]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/wimax/i2400m/driver.c
wimax/i2400m: Update comments to talk about SDIO reset and not USB.
[net-next-2.6.git] / drivers / net / wimax / i2400m / driver.c
CommitLineData
024f7f31
IPG
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
28 *
29 * ROADMAP:
30 *
31 * i2400m_op_msg_from_user()
32 * i2400m_msg_to_dev()
33 * wimax_msg_to_user_send()
34 *
35 * i2400m_op_reset()
36 * i240m->bus_reset()
37 *
38 * i2400m_dev_reset_handle()
39 * __i2400m_dev_reset_handle()
40 * __i2400m_dev_stop()
41 * __i2400m_dev_start()
42 *
43 * i2400m_setup()
44 * i2400m_bootrom_init()
45 * register_netdev()
46 * i2400m_dev_start()
47 * __i2400m_dev_start()
48 * i2400m_dev_bootstrap()
49 * i2400m_tx_setup()
50 * i2400m->bus_dev_start()
6a0f7ab8 51 * i2400m_firmware_check()
024f7f31
IPG
52 * i2400m_check_mac_addr()
53 * wimax_dev_add()
54 *
55 * i2400m_release()
56 * wimax_dev_rm()
57 * i2400m_dev_stop()
58 * __i2400m_dev_stop()
59 * i2400m_dev_shutdown()
60 * i2400m->bus_dev_stop()
61 * i2400m_tx_release()
62 * unregister_netdev()
63 */
64#include "i2400m.h"
fe442683 65#include <linux/etherdevice.h>
024f7f31
IPG
66#include <linux/wimax/i2400m.h>
67#include <linux/module.h>
68#include <linux/moduleparam.h>
69
70#define D_SUBMODULE driver
71#include "debug-levels.h"
72
73
74int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
75module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
76MODULE_PARM_DESC(idle_mode_disabled,
77 "If true, the device will not enable idle mode negotiation "
78 "with the base station (when connected) to save power.");
79
c747583d
IPG
80int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
81module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
82MODULE_PARM_DESC(rx_reorder_disabled,
83 "If true, RX reordering will be disabled.");
84
fb101674
IPG
85int i2400m_power_save_disabled; /* 0 (power saving enabled) by default */
86module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
87MODULE_PARM_DESC(power_save_disabled,
88 "If true, the driver will not tell the device to enter "
89 "power saving mode when it reports it is ready for it. "
90 "False by default (so the device is told to do power "
91 "saving).");
92
024f7f31
IPG
93/**
94 * i2400m_queue_work - schedule work on a i2400m's queue
95 *
96 * @i2400m: device descriptor
97 *
98 * @fn: function to run to execute work. It gets passed a 'struct
99 * work_struct' that is wrapped in a 'struct i2400m_work'. Once
100 * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
101 * (2) kfree(i2400m_work).
102 *
103 * @gfp_flags: GFP flags for memory allocation.
104 *
105 * @pl: pointer to a payload buffer that you want to pass to the _work
106 * function. Use this to pack (for example) a struct with extra
107 * arguments.
108 *
109 * @pl_size: size of the payload buffer.
110 *
111 * We do this quite often, so this just saves typing; allocate a
112 * wrapper for a i2400m, get a ref to it, pack arguments and launch
113 * the work.
114 *
115 * A usual workflow is:
116 *
117 * struct my_work_args {
118 * void *something;
119 * int whatever;
120 * };
121 * ...
122 *
123 * struct my_work_args my_args = {
124 * .something = FOO,
125 * .whaetever = BLAH
126 * };
127 * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
128 * &args, sizeof(args))
129 *
130 * And now the work function can unpack the arguments and call the
131 * real function (or do the job itself):
132 *
133 * static
134 * void my_work_fn((struct work_struct *ws)
135 * {
136 * struct i2400m_work *iw =
137 * container_of(ws, struct i2400m_work, ws);
138 * struct my_work_args *my_args = (void *) iw->pl;
139 *
140 * my_work(iw->i2400m, my_args->something, my_args->whatevert);
141 * }
142 */
143int i2400m_queue_work(struct i2400m *i2400m,
144 void (*fn)(struct work_struct *), gfp_t gfp_flags,
145 const void *pl, size_t pl_size)
146{
147 int result;
148 struct i2400m_work *iw;
149
150 BUG_ON(i2400m->work_queue == NULL);
151 result = -ENOMEM;
152 iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
153 if (iw == NULL)
154 goto error_kzalloc;
155 iw->i2400m = i2400m_get(i2400m);
156 memcpy(iw->pl, pl, pl_size);
157 INIT_WORK(&iw->ws, fn);
158 result = queue_work(i2400m->work_queue, &iw->ws);
159error_kzalloc:
160 return result;
161}
162EXPORT_SYMBOL_GPL(i2400m_queue_work);
163
164
165/*
166 * Schedule i2400m's specific work on the system's queue.
