]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/via-velocity.c
[netdrvr] use dev_xxx() printk helpers, rather than dev_printk(KERN_xxx, ...
[net-next-2.6.git] / drivers / net / via-velocity.c
CommitLineData
1da177e4
LT
1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48#include <linux/module.h>
49#include <linux/types.h>
1da177e4
LT
50#include <linux/init.h>
51#include <linux/mm.h>
52#include <linux/errno.h>
53#include <linux/ioport.h>
54#include <linux/pci.h>
55#include <linux/kernel.h>
56#include <linux/netdevice.h>
57#include <linux/etherdevice.h>
58#include <linux/skbuff.h>
59#include <linux/delay.h>
60#include <linux/timer.h>
61#include <linux/slab.h>
62#include <linux/interrupt.h>
1da177e4
LT
63#include <linux/string.h>
64#include <linux/wait.h>
65#include <asm/io.h>
66#include <linux/if.h>
1da177e4
LT
67#include <asm/uaccess.h>
68#include <linux/proc_fs.h>
69#include <linux/inetdevice.h>
70#include <linux/reboot.h>
71#include <linux/ethtool.h>
72#include <linux/mii.h>
73#include <linux/in.h>
74#include <linux/if_arp.h>
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <linux/udp.h>
78#include <linux/crc-ccitt.h>
79#include <linux/crc32.h>
80
81#include "via-velocity.h"
82
83
84static int velocity_nics = 0;
85static int msglevel = MSG_LEVEL_INFO;
86
87
88static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
89static struct ethtool_ops velocity_ethtool_ops;
90
91/*
92 Define module options
93*/
94
95MODULE_AUTHOR("VIA Networking Technologies, Inc.");
96MODULE_LICENSE("GPL");
97MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
98
99#define VELOCITY_PARAM(N,D) \
100 static int N[MAX_UNITS]=OPTION_DEFAULT;\
101 module_param_array(N, int, NULL, 0); \
102 MODULE_PARM_DESC(N, D);
103
104#define RX_DESC_MIN 64
105#define RX_DESC_MAX 255
106#define RX_DESC_DEF 64
107VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
108
109#define TX_DESC_MIN 16
110#define TX_DESC_MAX 256
111#define TX_DESC_DEF 64
112VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
113
114#define VLAN_ID_MIN 0
115#define VLAN_ID_MAX 4095
116#define VLAN_ID_DEF 0
117/* VID_setting[] is used for setting the VID of NIC.
118 0: default VID.
119 1-4094: other VIDs.
120*/
121VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
122
123#define RX_THRESH_MIN 0
124#define RX_THRESH_MAX 3
125#define RX_THRESH_DEF 0
126/* rx_thresh[] is used for controlling the receive fifo threshold.
127 0: indicate the rxfifo threshold is 128 bytes.
128 1: indicate the rxfifo threshold is 512 bytes.
129 2: indicate the rxfifo threshold is 1024 bytes.
130 3: indicate the rxfifo threshold is store & forward.
131*/
132VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
133
134#define DMA_LENGTH_MIN 0
135#define DMA_LENGTH_MAX 7
136#define DMA_LENGTH_DEF 0
137
138/* DMA_length[] is used for controlling the DMA length
139 0: 8 DWORDs
140 1: 16 DWORDs
141 2: 32 DWORDs
142 3: 64 DWORDs
143 4: 128 DWORDs
144 5: 256 DWORDs
145 6: SF(flush till emply)
146 7: SF(flush till emply)
147*/
148VELOCITY_PARAM(DMA_length, "DMA length");
149
150#define TAGGING_DEF 0
151/* enable_tagging[] is used for enabling 802.1Q VID tagging.
152 0: disable VID seeting(default).
153 1: enable VID setting.
154*/
155VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
156
157#define IP_ALIG_DEF 0
158/* IP_byte_align[] is used for IP header DWORD byte aligned
159 0: indicate the IP header won't be DWORD byte aligned.(Default) .
160 1: indicate the IP header will be DWORD byte aligned.
161 In some enviroment, the IP header should be DWORD byte aligned,
162 or the packet will be droped when we receive it. (eg: IPVS)
163*/
164VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
165
166#define TX_CSUM_DEF 1
167/* txcsum_offload[] is used for setting the checksum offload ability of NIC.
168 (We only support RX checksum offload now)
169 0: disable csum_offload[checksum offload
170 1: enable checksum offload. (Default)
171*/
172VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
173
174#define FLOW_CNTL_DEF 1
175#define FLOW_CNTL_MIN 1
176#define FLOW_CNTL_MAX 5
177
178/* flow_control[] is used for setting the flow control ability of NIC.
179 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
180 2: enable TX flow control.
181 3: enable RX flow control.
182 4: enable RX/TX flow control.
183 5: disable
184*/
185VELOCITY_PARAM(flow_control, "Enable flow control ability");
186
187#define MED_LNK_DEF 0
188#define MED_LNK_MIN 0
189#define MED_LNK_MAX 4
190/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
191 0: indicate autonegotiation for both speed and duplex mode
192 1: indicate 100Mbps half duplex mode
193 2: indicate 100Mbps full duplex mode
194 3: indicate 10Mbps half duplex mode
195 4: indicate 10Mbps full duplex mode
196
197 Note:
198 if EEPROM have been set to the force mode, this option is ignored
199 by driver.
200*/
201VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
202
203#define VAL_PKT_LEN_DEF 0
204/* ValPktLen[] is used for setting the checksum offload ability of NIC.
205 0: Receive frame with invalid layer 2 length (Default)
206 1: Drop frame with invalid layer 2 length
207*/
208VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
209
210#define WOL_OPT_DEF 0
211#define WOL_OPT_MIN 0
212#define WOL_OPT_MAX 7
213/* wol_opts[] is used for controlling wake on lan behavior.
214 0: Wake up if recevied a magic packet. (Default)
215 1: Wake up if link status is on/off.
216 2: Wake up if recevied an arp packet.
217 4: Wake up if recevied any unicast packet.
218 Those value can be sumed up to support more than one option.
219*/
220VELOCITY_PARAM(wol_opts, "Wake On Lan options");
221
222#define INT_WORKS_DEF 20
223#define INT_WORKS_MIN 10
224#define INT_WORKS_MAX 64
225
226VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
227
228static int rx_copybreak = 200;
229module_param(rx_copybreak, int, 0644);
230MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
231
cabb7667
JG
232static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
233 const struct velocity_info_tbl *info);
1da177e4
LT
234static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
235static void velocity_print_info(struct velocity_info *vptr);
236static int velocity_open(struct net_device *dev);
237static int velocity_change_mtu(struct net_device *dev, int mtu);
238static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
239static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
240static void velocity_set_multi(struct net_device *dev);
241static struct net_device_stats *velocity_get_stats(struct net_device *dev);
242static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
243static int velocity_close(struct net_device *dev);
244static int velocity_receive_frame(struct velocity_info *, int idx);
245static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
246static void velocity_free_rd_ring(struct velocity_info *vptr);
247static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
248static int velocity_soft_reset(struct velocity_info *vptr);
249static void mii_init(struct velocity_info *vptr, u32 mii_status);
8a22dddb 250static u32 velocity_get_link(struct net_device *dev);
1da177e4
LT
251static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
252static void velocity_print_link_status(struct velocity_info *vptr);
253static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
254static void velocity_shutdown(struct velocity_info *vptr);
255static void enable_flow_control_ability(struct velocity_info *vptr);
256static void enable_mii_autopoll(struct mac_regs __iomem * regs);
257static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
258static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
259static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
260static u32 check_connection_type(struct mac_regs __iomem * regs);
261static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
262
263#ifdef CONFIG_PM
264
265static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
266static int velocity_resume(struct pci_dev *pdev);
267
268static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
269
270static struct notifier_block velocity_inetaddr_notifier = {
271 .notifier_call = velocity_netdev_event,
272};
273
274static DEFINE_SPINLOCK(velocity_dev_list_lock);
275static LIST_HEAD(velocity_dev_list);
276
277static void velocity_register_notifier(void)
278{
279 register_inetaddr_notifier(&velocity_inetaddr_notifier);
280}
281
282static void velocity_unregister_notifier(void)
283{
284 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
285}
286
287#else /* CONFIG_PM */
288
289#define velocity_register_notifier() do {} while (0)
290#define velocity_unregister_notifier() do {} while (0)
291
292#endif /* !CONFIG_PM */
293
294/*
295 * Internal board variants. At the moment we have only one
296 */
297
cabb7667
JG
298static const struct velocity_info_tbl chip_info_table[] __devinitdata = {
299 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
300 { }
1da177e4
LT
301};
302
303/*
304 * Describe the PCI device identifiers that we support in this
305 * device driver. Used for hotplug autoloading.
306 */
307
e54f4893
JG
308static const struct pci_device_id velocity_id_table[] __devinitdata = {
309 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
310 { }
1da177e4
LT
311};
312
313MODULE_DEVICE_TABLE(pci, velocity_id_table);
314
315/**
316 * get_chip_name - identifier to name
317 * @id: chip identifier
318 *
319 * Given a chip identifier return a suitable description. Returns
320 * a pointer a static string valid while the driver is loaded.
321 */
322
323static char __devinit *get_chip_name(enum chip_type chip_id)
324{
325 int i;
326 for (i = 0; chip_info_table[i].name != NULL; i++)
327 if (chip_info_table[i].chip_id == chip_id)
328 break;
329 return chip_info_table[i].name;
330}
331
332/**
333 * velocity_remove1 - device unplug
334 * @pdev: PCI device being removed
335 *
336 * Device unload callback. Called on an unplug or on module
337 * unload for each active device that is present. Disconnects
338 * the device from the network layer and frees all the resources
339 */
340
341static void __devexit velocity_remove1(struct pci_dev *pdev)
342{
343 struct net_device *dev = pci_get_drvdata(pdev);
8ab6f3f7 344 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
345
346#ifdef CONFIG_PM
347 unsigned long flags;
348
349 spin_lock_irqsave(&velocity_dev_list_lock, flags);
350 if (!list_empty(&velocity_dev_list))
351 list_del(&vptr->list);
352 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
353#endif
354 unregister_netdev(dev);
355 iounmap(vptr->mac_regs);
356 pci_release_regions(pdev);
357 pci_disable_device(pdev);
358 pci_set_drvdata(pdev, NULL);
359 free_netdev(dev);
360
361 velocity_nics--;
362}
363
364/**
365 * velocity_set_int_opt - parser for integer options
366 * @opt: pointer to option value
367 * @val: value the user requested (or -1 for default)
368 * @min: lowest value allowed
369 * @max: highest value allowed
370 * @def: default value
371 * @name: property name
372 * @dev: device name
373 *
374 * Set an integer property in the module options. This function does
375 * all the verification and checking as well as reporting so that
376 * we don't duplicate code for each option.
377 */
378
379static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
380{
381 if (val == -1)
382 *opt = def;
383 else if (val < min || val > max) {
384 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
385 devname, name, min, max);
386 *opt = def;
387 } else {
388 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
389 devname, name, val);
390 *opt = val;
391 }
392}
393
394/**
395 * velocity_set_bool_opt - parser for boolean options
396 * @opt: pointer to option value
397 * @val: value the user requested (or -1 for default)
398 * @def: default value (yes/no)
399 * @flag: numeric value to set for true.
