]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/skfp/skfddi.c
drivers/net: Remove unnecessary returns from void function()s
[net-next-2.6.git] / drivers / net / skfp / skfddi.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 *
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
46 *
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION "2.07"
69
f71e1309 70static const char * const boot_msg =
1da177e4
LT
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
d43c36dc 76#include <linux/capability.h>
1da177e4
LT
77#include <linux/module.h>
78#include <linux/kernel.h>
79#include <linux/errno.h>
80#include <linux/ioport.h>
1da177e4
LT
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
5a0e3ad6 87#include <linux/gfp.h>
1da177e4
LT
88
89#include <asm/byteorder.h>
90#include <asm/io.h>
91#include <asm/uaccess.h>
92
93#include "h/types.h"
94#undef ADDR // undo Linux definition
95#include "h/skfbi.h"
96#include "h/fddi.h"
97#include "h/smc.h"
98#include "h/smtstate.h"
99
100
101// Define module-wide (static) routines
102static int skfp_driver_init(struct net_device *dev);
103static int skfp_open(struct net_device *dev);
104static int skfp_close(struct net_device *dev);
7d12e780 105static irqreturn_t skfp_interrupt(int irq, void *dev_id);
1da177e4
LT
106static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
107static void skfp_ctl_set_multicast_list(struct net_device *dev);
108static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
109static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
110static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
61357325
SH
111static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
112 struct net_device *dev);
1da177e4
LT
113static void send_queued_packets(struct s_smc *smc);
114static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
115static void ResetAdapter(struct s_smc *smc);
116
117
118// Functions needed by the hardware module
119void *mac_drv_get_space(struct s_smc *smc, u_int size);
120void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
121unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
122unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
123void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
124 int flag);
125void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
126void llc_restart_tx(struct s_smc *smc);
127void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count, int len);
129void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
130 int frag_count);
131void mac_drv_fill_rxd(struct s_smc *smc);
132void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
133 int frag_count);
134int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
135 int la_len);
136void dump_data(unsigned char *Data, int length);
137
138// External functions from the hardware module
139extern u_int mac_drv_check_space(void);
1da177e4
LT
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
1da177e4
LT
145extern void fddi_isr(struct s_smc *smc);
146extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
147 int len, int frame_status);
148extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
149extern void mac_drv_clear_rx_queue(struct s_smc *smc);
150extern void enable_tx_irq(struct s_smc *smc, u_short queue);
1da177e4 151
a3aa1884 152static DEFINE_PCI_DEVICE_TABLE(skfddi_pci_tbl) = {
1da177e4
LT
153 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
154 { } /* Terminating entry */
155};
156MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
157MODULE_LICENSE("GPL");
158MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
159
160// Define module-wide (static) variables
161
162static int num_boards; /* total number of adapters configured */
163
145186a3
SH
164static const struct net_device_ops skfp_netdev_ops = {
165 .ndo_open = skfp_open,
166 .ndo_stop = skfp_close,
167 .ndo_start_xmit = skfp_send_pkt,
168 .ndo_get_stats = skfp_ctl_get_stats,
169 .ndo_change_mtu = fddi_change_mtu,
170 .ndo_set_multicast_list = skfp_ctl_set_multicast_list,
171 .ndo_set_mac_address = skfp_ctl_set_mac_address,
172 .ndo_do_ioctl = skfp_ioctl,
173};
174
1da177e4
LT
175/*
176 * =================
177 * = skfp_init_one =
178 * =================
179 *
180 * Overview:
181 * Probes for supported FDDI PCI controllers
182 *
183 * Returns:
184 * Condition code
185 *
186 * Arguments:
187 * pdev - pointer to PCI device information
188 *
189 * Functional Description:
190 * This is now called by PCI driver registration process
191 * for each board found.
192 *
193 * Return Codes:
194 * 0 - This device (fddi0, fddi1, etc) configured successfully
195 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
196 * present for this device name
197 *
198 *
199 * Side Effects:
200 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
201 * initialized and the board resources are read and stored in
202 * the device structure.
203 */
204static int skfp_init_one(struct pci_dev *pdev,
205 const struct pci_device_id *ent)
206{
207 struct net_device *dev;
208 struct s_smc *smc; /* board pointer */
209 void __iomem *mem;
210 int err;
211
ebc06eeb 212 pr_debug(KERN_INFO "entering skfp_init_one\n");
1da177e4
LT
213
214 if (num_boards == 0)
215 printk("%s\n", boot_msg);
216
217 err = pci_enable_device(pdev);
218 if (err)
219 return err;
220
221 err = pci_request_regions(pdev, "skfddi");
222 if (err)
223 goto err_out1;
224
225 pci_set_master(pdev);
226
227#ifdef MEM_MAPPED_IO
228 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
229 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
230 err = -EIO;
231 goto err_out2;
232 }
233
234 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
235#else
236 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
237 printk(KERN_ERR "skfp: region is not PIO resource\n");
238 err = -EIO;
239 goto err_out2;
240 }
241
242 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
243#endif
244 if (!mem) {
245 printk(KERN_ERR "skfp: Unable to map register, "
246 "FDDI adapter will be disabled.\n");
247 err = -EIO;
248 goto err_out2;
249 }
250
251 dev = alloc_fddidev(sizeof(struct s_smc));
252 if (!dev) {
253 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
254 "FDDI adapter will be disabled.\n");
255 err = -ENOMEM;
256 goto err_out3;
257 }
258
259 dev->irq = pdev->irq;
145186a3 260 dev->netdev_ops = &skfp_netdev_ops;
1da177e4 261
1da177e4
LT
262 SET_NETDEV_DEV(dev, &pdev->dev);
263
264 /* Initialize board structure with bus-specific info */
265 smc = netdev_priv(dev);
266 smc->os.dev = dev;
267 smc->os.bus_type = SK_BUS_TYPE_PCI;
268 smc->os.pdev = *pdev;
269 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
270 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
271 smc->os.dev = dev;
272 smc->hw.slot = -1;
273 smc->hw.iop = mem;
274 smc->os.ResetRequested = FALSE;
275 skb_queue_head_init(&smc->os.SendSkbQueue);
276
277 dev->base_addr = (unsigned long)mem;
278
279 err = skfp_driver_init(dev);
280 if (err)
281 goto err_out4;
282
283 err = register_netdev(dev);
284 if (err)
285 goto err_out5;
286
287 ++num_boards;
288 pci_set_drvdata(pdev, dev);
289
290 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
291 (pdev->subsystem_device & 0xff00) == 0x5800)
292 printk("%s: SysKonnect FDDI PCI adapter"
293 " found (SK-%04X)\n", dev->name,
294 pdev->subsystem_device);
295 else
296 printk("%s: FDDI PCI adapter found\n", dev->name);
297
298 return 0;
299err_out5:
300 if (smc->os.SharedMemAddr)
301 pci_free_consistent(pdev, smc->os.SharedMemSize,
302 smc->os.SharedMemAddr,
303 smc->os.SharedMemDMA);
304 pci_free_consistent(pdev, MAX_FRAME_SIZE,
305 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
306err_out4:
307 free_netdev(dev);
308err_out3:
309#ifdef MEM_MAPPED_IO
310 iounmap(mem);
311#else
312 ioport_unmap(mem);
313#endif
314err_out2:
315 pci_release_regions(pdev);
316err_out1:
317 pci_disable_device(pdev);
318 return err;
319}
320
321/*
322 * Called for each adapter board from pci_unregister_driver
323 */
324static void __devexit skfp_remove_one(struct pci_dev *pdev)
325{
326 struct net_device *p = pci_get_drvdata(pdev);
327 struct s_smc *lp = netdev_priv(p);
328
329 unregister_netdev(p);
330
331 if (lp->os.SharedMemAddr) {
332 pci_free_consistent(&lp->os.pdev,
333 lp->os.SharedMemSize,
334 lp->os.SharedMemAddr,
335 lp->os.SharedMemDMA);
336 lp->os.SharedMemAddr = NULL;
337 }
338 if (lp->os.LocalRxBuffer) {
339 pci_free_consistent(&lp->os.pdev,
340 MAX_FRAME_SIZE,
341 lp->os.LocalRxBuffer,
342 lp->os.LocalRxBufferDMA);
343 lp->os.LocalRxBuffer = NULL;
344 }
345#ifdef MEM_MAPPED_IO
346 iounmap(lp->hw.iop);
347#else
348 ioport_unmap(lp->hw.iop);
349#endif
350 pci_release_regions(pdev);
351 free_netdev(p);
352
353 pci_disable_device(pdev);
354 pci_set_drvdata(pdev, NULL);
355}
356
357/*
358 * ====================
359 * = skfp_driver_init =
360 * ====================
361 *
362 * Overview:
363 * Initializes remaining adapter board structure information
364 * and makes sure adapter is in a safe state prior to skfp_open().