167 *
168 * Used for a few cases where we really need it; otherwise, identical
169 * to i2400m_queue_work().
170 *
171 * Returns < 0 errno code on error, 1 if ok.
172 *
173 * If it returns zero, something really bad happened, as it means the
174 * works struct was already queued, but we have just allocated it, so
175 * it should not happen.
176 */
177int i2400m_schedule_work(struct i2400m *i2400m,
178 void (*fn)(struct work_struct *), gfp_t gfp_flags)
179{
180 int result;
181 struct i2400m_work *iw;
182
024f7f31
IPG
183 result = -ENOMEM;
184 iw = kzalloc(sizeof(*iw), gfp_flags);
185 if (iw == NULL)
186 goto error_kzalloc;
187 iw->i2400m = i2400m_get(i2400m);
188 INIT_WORK(&iw->ws, fn);
189 result = schedule_work(&iw->ws);
190 if (result == 0)
191 result = -ENXIO;
192error_kzalloc:
193 return result;
194}
195
196
197/*
198 * WiMAX stack operation: relay a message from user space
199 *
200 * @wimax_dev: device descriptor
201 * @pipe_name: named pipe the message is for
202 * @msg_buf: pointer to the message bytes
203 * @msg_len: length of the buffer
204 * @genl_info: passed by the generic netlink layer
205 *
206 * The WiMAX stack will call this function when a message was received
207 * from user space.
208 *
209 * For the i2400m, this is an L3L4 message, as specified in
210 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
211 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
212 * coded in Little Endian.
213 *
214 * This function just verifies that the header declaration and the
215 * payload are consistent and then deals with it, either forwarding it
216 * to the device or procesing it locally.
217 *
218 * In the i2400m, messages are basically commands that will carry an
219 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
220 * user space. The rx.c code might intercept the response and use it
221 * to update the driver's state, but then it will pass it on so it can
222 * be relayed back to user space.
223 *
224 * Note that asynchronous events from the device are processed and
225 * sent to user space in rx.c.
226 */
227static
228int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
229 const char *pipe_name,
230 const void *msg_buf, size_t msg_len,
231 const struct genl_info *genl_info)
232{
233 int result;
234 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
235 struct device *dev = i2400m_dev(i2400m);
236 struct sk_buff *ack_skb;
237
238 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
239 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
240 msg_buf, msg_len, genl_info);
241 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
242 result = PTR_ERR(ack_skb);
243 if (IS_ERR(ack_skb))
244 goto error_msg_to_dev;
024f7f31
IPG
245 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
246error_msg_to_dev:
247 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
248 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
249 genl_info, result);
250 return result;
251}
252
253
254/*
255 * Context to wait for a reset to finalize
256 */
257struct i2400m_reset_ctx {
258 struct completion completion;
259 int result;
260};
261
262
263/*
264 * WiMAX stack operation: reset a device
265 *
266 * @wimax_dev: device descriptor
267 *
268 * See the documentation for wimax_reset() and wimax_dev->op_reset for
269 * the requirements of this function. The WiMAX stack guarantees
270 * serialization on calls to this function.
271 *
272 * Do a warm reset on the device; if it fails, resort to a cold reset
273 * and return -ENODEV. On successful warm reset, we need to block
274 * until it is complete.
275 *
276 * The bus-driver implementation of reset takes care of falling back
277 * to cold reset if warm fails.