400 * @name: property name
401 * @dev: device name
402 *
403 * Set a boolean property in the module options. This function does
404 * all the verification and checking as well as reporting so that
405 * we don't duplicate code for each option.
406 */
407
408static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
409{
410 (*opt) &= (~flag);
411 if (val == -1)
412 *opt |= (def ? flag : 0);
413 else if (val < 0 || val > 1) {
414 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
415 devname, name);
416 *opt |= (def ? flag : 0);
417 } else {
418 printk(KERN_INFO "%s: set parameter %s to %s\n",
419 devname, name, val ? "TRUE" : "FALSE");
420 *opt |= (val ? flag : 0);
421 }
422}
423
424/**
425 * velocity_get_options - set options on device
426 * @opts: option structure for the device
427 * @index: index of option to use in module options array
428 * @devname: device name
429 *
430 * Turn the module and command options into a single structure
431 * for the current device
432 */
433
434static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
435{
436
437 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
438 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
439 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
440 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
441 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
442 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
443 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
444 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
445 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
446 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
447 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
448 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
449 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
450 opts->numrx = (opts->numrx & ~3);
451}
452
453/**
454 * velocity_init_cam_filter - initialise CAM
455 * @vptr: velocity to program
456 *
457 * Initialize the content addressable memory used for filters. Load
458 * appropriately according to the presence of VLAN
459 */
460
461static void velocity_init_cam_filter(struct velocity_info *vptr)
462{
463 struct mac_regs __iomem * regs = vptr->mac_regs;
464
465 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
466 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
467 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
468
469 /* Disable all CAMs */
470 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
471 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
472 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
473 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
474
475 /* Enable first VCAM */
476 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
477 /* If Tagging option is enabled and VLAN ID is not zero, then
478 turn on MCFG_RTGOPT also */
479 if (vptr->options.vid != 0)
480 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
481
482 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
483 vptr->vCAMmask[0] |= 1;
484 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
485 } else {
486 u16 temp = 0;
487 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
488 temp = 1;
489 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
490 }
491}
492
493/**
494 * velocity_rx_reset - handle a receive reset
495 * @vptr: velocity we are resetting
496 *
497 * Reset the ownership and status for the receive ring side.
498 * Hand all the receive queue to the NIC.
499 */
500
501static void velocity_rx_reset(struct velocity_info *vptr)
502{
503
504 struct mac_regs __iomem * regs = vptr->mac_regs;
505 int i;
506
507 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
508
509 /*
510 * Init state, all RD entries belong to the NIC
511 */
512 for (i = 0; i < vptr->options.numrx; ++i)
513 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
514
515 writew(vptr->options.numrx, &regs->RBRDU);
516 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
517 writew(0, &regs->RDIdx);
518 writew(vptr->options.numrx - 1, &regs->RDCSize);
519}
520
521/**
522 * velocity_init_registers - initialise MAC registers
523 * @vptr: velocity to init
524 * @type: type of initialisation (hot or cold)
525 *
526 * Initialise the MAC on a reset or on first set up on the
527 * hardware.
528 */
529
530static void velocity_init_registers(struct velocity_info *vptr,
531 enum velocity_init_type type)
532{
533 struct mac_regs __iomem * regs = vptr->mac_regs;
534 int i, mii_status;
535
536 mac_wol_reset(regs);
537
538 switch (type) {
539 case VELOCITY_INIT_RESET:
540 case VELOCITY_INIT_WOL:
541
542 netif_stop_queue(vptr->dev);
543
544 /*
545 * Reset RX to prevent RX pointer not on the 4X location
546 */
547 velocity_rx_reset(vptr);
548 mac_rx_queue_run(regs);
549 mac_rx_queue_wake(regs);
550
551 mii_status = velocity_get_opt_media_mode(vptr);
552 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
553 velocity_print_link_status(vptr);
554 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
555 netif_wake_queue(vptr->dev);
556 }
557
558 enable_flow_control_ability(vptr);
559
560 mac_clear_isr(regs);
561 writel(CR0_STOP, &regs->CR0Clr);
562 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
563 &regs->CR0Set);
564
565 break;
566
567 case VELOCITY_INIT_COLD:
568 default:
569 /*
570 * Do reset
571 */
572 velocity_soft_reset(vptr);
573 mdelay(5);
574
575 mac_eeprom_reload(regs);
576 for (i = 0; i < 6; i++) {
577 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
578 }
579 /*
580 * clear Pre_ACPI bit.
581 */
582 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
583 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
584 mac_set_dma_length(regs, vptr->options.DMA_length);
585
586 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
587 /*
588 * Back off algorithm use original IEEE standard
589 */
590 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
591
592 /*
593 * Init CAM filter
594 */
595 velocity_init_cam_filter(vptr);
596
597 /*
598 * Set packet filter: Receive directed and broadcast address
599 */
600 velocity_set_multi(vptr->dev);
601
602 /*
603 * Enable MII auto-polling
604 */
605 enable_mii_autopoll(regs);
606
607 vptr->int_mask = INT_MASK_DEF;
608
609 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
610 writew(vptr->options.numrx - 1, &regs->RDCSize);
611 mac_rx_queue_run(regs);
612 mac_rx_queue_wake(regs);
613
614 writew(vptr->options.numtx - 1, &regs->TDCSize);
615
616 for (i = 0; i < vptr->num_txq; i++) {
617 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
618 mac_tx_queue_run(regs, i);
619 }
620
621 init_flow_control_register(vptr);
622
623 writel(CR0_STOP, &regs->CR0Clr);
624 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
625
626 mii_status = velocity_get_opt_media_mode(vptr);
627 netif_stop_queue(vptr->dev);
628
629 mii_init(vptr, mii_status);
630
631 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
632 velocity_print_link_status(vptr);
633 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
634 netif_wake_queue(vptr->dev);
635 }
636
637 enable_flow_control_ability(vptr);
638 mac_hw_mibs_init(regs);
639 mac_write_int_mask(vptr->int_mask, regs);
640 mac_clear_isr(regs);
641
642 }
643}
644
645/**
646 * velocity_soft_reset - soft reset
647 * @vptr: velocity to reset
648 *
649 * Kick off a soft reset of the velocity adapter and then poll
650 * until the reset sequence has completed before returning.
651 */
652
653static int velocity_soft_reset(struct velocity_info *vptr)
654{
655 struct mac_regs __iomem * regs = vptr->mac_regs;
656 int i = 0;
657
658 writel(CR0_SFRST, &regs->CR0Set);
659
660 for (i = 0; i < W_MAX_TIMEOUT; i++) {
661 udelay(5);
662 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
663 break;
664 }
665
666 if (i == W_MAX_TIMEOUT) {
667 writel(CR0_FORSRST, &regs->CR0Set);
668 /* FIXME: PCI POSTING */
669 /* delay 2ms */
670 mdelay(2);
671 }
672 return 0;
673}
674
675/**
676 * velocity_found1 - set up discovered velocity card
677 * @pdev: PCI device
678 * @ent: PCI device table entry that matched
679 *
680 * Configure a discovered adapter from scratch. Return a negative
681 * errno error code on failure paths.
682 */
683
684static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
685{
686 static int first = 1;
687 struct net_device *dev;
688 int i;
cabb7667 689 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
1da177e4
LT
690 struct velocity_info *vptr;
691 struct mac_regs __iomem * regs;
692 int ret = -ENOMEM;
693
e54f4893
JG
694 /* FIXME: this driver, like almost all other ethernet drivers,
695 * can support more than MAX_UNITS.
696 */
1da177e4 697 if (velocity_nics >= MAX_UNITS) {
9b91cf9d 698 dev_notice(&pdev->dev, "already found %d NICs.\n",
e54f4893 699 velocity_nics);
1da177e4
LT
700 return -ENODEV;
701 }
702
703 dev = alloc_etherdev(sizeof(struct velocity_info));
e54f4893 704 if (!dev) {
9b91cf9d 705 dev_err(&pdev->dev, "allocate net device failed.\n");
1da177e4
LT
706 goto out;
707 }
708
709 /* Chain it all together */
710
711 SET_MODULE_OWNER(dev);
712 SET_NETDEV_DEV(dev, &pdev->dev);
8ab6f3f7 713 vptr = netdev_priv(dev);
1da177e4
LT
714
715
716 if (first) {
717 printk(KERN_INFO "%s Ver. %s\n",
718 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
719 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
720 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
721 first = 0;
722 }
723
724 velocity_init_info(pdev, vptr, info);
725
726 vptr->dev = dev;
727
728 dev->irq = pdev->irq;
729
730 ret = pci_enable_device(pdev);
731 if (ret < 0)
732 goto err_free_dev;
733
734 ret = velocity_get_pci_info(vptr, pdev);
735 if (ret < 0) {
e54f4893 736 /* error message already printed */
1da177e4
LT
737 goto err_disable;
738 }
739
740 ret = pci_request_regions(pdev, VELOCITY_NAME);
741 if (ret < 0) {
9b91cf9d 742 dev_err(&pdev->dev, "No PCI resources.\n");
1da177e4
LT
743 goto err_disable;
744 }
745
cabb7667 746 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
1da177e4
LT
747 if (regs == NULL) {
748 ret = -EIO;
749 goto err_release_res;
750 }
751
752 vptr->mac_regs = regs;
753
754 mac_wol_reset(regs);
755
756 dev->base_addr = vptr->ioaddr;
757
758 for (i = 0; i < 6; i++)
759 dev->dev_addr[i] = readb(&regs->PAR[i]);
760
761
762 velocity_get_options(&vptr->options, velocity_nics, dev->name);
763
764 /*
765 * Mask out the options cannot be set to the chip
766 */
767
768 vptr->options.flags &= info->flags;
769
770 /*
771 * Enable the chip specified capbilities
772 */
773
774 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
775
776 vptr->wol_opts = vptr->options.wol_opts;
777 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
778
779 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
780
781 dev->irq = pdev->irq;
782 dev->open = velocity_open;
783 dev->hard_start_xmit = velocity_xmit;
784 dev->stop = velocity_close;
785 dev->get_stats = velocity_get_stats;
786 dev->set_multicast_list = velocity_set_multi;
787 dev->do_ioctl = velocity_ioctl;
788 dev->ethtool_ops = &velocity_ethtool_ops;
789 dev->change_mtu = velocity_change_mtu;
790#ifdef VELOCITY_ZERO_COPY_SUPPORT
791 dev->features |= NETIF_F_SG;
792#endif
793
794 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
9f3f46b5 795 dev->features |= NETIF_F_IP_CSUM;
1da177e4
LT
796 }
797
798 ret = register_netdev(dev);
799 if (ret < 0)
800 goto err_iounmap;
801
8a22dddb
FR
802 if (velocity_get_link(dev))
803 netif_carrier_off(dev);
804
1da177e4
LT
805 velocity_print_info(vptr);
806 pci_set_drvdata(pdev, dev);
807
808 /* and leave the chip powered down */
809
810 pci_set_power_state(pdev, PCI_D3hot);
811#ifdef CONFIG_PM
812 {
813 unsigned long flags;
814
815 spin_lock_irqsave(&velocity_dev_list_lock, flags);
816 list_add(&vptr->list, &velocity_dev_list);
817 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
818 }
819#endif
820 velocity_nics++;
821out:
822 return ret;
823
824err_iounmap:
825 iounmap(regs);
826err_release_res:
827 pci_release_regions(pdev);
828err_disable:
829 pci_disable_device(pdev);
830err_free_dev:
831 free_netdev(dev);
832 goto out;
833}
834
835/**
836 * velocity_print_info - per driver data
837 * @vptr: velocity
838 *
839 * Print per driver data as the kernel driver finds Velocity
840 * hardware
841 */
842
843static void __devinit velocity_print_info(struct velocity_info *vptr)
844{
845 struct net_device *dev = vptr->dev;
846
847 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
848 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
849 dev->name,
850 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
851 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
852}
853
854/**
855 * velocity_init_info - init private data
856 * @pdev: PCI device
857 * @vptr: Velocity info
858 * @info: Board type
859 *
860 * Set up the initial velocity_info struct for the device that has been
861 * discovered.
