]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
sfc: make functions static
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d
BH
71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72const char *efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
131 */
132static unsigned int allow_bad_hwaddr;
133
134/* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
139 */
140static unsigned int rx_irq_mod_usec = 60;
141
142/* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
144 *
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
150 */
151static unsigned int tx_irq_mod_usec = 150;
152
153/* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
157 */
158static unsigned int interrupt_mode;
159
160/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
163 *
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
166 */
167static unsigned int rss_cpus;
168module_param(rss_cpus, uint, 0444);
169MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170
84ae48fe
BH
171static int phy_flash_cfg;
172module_param(phy_flash_cfg, int, 0644);
173MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174
6fb70fd1
BH
175static unsigned irq_adapt_low_thresh = 10000;
176module_param(irq_adapt_low_thresh, uint, 0644);
177MODULE_PARM_DESC(irq_adapt_low_thresh,
178 "Threshold score for reducing IRQ moderation");
179
180static unsigned irq_adapt_high_thresh = 20000;
181module_param(irq_adapt_high_thresh, uint, 0644);
182MODULE_PARM_DESC(irq_adapt_high_thresh,
183 "Threshold score for increasing IRQ moderation");
184
62776d03
BH
185static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189module_param(debug, uint, 0);
190MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191
8ceee660
BH
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
4642610c
BH
197
198static void efx_remove_channels(struct efx_nic *efx);
8ceee660
BH
199static void efx_remove_port(struct efx_nic *efx);
200static void efx_fini_napi(struct efx_nic *efx);
4642610c
BH
201static void efx_fini_struct(struct efx_nic *efx);
202static void efx_start_all(struct efx_nic *efx);
203static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
204
205#define EFX_ASSERT_RESET_SERIALISED(efx) \
206 do { \
332c1ce9
BH
207 if ((efx->state == STATE_RUNNING) || \
208 (efx->state == STATE_DISABLED)) \
8ceee660
BH
209 ASSERT_RTNL(); \
210 } while (0)
211
212/**************************************************************************
213 *
214 * Event queue processing
215 *
216 *************************************************************************/
217
218/* Process channel's event queue
219 *
220 * This function is responsible for processing the event queue of a
221 * single channel. The caller must guarantee that this function will
222 * never be concurrently called more than once on the same channel,
223 * though different channels may be being processed concurrently.
224 */
fa236e18 225static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 226{
42cbe2d7 227 struct efx_nic *efx = channel->efx;
fa236e18 228 int spent;
8ceee660 229
42cbe2d7 230 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 231 !channel->enabled))
42cbe2d7 232 return 0;
8ceee660 233
fa236e18
BH
234 spent = efx_nic_process_eventq(channel, budget);
235 if (spent == 0)
42cbe2d7 236 return 0;
8ceee660
BH
237
238 /* Deliver last RX packet. */
239 if (channel->rx_pkt) {
240 __efx_rx_packet(channel, channel->rx_pkt,
241 channel->rx_pkt_csummed);
242 channel->rx_pkt = NULL;
243 }
244
8ceee660
BH
245 efx_rx_strategy(channel);
246
f7d12cdc 247 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 248
fa236e18 249 return spent;
8ceee660
BH
250}
251
252/* Mark channel as finished processing
253 *
254 * Note that since we will not receive further interrupts for this
255 * channel before we finish processing and call the eventq_read_ack()
256 * method, there is no need to use the interrupt hold-off timers.
257 */
258static inline void efx_channel_processed(struct efx_channel *channel)
259{
5b9e207c
BH
260 /* The interrupt handler for this channel may set work_pending
261 * as soon as we acknowledge the events we've seen. Make sure
262 * it's cleared before then. */
dc8cfa55 263 channel->work_pending = false;
5b9e207c
BH
264 smp_wmb();
265
152b6a62 266 efx_nic_eventq_read_ack(channel);
8ceee660
BH
267}
268
269/* NAPI poll handler
270 *
271 * NAPI guarantees serialisation of polls of the same device, which
272 * provides the guarantee required by efx_process_channel().
273 */
274static int efx_poll(struct napi_struct *napi, int budget)
275{
276 struct efx_channel *channel =
277 container_of(napi, struct efx_channel, napi_str);
62776d03 278 struct efx_nic *efx = channel->efx;
fa236e18 279 int spent;
8ceee660 280
62776d03
BH
281 netif_vdbg(efx, intr, efx->net_dev,
282 "channel %d NAPI poll executing on CPU %d\n",
283 channel->channel, raw_smp_processor_id());
8ceee660 284
fa236e18 285 spent = efx_process_channel(channel, budget);
8ceee660 286
fa236e18 287 if (spent < budget) {
a4900ac9 288 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
289 efx->irq_rx_adaptive &&
290 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
291 if (unlikely(channel->irq_mod_score <
292 irq_adapt_low_thresh)) {
0d86ebd8
BH
293 if (channel->irq_moderation > 1) {
294 channel->irq_moderation -= 1;
ef2b90ee 295 efx->type->push_irq_moderation(channel);
0d86ebd8 296 }
6fb70fd1
BH
297 } else if (unlikely(channel->irq_mod_score >
298 irq_adapt_high_thresh)) {
0d86ebd8
BH
299 if (channel->irq_moderation <
300 efx->irq_rx_moderation) {
301 channel->irq_moderation += 1;
ef2b90ee 302 efx->type->push_irq_moderation(channel);
0d86ebd8 303 }
6fb70fd1 304 }
6fb70fd1
BH
305 channel->irq_count = 0;
306 channel->irq_mod_score = 0;
307 }
308
8ceee660 309 /* There is no race here; although napi_disable() will
288379f0 310 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
311 * since efx_channel_processed() will have no effect if
312 * interrupts have already been disabled.
313 */
288379f0 314 napi_complete(napi);
8ceee660
BH
315 efx_channel_processed(channel);
316 }
317
fa236e18 318 return spent;
8ceee660
BH
319}
320
321/* Process the eventq of the specified channel immediately on this CPU
322 *
323 * Disable hardware generated interrupts, wait for any existing
324 * processing to finish, then directly poll (and ack ) the eventq.
325 * Finally reenable NAPI and interrupts.
326 *
327 * Since we are touching interrupts the caller should hold the suspend lock
328 */
329void efx_process_channel_now(struct efx_channel *channel)
330{
331 struct efx_nic *efx = channel->efx;
332
8313aca3 333 BUG_ON(channel->channel >= efx->n_channels);
8ceee660
BH
334 BUG_ON(!channel->enabled);
335
336 /* Disable interrupts and wait for ISRs to complete */
152b6a62 337 efx_nic_disable_interrupts(efx);
8ceee660
BH
338 if (efx->legacy_irq)
339 synchronize_irq(efx->legacy_irq);
64ee3120 340 if (channel->irq)
8ceee660
BH
341 synchronize_irq(channel->irq);
342
343 /* Wait for any NAPI processing to complete */
344 napi_disable(&channel->napi_str);
345
346 /* Poll the channel */
ecc910f5 347 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
348
349 /* Ack the eventq. This may cause an interrupt to be generated
350 * when they are reenabled */
351 efx_channel_processed(channel);
352
353 napi_enable(&channel->napi_str);
152b6a62 354 efx_nic_enable_interrupts(efx);
8ceee660
BH
355}
356
357/* Create event queue
358 * Event queue memory allocations are done only once. If the channel
359 * is reset, the memory buffer will be reused; this guards against
360 * errors during channel reset and also simplifies interrupt handling.
