]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/tulip/tulip_core.c
drivers/net: Trim trailing whitespace
[net-next-2.6.git] / drivers / net / tulip / tulip_core.c
CommitLineData
1da177e4
LT
1/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
2
3/*
6b92801b 4 Maintained by Valerie Henson <val_henson@linux.intel.com>
1da177e4
LT
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
7
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
10
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
14
15*/
16
1da177e4
LT
17
18#define DRV_NAME "tulip"
19#ifdef CONFIG_TULIP_NAPI
d5b20697 20#define DRV_VERSION "1.1.14-NAPI" /* Keep at least for test */
1da177e4 21#else
d5b20697 22#define DRV_VERSION "1.1.14"
1da177e4
LT
23#endif
24#define DRV_RELDATE "May 11, 2002"
25
26
27#include <linux/module.h>
28#include <linux/pci.h>
29#include "tulip.h"
30#include <linux/init.h>
31#include <linux/etherdevice.h>
32#include <linux/delay.h>
33#include <linux/mii.h>
34#include <linux/ethtool.h>
35#include <linux/crc32.h>
36#include <asm/unaligned.h>
37#include <asm/uaccess.h>
38
39#ifdef __sparc__
40#include <asm/pbm.h>
41#endif
42
43static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
45
46
47/* A few user-configurable values. */
48
49/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50static unsigned int max_interrupt_work = 25;
51
52#define MAX_UNITS 8
53/* Used to pass the full-duplex flag, etc. */
54static int full_duplex[MAX_UNITS];
55static int options[MAX_UNITS];
56static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
57
58/* The possible media types that can be set in options[] are: */
59const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
66};
67
68/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(__sparc_) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72static int rx_copybreak = 1518;
73#else
74static int rx_copybreak = 100;
75#endif
76
77/*
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
88*/
89
90#if defined(__alpha__) || defined(__ia64__)
91static int csr0 = 0x01A00000 | 0xE000;
92#elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93static int csr0 = 0x01A00000 | 0x8000;
94#elif defined(__sparc__) || defined(__hppa__)
95/* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
98 */
99static int csr0 = 0x01A00000 | 0x9000;
100#elif defined(__arm__) || defined(__sh__)
101static int csr0 = 0x01A00000 | 0x4800;
102#elif defined(__mips__)
103static int csr0 = 0x00200000 | 0x4000;
104#else
105#warning Processor architecture undefined!
106static int csr0 = 0x00A00000 | 0x4800;
107#endif
108
109/* Operational parameters that usually are not changed. */
110/* Time in jiffies before concluding the transmitter is hung. */
111#define TX_TIMEOUT (4*HZ)
112
113
114MODULE_AUTHOR("The Linux Kernel Team");
115MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116MODULE_LICENSE("GPL");
117MODULE_VERSION(DRV_VERSION);
118module_param(tulip_debug, int, 0);
119module_param(max_interrupt_work, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param(csr0, int, 0);
122module_param_array(options, int, NULL, 0);
123module_param_array(full_duplex, int, NULL, 0);
124
125#define PFX DRV_NAME ": "
126
127#ifdef TULIP_DEBUG
128int tulip_debug = TULIP_DEBUG;
129#else
130int tulip_debug = 1;
131#endif
132
0bb3cf72
FR
133static void tulip_timer(unsigned long data)
134{
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
1da177e4 137
0bb3cf72
FR
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
140}
1da177e4
LT
141
142/*
143 * This table use during operation for capabilities and media timer.
144 *
145 * It is indexed via the values in 'enum chips'
146 */
147
148struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
151
152 /* DC21140 */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
0bb3cf72
FR
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 tulip_media_task },
1da177e4
LT
156
157 /* DC21142, DC21143 */
b892de0b 158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
1da177e4 159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
0bb3cf72 160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
1da177e4
LT
161
162 /* LC82C168 */
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
0bb3cf72 164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
1da177e4
LT
165
166 /* MX98713 */
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
0bb3cf72 168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
1da177e4
LT
169
170 /* MX98715 */
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
0bb3cf72 172 HAS_MEDIA_TABLE, mxic_timer, },
1da177e4
LT
173
174 /* MX98725 */
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
0bb3cf72 176 HAS_MEDIA_TABLE, mxic_timer, },
1da177e4
LT
177
178 /* AX88140 */
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
0bb3cf72 181 | IS_ASIX, tulip_timer, tulip_media_task },
1da177e4
LT
182
183 /* PNIC2 */
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
0bb3cf72 185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
1da177e4
LT
186
187 /* COMET */
188 { "ADMtek Comet", 256, 0x0001abef,
0bb3cf72 189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
1da177e4
LT
190
191 /* COMPEX9881 */
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
0bb3cf72 193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
1da177e4
LT
194
195 /* I21145 */
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
0bb3cf72 198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
1da177e4
LT
199
200 /* DM910X */
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
0bb3cf72 203 tulip_timer, tulip_media_task },
1da177e4
LT
204
205 /* RS7112 */
206 { "Conexant LANfinity", 256, 0x0001ebef,
0bb3cf72 207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
1da177e4 208
1da177e4
LT
209};
210
211
212static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218/* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
1da177e4 246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
9b25978e 247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
1a449358 248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
1da177e4
LT
249 { } /* terminate list */
250};
251MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252
253
254/* A full-duplex map for media types. */
255const char tulip_media_cap[32] =
256{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
257
258static void tulip_tx_timeout(struct net_device *dev);
259static void tulip_init_ring(struct net_device *dev);
260static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261static int tulip_open(struct net_device *dev);
262static int tulip_close(struct net_device *dev);
263static void tulip_up(struct net_device *dev);
264static void tulip_down(struct net_device *dev);
265static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267static void set_rx_mode(struct net_device *dev);
268#ifdef CONFIG_NET_POLL_CONTROLLER
269static void poll_tulip(struct net_device *dev);
270#endif
271
272static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
274{
275 if (tp->flags & HAS_ACPI) {
276 u32 tmp, newtmp;
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
279 if (sleep)
280 newtmp |= CFDD_Sleep;
281 else if (snooze)
282 newtmp |= CFDD_Snooze;
283 if (tmp != newtmp)
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
285 }
286
287}
288
289
290static void tulip_up(struct net_device *dev)
291{
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
295 int i;
296
297 /* Wake the chip from sleep/snooze mode. */
298 tulip_set_power_state (tp, 0, 0);
299
300 /* On some chip revs we must set the MII/SYM port before the reset!? */
301 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
302 iowrite32(0x00040000, ioaddr + CSR6);
303
304 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
305 iowrite32(0x00000001, ioaddr + CSR0);
40c0d879 306 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
1da177e4
LT
307 udelay(100);
308
309 /* Deassert reset.