862 */
863
cabb7667
JG
864static void __devinit velocity_init_info(struct pci_dev *pdev,
865 struct velocity_info *vptr,
866 const struct velocity_info_tbl *info)
1da177e4
LT
867{
868 memset(vptr, 0, sizeof(struct velocity_info));
869
870 vptr->pdev = pdev;
871 vptr->chip_id = info->chip_id;
1da177e4
LT
872 vptr->num_txq = info->txqueue;
873 vptr->multicast_limit = MCAM_SIZE;
874 spin_lock_init(&vptr->lock);
875 INIT_LIST_HEAD(&vptr->list);
876}
877
878/**
879 * velocity_get_pci_info - retrieve PCI info for device
880 * @vptr: velocity device
881 * @pdev: PCI device it matches
882 *
883 * Retrieve the PCI configuration space data that interests us from
884 * the kernel PCI layer
885 */
886
887static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
888{
e54f4893 889 if (pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
1da177e4
LT
890 return -EIO;
891
892 pci_set_master(pdev);
893
894 vptr->ioaddr = pci_resource_start(pdev, 0);
895 vptr->memaddr = pci_resource_start(pdev, 1);
896
e54f4893 897 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
9b91cf9d 898 dev_err(&pdev->dev,
e54f4893 899 "region #0 is not an I/O resource, aborting.\n");
1da177e4
LT
900 return -EINVAL;
901 }
902
e54f4893 903 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
9b91cf9d 904 dev_err(&pdev->dev,
e54f4893 905 "region #1 is an I/O resource, aborting.\n");
1da177e4
LT
906 return -EINVAL;
907 }
908
cabb7667 909 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
9b91cf9d 910 dev_err(&pdev->dev, "region #1 is too small.\n");
1da177e4
LT
911 return -EINVAL;
912 }
913 vptr->pdev = pdev;
914
915 return 0;
916}
917
918/**
919 * velocity_init_rings - set up DMA rings
920 * @vptr: Velocity to set up
921 *
922 * Allocate PCI mapped DMA rings for the receive and transmit layer
923 * to use.
924 */
925
926static int velocity_init_rings(struct velocity_info *vptr)
927{
928 int i;
929 unsigned int psize;
930 unsigned int tsize;
931 dma_addr_t pool_dma;
932 u8 *pool;
933
934 /*
935 * Allocate all RD/TD rings a single pool
936 */
937
938 psize = vptr->options.numrx * sizeof(struct rx_desc) +
939 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
940
941 /*
942 * pci_alloc_consistent() fulfills the requirement for 64 bytes
943 * alignment
944 */
945 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
946
947 if (pool == NULL) {
948 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
949 vptr->dev->name);
950 return -ENOMEM;
951 }
952
953 memset(pool, 0, psize);
954
955 vptr->rd_ring = (struct rx_desc *) pool;
956
957 vptr->rd_pool_dma = pool_dma;
958
959 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
960 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
961 &vptr->tx_bufs_dma);
962
963 if (vptr->tx_bufs == NULL) {
964 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
965 vptr->dev->name);
966 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
967 return -ENOMEM;
968 }
969
970 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
971
972 i = vptr->options.numrx * sizeof(struct rx_desc);
973 pool += i;
974 pool_dma += i;
975 for (i = 0; i < vptr->num_txq; i++) {
976 int offset = vptr->options.numtx * sizeof(struct tx_desc);
977
978 vptr->td_pool_dma[i] = pool_dma;
979 vptr->td_rings[i] = (struct tx_desc *) pool;
980 pool += offset;
981 pool_dma += offset;
982 }
983 return 0;
984}
985
986/**
987 * velocity_free_rings - free PCI ring pointers
988 * @vptr: Velocity to free from
989 *
990 * Clean up the PCI ring buffers allocated to this velocity.
991 */
992
993static void velocity_free_rings(struct velocity_info *vptr)
994{
995 int size;
996
997 size = vptr->options.numrx * sizeof(struct rx_desc) +
998 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
999
1000 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1001
1002 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1003
1004 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1005}
1006
1007static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1008{
1009 struct mac_regs __iomem *regs = vptr->mac_regs;
1010 int avail, dirty, unusable;
1011
1012 /*
1013 * RD number must be equal to 4X per hardware spec
1014 * (programming guide rev 1.20, p.13)
1015 */
1016 if (vptr->rd_filled < 4)
1017 return;
1018
1019 wmb();
1020
1021 unusable = vptr->rd_filled & 0x0003;
1022 dirty = vptr->rd_dirty - unusable;
1023 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1024 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1025 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1026 }
1027
1028 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1029 vptr->rd_filled = unusable;
1030}
1031
1032static int velocity_rx_refill(struct velocity_info *vptr)
1033{
1034 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1035
1036 do {
1037 struct rx_desc *rd = vptr->rd_ring + dirty;
1038
1039 /* Fine for an all zero Rx desc at init time as well */
1040 if (rd->rdesc0.owner == OWNED_BY_NIC)
1041 break;
1042
1043 if (!vptr->rd_info[dirty].skb) {
1044 ret = velocity_alloc_rx_buf(vptr, dirty);
1045 if (ret < 0)
1046 break;
1047 }
1048 done++;
1049 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1050 } while (dirty != vptr->rd_curr);
1051
1052 if (done) {
1053 vptr->rd_dirty = dirty;
1054 vptr->rd_filled += done;
1055 velocity_give_many_rx_descs(vptr);
1056 }
1057
1058 return ret;
1059}
1060
1061/**
1062 * velocity_init_rd_ring - set up receive ring
1063 * @vptr: velocity to configure
1064 *
1065 * Allocate and set up the receive buffers for each ring slot and
1066 * assign them to the network adapter.
1067 */
1068
1069static int velocity_init_rd_ring(struct velocity_info *vptr)
1070{
1071 int ret = -ENOMEM;
1072 unsigned int rsize = sizeof(struct velocity_rd_info) *
1073 vptr->options.numrx;
1074
1075 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1076 if(vptr->rd_info == NULL)
1077 goto out;
1078 memset(vptr->rd_info, 0, rsize);
1079
1080 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1081
1082 ret = velocity_rx_refill(vptr);
1083 if (ret < 0) {
1084 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1085 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1086 velocity_free_rd_ring(vptr);
1087 }
1088out:
1089 return ret;
1090}
1091
1092/**
1093 * velocity_free_rd_ring - free receive ring
1094 * @vptr: velocity to clean up
1095 *
1096 * Free the receive buffers for each ring slot and any
1097 * attached socket buffers that need to go away.
1098 */
1099
1100static void velocity_free_rd_ring(struct velocity_info *vptr)
1101{
1102 int i;
1103
1104 if (vptr->rd_info == NULL)
1105 return;
1106
1107 for (i = 0; i < vptr->options.numrx; i++) {
1108 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
b3c3e7d7
FR
1109 struct rx_desc *rd = vptr->rd_ring + i;
1110
1111 memset(rd, 0, sizeof(*rd));
1da177e4
LT
1112
1113 if (!rd_info->skb)
1114 continue;
1115 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1116 PCI_DMA_FROMDEVICE);
1117 rd_info->skb_dma = (dma_addr_t) NULL;
1118
1119 dev_kfree_skb(rd_info->skb);
1120 rd_info->skb = NULL;
1121 }
1122
1123 kfree(vptr->rd_info);
1124 vptr->rd_info = NULL;
1125}
1126
1127/**
1128 * velocity_init_td_ring - set up transmit ring
1129 * @vptr: velocity
1130 *
1131 * Set up the transmit ring and chain the ring pointers together.
1132 * Returns zero on success or a negative posix errno code for
1133 * failure.
1134 */
1135
1136static int velocity_init_td_ring(struct velocity_info *vptr)
1137{
1138 int i, j;
1139 dma_addr_t curr;
1140 struct tx_desc *td;
1141 struct velocity_td_info *td_info;
1142 unsigned int tsize = sizeof(struct velocity_td_info) *
1143 vptr->options.numtx;
1144
1145 /* Init the TD ring entries */
1146 for (j = 0; j < vptr->num_txq; j++) {
1147 curr = vptr->td_pool_dma[j];
1148
1149 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1150 if(vptr->td_infos[j] == NULL)
1151 {
1152 while(--j >= 0)
1153 kfree(vptr->td_infos[j]);
1154 return -ENOMEM;
1155 }
1156 memset(vptr->td_infos[j], 0, tsize);
1157
1158 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1159 td = &(vptr->td_rings[j][i]);
1160 td_info = &(vptr->td_infos[j][i]);
1161 td_info->buf = vptr->tx_bufs +
1162 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1163 td_info->buf_dma = vptr->tx_bufs_dma +
1164 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1165 }
1166 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1167 }
1168 return 0;
1169}
1170
1171/*
1172 * FIXME: could we merge this with velocity_free_tx_buf ?
1173 */
1174
1175static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1176 int q, int n)
1177{
1178 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1179 int i;
1180
1181 if (td_info == NULL)
1182 return;
1183
1184 if (td_info->skb) {
1185 for (i = 0; i < td_info->nskb_dma; i++)
1186 {
1187 if (td_info->skb_dma[i]) {
1188 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1189 td_info->skb->len, PCI_DMA_TODEVICE);
1190 td_info->skb_dma[i] = (dma_addr_t) NULL;
1191 }
1192 }
1193 dev_kfree_skb(td_info->skb);
1194 td_info->skb = NULL;
1195 }
1196}
1197
1198/**
1199 * velocity_free_td_ring - free td ring
1200 * @vptr: velocity
1201 *
1202 * Free up the transmit ring for this particular velocity adapter.
1203 * We free the ring contents but not the ring itself.
1204 */
1205
1206static void velocity_free_td_ring(struct velocity_info *vptr)
1207{
1208 int i, j;
1209
1210 for (j = 0; j < vptr->num_txq; j++) {
1211 if (vptr->td_infos[j] == NULL)
1212 continue;
1213 for (i = 0; i < vptr->options.numtx; i++) {
1214 velocity_free_td_ring_entry(vptr, j, i);
1215
1216 }
b4558ea9
JJ
1217 kfree(vptr->td_infos[j]);
1218 vptr->td_infos[j] = NULL;
1da177e4
LT
1219 }
1220}
1221
1222/**
1223 * velocity_rx_srv - service RX interrupt
1224 * @vptr: velocity
1225 * @status: adapter status (unused)
1226 *
1227 * Walk the receive ring of the velocity adapter and remove
1228 * any received packets from the receive queue. Hand the ring
1229 * slots back to the adapter for reuse.