361 */
362static int efx_probe_eventq(struct efx_channel *channel)
363{
ecc910f5
SH
364 struct efx_nic *efx = channel->efx;
365 unsigned long entries;
366
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
ecc910f5
SH
370 /* Build an event queue with room for one event per tx and rx buffer,
371 * plus some extra for link state events and MCDI completions. */
372 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
373 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
374 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
375
152b6a62 376 return efx_nic_probe_eventq(channel);
8ceee660
BH
377}
378
379/* Prepare channel's event queue */
bc3c90a2 380static void efx_init_eventq(struct efx_channel *channel)
8ceee660 381{
62776d03
BH
382 netif_dbg(channel->efx, drv, channel->efx->net_dev,
383 "chan %d init event queue\n", channel->channel);
8ceee660
BH
384
385 channel->eventq_read_ptr = 0;
386
152b6a62 387 efx_nic_init_eventq(channel);
8ceee660
BH
388}
389
390static void efx_fini_eventq(struct efx_channel *channel)
391{
62776d03
BH
392 netif_dbg(channel->efx, drv, channel->efx->net_dev,
393 "chan %d fini event queue\n", channel->channel);
8ceee660 394
152b6a62 395 efx_nic_fini_eventq(channel);
8ceee660
BH
396}
397
398static void efx_remove_eventq(struct efx_channel *channel)
399{
62776d03
BH
400 netif_dbg(channel->efx, drv, channel->efx->net_dev,
401 "chan %d remove event queue\n", channel->channel);
8ceee660 402
152b6a62 403 efx_nic_remove_eventq(channel);
8ceee660
BH
404}
405
406/**************************************************************************
407 *
408 * Channel handling
409 *
410 *************************************************************************/
411
4642610c
BH
412/* Allocate and initialise a channel structure, optionally copying
413 * parameters (but not resources) from an old channel structure. */
414static struct efx_channel *
415efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
416{
417 struct efx_channel *channel;
418 struct efx_rx_queue *rx_queue;
419 struct efx_tx_queue *tx_queue;
420 int j;
421
422 if (old_channel) {
423 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
424 if (!channel)
425 return NULL;
426
427 *channel = *old_channel;
428
429 memset(&channel->eventq, 0, sizeof(channel->eventq));
430
431 rx_queue = &channel->rx_queue;
432 rx_queue->buffer = NULL;
433 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
434
435 for (j = 0; j < EFX_TXQ_TYPES; j++) {
436 tx_queue = &channel->tx_queue[j];
437 if (tx_queue->channel)
438 tx_queue->channel = channel;
439 tx_queue->buffer = NULL;
440 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
441 }
442 } else {
443 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
444 if (!channel)
445 return NULL;
446
447 channel->efx = efx;
448 channel->channel = i;
449
450 for (j = 0; j < EFX_TXQ_TYPES; j++) {
451 tx_queue = &channel->tx_queue[j];
452 tx_queue->efx = efx;
453 tx_queue->queue = i * EFX_TXQ_TYPES + j;
454 tx_queue->channel = channel;
455 }
456 }
457
458 spin_lock_init(&channel->tx_stop_lock);
459 atomic_set(&channel->tx_stop_count, 1);
460
461 rx_queue = &channel->rx_queue;
462 rx_queue->efx = efx;
463 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
464 (unsigned long)rx_queue);
465
466 return channel;
467}
468
8ceee660
BH
469static int efx_probe_channel(struct efx_channel *channel)
470{
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
473 int rc;
474
62776d03
BH
475 netif_dbg(channel->efx, probe, channel->efx->net_dev,
476 "creating channel %d\n", channel->channel);
8ceee660
BH
477
478 rc = efx_probe_eventq(channel);
479 if (rc)
480 goto fail1;
481
482 efx_for_each_channel_tx_queue(tx_queue, channel) {
483 rc = efx_probe_tx_queue(tx_queue);
484 if (rc)
485 goto fail2;
486 }
487
488 efx_for_each_channel_rx_queue(rx_queue, channel) {
489 rc = efx_probe_rx_queue(rx_queue);
490 if (rc)
491 goto fail3;
492 }
493
494 channel->n_rx_frm_trunc = 0;
495
496 return 0;
497
498 fail3:
499 efx_for_each_channel_rx_queue(rx_queue, channel)
500 efx_remove_rx_queue(rx_queue);
501 fail2:
502 efx_for_each_channel_tx_queue(tx_queue, channel)
503 efx_remove_tx_queue(tx_queue);
504 fail1:
505 return rc;
506}
507
508
56536e9c
BH
509static void efx_set_channel_names(struct efx_nic *efx)
510{
511 struct efx_channel *channel;
512 const char *type = "";
513 int number;
514
515 efx_for_each_channel(channel, efx) {
516 number = channel->channel;
a4900ac9
BH
517 if (efx->n_channels > efx->n_rx_channels) {
518 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
519 type = "-rx";
520 } else {
521 type = "-tx";
a4900ac9 522 number -= efx->n_rx_channels;
56536e9c
BH
523 }
524 }
4642610c
BH
525 snprintf(efx->channel_name[channel->channel],
526 sizeof(efx->channel_name[0]),
56536e9c
BH
527 "%s%s-%d", efx->name, type, number);
528 }
529}
530
4642610c
BH
531static int efx_probe_channels(struct efx_nic *efx)
532{
533 struct efx_channel *channel;
534 int rc;
535
536 /* Restart special buffer allocation */
537 efx->next_buffer_table = 0;
538
539 efx_for_each_channel(channel, efx) {
540 rc = efx_probe_channel(channel);
541 if (rc) {
542 netif_err(efx, probe, efx->net_dev,
543 "failed to create channel %d\n",
544 channel->channel);
545 goto fail;
546 }
547 }
548 efx_set_channel_names(efx);
549
550 return 0;
551
552fail:
553 efx_remove_channels(efx);
554 return rc;
555}
556
8ceee660
BH
557/* Channels are shutdown and reinitialised whilst the NIC is running
558 * to propagate configuration changes (mtu, checksum offload), or
559 * to clear hardware error conditions
560 */
bc3c90a2 561static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
562{
563 struct efx_tx_queue *tx_queue;
564 struct efx_rx_queue *rx_queue;
565 struct efx_channel *channel;
8ceee660 566
f7f13b0b
BH
567 /* Calculate the rx buffer allocation parameters required to
568 * support the current MTU, including padding for header
569 * alignment and overruns.
570 */
571 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
572 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 573 efx->type->rx_buffer_hash_size +
f7f13b0b 574 efx->type->rx_buffer_padding);
62b330ba
SH
575 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
576 sizeof(struct efx_rx_page_state));
8ceee660
BH
577
578 /* Initialise the channels */
579 efx_for_each_channel(channel, efx) {
62776d03
BH
580 netif_dbg(channel->efx, drv, channel->efx->net_dev,
581 "init chan %d\n", channel->channel);
8ceee660 582
bc3c90a2 583 efx_init_eventq(channel);
8ceee660 584
bc3c90a2
BH
585 efx_for_each_channel_tx_queue(tx_queue, channel)
586 efx_init_tx_queue(tx_queue);
8ceee660
BH
587
588 /* The rx buffer allocation strategy is MTU dependent */
589 efx_rx_strategy(channel);
590
bc3c90a2
BH
591 efx_for_each_channel_rx_queue(rx_queue, channel)
592 efx_init_rx_queue(rx_queue);
8ceee660
BH
593
594 WARN_ON(channel->rx_pkt != NULL);
595 efx_rx_strategy(channel);
596 }
8ceee660
BH
597}
598
599/* This enables event queue processing and packet transmission.
600 *
601 * Note that this function is not allowed to fail, since that would
602 * introduce too much complexity into the suspend/resume path.
603 */
604static void efx_start_channel(struct efx_channel *channel)
605{
606 struct efx_rx_queue *rx_queue;
607
62776d03
BH
608 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
609 "starting chan %d\n", channel->channel);
8ceee660 610
5b9e207c
BH
611 /* The interrupt handler for this channel may set work_pending
612 * as soon as we enable it. Make sure it's cleared before
613 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
614 channel->work_pending = false;
615 channel->enabled = true;
5b9e207c 616 smp_wmb();
8ceee660 617
90d683af 618 /* Fill the queues before enabling NAPI */
8ceee660
BH
619 efx_for_each_channel_rx_queue(rx_queue, channel)
620 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
621
622 napi_enable(&channel->napi_str);
8ceee660
BH
623}
624
625/* This disables event queue processing and packet transmission.
626 * This function does not guarantee that all queue processing
627 * (e.g. RX refill) is complete.