310 Wait the specified 50 PCI cycles after a reset by initializing
311 Tx and Rx queues and the address filter list. */
312 iowrite32(tp->csr0, ioaddr + CSR0);
40c0d879 313 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
1da177e4
LT
314 udelay(100);
315
316 if (tulip_debug > 1)
317 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
318
319 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
320 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
321 tp->cur_rx = tp->cur_tx = 0;
322 tp->dirty_rx = tp->dirty_tx = 0;
323
324 if (tp->flags & MC_HASH_ONLY) {
325 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
326 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
327 if (tp->chip_id == AX88140) {
328 iowrite32(0, ioaddr + CSR13);
329 iowrite32(addr_low, ioaddr + CSR14);
330 iowrite32(1, ioaddr + CSR13);
331 iowrite32(addr_high, ioaddr + CSR14);
332 } else if (tp->flags & COMET_MAC_ADDR) {
333 iowrite32(addr_low, ioaddr + 0xA4);
334 iowrite32(addr_high, ioaddr + 0xA8);
335 iowrite32(0, ioaddr + 0xAC);
336 iowrite32(0, ioaddr + 0xB0);
337 }
338 } else {
339 /* This is set_rx_mode(), but without starting the transmitter. */
340 u16 *eaddrs = (u16 *)dev->dev_addr;
341 u16 *setup_frm = &tp->setup_frame[15*6];
342 dma_addr_t mapping;
343
344 /* 21140 bug: you must add the broadcast address. */
345 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
346 /* Fill the final entry of the table with our physical address. */
347 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
348 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
349 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
350
351 mapping = pci_map_single(tp->pdev, tp->setup_frame,
352 sizeof(tp->setup_frame),
353 PCI_DMA_TODEVICE);
354 tp->tx_buffers[tp->cur_tx].skb = NULL;
355 tp->tx_buffers[tp->cur_tx].mapping = mapping;
356
357 /* Put the setup frame on the Tx list. */
358 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
359 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
360 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
361
362 tp->cur_tx++;
363 }
364
365 tp->saved_if_port = dev->if_port;
366 if (dev->if_port == 0)
367 dev->if_port = tp->default_port;
368
369 /* Allow selecting a default media. */
370 i = 0;
371 if (tp->mtable == NULL)
372 goto media_picked;
373 if (dev->if_port) {
374 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
375 (dev->if_port == 12 ? 0 : dev->if_port);
376 for (i = 0; i < tp->mtable->leafcount; i++)
377 if (tp->mtable->mleaf[i].media == looking_for) {
378 printk(KERN_INFO "%s: Using user-specified media %s.\n",
379 dev->name, medianame[dev->if_port]);
380 goto media_picked;
381 }
382 }
383 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
384 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
385 for (i = 0; i < tp->mtable->leafcount; i++)
386 if (tp->mtable->mleaf[i].media == looking_for) {
387 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
388 dev->name, medianame[looking_for]);
389 goto media_picked;
390 }
391 }
392 /* Start sensing first non-full-duplex media. */
393 for (i = tp->mtable->leafcount - 1;
394 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
395 ;
396media_picked:
397
398 tp->csr6 = 0;
399 tp->cur_index = i;
400 tp->nwayset = 0;
401
402 if (dev->if_port) {
403 if (tp->chip_id == DC21143 &&
404 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
405 /* We must reset the media CSRs when we force-select MII mode. */
406 iowrite32(0x0000, ioaddr + CSR13);
407 iowrite32(0x0000, ioaddr + CSR14);
408 iowrite32(0x0008, ioaddr + CSR15);
409 }
410 tulip_select_media(dev, 1);
411 } else if (tp->chip_id == DC21142) {
412 if (tp->mii_cnt) {
413 tulip_select_media(dev, 1);
414 if (tulip_debug > 1)
415 printk(KERN_INFO "%s: Using MII transceiver %d, status "
416 "%4.4x.\n",
417 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
418 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
419 tp->csr6 = csr6_mask_hdcap;
420 dev->if_port = 11;
421 iowrite32(0x0000, ioaddr + CSR13);
422 iowrite32(0x0000, ioaddr + CSR14);
423 } else
424 t21142_start_nway(dev);
425 } else if (tp->chip_id == PNIC2) {
426 /* for initial startup advertise 10/100 Full and Half */
427 tp->sym_advertise = 0x01E0;
428 /* enable autonegotiate end interrupt */
429 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
430 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
431 pnic2_start_nway(dev);
432 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
433 if (tp->mii_cnt) {
434 dev->if_port = 11;
435 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
436 iowrite32(0x0001, ioaddr + CSR15);
437 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
438 pnic_do_nway(dev);
439 else {
440 /* Start with 10mbps to do autonegotiation. */
441 iowrite32(0x32, ioaddr + CSR12);
442 tp->csr6 = 0x00420000;
443 iowrite32(0x0001B078, ioaddr + 0xB8);
444 iowrite32(0x0201B078, ioaddr + 0xB8);
445 next_tick = 1*HZ;
446 }
447 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
448 && ! tp->medialock) {
449 dev->if_port = 0;
450 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
451 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
452 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
453 /* Provided by BOLO, Macronix - 12/10/1998. */
454 dev->if_port = 0;
455 tp->csr6 = 0x01a80200;
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
458 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
459 /* Enable automatic Tx underrun recovery. */
460 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
461 dev->if_port = tp->mii_cnt ? 11 : 0;
462 tp->csr6 = 0x00040000;
463 } else if (tp->chip_id == AX88140) {
464 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
465 } else
466 tulip_select_media(dev, 1);
467
468 /* Start the chip's Tx to process setup frame. */
469 tulip_stop_rxtx(tp);
470 barrier();
471 udelay(5);
472 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
473
474 /* Enable interrupts by setting the interrupt mask. */
475 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
476 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
477 tulip_start_rxtx(tp);
478 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
479
480 if (tulip_debug > 2) {
481 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
482 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
483 ioread32(ioaddr + CSR6));
484 }
485
486 /* Set the timer to switch to check for link beat and perhaps switch
487 to an alternate media type. */
488 tp->timer.expires = RUN_AT(next_tick);
489 add_timer(&tp->timer);
490#ifdef CONFIG_TULIP_NAPI
491 init_timer(&tp->oom_timer);
492 tp->oom_timer.data = (unsigned long)dev;