1230 */
1231
1232static int velocity_rx_srv(struct velocity_info *vptr, int status)
1233{
1234 struct net_device_stats *stats = &vptr->stats;
1235 int rd_curr = vptr->rd_curr;
1236 int works = 0;
1237
1238 do {
1239 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1240
1241 if (!vptr->rd_info[rd_curr].skb)
1242 break;
1243
1244 if (rd->rdesc0.owner == OWNED_BY_NIC)
1245 break;
1246
1247 rmb();
1248
1249 /*
1250 * Don't drop CE or RL error frame although RXOK is off
1251 */
1252 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1253 if (velocity_receive_frame(vptr, rd_curr) < 0)
1254 stats->rx_dropped++;
1255 } else {
1256 if (rd->rdesc0.RSR & RSR_CRC)
1257 stats->rx_crc_errors++;
1258 if (rd->rdesc0.RSR & RSR_FAE)
1259 stats->rx_frame_errors++;
1260
1261 stats->rx_dropped++;
1262 }
1263
1264 rd->inten = 1;
1265
1266 vptr->dev->last_rx = jiffies;
1267
1268 rd_curr++;
1269 if (rd_curr >= vptr->options.numrx)
1270 rd_curr = 0;
1271 } while (++works <= 15);
1272
1273 vptr->rd_curr = rd_curr;
1274
1275 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1276 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1277 "%s: rx buf allocation failure\n", vptr->dev->name);
1278 }
1279
1280 VAR_USED(stats);
1281 return works;
1282}
1283
1284/**
1285 * velocity_rx_csum - checksum process
1286 * @rd: receive packet descriptor
1287 * @skb: network layer packet buffer
1288 *
1289 * Process the status bits for the received packet and determine
1290 * if the checksum was computed and verified by the hardware
1291 */
1292
1293static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1294{
1295 skb->ip_summed = CHECKSUM_NONE;
1296
1297 if (rd->rdesc1.CSM & CSM_IPKT) {
1298 if (rd->rdesc1.CSM & CSM_IPOK) {
1299 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1300 (rd->rdesc1.CSM & CSM_UDPKT)) {
1301 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1302 return;
1303 }
1304 }
1305 skb->ip_summed = CHECKSUM_UNNECESSARY;
1306 }
1307 }
1308}
1309
1310/**
1311 * velocity_rx_copy - in place Rx copy for small packets
1312 * @rx_skb: network layer packet buffer candidate
1313 * @pkt_size: received data size
1314 * @rd: receive packet descriptor
1315 * @dev: network device
1316 *
1317 * Replace the current skb that is scheduled for Rx processing by a
1318 * shorter, immediatly allocated skb, if the received packet is small
1319 * enough. This function returns a negative value if the received
1320 * packet is too big or if memory is exhausted.
1321 */
1322static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1323 struct velocity_info *vptr)
1324{
1325 int ret = -1;
1326
1327 if (pkt_size < rx_copybreak) {
1328 struct sk_buff *new_skb;
1329
1330 new_skb = dev_alloc_skb(pkt_size + 2);
1331 if (new_skb) {
1332 new_skb->dev = vptr->dev;
1333 new_skb->ip_summed = rx_skb[0]->ip_summed;
1334
1335 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1336 skb_reserve(new_skb, 2);
1337
689be439 1338 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
1da177e4
LT
1339 *rx_skb = new_skb;
1340 ret = 0;
1341 }
1342
1343 }
1344 return ret;
1345}
1346
1347/**
1348 * velocity_iph_realign - IP header alignment
1349 * @vptr: velocity we are handling
1350 * @skb: network layer packet buffer
1351 * @pkt_size: received data size
1352 *
1353 * Align IP header on a 2 bytes boundary. This behavior can be
1354 * configured by the user.
1355 */
1356static inline void velocity_iph_realign(struct velocity_info *vptr,
1357 struct sk_buff *skb, int pkt_size)
1358{
1359 /* FIXME - memmove ? */
1360 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1361 int i;
1362
1363 for (i = pkt_size; i >= 0; i--)
1364 *(skb->data + i + 2) = *(skb->data + i);
1365 skb_reserve(skb, 2);
1366 }
1367}
1368
1369/**
1370 * velocity_receive_frame - received packet processor
1371 * @vptr: velocity we are handling
1372 * @idx: ring index
1373 *
1374 * A packet has arrived. We process the packet and if appropriate
1375 * pass the frame up the network stack
1376 */
1377
1378static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1379{
1380 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1381 struct net_device_stats *stats = &vptr->stats;
1382 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1383 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1384 int pkt_len = rd->rdesc0.len;
1385 struct sk_buff *skb;
1386
1387 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1388 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1389 stats->rx_length_errors++;
1390 return -EINVAL;
1391 }
1392
1393 if (rd->rdesc0.RSR & RSR_MAR)
1394 vptr->stats.multicast++;
1395
1396 skb = rd_info->skb;
1397 skb->dev = vptr->dev;
1398
1399 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1400 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1401
1402 /*
1403 * Drop frame not meeting IEEE 802.3
1404 */
1405
1406 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1407 if (rd->rdesc0.RSR & RSR_RL) {
1408 stats->rx_length_errors++;
1409 return -EINVAL;
1410 }
1411 }
1412
1413 pci_action = pci_dma_sync_single_for_device;
1414
1415 velocity_rx_csum(rd, skb);
1416
1417 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1418 velocity_iph_realign(vptr, skb, pkt_len);
1419 pci_action = pci_unmap_single;
1420 rd_info->skb = NULL;
1421 }
1422
1423 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1424 PCI_DMA_FROMDEVICE);
1425
1426 skb_put(skb, pkt_len - 4);
1427 skb->protocol = eth_type_trans(skb, skb->dev);
1428
1429 stats->rx_bytes += pkt_len;
1430 netif_rx(skb);
1431
1432 return 0;
1433}
1434
1435/**
1436 * velocity_alloc_rx_buf - allocate aligned receive buffer
1437 * @vptr: velocity
1438 * @idx: ring index
1439 *
1440 * Allocate a new full sized buffer for the reception of a frame and
1441 * map it into PCI space for the hardware to use. The hardware
1442 * requires *64* byte alignment of the buffer which makes life
1443 * less fun than would be ideal.
1444 */
1445
1446static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1447{
1448 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1449 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1450
1451 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1452 if (rd_info->skb == NULL)
1453 return -ENOMEM;
1454
1455 /*
1456 * Do the gymnastics to get the buffer head for data at
1457 * 64byte alignment.
1458 */
689be439 1459 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1da177e4 1460 rd_info->skb->dev = vptr->dev;
689be439 1461 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1462
1463 /*
1464 * Fill in the descriptor to match
1465 */
1466
1467 *((u32 *) & (rd->rdesc0)) = 0;
1468 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1469 rd->inten = 1;
1470 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1471 rd->pa_high = 0;
1472 return 0;
1473}
1474
1475/**
1476 * tx_srv - transmit interrupt service
1477 * @vptr; Velocity
1478 * @status:
1479 *
1480 * Scan the queues looking for transmitted packets that
1481 * we can complete and clean up. Update any statistics as
1482 * neccessary/
1483 */
1484
1485static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1486{
1487 struct tx_desc *td;
1488 int qnum;
1489 int full = 0;
1490 int idx;
1491 int works = 0;
1492 struct velocity_td_info *tdinfo;
1493 struct net_device_stats *stats = &vptr->stats;
1494
1495 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1496 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1497 idx = (idx + 1) % vptr->options.numtx) {
1498
1499 /*
1500 * Get Tx Descriptor
1501 */
1502 td = &(vptr->td_rings[qnum][idx]);
1503 tdinfo = &(vptr->td_infos[qnum][idx]);
1504
1505 if (td->tdesc0.owner == OWNED_BY_NIC)
1506 break;
1507
1508 if ((works++ > 15))
1509 break;
1510
1511 if (td->tdesc0.TSR & TSR0_TERR) {
1512 stats->tx_errors++;
1513 stats->tx_dropped++;
1514 if (td->tdesc0.TSR & TSR0_CDH)
1515 stats->tx_heartbeat_errors++;
1516 if (td->tdesc0.TSR & TSR0_CRS)
1517 stats->tx_carrier_errors++;
1518 if (td->tdesc0.TSR & TSR0_ABT)
1519 stats->tx_aborted_errors++;
1520 if (td->tdesc0.TSR & TSR0_OWC)
1521 stats->tx_window_errors++;
1522 } else {
1523 stats->tx_packets++;
1524 stats->tx_bytes += tdinfo->skb->len;
1525 }
1526 velocity_free_tx_buf(vptr, tdinfo);
1527 vptr->td_used[qnum]--;
1528 }
1529 vptr->td_tail[qnum] = idx;
1530
1531 if (AVAIL_TD(vptr, qnum) < 1) {
1532 full = 1;
1533 }
1534 }
1535 /*
1536 * Look to see if we should kick the transmit network
1537 * layer for more work.
1538 */
1539 if (netif_queue_stopped(vptr->dev) && (full == 0)
1540 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1541 netif_wake_queue(vptr->dev);
1542 }
1543 return works;
1544}
1545
1546/**
1547 * velocity_print_link_status - link status reporting
1548 * @vptr: velocity to report on
1549 *
1550 * Turn the link status of the velocity card into a kernel log
1551 * description of the new link state, detailing speed and duplex
1552 * status
1553 */
1554
1555static void velocity_print_link_status(struct velocity_info *vptr)
1556{
1557
1558 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1559 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1560 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1561 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1562
1563 if (vptr->mii_status & VELOCITY_SPEED_1000)
1564 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1565 else if (vptr->mii_status & VELOCITY_SPEED_100)
1566 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1567 else
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1569
1570 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1571 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1572 else
1573 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1574 } else {
1575 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1576 switch (vptr->options.spd_dpx) {
1577 case SPD_DPX_100_HALF:
1578 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1579 break;
1580 case SPD_DPX_100_FULL:
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1582 break;
1583 case SPD_DPX_10_HALF:
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1585 break;
1586 case SPD_DPX_10_FULL:
1587 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1588 break;
1589 default:
1590 break;
1591 }
1592 }
1593}
1594
1595/**
1596 * velocity_error - handle error from controller
1597 * @vptr: velocity
1598 * @status: card status
1599 *
1600 * Process an error report from the hardware and attempt to recover
1601 * the card itself. At the moment we cannot recover from some
1602 * theoretically impossible errors but this could be fixed using
1603 * the pci_device_failed logic to bounce the hardware
1604 *
1605 */
1606
1607static void velocity_error(struct velocity_info *vptr, int status)
1608{
1609
1610 if (status & ISR_TXSTLI) {
1611 struct mac_regs __iomem * regs = vptr->mac_regs;
1612
1613 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1614 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1615 writew(TRDCSR_RUN, &regs->TDCSRClr);
1616 netif_stop_queue(vptr->dev);
1617
1618 /* FIXME: port over the pci_device_failed code and use it
1619 here */
1620 }
1621
1622 if (status & ISR_SRCI) {
1623 struct mac_regs __iomem * regs = vptr->mac_regs;
1624 int linked;
1625
1626 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1627 vptr->mii_status = check_connection_type(regs);
1628
1629 /*
1630 * If it is a 3119, disable frame bursting in
1631 * halfduplex mode and enable it in fullduplex
1632 * mode
1633 */
1634 if (vptr->rev_id < REV_ID_VT3216_A0) {
1635 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1636 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1637 else
1638 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1639 }
1640 /*
1641 * Only enable CD heart beat counter in 10HD mode
1642 */
1643 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1644 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1645 } else {
1646 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1647 }
1648 }
1649 /*
1650 * Get link status from PHYSR0
1651 */
1652 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1653
1654 if (linked) {
1655 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
8a22dddb 1656 netif_carrier_on(vptr->dev);
1da177e4
LT
1657 } else {
1658 vptr->mii_status |= VELOCITY_LINK_FAIL;
8a22dddb 1659 netif_carrier_off(vptr->dev);
1da177e4
LT
1660 }
1661
1662 velocity_print_link_status(vptr);
1663 enable_flow_control_ability(vptr);
1664
1665 /*
1666 * Re-enable auto-polling because SRCI will disable
1667 * auto-polling
1668 */
1669
1670 enable_mii_autopoll(regs);
1671
1672 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1673 netif_stop_queue(vptr->dev);
1674 else
1675 netif_wake_queue(vptr->dev);
1676
1677 };
1678 if (status & ISR_MIBFI)
1679 velocity_update_hw_mibs(vptr);
1680 if (status & ISR_LSTEI)
1681 mac_rx_queue_wake(vptr->mac_regs);
1682}
1683
1684/**
1685 * velocity_free_tx_buf - free transmit buffer
1686 * @vptr: velocity
1687 * @tdinfo: buffer
1688 *
1689 * Release an transmit buffer. If the buffer was preallocated then
1690 * recycle it, if not then unmap the buffer.
