieee80211_beacon_get(hw, vif);
1725
1726 if (!skb) {
1727 ret = -ENOMEM;
1728 goto out;
1729 }
1730
1731 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
1732
1733 ath5k_txbuf_free_skb(sc, sc->bbuf);
1734 sc->bbuf->skb = skb;
1735 ret = ath5k_beacon_setup(sc, sc->bbuf);
1736 if (ret)
1737 sc->bbuf->skb = NULL;
1738out:
1739 return ret;
1740}
1741
fa1c114f
JS
1742/*
1743 * Transmit a beacon frame at SWBA. Dynamic updates to the
1744 * frame contents are done as needed and the slot time is
1745 * also adjusted based on current state.
1746 *
5faaff74
BC
1747 * This is called from software irq context (beacontq tasklets)
1748 * or user context from ath5k_beacon_config.
fa1c114f
JS
1749 */
1750static void
1751ath5k_beacon_send(struct ath5k_softc *sc)
1752{
1753 struct ath5k_buf *bf = sc->bbuf;
1754 struct ath5k_hw *ah = sc->ah;
cec8db23 1755 struct sk_buff *skb;
fa1c114f 1756
be9b7259 1757 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
fa1c114f 1758
4afd89d9 1759 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION)) {
fa1c114f
JS
1760 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1761 return;
1762 }
1763 /*
1764 * Check if the previous beacon has gone out. If
a180a130 1765 * not, don't don't try to post another: skip this
fa1c114f
JS
1766 * period and wait for the next. Missed beacons
1767 * indicate a problem and should not occur. If we
1768 * miss too many consecutive beacons reset the device.
1769 */
1770 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1771 sc->bmisscount++;
be9b7259 1772 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f 1773 "missed %u consecutive beacons\n", sc->bmisscount);
428cbd4f 1774 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
be9b7259 1775 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
1776 "stuck beacon time (%u missed)\n",
1777 sc->bmisscount);
8d67a031
BR
1778 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1779 "stuck beacon, resetting\n");
5faaff74 1780 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f
JS
1781 }
1782 return;
1783 }
1784 if (unlikely(sc->bmisscount != 0)) {
be9b7259 1785 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
fa1c114f
JS
1786 "resume beacon xmit after %u misses\n",
1787 sc->bmisscount);
1788 sc->bmisscount = 0;
1789 }
1790
1791 /*
1792 * Stop any current dma and put the new frame on the queue.
1793 * This should never fail since we check above that no frames
1794 * are still pending on the queue.
1795 */
1796 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
428cbd4f 1797 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
fa1c114f
JS
1798 /* NB: hw still stops DMA, so proceed */
1799 }
fa1c114f 1800
1071db86
BC
1801 /* refresh the beacon for AP mode */
1802 if (sc->opmode == NL80211_IFTYPE_AP)
1803 ath5k_beacon_update(sc->hw, sc->vif);
1804
c6e387a2
NK
1805 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1806 ath5k_hw_start_tx_dma(ah, sc->bhalq);
be9b7259 1807 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
fa1c114f
JS
1808 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1809
cec8db23
BC
1810 skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
1811 while (skb) {
1812 ath5k_tx_queue(sc->hw, skb, sc->cabq);
1813 skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
1814 }
1815
fa1c114f
JS
1816 sc->bsent++;
1817}
1818
9804b98d
BR
1819/**
1820 * ath5k_beacon_update_timers - update beacon timers
1821 *
1822 * @sc: struct ath5k_softc pointer we are operating on
1823 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1824 * beacon timer update based on the current HW TSF.
1825 *
1826 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1827 * of a received beacon or the current local hardware TSF and write it to the
1828 * beacon timer registers.
1829 *
1830 * This is called in a variety of situations, e.g. when a beacon is received,
6ba81c2c 1831 * when a TSF update has been detected, but also when an new IBSS is created or
9804b98d
BR
1832 * when we otherwise know we have to update the timers, but we keep it in this
1833 * function to have it all together in one place.
1834 */
fa1c114f 1835static void
9804b98d 1836ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
fa1c114f
JS
1837{
1838 struct ath5k_hw *ah = sc->ah;
9804b98d
BR
1839 u32 nexttbtt, intval, hw_tu, bc_tu;
1840 u64 hw_tsf;
fa1c114f
JS
1841
1842 intval = sc->bintval & AR5K_BEACON_PERIOD;
1843 if (WARN_ON(!intval))
1844 return;
1845
9804b98d
BR
1846 /* beacon TSF converted to TU */
1847 bc_tu = TSF_TO_TU(bc_tsf);
fa1c114f 1848
9804b98d
BR
1849 /* current TSF converted to TU */
1850 hw_tsf = ath5k_hw_get_tsf64(ah);
1851 hw_tu = TSF_TO_TU(hw_tsf);
fa1c114f 1852
9804b98d
BR
1853#define FUDGE 3
1854 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
1855 if (bc_tsf == -1) {
1856 /*
1857 * no beacons received, called internally.
1858 * just need to refresh timers based on HW TSF.
1859 */
1860 nexttbtt = roundup(hw_tu + FUDGE, intval);
1861 } else if (bc_tsf == 0) {
1862 /*
1863 * no beacon received, probably called by ath5k_reset_tsf().
1864 * reset TSF to start with 0.
1865 */
1866 nexttbtt = intval;
1867 intval |= AR5K_BEACON_RESET_TSF;
1868 } else if (bc_tsf > hw_tsf) {
1869 /*
1870 * beacon received, SW merge happend but HW TSF not yet updated.
1871 * not possible to reconfigure timers yet, but next time we
1872 * receive a beacon with the same BSSID, the hardware will
1873 * automatically update the TSF and then we need to reconfigure
1874 * the timers.
1875 */
1876 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1877 "need to wait for HW TSF sync\n");
1878 return;
1879 } else {
1880 /*
1881 * most important case for beacon synchronization between STA.
1882 *
1883 * beacon received and HW TSF has been already updated by HW.
1884 * update next TBTT based on the TSF of the beacon, but make
1885 * sure it is ahead of our local TSF timer.
1886 */
1887 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
1888 }
1889#undef FUDGE
fa1c114f 1890
036cd1ec
BR
1891 sc->nexttbtt = nexttbtt;
1892
fa1c114f 1893 intval |= AR5K_BEACON_ENA;
fa1c114f 1894 ath5k_hw_init_beacon(ah, nexttbtt, intval);
9804b98d
BR
1895
1896 /*
1897 * debugging output last in order to preserve the time critical aspect
1898 * of this function
1899 */
1900 if (bc_tsf == -1)
1901 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1902 "reconfigured timers based on HW TSF\n");
1903 else if (bc_tsf == 0)
1904 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1905 "reset HW TSF and timers\n");
1906 else
1907 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1908 "updated timers based on beacon TSF\n");
1909
1910 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
04f93a87
DM
1911 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
1912 (unsigned long long) bc_tsf,
1913 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
9804b98d
BR
1914 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
1915 intval & AR5K_BEACON_PERIOD,
1916 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
1917 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
fa1c114f
JS
1918}
1919
036cd1ec
BR
1920/**
1921 * ath5k_beacon_config - Configure the beacon queues and interrupts
1922 *
1923 * @sc: struct ath5k_softc pointer we are operating on
fa1c114f 1924 *
036cd1ec 1925 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
6ba81c2c 1926 * interrupts to detect TSF updates only.
fa1c114f
JS
1927 */
1928static void
1929ath5k_beacon_config(struct ath5k_softc *sc)
1930{
1931 struct ath5k_hw *ah = sc->ah;
b5f03956 1932 unsigned long flags;
fa1c114f 1933
21800491 1934 spin_lock_irqsave(&sc->block, flags);
fa1c114f 1935 sc->bmisscount = 0;
dc1968e7 1936 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
fa1c114f 1937
21800491 1938 if (sc->enable_beacon) {
fa1c114f 1939 /*
036cd1ec
BR
1940 * In IBSS mode we use a self-linked tx descriptor and let the
1941 * hardware send the beacons automatically. We have to load it
fa1c114f 1942 * only once here.
