]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/skfp/skfddi.c
IRQ: Typedef the IRQ handler function type
[net-next-2.6.git] / drivers / net / skfp / skfddi.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 *
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
46 *
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION "2.07"
69
f71e1309 70static const char * const boot_msg =
1da177e4
LT
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/module.h>
77#include <linux/kernel.h>
78#include <linux/errno.h>
79#include <linux/ioport.h>
80#include <linux/slab.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87
88#include <asm/byteorder.h>
89#include <asm/io.h>
90#include <asm/uaccess.h>
91
92#include "h/types.h"
93#undef ADDR // undo Linux definition
94#include "h/skfbi.h"
95#include "h/fddi.h"
96#include "h/smc.h"
97#include "h/smtstate.h"
98
99
100// Define module-wide (static) routines
101static int skfp_driver_init(struct net_device *dev);
102static int skfp_open(struct net_device *dev);
103static int skfp_close(struct net_device *dev);
104static irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs);
105static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106static void skfp_ctl_set_multicast_list(struct net_device *dev);
107static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111static void send_queued_packets(struct s_smc *smc);
112static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113static void ResetAdapter(struct s_smc *smc);
114
115
116// Functions needed by the hardware module
117void *mac_drv_get_space(struct s_smc *smc, u_int size);
118void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 int flag);
123void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124void llc_restart_tx(struct s_smc *smc);
125void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count, int len);
127void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count);
129void mac_drv_fill_rxd(struct s_smc *smc);
130void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 int frag_count);
132int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 int la_len);
134void dump_data(unsigned char *Data, int length);
135
136// External functions from the hardware module
137extern u_int mac_drv_check_space(void);
138extern void read_address(struct s_smc *smc, u_char * mac_addr);
139extern void card_stop(struct s_smc *smc);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
145extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146extern void fddi_isr(struct s_smc *smc);
147extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148 int len, int frame_status);
149extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151extern void enable_tx_irq(struct s_smc *smc, u_short queue);
1da177e4
LT
152
153static struct pci_device_id skfddi_pci_tbl[] = {
154 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
155 { } /* Terminating entry */
156};
157MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
158MODULE_LICENSE("GPL");
159MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
160
161// Define module-wide (static) variables
162
163static int num_boards; /* total number of adapters configured */
164
165#ifdef DRIVERDEBUG
166#define PRINTK(s, args...) printk(s, ## args)
167#else
168#define PRINTK(s, args...)
169#endif // DRIVERDEBUG
170
171/*
172 * =================
173 * = skfp_init_one =
174 * =================
175 *
176 * Overview:
177 * Probes for supported FDDI PCI controllers
178 *
179 * Returns:
180 * Condition code
181 *
182 * Arguments:
183 * pdev - pointer to PCI device information
184 *
185 * Functional Description:
186 * This is now called by PCI driver registration process
187 * for each board found.
188 *
189 * Return Codes:
190 * 0 - This device (fddi0, fddi1, etc) configured successfully
191 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
192 * present for this device name
193 *
194 *
195 * Side Effects:
196 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
197 * initialized and the board resources are read and stored in
198 * the device structure.
199 */
200static int skfp_init_one(struct pci_dev *pdev,
201 const struct pci_device_id *ent)
202{
203 struct net_device *dev;
204 struct s_smc *smc; /* board pointer */
205 void __iomem *mem;
206 int err;
207
208 PRINTK(KERN_INFO "entering skfp_init_one\n");
209
210 if (num_boards == 0)
211 printk("%s\n", boot_msg);
212
213 err = pci_enable_device(pdev);
214 if (err)
215 return err;
216
217 err = pci_request_regions(pdev, "skfddi");
218 if (err)
219 goto err_out1;
220
221 pci_set_master(pdev);
222
223#ifdef MEM_MAPPED_IO
224 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
225 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
226 err = -EIO;
227 goto err_out2;
228 }
229
230 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
231#else
232 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
233 printk(KERN_ERR "skfp: region is not PIO resource\n");
234 err = -EIO;
235 goto err_out2;
236 }
237
238 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
239#endif
240 if (!mem) {
241 printk(KERN_ERR "skfp: Unable to map register, "
242 "FDDI adapter will be disabled.\n");
243 err = -EIO;
244 goto err_out2;
245 }
246
247 dev = alloc_fddidev(sizeof(struct s_smc));
248 if (!dev) {
249 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
250 "FDDI adapter will be disabled.\n");
251 err = -ENOMEM;
252 goto err_out3;
253 }
254
255 dev->irq = pdev->irq;
256 dev->get_stats = &skfp_ctl_get_stats;
257 dev->open = &skfp_open;
258 dev->stop = &skfp_close;
259 dev->hard_start_xmit = &skfp_send_pkt;
260 dev->set_multicast_list = &skfp_ctl_set_multicast_list;
261 dev->set_mac_address = &skfp_ctl_set_mac_address;
262 dev->do_ioctl = &skfp_ioctl;
263 dev->header_cache_update = NULL; /* not supported */
264
265 SET_MODULE_OWNER(dev);
266 SET_NETDEV_DEV(dev, &pdev->dev);
267
268 /* Initialize board structure with bus-specific info */
269 smc = netdev_priv(dev);
270 smc->os.dev = dev;
271 smc->os.bus_type = SK_BUS_TYPE_PCI;
272 smc->os.pdev = *pdev;
273 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
274 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
275 smc->os.dev = dev;
276 smc->hw.slot = -1;
277 smc->hw.iop = mem;
278 smc->os.ResetRequested = FALSE;
279 skb_queue_head_init(&smc->os.SendSkbQueue);
280
281 dev->base_addr = (unsigned long)mem;
282
283 err = skfp_driver_init(dev);
284 if (err)
285 goto err_out4;
286
287 err = register_netdev(dev);
288 if (err)
289 goto err_out5;
290
291 ++num_boards;
292 pci_set_drvdata(pdev, dev);
293
294 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
295 (pdev->subsystem_device & 0xff00) == 0x5800)
296 printk("%s: SysKonnect FDDI PCI adapter"
297 " found (SK-%04X)\n", dev->name,
298 pdev->subsystem_device);
299 else
300 printk("%s: FDDI PCI adapter found\n", dev->name);
301
302 return 0;
303err_out5:
304 if (smc->os.SharedMemAddr)
305 pci_free_consistent(pdev, smc->os.SharedMemSize,
306 smc->os.SharedMemAddr,
307 smc->os.SharedMemDMA);
308 pci_free_consistent(pdev, MAX_FRAME_SIZE,
309 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
310err_out4:
311 free_netdev(dev);
312err_out3:
313#ifdef MEM_MAPPED_IO
314 iounmap(mem);
315#else
316 ioport_unmap(mem);
317#endif
318err_out2:
319 pci_release_regions(pdev);
320err_out1:
321 pci_disable_device(pdev);
322 return err;
323}
324
325/*
326 * Called for each adapter board from pci_unregister_driver
327 */
328static void __devexit skfp_remove_one(struct pci_dev *pdev)
329{
330 struct net_device *p = pci_get_drvdata(pdev);
331 struct s_smc *lp = netdev_priv(p);
332
333 unregister_netdev(p);
334
335 if (lp->os.SharedMemAddr) {
336 pci_free_consistent(&lp->os.pdev,
337 lp->os.SharedMemSize,
338 lp->os.SharedMemAddr,
339 lp->os.SharedMemDMA);
340 lp->os.SharedMemAddr = NULL;
341 }
342 if (lp->os.LocalRxBuffer) {
343 pci_free_consistent(&lp->os.pdev,
344 MAX_FRAME_SIZE,
345 lp->os.LocalRxBuffer,
346 lp->os.LocalRxBufferDMA);
347 lp->os.LocalRxBuffer = NULL;
348 }
349#ifdef MEM_MAPPED_IO
350 iounmap(lp->hw.iop);
351#else
352 ioport_unmap(lp->hw.iop);
353#endif
354 pci_release_regions(pdev);
355 free_netdev(p);
356
357 pci_disable_device(pdev);
358 pci_set_drvdata(pdev, NULL);
359}
360
361/*
362 * ====================
363 * = skfp_driver_init =
364 * ====================
365 *
366 * Overview:
367 * Initializes remaining adapter board structure information
368 * and makes sure adapter is in a safe state prior to skfp_open().