628 */
629static void efx_stop_channel(struct efx_channel *channel)
630{
8ceee660
BH
631 if (!channel->enabled)
632 return;
633
62776d03
BH
634 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
635 "stop chan %d\n", channel->channel);
8ceee660 636
dc8cfa55 637 channel->enabled = false;
8ceee660 638 napi_disable(&channel->napi_str);
8ceee660
BH
639}
640
641static void efx_fini_channels(struct efx_nic *efx)
642{
643 struct efx_channel *channel;
644 struct efx_tx_queue *tx_queue;
645 struct efx_rx_queue *rx_queue;
6bc5d3a9 646 int rc;
8ceee660
BH
647
648 EFX_ASSERT_RESET_SERIALISED(efx);
649 BUG_ON(efx->port_enabled);
650
152b6a62 651 rc = efx_nic_flush_queues(efx);
fd371e32
SH
652 if (rc && EFX_WORKAROUND_7803(efx)) {
653 /* Schedule a reset to recover from the flush failure. The
654 * descriptor caches reference memory we're about to free,
655 * but falcon_reconfigure_mac_wrapper() won't reconnect
656 * the MACs because of the pending reset. */
62776d03
BH
657 netif_err(efx, drv, efx->net_dev,
658 "Resetting to recover from flush failure\n");
fd371e32
SH
659 efx_schedule_reset(efx, RESET_TYPE_ALL);
660 } else if (rc) {
62776d03 661 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 662 } else {
62776d03
BH
663 netif_dbg(efx, drv, efx->net_dev,
664 "successfully flushed all queues\n");
fd371e32 665 }
6bc5d3a9 666
8ceee660 667 efx_for_each_channel(channel, efx) {
62776d03
BH
668 netif_dbg(channel->efx, drv, channel->efx->net_dev,
669 "shut down chan %d\n", channel->channel);
8ceee660
BH
670
671 efx_for_each_channel_rx_queue(rx_queue, channel)
672 efx_fini_rx_queue(rx_queue);
673 efx_for_each_channel_tx_queue(tx_queue, channel)
674 efx_fini_tx_queue(tx_queue);
8ceee660
BH
675 efx_fini_eventq(channel);
676 }
677}
678
679static void efx_remove_channel(struct efx_channel *channel)
680{
681 struct efx_tx_queue *tx_queue;
682 struct efx_rx_queue *rx_queue;
683
62776d03
BH
684 netif_dbg(channel->efx, drv, channel->efx->net_dev,
685 "destroy chan %d\n", channel->channel);
8ceee660
BH
686
687 efx_for_each_channel_rx_queue(rx_queue, channel)
688 efx_remove_rx_queue(rx_queue);
689 efx_for_each_channel_tx_queue(tx_queue, channel)
690 efx_remove_tx_queue(tx_queue);
691 efx_remove_eventq(channel);
8ceee660
BH
692}
693
4642610c
BH
694static void efx_remove_channels(struct efx_nic *efx)
695{
696 struct efx_channel *channel;
697
698 efx_for_each_channel(channel, efx)
699 efx_remove_channel(channel);
700}
701
702int
703efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
704{
705 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
706 u32 old_rxq_entries, old_txq_entries;
707 unsigned i;
708 int rc;
709
710 efx_stop_all(efx);
711 efx_fini_channels(efx);
712
713 /* Clone channels */
714 memset(other_channel, 0, sizeof(other_channel));
715 for (i = 0; i < efx->n_channels; i++) {
716 channel = efx_alloc_channel(efx, i, efx->channel[i]);
717 if (!channel) {
718 rc = -ENOMEM;
719 goto out;
720 }
721 other_channel[i] = channel;
722 }
723
724 /* Swap entry counts and channel pointers */
725 old_rxq_entries = efx->rxq_entries;
726 old_txq_entries = efx->txq_entries;
727 efx->rxq_entries = rxq_entries;
728 efx->txq_entries = txq_entries;
729 for (i = 0; i < efx->n_channels; i++) {
730 channel = efx->channel[i];
731 efx->channel[i] = other_channel[i];
732 other_channel[i] = channel;
733 }
734
735 rc = efx_probe_channels(efx);
736 if (rc)
737 goto rollback;
738
739 /* Destroy old channels */
740 for (i = 0; i < efx->n_channels; i++)
741 efx_remove_channel(other_channel[i]);
742out:
743 /* Free unused channel structures */
744 for (i = 0; i < efx->n_channels; i++)
745 kfree(other_channel[i]);
746
747 efx_init_channels(efx);
748 efx_start_all(efx);
749 return rc;
750
751rollback:
752 /* Swap back */
753 efx->rxq_entries = old_rxq_entries;
754 efx->txq_entries = old_txq_entries;
755 for (i = 0; i < efx->n_channels; i++) {
756 channel = efx->channel[i];
757 efx->channel[i] = other_channel[i];
758 other_channel[i] = channel;
759 }
760 goto out;
761}
762
90d683af 763void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 764{
90d683af 765 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
766}
767
768/**************************************************************************
769 *
770 * Port handling
771 *
772 **************************************************************************/
773
774/* This ensures that the kernel is kept informed (via
775 * netif_carrier_on/off) of the link status, and also maintains the
776 * link status's stop on the port's TX queue.
777 */
fdaa9aed 778void efx_link_status_changed(struct efx_nic *efx)
8ceee660 779{
eb50c0d6
BH
780 struct efx_link_state *link_state = &efx->link_state;
781
8ceee660
BH
782 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
783 * that no events are triggered between unregister_netdev() and the
784 * driver unloading. A more general condition is that NETDEV_CHANGE
785 * can only be generated between NETDEV_UP and NETDEV_DOWN */
786 if (!netif_running(efx->net_dev))
787 return;
788
8c8661e4
BH
789 if (efx->port_inhibited) {
790 netif_carrier_off(efx->net_dev);
791 return;
792 }
793
eb50c0d6 794 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
795 efx->n_link_state_changes++;
796
eb50c0d6 797 if (link_state->up)
8ceee660
BH
798 netif_carrier_on(efx->net_dev);
799 else
800 netif_carrier_off(efx->net_dev);
801 }
802
803 /* Status message for kernel log */
eb50c0d6 804 if (link_state->up) {
62776d03
BH
805 netif_info(efx, link, efx->net_dev,
806 "link up at %uMbps %s-duplex (MTU %d)%s\n",
807 link_state->speed, link_state->fd ? "full" : "half",
808 efx->net_dev->mtu,
809 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 810 } else {
62776d03 811 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
812 }
813
814}
815
d3245b28
BH
816void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
817{
818 efx->link_advertising = advertising;
819 if (advertising) {
820 if (advertising & ADVERTISED_Pause)
821 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
822 else
823 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
824 if (advertising & ADVERTISED_Asym_Pause)
825 efx->wanted_fc ^= EFX_FC_TX;
826 }
827}
828
829void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
830{
831 efx->wanted_fc = wanted_fc;
832 if (efx->link_advertising) {
833 if (wanted_fc & EFX_FC_RX)
834 efx->link_advertising |= (ADVERTISED_Pause |
835 ADVERTISED_Asym_Pause);
836 else
837 efx->link_advertising &= ~(ADVERTISED_Pause |
838 ADVERTISED_Asym_Pause);
839 if (wanted_fc & EFX_FC_TX)
840 efx->link_advertising ^= ADVERTISED_Asym_Pause;
841 }
842}
843
115122af
BH
844static void efx_fini_port(struct efx_nic *efx);
845
d3245b28
BH
846/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
847 * the MAC appropriately. All other PHY configuration changes are pushed
848 * through phy_op->set_settings(), and pushed asynchronously to the MAC
849 * through efx_monitor().