365 *
366 * Returns:
367 * Condition code
368 *
369 * Arguments:
370 * dev - pointer to device information
371 *
372 * Functional Description:
373 * This function allocates additional resources such as the host memory
374 * blocks needed by the adapter.
375 * The adapter is also reset. The OS must call skfp_open() to open
376 * the adapter and bring it on-line.
377 *
378 * Return Codes:
379 * 0 - initialization succeeded
380 * -1 - initialization failed
381 */
382static int skfp_driver_init(struct net_device *dev)
383{
384 struct s_smc *smc = netdev_priv(dev);
385 skfddi_priv *bp = &smc->os;
386 int err = -EIO;
387
ebc06eeb 388 pr_debug(KERN_INFO "entering skfp_driver_init\n");
1da177e4
LT
389
390 // set the io address in private structures
391 bp->base_addr = dev->base_addr;
392
393 // Get the interrupt level from the PCI Configuration Table
394 smc->hw.irq = dev->irq;
395
396 spin_lock_init(&bp->DriverLock);
397
398 // Allocate invalid frame
399 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
400 if (!bp->LocalRxBuffer) {
401 printk("could not allocate mem for ");
402 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
403 goto fail;
404 }
405
406 // Determine the required size of the 'shared' memory area.
407 bp->SharedMemSize = mac_drv_check_space();
ebc06eeb 408 pr_debug(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
1da177e4
LT
409 if (bp->SharedMemSize > 0) {
410 bp->SharedMemSize += 16; // for descriptor alignment
411
412 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
413 bp->SharedMemSize,
414 &bp->SharedMemDMA);
415 if (!bp->SharedMemSize) {
416 printk("could not allocate mem for ");
417 printk("hardware module: %ld byte\n",
418 bp->SharedMemSize);
419 goto fail;
420 }
421 bp->SharedMemHeap = 0; // Nothing used yet.
422
423 } else {
424 bp->SharedMemAddr = NULL;
425 bp->SharedMemHeap = 0;
426 } // SharedMemSize > 0
427
428 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
429
430 card_stop(smc); // Reset adapter.
431
ebc06eeb 432 pr_debug(KERN_INFO "mac_drv_init()..\n");
1da177e4 433 if (mac_drv_init(smc) != 0) {
ebc06eeb 434 pr_debug(KERN_INFO "mac_drv_init() failed.\n");
1da177e4
LT
435 goto fail;
436 }
437 read_address(smc, NULL);
596a530b 438 pr_debug(KERN_INFO "HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
1da177e4
LT
439 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
440
441 smt_reset_defaults(smc, 0);
442
443 return (0);
444
445fail:
446 if (bp->SharedMemAddr) {
447 pci_free_consistent(&bp->pdev,
448 bp->SharedMemSize,
449 bp->SharedMemAddr,
450 bp->SharedMemDMA);
451 bp->SharedMemAddr = NULL;
452 }
453 if (bp->LocalRxBuffer) {
454 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
455 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
456 bp->LocalRxBuffer = NULL;
457 }
458 return err;
459} // skfp_driver_init
460
461
462/*
463 * =============
464 * = skfp_open =
465 * =============
466 *
467 * Overview:
468 * Opens the adapter
469 *
470 * Returns:
471 * Condition code
472 *
473 * Arguments:
474 * dev - pointer to device information
475 *
476 * Functional Description:
477 * This function brings the adapter to an operational state.
478 *
479 * Return Codes:
480 * 0 - Adapter was successfully opened
481 * -EAGAIN - Could not register IRQ
482 */
483static int skfp_open(struct net_device *dev)
484{
485 struct s_smc *smc = netdev_priv(dev);
486 int err;
487
ebc06eeb 488 pr_debug(KERN_INFO "entering skfp_open\n");
1da177e4 489 /* Register IRQ - support shared interrupts by passing device ptr */
2f220e30 490 err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
1da177e4
LT
491 dev->name, dev);
492 if (err)
493 return err;
494
495 /*
496 * Set current address to factory MAC address
497 *
498 * Note: We've already done this step in skfp_driver_init.
499 * However, it's possible that a user has set a node
500 * address override, then closed and reopened the
501 * adapter. Unless we reset the device address field
502 * now, we'll continue to use the existing modified
503 * address.
504 */
505 read_address(smc, NULL);
506 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
507
508 init_smt(smc, NULL);
509 smt_online(smc, 1);
510 STI_FBI();
511
512 /* Clear local multicast address tables */
513 mac_clear_multicast(smc);
514
515 /* Disable promiscuous filter settings */
516 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
517
518 netif_start_queue(dev);
519 return (0);
520} // skfp_open
521
522
523/*
524 * ==============
525 * = skfp_close =
526 * ==============
527 *
528 * Overview:
529 * Closes the device/module.
530 *
531 * Returns:
532 * Condition code
533 *
534 * Arguments:
535 * dev - pointer to device information
536 *
537 * Functional Description:
538 * This routine closes the adapter and brings it to a safe state.
539 * The interrupt service routine is deregistered with the OS.
540 * The adapter can be opened again with another call to skfp_open().
541 *
542 * Return Codes:
543 * Always return 0.
544 *
545 * Assumptions:
546 * No further requests for this adapter are made after this routine is
547 * called. skfp_open() can be called to reset and reinitialize the
548 * adapter.
549 */
550static int skfp_close(struct net_device *dev)
551{
552 struct s_smc *smc = netdev_priv(dev);
553 skfddi_priv *bp = &smc->os;
554
555 CLI_FBI();
556 smt_reset_defaults(smc, 1);
557 card_stop(smc);
558 mac_drv_clear_tx_queue(smc);
559 mac_drv_clear_rx_queue(smc);
560
561 netif_stop_queue(dev);
562 /* Deregister (free) IRQ */
563 free_irq(dev->irq, dev);
564
565 skb_queue_purge(&bp->SendSkbQueue);
566 bp->QueueSkb = MAX_TX_QUEUE_LEN;
567
568 return (0);
569} // skfp_close
570
571
572/*
573 * ==================
574 * = skfp_interrupt =
575 * ==================
576 *
577 * Overview:
578 * Interrupt processing routine
579 *
580 * Returns:
581 * None
582 *
583 * Arguments:
584 * irq - interrupt vector
585 * dev_id - pointer to device information
1da177e4
LT
586 *
587 * Functional Description:
588 * This routine calls the interrupt processing routine for this adapter. It
589 * disables and reenables adapter interrupts, as appropriate. We can support
590 * shared interrupts since the incoming dev_id pointer provides our device
591 * structure context. All the real work is done in the hardware module.
592 *
593 * Return Codes:
594 * None
595 *
596 * Assumptions:
597 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
598 * on Intel-based systems) is done by the operating system outside this
599 * routine.
600 *
601 * System interrupts are enabled through this call.
602 *
603 * Side Effects:
604 * Interrupts are disabled, then reenabled at the adapter.
605 */
606
409b2044 607static irqreturn_t skfp_interrupt(int irq, void *dev_id)
1da177e4 608{
c31f28e7 609 struct net_device *dev = dev_id;
1da177e4
LT
610 struct s_smc *smc; /* private board structure pointer */
611 skfddi_priv *bp;
612
1da177e4
LT
613 smc = netdev_priv(dev);
614 bp = &smc->os;
615
616 // IRQs enabled or disabled ?
617 if (inpd(ADDR(B0_IMSK)) == 0) {
618 // IRQs are disabled: must be shared interrupt
619 return IRQ_NONE;
620 }
621 // Note: At this point, IRQs are enabled.
622 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
623 // Adapter did not issue an IRQ: must be shared interrupt
624 return IRQ_NONE;
625 }
626 CLI_FBI(); // Disable IRQs from our adapter.
627 spin_lock(&bp->DriverLock);
628
629 // Call interrupt handler in hardware module (HWM).