369 *
370 * Returns:
371 * Condition code
372 *
373 * Arguments:
374 * dev - pointer to device information
375 *
376 * Functional Description:
377 * This function allocates additional resources such as the host memory
378 * blocks needed by the adapter.
379 * The adapter is also reset. The OS must call skfp_open() to open
380 * the adapter and bring it on-line.
381 *
382 * Return Codes:
383 * 0 - initialization succeeded
384 * -1 - initialization failed
385 */
386static int skfp_driver_init(struct net_device *dev)
387{
388 struct s_smc *smc = netdev_priv(dev);
389 skfddi_priv *bp = &smc->os;
390 int err = -EIO;
391
392 PRINTK(KERN_INFO "entering skfp_driver_init\n");
393
394 // set the io address in private structures
395 bp->base_addr = dev->base_addr;
396
397 // Get the interrupt level from the PCI Configuration Table
398 smc->hw.irq = dev->irq;
399
400 spin_lock_init(&bp->DriverLock);
401
402 // Allocate invalid frame
403 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
404 if (!bp->LocalRxBuffer) {
405 printk("could not allocate mem for ");
406 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
407 goto fail;
408 }
409
410 // Determine the required size of the 'shared' memory area.
411 bp->SharedMemSize = mac_drv_check_space();
412 PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
413 if (bp->SharedMemSize > 0) {
414 bp->SharedMemSize += 16; // for descriptor alignment
415
416 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
417 bp->SharedMemSize,
418 &bp->SharedMemDMA);
419 if (!bp->SharedMemSize) {
420 printk("could not allocate mem for ");
421 printk("hardware module: %ld byte\n",
422 bp->SharedMemSize);
423 goto fail;
424 }
425 bp->SharedMemHeap = 0; // Nothing used yet.
426
427 } else {
428 bp->SharedMemAddr = NULL;
429 bp->SharedMemHeap = 0;
430 } // SharedMemSize > 0
431
432 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
433
434 card_stop(smc); // Reset adapter.
435
436 PRINTK(KERN_INFO "mac_drv_init()..\n");
437 if (mac_drv_init(smc) != 0) {
438 PRINTK(KERN_INFO "mac_drv_init() failed.\n");
439 goto fail;
440 }
441 read_address(smc, NULL);
442 PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
443 smc->hw.fddi_canon_addr.a[0],
444 smc->hw.fddi_canon_addr.a[1],
445 smc->hw.fddi_canon_addr.a[2],
446 smc->hw.fddi_canon_addr.a[3],
447 smc->hw.fddi_canon_addr.a[4],
448 smc->hw.fddi_canon_addr.a[5]);
449 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
450
451 smt_reset_defaults(smc, 0);
452
453 return (0);
454
455fail:
456 if (bp->SharedMemAddr) {
457 pci_free_consistent(&bp->pdev,
458 bp->SharedMemSize,
459 bp->SharedMemAddr,
460 bp->SharedMemDMA);
461 bp->SharedMemAddr = NULL;
462 }
463 if (bp->LocalRxBuffer) {
464 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
465 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
466 bp->LocalRxBuffer = NULL;
467 }
468 return err;
469} // skfp_driver_init
470
471
472/*
473 * =============
474 * = skfp_open =
475 * =============
476 *
477 * Overview:
478 * Opens the adapter
479 *
480 * Returns:
481 * Condition code
482 *
483 * Arguments:
484 * dev - pointer to device information
485 *
486 * Functional Description:
487 * This function brings the adapter to an operational state.
488 *
489 * Return Codes:
490 * 0 - Adapter was successfully opened
491 * -EAGAIN - Could not register IRQ
492 */
493static int skfp_open(struct net_device *dev)
494{
495 struct s_smc *smc = netdev_priv(dev);
496 int err;
497
498 PRINTK(KERN_INFO "entering skfp_open\n");
499 /* Register IRQ - support shared interrupts by passing device ptr */
1fb9df5d 500 err = request_irq(dev->irq, (void *) skfp_interrupt, IRQF_SHARED,
1da177e4
LT
501 dev->name, dev);
502 if (err)
503 return err;
504
505 /*
506 * Set current address to factory MAC address
507 *
508 * Note: We've already done this step in skfp_driver_init.
509 * However, it's possible that a user has set a node
510 * address override, then closed and reopened the
511 * adapter. Unless we reset the device address field
512 * now, we'll continue to use the existing modified
513 * address.
514 */
515 read_address(smc, NULL);
516 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
517
518 init_smt(smc, NULL);
519 smt_online(smc, 1);
520 STI_FBI();
521
522 /* Clear local multicast address tables */
523 mac_clear_multicast(smc);
524
525 /* Disable promiscuous filter settings */
526 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
527
528 netif_start_queue(dev);
529 return (0);
530} // skfp_open
531
532
533/*
534 * ==============
535 * = skfp_close =
536 * ==============
537 *
538 * Overview:
539 * Closes the device/module.
540 *
541 * Returns:
542 * Condition code
543 *
544 * Arguments:
545 * dev - pointer to device information
546 *
547 * Functional Description:
548 * This routine closes the adapter and brings it to a safe state.
549 * The interrupt service routine is deregistered with the OS.
550 * The adapter can be opened again with another call to skfp_open().
551 *
552 * Return Codes:
553 * Always return 0.
554 *
555 * Assumptions:
556 * No further requests for this adapter are made after this routine is
557 * called. skfp_open() can be called to reset and reinitialize the
558 * adapter.
559 */
560static int skfp_close(struct net_device *dev)
561{
562 struct s_smc *smc = netdev_priv(dev);
563 skfddi_priv *bp = &smc->os;
564
565 CLI_FBI();
566 smt_reset_defaults(smc, 1);
567 card_stop(smc);
568 mac_drv_clear_tx_queue(smc);
569 mac_drv_clear_rx_queue(smc);
570
571 netif_stop_queue(dev);
572 /* Deregister (free) IRQ */
573 free_irq(dev->irq, dev);
574
575 skb_queue_purge(&bp->SendSkbQueue);
576 bp->QueueSkb = MAX_TX_QUEUE_LEN;
577
578 return (0);
579} // skfp_close
580
581
582/*
583 * ==================
584 * = skfp_interrupt =
585 * ==================
586 *
587 * Overview:
588 * Interrupt processing routine
589 *
590 * Returns:
591 * None
592 *
593 * Arguments:
594 * irq - interrupt vector
595 * dev_id - pointer to device information
596 * regs - pointer to registers structure
597 *
598 * Functional Description:
599 * This routine calls the interrupt processing routine for this adapter. It
600 * disables and reenables adapter interrupts, as appropriate. We can support
601 * shared interrupts since the incoming dev_id pointer provides our device
602 * structure context. All the real work is done in the hardware module.
603 *
604 * Return Codes:
605 * None
606 *
607 * Assumptions:
608 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
609 * on Intel-based systems) is done by the operating system outside this
610 * routine.
611 *
612 * System interrupts are enabled through this call.
613 *
614 * Side Effects:
615 * Interrupts are disabled, then reenabled at the adapter.
616 */
617
618irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs)
619{
620 struct net_device *dev = (struct net_device *) dev_id;
621 struct s_smc *smc; /* private board structure pointer */
622 skfddi_priv *bp;
623
624 if (dev == NULL) {
625 printk("%s: irq %d for unknown device\n", dev->name, irq);
626 return IRQ_NONE;
627 }
628
629 smc = netdev_priv(dev);
630 bp = &smc->os;
631
632 // IRQs enabled or disabled ?