1691 */
1692
1693static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1694{
1695 struct sk_buff *skb = tdinfo->skb;
1696 int i;
1697
1698 /*
1699 * Don't unmap the pre-allocated tx_bufs
1700 */
1701 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1702
1703 for (i = 0; i < tdinfo->nskb_dma; i++) {
1704#ifdef VELOCITY_ZERO_COPY_SUPPORT
1705 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1706#else
1707 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1708#endif
1709 tdinfo->skb_dma[i] = 0;
1710 }
1711 }
1712 dev_kfree_skb_irq(skb);
1713 tdinfo->skb = NULL;
1714}
1715
1716/**
1717 * velocity_open - interface activation callback
1718 * @dev: network layer device to open
1719 *
1720 * Called when the network layer brings the interface up. Returns
1721 * a negative posix error code on failure, or zero on success.
1722 *
1723 * All the ring allocation and set up is done on open for this
1724 * adapter to minimise memory usage when inactive
1725 */
1726
1727static int velocity_open(struct net_device *dev)
1728{
8ab6f3f7 1729 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
1730 int ret;
1731
1732 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1733
1734 ret = velocity_init_rings(vptr);
1735 if (ret < 0)
1736 goto out;
1737
1738 ret = velocity_init_rd_ring(vptr);
1739 if (ret < 0)
1740 goto err_free_desc_rings;
1741
1742 ret = velocity_init_td_ring(vptr);
1743 if (ret < 0)
1744 goto err_free_rd_ring;
1745
1746 /* Ensure chip is running */
1747 pci_set_power_state(vptr->pdev, PCI_D0);
1748
1749 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1750
1fb9df5d 1751 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1da177e4
LT
1752 dev->name, dev);
1753 if (ret < 0) {
1754 /* Power down the chip */
1755 pci_set_power_state(vptr->pdev, PCI_D3hot);
1756 goto err_free_td_ring;
1757 }
1758
1759 mac_enable_int(vptr->mac_regs);
1760 netif_start_queue(dev);
1761 vptr->flags |= VELOCITY_FLAGS_OPENED;
1762out:
1763 return ret;
1764
1765err_free_td_ring:
1766 velocity_free_td_ring(vptr);
1767err_free_rd_ring:
1768 velocity_free_rd_ring(vptr);
1769err_free_desc_rings:
1770 velocity_free_rings(vptr);
1771 goto out;
1772}
1773
1774/**
1775 * velocity_change_mtu - MTU change callback
1776 * @dev: network device
1777 * @new_mtu: desired MTU
1778 *
1779 * Handle requests from the networking layer for MTU change on
1780 * this interface. It gets called on a change by the network layer.
1781 * Return zero for success or negative posix error code.
1782 */
1783
1784static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1785{
8ab6f3f7 1786 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
1787 unsigned long flags;
1788 int oldmtu = dev->mtu;
1789 int ret = 0;
1790
1791 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1792 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1793 vptr->dev->name);
1794 return -EINVAL;
1795 }
1796
1797 if (new_mtu != oldmtu) {
1798 spin_lock_irqsave(&vptr->lock, flags);
1799
1800 netif_stop_queue(dev);
1801 velocity_shutdown(vptr);
1802
1803 velocity_free_td_ring(vptr);
1804 velocity_free_rd_ring(vptr);
1805
1806 dev->mtu = new_mtu;
1807 if (new_mtu > 8192)
1808 vptr->rx_buf_sz = 9 * 1024;
1809 else if (new_mtu > 4096)
1810 vptr->rx_buf_sz = 8192;
1811 else
1812 vptr->rx_buf_sz = 4 * 1024;
1813
1814 ret = velocity_init_rd_ring(vptr);
1815 if (ret < 0)
1816 goto out_unlock;
1817
1818 ret = velocity_init_td_ring(vptr);
1819 if (ret < 0)
1820 goto out_unlock;
1821
1822 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1823
1824 mac_enable_int(vptr->mac_regs);
1825 netif_start_queue(dev);
1826out_unlock:
1827 spin_unlock_irqrestore(&vptr->lock, flags);
1828 }
1829
1830 return ret;
1831}
1832
1833/**
1834 * velocity_shutdown - shut down the chip
1835 * @vptr: velocity to deactivate
1836 *
1837 * Shuts down the internal operations of the velocity and
1838 * disables interrupts, autopolling, transmit and receive
1839 */
1840
1841static void velocity_shutdown(struct velocity_info *vptr)
1842{
1843 struct mac_regs __iomem * regs = vptr->mac_regs;
1844 mac_disable_int(regs);
1845 writel(CR0_STOP, &regs->CR0Set);
1846 writew(0xFFFF, &regs->TDCSRClr);
1847 writeb(0xFF, &regs->RDCSRClr);
1848 safe_disable_mii_autopoll(regs);
1849 mac_clear_isr(regs);
1850}
1851
1852/**
1853 * velocity_close - close adapter callback
1854 * @dev: network device
1855 *
1856 * Callback from the network layer when the velocity is being
1857 * deactivated by the network layer
1858 */
1859
1860static int velocity_close(struct net_device *dev)
1861{
8ab6f3f7 1862 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
1863
1864 netif_stop_queue(dev);
1865 velocity_shutdown(vptr);
1866
1867 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1868 velocity_get_ip(vptr);
1869 if (dev->irq != 0)
1870 free_irq(dev->irq, dev);
1871
1872 /* Power down the chip */
1873 pci_set_power_state(vptr->pdev, PCI_D3hot);
1874
1875 /* Free the resources */
1876 velocity_free_td_ring(vptr);
1877 velocity_free_rd_ring(vptr);
1878 velocity_free_rings(vptr);
1879
1880 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1881 return 0;
1882}
1883
1884/**
1885 * velocity_xmit - transmit packet callback
1886 * @skb: buffer to transmit
1887 * @dev: network device
1888 *
1889 * Called by the networ layer to request a packet is queued to
1890 * the velocity. Returns zero on success.
1891 */
1892
1893static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1894{
8ab6f3f7 1895 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
1896 int qnum = 0;
1897 struct tx_desc *td_ptr;
1898 struct velocity_td_info *tdinfo;
1899 unsigned long flags;
1900 int index;
1901
1902 int pktlen = skb->len;
1903
364c6bad
HX
1904#ifdef VELOCITY_ZERO_COPY_SUPPORT
1905 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1906 kfree_skb(skb);
1907 return 0;
1908 }
1909#endif
1910
1da177e4
LT
1911 spin_lock_irqsave(&vptr->lock, flags);
1912
1913 index = vptr->td_curr[qnum];
1914 td_ptr = &(vptr->td_rings[qnum][index]);
1915 tdinfo = &(vptr->td_infos[qnum][index]);
1916
1917 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1918 td_ptr->tdesc1.TCR = TCR0_TIC;
1919 td_ptr->td_buf[0].queue = 0;
1920
1921 /*
1922 * Pad short frames.
1923 */
1924 if (pktlen < ETH_ZLEN) {
1925 /* Cannot occur until ZC support */
1da177e4
LT
1926 pktlen = ETH_ZLEN;
1927 memcpy(tdinfo->buf, skb->data, skb->len);
1928 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1929 tdinfo->skb = skb;
1930 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1931 td_ptr->tdesc0.pktsize = pktlen;
1932 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1933 td_ptr->td_buf[0].pa_high = 0;
1934 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1935 tdinfo->nskb_dma = 1;
1936 td_ptr->tdesc1.CMDZ = 2;
1937 } else
1938#ifdef VELOCITY_ZERO_COPY_SUPPORT
1939 if (skb_shinfo(skb)->nr_frags > 0) {
1940 int nfrags = skb_shinfo(skb)->nr_frags;
1941 tdinfo->skb = skb;
1942 if (nfrags > 6) {
1da177e4
LT
1943 memcpy(tdinfo->buf, skb->data, skb->len);
1944 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1945 td_ptr->tdesc0.pktsize =
1946 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1947 td_ptr->td_buf[0].pa_high = 0;
1948 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1949 tdinfo->nskb_dma = 1;
1950 td_ptr->tdesc1.CMDZ = 2;
1951 } else {
1952 int i = 0;
1953 tdinfo->nskb_dma = 0;
1954 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1955
1956 td_ptr->tdesc0.pktsize = pktlen;
1957
1958 /* FIXME: support 48bit DMA later */
1959 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1960 td_ptr->td_buf[i].pa_high = 0;
1961 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1962
1963 for (i = 0; i < nfrags; i++) {
1964 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1965 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1966
1967 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1968
1969 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1970 td_ptr->td_buf[i + 1].pa_high = 0;
1971 td_ptr->td_buf[i + 1].bufsize = frag->size;
1972 }
1973 tdinfo->nskb_dma = i - 1;
1974 td_ptr->tdesc1.CMDZ = i;
1975 }
1976
1977 } else
1978#endif
1979 {
1980 /*
1981 * Map the linear network buffer into PCI space and
1982 * add it to the transmit ring.
1983 */
1984 tdinfo->skb = skb;
1985 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1986 td_ptr->tdesc0.pktsize = pktlen;
1987 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1988 td_ptr->td_buf[0].pa_high = 0;
1989 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1990 tdinfo->nskb_dma = 1;
1991 td_ptr->tdesc1.CMDZ = 2;
1992 }
1993
1994 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1995 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1996 td_ptr->tdesc1.pqinf.priority = 0;
1997 td_ptr->tdesc1.pqinf.CFI = 0;
1998 td_ptr->tdesc1.TCR |= TCR0_VETAG;
1999 }
2000
2001 /*
2002 * Handle hardware checksum
2003 */
2004 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2005 && (skb->ip_summed == CHECKSUM_HW)) {
2006 struct iphdr *ip = skb->nh.iph;
2007 if (ip->protocol == IPPROTO_TCP)
2008 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2009 else if (ip->protocol == IPPROTO_UDP)
2010 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2011 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2012 }
2013 {
2014
2015 int prev = index - 1;
2016
2017 if (prev < 0)
2018 prev = vptr->options.numtx - 1;
2019 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2020 vptr->td_used[qnum]++;
2021 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2022
2023 if (AVAIL_TD(vptr, qnum) < 1)
2024 netif_stop_queue(dev);
2025
2026 td_ptr = &(vptr->td_rings[qnum][prev]);
2027 td_ptr->td_buf[0].queue = 1;
2028 mac_tx_queue_wake(vptr->mac_regs, qnum);
2029 }
2030 dev->trans_start = jiffies;
2031 spin_unlock_irqrestore(&vptr->lock, flags);
2032 return 0;
2033}
2034
2035/**
2036 * velocity_intr - interrupt callback
2037 * @irq: interrupt number
2038 * @dev_instance: interrupting device
2039 * @pt_regs: CPU register state at interrupt
2040 *
2041 * Called whenever an interrupt is generated by the velocity
2042 * adapter IRQ line. We may not be the source of the interrupt
2043 * and need to identify initially if we are, and if not exit as
2044 * efficiently as possible.