850 *
851 * Callers must hold the mac_lock
852 */
853int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 854{
d3245b28
BH
855 enum efx_phy_mode phy_mode;
856 int rc;
8ceee660 857
d3245b28 858 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 859
a816f75a
BH
860 /* Serialise the promiscuous flag with efx_set_multicast_list. */
861 if (efx_dev_registered(efx)) {
862 netif_addr_lock_bh(efx->net_dev);
863 netif_addr_unlock_bh(efx->net_dev);
864 }
865
d3245b28
BH
866 /* Disable PHY transmit in mac level loopbacks */
867 phy_mode = efx->phy_mode;
177dfcd8
BH
868 if (LOOPBACK_INTERNAL(efx))
869 efx->phy_mode |= PHY_MODE_TX_DISABLED;
870 else
871 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 872
d3245b28 873 rc = efx->type->reconfigure_port(efx);
8ceee660 874
d3245b28
BH
875 if (rc)
876 efx->phy_mode = phy_mode;
177dfcd8 877
d3245b28 878 return rc;
8ceee660
BH
879}
880
881/* Reinitialise the MAC to pick up new PHY settings, even if the port is
882 * disabled. */
d3245b28 883int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 884{
d3245b28
BH
885 int rc;
886
8ceee660
BH
887 EFX_ASSERT_RESET_SERIALISED(efx);
888
889 mutex_lock(&efx->mac_lock);
d3245b28 890 rc = __efx_reconfigure_port(efx);
8ceee660 891 mutex_unlock(&efx->mac_lock);
d3245b28
BH
892
893 return rc;
8ceee660
BH
894}
895
8be4f3e6
BH
896/* Asynchronous work item for changing MAC promiscuity and multicast
897 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
898 * MAC directly. */
766ca0fa
BH
899static void efx_mac_work(struct work_struct *data)
900{
901 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
902
903 mutex_lock(&efx->mac_lock);
8be4f3e6 904 if (efx->port_enabled) {
ef2b90ee 905 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
906 efx->mac_op->reconfigure(efx);
907 }
766ca0fa
BH
908 mutex_unlock(&efx->mac_lock);
909}
910
8ceee660
BH
911static int efx_probe_port(struct efx_nic *efx)
912{
913 int rc;
914
62776d03 915 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 916
ff3b00a0
SH
917 if (phy_flash_cfg)
918 efx->phy_mode = PHY_MODE_SPECIAL;
919
ef2b90ee
BH
920 /* Connect up MAC/PHY operations table */
921 rc = efx->type->probe_port(efx);
8ceee660 922 if (rc)
e42de262 923 return rc;
8ceee660
BH
924
925 /* Sanity check MAC address */
926 if (is_valid_ether_addr(efx->mac_address)) {
927 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
928 } else {
62776d03
BH
929 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
930 efx->mac_address);
8ceee660
BH
931 if (!allow_bad_hwaddr) {
932 rc = -EINVAL;
933 goto err;
934 }
935 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
936 netif_info(efx, probe, efx->net_dev,
937 "using locally-generated MAC %pM\n",
938 efx->net_dev->dev_addr);
8ceee660
BH
939 }
940
941 return 0;
942
943 err:
e42de262 944 efx->type->remove_port(efx);
8ceee660
BH
945 return rc;
946}
947
948static int efx_init_port(struct efx_nic *efx)
949{
950 int rc;
951
62776d03 952 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 953
1dfc5cea
BH
954 mutex_lock(&efx->mac_lock);
955
177dfcd8 956 rc = efx->phy_op->init(efx);
8ceee660 957 if (rc)
1dfc5cea 958 goto fail1;
8ceee660 959
dc8cfa55 960 efx->port_initialized = true;
1dfc5cea 961
d3245b28
BH
962 /* Reconfigure the MAC before creating dma queues (required for
963 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
964 efx->mac_op->reconfigure(efx);
965
966 /* Ensure the PHY advertises the correct flow control settings */
967 rc = efx->phy_op->reconfigure(efx);
968 if (rc)
969 goto fail2;
970
1dfc5cea 971 mutex_unlock(&efx->mac_lock);
8ceee660 972 return 0;
177dfcd8 973
1dfc5cea 974fail2:
177dfcd8 975 efx->phy_op->fini(efx);
1dfc5cea
BH
976fail1:
977 mutex_unlock(&efx->mac_lock);
177dfcd8 978 return rc;
8ceee660
BH
979}
980
8ceee660
BH
981static void efx_start_port(struct efx_nic *efx)
982{
62776d03 983 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
984 BUG_ON(efx->port_enabled);
985
986 mutex_lock(&efx->mac_lock);
dc8cfa55 987 efx->port_enabled = true;
8be4f3e6
BH
988
989 /* efx_mac_work() might have been scheduled after efx_stop_port(),
990 * and then cancelled by efx_flush_all() */
ef2b90ee 991 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
992 efx->mac_op->reconfigure(efx);
993
8ceee660
BH
994 mutex_unlock(&efx->mac_lock);
995}
996
fdaa9aed 997/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
998static void efx_stop_port(struct efx_nic *efx)
999{
62776d03 1000 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1001
1002 mutex_lock(&efx->mac_lock);
dc8cfa55 1003 efx->port_enabled = false;
8ceee660
BH
1004 mutex_unlock(&efx->mac_lock);
1005
1006 /* Serialise against efx_set_multicast_list() */
55668611 1007 if (efx_dev_registered(efx)) {
b9e40857
DM
1008 netif_addr_lock_bh(efx->net_dev);
1009 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1010 }
1011}
1012
1013static void efx_fini_port(struct efx_nic *efx)
1014{
62776d03 1015 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1016
1017 if (!efx->port_initialized)
1018 return;
1019
177dfcd8 1020 efx->phy_op->fini(efx);
dc8cfa55 1021 efx->port_initialized = false;
8ceee660 1022
eb50c0d6 1023 efx->link_state.up = false;
8ceee660
BH
1024 efx_link_status_changed(efx);
1025}
1026
1027static void efx_remove_port(struct efx_nic *efx)
1028{
62776d03 1029 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1030
ef2b90ee 1031 efx->type->remove_port(efx);
8ceee660
BH
1032}
1033
1034/**************************************************************************
1035 *
1036 * NIC handling
1037 *
1038 **************************************************************************/
1039
1040/* This configures the PCI device to enable I/O and DMA. */
1041static int efx_init_io(struct efx_nic *efx)
1042{
1043 struct pci_dev *pci_dev = efx->pci_dev;
1044 dma_addr_t dma_mask = efx->type->max_dma_mask;
1045 int rc;
1046
62776d03 1047 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1048
1049 rc = pci_enable_device(pci_dev);
1050 if (rc) {
62776d03
BH
1051 netif_err(efx, probe, efx->net_dev,
1052 "failed to enable PCI device\n");
8ceee660
BH
1053 goto fail1;
1054 }
1055
1056 pci_set_master(pci_dev);
1057
1058 /* Set the PCI DMA mask. Try all possibilities from our
1059 * genuine mask down to 32 bits, because some architectures
1060 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1061 * masks event though they reject 46 bit masks.
1062 */
1063 while (dma_mask > 0x7fffffffUL) {
1064 if (pci_dma_supported(pci_dev, dma_mask) &&
1065 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1066 break;
1067 dma_mask >>= 1;
1068 }
1069 if (rc) {
62776d03
BH
1070 netif_err(efx, probe, efx->net_dev,
1071 "could not find a suitable DMA mask\n");
8ceee660
BH
1072 goto fail2;
1073 }
62776d03
BH
1074 netif_dbg(efx, probe, efx->net_dev,
1075 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1076 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1077 if (rc) {
1078 /* pci_set_consistent_dma_mask() is not *allowed* to
1079 * fail with a mask that pci_set_dma_mask() accepted,
1080 * but just in case...