036cd1ec 1943 * We use the SWBA interrupt only to keep track of the beacon
6ba81c2c 1944 * timers in order to detect automatic TSF updates.
fa1c114f
JS
1945 */
1946 ath5k_beaconq_config(sc);
fa1c114f 1947
036cd1ec
BR
1948 sc->imask |= AR5K_INT_SWBA;
1949
da966bca 1950 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
21800491 1951 if (ath5k_hw_hasveol(ah))
da966bca 1952 ath5k_beacon_send(sc);
da966bca
JS
1953 } else
1954 ath5k_beacon_update_timers(sc, -1);
21800491
BC
1955 } else {
1956 ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
fa1c114f 1957 }
fa1c114f 1958
c6e387a2 1959 ath5k_hw_set_imr(ah, sc->imask);
21800491
BC
1960 mmiowb();
1961 spin_unlock_irqrestore(&sc->block, flags);
fa1c114f
JS
1962}
1963
428cbd4f
NK
1964static void ath5k_tasklet_beacon(unsigned long data)
1965{
1966 struct ath5k_softc *sc = (struct ath5k_softc *) data;
1967
1968 /*
1969 * Software beacon alert--time to send a beacon.
1970 *
1971 * In IBSS mode we use this interrupt just to
1972 * keep track of the next TBTT (target beacon
1973 * transmission time) in order to detect wether
1974 * automatic TSF updates happened.
1975 */
1976 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1977 /* XXX: only if VEOL suppported */
1978 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
1979 sc->nexttbtt += sc->bintval;
1980 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1981 "SWBA nexttbtt: %x hw_tu: %x "
1982 "TSF: %llx\n",
1983 sc->nexttbtt,
1984 TSF_TO_TU(tsf),
1985 (unsigned long long) tsf);
1986 } else {
1987 spin_lock(&sc->block);
1988 ath5k_beacon_send(sc);
1989 spin_unlock(&sc->block);
1990 }
1991}
1992
fa1c114f
JS
1993
1994/********************\
1995* Interrupt handling *
1996\********************/
1997
6a8a3f6b
BR
1998static void
1999ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2000{
2111ac0d
BR
2001 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2002 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2003 /* run ANI only when full calibration is not active */
2004 ah->ah_cal_next_ani = jiffies +
2005 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2006 tasklet_schedule(&ah->ah_sc->ani_tasklet);
2007
2008 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
6a8a3f6b
BR
2009 ah->ah_cal_next_full = jiffies +
2010 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2011 tasklet_schedule(&ah->ah_sc->calib);
2012 }
2013 /* we could use SWI to generate enough interrupts to meet our
2014 * calibration interval requirements, if necessary:
2015 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2016}
2017
fa1c114f
JS
2018static irqreturn_t
2019ath5k_intr(int irq, void *dev_id)
2020{
2021 struct ath5k_softc *sc = dev_id;
2022 struct ath5k_hw *ah = sc->ah;
2023 enum ath5k_int status;
2024 unsigned int counter = 1000;
2025
2026 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2027 !ath5k_hw_is_intr_pending(ah)))
2028 return IRQ_NONE;
2029
2030 do {
fa1c114f
JS
2031 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2032 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2033 status, sc->imask);
fa1c114f
JS
2034 if (unlikely(status & AR5K_INT_FATAL)) {
2035 /*
2036 * Fatal errors are unrecoverable.
2037 * Typically these are caused by DMA errors.
2038 */
8d67a031
BR
2039 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2040 "fatal int, resetting\n");
5faaff74 2041 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f 2042 } else if (unlikely(status & AR5K_INT_RXORN)) {
87d77c4e
BR
2043 /*
2044 * Receive buffers are full. Either the bus is busy or
2045 * the CPU is not fast enough to process all received
2046 * frames.
2047 * Older chipsets need a reset to come out of this
2048 * condition, but we treat it as RX for newer chips.
2049 * We don't know exactly which versions need a reset -
2050 * this guess is copied from the HAL.
2051 */
2052 sc->stats.rxorn_intr++;
8d67a031
BR
2053 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2054 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2055 "rx overrun, resetting\n");
5faaff74 2056 ieee80211_queue_work(sc->hw, &sc->reset_work);
8d67a031 2057 }
87d77c4e
BR
2058 else
2059 tasklet_schedule(&sc->rxtq);
fa1c114f
JS
2060 } else {
2061 if (status & AR5K_INT_SWBA) {
56d2ac76 2062 tasklet_hi_schedule(&sc->beacontq);
fa1c114f
JS
2063 }
2064 if (status & AR5K_INT_RXEOL) {
2065 /*
2066 * NB: the hardware should re-read the link when
2067 * RXE bit is written, but it doesn't work at
2068 * least on older hardware revs.
2069 */
b3f194e5 2070 sc->stats.rxeol_intr++;
fa1c114f
JS
2071 }
2072 if (status & AR5K_INT_TXURN) {
2073 /* bump tx trigger level */
2074 ath5k_hw_update_tx_triglevel(ah, true);
2075 }
4c674c60 2076 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
fa1c114f 2077 tasklet_schedule(&sc->rxtq);
4c674c60
NK
2078 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2079 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
fa1c114f
JS
2080 tasklet_schedule(&sc->txtq);
2081 if (status & AR5K_INT_BMISS) {
1e3e6e8f 2082 /* TODO */
fa1c114f
JS
2083 }
2084 if (status & AR5K_INT_MIB) {
2111ac0d 2085 sc->stats.mib_intr++;
495391d7 2086 ath5k_hw_update_mib_counters(ah);
2111ac0d 2087 ath5k_ani_mib_intr(ah);
fa1c114f 2088 }
e6a3b616 2089 if (status & AR5K_INT_GPIO)
e6a3b616 2090 tasklet_schedule(&sc->rf_kill.toggleq);
a6ae0716 2091
fa1c114f 2092 }
2516baa6 2093 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
fa1c114f
JS
2094
2095 if (unlikely(!counter))
2096 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2097
6a8a3f6b 2098 ath5k_intr_calibration_poll(ah);
6e220662 2099
fa1c114f
JS
2100 return IRQ_HANDLED;
2101}
2102
fa1c114f
JS
2103/*
2104 * Periodically recalibrate the PHY to account
2105 * for temperature/environment changes.
2106 */
2107static void
6e220662 2108ath5k_tasklet_calibrate(unsigned long data)
fa1c114f
JS
2109{
2110 struct ath5k_softc *sc = (void *)data;
2111 struct ath5k_hw *ah = sc->ah;
2112
6e220662 2113 /* Only full calibration for now */
e65e1d77 2114 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
6e220662 2115
fa1c114f 2116 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
400ec45a
LR
2117 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2118 sc->curchan->hw_value);
fa1c114f 2119
6f3b414a 2120 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
fa1c114f
JS
2121 /*
2122 * Rfgain is out of bounds, reset the chip
2123 * to load new gain values.