2045 */
2046
2047static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2048{
2049 struct net_device *dev = dev_instance;
8ab6f3f7 2050 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2051 u32 isr_status;
2052 int max_count = 0;
2053
2054
2055 spin_lock(&vptr->lock);
2056 isr_status = mac_read_isr(vptr->mac_regs);
2057
2058 /* Not us ? */
2059 if (isr_status == 0) {
2060 spin_unlock(&vptr->lock);
2061 return IRQ_NONE;
2062 }
2063
2064 mac_disable_int(vptr->mac_regs);
2065
2066 /*
2067 * Keep processing the ISR until we have completed
2068 * processing and the isr_status becomes zero
2069 */
2070
2071 while (isr_status != 0) {
2072 mac_write_isr(vptr->mac_regs, isr_status);
2073 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2074 velocity_error(vptr, isr_status);
2075 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2076 max_count += velocity_rx_srv(vptr, isr_status);
2077 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2078 max_count += velocity_tx_srv(vptr, isr_status);
2079 isr_status = mac_read_isr(vptr->mac_regs);
2080 if (max_count > vptr->options.int_works)
2081 {
2082 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2083 dev->name);
2084 max_count = 0;
2085 }
2086 }
2087 spin_unlock(&vptr->lock);
2088 mac_enable_int(vptr->mac_regs);
2089 return IRQ_HANDLED;
2090
2091}
2092
2093
2094/**
2095 * velocity_set_multi - filter list change callback
2096 * @dev: network device
2097 *
2098 * Called by the network layer when the filter lists need to change
2099 * for a velocity adapter. Reload the CAMs with the new address
2100 * filter ruleset.
2101 */
2102
2103static void velocity_set_multi(struct net_device *dev)
2104{
8ab6f3f7 2105 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2106 struct mac_regs __iomem * regs = vptr->mac_regs;
2107 u8 rx_mode;
2108 int i;
2109 struct dev_mc_list *mclist;
2110
2111 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2112 /* Unconditionally log net taps. */
2113 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2114 writel(0xffffffff, &regs->MARCAM[0]);
2115 writel(0xffffffff, &regs->MARCAM[4]);
2116 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2117 } else if ((dev->mc_count > vptr->multicast_limit)
2118 || (dev->flags & IFF_ALLMULTI)) {
2119 writel(0xffffffff, &regs->MARCAM[0]);
2120 writel(0xffffffff, &regs->MARCAM[4]);
2121 rx_mode = (RCR_AM | RCR_AB);
2122 } else {
2123 int offset = MCAM_SIZE - vptr->multicast_limit;
2124 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2125
2126 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2127 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2128 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2129 }
2130
2131 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2132 rx_mode = (RCR_AM | RCR_AB);
2133 }
2134 if (dev->mtu > 1500)
2135 rx_mode |= RCR_AL;
2136
2137 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2138
2139}
2140
2141/**
2142 * velocity_get_status - statistics callback
2143 * @dev: network device
2144 *
2145 * Callback from the network layer to allow driver statistics
2146 * to be resynchronized with hardware collected state. In the
2147 * case of the velocity we need to pull the MIB counters from
2148 * the hardware into the counters before letting the network
2149 * layer display them.
2150 */
2151
2152static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2153{
8ab6f3f7 2154 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2155
2156 /* If the hardware is down, don't touch MII */
2157 if(!netif_running(dev))
2158 return &vptr->stats;
2159
2160 spin_lock_irq(&vptr->lock);
2161 velocity_update_hw_mibs(vptr);
2162 spin_unlock_irq(&vptr->lock);
2163
2164 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2165 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2166 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2167
2168// unsigned long rx_dropped; /* no space in linux buffers */
2169 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2170 /* detailed rx_errors: */
2171// unsigned long rx_length_errors;
2172// unsigned long rx_over_errors; /* receiver ring buff overflow */
2173 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2174// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2175// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2176// unsigned long rx_missed_errors; /* receiver missed packet */
2177
2178 /* detailed tx_errors */
2179// unsigned long tx_fifo_errors;
2180
2181 return &vptr->stats;
2182}
2183
2184
2185/**
2186 * velocity_ioctl - ioctl entry point
2187 * @dev: network device
2188 * @rq: interface request ioctl
2189 * @cmd: command code
2190 *
2191 * Called when the user issues an ioctl request to the network
2192 * device in question. The velocity interface supports MII.
2193 */
2194
2195static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2196{
8ab6f3f7 2197 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2198 int ret;
2199
2200 /* If we are asked for information and the device is power
2201 saving then we need to bring the device back up to talk to it */
2202
2203 if (!netif_running(dev))
2204 pci_set_power_state(vptr->pdev, PCI_D0);
2205
2206 switch (cmd) {
2207 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2208 case SIOCGMIIREG: /* Read MII PHY register. */
2209 case SIOCSMIIREG: /* Write to MII PHY register. */
2210 ret = velocity_mii_ioctl(dev, rq, cmd);
2211 break;
2212
2213 default:
2214 ret = -EOPNOTSUPP;
2215 }
2216 if (!netif_running(dev))
2217 pci_set_power_state(vptr->pdev, PCI_D3hot);
2218
2219
2220 return ret;
2221}
2222
2223/*
2224 * Definition for our device driver. The PCI layer interface
2225 * uses this to handle all our card discover and plugging
2226 */
2227
2228static struct pci_driver velocity_driver = {
2229 .name = VELOCITY_NAME,
2230 .id_table = velocity_id_table,
2231 .probe = velocity_found1,
2232 .remove = __devexit_p(velocity_remove1),
2233#ifdef CONFIG_PM
2234 .suspend = velocity_suspend,
2235 .resume = velocity_resume,
2236#endif
2237};
2238
2239/**
2240 * velocity_init_module - load time function
2241 *
2242 * Called when the velocity module is loaded. The PCI driver
2243 * is registered with the PCI layer, and in turn will call
2244 * the probe functions for each velocity adapter installed
2245 * in the system.
2246 */
2247
2248static int __init velocity_init_module(void)
2249{
2250 int ret;
2251
2252 velocity_register_notifier();
2253 ret = pci_module_init(&velocity_driver);
2254 if (ret < 0)
2255 velocity_unregister_notifier();
2256 return ret;
2257}
2258
2259/**
2260 * velocity_cleanup - module unload
2261 *
2262 * When the velocity hardware is unloaded this function is called.
2263 * It will clean up the notifiers and the unregister the PCI
2264 * driver interface for this hardware. This in turn cleans up
2265 * all discovered interfaces before returning from the function
2266 */
2267
2268static void __exit velocity_cleanup_module(void)
2269{
2270 velocity_unregister_notifier();
2271 pci_unregister_driver(&velocity_driver);
2272}
2273
2274module_init(velocity_init_module);
2275module_exit(velocity_cleanup_module);
2276
2277
2278/*
2279 * MII access , media link mode setting functions
2280 */
2281
2282
2283/**
2284 * mii_init - set up MII
2285 * @vptr: velocity adapter
2286 * @mii_status: links tatus
2287 *
2288 * Set up the PHY for the current link state.
2289 */
2290
2291static void mii_init(struct velocity_info *vptr, u32 mii_status)
2292{
2293 u16 BMCR;
2294
2295 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2296 case PHYID_CICADA_CS8201:
2297 /*
2298 * Reset to hardware default
2299 */
2300 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2301 /*
2302 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2303 * off it in NWay-forced half mode for NWay-forced v.s.
2304 * legacy-forced issue.
2305 */
2306 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2307 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2308 else
2309 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2310 /*
2311 * Turn on Link/Activity LED enable bit for CIS8201
2312 */
2313 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2314 break;
2315 case PHYID_VT3216_32BIT:
2316 case PHYID_VT3216_64BIT:
2317 /*
2318 * Reset to hardware default
2319 */
2320 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2321 /*
2322 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2323 * off it in NWay-forced half mode for NWay-forced v.s.
2324 * legacy-forced issue
2325 */
2326 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2327 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2328 else
2329 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2330 break;
2331
2332 case PHYID_MARVELL_1000:
2333 case PHYID_MARVELL_1000S:
2334 /*
2335 * Assert CRS on Transmit
2336 */
2337 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2338 /*
2339 * Reset to hardware default
2340 */
2341 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2342 break;
2343 default:
2344 ;
2345 }
2346 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2347 if (BMCR & BMCR_ISO) {
2348 BMCR &= ~BMCR_ISO;
2349 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2350 }
2351}
2352
2353/**
2354 * safe_disable_mii_autopoll - autopoll off
2355 * @regs: velocity registers
2356 *
2357 * Turn off the autopoll and wait for it to disable on the chip
2358 */
2359
2360static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2361{
2362 u16 ww;
2363
2364 /* turn off MAUTO */
2365 writeb(0, &regs->MIICR);
2366 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2367 udelay(1);
2368 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2369 break;
2370 }
2371}
2372
2373/**
2374 * enable_mii_autopoll - turn on autopolling
2375 * @regs: velocity registers
2376 *
2377 * Enable the MII link status autopoll feature on the Velocity
2378 * hardware. Wait for it to enable.
2379 */
2380
2381static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2382{
2383 int ii;
2384
2385 writeb(0, &(regs->MIICR));
2386 writeb(MIIADR_SWMPL, &regs->MIIADR);
2387
2388 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2389 udelay(1);
2390 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2391 break;
2392 }
2393
2394 writeb(MIICR_MAUTO, &regs->MIICR);
2395
2396 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2397 udelay(1);
2398 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2399 break;
2400 }
2401
2402}
2403
2404/**
2405 * velocity_mii_read - read MII data
2406 * @regs: velocity registers
2407 * @index: MII register index
2408 * @data: buffer for received data
2409 *
2410 * Perform a single read of an MII 16bit register. Returns zero
2411 * on success or -ETIMEDOUT if the PHY did not respond.
2412 */
2413
2414static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2415{
2416 u16 ww;
2417
2418 /*
2419 * Disable MIICR_MAUTO, so that mii addr can be set normally
2420 */
2421 safe_disable_mii_autopoll(regs);
2422
2423 writeb(index, &regs->MIIADR);
2424
2425 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2426
2427 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2428 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2429 break;
2430 }
2431
2432 *data = readw(&regs->MIIDATA);
2433
2434 enable_mii_autopoll(regs);
2435 if (ww == W_MAX_TIMEOUT)
2436 return -ETIMEDOUT;
2437 return 0;
2438}
2439
2440/**
2441 * velocity_mii_write - write MII data
2442 * @regs: velocity registers
2443 * @index: MII register index
2444 * @data: 16bit data for the MII register
2445 *
2446 * Perform a single write to an MII 16bit register. Returns zero
2447 * on success or -ETIMEDOUT if the PHY did not respond.