1081 */
62776d03
BH
1082 netif_err(efx, probe, efx->net_dev,
1083 "failed to set consistent DMA mask\n");
8ceee660
BH
1084 goto fail2;
1085 }
1086
dc803df8
BH
1087 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1088 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1089 if (rc) {
62776d03
BH
1090 netif_err(efx, probe, efx->net_dev,
1091 "request for memory BAR failed\n");
8ceee660
BH
1092 rc = -EIO;
1093 goto fail3;
1094 }
1095 efx->membase = ioremap_nocache(efx->membase_phys,
1096 efx->type->mem_map_size);
1097 if (!efx->membase) {
62776d03
BH
1098 netif_err(efx, probe, efx->net_dev,
1099 "could not map memory BAR at %llx+%x\n",
1100 (unsigned long long)efx->membase_phys,
1101 efx->type->mem_map_size);
8ceee660
BH
1102 rc = -ENOMEM;
1103 goto fail4;
1104 }
62776d03
BH
1105 netif_dbg(efx, probe, efx->net_dev,
1106 "memory BAR at %llx+%x (virtual %p)\n",
1107 (unsigned long long)efx->membase_phys,
1108 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1109
1110 return 0;
1111
1112 fail4:
dc803df8 1113 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1114 fail3:
2c118e0f 1115 efx->membase_phys = 0;
8ceee660
BH
1116 fail2:
1117 pci_disable_device(efx->pci_dev);
1118 fail1:
1119 return rc;
1120}
1121
1122static void efx_fini_io(struct efx_nic *efx)
1123{
62776d03 1124 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1125
1126 if (efx->membase) {
1127 iounmap(efx->membase);
1128 efx->membase = NULL;
1129 }
1130
1131 if (efx->membase_phys) {
dc803df8 1132 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1133 efx->membase_phys = 0;
8ceee660
BH
1134 }
1135
1136 pci_disable_device(efx->pci_dev);
1137}
1138
a4900ac9
BH
1139/* Get number of channels wanted. Each channel will have its own IRQ,
1140 * 1 RX queue and/or 2 TX queues. */
1141static int efx_wanted_channels(void)
46123d04 1142{
2f8975fb 1143 cpumask_var_t core_mask;
46123d04
BH
1144 int count;
1145 int cpu;
1146
79f55997 1147 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 1148 printk(KERN_WARNING
3977d033 1149 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1150 return 1;
1151 }
1152
46123d04
BH
1153 count = 0;
1154 for_each_online_cpu(cpu) {
2f8975fb 1155 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 1156 ++count;
2f8975fb 1157 cpumask_or(core_mask, core_mask,
fbd59a8d 1158 topology_core_cpumask(cpu));
46123d04
BH
1159 }
1160 }
1161
2f8975fb 1162 free_cpumask_var(core_mask);
46123d04
BH
1163 return count;
1164}
1165
1166/* Probe the number and type of interrupts we are able to obtain, and
1167 * the resulting numbers of channels and RX queues.
1168 */
8ceee660
BH
1169static void efx_probe_interrupts(struct efx_nic *efx)
1170{
46123d04
BH
1171 int max_channels =
1172 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1173 int rc, i;
1174
1175 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1176 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1177 int n_channels;
aa6ef27e 1178
a4900ac9
BH
1179 n_channels = efx_wanted_channels();
1180 if (separate_tx_channels)
1181 n_channels *= 2;
1182 n_channels = min(n_channels, max_channels);
8ceee660 1183
a4900ac9 1184 for (i = 0; i < n_channels; i++)
8ceee660 1185 xentries[i].entry = i;
a4900ac9 1186 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1187 if (rc > 0) {
62776d03
BH
1188 netif_err(efx, drv, efx->net_dev,
1189 "WARNING: Insufficient MSI-X vectors"
1190 " available (%d < %d).\n", rc, n_channels);
1191 netif_err(efx, drv, efx->net_dev,
1192 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1193 EFX_BUG_ON_PARANOID(rc >= n_channels);
1194 n_channels = rc;
8ceee660 1195 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1196 n_channels);
8ceee660
BH
1197 }
1198
1199 if (rc == 0) {
a4900ac9
BH
1200 efx->n_channels = n_channels;
1201 if (separate_tx_channels) {
1202 efx->n_tx_channels =
1203 max(efx->n_channels / 2, 1U);
1204 efx->n_rx_channels =
1205 max(efx->n_channels -
1206 efx->n_tx_channels, 1U);
1207 } else {
1208 efx->n_tx_channels = efx->n_channels;
1209 efx->n_rx_channels = efx->n_channels;
1210 }
1211 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1212 efx_get_channel(efx, i)->irq =
1213 xentries[i].vector;
8ceee660
BH
1214 } else {
1215 /* Fall back to single channel MSI */
1216 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1217 netif_err(efx, drv, efx->net_dev,
1218 "could not enable MSI-X\n");
8ceee660
BH
1219 }
1220 }
1221
1222 /* Try single interrupt MSI */
1223 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1224 efx->n_channels = 1;
a4900ac9
BH
1225 efx->n_rx_channels = 1;
1226 efx->n_tx_channels = 1;
8ceee660
BH
1227 rc = pci_enable_msi(efx->pci_dev);
1228 if (rc == 0) {
f7d12cdc 1229 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1230 } else {
62776d03
BH
1231 netif_err(efx, drv, efx->net_dev,
1232 "could not enable MSI\n");
8ceee660
BH
1233 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1234 }
1235 }
1236
1237 /* Assume legacy interrupts */
1238 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1239 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1240 efx->n_rx_channels = 1;
1241 efx->n_tx_channels = 1;
8ceee660
BH
1242 efx->legacy_irq = efx->pci_dev->irq;
1243 }
1244}
1245
1246static void efx_remove_interrupts(struct efx_nic *efx)
1247{
1248 struct efx_channel *channel;
1249
1250 /* Remove MSI/MSI-X interrupts */
64ee3120 1251 efx_for_each_channel(channel, efx)
8ceee660
BH
1252 channel->irq = 0;
1253 pci_disable_msi(efx->pci_dev);
1254 pci_disable_msix(efx->pci_dev);
1255
1256 /* Remove legacy interrupt */
1257 efx->legacy_irq = 0;
1258}
1259
8313aca3
BH
1260struct efx_tx_queue *
1261efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1262{
1263 unsigned tx_channel_offset =
1264 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1265 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1266 type >= EFX_TXQ_TYPES);
1267 return &efx->channel[tx_channel_offset + index]->tx_queue[type];
1268}
1269
8831da7b 1270static void efx_set_channels(struct efx_nic *efx)
8ceee660 1271{
a4900ac9 1272 struct efx_channel *channel;
8ceee660 1273 struct efx_tx_queue *tx_queue;
a4900ac9
BH
1274 unsigned tx_channel_offset =
1275 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1276
8313aca3
BH
1277 /* Channel pointers were set in efx_init_struct() but we now
1278 * need to clear them for TX queues in any RX-only channels. */
a4900ac9 1279 efx_for_each_channel(channel, efx) {
8313aca3
BH
1280 if (channel->channel - tx_channel_offset >=
1281 efx->n_tx_channels) {
a4900ac9 1282 efx_for_each_channel_tx_queue(tx_queue, channel)
8313aca3 1283 tx_queue->channel = NULL;
a4900ac9 1284 }
60ac1065 1285 }
8ceee660
BH
1286}
1287
1288static int efx_probe_nic(struct efx_nic *efx)
1289{
765c9f46 1290 size_t i;
8ceee660
BH
1291 int rc;
1292
62776d03 1293 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1294
1295 /* Carry out hardware-type specific initialisation */
ef2b90ee 1296 rc = efx->type->probe(efx);
8ceee660
BH
1297 if (rc)
1298 return rc;
1299
a4900ac9 1300 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1301 * in MSI-X interrupts. */
1302 efx_probe_interrupts(efx);
1303
5d3a6fca
BH
1304 if (efx->n_channels > 1)
1305 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1306 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1307 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1308
8831da7b 1309 efx_set_channels(efx);
c4f4adc7
BH
1310 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1311 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1312
1313 /* Initialise the interrupt moderation settings */
6fb70fd1 1314 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1315
1316 return 0;
1317}
1318
1319static void efx_remove_nic(struct efx_nic *efx)
1320{
62776d03 1321 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1322
1323 efx_remove_interrupts(efx);
ef2b90ee 1324 efx->type->remove(efx);
8ceee660
BH
1325}
1326
1327/**************************************************************************
1328 *
1329 * NIC startup/shutdown
1330 *
1331 *************************************************************************/
1332
1333static int efx_probe_all(struct efx_nic *efx)
1334{
8ceee660
BH
1335 int rc;
1336
8ceee660
BH
1337 rc = efx_probe_nic(efx);
1338 if (rc) {
62776d03 1339 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1340 goto fail1;
1341 }
1342
8ceee660
BH
1343 rc = efx_probe_port(efx);
1344 if (rc) {
62776d03 1345 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1346 goto fail2;
1347 }
1348
ecc910f5 1349 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1350 rc = efx_probe_channels(efx);
1351 if (rc)
1352 goto fail3;
8ceee660 1353
64eebcfd
BH
1354 rc = efx_probe_filters(efx);
1355 if (rc) {
1356 netif_err(efx, probe, efx->net_dev,
1357 "failed to create filter tables\n");
1358 goto fail4;
1359 }
1360
8ceee660
BH
1361 return 0;
1362
64eebcfd
BH
1363 fail4:
1364 efx_remove_channels(efx);
8ceee660 1365 fail3:
8ceee660
BH
1366 efx_remove_port(efx);
1367 fail2:
1368 efx_remove_nic(efx);
1369 fail1:
1370 return rc;
1371}
1372
1373/* Called after previous invocation(s) of efx_stop_all, restarts the
1374 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1375 * and ensures that the port is scheduled to be reconfigured.