633 if (inpd(ADDR(B0_IMSK)) == 0) {
634 // IRQs are disabled: must be shared interrupt
635 return IRQ_NONE;
636 }
637 // Note: At this point, IRQs are enabled.
638 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
639 // Adapter did not issue an IRQ: must be shared interrupt
640 return IRQ_NONE;
641 }
642 CLI_FBI(); // Disable IRQs from our adapter.
643 spin_lock(&bp->DriverLock);
644
645 // Call interrupt handler in hardware module (HWM).
646 fddi_isr(smc);
647
648 if (smc->os.ResetRequested) {
649 ResetAdapter(smc);
650 smc->os.ResetRequested = FALSE;
651 }
652 spin_unlock(&bp->DriverLock);
653 STI_FBI(); // Enable IRQs from our adapter.
654
655 return IRQ_HANDLED;
656} // skfp_interrupt
657
658
659/*
660 * ======================
661 * = skfp_ctl_get_stats =
662 * ======================
663 *
664 * Overview:
665 * Get statistics for FDDI adapter
666 *
667 * Returns:
668 * Pointer to FDDI statistics structure
669 *
670 * Arguments:
671 * dev - pointer to device information
672 *
673 * Functional Description:
674 * Gets current MIB objects from adapter, then
675 * returns FDDI statistics structure as defined
676 * in if_fddi.h.
677 *
678 * Note: Since the FDDI statistics structure is
679 * still new and the device structure doesn't
680 * have an FDDI-specific get statistics handler,
681 * we'll return the FDDI statistics structure as
682 * a pointer to an Ethernet statistics structure.
683 * That way, at least the first part of the statistics
684 * structure can be decoded properly.
685 * We'll have to pay attention to this routine as the
686 * device structure becomes more mature and LAN media
687 * independent.
688 *
689 */
690struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
691{
692 struct s_smc *bp = netdev_priv(dev);
693
694 /* Fill the bp->stats structure with driver-maintained counters */
695
696 bp->os.MacStat.port_bs_flag[0] = 0x1234;
697 bp->os.MacStat.port_bs_flag[1] = 0x5678;
698// goos: need to fill out fddi statistic
699#if 0
700 /* Get FDDI SMT MIB objects */
701
702/* Fill the bp->stats structure with the SMT MIB object values */
703
704 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
705 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
706 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
707 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
708 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
709 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
710 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
711 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
712 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
713 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
714 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
715 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
716 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
717 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
718 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
719 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
720 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
721 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
722 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
723 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
724 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
725 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
726 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
727 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
728 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
729 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
730 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
731 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
732 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
733 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
734 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
735 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
736 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
737 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
738 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
739 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
740 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
741 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
742 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
743 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
744 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
745 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
746 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
747 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
748 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
749 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
750 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
751 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
752 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
753 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
754 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
755 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
756 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
757 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
758 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
759 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
760 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
761 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
762 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
763 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
764 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
765 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
766 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
767 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
768 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
769 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
770 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
771 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
772 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
773 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
774 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
775 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
776 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
777 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
778 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
779 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
780 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
781 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
782 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
783 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
784 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
785 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
786 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
787 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
788 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
789 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
790 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
791 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
792 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
793 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
794 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
795 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
796
797
798 /* Fill the bp->stats structure with the FDDI counter values */
799
800 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
801 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
802 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
803 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
804 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
805 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
806 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
807 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
808 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
809 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
810 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
811
812#endif
813 return ((struct net_device_stats *) &bp->os.MacStat);
814} // ctl_get_stat
815
816
817/*
818 * ==============================
819 * = skfp_ctl_set_multicast_list =
820 * ==============================
821 *
822 * Overview:
823 * Enable/Disable LLC frame promiscuous mode reception
824 * on the adapter and/or update multicast address table.
825 *
826 * Returns:
827 * None
828 *
829 * Arguments:
830 * dev - pointer to device information
831 *
832 * Functional Description:
833 * This function acquires the driver lock and only calls
834 * skfp_ctl_set_multicast_list_wo_lock then.
835 * This routine follows a fairly simple algorithm for setting the
836 * adapter filters and CAM:
837 *
838 * if IFF_PROMISC flag is set
839 * enable promiscuous mode
840 * else
841 * disable promiscuous mode
842 * if number of multicast addresses <= max. multicast number
843 * add mc addresses to adapter table
844 * else
845 * enable promiscuous mode
846 * update adapter filters
847 *
848 * Assumptions:
849 * Multicast addresses are presented in canonical (LSB) format.
850 *
851 * Side Effects:
852 * On-board adapter filters are updated.
853 */
854static void skfp_ctl_set_multicast_list(struct net_device *dev)
855{
856 struct s_smc *smc = netdev_priv(dev);
857 skfddi_priv *bp = &smc->os;
858 unsigned long Flags;
859
860 spin_lock_irqsave(&bp->DriverLock, Flags);
861 skfp_ctl_set_multicast_list_wo_lock(dev);
862 spin_unlock_irqrestore(&bp->DriverLock, Flags);
863 return;
864} // skfp_ctl_set_multicast_list
865
866
867
868static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
869{
870 struct s_smc *smc = netdev_priv(dev);
871 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
872 int i;
873
874 /* Enable promiscuous mode, if necessary */
875 if (dev->flags & IFF_PROMISC) {
876 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
877 PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
878 }
879 /* Else, update multicast address table */
880 else {
881 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
882 PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
883
884 // Reset all MC addresses
885 mac_clear_multicast(smc);
886 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
887
888 if (dev->flags & IFF_ALLMULTI) {
889 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
890 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
891 } else if (dev->mc_count > 0) {
892 if (dev->mc_count <= FPMAX_MULTICAST) {
893 /* use exact filtering */
894
895 // point to first multicast addr
896 dmi = dev->mc_list;
897
898 for (i = 0; i < dev->mc_count; i++) {
899 mac_add_multicast(smc,
900 (struct fddi_addr *)dmi->dmi_addr,
901 1);
902
903 PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
904 PRINTK(" %02x %02x %02x ",
905 dmi->dmi_addr[0],
906 dmi->dmi_addr[1],
907 dmi->dmi_addr[2]);
908 PRINTK("%02x %02x %02x\n",
909 dmi->dmi_addr[3],
910 dmi->dmi_addr[4],
911 dmi->dmi_addr[5]);
912 dmi = dmi->next;
913 } // for
914
915 } else { // more MC addresses than HW supports
916
917 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
918 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
919 }
920 } else { // no MC addresses
921
922 PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
923 }
924
925 /* Update adapter filters */
926 mac_update_multicast(smc);
927 }
928 return;
929} // skfp_ctl_set_multicast_list_wo_lock
930
931
932/*
933 * ===========================
934 * = skfp_ctl_set_mac_address =
935 * ===========================
936 *
937 * Overview:
938 * set new mac address on adapter and update dev_addr field in device table.
939 *
940 * Returns:
941 * None
942 *
943 * Arguments:
944 * dev - pointer to device information
945 * addr - pointer to sockaddr structure containing unicast address to set
946 *
947 * Assumptions:
948 * The address pointed to by addr->sa_data is a valid unicast
949 * address and is presented in canonical (LSB) format.
950 */
951static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
952{
953 struct s_smc *smc = netdev_priv(dev);
954 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
955 skfddi_priv *bp = &smc->os;
956 unsigned long Flags;
957
958
959 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
960 spin_lock_irqsave(&bp->DriverLock, Flags);
961 ResetAdapter(smc);
962 spin_unlock_irqrestore(&bp->DriverLock, Flags);
963
964 return (0); /* always return zero */
965} // skfp_ctl_set_mac_address
966
967
968/*
969 * ==============
970 * = skfp_ioctl =
971 * ==============
972 *
973 * Overview:
974 *
975 * Perform IOCTL call functions here. Some are privileged operations and the
976 * effective uid is checked in those cases.