493 tp->oom_timer.function = oom_timer;
494#endif
495}
496
497static int
498tulip_open(struct net_device *dev)
499{
500 int retval;
501
1fb9df5d 502 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
1da177e4
LT
503 return retval;
504
505 tulip_init_ring (dev);
506
507 tulip_up (dev);
508
509 netif_start_queue (dev);
510
511 return 0;
512}
513
514
515static void tulip_tx_timeout(struct net_device *dev)
516{
517 struct tulip_private *tp = netdev_priv(dev);
518 void __iomem *ioaddr = tp->base_addr;
519 unsigned long flags;
520
521 spin_lock_irqsave (&tp->lock, flags);
522
523 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
524 /* Do nothing -- the media monitor should handle this. */
525 if (tulip_debug > 1)
526 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
527 dev->name);
528 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
529 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
ea8f400c 530 || tp->chip_id == DM910X) {
1da177e4
LT
531 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
532 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
533 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
534 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
0bb3cf72
FR
535 tp->timeout_recovery = 1;
536 schedule_work(&tp->media_work);
537 goto out_unlock;
1da177e4
LT
538 } else if (tp->chip_id == PNIC2) {
539 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
540 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
541 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
542 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
543 } else {
544 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
545 "%8.8x, resetting...\n",
546 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
547 dev->if_port = 0;
548 }
549
550#if defined(way_too_many_messages)
551 if (tulip_debug > 3) {
552 int i;
553 for (i = 0; i < RX_RING_SIZE; i++) {
554 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
555 int j;
556 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
557 "%2.2x %2.2x %2.2x.\n",
558 i, (unsigned int)tp->rx_ring[i].status,
559 (unsigned int)tp->rx_ring[i].length,
560 (unsigned int)tp->rx_ring[i].buffer1,
561 (unsigned int)tp->rx_ring[i].buffer2,
562 buf[0], buf[1], buf[2]);
563 for (j = 0; buf[j] != 0xee && j < 1600; j++)
564 if (j < 100) printk(" %2.2x", buf[j]);
565 printk(" j=%d.\n", j);
566 }
567 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
568 for (i = 0; i < RX_RING_SIZE; i++)
569 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
570 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
571 for (i = 0; i < TX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
573 printk("\n");
574 }
575#endif
576
0bb3cf72 577 tulip_tx_timeout_complete(tp, ioaddr);
1da177e4 578
0bb3cf72 579out_unlock:
1da177e4
LT
580 spin_unlock_irqrestore (&tp->lock, flags);
581 dev->trans_start = jiffies;
582 netif_wake_queue (dev);
583}
584
585
586/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
587static void tulip_init_ring(struct net_device *dev)
588{
589 struct tulip_private *tp = netdev_priv(dev);
590 int i;
591
592 tp->susp_rx = 0;
593 tp->ttimer = 0;
594 tp->nir = 0;
595
596 for (i = 0; i < RX_RING_SIZE; i++) {
597 tp->rx_ring[i].status = 0x00000000;
598 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
599 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
600 tp->rx_buffers[i].skb = NULL;
601 tp->rx_buffers[i].mapping = 0;
602 }
603 /* Mark the last entry as wrapping the ring. */
604 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
605 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
606
607 for (i = 0; i < RX_RING_SIZE; i++) {
608 dma_addr_t mapping;
609
610 /* Note the receive buffer must be longword aligned.
611 dev_alloc_skb() provides 16 byte alignment. But do *not*
612 use skb_reserve() to align the IP header! */
613 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
614 tp->rx_buffers[i].skb = skb;
615 if (skb == NULL)
616 break;
689be439 617 mapping = pci_map_single(tp->pdev, skb->data,
1da177e4
LT
618 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
619 tp->rx_buffers[i].mapping = mapping;
620 skb->dev = dev; /* Mark as being used by this device. */
621 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
622 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
623 }
624 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
625
626 /* The Tx buffer descriptor is filled in as needed, but we
627 do need to clear the ownership bit. */
628 for (i = 0; i < TX_RING_SIZE; i++) {
629 tp->tx_buffers[i].skb = NULL;
630 tp->tx_buffers[i].mapping = 0;
631 tp->tx_ring[i].status = 0x00000000;
632 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
633 }
634 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
635}
636
637static int
638tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
639{
640 struct tulip_private *tp = netdev_priv(dev);
641 int entry;
642 u32 flag;
643 dma_addr_t mapping;
644
645 spin_lock_irq(&tp->lock);
646
647 /* Calculate the next Tx descriptor entry. */
648 entry = tp->cur_tx % TX_RING_SIZE;
649
650 tp->tx_buffers[entry].skb = skb;
651 mapping = pci_map_single(tp->pdev, skb->data,
652 skb->len, PCI_DMA_TODEVICE);
653 tp->tx_buffers[entry].mapping = mapping;
654 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
655
656 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
657 flag = 0x60000000; /* No interrupt */
658 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
659 flag = 0xe0000000; /* Tx-done intr. */
660 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
661 flag = 0x60000000; /* No Tx-done intr. */
662 } else { /* Leave room for set_rx_mode() to fill entries. */
663 flag = 0xe0000000; /* Tx-done intr. */
664 netif_stop_queue(dev);
665 }
666 if (entry == TX_RING_SIZE-1)
667 flag = 0xe0000000 | DESC_RING_WRAP;
668
669 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
670 /* if we were using Transmit Automatic Polling, we would need a
671 * wmb() here. */
672 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
673 wmb();
674
675 tp->cur_tx++;
676
677 /* Trigger an immediate transmit demand. */
678 iowrite32(0, tp->base_addr + CSR1);
679
680 spin_unlock_irq(&tp->lock);
681
682 dev->trans_start = jiffies;
683
684 return 0;
685}
686
687static void tulip_clean_tx_ring(struct tulip_private *tp)
688{
689 unsigned int dirty_tx;
690
691 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
692 dirty_tx++) {
693 int entry = dirty_tx % TX_RING_SIZE;
694 int status = le32_to_cpu(tp->tx_ring[entry].status);
695
696 if (status < 0) {
697 tp->stats.tx_errors++; /* It wasn't Txed */
698 tp->tx_ring[entry].status = 0;
699 }