1376 * This function is safe to call multiple times when the NIC is in any
1377 * state. */
1378static void efx_start_all(struct efx_nic *efx)
1379{
1380 struct efx_channel *channel;
1381
1382 EFX_ASSERT_RESET_SERIALISED(efx);
1383
1384 /* Check that it is appropriate to restart the interface. All
1385 * of these flags are safe to read under just the rtnl lock */
1386 if (efx->port_enabled)
1387 return;
1388 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1389 return;
55668611 1390 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1391 return;
1392
1393 /* Mark the port as enabled so port reconfigurations can start, then
1394 * restart the transmit interface early so the watchdog timer stops */
1395 efx_start_port(efx);
8ceee660 1396
a4900ac9
BH
1397 efx_for_each_channel(channel, efx) {
1398 if (efx_dev_registered(efx))
1399 efx_wake_queue(channel);
8ceee660 1400 efx_start_channel(channel);
a4900ac9 1401 }
8ceee660 1402
152b6a62 1403 efx_nic_enable_interrupts(efx);
8ceee660 1404
8880f4ec
BH
1405 /* Switch to event based MCDI completions after enabling interrupts.
1406 * If a reset has been scheduled, then we need to stay in polled mode.
1407 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1408 * reset_pending [modified from an atomic context], we instead guarantee
1409 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1410 efx_mcdi_mode_event(efx);
1411 if (efx->reset_pending != RESET_TYPE_NONE)
1412 efx_mcdi_mode_poll(efx);
1413
78c1f0a0
SH
1414 /* Start the hardware monitor if there is one. Otherwise (we're link
1415 * event driven), we have to poll the PHY because after an event queue
1416 * flush, we could have a missed a link state change */
1417 if (efx->type->monitor != NULL) {
8ceee660
BH
1418 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1419 efx_monitor_interval);
78c1f0a0
SH
1420 } else {
1421 mutex_lock(&efx->mac_lock);
1422 if (efx->phy_op->poll(efx))
1423 efx_link_status_changed(efx);
1424 mutex_unlock(&efx->mac_lock);
1425 }
55edc6e6 1426
ef2b90ee 1427 efx->type->start_stats(efx);
8ceee660
BH
1428}
1429
1430/* Flush all delayed work. Should only be called when no more delayed work
1431 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1432 * since we're holding the rtnl_lock at this point. */
1433static void efx_flush_all(struct efx_nic *efx)
1434{
8ceee660
BH
1435 /* Make sure the hardware monitor is stopped */
1436 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1437 /* Stop scheduled port reconfigurations */
766ca0fa 1438 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1439}
1440
1441/* Quiesce hardware and software without bringing the link down.
1442 * Safe to call multiple times, when the nic and interface is in any
1443 * state. The caller is guaranteed to subsequently be in a position
1444 * to modify any hardware and software state they see fit without
1445 * taking locks. */
1446static void efx_stop_all(struct efx_nic *efx)
1447{
1448 struct efx_channel *channel;
1449
1450 EFX_ASSERT_RESET_SERIALISED(efx);
1451
1452 /* port_enabled can be read safely under the rtnl lock */
1453 if (!efx->port_enabled)
1454 return;
1455
ef2b90ee 1456 efx->type->stop_stats(efx);
55edc6e6 1457
8880f4ec
BH
1458 /* Switch to MCDI polling on Siena before disabling interrupts */
1459 efx_mcdi_mode_poll(efx);
1460
8ceee660 1461 /* Disable interrupts and wait for ISR to complete */
152b6a62 1462 efx_nic_disable_interrupts(efx);
8ceee660
BH
1463 if (efx->legacy_irq)
1464 synchronize_irq(efx->legacy_irq);
64ee3120 1465 efx_for_each_channel(channel, efx) {
8ceee660
BH
1466 if (channel->irq)
1467 synchronize_irq(channel->irq);
b3475645 1468 }
8ceee660
BH
1469
1470 /* Stop all NAPI processing and synchronous rx refills */
1471 efx_for_each_channel(channel, efx)
1472 efx_stop_channel(channel);
1473
1474 /* Stop all asynchronous port reconfigurations. Since all
1475 * event processing has already been stopped, there is no
1476 * window to loose phy events */
1477 efx_stop_port(efx);
1478
fdaa9aed 1479 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1480 efx_flush_all(efx);
1481
8ceee660
BH
1482 /* Stop the kernel transmit interface late, so the watchdog
1483 * timer isn't ticking over the flush */
55668611 1484 if (efx_dev_registered(efx)) {
a4900ac9
BH
1485 struct efx_channel *channel;
1486 efx_for_each_channel(channel, efx)
1487 efx_stop_queue(channel);
8ceee660
BH
1488 netif_tx_lock_bh(efx->net_dev);
1489 netif_tx_unlock_bh(efx->net_dev);
1490 }
1491}
1492
1493static void efx_remove_all(struct efx_nic *efx)
1494{
64eebcfd 1495 efx_remove_filters(efx);
4642610c 1496 efx_remove_channels(efx);
8ceee660
BH
1497 efx_remove_port(efx);
1498 efx_remove_nic(efx);
1499}
1500
8ceee660
BH
1501/**************************************************************************
1502 *
1503 * Interrupt moderation
1504 *
1505 **************************************************************************/
1506
0d86ebd8
BH
1507static unsigned irq_mod_ticks(int usecs, int resolution)
1508{
1509 if (usecs <= 0)
1510 return 0; /* cannot receive interrupts ahead of time :-) */
1511 if (usecs < resolution)
1512 return 1; /* never round down to 0 */
1513 return usecs / resolution;
1514}
1515
8ceee660 1516/* Set interrupt moderation parameters */
6fb70fd1
BH
1517void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1518 bool rx_adaptive)
8ceee660 1519{
f7d12cdc 1520 struct efx_channel *channel;
152b6a62
BH
1521 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1522 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1523
1524 EFX_ASSERT_RESET_SERIALISED(efx);
1525
6fb70fd1 1526 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1527 efx->irq_rx_moderation = rx_ticks;
f7d12cdc
BH
1528 efx_for_each_channel(channel, efx) {
1529 if (efx_channel_get_rx_queue(channel))
1530 channel->irq_moderation = rx_ticks;
1531 else if (efx_channel_get_tx_queue(channel, 0))
1532 channel->irq_moderation = tx_ticks;
1533 }
8ceee660
BH
1534}
1535
1536/**************************************************************************
1537 *
1538 * Hardware monitor
1539 *
1540 **************************************************************************/
1541
e254c274 1542/* Run periodically off the general workqueue */
8ceee660
BH
1543static void efx_monitor(struct work_struct *data)
1544{
1545 struct efx_nic *efx = container_of(data, struct efx_nic,
1546 monitor_work.work);
8ceee660 1547
62776d03
BH
1548 netif_vdbg(efx, timer, efx->net_dev,
1549 "hardware monitor executing on CPU %d\n",
1550 raw_smp_processor_id());
ef2b90ee 1551 BUG_ON(efx->type->monitor == NULL);
8ceee660 1552
8ceee660
BH
1553 /* If the mac_lock is already held then it is likely a port
1554 * reconfiguration is already in place, which will likely do
e254c274
BH
1555 * most of the work of monitor() anyway. */
1556 if (mutex_trylock(&efx->mac_lock)) {
1557 if (efx->port_enabled)
1558 efx->type->monitor(efx);
1559 mutex_unlock(&efx->mac_lock);
1560 }
8ceee660 1561
8ceee660
BH
1562 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1563 efx_monitor_interval);
1564}
1565
1566/**************************************************************************
1567 *
1568 * ioctls
1569 *
1570 *************************************************************************/
1571
1572/* Net device ioctl
1573 * Context: process, rtnl_lock() held.