977 *
978 * Returns:
979 * status value
980 * 0 - success
981 * other - failure
982 *
983 * Arguments:
984 * dev - pointer to device information
985 * rq - pointer to ioctl request structure
986 * cmd - ?
987 *
988 */
989
990
991static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
992{
993 struct s_smc *smc = netdev_priv(dev);
994 skfddi_priv *lp = &smc->os;
995 struct s_skfp_ioctl ioc;
996 int status = 0;
997
998 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
999 return -EFAULT;
1000
1001 switch (ioc.cmd) {
1002 case SKFP_GET_STATS: /* Get the driver statistics */
1003 ioc.len = sizeof(lp->MacStat);
1004 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
1005 ? -EFAULT : 0;
1006 break;
1007 case SKFP_CLR_STATS: /* Zero out the driver statistics */
1008 if (!capable(CAP_NET_ADMIN)) {
1009 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1010 } else {
1011 status = -EPERM;
1012 }
1013 break;
1014 default:
1015 printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1016 status = -EOPNOTSUPP;
1017
1018 } // switch
1019
1020 return status;
1021} // skfp_ioctl
1022
1023
1024/*
1025 * =====================
1026 * = skfp_send_pkt =
1027 * =====================
1028 *
1029 * Overview:
1030 * Queues a packet for transmission and try to transmit it.
1031 *
1032 * Returns:
1033 * Condition code
1034 *
1035 * Arguments:
1036 * skb - pointer to sk_buff to queue for transmission
1037 * dev - pointer to device information
1038 *
1039 * Functional Description:
1040 * Here we assume that an incoming skb transmit request
1041 * is contained in a single physically contiguous buffer
1042 * in which the virtual address of the start of packet
1043 * (skb->data) can be converted to a physical address
1044 * by using pci_map_single().
1045 *
1046 * We have an internal queue for packets we can not send
1047 * immediately. Packets in this queue can be given to the
1048 * adapter if transmit buffers are freed.
1049 *
1050 * We can't free the skb until after it's been DMA'd
1051 * out by the adapter, so we'll keep it in the driver and
1052 * return it in mac_drv_tx_complete.
1053 *
1054 * Return Codes:
1055 * 0 - driver has queued and/or sent packet
1056 * 1 - caller should requeue the sk_buff for later transmission
1057 *
1058 * Assumptions:
1059 * The entire packet is stored in one physically
1060 * contiguous buffer which is not cached and whose
1061 * 32-bit physical address can be determined.
1062 *
1063 * It's vital that this routine is NOT reentered for the
1064 * same board and that the OS is not in another section of
1065 * code (eg. skfp_interrupt) for the same board on a
1066 * different thread.
1067 *
1068 * Side Effects:
1069 * None
1070 */
1071static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1072{
1073 struct s_smc *smc = netdev_priv(dev);
1074 skfddi_priv *bp = &smc->os;
1075
1076 PRINTK(KERN_INFO "skfp_send_pkt\n");
1077
1078 /*
1079 * Verify that incoming transmit request is OK
1080 *
1081 * Note: The packet size check is consistent with other
1082 * Linux device drivers, although the correct packet
1083 * size should be verified before calling the
1084 * transmit routine.
1085 */
1086
1087 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1088 bp->MacStat.gen.tx_errors++; /* bump error counter */
1089 // dequeue packets from xmt queue and send them
1090 netif_start_queue(dev);
1091 dev_kfree_skb(skb);
1092 return (0); /* return "success" */
1093 }
1094 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1095
1096 netif_stop_queue(dev);
1097 return 1;
1098 }
1099 bp->QueueSkb--;
1100 skb_queue_tail(&bp->SendSkbQueue, skb);
1101 send_queued_packets(netdev_priv(dev));
1102 if (bp->QueueSkb == 0) {
1103 netif_stop_queue(dev);
1104 }
1105 dev->trans_start = jiffies;
1106 return 0;
1107
1108} // skfp_send_pkt
1109
1110
1111/*
1112 * =======================
1113 * = send_queued_packets =
1114 * =======================
1115 *
1116 * Overview:
1117 * Send packets from the driver queue as long as there are some and
1118 * transmit resources are available.
1119 *
1120 * Returns:
1121 * None
1122 *
1123 * Arguments:
1124 * smc - pointer to smc (adapter) structure
1125 *
1126 * Functional Description:
1127 * Take a packet from queue if there is any. If not, then we are done.
1128 * Check if there are resources to send the packet. If not, requeue it
1129 * and exit.
1130 * Set packet descriptor flags and give packet to adapter.
1131 * Check if any send resources can be freed (we do not use the
1132 * transmit complete interrupt).
1133 */
1134static void send_queued_packets(struct s_smc *smc)
1135{
1136 skfddi_priv *bp = &smc->os;
1137 struct sk_buff *skb;
1138 unsigned char fc;
1139 int queue;
1140 struct s_smt_fp_txd *txd; // Current TxD.
1141 dma_addr_t dma_address;
1142 unsigned long Flags;
1143
1144 int frame_status; // HWM tx frame status.
1145
1146 PRINTK(KERN_INFO "send queued packets\n");
1147 for (;;) {
1148 // send first buffer from queue
1149 skb = skb_dequeue(&bp->SendSkbQueue);
1150
1151 if (!skb) {
1152 PRINTK(KERN_INFO "queue empty\n");
1153 return;
1154 } // queue empty !
1155
1156 spin_lock_irqsave(&bp->DriverLock, Flags);
1157 fc = skb->data[0];
1158 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1159#ifdef ESS
1160 // Check if the frame may/must be sent as a synchronous frame.
1161
1162 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1163 // It's an LLC frame.
1164 if (!smc->ess.sync_bw_available)
1165 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1166
1167 else { // Bandwidth is available.
1168
1169 if (smc->mib.fddiESSSynchTxMode) {
1170 // Send as sync. frame.
1171 fc |= FC_SYNC_BIT;
1172 }
1173 }
1174 }
1175#endif // ESS
1176 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1177
1178 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1179 // Unable to send the frame.
1180
1181 if ((frame_status & RING_DOWN) != 0) {
1182 // Ring is down.
1183 PRINTK("Tx attempt while ring down.\n");
1184 } else if ((frame_status & OUT_OF_TXD) != 0) {
1185 PRINTK("%s: out of TXDs.\n", bp->dev->name);
1186 } else {
1187 PRINTK("%s: out of transmit resources",
1188 bp->dev->name);
1189 }
1190
1191 // Note: We will retry the operation as soon as
1192 // transmit resources become available.
1193 skb_queue_head(&bp->SendSkbQueue, skb);
1194 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1195 return; // Packet has been queued.
1196
1197 } // if (unable to send frame)
1198
1199 bp->QueueSkb++; // one packet less in local queue
1200
1201 // source address in packet ?
1202 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1203
1204 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1205
1206 dma_address = pci_map_single(&bp->pdev, skb->data,
1207 skb->len, PCI_DMA_TODEVICE);
1208 if (frame_status & LAN_TX) {
1209 txd->txd_os.skb = skb; // save skb
1210 txd->txd_os.dma_addr = dma_address; // save dma mapping
1211 }
1212 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1213 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1214
1215 if (!(frame_status & LAN_TX)) { // local only frame
1216 pci_unmap_single(&bp->pdev, dma_address,
1217 skb->len, PCI_DMA_TODEVICE);
1218 dev_kfree_skb_irq(skb);
1219 }
1220 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1221 } // for
1222
1223 return; // never reached
1224
1225} // send_queued_packets
1226
1227
1228/************************
1229 *
1230 * CheckSourceAddress
1231 *
1232 * Verify if the source address is set. Insert it if necessary.