700
701 /* Check for Tx filter setup frames. */
702 if (tp->tx_buffers[entry].skb == NULL) {
703 /* test because dummy frames not mapped */
704 if (tp->tx_buffers[entry].mapping)
705 pci_unmap_single(tp->pdev,
706 tp->tx_buffers[entry].mapping,
707 sizeof(tp->setup_frame),
708 PCI_DMA_TODEVICE);
709 continue;
710 }
711
712 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
713 tp->tx_buffers[entry].skb->len,
714 PCI_DMA_TODEVICE);
715
716 /* Free the original skb. */
717 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
718 tp->tx_buffers[entry].skb = NULL;
719 tp->tx_buffers[entry].mapping = 0;
720 }
721}
722
723static void tulip_down (struct net_device *dev)
724{
725 struct tulip_private *tp = netdev_priv(dev);
726 void __iomem *ioaddr = tp->base_addr;
727 unsigned long flags;
728
0bb3cf72
FR
729 flush_scheduled_work();
730
1da177e4
LT
731 del_timer_sync (&tp->timer);
732#ifdef CONFIG_TULIP_NAPI
733 del_timer_sync (&tp->oom_timer);
734#endif
735 spin_lock_irqsave (&tp->lock, flags);
736
737 /* Disable interrupts by clearing the interrupt mask. */
738 iowrite32 (0x00000000, ioaddr + CSR7);
739
740 /* Stop the Tx and Rx processes. */
741 tulip_stop_rxtx(tp);
742
743 /* prepare receive buffers */
744 tulip_refill_rx(dev);
745
746 /* release any unconsumed transmit buffers */
747 tulip_clean_tx_ring(tp);
748
749 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
750 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
751
752 spin_unlock_irqrestore (&tp->lock, flags);
753
754 init_timer(&tp->timer);
755 tp->timer.data = (unsigned long)dev;
756 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
757
758 dev->if_port = tp->saved_if_port;
759
760 /* Leave the driver in snooze, not sleep, mode. */
761 tulip_set_power_state (tp, 0, 1);
762}
763
764
765static int tulip_close (struct net_device *dev)
766{
767 struct tulip_private *tp = netdev_priv(dev);
768 void __iomem *ioaddr = tp->base_addr;
769 int i;
770
771 netif_stop_queue (dev);
772
773 tulip_down (dev);
774
775 if (tulip_debug > 1)
776 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
777 dev->name, ioread32 (ioaddr + CSR5));
778
779 free_irq (dev->irq, dev);
780
781 /* Free all the skbuffs in the Rx queue. */
782 for (i = 0; i < RX_RING_SIZE; i++) {
783 struct sk_buff *skb = tp->rx_buffers[i].skb;
784 dma_addr_t mapping = tp->rx_buffers[i].mapping;
785
786 tp->rx_buffers[i].skb = NULL;
787 tp->rx_buffers[i].mapping = 0;
788
789 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
790 tp->rx_ring[i].length = 0;
791 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
792 if (skb) {
793 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
794 PCI_DMA_FROMDEVICE);
795 dev_kfree_skb (skb);
796 }
797 }
798 for (i = 0; i < TX_RING_SIZE; i++) {
799 struct sk_buff *skb = tp->tx_buffers[i].skb;
800
801 if (skb != NULL) {
802 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
803 skb->len, PCI_DMA_TODEVICE);
804 dev_kfree_skb (skb);
805 }
806 tp->tx_buffers[i].skb = NULL;
807 tp->tx_buffers[i].mapping = 0;
808 }
809
810 return 0;
811}
812
813static struct net_device_stats *tulip_get_stats(struct net_device *dev)
814{
815 struct tulip_private *tp = netdev_priv(dev);
816 void __iomem *ioaddr = tp->base_addr;
817
818 if (netif_running(dev)) {
819 unsigned long flags;
820
821 spin_lock_irqsave (&tp->lock, flags);
822
823 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
824
825 spin_unlock_irqrestore(&tp->lock, flags);
826 }
827
828 return &tp->stats;
829}
830
831
832static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
833{
834 struct tulip_private *np = netdev_priv(dev);
835 strcpy(info->driver, DRV_NAME);
836 strcpy(info->version, DRV_VERSION);
837 strcpy(info->bus_info, pci_name(np->pdev));
838}
839
840static struct ethtool_ops ops = {
841 .get_drvinfo = tulip_get_drvinfo
842};
843
844/* Provide ioctl() calls to examine the MII xcvr state. */
845static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
846{
847 struct tulip_private *tp = netdev_priv(dev);
848 void __iomem *ioaddr = tp->base_addr;
849 struct mii_ioctl_data *data = if_mii(rq);
850 const unsigned int phy_idx = 0;
851 int phy = tp->phys[phy_idx] & 0x1f;
852 unsigned int regnum = data->reg_num;
853
854 switch (cmd) {
855 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
856 if (tp->mii_cnt)
857 data->phy_id = phy;
858 else if (tp->flags & HAS_NWAY)
859 data->phy_id = 32;
860 else if (tp->chip_id == COMET)
861 data->phy_id = 1;
862 else
863 return -ENODEV;
864
865 case SIOCGMIIREG: /* Read MII PHY register. */
866 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
867 int csr12 = ioread32 (ioaddr + CSR12);
868 int csr14 = ioread32 (ioaddr + CSR14);
869 switch (regnum) {
870 case 0:
871 if (((csr14<<5) & 0x1000) ||
872 (dev->if_port == 5 && tp->nwayset))
873 data->val_out = 0x1000;
874 else
875 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
876 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
877 break;
878 case 1:
879 data->val_out =
880 0x1848 +
881 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
882 ((csr12&0x06) == 6 ? 0 : 4);
883 data->val_out |= 0x6048;
884 break;
885 case 4:
886 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
887 data->val_out =
888 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
889 ((csr14 >> 1) & 0x20) + 1;
890 data->val_out |= ((csr14 >> 9) & 0x03C0);
891 break;
892 case 5: data->val_out = tp->lpar; break;
893 default: data->val_out = 0; break;
894 }
895 } else {
896 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
897 }
898 return 0;
899
900 case SIOCSMIIREG: /* Write MII PHY register. */
901 if (!capable (CAP_NET_ADMIN))
902 return -EPERM;
903 if (regnum & ~0x1f)
904 return -EINVAL;
905 if (data->phy_id == phy) {
906 u16 value = data->val_in;
907 switch (regnum) {
908 case 0: /* Check for autonegotiation on or reset. */
909 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
910 if (tp->full_duplex_lock)
911 tp->full_duplex = (value & 0x0100) ? 1 : 0;
912 break;
913 case 4:
914 tp->advertising[phy_idx] =
915 tp->mii_advertise = data->val_in;
916 break;
917 }
918 }
919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
920 u16 value = data->val_in;
921 if (regnum == 0) {
922 if ((value & 0x1200) == 0x1200) {
923 if (tp->chip_id == PNIC2) {
924 pnic2_start_nway (dev);
925 } else {
926 t21142_start_nway (dev);
927 }
928 }
929 } else if (regnum == 4)
930 tp->sym_advertise = value;
931 } else {
932 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
933 }
934 return 0;
935 default:
936 return -EOPNOTSUPP;
937 }
938
939 return -EOPNOTSUPP;
940}
941
942
943/* Set or clear the multicast filter for this adaptor.