630 fddi_isr(smc);
631
632 if (smc->os.ResetRequested) {
633 ResetAdapter(smc);
634 smc->os.ResetRequested = FALSE;
635 }
636 spin_unlock(&bp->DriverLock);
637 STI_FBI(); // Enable IRQs from our adapter.
638
639 return IRQ_HANDLED;
640} // skfp_interrupt
641
642
643/*
644 * ======================
645 * = skfp_ctl_get_stats =
646 * ======================
647 *
648 * Overview:
649 * Get statistics for FDDI adapter
650 *
651 * Returns:
652 * Pointer to FDDI statistics structure
653 *
654 * Arguments:
655 * dev - pointer to device information
656 *
657 * Functional Description:
658 * Gets current MIB objects from adapter, then
659 * returns FDDI statistics structure as defined
660 * in if_fddi.h.
661 *
662 * Note: Since the FDDI statistics structure is
663 * still new and the device structure doesn't
664 * have an FDDI-specific get statistics handler,
665 * we'll return the FDDI statistics structure as
666 * a pointer to an Ethernet statistics structure.
667 * That way, at least the first part of the statistics
668 * structure can be decoded properly.
669 * We'll have to pay attention to this routine as the
670 * device structure becomes more mature and LAN media
671 * independent.
672 *
673 */
409b2044 674static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
1da177e4
LT
675{
676 struct s_smc *bp = netdev_priv(dev);
677
678 /* Fill the bp->stats structure with driver-maintained counters */
679
680 bp->os.MacStat.port_bs_flag[0] = 0x1234;
681 bp->os.MacStat.port_bs_flag[1] = 0x5678;
682// goos: need to fill out fddi statistic
683#if 0
684 /* Get FDDI SMT MIB objects */
685
686/* Fill the bp->stats structure with the SMT MIB object values */
687
688 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
689 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
690 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
691 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
692 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
693 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
694 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
695 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
696 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
697 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
698 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
699 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
700 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
701 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
702 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
703 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
704 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
705 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
706 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
707 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
708 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
709 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
710 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
711 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
712 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
713 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
714 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
715 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
716 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
717 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
718 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
719 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
720 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
721 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
722 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
723 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
724 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
725 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
726 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
727 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
728 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
729 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
730 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
731 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
732 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
733 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
734 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
735 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
736 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
737 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
738 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
739 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
740 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
741 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
742 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
743 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
744 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
745 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
746 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
747 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
748 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
749 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
750 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
751 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
752 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
753 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
754 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
755 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
756 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
757 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
758 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
759 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
760 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
761 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
762 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
763 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
764 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
765 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
766 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
767 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
768 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
769 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
770 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
771 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
772 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
773 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
774 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
775 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
776 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
777 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
778 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
779 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
780
781
782 /* Fill the bp->stats structure with the FDDI counter values */
783
784 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
785 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
786 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
787 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
788 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
789 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
790 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
791 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
792 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
793 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
794 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
795
796#endif
797 return ((struct net_device_stats *) &bp->os.MacStat);
798} // ctl_get_stat
799
800
801/*
802 * ==============================
803 * = skfp_ctl_set_multicast_list =
804 * ==============================
805 *
806 * Overview:
807 * Enable/Disable LLC frame promiscuous mode reception
808 * on the adapter and/or update multicast address table.
809 *
810 * Returns:
811 * None
812 *
813 * Arguments:
814 * dev - pointer to device information
815 *
816 * Functional Description:
817 * This function acquires the driver lock and only calls
818 * skfp_ctl_set_multicast_list_wo_lock then.
819 * This routine follows a fairly simple algorithm for setting the
820 * adapter filters and CAM:
821 *
822 * if IFF_PROMISC flag is set
823 * enable promiscuous mode
824 * else
825 * disable promiscuous mode
826 * if number of multicast addresses <= max. multicast number
827 * add mc addresses to adapter table
828 * else
829 * enable promiscuous mode
830 * update adapter filters
831 *
832 * Assumptions:
833 * Multicast addresses are presented in canonical (LSB) format.
834 *
835 * Side Effects:
836 * On-board adapter filters are updated.
837 */
838static void skfp_ctl_set_multicast_list(struct net_device *dev)
839{
840 struct s_smc *smc = netdev_priv(dev);
841 skfddi_priv *bp = &smc->os;
842 unsigned long Flags;
843
844 spin_lock_irqsave(&bp->DriverLock, Flags);
845 skfp_ctl_set_multicast_list_wo_lock(dev);
846 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1da177e4
LT
847} // skfp_ctl_set_multicast_list
848
849
850
851static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
852{
853 struct s_smc *smc = netdev_priv(dev);
22bedad3 854 struct netdev_hw_addr *ha;
1da177e4
LT
855
856 /* Enable promiscuous mode, if necessary */
857 if (dev->flags & IFF_PROMISC) {
858 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
ebc06eeb 859 pr_debug(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
1da177e4
LT
860 }
861 /* Else, update multicast address table */
862 else {
863 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
ebc06eeb 864 pr_debug(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
1da177e4
LT
865
866 // Reset all MC addresses
867 mac_clear_multicast(smc);
868 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
869
870 if (dev->flags & IFF_ALLMULTI) {
871 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
ebc06eeb 872 pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
4cd24eaf
JP
873 } else if (!netdev_mc_empty(dev)) {
874 if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
1da177e4
LT
875 /* use exact filtering */
876
877 // point to first multicast addr
22bedad3
JP
878 netdev_for_each_mc_addr(ha, dev) {
879 mac_add_multicast(smc,
880 (struct fddi_addr *)ha->addr,
881 1);
1da177e4 882
596a530b 883 pr_debug(KERN_INFO "ENABLE MC ADDRESS: %pMF\n",
22bedad3 884 ha->addr);
5508590c 885 }
1da177e4
LT
886
887 } else { // more MC addresses than HW supports
888
889 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
ebc06eeb 890 pr_debug(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
1da177e4
LT
891 }
892 } else { // no MC addresses
893
ebc06eeb 894 pr_debug(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
1da177e4
LT
895 }
896
897 /* Update adapter filters */
898 mac_update_multicast(smc);
899 }
1da177e4
LT
900} // skfp_ctl_set_multicast_list_wo_lock
901
902
903/*
904 * ===========================
905 * = skfp_ctl_set_mac_address =
906 * ===========================
907 *
908 * Overview:
909 * set new mac address on adapter and update dev_addr field in device table.
910 *
911 * Returns:
912 * None
913 *
914 * Arguments:
915 * dev - pointer to device information
916 * addr - pointer to sockaddr structure containing unicast address to set
917 *
918 * Assumptions:
919 * The address pointed to by addr->sa_data is a valid unicast
920 * address and is presented in canonical (LSB) format.
921 */
922static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
923{
924 struct s_smc *smc = netdev_priv(dev);
925 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
926 skfddi_priv *bp = &smc->os;
927 unsigned long Flags;
928
929
930 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
931 spin_lock_irqsave(&bp->DriverLock, Flags);
932 ResetAdapter(smc);
933 spin_unlock_irqrestore(&bp->DriverLock, Flags);
934
935 return (0); /* always return zero */
936} // skfp_ctl_set_mac_address
937
938
939/*
940 * ==============
941 * = skfp_ioctl =
942 * ==============
943 *
944 * Overview:
945 *
946 * Perform IOCTL call functions here. Some are privileged operations and the
947 * effective uid is checked in those cases.
948 *
949 * Returns:
950 * status value
951 * 0 - success
952 * other - failure
953 *
954 * Arguments:
955 * dev - pointer to device information
956 * rq - pointer to ioctl request structure
957 * cmd - ?
958 *
959 */
960
961
962static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
963{
964 struct s_smc *smc = netdev_priv(dev);
965 skfddi_priv *lp = &smc->os;
966 struct s_skfp_ioctl ioc;
967 int status = 0;
968
969 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
970 return -EFAULT;
971
972 switch (ioc.cmd) {
973 case SKFP_GET_STATS: /* Get the driver statistics */
974 ioc.len = sizeof(lp->MacStat);
975 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
976 ? -EFAULT : 0;
977 break;
978 case SKFP_CLR_STATS: /* Zero out the driver statistics */
979 if (!capable(CAP_NET_ADMIN)) {
1da177e4 980 status = -EPERM;
c25b9abb
RK
981 } else {
982 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1da177e4
LT
983 }
984 break;
985 default:
af901ca1 986 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
1da177e4
LT
987 status = -EOPNOTSUPP;
988
989 } // switch
990
991 return status;
992} // skfp_ioctl
993
994
995/*
996 * =====================
997 * = skfp_send_pkt =
998 * =====================
999 *
1000 * Overview:
1001 * Queues a packet for transmission and try to transmit it.