2448 */
2449
2450static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2451{
2452 u16 ww;
2453
2454 /*
2455 * Disable MIICR_MAUTO, so that mii addr can be set normally
2456 */
2457 safe_disable_mii_autopoll(regs);
2458
2459 /* MII reg offset */
2460 writeb(mii_addr, &regs->MIIADR);
2461 /* set MII data */
2462 writew(data, &regs->MIIDATA);
2463
2464 /* turn on MIICR_WCMD */
2465 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2466
2467 /* W_MAX_TIMEOUT is the timeout period */
2468 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2469 udelay(5);
2470 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2471 break;
2472 }
2473 enable_mii_autopoll(regs);
2474
2475 if (ww == W_MAX_TIMEOUT)
2476 return -ETIMEDOUT;
2477 return 0;
2478}
2479
2480/**
2481 * velocity_get_opt_media_mode - get media selection
2482 * @vptr: velocity adapter
2483 *
2484 * Get the media mode stored in EEPROM or module options and load
2485 * mii_status accordingly. The requested link state information
2486 * is also returned.
2487 */
2488
2489static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2490{
2491 u32 status = 0;
2492
2493 switch (vptr->options.spd_dpx) {
2494 case SPD_DPX_AUTO:
2495 status = VELOCITY_AUTONEG_ENABLE;
2496 break;
2497 case SPD_DPX_100_FULL:
2498 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2499 break;
2500 case SPD_DPX_10_FULL:
2501 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2502 break;
2503 case SPD_DPX_100_HALF:
2504 status = VELOCITY_SPEED_100;
2505 break;
2506 case SPD_DPX_10_HALF:
2507 status = VELOCITY_SPEED_10;
2508 break;
2509 }
2510 vptr->mii_status = status;
2511 return status;
2512}
2513
2514/**
2515 * mii_set_auto_on - autonegotiate on
2516 * @vptr: velocity
2517 *
2518 * Enable autonegotation on this interface
2519 */
2520
2521static void mii_set_auto_on(struct velocity_info *vptr)
2522{
2523 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2524 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2525 else
2526 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2527}
2528
2529
2530/*
2531static void mii_set_auto_off(struct velocity_info * vptr)
2532{
2533 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2534}
2535*/
2536
2537/**
2538 * set_mii_flow_control - flow control setup
2539 * @vptr: velocity interface
2540 *
2541 * Set up the flow control on this interface according to
2542 * the supplied user/eeprom options.
2543 */
2544
2545static void set_mii_flow_control(struct velocity_info *vptr)
2546{
2547 /*Enable or Disable PAUSE in ANAR */
2548 switch (vptr->options.flow_cntl) {
2549 case FLOW_CNTL_TX:
2550 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2551 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2552 break;
2553
2554 case FLOW_CNTL_RX:
2555 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2556 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2557 break;
2558
2559 case FLOW_CNTL_TX_RX:
2560 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2561 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2562 break;
2563
2564 case FLOW_CNTL_DISABLE:
2565 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2566 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2567 break;
2568 default:
2569 break;
2570 }
2571}
2572
2573/**
2574 * velocity_set_media_mode - set media mode
2575 * @mii_status: old MII link state
2576 *
2577 * Check the media link state and configure the flow control
2578 * PHY and also velocity hardware setup accordingly. In particular
2579 * we need to set up CD polling and frame bursting.
2580 */
2581
2582static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2583{
2584 u32 curr_status;
2585 struct mac_regs __iomem * regs = vptr->mac_regs;
2586
2587 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2588 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2589
2590 /* Set mii link status */
2591 set_mii_flow_control(vptr);
2592
2593 /*
2594 Check if new status is consisent with current status
2595 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2596 || (mii_status==curr_status)) {
2597 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2598 vptr->mii_status=check_connection_type(vptr->mac_regs);
2599 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2600 return 0;
2601 }
2602 */
2603
2604 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2605 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2606 }
2607
2608 /*
2609 * If connection type is AUTO
2610 */
2611 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2612 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2613 /* clear force MAC mode bit */
2614 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2615 /* set duplex mode of MAC according to duplex mode of MII */
2616 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2617 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2618 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2619
2620 /* enable AUTO-NEGO mode */
2621 mii_set_auto_on(vptr);
2622 } else {
2623 u16 ANAR;
2624 u8 CHIPGCR;
2625
2626 /*
2627 * 1. if it's 3119, disable frame bursting in halfduplex mode
2628 * and enable it in fullduplex mode
2629 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2630 * 3. only enable CD heart beat counter in 10HD mode
2631 */
2632
2633 /* set force MAC mode bit */
2634 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2635
2636 CHIPGCR = readb(&regs->CHIPGCR);
2637 CHIPGCR &= ~CHIPGCR_FCGMII;
2638
2639 if (mii_status & VELOCITY_DUPLEX_FULL) {
2640 CHIPGCR |= CHIPGCR_FCFDX;
2641 writeb(CHIPGCR, &regs->CHIPGCR);
2642 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2643 if (vptr->rev_id < REV_ID_VT3216_A0)
2644 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2645 } else {
2646 CHIPGCR &= ~CHIPGCR_FCFDX;
2647 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2648 writeb(CHIPGCR, &regs->CHIPGCR);
2649 if (vptr->rev_id < REV_ID_VT3216_A0)
2650 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2651 }
2652
2653 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2654
2655 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2656 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2657 } else {
2658 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2659 }
2660 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2661 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2662 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2663 if (mii_status & VELOCITY_SPEED_100) {
2664 if (mii_status & VELOCITY_DUPLEX_FULL)
2665 ANAR |= ANAR_TXFD;
2666 else
2667 ANAR |= ANAR_TX;
2668 } else {
2669 if (mii_status & VELOCITY_DUPLEX_FULL)
2670 ANAR |= ANAR_10FD;
2671 else
2672 ANAR |= ANAR_10;
2673 }
2674 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2675 /* enable AUTO-NEGO mode */
2676 mii_set_auto_on(vptr);
2677 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2678 }
2679 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2680 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2681 return VELOCITY_LINK_CHANGE;
2682}
2683
2684/**
2685 * mii_check_media_mode - check media state
2686 * @regs: velocity registers
2687 *
2688 * Check the current MII status and determine the link status
2689 * accordingly
2690 */
2691
2692static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2693{
2694 u32 status = 0;
2695 u16 ANAR;
2696
2697 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2698 status |= VELOCITY_LINK_FAIL;
2699
2700 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2701 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2702 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2703 status |= (VELOCITY_SPEED_1000);
2704 else {
2705 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2706 if (ANAR & ANAR_TXFD)
2707 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2708 else if (ANAR & ANAR_TX)
2709 status |= VELOCITY_SPEED_100;
2710 else if (ANAR & ANAR_10FD)
2711 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2712 else
2713 status |= (VELOCITY_SPEED_10);
2714 }
2715
2716 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2717 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2718 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2719 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2720 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2721 status |= VELOCITY_AUTONEG_ENABLE;
2722 }
2723 }
2724
2725 return status;
2726}
2727
2728static u32 check_connection_type(struct mac_regs __iomem * regs)
2729{
2730 u32 status = 0;
2731 u8 PHYSR0;
2732 u16 ANAR;
2733 PHYSR0 = readb(&regs->PHYSR0);
2734
2735 /*
2736 if (!(PHYSR0 & PHYSR0_LINKGD))
2737 status|=VELOCITY_LINK_FAIL;
2738 */
2739
2740 if (PHYSR0 & PHYSR0_FDPX)
2741 status |= VELOCITY_DUPLEX_FULL;
2742
2743 if (PHYSR0 & PHYSR0_SPDG)
2744 status |= VELOCITY_SPEED_1000;
2745 if (PHYSR0 & PHYSR0_SPD10)
2746 status |= VELOCITY_SPEED_10;
2747 else
2748 status |= VELOCITY_SPEED_100;
2749
2750 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2751 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2752 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2753 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2754 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2755 status |= VELOCITY_AUTONEG_ENABLE;
2756 }
2757 }
2758
2759 return status;
2760}
2761
2762/**
2763 * enable_flow_control_ability - flow control
2764 * @vptr: veloity to configure
2765 *
2766 * Set up flow control according to the flow control options
2767 * determined by the eeprom/configuration.
2768 */
2769
2770static void enable_flow_control_ability(struct velocity_info *vptr)
2771{
2772
2773 struct mac_regs __iomem * regs = vptr->mac_regs;
2774
2775 switch (vptr->options.flow_cntl) {
2776
2777 case FLOW_CNTL_DEFAULT:
2778 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2779 writel(CR0_FDXRFCEN, &regs->CR0Set);
2780 else
2781 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2782
2783 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2784 writel(CR0_FDXTFCEN, &regs->CR0Set);
2785 else
2786 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2787 break;
2788
2789 case FLOW_CNTL_TX:
2790 writel(CR0_FDXTFCEN, &regs->CR0Set);
2791 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2792 break;
2793
2794 case FLOW_CNTL_RX:
2795 writel(CR0_FDXRFCEN, &regs->CR0Set);
2796 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2797 break;
2798
2799 case FLOW_CNTL_TX_RX:
2800 writel(CR0_FDXTFCEN, &regs->CR0Set);
2801 writel(CR0_FDXRFCEN, &regs->CR0Set);
2802 break;
2803
2804 case FLOW_CNTL_DISABLE:
2805 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2806 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2807 break;
2808
2809 default:
2810 break;
2811 }
2812
2813}
2814
2815
2816/**
2817 * velocity_ethtool_up - pre hook for ethtool
2818 * @dev: network device
2819 *
2820 * Called before an ethtool operation. We need to make sure the
2821 * chip is out of D3 state before we poke at it.
2822 */
2823
2824static int velocity_ethtool_up(struct net_device *dev)
2825{
8ab6f3f7 2826 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2827 if (!netif_running(dev))
2828 pci_set_power_state(vptr->pdev, PCI_D0);
2829 return 0;
2830}
2831
2832/**
2833 * velocity_ethtool_down - post hook for ethtool
2834 * @dev: network device
2835 *
2836 * Called after an ethtool operation. Restore the chip back to D3
2837 * state if it isn't running.