944 Note that we only use exclusion around actually queueing the
945 new frame, not around filling tp->setup_frame. This is non-deterministic
946 when re-entered but still correct. */
947
948#undef set_bit_le
949#define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
950
951static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
952{
953 struct tulip_private *tp = netdev_priv(dev);
954 u16 hash_table[32];
955 struct dev_mc_list *mclist;
956 int i;
957 u16 *eaddrs;
958
959 memset(hash_table, 0, sizeof(hash_table));
960 set_bit_le(255, hash_table); /* Broadcast entry */
961 /* This should work on big-endian machines as well. */
962 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
963 i++, mclist = mclist->next) {
964 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
965
966 set_bit_le(index, hash_table);
967
968 }
969 for (i = 0; i < 32; i++) {
970 *setup_frm++ = hash_table[i];
971 *setup_frm++ = hash_table[i];
972 }
973 setup_frm = &tp->setup_frame[13*6];
974
975 /* Fill the final entry with our physical address. */
976 eaddrs = (u16 *)dev->dev_addr;
977 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
978 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
979 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
980}
981
982static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
983{
984 struct tulip_private *tp = netdev_priv(dev);
985 struct dev_mc_list *mclist;
986 int i;
987 u16 *eaddrs;
988
989 /* We have <= 14 addresses so we can use the wonderful
990 16 address perfect filtering of the Tulip. */
991 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
992 i++, mclist = mclist->next) {
993 eaddrs = (u16 *)mclist->dmi_addr;
994 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
995 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
996 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
997 }
998 /* Fill the unused entries with the broadcast address. */
999 memset(setup_frm, 0xff, (15-i)*12);
1000 setup_frm = &tp->setup_frame[15*6];
1001
1002 /* Fill the final entry with our physical address. */
1003 eaddrs = (u16 *)dev->dev_addr;
1004 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1005 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1006 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1007}
1008
1009
1010static void set_rx_mode(struct net_device *dev)
1011{
1012 struct tulip_private *tp = netdev_priv(dev);
1013 void __iomem *ioaddr = tp->base_addr;
1014 int csr6;
1015
1016 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1017
1018 tp->csr6 &= ~0x00D5;
1019 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1020 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1021 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1da177e4
LT
1022 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1023 /* Too many to filter well -- accept all multicasts. */
1024 tp->csr6 |= AcceptAllMulticast;
1025 csr6 |= AcceptAllMulticast;
1026 } else if (tp->flags & MC_HASH_ONLY) {
1027 /* Some work-alikes have only a 64-entry hash filter table. */
1028 /* Should verify correctness on big-endian/__powerpc__ */
1029 struct dev_mc_list *mclist;
1030 int i;
1031 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else {
1035 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1036 int filterbit;
1037 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1038 i++, mclist = mclist->next) {
1039 if (tp->flags & COMET_MAC_ADDR)
1040 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1041 else
1042 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1043 filterbit &= 0x3f;
1044 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1045 if (tulip_debug > 2) {
1046 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1047 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1048 mclist->dmi_addr[0], mclist->dmi_addr[1],
1049 mclist->dmi_addr[2], mclist->dmi_addr[3],
1050 mclist->dmi_addr[4], mclist->dmi_addr[5],
1051 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1052 }
1053 }
1054 if (mc_filter[0] == tp->mc_filter[0] &&
1055 mc_filter[1] == tp->mc_filter[1])
1056 ; /* No change. */
1057 else if (tp->flags & IS_ASIX) {
1058 iowrite32(2, ioaddr + CSR13);
1059 iowrite32(mc_filter[0], ioaddr + CSR14);
1060 iowrite32(3, ioaddr + CSR13);
1061 iowrite32(mc_filter[1], ioaddr + CSR14);
1062 } else if (tp->flags & COMET_MAC_ADDR) {
1063 iowrite32(mc_filter[0], ioaddr + 0xAC);
1064 iowrite32(mc_filter[1], ioaddr + 0xB0);
1065 }
1066 tp->mc_filter[0] = mc_filter[0];
1067 tp->mc_filter[1] = mc_filter[1];
1068 }
1069 } else {
1070 unsigned long flags;
1071 u32 tx_flags = 0x08000000 | 192;
1072
1073 /* Note that only the low-address shortword of setup_frame is valid!
1074 The values are doubled for big-endian architectures. */
1075 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1076 build_setup_frame_hash(tp->setup_frame, dev);
1077 tx_flags = 0x08400000 | 192;
1078 } else {
1079 build_setup_frame_perfect(tp->setup_frame, dev);
1080 }
1081
1082 spin_lock_irqsave(&tp->lock, flags);
1083
1084 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1085 /* Same setup recently queued, we need not add it. */
1086 } else {
1087 unsigned int entry;
1088 int dummy = -1;
1089
1090 /* Now add this frame to the Tx list. */
1091
1092 entry = tp->cur_tx++ % TX_RING_SIZE;
1093
1094 if (entry != 0) {
ea8f400c
PC
1095 /* Avoid a chip errata by prefixing a dummy entry. */
1096 tp->tx_buffers[entry].skb = NULL;
1097 tp->tx_buffers[entry].mapping = 0;
1098 tp->tx_ring[entry].length =
1099 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1100 tp->tx_ring[entry].buffer1 = 0;
1101 /* Must set DescOwned later to avoid race with chip */
1102 dummy = entry;
1103 entry = tp->cur_tx++ % TX_RING_SIZE;
1104
1da177e4
LT
1105 }
1106
1107 tp->tx_buffers[entry].skb = NULL;
1108 tp->tx_buffers[entry].mapping =
1109 pci_map_single(tp->pdev, tp->setup_frame,
1110 sizeof(tp->setup_frame),
1111 PCI_DMA_TODEVICE);
1112 /* Put the setup frame on the Tx list. */
1113 if (entry == TX_RING_SIZE-1)
1114 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1115 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1116 tp->tx_ring[entry].buffer1 =
1117 cpu_to_le32(tp->tx_buffers[entry].mapping);
1118 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1119 if (dummy >= 0)
1120 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1121 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1122 netif_stop_queue(dev);
1123
1124 /* Trigger an immediate transmit demand. */
1125 iowrite32(0, ioaddr + CSR1);
1126 }
1127
1128 spin_unlock_irqrestore(&tp->lock, flags);
1129 }
1130
1131 iowrite32(csr6, ioaddr + CSR6);
1132}
1133
1134#ifdef CONFIG_TULIP_MWI
1135static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1136 struct net_device *dev)
1137{
1138 struct tulip_private *tp = netdev_priv(dev);
1139 u8 cache;
1140 u16 pci_command;
1141 u32 csr0;
1142
1143 if (tulip_debug > 3)
1144 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1145
1146 tp->csr0 = csr0 = 0;
1147
1148 /* if we have any cache line size at all, we can do MRM */
1149 csr0 |= MRM;
1150
1151 /* ...and barring hardware bugs, MWI */
1152 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1153 csr0 |= MWI;
1154
1155 /* set or disable MWI in the standard PCI command bit.
1156 * Check for the case where mwi is desired but not available
1157 */
1158 if (csr0 & MWI) pci_set_mwi(pdev);
1159 else pci_clear_mwi(pdev);
1160
1161 /* read result from hardware (in case bit refused to enable) */
1162 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1163 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1164 csr0 &= ~MWI;
1165
1166 /* if cache line size hardwired to zero, no MWI */
1167 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1168 if ((csr0 & MWI) && (cache == 0)) {
1169 csr0 &= ~MWI;
1170 pci_clear_mwi(pdev);
1171 }
1172
1173 /* assign per-cacheline-size cache alignment and
1174 * burst length values
1175 */
1176 switch (cache) {
1177 case 8:
1178 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1179 break;
1180 case 16:
1181 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1182 break;
1183 case 32:
1184 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1185 break;
1186 default:
1187 cache = 0;
1188 break;
1189 }
1190
1191 /* if we have a good cache line size, we by now have a good
1192 * csr0, so save it and exit
1193 */
1194 if (cache)
1195 goto out;
1196
1197 /* we don't have a good csr0 or cache line size, disable MWI */
1198 if (csr0 & MWI) {
1199 pci_clear_mwi(pdev);
1200 csr0 &= ~MWI;
1201 }
1202
1203 /* sane defaults for burst length and cache alignment
1204 * originally from de4x5 driver
1205 */
1206 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1207
1208out:
1209 tp->csr0 = csr0;
1210 if (tulip_debug > 2)
1211 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1212 pci_name(pdev), cache, csr0);
1213}
1214#endif
1215
1216/*
1217 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1218 * is the DM910X and the on chip ULi devices
1219 */
f3b197ac 1220
1da177e4
LT
1221static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1222{
1223 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1224 return 1;
1da177e4
LT
1225 return 0;
1226}
1227
1228static int __devinit tulip_init_one (struct pci_dev *pdev,
1229 const struct pci_device_id *ent)
1230{
1231 struct tulip_private *tp;
1232 /* See note below on the multiport cards. */
1233 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1234 static struct pci_device_id early_486_chipsets[] = {
1235 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1236 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1237 { },
1238 };
1239 static int last_irq;
1240 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1241 u8 chip_rev;
1242 int i, irq;
1243 unsigned short sum;
1244 unsigned char *ee_data;
1245 struct net_device *dev;
1246 void __iomem *ioaddr;
1247 static int board_idx = -1;
1248 int chip_idx = ent->driver_data;
1249 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1250 unsigned int eeprom_missing = 0;
1251 unsigned int force_csr0 = 0;
1252
1253#ifndef MODULE
1254 static int did_version; /* Already printed version info. */
1255 if (tulip_debug > 0 && did_version++ == 0)
1256 printk (KERN_INFO "%s", version);
1257#endif
1258
1259 board_idx++;
1260
1261 /*
1262 * Lan media wire a tulip chip to a wan interface. Needs a very
1263 * different driver (lmc driver)
1264 */
1265
1266 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1267 printk (KERN_ERR PFX "skipping LMC card.\n");
1268 return -ENODEV;
1269 }
1270
1271 /*
1272 * Early DM9100's need software CRC and the DMFE driver
1273 */
1274
1275 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1276 {
1277 u32 dev_rev;
1278 /* Read Chip revision */
1279 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1280 if(dev_rev < 0x02000030)
1281 {
1282 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1283 return -ENODEV;
1284 }
1285 }
1286
1287 /*
1288 * Looks for early PCI chipsets where people report hangs
1289 * without the workarounds being on.