1002 *
1003 * Returns:
1004 * Condition code
1005 *
1006 * Arguments:
1007 * skb - pointer to sk_buff to queue for transmission
1008 * dev - pointer to device information
1009 *
1010 * Functional Description:
1011 * Here we assume that an incoming skb transmit request
1012 * is contained in a single physically contiguous buffer
1013 * in which the virtual address of the start of packet
1014 * (skb->data) can be converted to a physical address
1015 * by using pci_map_single().
1016 *
1017 * We have an internal queue for packets we can not send
1018 * immediately. Packets in this queue can be given to the
1019 * adapter if transmit buffers are freed.
1020 *
1021 * We can't free the skb until after it's been DMA'd
1022 * out by the adapter, so we'll keep it in the driver and
1023 * return it in mac_drv_tx_complete.
1024 *
1025 * Return Codes:
1026 * 0 - driver has queued and/or sent packet
1027 * 1 - caller should requeue the sk_buff for later transmission
1028 *
1029 * Assumptions:
1030 * The entire packet is stored in one physically
1031 * contiguous buffer which is not cached and whose
1032 * 32-bit physical address can be determined.
1033 *
1034 * It's vital that this routine is NOT reentered for the
1035 * same board and that the OS is not in another section of
1036 * code (eg. skfp_interrupt) for the same board on a
1037 * different thread.
1038 *
1039 * Side Effects:
1040 * None
1041 */
61357325
SH
1042static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1043 struct net_device *dev)
1da177e4
LT
1044{
1045 struct s_smc *smc = netdev_priv(dev);
1046 skfddi_priv *bp = &smc->os;
1047
ebc06eeb 1048 pr_debug(KERN_INFO "skfp_send_pkt\n");
1da177e4
LT
1049
1050 /*
1051 * Verify that incoming transmit request is OK
1052 *
1053 * Note: The packet size check is consistent with other
1054 * Linux device drivers, although the correct packet
1055 * size should be verified before calling the
1056 * transmit routine.
1057 */
1058
1059 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1060 bp->MacStat.gen.tx_errors++; /* bump error counter */
1061 // dequeue packets from xmt queue and send them
1062 netif_start_queue(dev);
1063 dev_kfree_skb(skb);
ec634fe3 1064 return NETDEV_TX_OK; /* return "success" */
1da177e4
LT
1065 }
1066 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1067
1068 netif_stop_queue(dev);
5b548140 1069 return NETDEV_TX_BUSY;
1da177e4
LT
1070 }
1071 bp->QueueSkb--;
1072 skb_queue_tail(&bp->SendSkbQueue, skb);
1073 send_queued_packets(netdev_priv(dev));
1074 if (bp->QueueSkb == 0) {
1075 netif_stop_queue(dev);
1076 }
6ed10654 1077 return NETDEV_TX_OK;
1da177e4
LT
1078
1079} // skfp_send_pkt
1080
1081
1082/*
1083 * =======================
1084 * = send_queued_packets =
1085 * =======================
1086 *
1087 * Overview:
1088 * Send packets from the driver queue as long as there are some and
1089 * transmit resources are available.
1090 *
1091 * Returns:
1092 * None
1093 *
1094 * Arguments:
1095 * smc - pointer to smc (adapter) structure
1096 *
1097 * Functional Description:
1098 * Take a packet from queue if there is any. If not, then we are done.
1099 * Check if there are resources to send the packet. If not, requeue it
1100 * and exit.
1101 * Set packet descriptor flags and give packet to adapter.
1102 * Check if any send resources can be freed (we do not use the
1103 * transmit complete interrupt).
1104 */
1105static void send_queued_packets(struct s_smc *smc)
1106{
1107 skfddi_priv *bp = &smc->os;
1108 struct sk_buff *skb;
1109 unsigned char fc;
1110 int queue;
1111 struct s_smt_fp_txd *txd; // Current TxD.
1112 dma_addr_t dma_address;
1113 unsigned long Flags;
1114
1115 int frame_status; // HWM tx frame status.
1116
ebc06eeb 1117 pr_debug(KERN_INFO "send queued packets\n");
1da177e4
LT
1118 for (;;) {
1119 // send first buffer from queue
1120 skb = skb_dequeue(&bp->SendSkbQueue);
1121
1122 if (!skb) {
ebc06eeb 1123 pr_debug(KERN_INFO "queue empty\n");
1da177e4
LT
1124 return;
1125 } // queue empty !
1126
1127 spin_lock_irqsave(&bp->DriverLock, Flags);
1128 fc = skb->data[0];
1129 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1130#ifdef ESS
1131 // Check if the frame may/must be sent as a synchronous frame.
1132
1133 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1134 // It's an LLC frame.
1135 if (!smc->ess.sync_bw_available)
1136 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1137
1138 else { // Bandwidth is available.
1139
1140 if (smc->mib.fddiESSSynchTxMode) {
1141 // Send as sync. frame.
1142 fc |= FC_SYNC_BIT;
1143 }
1144 }
1145 }
1146#endif // ESS
1147 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1148
1149 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1150 // Unable to send the frame.
1151
1152 if ((frame_status & RING_DOWN) != 0) {
1153 // Ring is down.
ebc06eeb 1154 pr_debug("Tx attempt while ring down.\n");
1da177e4 1155 } else if ((frame_status & OUT_OF_TXD) != 0) {
ebc06eeb 1156 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1da177e4 1157 } else {
ebc06eeb 1158 pr_debug("%s: out of transmit resources",
1da177e4
LT
1159 bp->dev->name);
1160 }
1161
1162 // Note: We will retry the operation as soon as
1163 // transmit resources become available.
1164 skb_queue_head(&bp->SendSkbQueue, skb);
1165 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1166 return; // Packet has been queued.
1167
1168 } // if (unable to send frame)
1169
1170 bp->QueueSkb++; // one packet less in local queue
1171
1172 // source address in packet ?
1173 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1174
1175 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1176
1177 dma_address = pci_map_single(&bp->pdev, skb->data,
1178 skb->len, PCI_DMA_TODEVICE);
1179 if (frame_status & LAN_TX) {
1180 txd->txd_os.skb = skb; // save skb
1181 txd->txd_os.dma_addr = dma_address; // save dma mapping
1182 }
1183 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1184 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1185
1186 if (!(frame_status & LAN_TX)) { // local only frame
1187 pci_unmap_single(&bp->pdev, dma_address,
1188 skb->len, PCI_DMA_TODEVICE);
1189 dev_kfree_skb_irq(skb);
1190 }
1191 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192 } // for
1193
1194 return; // never reached
1195
1196} // send_queued_packets
1197
1198
1199/************************
1200 *
1201 * CheckSourceAddress
1202 *
1203 * Verify if the source address is set. Insert it if necessary.
1204 *
1205 ************************/
409b2044 1206static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1da177e4
LT
1207{
1208 unsigned char SRBit;
1209
1210 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1211
1212 return;
1213 if ((unsigned short) frame[1 + 10] != 0)
1214 return;
1215 SRBit = frame[1 + 6] & 0x01;
1216 memcpy(&frame[1 + 6], hw_addr, 6);
1217 frame[8] |= SRBit;
1218} // CheckSourceAddress
1219
1220
1221/************************
1222 *
1223 * ResetAdapter
1224 *
1225 * Reset the adapter and bring it back to operational mode.
1226 * Args
1227 * smc - A pointer to the SMT context struct.
1228 * Out
1229 * Nothing.
1230 *
1231 ************************/
1232static void ResetAdapter(struct s_smc *smc)
1233{
1234
ebc06eeb 1235 pr_debug(KERN_INFO "[fddi: ResetAdapter]\n");
1da177e4
LT
1236
1237 // Stop the adapter.
1238
1239 card_stop(smc); // Stop all activity.
1240
1241 // Clear the transmit and receive descriptor queues.
1242 mac_drv_clear_tx_queue(smc);
1243 mac_drv_clear_rx_queue(smc);
1244
1245 // Restart the adapter.