2124 */
2125 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
5faaff74 2126 ieee80211_queue_work(sc->hw, &sc->reset_work);
fa1c114f
JS
2127 }
2128 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2129 ATH5K_ERR(sc, "calibration of channel %u failed\n",
400ec45a
LR
2130 ieee80211_frequency_to_channel(
2131 sc->curchan->center_freq));
fa1c114f 2132
0e8e02dd 2133 /* Noise floor calibration interrupts rx/tx path while I/Q calibration
afe86286
BR
2134 * doesn't. We stop the queues so that calibration doesn't interfere
2135 * with TX and don't run it as often */
2136 if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2137 ah->ah_cal_next_nf = jiffies +
2138 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2139 ieee80211_stop_queues(sc->hw);
2140 ath5k_hw_update_noise_floor(ah);
2141 ieee80211_wake_queues(sc->hw);
2142 }
6e220662 2143
e65e1d77 2144 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
fa1c114f
JS
2145}
2146
2147
2111ac0d
BR
2148static void
2149ath5k_tasklet_ani(unsigned long data)
2150{
2151 struct ath5k_softc *sc = (void *)data;
2152 struct ath5k_hw *ah = sc->ah;
2153
2154 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2155 ath5k_ani_calibration(ah);
2156 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
fa1c114f
JS
2157}
2158
2159
8a63facc
BC
2160/*************************\
2161* Initialization routines *
2162\*************************/
fa1c114f
JS
2163
2164static int
8a63facc 2165ath5k_stop_locked(struct ath5k_softc *sc)
cec8db23 2166{
8a63facc 2167 struct ath5k_hw *ah = sc->ah;
cec8db23 2168
8a63facc
BC
2169 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2170 test_bit(ATH_STAT_INVALID, sc->status));
2171
2172 /*
2173 * Shutdown the hardware and driver:
2174 * stop output from above
2175 * disable interrupts
2176 * turn off timers
2177 * turn off the radio
2178 * clear transmit machinery
2179 * clear receive machinery
2180 * drain and release tx queues
2181 * reclaim beacon resources
2182 * power down hardware
2183 *
2184 * Note that some of this work is not possible if the
2185 * hardware is gone (invalid).
2186 */
2187 ieee80211_stop_queues(sc->hw);
2188
2189 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2190 ath5k_led_off(sc);
2191 ath5k_hw_set_imr(ah, 0);
2192 synchronize_irq(sc->pdev->irq);
2193 }
2194 ath5k_txq_cleanup(sc);
2195 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2196 ath5k_rx_stop(sc);
2197 ath5k_hw_phy_disable(ah);
2198 }
2199
2200 return 0;
cec8db23
BC
2201}
2202
8a63facc
BC
2203static int
2204ath5k_init(struct ath5k_softc *sc)
fa1c114f 2205{
8a63facc
BC
2206 struct ath5k_hw *ah = sc->ah;
2207 struct ath_common *common = ath5k_hw_common(ah);
2208 int ret, i;
fa1c114f 2209
8a63facc
BC
2210 mutex_lock(&sc->lock);
2211
2212 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
fa1c114f 2213
fa1c114f 2214 /*
8a63facc
BC
2215 * Stop anything previously setup. This is safe
2216 * no matter this is the first time through or not.
fa1c114f 2217 */
8a63facc 2218 ath5k_stop_locked(sc);
fa1c114f 2219
8a63facc
BC
2220 /*
2221 * The basic interface to setting the hardware in a good
2222 * state is ``reset''. On return the hardware is known to
2223 * be powered up and with interrupts disabled. This must
2224 * be followed by initialization of the appropriate bits
2225 * and then setup of the interrupt mask.
2226 */
2227 sc->curchan = sc->hw->conf.channel;
2228 sc->curband = &sc->sbands[sc->curchan->band];
2229 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2230 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2231 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
fa1c114f 2232
8a63facc
BC
2233 ret = ath5k_reset(sc, NULL);
2234 if (ret)
2235 goto done;
fa1c114f 2236
8a63facc
BC
2237 ath5k_rfkill_hw_start(ah);
2238
2239 /*
2240 * Reset the key cache since some parts do not reset the
2241 * contents on initial power up or resume from suspend.
2242 */
2243 for (i = 0; i < common->keymax; i++)
2244 ath_hw_keyreset(common, (u16) i);
2245
2246 ath5k_hw_set_ack_bitrate_high(ah, true);
2247 ret = 0;
2248done:
2249 mmiowb();
2250 mutex_unlock(&sc->lock);
2251 return ret;
2252}
2253
2254static void stop_tasklets(struct ath5k_softc *sc)
2255{
2256 tasklet_kill(&sc->rxtq);
2257 tasklet_kill(&sc->txtq);
2258 tasklet_kill(&sc->calib);
2259 tasklet_kill(&sc->beacontq);
2260 tasklet_kill(&sc->ani_tasklet);
2261}
2262
2263/*
2264 * Stop the device, grabbing the top-level lock to protect
2265 * against concurrent entry through ath5k_init (which can happen
2266 * if another thread does a system call and the thread doing the
2267 * stop is preempted).
2268 */
2269static int
2270ath5k_stop_hw(struct ath5k_softc *sc)
2271{
2272 int ret;
2273
2274 mutex_lock(&sc->lock);
2275 ret = ath5k_stop_locked(sc);
2276 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2277 /*
2278 * Don't set the card in full sleep mode!
2279 *
2280 * a) When the device is in this state it must be carefully
2281 * woken up or references to registers in the PCI clock
2282 * domain may freeze the bus (and system). This varies
2283 * by chip and is mostly an issue with newer parts
2284 * (madwifi sources mentioned srev >= 0x78) that go to
2285 * sleep more quickly.
2286 *
2287 * b) On older chips full sleep results a weird behaviour
2288 * during wakeup. I tested various cards with srev < 0x78
2289 * and they don't wake up after module reload, a second
2290 * module reload is needed to bring the card up again.
2291 *
2292 * Until we figure out what's going on don't enable
2293 * full chip reset on any chip (this is what Legacy HAL
2294 * and Sam's HAL do anyway). Instead Perform a full reset
2295 * on the device (same as initial state after attach) and
2296 * leave it idle (keep MAC/BB on warm reset) */
2297 ret = ath5k_hw_on_hold(sc->ah);
2298
2299 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2300 "putting device to sleep\n");
fa1c114f 2301 }
8a63facc 2302 ath5k_txbuf_free_skb(sc, sc->bbuf);
fa1c114f 2303
8a63facc
BC
2304 mmiowb();
2305 mutex_unlock(&sc->lock);
2306
2307 stop_tasklets(sc);
2308
2309 ath5k_rfkill_hw_stop(sc->ah);
2310
2311 return ret;
fa1c114f
JS
2312}
2313
209d889b
BC
2314/*
2315 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2316 * and change to the given channel.
5faaff74
BC
2317 *
2318 * This should be called with sc->lock.
209d889b 2319 */
fa1c114f 2320static int
209d889b 2321ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
fa1c114f 2322{
fa1c114f
JS
2323 struct ath5k_hw *ah = sc->ah;
2324 int ret;
2325
2326 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
fa1c114f 2327
450464de
BC
2328 ath5k_hw_set_imr(ah, 0);
2329 synchronize_irq(sc->pdev->irq);
2330 stop_tasklets(sc);
2331
209d889b 2332 if (chan) {
d7dc1003
JS
2333 ath5k_txq_cleanup(sc);
2334 ath5k_rx_stop(sc);
209d889b
BC
2335
2336 sc->curchan = chan;
2337 sc->curband = &sc->sbands[chan->band];
d7dc1003 2338 }
3355443a 2339 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
d7dc1003 2340 if (ret) {
fa1c114f
JS
2341 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2342 goto err;
2343 }
d7dc1003 2344
fa1c114f 2345 ret = ath5k_rx_start(sc);
d7dc1003 2346 if (ret) {
fa1c114f
JS
2347 ATH5K_ERR(sc, "can't start recv logic\n");
2348 goto err;
2349 }
d7dc1003 2350
2111ac0d
BR
2351 ath5k_ani_init(ah, ah->ah_sc->ani_state.ani_mode);
2352
ac559526
BR
2353 ah->ah_cal_next_full = jiffies;
2354 ah->ah_cal_next_ani = jiffies;
afe86286
BR
2355 ah->ah_cal_next_nf = jiffies;
2356
fa1c114f 2357 /*
d7dc1003
JS
2358 * Change channels and update the h/w rate map if we're switching;
2359 * e.g. 11a to 11b/g.