1290 */
1291
1292 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
f3b197ac 1293 aligned. Aries might need this too. The Saturn errata are not
1da177e4
LT
1294 pretty reading but thankfully it's an old 486 chipset.
1295
1296 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1297 Saturn.
1298 */
1299
1300 if (pci_dev_present(early_486_chipsets)) {
1301 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1302 force_csr0 = 1;
1303 }
1304
1305 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1306 if (chip_idx == AX88140) {
1307 if ((csr0 & 0x3f00) == 0)
1308 csr0 |= 0x2000;
1309 }
1310
1311 /* PNIC doesn't have MWI/MRL/MRM... */
1312 if (chip_idx == LC82C168)
1313 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1314
1315 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1316 if (tulip_uli_dm_quirk(pdev)) {
1317 csr0 &= ~0x01f100ff;
1318#if defined(__sparc__)
1319 csr0 = (csr0 & ~0xff00) | 0xe000;
1320#endif
1321 }
1322 /*
1323 * And back to business
1324 */
1325
1326 i = pci_enable_device(pdev);
1327 if (i) {
1328 printk (KERN_ERR PFX
1329 "Cannot enable tulip board #%d, aborting\n",
1330 board_idx);
1331 return i;
1332 }
1333
1334 irq = pdev->irq;
1335
1336 /* alloc_etherdev ensures aligned and zeroed private structures */
1337 dev = alloc_etherdev (sizeof (*tp));
1338 if (!dev) {
1339 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1340 return -ENOMEM;
1341 }
1342
1343 SET_MODULE_OWNER(dev);
1344 SET_NETDEV_DEV(dev, &pdev->dev);
1345 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
7c7459d1 1346 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1da177e4 1347 "aborting\n", pci_name(pdev),
7c7459d1
GKH
1348 (unsigned long long)pci_resource_len (pdev, 0),
1349 (unsigned long long)pci_resource_start (pdev, 0));
1da177e4
LT
1350 goto err_out_free_netdev;
1351 }
1352
1353 /* grab all resources from both PIO and MMIO regions, as we
1354 * don't want anyone else messing around with our hardware */
1355 if (pci_request_regions (pdev, "tulip"))
1356 goto err_out_free_netdev;
1357
7f2b1248
GG
1358 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1359
1da177e4
LT
1360 if (!ioaddr)
1361 goto err_out_free_res;
1362
1363 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1364
1365 /*
1366 * initialize private data structure 'tp'
1367 * it is zeroed and aligned in alloc_etherdev
1368 */
1369 tp = netdev_priv(dev);
1370
1371 tp->rx_ring = pci_alloc_consistent(pdev,
1372 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1373 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1374 &tp->rx_ring_dma);
1375 if (!tp->rx_ring)
1376 goto err_out_mtable;
1377 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1378 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1379
1380 tp->chip_id = chip_idx;
1381 tp->flags = tulip_tbl[chip_idx].flags;
1382 tp->pdev = pdev;
1383 tp->base_addr = ioaddr;
1384 tp->revision = chip_rev;
1385 tp->csr0 = csr0;
1386 spin_lock_init(&tp->lock);
1387 spin_lock_init(&tp->mii_lock);
1388 init_timer(&tp->timer);
1389 tp->timer.data = (unsigned long)dev;
1390 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1391
0bb3cf72
FR
1392 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task, dev);
1393
1da177e4
LT
1394 dev->base_addr = (unsigned long)ioaddr;
1395
1396#ifdef CONFIG_TULIP_MWI
1397 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1398 tulip_mwi_config (pdev, dev);
1399#else
1400 /* MWI is broken for DC21143 rev 65... */
1401 if (chip_idx == DC21143 && chip_rev == 65)
1402 tp->csr0 &= ~MWI;
1403#endif
1404
1405 /* Stop the chip's Tx and Rx processes. */
1406 tulip_stop_rxtx(tp);
1407
1408 pci_set_master(pdev);
1409
1410#ifdef CONFIG_GSC
1411 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1412 switch (pdev->subsystem_device) {
1413 default:
1414 break;
1415 case 0x1061:
1416 case 0x1062:
1417 case 0x1063:
1418 case 0x1098:
1419 case 0x1099:
1420 case 0x10EE:
1421 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1422 chip_name = "GSC DS21140 Tulip";
1423 }
1424 }
1425#endif
1426
1427 /* Clear the missed-packet counter. */
1428 ioread32(ioaddr + CSR8);