2838 */
2839
2840static void velocity_ethtool_down(struct net_device *dev)
2841{
8ab6f3f7 2842 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2843 if (!netif_running(dev))
2844 pci_set_power_state(vptr->pdev, PCI_D3hot);
2845}
2846
2847static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2848{
8ab6f3f7 2849 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2850 struct mac_regs __iomem * regs = vptr->mac_regs;
2851 u32 status;
2852 status = check_connection_type(vptr->mac_regs);
2853
2854 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2855 if (status & VELOCITY_SPEED_100)
2856 cmd->speed = SPEED_100;
2857 else
2858 cmd->speed = SPEED_10;
2859 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2860 cmd->port = PORT_TP;
2861 cmd->transceiver = XCVR_INTERNAL;
2862 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2863
2864 if (status & VELOCITY_DUPLEX_FULL)
2865 cmd->duplex = DUPLEX_FULL;
2866 else
2867 cmd->duplex = DUPLEX_HALF;
2868
2869 return 0;
2870}
2871
2872static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2873{
8ab6f3f7 2874 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2875 u32 curr_status;
2876 u32 new_status = 0;
2877 int ret = 0;
2878
2879 curr_status = check_connection_type(vptr->mac_regs);
2880 curr_status &= (~VELOCITY_LINK_FAIL);
2881
2882 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2883 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2884 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2885 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2886
2887 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2888 ret = -EINVAL;
2889 else
2890 velocity_set_media_mode(vptr, new_status);
2891
2892 return ret;
2893}
2894
2895static u32 velocity_get_link(struct net_device *dev)
2896{
8ab6f3f7 2897 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2898 struct mac_regs __iomem * regs = vptr->mac_regs;
2899 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2900}
2901
2902static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2903{
8ab6f3f7 2904 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2905 strcpy(info->driver, VELOCITY_NAME);
2906 strcpy(info->version, VELOCITY_VERSION);
2907 strcpy(info->bus_info, pci_name(vptr->pdev));
2908}
2909
2910static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2911{
8ab6f3f7 2912 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2913 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2914 wol->wolopts |= WAKE_MAGIC;
2915 /*
2916 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2917 wol.wolopts|=WAKE_PHY;
2918 */
2919 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2920 wol->wolopts |= WAKE_UCAST;
2921 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2922 wol->wolopts |= WAKE_ARP;
2923 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2924}
2925
2926static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2927{
8ab6f3f7 2928 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2929
2930 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2931 return -EFAULT;
2932 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2933
2934 /*
2935 if (wol.wolopts & WAKE_PHY) {
2936 vptr->wol_opts|=VELOCITY_WOL_PHY;
2937 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2938 }
2939 */
2940
2941 if (wol->wolopts & WAKE_MAGIC) {
2942 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2943 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2944 }
2945 if (wol->wolopts & WAKE_UCAST) {
2946 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2947 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2948 }
2949 if (wol->wolopts & WAKE_ARP) {
2950 vptr->wol_opts |= VELOCITY_WOL_ARP;
2951 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2952 }
2953 memcpy(vptr->wol_passwd, wol->sopass, 6);
2954 return 0;
2955}
2956
2957static u32 velocity_get_msglevel(struct net_device *dev)
2958{
2959 return msglevel;
2960}
2961
2962static void velocity_set_msglevel(struct net_device *dev, u32 value)
2963{
2964 msglevel = value;
2965}
2966
2967static struct ethtool_ops velocity_ethtool_ops = {
2968 .get_settings = velocity_get_settings,
2969 .set_settings = velocity_set_settings,
2970 .get_drvinfo = velocity_get_drvinfo,
2971 .get_wol = velocity_ethtool_get_wol,
2972 .set_wol = velocity_ethtool_set_wol,
2973 .get_msglevel = velocity_get_msglevel,
2974 .set_msglevel = velocity_set_msglevel,
2975 .get_link = velocity_get_link,
2976 .begin = velocity_ethtool_up,
2977 .complete = velocity_ethtool_down
2978};
2979
2980/**
2981 * velocity_mii_ioctl - MII ioctl handler
2982 * @dev: network device
2983 * @ifr: the ifreq block for the ioctl
2984 * @cmd: the command
2985 *
2986 * Process MII requests made via ioctl from the network layer. These
2987 * are used by tools like kudzu to interrogate the link state of the
2988 * hardware
2989 */
2990
2991static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2992{
8ab6f3f7 2993 struct velocity_info *vptr = netdev_priv(dev);
1da177e4
LT
2994 struct mac_regs __iomem * regs = vptr->mac_regs;
2995 unsigned long flags;
2996 struct mii_ioctl_data *miidata = if_mii(ifr);
2997 int err;
2998
2999 switch (cmd) {
3000 case SIOCGMIIPHY:
3001 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3002 break;
3003 case SIOCGMIIREG:
3004 if (!capable(CAP_NET_ADMIN))
3005 return -EPERM;
3006 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3007 return -ETIMEDOUT;
3008 break;
3009 case SIOCSMIIREG:
3010 if (!capable(CAP_NET_ADMIN))
3011 return -EPERM;
3012 spin_lock_irqsave(&vptr->lock, flags);
3013 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3014 spin_unlock_irqrestore(&vptr->lock, flags);
3015 check_connection_type(vptr->mac_regs);
3016 if(err)
3017 return err;
3018 break;
3019 default:
3020 return -EOPNOTSUPP;
3021 }
3022 return 0;
3023}
3024
3025#ifdef CONFIG_PM
3026
3027/**
3028 * velocity_save_context - save registers
3029 * @vptr: velocity
3030 * @context: buffer for stored context
3031 *
3032 * Retrieve the current configuration from the velocity hardware
3033 * and stash it in the context structure, for use by the context
3034 * restore functions. This allows us to save things we need across
3035 * power down states
3036 */
3037
3038static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3039{
3040 struct mac_regs __iomem * regs = vptr->mac_regs;
3041 u16 i;
3042 u8 __iomem *ptr = (u8 __iomem *)regs;
3043
3044 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3045 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3046
3047 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3048 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3049
3050 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3051 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3052
3053}
3054
3055/**
3056 * velocity_restore_context - restore registers
3057 * @vptr: velocity
3058 * @context: buffer for stored context
3059 *
3060 * Reload the register configuration from the velocity context
3061 * created by velocity_save_context.
3062 */
3063
3064static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3065{
3066 struct mac_regs __iomem * regs = vptr->mac_regs;
3067 int i;
3068 u8 __iomem *ptr = (u8 __iomem *)regs;
3069
3070 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3071 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3072 }
3073
3074 /* Just skip cr0 */
3075 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3076 /* Clear */
3077 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3078 /* Set */
3079 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3080 }
3081
3082 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3083 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3084 }
3085
3086 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3087 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3088 }
3089
3090 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3091 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3092 }
3093
3094}
3095
3096/**
3097 * wol_calc_crc - WOL CRC
3098 * @pattern: data pattern
3099 * @mask_pattern: mask
3100 *
3101 * Compute the wake on lan crc hashes for the packet header
3102 * we are interested in.
3103 */
3104
3105static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3106{
3107 u16 crc = 0xFFFF;
3108 u8 mask;
3109 int i, j;
3110
3111 for (i = 0; i < size; i++) {
3112 mask = mask_pattern[i];
3113
3114 /* Skip this loop if the mask equals to zero */
3115 if (mask == 0x00)
3116 continue;
3117
3118 for (j = 0; j < 8; j++) {
3119 if ((mask & 0x01) == 0) {
3120 mask >>= 1;
3121 continue;
3122 }
3123 mask >>= 1;
3124 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3125 }
3126 }
3127 /* Finally, invert the result once to get the correct data */
3128 crc = ~crc;
3129 return bitreverse(crc) >> 16;
3130}
3131
3132/**
3133 * velocity_set_wol - set up for wake on lan
3134 * @vptr: velocity to set WOL status on
3135 *
3136 * Set a card up for wake on lan either by unicast or by
3137 * ARP packet.
3138 *
3139 * FIXME: check static buffer is safe here
3140 */
3141
3142static int velocity_set_wol(struct velocity_info *vptr)
3143{
3144 struct mac_regs __iomem * regs = vptr->mac_regs;
3145 static u8 buf[256];
3146 int i;
3147
3148 static u32 mask_pattern[2][4] = {
3149 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3150 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3151 };
3152
3153 writew(0xFFFF, &regs->WOLCRClr);
3154 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3155 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3156
3157 /*
3158 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3159 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3160 */
3161
3162 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3163 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3164 }
3165
3166 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3167 struct arp_packet *arp = (struct arp_packet *) buf;
3168 u16 crc;
3169 memset(buf, 0, sizeof(struct arp_packet) + 7);
3170
3171 for (i = 0; i < 4; i++)
3172 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3173
3174 arp->type = htons(ETH_P_ARP);
3175 arp->ar_op = htons(1);
3176
3177 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3178
3179 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3180 (u8 *) & mask_pattern[0][0]);
3181
3182 writew(crc, &regs->PatternCRC[0]);
3183 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3184 }
3185
3186 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3187 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3188
3189 writew(0x0FFF, &regs->WOLSRClr);
3190
3191 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3192 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3193 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3194
3195 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3196 }
3197
3198 if (vptr->mii_status & VELOCITY_SPEED_1000)
3199 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3200
3201 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3202
3203 {
3204 u8 GCR;
3205 GCR = readb(&regs->CHIPGCR);
3206 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3207 writeb(GCR, &regs->CHIPGCR);
3208 }
3209
3210 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3211 /* Turn on SWPTAG just before entering power mode */
3212 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3213 /* Go to bed ..... */
3214 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3215
3216 return 0;
3217}
3218
3219static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3220{
3221 struct net_device *dev = pci_get_drvdata(pdev);
3222 struct velocity_info *vptr = netdev_priv(dev);
3223 unsigned long flags;
3224
3225 if(!netif_running(vptr->dev))
3226 return 0;
3227
3228 netif_device_detach(vptr->dev);
3229
3230 spin_lock_irqsave(&vptr->lock, flags);
3231 pci_save_state(pdev);
3232#ifdef ETHTOOL_GWOL
3233 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3234 velocity_get_ip(vptr);
3235 velocity_save_context(vptr, &vptr->context);
3236 velocity_shutdown(vptr);
3237 velocity_set_wol(vptr);
3238 pci_enable_wake(pdev, 3, 1);
3239 pci_set_power_state(pdev, PCI_D3hot);
3240 } else {
3241 velocity_save_context(vptr, &vptr->context);
3242 velocity_shutdown(vptr);
3243 pci_disable_device(pdev);
3244 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3245 }
3246#else
3247 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3248#endif
3249 spin_unlock_irqrestore(&vptr->lock, flags);
3250 return 0;
3251}
3252
3253static int velocity_resume(struct pci_dev *pdev)
3254{
3255 struct net_device *dev = pci_get_drvdata(pdev);
3256 struct velocity_info *vptr = netdev_priv(dev);
3257 unsigned long flags;
3258 int i;
3259
3260 if(!netif_running(vptr->dev))
3261 return 0;
3262
3263 pci_set_power_state(pdev, PCI_D0);
3264 pci_enable_wake(pdev, 0, 0);
3265 pci_restore_state(pdev);
3266
3267 mac_wol_reset(vptr->mac_regs);
3268
3269 spin_lock_irqsave(&vptr->lock, flags);
3270 velocity_restore_context(vptr, &vptr->context);
3271 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3272 mac_disable_int(vptr->mac_regs);
3273
3274 velocity_tx_srv(vptr, 0);
3275
3276 for (i = 0; i < vptr->num_txq; i++) {
3277 if (vptr->td_used[i]) {
3278 mac_tx_queue_wake(vptr->mac_regs, i);
3279 }
3280 }
3281
3282 mac_enable_int(vptr->mac_regs);
3283 spin_unlock_irqrestore(&vptr->lock, flags);
3284 netif_device_attach(vptr->dev);
3285
3286 return 0;
3287}
3288
3289static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3290{
3291 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3292
3293 if (ifa) {
3294 struct net_device *dev = ifa->ifa_dev->dev;
3295 struct velocity_info *vptr;
3296 unsigned long flags;
3297
3298 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3299 list_for_each_entry(vptr, &velocity_dev_list, list) {
3300 if (vptr->dev == dev) {
3301 velocity_get_ip(vptr);
3302 break;
3303 }
3304 }
3305 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3306 }
3307 return NOTIFY_DONE;
3308}
3309#endif