2360 *
2361 * We may be doing a reset in response to an ioctl that changes the
2362 * channel so update any state that might change as a result.
fa1c114f
JS
2363 *
2364 * XXX needed?
2365 */
2366/* ath5k_chan_change(sc, c); */
fa1c114f 2367
d7dc1003
JS
2368 ath5k_beacon_config(sc);
2369 /* intrs are enabled by ath5k_beacon_config */
fa1c114f 2370
397f385b
BR
2371 ieee80211_wake_queues(sc->hw);
2372
fa1c114f
JS
2373 return 0;
2374err:
2375 return ret;
2376}
2377
5faaff74
BC
2378static void ath5k_reset_work(struct work_struct *work)
2379{
2380 struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2381 reset_work);
2382
2383 mutex_lock(&sc->lock);
2384 ath5k_reset(sc, sc->curchan);
2385 mutex_unlock(&sc->lock);
2386}
2387
8a63facc
BC
2388static int
2389ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
fa1c114f
JS
2390{
2391 struct ath5k_softc *sc = hw->priv;
8a63facc
BC
2392 struct ath5k_hw *ah = sc->ah;
2393 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2394 u8 mac[ETH_ALEN] = {};
fa1c114f
JS
2395 int ret;
2396
8a63facc 2397 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
fa1c114f 2398
8a63facc
BC
2399 /*
2400 * Check if the MAC has multi-rate retry support.
2401 * We do this by trying to setup a fake extended
2402 * descriptor. MACs that don't have support will
2403 * return false w/o doing anything. MACs that do
2404 * support it will return true w/o doing anything.
2405 */
2406 ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
67d2e2df 2407
8a63facc
BC
2408 if (ret < 0)
2409 goto err;
2410 if (ret > 0)
2411 __set_bit(ATH_STAT_MRRETRY, sc->status);
ccfe5552 2412
8a63facc
BC
2413 /*
2414 * Collect the channel list. The 802.11 layer
2415 * is resposible for filtering this list based
2416 * on settings like the phy mode and regulatory
2417 * domain restrictions.
2418 */
2419 ret = ath5k_setup_bands(hw);
2420 if (ret) {
2421 ATH5K_ERR(sc, "can't get channels\n");
2422 goto err;
2423 }
67d2e2df 2424
8a63facc
BC
2425 /* NB: setup here so ath5k_rate_update is happy */
2426 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
2427 ath5k_setcurmode(sc, AR5K_MODE_11A);
2428 else
2429 ath5k_setcurmode(sc, AR5K_MODE_11B);
fa1c114f 2430
8a63facc
BC
2431 /*
2432 * Allocate tx+rx descriptors and populate the lists.
2433 */
2434 ret = ath5k_desc_alloc(sc, pdev);
2435 if (ret) {
2436 ATH5K_ERR(sc, "can't allocate descriptors\n");
2437 goto err;
2438 }
fa1c114f 2439
8a63facc
BC
2440 /*
2441 * Allocate hardware transmit queues: one queue for
2442 * beacon frames and one data queue for each QoS
2443 * priority. Note that hw functions handle resetting
2444 * these queues at the needed time.
2445 */
2446 ret = ath5k_beaconq_setup(ah);
2447 if (ret < 0) {
2448 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2449 goto err_desc;
2450 }
2451 sc->bhalq = ret;
2452 sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2453 if (IS_ERR(sc->cabq)) {
2454 ATH5K_ERR(sc, "can't setup cab queue\n");
2455 ret = PTR_ERR(sc->cabq);
2456 goto err_bhal;
2457 }
fa1c114f 2458
8a63facc
BC
2459 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2460 if (IS_ERR(sc->txq)) {
2461 ATH5K_ERR(sc, "can't setup xmit queue\n");
2462 ret = PTR_ERR(sc->txq);
2463 goto err_queues;
2464 }
fa1c114f 2465
8a63facc
BC
2466 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2467 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2468 tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2469 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2470 tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
be009370 2471
8a63facc 2472 INIT_WORK(&sc->reset_work, ath5k_reset_work);
fa1c114f 2473
8a63facc
BC
2474 ret = ath5k_eeprom_read_mac(ah, mac);
2475 if (ret) {
2476 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
2477 sc->pdev->device);
2478 goto err_queues;
e30eb4ab 2479 }
2bed03eb 2480
8a63facc
BC
2481 SET_IEEE80211_PERM_ADDR(hw, mac);
2482 /* All MAC address bits matter for ACKs */
2483 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
2484 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
2485
2486 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2487 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2488 if (ret) {
2489 ATH5K_ERR(sc, "can't initialize regulatory system\n");
2490 goto err_queues;
2491 }
2492
2493 ret = ieee80211_register_hw(hw);
2494 if (ret) {
2495 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2496 goto err_queues;
2497 }
2498
2499 if (!ath_is_world_regd(regulatory))
2500 regulatory_hint(hw->wiphy, regulatory->alpha2);
2501
2502 ath5k_init_leds(sc);
2503
2504 ath5k_sysfs_register(sc);
2505
2506 return 0;
2507err_queues:
2508 ath5k_txq_release(sc);
2509err_bhal:
2510 ath5k_hw_release_tx_queue(ah, sc->bhalq);
2511err_desc:
2512 ath5k_desc_free(sc, pdev);
2513err:
2514 return ret;
2515}
2516
2517static void
2518ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
2519{
2520 struct ath5k_softc *sc = hw->priv;
2521
2522 /*
2523 * NB: the order of these is important:
2524 * o call the 802.11 layer before detaching ath5k_hw to
2525 * ensure callbacks into the driver to delete global
2526 * key cache entries can be handled
2527 * o reclaim the tx queue data structures after calling
2528 * the 802.11 layer as we'll get called back to reclaim
2529 * node state and potentially want to use them
2530 * o to cleanup the tx queues the hal is called, so detach
2531 * it last
2532 * XXX: ??? detach ath5k_hw ???
2533 * Other than that, it's straightforward...
2534 */
2535 ieee80211_unregister_hw(hw);
2536 ath5k_desc_free(sc, pdev);
2537 ath5k_txq_release(sc);
2538 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2539 ath5k_unregister_leds(sc);
2540
2541 ath5k_sysfs_unregister(sc);
2542 /*
2543 * NB: can't reclaim these until after ieee80211_ifdetach
2544 * returns because we'll get called back to reclaim node
2545 * state and potentially want to use them.