278 */
279static
280int i2400m_op_reset(struct wimax_dev *wimax_dev)
281{
282 int result;
283 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
284 struct device *dev = i2400m_dev(i2400m);
285 struct i2400m_reset_ctx ctx = {
286 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
287 .result = 0,
288 };
289
290 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
291 mutex_lock(&i2400m->init_mutex);
292 i2400m->reset_ctx = &ctx;
293 mutex_unlock(&i2400m->init_mutex);
294 result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
295 if (result < 0)
296 goto out;
297 result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
298 if (result == 0)
299 result = -ETIMEDOUT;
300 else if (result > 0)
301 result = ctx.result;
302 /* if result < 0, pass it on */
303 mutex_lock(&i2400m->init_mutex);
304 i2400m->reset_ctx = NULL;
305 mutex_unlock(&i2400m->init_mutex);
306out:
307 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
308 return result;
309}
310
311
312/*
313 * Check the MAC address we got from boot mode is ok
314 *
315 * @i2400m: device descriptor
316 *
317 * Returns: 0 if ok, < 0 errno code on error.
318 */
319static
320int i2400m_check_mac_addr(struct i2400m *i2400m)
321{
322 int result;
323 struct device *dev = i2400m_dev(i2400m);
324 struct sk_buff *skb;
325 const struct i2400m_tlv_detailed_device_info *ddi;
326 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
327 const unsigned char zeromac[ETH_ALEN] = { 0 };
328
329 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
330 skb = i2400m_get_device_info(i2400m);
331 if (IS_ERR(skb)) {
332 result = PTR_ERR(skb);
333 dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
334 result);
335 goto error;
336 }
337 /* Extract MAC addresss */
338 ddi = (void *) skb->data;
339 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
340 d_printf(2, dev, "GET DEVICE INFO: mac addr "
341 "%02x:%02x:%02x:%02x:%02x:%02x\n",
342 ddi->mac_address[0], ddi->mac_address[1],
343 ddi->mac_address[2], ddi->mac_address[3],
344 ddi->mac_address[4], ddi->mac_address[5]);
345 if (!memcmp(net_dev->perm_addr, ddi->mac_address,
346 sizeof(ddi->mac_address)))
347 goto ok;
348 dev_warn(dev, "warning: device reports a different MAC address "
349 "to that of boot mode's\n");
350 dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
351 ddi->mac_address[0], ddi->mac_address[1],
352 ddi->mac_address[2], ddi->mac_address[3],
353 ddi->mac_address[4], ddi->mac_address[5]);
354 dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
355 net_dev->perm_addr[0], net_dev->perm_addr[1],
356 net_dev->perm_addr[2], net_dev->perm_addr[3],
357 net_dev->perm_addr[4], net_dev->perm_addr[5]);
358 if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
359 dev_err(dev, "device reports an invalid MAC address, "
360 "not updating\n");
361 else {
362 dev_warn(dev, "updating MAC address\n");
363 net_dev->addr_len = ETH_ALEN;
364 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
365 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
366 }
367ok:
368 result = 0;
369 kfree_skb(skb);
370error:
371 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
372 return result;
373}
374
375
376/**
377 * __i2400m_dev_start - Bring up driver communication with the device
378 *
379 * @i2400m: device descriptor
380 * @flags: boot mode flags
381 *
382 * Returns: 0 if ok, < 0 errno code on error.
383 *
384 * Uploads firmware and brings up all the resources needed to be able
385 * to communicate with the device.
386 *
e9a6b45b
IPG
387 * The workqueue has to be setup early, at least before RX handling
388 * (it's only real user for now) so it can process reports as they
389 * arrive. We also want to destroy it if we retry, to make sure it is
390 * flushed...easier like this.
391 *
024f7f31
IPG
392 * TX needs to be setup before the bus-specific code (otherwise on
393 * shutdown, the bus-tx code could try to access it).