1246
1247 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1248
1249 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1250
1251 smt_online(smc, 1); // Insert into the ring again.
1252 STI_FBI();
1253
1254 // Restore original receive mode (multicasts, promiscuous, etc.).
1255 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1256} // ResetAdapter
1257
1258
1259//--------------- functions called by hardware module ----------------
1260
1261/************************
1262 *
1263 * llc_restart_tx
1264 *
1265 * The hardware driver calls this routine when the transmit complete
1266 * interrupt bits (end of frame) for the synchronous or asynchronous
1267 * queue is set.
1268 *
1269 * NOTE The hardware driver calls this function also if no packets are queued.
1270 * The routine must be able to handle this case.
1271 * Args
1272 * smc - A pointer to the SMT context struct.
1273 * Out
1274 * Nothing.
1275 *
1276 ************************/
1277void llc_restart_tx(struct s_smc *smc)
1278{
1279 skfddi_priv *bp = &smc->os;
1280
ebc06eeb 1281 pr_debug(KERN_INFO "[llc_restart_tx]\n");
1da177e4
LT
1282
1283 // Try to send queued packets
1284 spin_unlock(&bp->DriverLock);
1285 send_queued_packets(smc);
1286 spin_lock(&bp->DriverLock);
1287 netif_start_queue(bp->dev);// system may send again if it was blocked
1288
1289} // llc_restart_tx
1290
1291
1292/************************
1293 *
1294 * mac_drv_get_space
1295 *
1296 * The hardware module calls this function to allocate the memory
1297 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1298 * Args
1299 * smc - A pointer to the SMT context struct.
1300 *
1301 * size - Size of memory in bytes to allocate.
1302 * Out
1303 * != 0 A pointer to the virtual address of the allocated memory.
1304 * == 0 Allocation error.
1305 *
1306 ************************/
1307void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1308{
1309 void *virt;
1310
ebc06eeb 1311 pr_debug(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1da177e4
LT
1312 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1313
1314 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1315 printk("Unexpected SMT memory size requested: %d\n", size);
1316 return (NULL);
1317 }
1318 smc->os.SharedMemHeap += size; // Move heap pointer.
1319
ebc06eeb
AB
1320 pr_debug(KERN_INFO "mac_drv_get_space end\n");
1321 pr_debug(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1322 pr_debug(KERN_INFO "bus addr: %lx\n", (ulong)
1da177e4
LT
1323 (smc->os.SharedMemDMA +
1324 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1325 return (virt);
1326} // mac_drv_get_space
1327
1328
1329/************************
1330 *
1331 * mac_drv_get_desc_mem
1332 *
1333 * This function is called by the hardware dependent module.
1334 * It allocates the memory for the RxD and TxD descriptors.
1335 *
1336 * This memory must be non-cached, non-movable and non-swappable.
1337 * This memory should start at a physical page boundary.
1338 * Args
1339 * smc - A pointer to the SMT context struct.
1340 *
1341 * size - Size of memory in bytes to allocate.
1342 * Out
1343 * != 0 A pointer to the virtual address of the allocated memory.
1344 * == 0 Allocation error.
1345 *
1346 ************************/
1347void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1348{
1349
1350 char *virt;
1351
ebc06eeb 1352 pr_debug(KERN_INFO "mac_drv_get_desc_mem\n");
1da177e4
LT
1353
1354 // Descriptor memory must be aligned on 16-byte boundary.
1355
1356 virt = mac_drv_get_space(smc, size);
1357
1358 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1359 size = size % 16;
1360
ebc06eeb
AB
1361 pr_debug("Allocate %u bytes alignment gap ", size);
1362 pr_debug("for descriptor memory.\n");
1da177e4
LT
1363
1364 if (!mac_drv_get_space(smc, size)) {
1365 printk("fddi: Unable to align descriptor memory.\n");
1366 return (NULL);
1367 }
1368 return (virt + size);
1369} // mac_drv_get_desc_mem
1370
1371
1372/************************
1373 *
1374 * mac_drv_virt2phys
1375 *
1376 * Get the physical address of a given virtual address.
1377 * Args
1378 * smc - A pointer to the SMT context struct.
1379 *
1380 * virt - A (virtual) pointer into our 'shared' memory area.
1381 * Out
1382 * Physical address of the given virtual address.
1383 *
1384 ************************/
1385unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1386{
1387 return (smc->os.SharedMemDMA +
1388 ((char *) virt - (char *)smc->os.SharedMemAddr));
1389} // mac_drv_virt2phys
1390
1391
1392/************************
1393 *
1394 * dma_master
1395 *
1396 * The HWM calls this function, when the driver leads through a DMA
1397 * transfer. If the OS-specific module must prepare the system hardware
1398 * for the DMA transfer, it should do it in this function.
1399 *
1400 * The hardware module calls this dma_master if it wants to send an SMT
1401 * frame. This means that the virt address passed in here is part of
1402 * the 'shared' memory area.
1403 * Args
1404 * smc - A pointer to the SMT context struct.
1405 *
1406 * virt - The virtual address of the data.
1407 *
1408 * len - The length in bytes of the data.
1409 *
1410 * flag - Indicates the transmit direction and the buffer type:
1411 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1412 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1413 * SMT_BUF (0x80) SMT buffer
1414 *
1415 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1416 * Out
1417 * Returns the pyhsical address for the DMA transfer.
1418 *
1419 ************************/
1420u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1421{
1422 return (smc->os.SharedMemDMA +
1423 ((char *) virt - (char *)smc->os.SharedMemAddr));
1424} // dma_master
1425
1426
1427/************************
1428 *
1429 * dma_complete
1430 *
1431 * The hardware module calls this routine when it has completed a DMA
1432 * transfer. If the operating system dependent module has set up the DMA
1433 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1434 * the DMA channel.
1435 * Args
1436 * smc - A pointer to the SMT context struct.
1437 *
1438 * descr - A pointer to a TxD or RxD, respectively.
1439 *
1440 * flag - Indicates the DMA transfer direction / SMT buffer:
1441 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1442 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1443 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1444 * Out
1445 * Nothing.
1446 *
1447 ************************/
1448void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1449{
1450 /* For TX buffers, there are two cases. If it is an SMT transmit
1451 * buffer, there is nothing to do since we use consistent memory
1452 * for the 'shared' memory area. The other case is for normal
1453 * transmit packets given to us by the networking stack, and in
1454 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1455 * below.
1456 *
1457 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1458 * because the hardware module is about to potentially look at
1459 * the contents of the buffer. If we did not call the PCI DMA
1460 * unmap first, the hardware module could read inconsistent data.
1461 */
1462 if (flag & DMA_WR) {
1463 skfddi_priv *bp = &smc->os;
1464 volatile struct s_smt_fp_rxd *r = &descr->r;
1465
1466 /* If SKB is NULL, we used the local buffer. */
1467 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1468 int MaxFrameSize = bp->MaxFrameSize;
1469
1470 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1471 MaxFrameSize, PCI_DMA_FROMDEVICE);
1472 r->rxd_os.dma_addr = 0;
1473 }
1474 }
1475} // dma_complete
1476
1477
1478/************************
1479 *
1480 * mac_drv_tx_complete
1481 *
1482 * Transmit of a packet is complete. Release the tx staging buffer.
1483 *
1484 * Args
1485 * smc - A pointer to the SMT context struct.
1486 *
1487 * txd - A pointer to the last TxD which is used by the frame.
1488 * Out
1489 * Returns nothing.