2546 */
2547}
2548
2549/********************\
2550* Mac80211 functions *
2551\********************/
2552
2553static int
2554ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2555{
2556 struct ath5k_softc *sc = hw->priv;
2557
2558 return ath5k_tx_queue(hw, skb, sc->txq);
2559}
2560
2561static int ath5k_start(struct ieee80211_hw *hw)
2562{
2563 return ath5k_init(hw->priv);
2564}
2565
2566static void ath5k_stop(struct ieee80211_hw *hw)
2567{
2568 ath5k_stop_hw(hw->priv);
2569}
2570
2571static int ath5k_add_interface(struct ieee80211_hw *hw,
2572 struct ieee80211_vif *vif)
2573{
2574 struct ath5k_softc *sc = hw->priv;
2575 int ret;
2576
2577 mutex_lock(&sc->lock);
2578 if (sc->vif) {
2579 ret = 0;
2580 goto end;
2581 }
2582
2583 sc->vif = vif;
2584
2585 switch (vif->type) {
2586 case NL80211_IFTYPE_AP:
2587 case NL80211_IFTYPE_STATION:
2588 case NL80211_IFTYPE_ADHOC:
2589 case NL80211_IFTYPE_MESH_POINT:
2590 sc->opmode = vif->type;
2591 break;
2592 default:
2593 ret = -EOPNOTSUPP;
2594 goto end;
2595 }
2596
2597 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "add interface mode %d\n", sc->opmode);
2598
2599 ath5k_hw_set_lladdr(sc->ah, vif->addr);
2600 ath5k_mode_setup(sc);
2601
2602 ret = 0;
2603end:
2604 mutex_unlock(&sc->lock);
2605 return ret;
2606}
2607
2608static void
2609ath5k_remove_interface(struct ieee80211_hw *hw,
2610 struct ieee80211_vif *vif)
2611{
2612 struct ath5k_softc *sc = hw->priv;
2613 u8 mac[ETH_ALEN] = {};
2614
2615 mutex_lock(&sc->lock);
2616 if (sc->vif != vif)
2617 goto end;
2618
2619 ath5k_hw_set_lladdr(sc->ah, mac);
2620 sc->vif = NULL;
2621end:
2622 mutex_unlock(&sc->lock);
2623}
2624
2625/*
2626 * TODO: Phy disable/diversity etc
2627 */
2628static int
2629ath5k_config(struct ieee80211_hw *hw, u32 changed)
2630{
2631 struct ath5k_softc *sc = hw->priv;
2632 struct ath5k_hw *ah = sc->ah;
2633 struct ieee80211_conf *conf = &hw->conf;
2634 int ret = 0;
2635
2636 mutex_lock(&sc->lock);
2637
2638 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2639 ret = ath5k_chan_set(sc, conf->channel);
2640 if (ret < 0)
2641 goto unlock;
2642 }
2643
2644 if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2645 (sc->power_level != conf->power_level)) {
a0823810
NK
2646 sc->power_level = conf->power_level;
2647
2648 /* Half dB steps */
2649 ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2650 }
fa1c114f 2651
2bed03eb
NK
2652 /* TODO:
2653 * 1) Move this on config_interface and handle each case
2654 * separately eg. when we have only one STA vif, use
2655 * AR5K_ANTMODE_SINGLE_AP
2656 *
2657 * 2) Allow the user to change antenna mode eg. when only
2658 * one antenna is present
2659 *
2660 * 3) Allow the user to set default/tx antenna when possible
2661 *
2662 * 4) Default mode should handle 90% of the cases, together
2663 * with fixed a/b and single AP modes we should be able to
2664 * handle 99%. Sectored modes are extreme cases and i still
2665 * haven't found a usage for them. If we decide to support them,
2666 * then we must allow the user to set how many tx antennas we
2667 * have available
2668 */
caec9112 2669 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
be009370 2670
55aa4e0f 2671unlock:
be009370 2672 mutex_unlock(&sc->lock);
55aa4e0f 2673 return ret;
fa1c114f
JS
2674}
2675
3ac64bee 2676static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
22bedad3 2677 struct netdev_hw_addr_list *mc_list)
3ac64bee
JB
2678{
2679 u32 mfilt[2], val;
3ac64bee 2680 u8 pos;
22bedad3 2681 struct netdev_hw_addr *ha;
3ac64bee
JB
2682
2683 mfilt[0] = 0;
2684 mfilt[1] = 1;
2685
22bedad3 2686 netdev_hw_addr_list_for_each(ha, mc_list) {
3ac64bee 2687 /* calculate XOR of eight 6-bit values */
22bedad3 2688 val = get_unaligned_le32(ha->addr + 0);
3ac64bee 2689 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
22bedad3 2690 val = get_unaligned_le32(ha->addr + 3);
3ac64bee
JB
2691 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2692 pos &= 0x3f;
2693 mfilt[pos / 32] |= (1 << (pos % 32));
2694 /* XXX: we might be able to just do this instead,
2695 * but not sure, needs testing, if we do use this we'd
2696 * neet to inform below to not reset the mcast */
2697 /* ath5k_hw_set_mcast_filterindex(ah,
22bedad3 2698 * ha->addr[5]); */
3ac64bee
JB
2699 }
2700
2701 return ((u64)(mfilt[1]) << 32) | mfilt[0];
2702}
2703
fa1c114f
JS
2704#define SUPPORTED_FIF_FLAGS \
2705 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2706 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2707 FIF_BCN_PRBRESP_PROMISC
2708/*
2709 * o always accept unicast, broadcast, and multicast traffic
2710 * o multicast traffic for all BSSIDs will be enabled if mac80211
2711 * says it should be
2712 * o maintain current state of phy ofdm or phy cck error reception.
2713 * If the hardware detects any of these type of errors then
2714 * ath5k_hw_get_rx_filter() will pass to us the respective
2715 * hardware filters to be able to receive these type of frames.
2716 * o probe request frames are accepted only when operating in
2717 * hostap, adhoc, or monitor modes
2718 * o enable promiscuous mode according to the interface state
2719 * o accept beacons:
2720 * - when operating in adhoc mode so the 802.11 layer creates
2721 * node table entries for peers,
2722 * - when operating in station mode for collecting rssi data when
2723 * the station is otherwise quiet, or
2724 * - when scanning
2725 */
2726static void ath5k_configure_filter(struct ieee80211_hw *hw,
2727 unsigned int changed_flags,
2728 unsigned int *new_flags,
3ac64bee 2729 u64 multicast)
fa1c114f
JS
2730{
2731 struct ath5k_softc *sc = hw->priv;
2732 struct ath5k_hw *ah = sc->ah;
3ac64bee 2733 u32 mfilt[2], rfilt;
fa1c114f 2734
56d1de0a
BC
2735 mutex_lock(&sc->lock);
2736
3ac64bee
JB
2737 mfilt[0] = multicast;
2738 mfilt[1] = multicast >> 32;
fa1c114f
JS
2739
2740 /* Only deal with supported flags */
2741 changed_flags &= SUPPORTED_FIF_FLAGS;
2742 *new_flags &= SUPPORTED_FIF_FLAGS;
2743
2744 /* If HW detects any phy or radar errors, leave those filters on.