394 */
395static
396int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
397{
398 int result;
399 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
400 struct net_device *net_dev = wimax_dev->net_dev;
401 struct device *dev = i2400m_dev(i2400m);
ecddfd5e 402 int times = i2400m->bus_bm_retries;
024f7f31
IPG
403
404 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
405retry:
406 result = i2400m_dev_bootstrap(i2400m, flags);
407 if (result < 0) {
408 dev_err(dev, "cannot bootstrap device: %d\n", result);
409 goto error_bootstrap;
410 }
411 result = i2400m_tx_setup(i2400m);
412 if (result < 0)
413 goto error_tx_setup;
c747583d
IPG
414 result = i2400m_rx_setup(i2400m);
415 if (result < 0)
416 goto error_rx_setup;
024f7f31
IPG
417 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
418 if (i2400m->work_queue == NULL) {
419 result = -ENOMEM;
420 dev_err(dev, "cannot create workqueue\n");
421 goto error_create_workqueue;
422 }
e9a6b45b
IPG
423 result = i2400m->bus_dev_start(i2400m);
424 if (result < 0)
425 goto error_bus_dev_start;
6a0f7ab8
IPG
426 result = i2400m_firmware_check(i2400m); /* fw versions ok? */
427 if (result < 0)
428 goto error_fw_check;
024f7f31
IPG
429 /* At this point is ok to send commands to the device */
430 result = i2400m_check_mac_addr(i2400m);
431 if (result < 0)
432 goto error_check_mac_addr;
433 i2400m->ready = 1;
434 wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
435 result = i2400m_dev_initialize(i2400m);
436 if (result < 0)
437 goto error_dev_initialize;
438 /* At this point, reports will come for the device and set it
439 * to the right state if it is different than UNINITIALIZED */
440 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
441 net_dev, i2400m, result);
442 return result;
443
444error_dev_initialize:
445error_check_mac_addr:
6a0f7ab8 446error_fw_check:
024f7f31
IPG
447 i2400m->bus_dev_stop(i2400m);
448error_bus_dev_start:
e9a6b45b
IPG
449 destroy_workqueue(i2400m->work_queue);
450error_create_workqueue:
c747583d
IPG
451 i2400m_rx_release(i2400m);
452error_rx_setup:
024f7f31
IPG
453 i2400m_tx_release(i2400m);
454error_tx_setup:
455error_bootstrap:
0bcfc5ef 456 if (result == -EL3RST && times-- > 0) {
8b5b30ee 457 flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
024f7f31
IPG
458 goto retry;
459 }
460 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
461 net_dev, i2400m, result);
462 return result;
463}
464
465
466static
467int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
468{
469 int result;
470 mutex_lock(&i2400m->init_mutex); /* Well, start the device */
471 result = __i2400m_dev_start(i2400m, bm_flags);
472 if (result >= 0)
473 i2400m->updown = 1;
474 mutex_unlock(&i2400m->init_mutex);
475 return result;
476}
477
478
479/**
480 * i2400m_dev_stop - Tear down driver communication with the device
481 *
482 * @i2400m: device descriptor
483 *
484 * Returns: 0 if ok, < 0 errno code on error.
485 *
e9a6b45b
IPG
486 * Releases all the resources allocated to communicate with the
487 * device. Note we cannot destroy the workqueue earlier as until RX is
488 * fully destroyed, it could still try to schedule jobs.
024f7f31
IPG
489 */
490static
491void __i2400m_dev_stop(struct i2400m *i2400m)
492{
493 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
494 struct device *dev = i2400m_dev(i2400m);
495
496 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
497 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
498 i2400m_dev_shutdown(i2400m);
499 i2400m->ready = 0;
024f7f31 500 i2400m->bus_dev_stop(i2400m);
e9a6b45b 501 destroy_workqueue(i2400m->work_queue);
c747583d 502 i2400m_rx_release(i2400m);
024f7f31
IPG
503 i2400m_tx_release(i2400m);
504 wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
505 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
506}
507
508
509/*
510 * Watch out -- we only need to stop if there is a need for it. The
511 * device could have reset itself and failed to come up again (see
512 * _i2400m_dev_reset_handle()).
513 */
514static
515void i2400m_dev_stop(struct i2400m *i2400m)
516{
517 mutex_lock(&i2400m->init_mutex);
518 if (i2400m->updown) {
519 __i2400m_dev_stop(i2400m);
520 i2400m->updown = 0;
521 }
522 mutex_unlock(&i2400m->init_mutex);
523}
524
525
526/*
527 * The device has rebooted; fix up the device and the driver
528 *
529 * Tear down the driver communication with the device, reload the
530 * firmware and reinitialize the communication with the device.
531 *
532 * If someone calls a reset when the device's firmware is down, in
533 * theory we won't see it because we are not listening. However, just
534 * in case, leave the code to handle it.