1233 *
1234 ************************/
1235void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1236{
1237 unsigned char SRBit;
1238
1239 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1240
1241 return;
1242 if ((unsigned short) frame[1 + 10] != 0)
1243 return;
1244 SRBit = frame[1 + 6] & 0x01;
1245 memcpy(&frame[1 + 6], hw_addr, 6);
1246 frame[8] |= SRBit;
1247} // CheckSourceAddress
1248
1249
1250/************************
1251 *
1252 * ResetAdapter
1253 *
1254 * Reset the adapter and bring it back to operational mode.
1255 * Args
1256 * smc - A pointer to the SMT context struct.
1257 * Out
1258 * Nothing.
1259 *
1260 ************************/
1261static void ResetAdapter(struct s_smc *smc)
1262{
1263
1264 PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1265
1266 // Stop the adapter.
1267
1268 card_stop(smc); // Stop all activity.
1269
1270 // Clear the transmit and receive descriptor queues.
1271 mac_drv_clear_tx_queue(smc);
1272 mac_drv_clear_rx_queue(smc);
1273
1274 // Restart the adapter.
1275
1276 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1277
1278 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1279
1280 smt_online(smc, 1); // Insert into the ring again.
1281 STI_FBI();
1282
1283 // Restore original receive mode (multicasts, promiscuous, etc.).
1284 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1285} // ResetAdapter
1286
1287
1288//--------------- functions called by hardware module ----------------
1289
1290/************************
1291 *
1292 * llc_restart_tx
1293 *
1294 * The hardware driver calls this routine when the transmit complete
1295 * interrupt bits (end of frame) for the synchronous or asynchronous
1296 * queue is set.
1297 *
1298 * NOTE The hardware driver calls this function also if no packets are queued.
1299 * The routine must be able to handle this case.
1300 * Args
1301 * smc - A pointer to the SMT context struct.
1302 * Out
1303 * Nothing.
1304 *
1305 ************************/
1306void llc_restart_tx(struct s_smc *smc)
1307{
1308 skfddi_priv *bp = &smc->os;
1309
1310 PRINTK(KERN_INFO "[llc_restart_tx]\n");
1311
1312 // Try to send queued packets
1313 spin_unlock(&bp->DriverLock);
1314 send_queued_packets(smc);
1315 spin_lock(&bp->DriverLock);
1316 netif_start_queue(bp->dev);// system may send again if it was blocked
1317
1318} // llc_restart_tx
1319
1320
1321/************************
1322 *
1323 * mac_drv_get_space
1324 *
1325 * The hardware module calls this function to allocate the memory
1326 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1327 * Args
1328 * smc - A pointer to the SMT context struct.
1329 *
1330 * size - Size of memory in bytes to allocate.
1331 * Out
1332 * != 0 A pointer to the virtual address of the allocated memory.
1333 * == 0 Allocation error.
1334 *
1335 ************************/
1336void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1337{
1338 void *virt;
1339
1340 PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1341 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1342
1343 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1344 printk("Unexpected SMT memory size requested: %d\n", size);
1345 return (NULL);
1346 }
1347 smc->os.SharedMemHeap += size; // Move heap pointer.
1348
1349 PRINTK(KERN_INFO "mac_drv_get_space end\n");
1350 PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1351 PRINTK(KERN_INFO "bus addr: %lx\n", (ulong)
1352 (smc->os.SharedMemDMA +
1353 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1354 return (virt);
1355} // mac_drv_get_space
1356
1357
1358/************************
1359 *
1360 * mac_drv_get_desc_mem
1361 *
1362 * This function is called by the hardware dependent module.
1363 * It allocates the memory for the RxD and TxD descriptors.
1364 *
1365 * This memory must be non-cached, non-movable and non-swappable.
1366 * This memory should start at a physical page boundary.
1367 * Args
1368 * smc - A pointer to the SMT context struct.
1369 *
1370 * size - Size of memory in bytes to allocate.
1371 * Out
1372 * != 0 A pointer to the virtual address of the allocated memory.
1373 * == 0 Allocation error.
1374 *
1375 ************************/
1376void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1377{
1378
1379 char *virt;
1380
1381 PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1382
1383 // Descriptor memory must be aligned on 16-byte boundary.
1384
1385 virt = mac_drv_get_space(smc, size);
1386
1387 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1388 size = size % 16;
1389
1390 PRINTK("Allocate %u bytes alignment gap ", size);
1391 PRINTK("for descriptor memory.\n");
1392
1393 if (!mac_drv_get_space(smc, size)) {
1394 printk("fddi: Unable to align descriptor memory.\n");
1395 return (NULL);
1396 }
1397 return (virt + size);
1398} // mac_drv_get_desc_mem
1399
1400
1401/************************
1402 *
1403 * mac_drv_virt2phys
1404 *
1405 * Get the physical address of a given virtual address.
1406 * Args
1407 * smc - A pointer to the SMT context struct.
1408 *
1409 * virt - A (virtual) pointer into our 'shared' memory area.
1410 * Out
1411 * Physical address of the given virtual address.
1412 *
1413 ************************/
1414unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1415{
1416 return (smc->os.SharedMemDMA +
1417 ((char *) virt - (char *)smc->os.SharedMemAddr));
1418} // mac_drv_virt2phys
1419
1420
1421/************************
1422 *
1423 * dma_master
1424 *
1425 * The HWM calls this function, when the driver leads through a DMA
1426 * transfer. If the OS-specific module must prepare the system hardware
1427 * for the DMA transfer, it should do it in this function.
1428 *
1429 * The hardware module calls this dma_master if it wants to send an SMT
1430 * frame. This means that the virt address passed in here is part of
1431 * the 'shared' memory area.
1432 * Args
1433 * smc - A pointer to the SMT context struct.
1434 *
1435 * virt - The virtual address of the data.
1436 *
1437 * len - The length in bytes of the data.
1438 *
1439 * flag - Indicates the transmit direction and the buffer type:
1440 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1441 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1442 * SMT_BUF (0x80) SMT buffer
1443 *
1444 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1445 * Out
1446 * Returns the pyhsical address for the DMA transfer.
1447 *
1448 ************************/
1449u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1450{
1451 return (smc->os.SharedMemDMA +
1452 ((char *) virt - (char *)smc->os.SharedMemAddr));
1453} // dma_master
1454
1455
1456/************************
1457 *
1458 * dma_complete
1459 *
1460 * The hardware module calls this routine when it has completed a DMA
1461 * transfer. If the operating system dependent module has set up the DMA
1462 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1463 * the DMA channel.
1464 * Args
1465 * smc - A pointer to the SMT context struct.
1466 *
1467 * descr - A pointer to a TxD or RxD, respectively.
1468 *
1469 * flag - Indicates the DMA transfer direction / SMT buffer:
1470 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1471 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1472 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1473 * Out
1474 * Nothing.
1475 *
1476 ************************/
1477void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1478{
1479 /* For TX buffers, there are two cases. If it is an SMT transmit
1480 * buffer, there is nothing to do since we use consistent memory
1481 * for the 'shared' memory area. The other case is for normal
1482 * transmit packets given to us by the networking stack, and in
1483 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1484 * below.
1485 *
1486 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1487 * because the hardware module is about to potentially look at
1488 * the contents of the buffer. If we did not call the PCI DMA
1489 * unmap first, the hardware module could read inconsistent data.
1490 */
1491 if (flag & DMA_WR) {
1492 skfddi_priv *bp = &smc->os;
1493 volatile struct s_smt_fp_rxd *r = &descr->r;
1494
1495 /* If SKB is NULL, we used the local buffer. */
1496 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1497 int MaxFrameSize = bp->MaxFrameSize;
1498
1499 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1500 MaxFrameSize, PCI_DMA_FROMDEVICE);
1501 r->rxd_os.dma_addr = 0;
1502 }
1503 }
1504} // dma_complete
1505
1506
1507/************************
1508 *
1509 * mac_drv_tx_complete
1510 *
1511 * Transmit of a packet is complete. Release the tx staging buffer.
1512 *
1513 * Args
1514 * smc - A pointer to the SMT context struct.