2745 * Also, always enable Unicast, Broadcasts and Multicast
2746 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2747 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2748 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2749 AR5K_RX_FILTER_MCAST);
2750
2751 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2752 if (*new_flags & FIF_PROMISC_IN_BSS) {
fa1c114f 2753 __set_bit(ATH_STAT_PROMISC, sc->status);
0bbac08f 2754 } else {
fa1c114f 2755 __clear_bit(ATH_STAT_PROMISC, sc->status);
0bbac08f 2756 }
fa1c114f
JS
2757 }
2758
6b5dcccb
BC
2759 if (test_bit(ATH_STAT_PROMISC, sc->status))
2760 rfilt |= AR5K_RX_FILTER_PROM;
2761
fa1c114f
JS
2762 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2763 if (*new_flags & FIF_ALLMULTI) {
2764 mfilt[0] = ~0;
2765 mfilt[1] = ~0;
fa1c114f
JS
2766 }
2767
2768 /* This is the best we can do */
2769 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2770 rfilt |= AR5K_RX_FILTER_PHYERR;
2771
2772 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
30bf4169 2773 * and probes for any BSSID */
fa1c114f 2774 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
30bf4169 2775 rfilt |= AR5K_RX_FILTER_BEACON;
fa1c114f
JS
2776
2777 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2778 * set we should only pass on control frames for this
2779 * station. This needs testing. I believe right now this
2780 * enables *all* control frames, which is OK.. but
2781 * but we should see if we can improve on granularity */
2782 if (*new_flags & FIF_CONTROL)
2783 rfilt |= AR5K_RX_FILTER_CONTROL;
2784
2785 /* Additional settings per mode -- this is per ath5k */
2786
2787 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2788
56d1de0a
BC
2789 switch (sc->opmode) {
2790 case NL80211_IFTYPE_MESH_POINT:
56d1de0a
BC
2791 rfilt |= AR5K_RX_FILTER_CONTROL |
2792 AR5K_RX_FILTER_BEACON |
2793 AR5K_RX_FILTER_PROBEREQ |
2794 AR5K_RX_FILTER_PROM;
2795 break;
2796 case NL80211_IFTYPE_AP:
2797 case NL80211_IFTYPE_ADHOC:
2798 rfilt |= AR5K_RX_FILTER_PROBEREQ |
2799 AR5K_RX_FILTER_BEACON;
2800 break;
2801 case NL80211_IFTYPE_STATION:
2802 if (sc->assoc)
2803 rfilt |= AR5K_RX_FILTER_BEACON;
2804 default:
2805 break;
2806 }
fa1c114f
JS
2807
2808 /* Set filters */
0bbac08f 2809 ath5k_hw_set_rx_filter(ah, rfilt);
fa1c114f
JS
2810
2811 /* Set multicast bits */
2812 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
a180a130 2813 /* Set the cached hw filter flags, this will later actually
fa1c114f
JS
2814 * be set in HW */
2815 sc->filter_flags = rfilt;
56d1de0a
BC
2816
2817 mutex_unlock(&sc->lock);
fa1c114f
JS
2818}
2819
2820static int
2821ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
dc822b5d
JB
2822 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2823 struct ieee80211_key_conf *key)
fa1c114f
JS
2824{
2825 struct ath5k_softc *sc = hw->priv;
dc1e001b
LR
2826 struct ath5k_hw *ah = sc->ah;
2827 struct ath_common *common = ath5k_hw_common(ah);
fa1c114f
JS
2828 int ret = 0;
2829
9ad9a26e
BC
2830 if (modparam_nohwcrypt)
2831 return -EOPNOTSUPP;
2832
97359d12
JB
2833 switch (key->cipher) {
2834 case WLAN_CIPHER_SUITE_WEP40:
2835 case WLAN_CIPHER_SUITE_WEP104:
2836 case WLAN_CIPHER_SUITE_TKIP:
3f64b435 2837 break;
97359d12 2838 case WLAN_CIPHER_SUITE_CCMP:
781f3136 2839 if (common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)
1c818740 2840 break;
fa1c114f
JS
2841 return -EOPNOTSUPP;
2842 default:
2843 WARN_ON(1);
2844 return -EINVAL;
2845 }
2846
2847 mutex_lock(&sc->lock);
2848
2849 switch (cmd) {
2850 case SET_KEY:
e0f8c2a9
BR
2851 ret = ath_key_config(common, vif, sta, key);
2852 if (ret >= 0) {
2853 key->hw_key_idx = ret;
2854 /* push IV and Michael MIC generation to stack */
2855 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2856 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
2857 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2858 if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
2859 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2860 ret = 0;
fa1c114f 2861 }
fa1c114f
JS
2862 break;
2863 case DISABLE_KEY:
e0f8c2a9 2864 ath_key_delete(common, key);
fa1c114f
JS
2865 break;
2866 default:
2867 ret = -EINVAL;
fa1c114f
JS
2868 }
2869
8a63facc
BC
2870 mmiowb();
2871 mutex_unlock(&sc->lock);
2872 return ret;
2873}
2874
2875static int
2876ath5k_get_stats(struct ieee80211_hw *hw,
2877 struct ieee80211_low_level_stats *stats)
2878{
2879 struct ath5k_softc *sc = hw->priv;
2880
2881 /* Force update */
2882 ath5k_hw_update_mib_counters(sc->ah);
2883
2884 stats->dot11ACKFailureCount = sc->stats.ack_fail;
2885 stats->dot11RTSFailureCount = sc->stats.rts_fail;
2886 stats->dot11RTSSuccessCount = sc->stats.rts_ok;
2887 stats->dot11FCSErrorCount = sc->stats.fcs_error;
2888
2889 return 0;
2890}
2891
2892static int ath5k_get_survey(struct ieee80211_hw *hw, int idx,
2893 struct survey_info *survey)
2894{
2895 struct ath5k_softc *sc = hw->priv;
2896 struct ieee80211_conf *conf = &hw->conf;
2897
2898 if (idx != 0)
2899 return -ENOENT;
2900
2901 survey->channel = conf->channel;
2902 survey->filled = SURVEY_INFO_NOISE_DBM;
2903 survey->noise = sc->ah->ah_noise_floor;
2904
2905 return 0;
2906}
2907
2908static u64
2909ath5k_get_tsf(struct ieee80211_hw *hw)
2910{
2911 struct ath5k_softc *sc = hw->priv;
2912
2913 return ath5k_hw_get_tsf64(sc->ah);
2914}
2915
2916static void
2917ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2918{
2919 struct ath5k_softc *sc = hw->priv;
2920
2921 ath5k_hw_set_tsf64(sc->ah, tsf);
2922}
2923
2924static void
2925ath5k_reset_tsf(struct ieee80211_hw *hw)
2926{
2927 struct ath5k_softc *sc = hw->priv;
2928
2929 /*
2930 * in IBSS mode we need to update the beacon timers too.
2931 * this will also reset the TSF if we call it with 0
2932 */
2933 if (sc->opmode == NL80211_IFTYPE_ADHOC)
2934 ath5k_beacon_update_timers(sc, 0);
2935 else
2936 ath5k_hw_reset_tsf(sc->ah);
2937}
2938
2939static void
2940set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2941{
2942 struct ath5k_softc *sc = hw->priv;
2943 struct ath5k_hw *ah = sc->ah;
2944 u32 rfilt;
2945 rfilt = ath5k_hw_get_rx_filter(ah);
2946 if (enable)
2947 rfilt |= AR5K_RX_FILTER_BEACON;
2948 else
2949 rfilt &= ~AR5K_RX_FILTER_BEACON;
2950 ath5k_hw_set_rx_filter(ah, rfilt);
2951 sc->filter_flags = rfilt;
2952}
2953
2954static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
2955 struct ieee80211_vif *vif,
2956 struct ieee80211_bss_conf *bss_conf,
2957 u32 changes)
2958{
2959 struct ath5k_softc *sc = hw->priv;
2960 struct ath5k_hw *ah = sc->ah;
2961 struct ath_common *common = ath5k_hw_common(ah);
2962 unsigned long flags;
2963
2964 mutex_lock(&sc->lock);
2965 if (WARN_ON(sc->vif != vif))
2966 goto unlock;
2967
2968 if (changes & BSS_CHANGED_BSSID) {
2969 /* Cache for later use during resets */
2970 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2971 common->curaid = 0;
2972 ath5k_hw_set_bssid(ah);
2973 mmiowb();
2974 }
2975
2976 if (changes & BSS_CHANGED_BEACON_INT)
2977 sc->bintval = bss_conf->beacon_int;
2978
2979 if (changes & BSS_CHANGED_ASSOC) {
2980 sc->assoc = bss_conf->assoc;
2981 if (sc->opmode == NL80211_IFTYPE_STATION)
2982 set_beacon_filter(hw, sc->assoc);
2983 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
2984 AR5K_LED_ASSOC : AR5K_LED_INIT);
2985 if (bss_conf->assoc) {
2986 ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
2987 "Bss Info ASSOC %d, bssid: %pM\n",
2988 bss_conf->aid, common->curbssid);
2989 common->curaid = bss_conf->aid;
2990 ath5k_hw_set_bssid(ah);
2991 /* Once ANI is available you would start it here */
2992 }
2993 }
2994
2995 if (changes & BSS_CHANGED_BEACON) {
2996 spin_lock_irqsave(&sc->block, flags);
2997 ath5k_beacon_update(hw, vif);
2998 spin_unlock_irqrestore(&sc->block, flags);
2999 }
3000
3001 if (changes & BSS_CHANGED_BEACON_ENABLED)
3002 sc->enable_beacon = bss_conf->enable_beacon;
3003
3004 if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3005 BSS_CHANGED_BEACON_INT))
3006 ath5k_beacon_config(sc);
3007
3008 unlock:
3009 mutex_unlock(&sc->lock);
3010}
3011
3012static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3013{
3014 struct ath5k_softc *sc = hw->priv;
3015 if (!sc->assoc)
3016 ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3017}
3018
3019static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3020{
3021 struct ath5k_softc *sc = hw->priv;
3022 ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3023 AR5K_LED_ASSOC : AR5K_LED_INIT);
3024}
3025
3026/**
3027 * ath5k_set_coverage_class - Set IEEE 802.11 coverage class
3028 *
3029 * @hw: struct ieee80211_hw pointer
3030 * @coverage_class: IEEE 802.11 coverage class number
3031 *
3032 * Mac80211 callback. Sets slot time, ACK timeout and CTS timeout for given
3033 * coverage class. The values are persistent, they are restored after device
3034 * reset.