1490 *
1491 ************************/
1492void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1493{
1494 struct sk_buff *skb;
1495
ebc06eeb 1496 pr_debug(KERN_INFO "entering mac_drv_tx_complete\n");
1da177e4
LT
1497 // Check if this TxD points to a skb
1498
1499 if (!(skb = txd->txd_os.skb)) {
ebc06eeb 1500 pr_debug("TXD with no skb assigned.\n");
1da177e4
LT
1501 return;
1502 }
1503 txd->txd_os.skb = NULL;
1504
1505 // release the DMA mapping
1506 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1507 skb->len, PCI_DMA_TODEVICE);
1508 txd->txd_os.dma_addr = 0;
1509
1510 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1511 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1512
1513 // free the skb
1514 dev_kfree_skb_irq(skb);
1515
ebc06eeb 1516 pr_debug(KERN_INFO "leaving mac_drv_tx_complete\n");
1da177e4
LT
1517} // mac_drv_tx_complete
1518
1519
1520/************************
1521 *
1522 * dump packets to logfile
1523 *
1524 ************************/
1525#ifdef DUMPPACKETS
1526void dump_data(unsigned char *Data, int length)
1527{
1528 int i, j;
1529 unsigned char s[255], sh[10];
1530 if (length > 64) {
1531 length = 64;
1532 }
1533 printk(KERN_INFO "---Packet start---\n");
1534 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1535 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1536 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1537 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1538 strcpy(s, "");
1539 for (i = 0; i < length % 8; i++) {
1540 sprintf(sh, "%02x ", Data[j + i]);
1541 strcat(s, sh);
1542 }
1543 printk(KERN_INFO "%s\n", s);
1544 printk(KERN_INFO "------------------\n");
1545} // dump_data
1546#else
1547#define dump_data(data,len)
1548#endif // DUMPPACKETS
1549
1550/************************
1551 *
1552 * mac_drv_rx_complete
1553 *
1554 * The hardware module calls this function if an LLC frame is received
1555 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1556 * from the network will be passed to the LLC layer by this function
1557 * if passing is enabled.
1558 *
1559 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1560 * be received. It also fills the RxD ring with new receive buffers if
1561 * some can be queued.
1562 * Args
1563 * smc - A pointer to the SMT context struct.
1564 *
1565 * rxd - A pointer to the first RxD which is used by the receive frame.
1566 *
1567 * frag_count - Count of RxDs used by the received frame.
1568 *
1569 * len - Frame length.
1570 * Out
1571 * Nothing.
1572 *
1573 ************************/
1574void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1575 int frag_count, int len)
1576{
1577 skfddi_priv *bp = &smc->os;
1578 struct sk_buff *skb;
1579 unsigned char *virt, *cp;
1580 unsigned short ri;
1581 u_int RifLength;
1582
ebc06eeb 1583 pr_debug(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1da177e4
LT
1584 if (frag_count != 1) { // This is not allowed to happen.
1585
1586 printk("fddi: Multi-fragment receive!\n");
1587 goto RequeueRxd; // Re-use the given RXD(s).
1588
1589 }
1590 skb = rxd->rxd_os.skb;
1591 if (!skb) {
ebc06eeb 1592 pr_debug(KERN_INFO "No skb in rxd\n");
1da177e4
LT
1593 smc->os.MacStat.gen.rx_errors++;
1594 goto RequeueRxd;
1595 }
1596 virt = skb->data;
1597
1598 // The DMA mapping was released in dma_complete above.
1599
1600 dump_data(skb->data, len);
1601
1602 /*
1603 * FDDI Frame format:
1604 * +-------+-------+-------+------------+--------+------------+
1605 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1606 * +-------+-------+-------+------------+--------+------------+
1607 *
1608 * FC = Frame Control
1609 * DA = Destination Address
1610 * SA = Source Address
1611 * RIF = Routing Information Field
1612 * LLC = Logical Link Control
1613 */
1614
1615 // Remove Routing Information Field (RIF), if present.
1616
1617 if ((virt[1 + 6] & FDDI_RII) == 0)
1618 RifLength = 0;
1619 else {
1620 int n;
1621// goos: RIF removal has still to be tested
ebc06eeb 1622 pr_debug(KERN_INFO "RIF found\n");
1da177e4
LT
1623 // Get RIF length from Routing Control (RC) field.
1624 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1625
2f220e30 1626 ri = ntohs(*((__be16 *) cp));
1da177e4
LT
1627 RifLength = ri & FDDI_RCF_LEN_MASK;
1628 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1629 printk("fddi: Invalid RIF.\n");
1630 goto RequeueRxd; // Discard the frame.
1631
1632 }
1633 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1634 // regions overlap
1635
1636 virt = cp + RifLength;
1637 for (n = FDDI_MAC_HDR_LEN; n; n--)
1638 *--virt = *--cp;
1639 // adjust sbd->data pointer
1640 skb_pull(skb, RifLength);
1641 len -= RifLength;
1642 RifLength = 0;
1643 }
1644
1645 // Count statistics.
1646 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1647 // packets.
1648 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1649
1650 // virt points to header again
1651 if (virt[1] & 0x01) { // Check group (multicast) bit.
1652
1653 smc->os.MacStat.gen.multicast++;
1654 }
1655
1656 // deliver frame to system
1657 rxd->rxd_os.skb = NULL;
1658 skb_trim(skb, len);
1659 skb->protocol = fddi_type_trans(skb, bp->dev);
1da177e4
LT
1660
1661 netif_rx(skb);
1da177e4
LT
1662
1663 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1664 return;
1665
1666 RequeueRxd:
ebc06eeb 1667 pr_debug(KERN_INFO "Rx: re-queue RXD.\n");
1da177e4
LT
1668 mac_drv_requeue_rxd(smc, rxd, frag_count);
1669 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1670 // not indicated.
1671
1672} // mac_drv_rx_complete
1673
1674
1675/************************
1676 *
1677 * mac_drv_requeue_rxd
1678 *
1679 * The hardware module calls this function to request the OS-specific
1680 * module to queue the receive buffer(s) represented by the pointer
1681 * to the RxD and the frag_count into the receive queue again. This
1682 * buffer was filled with an invalid frame or an SMT frame.
1683 * Args
1684 * smc - A pointer to the SMT context struct.
1685 *
1686 * rxd - A pointer to the first RxD which is used by the receive frame.
1687 *
1688 * frag_count - Count of RxDs used by the received frame.
1689 * Out
1690 * Nothing.
1691 *
1692 ************************/
1693void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1694 int frag_count)
1695{
1696 volatile struct s_smt_fp_rxd *next_rxd;
1697 volatile struct s_smt_fp_rxd *src_rxd;
1698 struct sk_buff *skb;
1699 int MaxFrameSize;
1700 unsigned char *v_addr;
1701 dma_addr_t b_addr;
1702
1703 if (frag_count != 1) // This is not allowed to happen.
1704
1705 printk("fddi: Multi-fragment requeue!\n");
1706
1707 MaxFrameSize = smc->os.MaxFrameSize;
1708 src_rxd = rxd;
1709 for (; frag_count > 0; frag_count--) {
1710 next_rxd = src_rxd->rxd_next;
1711 rxd = HWM_GET_CURR_RXD(smc);
1712
1713 skb = src_rxd->rxd_os.skb;
1714 if (skb == NULL) { // this should not happen
1715
ebc06eeb 1716 pr_debug("Requeue with no skb in rxd!\n");
1da177e4
LT
1717 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1718 if (skb) {
1719 // we got a skb
1720 rxd->rxd_os.skb = skb;
1721 skb_reserve(skb, 3);
1722 skb_put(skb, MaxFrameSize);
1723 v_addr = skb->data;
1724 b_addr = pci_map_single(&smc->os.pdev,
1725 v_addr,
1726 MaxFrameSize,
1727 PCI_DMA_FROMDEVICE);
1728 rxd->rxd_os.dma_addr = b_addr;
1729 } else {
1730 // no skb available, use local buffer
ebc06eeb 1731 pr_debug("Queueing invalid buffer!\n");
1da177e4
LT
1732 rxd->rxd_os.skb = NULL;
1733 v_addr = smc->os.LocalRxBuffer;
1734 b_addr = smc->os.LocalRxBufferDMA;
1735 }
1736 } else {
1737 // we use skb from old rxd
1738 rxd->rxd_os.skb = skb;
1739 v_addr = skb->data;
1740 b_addr = pci_map_single(&smc->os.pdev,
1741 v_addr,
1742 MaxFrameSize,
1743 PCI_DMA_FROMDEVICE);
1744 rxd->rxd_os.dma_addr = b_addr;
1745 }
1746 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1747 FIRST_FRAG | LAST_FRAG);
1748
1749 src_rxd = next_rxd;
1750 }
1751} // mac_drv_requeue_rxd
1752
1753
1754/************************
1755 *
1756 * mac_drv_fill_rxd
1757 *
1758 * The hardware module calls this function at initialization time
1759 * to fill the RxD ring with receive buffers. It is also called by
1760 * mac_drv_rx_complete if rx_free is large enough to queue some new
1761 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1762 * receive buffers as long as enough RxDs and receive buffers are
1763 * available.