1515 *
1516 * txd - A pointer to the last TxD which is used by the frame.
1517 * Out
1518 * Returns nothing.
1519 *
1520 ************************/
1521void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1522{
1523 struct sk_buff *skb;
1524
1525 PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1526 // Check if this TxD points to a skb
1527
1528 if (!(skb = txd->txd_os.skb)) {
1529 PRINTK("TXD with no skb assigned.\n");
1530 return;
1531 }
1532 txd->txd_os.skb = NULL;
1533
1534 // release the DMA mapping
1535 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1536 skb->len, PCI_DMA_TODEVICE);
1537 txd->txd_os.dma_addr = 0;
1538
1539 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1540 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1541
1542 // free the skb
1543 dev_kfree_skb_irq(skb);
1544
1545 PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1546} // mac_drv_tx_complete
1547
1548
1549/************************
1550 *
1551 * dump packets to logfile
1552 *
1553 ************************/
1554#ifdef DUMPPACKETS
1555void dump_data(unsigned char *Data, int length)
1556{
1557 int i, j;
1558 unsigned char s[255], sh[10];
1559 if (length > 64) {
1560 length = 64;
1561 }
1562 printk(KERN_INFO "---Packet start---\n");
1563 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1564 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1565 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1566 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1567 strcpy(s, "");
1568 for (i = 0; i < length % 8; i++) {
1569 sprintf(sh, "%02x ", Data[j + i]);
1570 strcat(s, sh);
1571 }
1572 printk(KERN_INFO "%s\n", s);
1573 printk(KERN_INFO "------------------\n");
1574} // dump_data
1575#else
1576#define dump_data(data,len)
1577#endif // DUMPPACKETS
1578
1579/************************
1580 *
1581 * mac_drv_rx_complete
1582 *
1583 * The hardware module calls this function if an LLC frame is received
1584 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1585 * from the network will be passed to the LLC layer by this function
1586 * if passing is enabled.
1587 *
1588 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1589 * be received. It also fills the RxD ring with new receive buffers if
1590 * some can be queued.
1591 * Args
1592 * smc - A pointer to the SMT context struct.
1593 *
1594 * rxd - A pointer to the first RxD which is used by the receive frame.
1595 *
1596 * frag_count - Count of RxDs used by the received frame.
1597 *
1598 * len - Frame length.
1599 * Out
1600 * Nothing.
1601 *
1602 ************************/
1603void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1604 int frag_count, int len)
1605{
1606 skfddi_priv *bp = &smc->os;
1607 struct sk_buff *skb;
1608 unsigned char *virt, *cp;
1609 unsigned short ri;
1610 u_int RifLength;
1611
1612 PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1613 if (frag_count != 1) { // This is not allowed to happen.
1614
1615 printk("fddi: Multi-fragment receive!\n");
1616 goto RequeueRxd; // Re-use the given RXD(s).
1617
1618 }
1619 skb = rxd->rxd_os.skb;
1620 if (!skb) {
1621 PRINTK(KERN_INFO "No skb in rxd\n");
1622 smc->os.MacStat.gen.rx_errors++;
1623 goto RequeueRxd;
1624 }
1625 virt = skb->data;
1626
1627 // The DMA mapping was released in dma_complete above.
1628
1629 dump_data(skb->data, len);
1630
1631 /*
1632 * FDDI Frame format:
1633 * +-------+-------+-------+------------+--------+------------+
1634 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1635 * +-------+-------+-------+------------+--------+------------+
1636 *
1637 * FC = Frame Control
1638 * DA = Destination Address
1639 * SA = Source Address
1640 * RIF = Routing Information Field
1641 * LLC = Logical Link Control
1642 */
1643
1644 // Remove Routing Information Field (RIF), if present.
1645
1646 if ((virt[1 + 6] & FDDI_RII) == 0)
1647 RifLength = 0;
1648 else {
1649 int n;
1650// goos: RIF removal has still to be tested
1651 PRINTK(KERN_INFO "RIF found\n");
1652 // Get RIF length from Routing Control (RC) field.
1653 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1654
1655 ri = ntohs(*((unsigned short *) cp));
1656 RifLength = ri & FDDI_RCF_LEN_MASK;
1657 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1658 printk("fddi: Invalid RIF.\n");
1659 goto RequeueRxd; // Discard the frame.
1660
1661 }
1662 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1663 // regions overlap
1664
1665 virt = cp + RifLength;
1666 for (n = FDDI_MAC_HDR_LEN; n; n--)
1667 *--virt = *--cp;
1668 // adjust sbd->data pointer
1669 skb_pull(skb, RifLength);
1670 len -= RifLength;
1671 RifLength = 0;
1672 }
1673
1674 // Count statistics.
1675 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1676 // packets.
1677 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1678
1679 // virt points to header again
1680 if (virt[1] & 0x01) { // Check group (multicast) bit.
1681
1682 smc->os.MacStat.gen.multicast++;
1683 }
1684
1685 // deliver frame to system
1686 rxd->rxd_os.skb = NULL;
1687 skb_trim(skb, len);
1688 skb->protocol = fddi_type_trans(skb, bp->dev);
1689 skb->dev = bp->dev; /* pass up device pointer */
1690
1691 netif_rx(skb);
1692 bp->dev->last_rx = jiffies;
1693
1694 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1695 return;
1696
1697 RequeueRxd:
1698 PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1699 mac_drv_requeue_rxd(smc, rxd, frag_count);
1700 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1701 // not indicated.
1702
1703} // mac_drv_rx_complete
1704
1705
1706/************************
1707 *
1708 * mac_drv_requeue_rxd
1709 *
1710 * The hardware module calls this function to request the OS-specific
1711 * module to queue the receive buffer(s) represented by the pointer
1712 * to the RxD and the frag_count into the receive queue again. This
1713 * buffer was filled with an invalid frame or an SMT frame.
1714 * Args
1715 * smc - A pointer to the SMT context struct.
1716 *
1717 * rxd - A pointer to the first RxD which is used by the receive frame.
1718 *
1719 * frag_count - Count of RxDs used by the received frame.
1720 * Out
1721 * Nothing.
1722 *
1723 ************************/
1724void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1725 int frag_count)
1726{
1727 volatile struct s_smt_fp_rxd *next_rxd;
1728 volatile struct s_smt_fp_rxd *src_rxd;
1729 struct sk_buff *skb;
1730 int MaxFrameSize;
1731 unsigned char *v_addr;
1732 dma_addr_t b_addr;
1733
1734 if (frag_count != 1) // This is not allowed to happen.
1735
1736 printk("fddi: Multi-fragment requeue!\n");
1737
1738 MaxFrameSize = smc->os.MaxFrameSize;
1739 src_rxd = rxd;
1740 for (; frag_count > 0; frag_count--) {
1741 next_rxd = src_rxd->rxd_next;
1742 rxd = HWM_GET_CURR_RXD(smc);
1743
1744 skb = src_rxd->rxd_os.skb;
1745 if (skb == NULL) { // this should not happen
1746
1747 PRINTK("Requeue with no skb in rxd!\n");
1748 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1749 if (skb) {
1750 // we got a skb
1751 rxd->rxd_os.skb = skb;
1752 skb_reserve(skb, 3);
1753 skb_put(skb, MaxFrameSize);
1754 v_addr = skb->data;
1755 b_addr = pci_map_single(&smc->os.pdev,
1756 v_addr,
1757 MaxFrameSize,
1758 PCI_DMA_FROMDEVICE);
1759 rxd->rxd_os.dma_addr = b_addr;
1760 } else {
1761 // no skb available, use local buffer
1762 PRINTK("Queueing invalid buffer!\n");
1763 rxd->rxd_os.skb = NULL;
1764 v_addr = smc->os.LocalRxBuffer;
1765 b_addr = smc->os.LocalRxBufferDMA;
1766 }
1767 } else {
1768 // we use skb from old rxd
1769 rxd->rxd_os.skb = skb;
1770 v_addr = skb->data;
1771 b_addr = pci_map_single(&smc->os.pdev,
1772 v_addr,
1773 MaxFrameSize,
1774 PCI_DMA_FROMDEVICE);
1775 rxd->rxd_os.dma_addr = b_addr;
1776 }
1777 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1778 FIRST_FRAG | LAST_FRAG);
1779
1780 src_rxd = next_rxd;
1781 }
1782} // mac_drv_requeue_rxd
1783
1784
1785/************************
1786 *
1787 * mac_drv_fill_rxd
1788 *
1789 * The hardware module calls this function at initialization time
1790 * to fill the RxD ring with receive buffers. It is also called by
1791 * mac_drv_rx_complete if rx_free is large enough to queue some new
1792 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1793 * receive buffers as long as enough RxDs and receive buffers are
1794 * available.