1429
1430 /* The station address ROM is read byte serially. The register must
1431 be polled, waiting for the value to be read bit serially from the
1432 EEPROM.
1433 */
1434 ee_data = tp->eeprom;
1435 sum = 0;
1436 if (chip_idx == LC82C168) {
1437 for (i = 0; i < 3; i++) {
1438 int value, boguscnt = 100000;
1439 iowrite32(0x600 | i, ioaddr + 0x98);
1440 do
1441 value = ioread32(ioaddr + CSR9);
1442 while (value < 0 && --boguscnt > 0);
1443 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1444 sum += value & 0xffff;
1445 }
1446 } else if (chip_idx == COMET) {
1447 /* No need to read the EEPROM. */
1448 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1449 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1450 for (i = 0; i < 6; i ++)
1451 sum += dev->dev_addr[i];
1452 } else {
1453 /* A serial EEPROM interface, we read now and sort it out later. */
1454 int sa_offset = 0;
1455 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1456
1457 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1458 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1459 ee_data[i] = data & 0xff;
1460 ee_data[i + 1] = data >> 8;
1461 }
1462
1463 /* DEC now has a specification (see Notes) but early board makers
1464 just put the address in the first EEPROM locations. */
1465 /* This does memcmp(ee_data, ee_data+16, 8) */
1466 for (i = 0; i < 8; i ++)
1467 if (ee_data[i] != ee_data[16+i])
1468 sa_offset = 20;
1469 if (chip_idx == CONEXANT) {
1470 /* Check that the tuple type and length is correct. */
1471 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1472 sa_offset = 0x19A;
1473 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1474 ee_data[2] == 0) {
1475 sa_offset = 2; /* Grrr, damn Matrox boards. */
1476 multiport_cnt = 4;
1477 }
1da177e4
LT
1478#ifdef CONFIG_DDB5477
1479 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1480 /* DDB5477 MAC address in first EEPROM locations. */
1481 sa_offset = 0;
1482 /* No media table either */
1483 tp->flags &= ~HAS_MEDIA_TABLE;
1484 }
1485#endif
1486#ifdef CONFIG_MIPS_COBALT
f3b197ac 1487 if ((pdev->bus->number == 0) &&
1da177e4
LT
1488 ((PCI_SLOT(pdev->devfn) == 7) ||
1489 (PCI_SLOT(pdev->devfn) == 12))) {
1490 /* Cobalt MAC address in first EEPROM locations. */
1491 sa_offset = 0;
12755c16
RB
1492 /* Ensure our media table fixup get's applied */
1493 memcpy(ee_data + 16, ee_data, 8);
1da177e4
LT
1494 }
1495#endif
1496#ifdef CONFIG_GSC
1497 /* Check to see if we have a broken srom */
1498 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1499 /* pci_vendor_id and subsystem_id are swapped */
1500 ee_data[0] = ee_data[2];
1501 ee_data[1] = ee_data[3];
1502 ee_data[2] = 0x61;
1503 ee_data[3] = 0x10;
1504
1505 /* HSC-PCI boards need to be byte-swaped and shifted
1506 * up 1 word. This shift needs to happen at the end
1507 * of the MAC first because of the 2 byte overlap.
1508 */
1509 for (i = 4; i >= 0; i -= 2) {
1510 ee_data[17 + i + 3] = ee_data[17 + i];
1511 ee_data[16 + i + 5] = ee_data[16 + i];
1512 }
1513 }
1514#endif
1515
1516 for (i = 0; i < 6; i ++) {
1517 dev->dev_addr[i] = ee_data[i + sa_offset];
1518 sum += ee_data[i + sa_offset];
1519 }
1520 }
1521 /* Lite-On boards have the address byte-swapped. */
1522 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1523 && dev->dev_addr[1] == 0x00)
1524 for (i = 0; i < 6; i+=2) {
1525 char tmp = dev->dev_addr[i];
1526 dev->dev_addr[i] = dev->dev_addr[i+1];
1527 dev->dev_addr[i+1] = tmp;
1528 }
1529 /* On the Zynx 315 Etherarray and other multiport boards only the
1530 first Tulip has an EEPROM.
1531 On Sparc systems the mac address is held in the OBP property
1532 "local-mac-address".
1533 The addresses of the subsequent ports are derived from the first.
1534 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1535 that here as well. */
1536 if (sum == 0 || sum == 6*0xff) {
1537#if defined(__sparc__)
1538 struct pcidev_cookie *pcp = pdev->sysdata;
1539#endif
1540 eeprom_missing = 1;
1541 for (i = 0; i < 5; i++)
1542 dev->dev_addr[i] = last_phys_addr[i];
1543 dev->dev_addr[i] = last_phys_addr[i] + 1;
1544#if defined(__sparc__)
de8d28b1
DM
1545 if (pcp) {
1546 unsigned char *addr;
1547 int len;
6aa20a22 1548
de8d28b1
DM
1549 addr = of_get_property(pcp->prom_node,
1550 "local-mac-address", &len);
1551 if (addr && len == 6)
1552 memcpy(dev->dev_addr, addr, 6);
1da177e4
LT
1553 }
1554#endif
b9c4c609 1555#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1da177e4
LT
1556 if (last_irq)
1557 irq = last_irq;
1558#endif
1559 }
1560
1561 for (i = 0; i < 6; i++)
1562 last_phys_addr[i] = dev->dev_addr[i];
1563 last_irq = irq;
1564 dev->irq = irq;
1565
1566 /* The lower four bits are the media type. */
1567 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1568 if (options[board_idx] & MEDIA_MASK)
1569 tp->default_port = options[board_idx] & MEDIA_MASK;
1570 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1571 tp->full_duplex = 1;
1572 if (mtu[board_idx] > 0)
1573 dev->mtu = mtu[board_idx];
1574 }
1575 if (dev->mem_start & MEDIA_MASK)
1576 tp->default_port = dev->mem_start & MEDIA_MASK;
1577 if (tp->default_port) {
1578 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1579 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1580 tp->medialock = 1;
1581 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1582 tp->full_duplex = 1;
1583 }
1584 if (tp->full_duplex)
1585 tp->full_duplex_lock = 1;
1586
1587 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1588 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1589 tp->mii_advertise = media2advert[tp->default_port - 9];
1590 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1591 }
1592
1593 if (tp->flags & HAS_MEDIA_TABLE) {
1594 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1595 tulip_parse_eeprom(dev);
1596 strcpy(dev->name, "eth%d"); /* un-hack */
1597 }
1598
1599 if ((tp->flags & ALWAYS_CHECK_MII) ||
1600 (tp->mtable && tp->mtable->has_mii) ||
1601 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1602 if (tp->mtable && tp->mtable->has_mii) {
1603 for (i = 0; i < tp->mtable->leafcount; i++)
1604 if (tp->mtable->mleaf[i].media == 11) {
1605 tp->cur_index = i;
1606 tp->saved_if_port = dev->if_port;
1607 tulip_select_media(dev, 2);
1608 dev->if_port = tp->saved_if_port;
1609 break;
1610 }
1611 }
1612
1613 /* Find the connected MII xcvrs.