1764 * Args
1765 * smc - A pointer to the SMT context struct.
1766 * Out
1767 * Nothing.
1768 *
1769 ************************/
1770void mac_drv_fill_rxd(struct s_smc *smc)
1771{
1772 int MaxFrameSize;
1773 unsigned char *v_addr;
1774 unsigned long b_addr;
1775 struct sk_buff *skb;
1776 volatile struct s_smt_fp_rxd *rxd;
1777
ebc06eeb 1778 pr_debug(KERN_INFO "entering mac_drv_fill_rxd\n");
1da177e4
LT
1779
1780 // Walk through the list of free receive buffers, passing receive
1781 // buffers to the HWM as long as RXDs are available.
1782
1783 MaxFrameSize = smc->os.MaxFrameSize;
1784 // Check if there is any RXD left.
1785 while (HWM_GET_RX_FREE(smc) > 0) {
ebc06eeb 1786 pr_debug(KERN_INFO ".\n");
1da177e4
LT
1787
1788 rxd = HWM_GET_CURR_RXD(smc);
1789 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1790 if (skb) {
1791 // we got a skb
1792 skb_reserve(skb, 3);
1793 skb_put(skb, MaxFrameSize);
1794 v_addr = skb->data;
1795 b_addr = pci_map_single(&smc->os.pdev,
1796 v_addr,
1797 MaxFrameSize,
1798 PCI_DMA_FROMDEVICE);
1799 rxd->rxd_os.dma_addr = b_addr;
1800 } else {
1801 // no skb available, use local buffer
1802 // System has run out of buffer memory, but we want to
1803 // keep the receiver running in hope of better times.
1804 // Multiple descriptors may point to this local buffer,
1805 // so data in it must be considered invalid.
ebc06eeb 1806 pr_debug("Queueing invalid buffer!\n");
1da177e4
LT
1807 v_addr = smc->os.LocalRxBuffer;
1808 b_addr = smc->os.LocalRxBufferDMA;
1809 }
1810
1811 rxd->rxd_os.skb = skb;
1812
1813 // Pass receive buffer to HWM.
1814 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1815 FIRST_FRAG | LAST_FRAG);
1816 }
ebc06eeb 1817 pr_debug(KERN_INFO "leaving mac_drv_fill_rxd\n");
1da177e4
LT
1818} // mac_drv_fill_rxd
1819
1820
1821/************************
1822 *
1823 * mac_drv_clear_rxd
1824 *
1825 * The hardware module calls this function to release unused
1826 * receive buffers.
1827 * Args
1828 * smc - A pointer to the SMT context struct.
1829 *
1830 * rxd - A pointer to the first RxD which is used by the receive buffer.
1831 *
1832 * frag_count - Count of RxDs used by the receive buffer.
1833 * Out
1834 * Nothing.
1835 *
1836 ************************/
1837void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1838 int frag_count)
1839{
1840
1841 struct sk_buff *skb;
1842
ebc06eeb 1843 pr_debug("entering mac_drv_clear_rxd\n");
1da177e4
LT
1844
1845 if (frag_count != 1) // This is not allowed to happen.
1846
1847 printk("fddi: Multi-fragment clear!\n");
1848
1849 for (; frag_count > 0; frag_count--) {
1850 skb = rxd->rxd_os.skb;
1851 if (skb != NULL) {
1852 skfddi_priv *bp = &smc->os;
1853 int MaxFrameSize = bp->MaxFrameSize;
1854
1855 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1856 MaxFrameSize, PCI_DMA_FROMDEVICE);
1857
1858 dev_kfree_skb(skb);
1859 rxd->rxd_os.skb = NULL;
1860 }
1861 rxd = rxd->rxd_next; // Next RXD.
1862
1863 }
1864} // mac_drv_clear_rxd
1865
1866
1867/************************
1868 *
1869 * mac_drv_rx_init
1870 *
1871 * The hardware module calls this routine when an SMT or NSA frame of the
1872 * local SMT should be delivered to the LLC layer.
1873 *
1874 * It is necessary to have this function, because there is no other way to
1875 * copy the contents of SMT MBufs into receive buffers.
1876 *
1877 * mac_drv_rx_init allocates the required target memory for this frame,
1878 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1879 * Args
1880 * smc - A pointer to the SMT context struct.
1881 *
1882 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1883 *
1884 * fc - The Frame Control field of the received frame.
1885 *
1886 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1887 *
1888 * la_len - The length of the lookahead data stored in the lookahead
1889 * buffer (may be zero).
1890 * Out
1891 * Always returns zero (0).
1892 *
1893 ************************/
1894int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1895 char *look_ahead, int la_len)
1896{
1897 struct sk_buff *skb;
1898
ebc06eeb 1899 pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1da177e4
LT
1900
1901 // "Received" a SMT or NSA frame of the local SMT.
1902
1903 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
ebc06eeb
AB
1904 pr_debug("fddi: Discard invalid local SMT frame\n");
1905 pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1da177e4
LT
1906 len, la_len, (unsigned long) look_ahead);
1907 return (0);
1908 }
1909 skb = alloc_skb(len + 3, GFP_ATOMIC);
1910 if (!skb) {
ebc06eeb 1911 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1da177e4
LT
1912 return (0);
1913 }
1914 skb_reserve(skb, 3);
1915 skb_put(skb, len);
27d7ff46 1916 skb_copy_to_linear_data(skb, look_ahead, len);
1da177e4
LT
1917
1918 // deliver frame to system
1919 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1da177e4
LT
1920 netif_rx(skb);
1921
1922 return (0);
1923} // mac_drv_rx_init
1924
1925
1926/************************
1927 *
1928 * smt_timer_poll
1929 *
1930 * This routine is called periodically by the SMT module to clean up the
1931 * driver.
1932 *
1933 * Return any queued frames back to the upper protocol layers if the ring
1934 * is down.
1935 * Args
1936 * smc - A pointer to the SMT context struct.
1937 * Out
1938 * Nothing.
1939 *
1940 ************************/
1941void smt_timer_poll(struct s_smc *smc)
1942{
1943} // smt_timer_poll
1944
1945
1946/************************
1947 *
1948 * ring_status_indication
1949 *
1950 * This function indicates a change of the ring state.
1951 * Args
1952 * smc - A pointer to the SMT context struct.
1953 *
1954 * status - The current ring status.
1955 * Out
1956 * Nothing.
1957 *
1958 ************************/
1959void ring_status_indication(struct s_smc *smc, u_long status)
1960{
ebc06eeb 1961 pr_debug("ring_status_indication( ");
1da177e4 1962 if (status & RS_RES15)
ebc06eeb 1963 pr_debug("RS_RES15 ");
1da177e4 1964 if (status & RS_HARDERROR)
ebc06eeb 1965 pr_debug("RS_HARDERROR ");
1da177e4 1966 if (status & RS_SOFTERROR)
ebc06eeb 1967 pr_debug("RS_SOFTERROR ");
1da177e4 1968 if (status & RS_BEACON)
ebc06eeb 1969 pr_debug("RS_BEACON ");
1da177e4 1970 if (status & RS_PATHTEST)
ebc06eeb 1971 pr_debug("RS_PATHTEST ");
1da177e4 1972 if (status & RS_SELFTEST)
ebc06eeb 1973 pr_debug("RS_SELFTEST ");
1da177e4 1974 if (status & RS_RES9)
ebc06eeb 1975 pr_debug("RS_RES9 ");
1da177e4 1976 if (status & RS_DISCONNECT)
ebc06eeb 1977 pr_debug("RS_DISCONNECT ");
1da177e4 1978 if (status & RS_RES7)
ebc06eeb 1979 pr_debug("RS_RES7 ");
1da177e4 1980 if (status & RS_DUPADDR)
ebc06eeb 1981 pr_debug("RS_DUPADDR ");
1da177e4 1982 if (status & RS_NORINGOP)
ebc06eeb 1983 pr_debug("RS_NORINGOP ");
1da177e4 1984 if (status & RS_VERSION)
ebc06eeb 1985 pr_debug("RS_VERSION ");
1da177e4 1986 if (status & RS_STUCKBYPASSS)
ebc06eeb 1987 pr_debug("RS_STUCKBYPASSS ");
1da177e4 1988 if (status & RS_EVENT)
ebc06eeb 1989 pr_debug("RS_EVENT ");
1da177e4 1990 if (status & RS_RINGOPCHANGE)
ebc06eeb 1991 pr_debug("RS_RINGOPCHANGE ");
1da177e4 1992 if (status & RS_RES0)
ebc06eeb
AB
1993 pr_debug("RS_RES0 ");
1994 pr_debug("]\n");
1da177e4
LT
1995} // ring_status_indication
1996
1997
1998/************************
1999 *
2000 * smt_get_time
2001 *
2002 * Gets the current time from the system.