1795 * Args
1796 * smc - A pointer to the SMT context struct.
1797 * Out
1798 * Nothing.
1799 *
1800 ************************/
1801void mac_drv_fill_rxd(struct s_smc *smc)
1802{
1803 int MaxFrameSize;
1804 unsigned char *v_addr;
1805 unsigned long b_addr;
1806 struct sk_buff *skb;
1807 volatile struct s_smt_fp_rxd *rxd;
1808
1809 PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1810
1811 // Walk through the list of free receive buffers, passing receive
1812 // buffers to the HWM as long as RXDs are available.
1813
1814 MaxFrameSize = smc->os.MaxFrameSize;
1815 // Check if there is any RXD left.
1816 while (HWM_GET_RX_FREE(smc) > 0) {
1817 PRINTK(KERN_INFO ".\n");
1818
1819 rxd = HWM_GET_CURR_RXD(smc);
1820 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1821 if (skb) {
1822 // we got a skb
1823 skb_reserve(skb, 3);
1824 skb_put(skb, MaxFrameSize);
1825 v_addr = skb->data;
1826 b_addr = pci_map_single(&smc->os.pdev,
1827 v_addr,
1828 MaxFrameSize,
1829 PCI_DMA_FROMDEVICE);
1830 rxd->rxd_os.dma_addr = b_addr;
1831 } else {
1832 // no skb available, use local buffer
1833 // System has run out of buffer memory, but we want to
1834 // keep the receiver running in hope of better times.
1835 // Multiple descriptors may point to this local buffer,
1836 // so data in it must be considered invalid.
1837 PRINTK("Queueing invalid buffer!\n");
1838 v_addr = smc->os.LocalRxBuffer;
1839 b_addr = smc->os.LocalRxBufferDMA;
1840 }
1841
1842 rxd->rxd_os.skb = skb;
1843
1844 // Pass receive buffer to HWM.
1845 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1846 FIRST_FRAG | LAST_FRAG);
1847 }
1848 PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1849} // mac_drv_fill_rxd
1850
1851
1852/************************
1853 *
1854 * mac_drv_clear_rxd
1855 *
1856 * The hardware module calls this function to release unused
1857 * receive buffers.
1858 * Args
1859 * smc - A pointer to the SMT context struct.
1860 *
1861 * rxd - A pointer to the first RxD which is used by the receive buffer.
1862 *
1863 * frag_count - Count of RxDs used by the receive buffer.
1864 * Out
1865 * Nothing.
1866 *
1867 ************************/
1868void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1869 int frag_count)
1870{
1871
1872 struct sk_buff *skb;
1873
1874 PRINTK("entering mac_drv_clear_rxd\n");
1875
1876 if (frag_count != 1) // This is not allowed to happen.
1877
1878 printk("fddi: Multi-fragment clear!\n");
1879
1880 for (; frag_count > 0; frag_count--) {
1881 skb = rxd->rxd_os.skb;
1882 if (skb != NULL) {
1883 skfddi_priv *bp = &smc->os;
1884 int MaxFrameSize = bp->MaxFrameSize;
1885
1886 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1887 MaxFrameSize, PCI_DMA_FROMDEVICE);
1888
1889 dev_kfree_skb(skb);
1890 rxd->rxd_os.skb = NULL;
1891 }
1892 rxd = rxd->rxd_next; // Next RXD.
1893
1894 }
1895} // mac_drv_clear_rxd
1896
1897
1898/************************
1899 *
1900 * mac_drv_rx_init
1901 *
1902 * The hardware module calls this routine when an SMT or NSA frame of the
1903 * local SMT should be delivered to the LLC layer.
1904 *
1905 * It is necessary to have this function, because there is no other way to
1906 * copy the contents of SMT MBufs into receive buffers.
1907 *
1908 * mac_drv_rx_init allocates the required target memory for this frame,
1909 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1910 * Args
1911 * smc - A pointer to the SMT context struct.
1912 *
1913 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1914 *
1915 * fc - The Frame Control field of the received frame.
1916 *
1917 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1918 *
1919 * la_len - The length of the lookahead data stored in the lookahead
1920 * buffer (may be zero).
1921 * Out
1922 * Always returns zero (0).
1923 *
1924 ************************/
1925int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1926 char *look_ahead, int la_len)
1927{
1928 struct sk_buff *skb;
1929
1930 PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1931
1932 // "Received" a SMT or NSA frame of the local SMT.
1933
1934 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1935 PRINTK("fddi: Discard invalid local SMT frame\n");
1936 PRINTK(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1937 len, la_len, (unsigned long) look_ahead);
1938 return (0);
1939 }
1940 skb = alloc_skb(len + 3, GFP_ATOMIC);
1941 if (!skb) {
1942 PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1943 return (0);
1944 }
1945 skb_reserve(skb, 3);
1946 skb_put(skb, len);
1947 memcpy(skb->data, look_ahead, len);
1948
1949 // deliver frame to system
1950 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1951 skb->dev->last_rx = jiffies;
1952 netif_rx(skb);
1953
1954 return (0);
1955} // mac_drv_rx_init
1956
1957
1958/************************
1959 *
1960 * smt_timer_poll
1961 *
1962 * This routine is called periodically by the SMT module to clean up the
1963 * driver.
1964 *
1965 * Return any queued frames back to the upper protocol layers if the ring
1966 * is down.
1967 * Args
1968 * smc - A pointer to the SMT context struct.
1969 * Out
1970 * Nothing.
1971 *
1972 ************************/
1973void smt_timer_poll(struct s_smc *smc)
1974{
1975} // smt_timer_poll
1976
1977
1978/************************
1979 *
1980 * ring_status_indication
1981 *
1982 * This function indicates a change of the ring state.
1983 * Args
1984 * smc - A pointer to the SMT context struct.
1985 *
1986 * status - The current ring status.
1987 * Out
1988 * Nothing.
1989 *
1990 ************************/
1991void ring_status_indication(struct s_smc *smc, u_long status)
1992{
1993 PRINTK("ring_status_indication( ");
1994 if (status & RS_RES15)
1995 PRINTK("RS_RES15 ");
1996 if (status & RS_HARDERROR)
1997 PRINTK("RS_HARDERROR ");
1998 if (status & RS_SOFTERROR)
1999 PRINTK("RS_SOFTERROR ");
2000 if (status & RS_BEACON)
2001 PRINTK("RS_BEACON ");
2002 if (status & RS_PATHTEST)
2003 PRINTK("RS_PATHTEST ");
2004 if (status & RS_SELFTEST)
2005 PRINTK("RS_SELFTEST ");
2006 if (status & RS_RES9)
2007 PRINTK("RS_RES9 ");
2008 if (status & RS_DISCONNECT)
2009 PRINTK("RS_DISCONNECT ");
2010 if (status & RS_RES7)
2011 PRINTK("RS_RES7 ");
2012 if (status & RS_DUPADDR)
2013 PRINTK("RS_DUPADDR ");
2014 if (status & RS_NORINGOP)
2015 PRINTK("RS_NORINGOP ");
2016 if (status & RS_VERSION)
2017 PRINTK("RS_VERSION ");
2018 if (status & RS_STUCKBYPASSS)
2019 PRINTK("RS_STUCKBYPASSS ");
2020 if (status & RS_EVENT)
2021 PRINTK("RS_EVENT ");
2022 if (status & RS_RINGOPCHANGE)
2023 PRINTK("RS_RINGOPCHANGE ");
2024 if (status & RS_RES0)
2025 PRINTK("RS_RES0 ");
2026 PRINTK("]\n");
2027} // ring_status_indication
2028
2029
2030/************************
2031 *
2032 * smt_get_time
2033 *
2034 * Gets the current time from the system.