1574 */
1575static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1576{
767e468c 1577 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1578 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1579
1580 EFX_ASSERT_RESET_SERIALISED(efx);
1581
68e7f45e
BH
1582 /* Convert phy_id from older PRTAD/DEVAD format */
1583 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1584 (data->phy_id & 0xfc00) == 0x0400)
1585 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1586
1587 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1588}
1589
1590/**************************************************************************
1591 *
1592 * NAPI interface
1593 *
1594 **************************************************************************/
1595
1596static int efx_init_napi(struct efx_nic *efx)
1597{
1598 struct efx_channel *channel;
8ceee660
BH
1599
1600 efx_for_each_channel(channel, efx) {
1601 channel->napi_dev = efx->net_dev;
718cff1e
BH
1602 netif_napi_add(channel->napi_dev, &channel->napi_str,
1603 efx_poll, napi_weight);
8ceee660
BH
1604 }
1605 return 0;
8ceee660
BH
1606}
1607
1608static void efx_fini_napi(struct efx_nic *efx)
1609{
1610 struct efx_channel *channel;
1611
1612 efx_for_each_channel(channel, efx) {
718cff1e
BH
1613 if (channel->napi_dev)
1614 netif_napi_del(&channel->napi_str);
8ceee660
BH
1615 channel->napi_dev = NULL;
1616 }
1617}
1618
1619/**************************************************************************
1620 *
1621 * Kernel netpoll interface
1622 *
1623 *************************************************************************/
1624
1625#ifdef CONFIG_NET_POLL_CONTROLLER
1626
1627/* Although in the common case interrupts will be disabled, this is not
1628 * guaranteed. However, all our work happens inside the NAPI callback,
1629 * so no locking is required.
1630 */
1631static void efx_netpoll(struct net_device *net_dev)
1632{
767e468c 1633 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1634 struct efx_channel *channel;
1635
64ee3120 1636 efx_for_each_channel(channel, efx)
8ceee660
BH
1637 efx_schedule_channel(channel);
1638}
1639
1640#endif
1641
1642/**************************************************************************
1643 *
1644 * Kernel net device interface
1645 *
1646 *************************************************************************/
1647
1648/* Context: process, rtnl_lock() held. */
1649static int efx_net_open(struct net_device *net_dev)
1650{
767e468c 1651 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1652 EFX_ASSERT_RESET_SERIALISED(efx);
1653
62776d03
BH
1654 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1655 raw_smp_processor_id());
8ceee660 1656
f4bd954e
BH
1657 if (efx->state == STATE_DISABLED)
1658 return -EIO;
f8b87c17
BH
1659 if (efx->phy_mode & PHY_MODE_SPECIAL)
1660 return -EBUSY;
8880f4ec
BH
1661 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1662 return -EIO;
f8b87c17 1663
78c1f0a0
SH
1664 /* Notify the kernel of the link state polled during driver load,
1665 * before the monitor starts running */
1666 efx_link_status_changed(efx);
1667
8ceee660
BH
1668 efx_start_all(efx);
1669 return 0;
1670}
1671
1672/* Context: process, rtnl_lock() held.
1673 * Note that the kernel will ignore our return code; this method
1674 * should really be a void.
1675 */
1676static int efx_net_stop(struct net_device *net_dev)
1677{
767e468c 1678 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1679
62776d03
BH
1680 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1681 raw_smp_processor_id());
8ceee660 1682
f4bd954e
BH
1683 if (efx->state != STATE_DISABLED) {
1684 /* Stop the device and flush all the channels */
1685 efx_stop_all(efx);
1686 efx_fini_channels(efx);
1687 efx_init_channels(efx);
1688 }
8ceee660
BH
1689
1690 return 0;
1691}
1692
5b9e207c 1693/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1694static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1695{
767e468c 1696 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1697 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1698
55edc6e6 1699 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1700 efx->type->update_stats(efx);
55edc6e6 1701 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1702
1703 stats->rx_packets = mac_stats->rx_packets;
1704 stats->tx_packets = mac_stats->tx_packets;
1705 stats->rx_bytes = mac_stats->rx_bytes;
1706 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1707 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1708 stats->multicast = mac_stats->rx_multicast;
1709 stats->collisions = mac_stats->tx_collision;
1710 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1711 mac_stats->rx_length_error);
8ceee660
BH
1712 stats->rx_crc_errors = mac_stats->rx_bad;
1713 stats->rx_frame_errors = mac_stats->rx_align_error;
1714 stats->rx_fifo_errors = mac_stats->rx_overflow;
1715 stats->rx_missed_errors = mac_stats->rx_missed;
1716 stats->tx_window_errors = mac_stats->tx_late_collision;
1717
1718 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1719 stats->rx_crc_errors +
1720 stats->rx_frame_errors +
8ceee660
BH
1721 mac_stats->rx_symbol_error);
1722 stats->tx_errors = (stats->tx_window_errors +
1723 mac_stats->tx_bad);
1724
1725 return stats;
1726}
1727
1728/* Context: netif_tx_lock held, BHs disabled. */
1729static void efx_watchdog(struct net_device *net_dev)
1730{
767e468c 1731 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1732
62776d03
BH
1733 netif_err(efx, tx_err, efx->net_dev,
1734 "TX stuck with port_enabled=%d: resetting channels\n",
1735 efx->port_enabled);
8ceee660 1736
739bb23d 1737 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1738}
1739
1740
1741/* Context: process, rtnl_lock() held. */
1742static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1743{
767e468c 1744 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1745 int rc = 0;
1746
1747 EFX_ASSERT_RESET_SERIALISED(efx);
1748
1749 if (new_mtu > EFX_MAX_MTU)
1750 return -EINVAL;
1751
1752 efx_stop_all(efx);
1753
62776d03 1754 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1755
1756 efx_fini_channels(efx);
d3245b28
BH
1757
1758 mutex_lock(&efx->mac_lock);
1759 /* Reconfigure the MAC before enabling the dma queues so that
1760 * the RX buffers don't overflow */
8ceee660 1761 net_dev->mtu = new_mtu;
d3245b28
BH
1762 efx->mac_op->reconfigure(efx);
1763 mutex_unlock(&efx->mac_lock);
1764
bc3c90a2 1765 efx_init_channels(efx);
8ceee660
BH
1766
1767 efx_start_all(efx);
1768 return rc;
8ceee660
BH
1769}
1770
1771static int efx_set_mac_address(struct net_device *net_dev, void *data)
1772{
767e468c 1773 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1774 struct sockaddr *addr = data;
1775 char *new_addr = addr->sa_data;
1776
1777 EFX_ASSERT_RESET_SERIALISED(efx);
1778
1779 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1780 netif_err(efx, drv, efx->net_dev,
1781 "invalid ethernet MAC address requested: %pM\n",
1782 new_addr);
8ceee660
BH
1783 return -EINVAL;
1784 }
1785
1786 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1787
1788 /* Reconfigure the MAC */
d3245b28
BH
1789 mutex_lock(&efx->mac_lock);
1790 efx->mac_op->reconfigure(efx);
1791 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1792
1793 return 0;
1794}
1795
a816f75a 1796/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1797static void efx_set_multicast_list(struct net_device *net_dev)
1798{
767e468c 1799 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1800 struct netdev_hw_addr *ha;
8ceee660 1801 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1802 u32 crc;
1803 int bit;
8ceee660 1804
8be4f3e6 1805 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1806
1807 /* Build multicast hash table */
8be4f3e6 1808 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1809 memset(mc_hash, 0xff, sizeof(*mc_hash));
1810 } else {
1811 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1812 netdev_for_each_mc_addr(ha, net_dev) {
1813 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1814 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1815 set_bit_le(bit, mc_hash->byte);
8ceee660 1816 }
8ceee660 1817
8be4f3e6
BH
1818 /* Broadcast packets go through the multicast hash filter.
1819 * ether_crc_le() of the broadcast address is 0xbe2612ff
1820 * so we always add bit 0xff to the mask.