2003 * Args
2004 * None.
2005 * Out
2006 * The current time in TICKS_PER_SECOND.
2007 *
2008 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2009 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2010 * to the time returned by smt_get_time().
2011 *
2012 ************************/
2013unsigned long smt_get_time(void)
2014{
2015 return jiffies;
2016} // smt_get_time
2017
2018
2019/************************
2020 *
2021 * smt_stat_counter
2022 *
2023 * Status counter update (ring_op, fifo full).
2024 * Args
2025 * smc - A pointer to the SMT context struct.
2026 *
2027 * stat - = 0: A ring operational change occurred.
2028 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2029 * Out
2030 * Nothing.
2031 *
2032 ************************/
2033void smt_stat_counter(struct s_smc *smc, int stat)
2034{
2035// BOOLEAN RingIsUp ;
2036
ebc06eeb 2037 pr_debug(KERN_INFO "smt_stat_counter\n");
1da177e4
LT
2038 switch (stat) {
2039 case 0:
ebc06eeb 2040 pr_debug(KERN_INFO "Ring operational change.\n");
1da177e4
LT
2041 break;
2042 case 1:
ebc06eeb 2043 pr_debug(KERN_INFO "Receive fifo overflow.\n");
1da177e4
LT
2044 smc->os.MacStat.gen.rx_errors++;
2045 break;
2046 default:
ebc06eeb 2047 pr_debug(KERN_INFO "Unknown status (%d).\n", stat);
1da177e4
LT
2048 break;
2049 }
2050} // smt_stat_counter
2051
2052
2053/************************
2054 *
2055 * cfm_state_change
2056 *
2057 * Sets CFM state in custom statistics.
2058 * Args
2059 * smc - A pointer to the SMT context struct.
2060 *
2061 * c_state - Possible values are:
2062 *
2063 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2064 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2065 * Out
2066 * Nothing.
2067 *
2068 ************************/
2069void cfm_state_change(struct s_smc *smc, int c_state)
2070{
2071#ifdef DRIVERDEBUG
2072 char *s;
2073
2074 switch (c_state) {
2075 case SC0_ISOLATED:
2076 s = "SC0_ISOLATED";
2077 break;
2078 case SC1_WRAP_A:
2079 s = "SC1_WRAP_A";
2080 break;
2081 case SC2_WRAP_B:
2082 s = "SC2_WRAP_B";
2083 break;
2084 case SC4_THRU_A:
2085 s = "SC4_THRU_A";
2086 break;
2087 case SC5_THRU_B:
2088 s = "SC5_THRU_B";
2089 break;
2090 case SC7_WRAP_S:
2091 s = "SC7_WRAP_S";
2092 break;
2093 case SC9_C_WRAP_A:
2094 s = "SC9_C_WRAP_A";
2095 break;
2096 case SC10_C_WRAP_B:
2097 s = "SC10_C_WRAP_B";
2098 break;
2099 case SC11_C_WRAP_S:
2100 s = "SC11_C_WRAP_S";
2101 break;
2102 default:
ebc06eeb 2103 pr_debug(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
1da177e4
LT
2104 return;
2105 }
ebc06eeb 2106 pr_debug(KERN_INFO "cfm_state_change: %s\n", s);
1da177e4
LT
2107#endif // DRIVERDEBUG
2108} // cfm_state_change
2109
2110
2111/************************
2112 *
2113 * ecm_state_change
2114 *
2115 * Sets ECM state in custom statistics.
2116 * Args
2117 * smc - A pointer to the SMT context struct.
2118 *
2119 * e_state - Possible values are:
2120 *
2121 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2122 * SC5_THRU_B (7), SC7_WRAP_S (8)
2123 * Out
2124 * Nothing.
2125 *
2126 ************************/
2127void ecm_state_change(struct s_smc *smc, int e_state)
2128{
2129#ifdef DRIVERDEBUG
2130 char *s;
2131
2132 switch (e_state) {
2133 case EC0_OUT:
2134 s = "EC0_OUT";
2135 break;
2136 case EC1_IN:
2137 s = "EC1_IN";
2138 break;
2139 case EC2_TRACE:
2140 s = "EC2_TRACE";
2141 break;
2142 case EC3_LEAVE:
2143 s = "EC3_LEAVE";
2144 break;
2145 case EC4_PATH_TEST:
2146 s = "EC4_PATH_TEST";
2147 break;
2148 case EC5_INSERT:
2149 s = "EC5_INSERT";
2150 break;
2151 case EC6_CHECK:
2152 s = "EC6_CHECK";
2153 break;
2154 case EC7_DEINSERT:
2155 s = "EC7_DEINSERT";
2156 break;
2157 default:
2158 s = "unknown";
2159 break;
2160 }
ebc06eeb 2161 pr_debug(KERN_INFO "ecm_state_change: %s\n", s);
1da177e4
LT
2162#endif //DRIVERDEBUG
2163} // ecm_state_change
2164
2165
2166/************************
2167 *
2168 * rmt_state_change
2169 *
2170 * Sets RMT state in custom statistics.
2171 * Args
2172 * smc - A pointer to the SMT context struct.
2173 *
2174 * r_state - Possible values are:
2175 *
2176 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2177 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2178 * Out
2179 * Nothing.
2180 *
2181 ************************/
2182void rmt_state_change(struct s_smc *smc, int r_state)
2183{
2184#ifdef DRIVERDEBUG
2185 char *s;
2186
2187 switch (r_state) {
2188 case RM0_ISOLATED:
2189 s = "RM0_ISOLATED";
2190 break;
2191 case RM1_NON_OP:
2192 s = "RM1_NON_OP - not operational";
2193 break;
2194 case RM2_RING_OP:
2195 s = "RM2_RING_OP - ring operational";
2196 break;
2197 case RM3_DETECT:
2198 s = "RM3_DETECT - detect dupl addresses";
2199 break;
2200 case RM4_NON_OP_DUP:
2201 s = "RM4_NON_OP_DUP - dupl. addr detected";
2202 break;
2203 case RM5_RING_OP_DUP:
2204 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2205 break;
2206 case RM6_DIRECTED:
2207 s = "RM6_DIRECTED - sending directed beacons";
2208 break;
2209 case RM7_TRACE:
2210 s = "RM7_TRACE - trace initiated";
2211 break;
2212 default:
2213 s = "unknown";
2214 break;
2215 }
ebc06eeb 2216 pr_debug(KERN_INFO "[rmt_state_change: %s]\n", s);
1da177e4
LT
2217#endif // DRIVERDEBUG
2218} // rmt_state_change
2219
2220
2221/************************
2222 *
2223 * drv_reset_indication
2224 *
2225 * This function is called by the SMT when it has detected a severe
2226 * hardware problem. The driver should perform a reset on the adapter
2227 * as soon as possible, but not from within this function.
2228 * Args
2229 * smc - A pointer to the SMT context struct.
2230 * Out
2231 * Nothing.
2232 *
2233 ************************/
2234void drv_reset_indication(struct s_smc *smc)
2235{
ebc06eeb 2236 pr_debug(KERN_INFO "entering drv_reset_indication\n");
1da177e4
LT
2237
2238 smc->os.ResetRequested = TRUE; // Set flag.
2239
2240} // drv_reset_indication
2241
2242static struct pci_driver skfddi_pci_driver = {
2243 .name = "skfddi",
2244 .id_table = skfddi_pci_tbl,
2245 .probe = skfp_init_one,
2246 .remove = __devexit_p(skfp_remove_one),
2247};
2248
2249static int __init skfd_init(void)
2250{
29917620 2251 return pci_register_driver(&skfddi_pci_driver);
1da177e4
LT
2252}
2253
2254static void __exit skfd_exit(void)
2255{
2256 pci_unregister_driver(&skfddi_pci_driver);
2257}
2258
2259module_init(skfd_init);
2260module_exit(skfd_exit);