2035 * Args
2036 * None.
2037 * Out
2038 * The current time in TICKS_PER_SECOND.
2039 *
2040 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2041 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2042 * to the time returned by smt_get_time().
2043 *
2044 ************************/
2045unsigned long smt_get_time(void)
2046{
2047 return jiffies;
2048} // smt_get_time
2049
2050
2051/************************
2052 *
2053 * smt_stat_counter
2054 *
2055 * Status counter update (ring_op, fifo full).
2056 * Args
2057 * smc - A pointer to the SMT context struct.
2058 *
2059 * stat - = 0: A ring operational change occurred.
2060 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2061 * Out
2062 * Nothing.
2063 *
2064 ************************/
2065void smt_stat_counter(struct s_smc *smc, int stat)
2066{
2067// BOOLEAN RingIsUp ;
2068
2069 PRINTK(KERN_INFO "smt_stat_counter\n");
2070 switch (stat) {
2071 case 0:
2072 PRINTK(KERN_INFO "Ring operational change.\n");
2073 break;
2074 case 1:
2075 PRINTK(KERN_INFO "Receive fifo overflow.\n");
2076 smc->os.MacStat.gen.rx_errors++;
2077 break;
2078 default:
2079 PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2080 break;
2081 }
2082} // smt_stat_counter
2083
2084
2085/************************
2086 *
2087 * cfm_state_change
2088 *
2089 * Sets CFM state in custom statistics.
2090 * Args
2091 * smc - A pointer to the SMT context struct.
2092 *
2093 * c_state - Possible values are:
2094 *
2095 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2096 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2097 * Out
2098 * Nothing.
2099 *
2100 ************************/
2101void cfm_state_change(struct s_smc *smc, int c_state)
2102{
2103#ifdef DRIVERDEBUG
2104 char *s;
2105
2106 switch (c_state) {
2107 case SC0_ISOLATED:
2108 s = "SC0_ISOLATED";
2109 break;
2110 case SC1_WRAP_A:
2111 s = "SC1_WRAP_A";
2112 break;
2113 case SC2_WRAP_B:
2114 s = "SC2_WRAP_B";
2115 break;
2116 case SC4_THRU_A:
2117 s = "SC4_THRU_A";
2118 break;
2119 case SC5_THRU_B:
2120 s = "SC5_THRU_B";
2121 break;
2122 case SC7_WRAP_S:
2123 s = "SC7_WRAP_S";
2124 break;
2125 case SC9_C_WRAP_A:
2126 s = "SC9_C_WRAP_A";
2127 break;
2128 case SC10_C_WRAP_B:
2129 s = "SC10_C_WRAP_B";
2130 break;
2131 case SC11_C_WRAP_S:
2132 s = "SC11_C_WRAP_S";
2133 break;
2134 default:
2135 PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2136 return;
2137 }
2138 PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2139#endif // DRIVERDEBUG
2140} // cfm_state_change
2141
2142
2143/************************
2144 *
2145 * ecm_state_change
2146 *
2147 * Sets ECM state in custom statistics.
2148 * Args
2149 * smc - A pointer to the SMT context struct.
2150 *
2151 * e_state - Possible values are:
2152 *
2153 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2154 * SC5_THRU_B (7), SC7_WRAP_S (8)
2155 * Out
2156 * Nothing.
2157 *
2158 ************************/
2159void ecm_state_change(struct s_smc *smc, int e_state)
2160{
2161#ifdef DRIVERDEBUG
2162 char *s;
2163
2164 switch (e_state) {
2165 case EC0_OUT:
2166 s = "EC0_OUT";
2167 break;
2168 case EC1_IN:
2169 s = "EC1_IN";
2170 break;
2171 case EC2_TRACE:
2172 s = "EC2_TRACE";
2173 break;
2174 case EC3_LEAVE:
2175 s = "EC3_LEAVE";
2176 break;
2177 case EC4_PATH_TEST:
2178 s = "EC4_PATH_TEST";
2179 break;
2180 case EC5_INSERT:
2181 s = "EC5_INSERT";
2182 break;
2183 case EC6_CHECK:
2184 s = "EC6_CHECK";
2185 break;
2186 case EC7_DEINSERT:
2187 s = "EC7_DEINSERT";
2188 break;
2189 default:
2190 s = "unknown";
2191 break;
2192 }
2193 PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2194#endif //DRIVERDEBUG
2195} // ecm_state_change
2196
2197
2198/************************
2199 *
2200 * rmt_state_change
2201 *
2202 * Sets RMT state in custom statistics.
2203 * Args
2204 * smc - A pointer to the SMT context struct.
2205 *
2206 * r_state - Possible values are:
2207 *
2208 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2209 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2210 * Out
2211 * Nothing.
2212 *
2213 ************************/
2214void rmt_state_change(struct s_smc *smc, int r_state)
2215{
2216#ifdef DRIVERDEBUG
2217 char *s;
2218
2219 switch (r_state) {
2220 case RM0_ISOLATED:
2221 s = "RM0_ISOLATED";
2222 break;
2223 case RM1_NON_OP:
2224 s = "RM1_NON_OP - not operational";
2225 break;
2226 case RM2_RING_OP:
2227 s = "RM2_RING_OP - ring operational";
2228 break;
2229 case RM3_DETECT:
2230 s = "RM3_DETECT - detect dupl addresses";
2231 break;
2232 case RM4_NON_OP_DUP:
2233 s = "RM4_NON_OP_DUP - dupl. addr detected";
2234 break;
2235 case RM5_RING_OP_DUP:
2236 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2237 break;
2238 case RM6_DIRECTED:
2239 s = "RM6_DIRECTED - sending directed beacons";
2240 break;
2241 case RM7_TRACE:
2242 s = "RM7_TRACE - trace initiated";
2243 break;
2244 default:
2245 s = "unknown";
2246 break;
2247 }
2248 PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2249#endif // DRIVERDEBUG
2250} // rmt_state_change
2251
2252
2253/************************
2254 *
2255 * drv_reset_indication
2256 *
2257 * This function is called by the SMT when it has detected a severe
2258 * hardware problem. The driver should perform a reset on the adapter
2259 * as soon as possible, but not from within this function.
2260 * Args
2261 * smc - A pointer to the SMT context struct.
2262 * Out
2263 * Nothing.
2264 *
2265 ************************/
2266void drv_reset_indication(struct s_smc *smc)
2267{
2268 PRINTK(KERN_INFO "entering drv_reset_indication\n");
2269
2270 smc->os.ResetRequested = TRUE; // Set flag.
2271
2272} // drv_reset_indication
2273
2274static struct pci_driver skfddi_pci_driver = {
2275 .name = "skfddi",
2276 .id_table = skfddi_pci_tbl,
2277 .probe = skfp_init_one,
2278 .remove = __devexit_p(skfp_remove_one),
2279};
2280
2281static int __init skfd_init(void)
2282{
29917620 2283 return pci_register_driver(&skfddi_pci_driver);
1da177e4
LT
2284}
2285
2286static void __exit skfd_exit(void)
2287{
2288 pci_unregister_driver(&skfddi_pci_driver);
2289}
2290
2291module_init(skfd_init);
2292module_exit(skfd_exit);