3035 */
3036static void ath5k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
3037{
3038 struct ath5k_softc *sc = hw->priv;
3039
3040 mutex_lock(&sc->lock);
3041 ath5k_hw_set_coverage_class(sc->ah, coverage_class);
3042 mutex_unlock(&sc->lock);
3043}
3044
3045static const struct ieee80211_ops ath5k_hw_ops = {
3046 .tx = ath5k_tx,
3047 .start = ath5k_start,
3048 .stop = ath5k_stop,
3049 .add_interface = ath5k_add_interface,
3050 .remove_interface = ath5k_remove_interface,
3051 .config = ath5k_config,
3052 .prepare_multicast = ath5k_prepare_multicast,
3053 .configure_filter = ath5k_configure_filter,
3054 .set_key = ath5k_set_key,
3055 .get_stats = ath5k_get_stats,
3056 .get_survey = ath5k_get_survey,
3057 .conf_tx = NULL,
3058 .get_tsf = ath5k_get_tsf,
3059 .set_tsf = ath5k_set_tsf,
3060 .reset_tsf = ath5k_reset_tsf,
3061 .bss_info_changed = ath5k_bss_info_changed,
3062 .sw_scan_start = ath5k_sw_scan_start,
3063 .sw_scan_complete = ath5k_sw_scan_complete,
3064 .set_coverage_class = ath5k_set_coverage_class,
3065};
3066
3067/********************\
3068* PCI Initialization *
3069\********************/
3070
3071static int __devinit
3072ath5k_pci_probe(struct pci_dev *pdev,
3073 const struct pci_device_id *id)
3074{
3075 void __iomem *mem;
3076 struct ath5k_softc *sc;
3077 struct ath_common *common;
3078 struct ieee80211_hw *hw;
3079 int ret;
3080 u8 csz;
3081
3082 /*
3083 * L0s needs to be disabled on all ath5k cards.
3084 *
3085 * For distributions shipping with CONFIG_PCIEASPM (this will be enabled
3086 * by default in the future in 2.6.36) this will also mean both L1 and
3087 * L0s will be disabled when a pre 1.1 PCIe device is detected. We do
3088 * know L1 works correctly even for all ath5k pre 1.1 PCIe devices
3089 * though but cannot currently undue the effect of a blacklist, for
3090 * details you can read pcie_aspm_sanity_check() and see how it adjusts
3091 * the device link capability.
3092 *
3093 * It may be possible in the future to implement some PCI API to allow
3094 * drivers to override blacklists for pre 1.1 PCIe but for now it is
3095 * best to accept that both L0s and L1 will be disabled completely for
3096 * distributions shipping with CONFIG_PCIEASPM rather than having this
3097 * issue present. Motivation for adding this new API will be to help
3098 * with power consumption for some of these devices.
3099 */
3100 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S);
3101
3102 ret = pci_enable_device(pdev);
3103 if (ret) {
3104 dev_err(&pdev->dev, "can't enable device\n");
3105 goto err;
3106 }
3107
3108 /* XXX 32-bit addressing only */
3109 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3110 if (ret) {
3111 dev_err(&pdev->dev, "32-bit DMA not available\n");
3112 goto err_dis;
3113 }
3114
3115 /*
3116 * Cache line size is used to size and align various
3117 * structures used to communicate with the hardware.
3118 */
3119 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
3120 if (csz == 0) {
3121 /*
3122 * Linux 2.4.18 (at least) writes the cache line size
3123 * register as a 16-bit wide register which is wrong.
3124 * We must have this setup properly for rx buffer
3125 * DMA to work so force a reasonable value here if it
3126 * comes up zero.
3127 */
3128 csz = L1_CACHE_BYTES >> 2;
3129 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
3130 }
3131 /*
3132 * The default setting of latency timer yields poor results,
3133 * set it to the value used by other systems. It may be worth
3134 * tweaking this setting more.
3135 */
3136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
3137
3138 /* Enable bus mastering */
3139 pci_set_master(pdev);
3140
3141 /*
3142 * Disable the RETRY_TIMEOUT register (0x41) to keep
3143 * PCI Tx retries from interfering with C3 CPU state.
3144 */
3145 pci_write_config_byte(pdev, 0x41, 0);
3146
3147 ret = pci_request_region(pdev, 0, "ath5k");
3148 if (ret) {
3149 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
3150 goto err_dis;
3151 }
3152
3153 mem = pci_iomap(pdev, 0, 0);
3154 if (!mem) {
3155 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
3156 ret = -EIO;
3157 goto err_reg;
3158 }
3159
3160 /*
3161 * Allocate hw (mac80211 main struct)
3162 * and hw->priv (driver private data)
3163 */
3164 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
3165 if (hw == NULL) {
3166 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
3167 ret = -ENOMEM;
3168 goto err_map;
3169 }
3170
3171 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
3172
3173 /* Initialize driver private data */
3174 SET_IEEE80211_DEV(hw, &pdev->dev);
3175 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
3176 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
3177 IEEE80211_HW_SIGNAL_DBM;
3178
3179 hw->wiphy->interface_modes =
3180 BIT(NL80211_IFTYPE_AP) |
3181 BIT(NL80211_IFTYPE_STATION) |
3182 BIT(NL80211_IFTYPE_ADHOC) |
3183 BIT(NL80211_IFTYPE_MESH_POINT);
3184
3185 hw->extra_tx_headroom = 2;
3186 hw->channel_change_time = 5000;
3187 sc = hw->priv;
3188 sc->hw = hw;
3189 sc->pdev = pdev;
3190
3191 ath5k_debug_init_device(sc);
3192
3193 /*
3194 * Mark the device as detached to avoid processing
3195 * interrupts until setup is complete.