1614 Doing this in open() would allow detecting external xcvrs
1615 later, but takes much time. */
1616 tulip_find_mii (dev, board_idx);
1617 }
1618
1619 /* The Tulip-specific entries in the device structure. */
1620 dev->open = tulip_open;
1621 dev->hard_start_xmit = tulip_start_xmit;
1622 dev->tx_timeout = tulip_tx_timeout;
1623 dev->watchdog_timeo = TX_TIMEOUT;
1624#ifdef CONFIG_TULIP_NAPI
1625 dev->poll = tulip_poll;
1626 dev->weight = 16;
1627#endif
1628 dev->stop = tulip_close;
1629 dev->get_stats = tulip_get_stats;
1630 dev->do_ioctl = private_ioctl;
1631 dev->set_multicast_list = set_rx_mode;
1632#ifdef CONFIG_NET_POLL_CONTROLLER
1633 dev->poll_controller = &poll_tulip;
1634#endif
1635 SET_ETHTOOL_OPS(dev, &ops);
1636
1637 if (register_netdev(dev))
1638 goto err_out_free_ring;
1639
c69f4122
GG
1640 printk(KERN_INFO "%s: %s rev %d at "
1641#ifdef CONFIG_TULIP_MMIO
1642 "MMIO"
1643#else
1644 "Port"
1645#endif
1646 " %#llx,", dev->name, chip_name, chip_rev,
1647 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1da177e4
LT
1648 pci_set_drvdata(pdev, dev);
1649
1650 if (eeprom_missing)
1651 printk(" EEPROM not present,");
1652 for (i = 0; i < 6; i++)
1653 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1654 printk(", IRQ %d.\n", irq);
1655
1656 if (tp->chip_id == PNIC2)
1657 tp->link_change = pnic2_lnk_change;
1658 else if (tp->flags & HAS_NWAY)
1659 tp->link_change = t21142_lnk_change;
1660 else if (tp->flags & HAS_PNICNWAY)
1661 tp->link_change = pnic_lnk_change;
1662
1663 /* Reset the xcvr interface and turn on heartbeat. */
1664 switch (chip_idx) {
1665 case DC21140:
1666 case DM910X:
1da177e4
LT
1667 default:
1668 if (tp->mtable)
1669 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1670 break;
1671 case DC21142:
1672 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1673 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1674 iowrite32(0x0000, ioaddr + CSR13);
1675 iowrite32(0x0000, ioaddr + CSR14);
1676 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1677 } else
1678 t21142_start_nway(dev);
1679 break;
1680 case PNIC2:
1681 /* just do a reset for sanity sake */
1682 iowrite32(0x0000, ioaddr + CSR13);
1683 iowrite32(0x0000, ioaddr + CSR14);
1684 break;
1685 case LC82C168:
1686 if ( ! tp->mii_cnt) {
1687 tp->nway = 1;
1688 tp->nwayset = 0;
1689 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1690 iowrite32(0x30, ioaddr + CSR12);
1691 iowrite32(0x0001F078, ioaddr + CSR6);
1692 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1693 }
1694 break;
1695 case MX98713:
1696 case COMPEX9881:
1697 iowrite32(0x00000000, ioaddr + CSR6);
1698 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1699 iowrite32(0x00000001, ioaddr + CSR13);
1700 break;
1701 case MX98715:
1702 case MX98725:
1703 iowrite32(0x01a80000, ioaddr + CSR6);
1704 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1705 iowrite32(0x00001000, ioaddr + CSR12);
1706 break;
1707 case COMET:
1708 /* No initialization necessary. */
1709 break;
1710 }
1711
1712 /* put the chip in snooze mode until opened */
1713 tulip_set_power_state (tp, 0, 1);
1714
1715 return 0;
1716
1717err_out_free_ring:
1718 pci_free_consistent (pdev,
1719 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1720 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1721 tp->rx_ring, tp->rx_ring_dma);
1722
1723err_out_mtable:
b4558ea9 1724 kfree (tp->mtable);
1da177e4
LT
1725 pci_iounmap(pdev, ioaddr);
1726
1727err_out_free_res:
1728 pci_release_regions (pdev);
1729
1730err_out_free_netdev:
1731 free_netdev (dev);
1732 return -ENODEV;
1733}
1734
1735
1736#ifdef CONFIG_PM
1737
1738static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1739{
1740 struct net_device *dev = pci_get_drvdata(pdev);
1741
1fe2cb32
AB
1742 if (!dev)
1743 return -EINVAL;
1744
1745 if (netif_running(dev))
1746 tulip_down(dev);
1747
1748 netif_device_detach(dev);
1749 free_irq(dev->irq, dev);
1750
1751 pci_save_state(pdev);
1752 pci_disable_device(pdev);
1753 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1754
1da177e4
LT
1755 return 0;
1756}
1757
1758
1759static int tulip_resume(struct pci_dev *pdev)
1760{
1761 struct net_device *dev = pci_get_drvdata(pdev);
1fe2cb32 1762 int retval;
1da177e4 1763
1fe2cb32
AB
1764 if (!dev)
1765 return -EINVAL;
1766
1767 pci_set_power_state(pdev, PCI_D0);
1768 pci_restore_state(pdev);
1769
9f486ae1
VH
1770 if ((retval = pci_enable_device(pdev))) {
1771 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1772 return retval;
1773 }
1fe2cb32 1774
1fb9df5d 1775 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1fe2cb32
AB
1776 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1777 return retval;
1da177e4 1778 }
1fe2cb32
AB
1779
1780 netif_device_attach(dev);
1781
1782 if (netif_running(dev))
1783 tulip_up(dev);
1784
1da177e4
LT
1785 return 0;
1786}
1787
1788#endif /* CONFIG_PM */
1789
1790
1791static void __devexit tulip_remove_one (struct pci_dev *pdev)
1792{
1793 struct net_device *dev = pci_get_drvdata (pdev);
1794 struct tulip_private *tp;
1795
1796 if (!dev)
1797 return;
1798
1799 tp = netdev_priv(dev);
1800 unregister_netdev(dev);
1801 pci_free_consistent (pdev,
1802 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1803 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1804 tp->rx_ring, tp->rx_ring_dma);
b4558ea9 1805 kfree (tp->mtable);
1da177e4
LT
1806 pci_iounmap(pdev, tp->base_addr);
1807 free_netdev (dev);
1808 pci_release_regions (pdev);
1809 pci_set_drvdata (pdev, NULL);
1810
1811 /* pci_power_off (pdev, -1); */
1812}
1813
1814#ifdef CONFIG_NET_POLL_CONTROLLER
1815/*
1816 * Polling 'interrupt' - used by things like netconsole to send skbs
1817 * without having to re-enable interrupts. It's not called while
1818 * the interrupt routine is executing.
1819 */
1820
1821static void poll_tulip (struct net_device *dev)
1822{
1823 /* disable_irq here is not very nice, but with the lockless
1824 interrupt handler we have no other choice. */
1825 disable_irq(dev->irq);
1826 tulip_interrupt (dev->irq, dev, NULL);
1827 enable_irq(dev->irq);
1828}
1829#endif
1830
1831static struct pci_driver tulip_driver = {
1832 .name = DRV_NAME,
1833 .id_table = tulip_pci_tbl,
1834 .probe = tulip_init_one,
1835 .remove = __devexit_p(tulip_remove_one),
1836#ifdef CONFIG_PM
1837 .suspend = tulip_suspend,
1838 .resume = tulip_resume,
1839#endif /* CONFIG_PM */
1840};
1841
1842
1843static int __init tulip_init (void)
1844{
1845#ifdef MODULE
1846 printk (KERN_INFO "%s", version);
1847#endif
1848
1849 /* copy module parms into globals */
1850 tulip_rx_copybreak = rx_copybreak;
1851 tulip_max_interrupt_work = max_interrupt_work;
1852
1853 /* probe for and init boards */
29917620 1854 return pci_register_driver(&tulip_driver);
1da177e4
LT
1855}
1856
1857
1858static void __exit tulip_cleanup (void)
1859{
1860 pci_unregister_driver (&tulip_driver);
1861}
1862
1863
1864module_init(tulip_init);
1865module_exit(tulip_cleanup);