535 *
536 * If there is a reset context, use it; this means someone is waiting
537 * for us to tell him when the reset operation is complete and the
538 * device is ready to rock again.
539 *
540 * NOTE: if we are in the process of bringing up or down the
541 * communication with the device [running i2400m_dev_start() or
542 * _stop()], don't do anything, let it fail and handle it.
543 *
544 * This function is ran always in a thread context
545 */
546static
547void __i2400m_dev_reset_handle(struct work_struct *ws)
548{
549 int result;
550 struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
551 struct i2400m *i2400m = iw->i2400m;
552 struct device *dev = i2400m_dev(i2400m);
553 enum wimax_st wimax_state;
554 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
555
556 d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
557 result = 0;
558 if (mutex_trylock(&i2400m->init_mutex) == 0) {
559 /* We are still in i2400m_dev_start() [let it fail] or
560 * i2400m_dev_stop() [we are shutting down anyway, so
561 * ignore it] or we are resetting somewhere else. */
562 dev_err(dev, "device rebooted\n");
0bcfc5ef 563 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
024f7f31
IPG
564 complete(&i2400m->msg_completion);
565 goto out;
566 }
567 wimax_state = wimax_state_get(&i2400m->wimax_dev);
568 if (wimax_state < WIMAX_ST_UNINITIALIZED) {
569 dev_info(dev, "device rebooted: it is down, ignoring\n");
570 goto out_unlock; /* ifconfig up/down wasn't called */
571 }
572 dev_err(dev, "device rebooted: reinitializing driver\n");
573 __i2400m_dev_stop(i2400m);
574 i2400m->updown = 0;
575 result = __i2400m_dev_start(i2400m,
576 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
577 if (result < 0) {
578 dev_err(dev, "device reboot: cannot start the device: %d\n",
579 result);
580 result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
581 if (result >= 0)
582 result = -ENODEV;
583 } else
584 i2400m->updown = 1;
585out_unlock:
586 if (i2400m->reset_ctx) {
587 ctx->result = result;
588 complete(&ctx->completion);
589 }
590 mutex_unlock(&i2400m->init_mutex);
591out:
592 i2400m_put(i2400m);
593 kfree(iw);
594 d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
595 return;
596}
597
598
599/**
600 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
601 *
602 * Schedule a device reset handling out on a thread context, so it
603 * is safe to call from atomic context. We can't use the i2400m's
604 * queue as we are going to destroy it and reinitialize it as part of
605 * the driver bringup/bringup process.
606 *
607 * See __i2400m_dev_reset_handle() for details; that takes care of
608 * reinitializing the driver to handle the reset, calling into the
609 * bus-specific functions ops as needed.
610 */
611int i2400m_dev_reset_handle(struct i2400m *i2400m)
612{
b4013f91
IPG
613 i2400m->boot_mode = 1;
614 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
024f7f31
IPG
615 return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
616 GFP_ATOMIC);
617}
618EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
619
620
621/**
622 * i2400m_setup - bus-generic setup function for the i2400m device
623 *
624 * @i2400m: device descriptor (bus-specific parts have been initialized)
625 *
626 * Returns: 0 if ok, < 0 errno code on error.
627 *
628 * Initializes the bus-generic parts of the i2400m driver; the
629 * bus-specific parts have been initialized, function pointers filled
630 * out by the bus-specific probe function.
631 *
632 * As well, this registers the WiMAX and net device nodes. Once this
633 * function returns, the device is operative and has to be ready to
634 * receive and send network traffic and WiMAX control operations.