3196 */
3197 __set_bit(ATH_STAT_INVALID, sc->status);
3198
3199 sc->iobase = mem; /* So we can unmap it on detach */
3200 sc->opmode = NL80211_IFTYPE_STATION;
3201 sc->bintval = 1000;
3202 mutex_init(&sc->lock);
3203 spin_lock_init(&sc->rxbuflock);
3204 spin_lock_init(&sc->txbuflock);
3205 spin_lock_init(&sc->block);
3206
3207 /* Set private data */
3208 pci_set_drvdata(pdev, sc);
3209
3210 /* Setup interrupt handler */
3211 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
3212 if (ret) {
3213 ATH5K_ERR(sc, "request_irq failed\n");
3214 goto err_free;
3215 }
3216
3217 /* If we passed the test, malloc an ath5k_hw struct */
3218 sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
3219 if (!sc->ah) {
3220 ret = -ENOMEM;
3221 ATH5K_ERR(sc, "out of memory\n");
3222 goto err_irq;
3223 }
3224
3225 sc->ah->ah_sc = sc;
3226 sc->ah->ah_iobase = sc->iobase;
3227 common = ath5k_hw_common(sc->ah);
3228 common->ops = &ath5k_common_ops;
3229 common->ah = sc->ah;
3230 common->hw = hw;
3231 common->cachelsz = csz << 2; /* convert to bytes */
3232
3233 /* Initialize device */
3234 ret = ath5k_hw_attach(sc);
3235 if (ret) {
3236 goto err_free_ah;
3237 }
3238
3239 /* set up multi-rate retry capabilities */
3240 if (sc->ah->ah_version == AR5K_AR5212) {
3241 hw->max_rates = 4;
3242 hw->max_rate_tries = 11;
3243 }
3244
3245 /* Finish private driver data initialization */
3246 ret = ath5k_attach(pdev, hw);
3247 if (ret)
3248 goto err_ah;
3249
3250 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
3251 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
3252 sc->ah->ah_mac_srev,
3253 sc->ah->ah_phy_revision);
3254
3255 if (!sc->ah->ah_single_chip) {
3256 /* Single chip radio (!RF5111) */
3257 if (sc->ah->ah_radio_5ghz_revision &&
3258 !sc->ah->ah_radio_2ghz_revision) {
3259 /* No 5GHz support -> report 2GHz radio */
3260 if (!test_bit(AR5K_MODE_11A,
3261 sc->ah->ah_capabilities.cap_mode)) {
3262 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3263 ath5k_chip_name(AR5K_VERSION_RAD,
3264 sc->ah->ah_radio_5ghz_revision),
3265 sc->ah->ah_radio_5ghz_revision);
3266 /* No 2GHz support (5110 and some
3267 * 5Ghz only cards) -> report 5Ghz radio */
3268 } else if (!test_bit(AR5K_MODE_11B,
3269 sc->ah->ah_capabilities.cap_mode)) {
3270 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3271 ath5k_chip_name(AR5K_VERSION_RAD,
3272 sc->ah->ah_radio_5ghz_revision),
3273 sc->ah->ah_radio_5ghz_revision);
3274 /* Multiband radio */
3275 } else {
3276 ATH5K_INFO(sc, "RF%s multiband radio found"
3277 " (0x%x)\n",
3278 ath5k_chip_name(AR5K_VERSION_RAD,
3279 sc->ah->ah_radio_5ghz_revision),
3280 sc->ah->ah_radio_5ghz_revision);
3281 }
3282 }
3283 /* Multi chip radio (RF5111 - RF2111) ->
3284 * report both 2GHz/5GHz radios */
3285 else if (sc->ah->ah_radio_5ghz_revision &&
3286 sc->ah->ah_radio_2ghz_revision){
3287 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
3288 ath5k_chip_name(AR5K_VERSION_RAD,
3289 sc->ah->ah_radio_5ghz_revision),
3290 sc->ah->ah_radio_5ghz_revision);
3291 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
3292 ath5k_chip_name(AR5K_VERSION_RAD,
3293 sc->ah->ah_radio_2ghz_revision),
3294 sc->ah->ah_radio_2ghz_revision);
3295 }
3296 }
3297
55ee82b5 3298
8a63facc
BC
3299 /* ready to process interrupts */
3300 __clear_bit(ATH_STAT_INVALID, sc->status);
55ee82b5
HS
3301
3302 return 0;
8a63facc
BC
3303err_ah:
3304 ath5k_hw_detach(sc->ah);
3305err_free_ah:
3306 kfree(sc->ah);
3307err_irq:
3308 free_irq(pdev->irq, sc);
3309err_free:
3310 ieee80211_free_hw(hw);
3311err_map:
3312 pci_iounmap(pdev, mem);
3313err_reg:
3314 pci_release_region(pdev, 0);
3315err_dis:
3316 pci_disable_device(pdev);
3317err:
3318 return ret;
55ee82b5
HS
3319}
3320
8a63facc
BC
3321static void __devexit
3322ath5k_pci_remove(struct pci_dev *pdev)
fa1c114f 3323{
8a63facc 3324 struct ath5k_softc *sc = pci_get_drvdata(pdev);
fa1c114f 3325
8a63facc
BC
3326 ath5k_debug_finish_device(sc);
3327 ath5k_detach(pdev, sc->hw);
3328 ath5k_hw_detach(sc->ah);
3329 kfree(sc->ah);
3330 free_irq(pdev->irq, sc);
3331 pci_iounmap(pdev, sc->iobase);
3332 pci_release_region(pdev, 0);
3333 pci_disable_device(pdev);
3334 ieee80211_free_hw(sc->hw);
fa1c114f
JS
3335}
3336
8a63facc
BC
3337#ifdef CONFIG_PM_SLEEP
3338static int ath5k_pci_suspend(struct device *dev)
3b5d665b 3339{
8a63facc 3340 struct ath5k_softc *sc = pci_get_drvdata(to_pci_dev(dev));
3b5d665b 3341
8a63facc
BC
3342 ath5k_led_off(sc);
3343 return 0;
3b5d665b
AF
3344}
3345
8a63facc 3346static int ath5k_pci_resume(struct device *dev)
fa1c114f 3347{
8a63facc
BC
3348 struct pci_dev *pdev = to_pci_dev(dev);
3349 struct ath5k_softc *sc = pci_get_drvdata(pdev);
fa1c114f 3350
9804b98d 3351 /*
8a63facc
BC
3352 * Suspend/Resume resets the PCI configuration space, so we have to
3353 * re-disable the RETRY_TIMEOUT register (0x41) to keep
3354 * PCI Tx retries from interfering with C3 CPU state
9804b98d 3355 */
8a63facc
BC
3356 pci_write_config_byte(pdev, 0x41, 0);
3357
3358 ath5k_led_enable(sc);
3359 return 0;
fa1c114f
JS
3360}
3361
8a63facc
BC
3362static SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
3363#define ATH5K_PM_OPS (&ath5k_pm_ops)
3364#else
3365#define ATH5K_PM_OPS NULL
3366#endif /* CONFIG_PM_SLEEP */
3367
3368static struct pci_driver ath5k_pci_driver = {
3369 .name = KBUILD_MODNAME,
3370 .id_table = ath5k_pci_id_table,
3371 .probe = ath5k_pci_probe,
3372 .remove = __devexit_p(ath5k_pci_remove),
3373 .driver.pm = ATH5K_PM_OPS,
3374};
3375
1071db86 3376/*
8a63facc 3377 * Module init/exit functions
1071db86 3378 */
8a63facc
BC
3379static int __init
3380init_ath5k_pci(void)
fa1c114f 3381{
fa1c114f 3382 int ret;
57c4d7b4 3383
8a63facc 3384 ath5k_debug_init();
2d0ddec5 3385
8a63facc
BC
3386 ret = pci_register_driver(&ath5k_pci_driver);
3387 if (ret) {
3388 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
3389 return ret;
2d0ddec5
JB
3390 }
3391
8a63facc 3392 return 0;
02969b38 3393}
f0f3d388 3394
8a63facc
BC
3395static void __exit
3396exit_ath5k_pci(void)
f0f3d388 3397{
8a63facc 3398 pci_unregister_driver(&ath5k_pci_driver);
f0f3d388 3399
8a63facc 3400 ath5k_debug_finish();
f0f3d388 3401}
6e08d228 3402
8a63facc
BC
3403module_init(init_ath5k_pci);
3404module_exit(exit_ath5k_pci);