635 */
636int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
637{
638 int result = -ENODEV;
639 struct device *dev = i2400m_dev(i2400m);
640 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
641 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
642
643 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
644
645 snprintf(wimax_dev->name, sizeof(wimax_dev->name),
347707ba 646 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
024f7f31
IPG
647
648 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
649 if (i2400m->bm_cmd_buf == NULL) {
650 dev_err(dev, "cannot allocate USB command buffer\n");
651 goto error_bm_cmd_kzalloc;
652 }
653 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
654 if (i2400m->bm_ack_buf == NULL) {
655 dev_err(dev, "cannot allocate USB ack buffer\n");
656 goto error_bm_ack_buf_kzalloc;
657 }
658 result = i2400m_bootrom_init(i2400m, bm_flags);
659 if (result < 0) {
660 dev_err(dev, "read mac addr: bootrom init "
661 "failed: %d\n", result);
662 goto error_bootrom_init;
663 }
664 result = i2400m_read_mac_addr(i2400m);
665 if (result < 0)
666 goto error_read_mac_addr;
fe442683 667 random_ether_addr(i2400m->src_mac_addr);
024f7f31
IPG
668
669 result = register_netdev(net_dev); /* Okey dokey, bring it up */
670 if (result < 0) {
671 dev_err(dev, "cannot register i2400m network device: %d\n",
672 result);
673 goto error_register_netdev;
674 }
675 netif_carrier_off(net_dev);
676
677 result = i2400m_dev_start(i2400m, bm_flags);
678 if (result < 0)
679 goto error_dev_start;
680
681 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
682 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
683 i2400m->wimax_dev.op_reset = i2400m_op_reset;
684 result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
685 if (result < 0)
686 goto error_wimax_dev_add;
687 /* User space needs to do some init stuff */
688 wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
689
690 /* Now setup all that requires a registered net and wimax device. */
8987691a
IPG
691 result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
692 if (result < 0) {
693 dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
694 goto error_sysfs_setup;
695 }
024f7f31
IPG
696 result = i2400m_debugfs_add(i2400m);
697 if (result < 0) {
698 dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
699 goto error_debugfs_setup;
700 }
701 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
702 return result;
703
704error_debugfs_setup:
8987691a
IPG
705 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
706 &i2400m_dev_attr_group);
707error_sysfs_setup:
024f7f31
IPG
708 wimax_dev_rm(&i2400m->wimax_dev);
709error_wimax_dev_add:
710 i2400m_dev_stop(i2400m);
711error_dev_start:
712 unregister_netdev(net_dev);
713error_register_netdev:
714error_read_mac_addr:
715error_bootrom_init:
716 kfree(i2400m->bm_ack_buf);
717error_bm_ack_buf_kzalloc:
718 kfree(i2400m->bm_cmd_buf);
719error_bm_cmd_kzalloc:
720 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
721 return result;
722}
723EXPORT_SYMBOL_GPL(i2400m_setup);
724
725
726/**
727 * i2400m_release - release the bus-generic driver resources
728 *
729 * Sends a disconnect message and undoes any setup done by i2400m_setup()
730 */
731void i2400m_release(struct i2400m *i2400m)
732{
733 struct device *dev = i2400m_dev(i2400m);
734
735 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
736 netif_stop_queue(i2400m->wimax_dev.net_dev);
737
738 i2400m_debugfs_rm(i2400m);
8987691a
IPG
739 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
740 &i2400m_dev_attr_group);
024f7f31
IPG
741 wimax_dev_rm(&i2400m->wimax_dev);
742 i2400m_dev_stop(i2400m);
743 unregister_netdev(i2400m->wimax_dev.net_dev);
744 kfree(i2400m->bm_ack_buf);
745 kfree(i2400m->bm_cmd_buf);
746 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
747}
748EXPORT_SYMBOL_GPL(i2400m_release);
749
750
1af7ad51
IPG
751/*
752 * Debug levels control; see debug.h
753 */
754struct d_level D_LEVEL[] = {
755 D_SUBMODULE_DEFINE(control),
756 D_SUBMODULE_DEFINE(driver),
757 D_SUBMODULE_DEFINE(debugfs),
758 D_SUBMODULE_DEFINE(fw),
759 D_SUBMODULE_DEFINE(netdev),
760 D_SUBMODULE_DEFINE(rfkill),
761 D_SUBMODULE_DEFINE(rx),
762 D_SUBMODULE_DEFINE(tx),
763};
764size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
765
766
024f7f31
IPG
767static
768int __init i2400m_driver_init(void)
769{
770 return 0;
771}
772module_init(i2400m_driver_init);
773
774static
775void __exit i2400m_driver_exit(void)
776{
777 /* for scheds i2400m_dev_reset_handle() */
778 flush_scheduled_work();
779 return;
780}
781module_exit(i2400m_driver_exit);
782
783MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
784MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
785MODULE_LICENSE("GPL");