1821 */
1822 set_bit_le(0xff, mc_hash->byte);
1823 }
a816f75a 1824
8be4f3e6
BH
1825 if (efx->port_enabled)
1826 queue_work(efx->workqueue, &efx->mac_work);
1827 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1828}
1829
c3ecb9f3
SH
1830static const struct net_device_ops efx_netdev_ops = {
1831 .ndo_open = efx_net_open,
1832 .ndo_stop = efx_net_stop,
4472702e 1833 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1834 .ndo_tx_timeout = efx_watchdog,
1835 .ndo_start_xmit = efx_hard_start_xmit,
1836 .ndo_validate_addr = eth_validate_addr,
1837 .ndo_do_ioctl = efx_ioctl,
1838 .ndo_change_mtu = efx_change_mtu,
1839 .ndo_set_mac_address = efx_set_mac_address,
1840 .ndo_set_multicast_list = efx_set_multicast_list,
1841#ifdef CONFIG_NET_POLL_CONTROLLER
1842 .ndo_poll_controller = efx_netpoll,
1843#endif
1844};
1845
7dde596e
BH
1846static void efx_update_name(struct efx_nic *efx)
1847{
1848 strcpy(efx->name, efx->net_dev->name);
1849 efx_mtd_rename(efx);
1850 efx_set_channel_names(efx);
1851}
1852
8ceee660
BH
1853static int efx_netdev_event(struct notifier_block *this,
1854 unsigned long event, void *ptr)
1855{
d3208b5e 1856 struct net_device *net_dev = ptr;
8ceee660 1857
7dde596e
BH
1858 if (net_dev->netdev_ops == &efx_netdev_ops &&
1859 event == NETDEV_CHANGENAME)
1860 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1861
1862 return NOTIFY_DONE;
1863}
1864
1865static struct notifier_block efx_netdev_notifier = {
1866 .notifier_call = efx_netdev_event,
1867};
1868
06d5e193
BH
1869static ssize_t
1870show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1871{
1872 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1873 return sprintf(buf, "%d\n", efx->phy_type);
1874}
1875static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1876
8ceee660
BH
1877static int efx_register_netdev(struct efx_nic *efx)
1878{
1879 struct net_device *net_dev = efx->net_dev;
1880 int rc;
1881
1882 net_dev->watchdog_timeo = 5 * HZ;
1883 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1884 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1885 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1886
8ceee660 1887 /* Clear MAC statistics */
177dfcd8 1888 efx->mac_op->update_stats(efx);
8ceee660
BH
1889 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1890
7dde596e 1891 rtnl_lock();
aed0628d
BH
1892
1893 rc = dev_alloc_name(net_dev, net_dev->name);
1894 if (rc < 0)
1895 goto fail_locked;
7dde596e 1896 efx_update_name(efx);
aed0628d
BH
1897
1898 rc = register_netdevice(net_dev);
1899 if (rc)
1900 goto fail_locked;
1901
1902 /* Always start with carrier off; PHY events will detect the link */
1903 netif_carrier_off(efx->net_dev);
1904
7dde596e 1905 rtnl_unlock();
8ceee660 1906
06d5e193
BH
1907 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1908 if (rc) {
62776d03
BH
1909 netif_err(efx, drv, efx->net_dev,
1910 "failed to init net dev attributes\n");
06d5e193
BH
1911 goto fail_registered;
1912 }
1913
8ceee660 1914 return 0;
06d5e193 1915
aed0628d
BH
1916fail_locked:
1917 rtnl_unlock();
62776d03 1918 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1919 return rc;
1920
06d5e193
BH
1921fail_registered:
1922 unregister_netdev(net_dev);
1923 return rc;
8ceee660
BH
1924}
1925
1926static void efx_unregister_netdev(struct efx_nic *efx)
1927{
f7d12cdc 1928 struct efx_channel *channel;
8ceee660
BH
1929 struct efx_tx_queue *tx_queue;
1930
1931 if (!efx->net_dev)
1932 return;
1933
767e468c 1934 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1935
1936 /* Free up any skbs still remaining. This has to happen before
1937 * we try to unregister the netdev as running their destructors
1938 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
1939 efx_for_each_channel(channel, efx) {
1940 efx_for_each_channel_tx_queue(tx_queue, channel)
1941 efx_release_tx_buffers(tx_queue);
1942 }
8ceee660 1943
55668611 1944 if (efx_dev_registered(efx)) {
8ceee660 1945 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1946 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1947 unregister_netdev(efx->net_dev);
1948 }
1949}
1950
1951/**************************************************************************
1952 *
1953 * Device reset and suspend
1954 *
1955 **************************************************************************/
1956
2467ca46
BH
1957/* Tears down the entire software state and most of the hardware state
1958 * before reset. */
d3245b28 1959void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1960{
8ceee660
BH
1961 EFX_ASSERT_RESET_SERIALISED(efx);
1962
2467ca46
BH
1963 efx_stop_all(efx);
1964 mutex_lock(&efx->mac_lock);
f4150724 1965 mutex_lock(&efx->spi_lock);
2467ca46 1966
8ceee660 1967 efx_fini_channels(efx);
4b988280
SH
1968 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1969 efx->phy_op->fini(efx);
ef2b90ee 1970 efx->type->fini(efx);
8ceee660
BH
1971}
1972
2467ca46
BH
1973/* This function will always ensure that the locks acquired in
1974 * efx_reset_down() are released. A failure return code indicates
1975 * that we were unable to reinitialise the hardware, and the
1976 * driver should be disabled. If ok is false, then the rx and tx
1977 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1978int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1979{
1980 int rc;
1981
2467ca46 1982 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1983
ef2b90ee 1984 rc = efx->type->init(efx);
8ceee660 1985 if (rc) {
62776d03 1986 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1987 goto fail;
8ceee660
BH
1988 }
1989
eb9f6744
BH
1990 if (!ok)
1991 goto fail;
1992
4b988280 1993 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1994 rc = efx->phy_op->init(efx);
1995 if (rc)
1996 goto fail;
1997 if (efx->phy_op->reconfigure(efx))
62776d03
BH
1998 netif_err(efx, drv, efx->net_dev,
1999 "could not restore PHY settings\n");
4b988280
SH
2000 }
2001
eb9f6744 2002 efx->mac_op->reconfigure(efx);
8ceee660 2003
eb9f6744 2004 efx_init_channels(efx);
64eebcfd 2005 efx_restore_filters(efx);
eb9f6744
BH
2006
2007 mutex_unlock(&efx->spi_lock);
2008 mutex_unlock(&efx->mac_lock);
2009
2010 efx_start_all(efx);
2011
2012 return 0;
2013
2014fail:
2015 efx->port_initialized = false;
2467ca46 2016
f4150724 2017 mutex_unlock(&efx->spi_lock);
2467ca46
BH
2018 mutex_unlock(&efx->mac_lock);
2019
8ceee660
BH
2020 return rc;
2021}
2022
eb9f6744
BH
2023/* Reset the NIC using the specified method. Note that the reset may
2024 * fail, in which case the card will be left in an unusable state.
8ceee660 2025 *
eb9f6744 2026 * Caller must hold the rtnl_lock.
8ceee660 2027 */
eb9f6744 2028int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2029{
eb9f6744
BH
2030 int rc, rc2;
2031 bool disabled;
8ceee660 2032
62776d03
BH
2033 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2034 RESET_TYPE(method));
8ceee660 2035
d3245b28 2036 efx_reset_down(efx, method);
8ceee660 2037
ef2b90ee 2038 rc = efx->type->reset(efx, method);
8ceee660 2039 if (rc) {
62776d03 2040 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2041 goto out;
8ceee660
BH
2042 }
2043
2044 /* Allow resets to be rescheduled. */
2045 efx->reset_pending = RESET_TYPE_NONE;
2046
2047 /* Reinitialise bus-mastering, which may have been turned off before
2048 * the reset was scheduled. This is still appropriate, even in the
2049 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2050 * can respond to requests. */
2051 pci_set_master(efx->pci_dev);
2052
eb9f6744 2053out:
8ceee660 2054 /* Leave device stopped if necessary */
eb9f6744
BH
2055 disabled = rc || method == RESET_TYPE_DISABLE;
2056 rc2 = efx_reset_up(efx, method, !disabled);
2057 if (rc2) {
2058 disabled = true;
2059 if (!rc)
2060 rc = rc2;
8ceee660
BH
2061 }
2062
eb9f6744 2063 if (disabled) {
f49a4589 2064 dev_close(efx->net_dev);
62776d03 2065 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2066 efx->state = STATE_DISABLED;
f4bd954e 2067 } else {
62776d03 2068 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 2069 }
8ceee660
BH
2070 return rc;
2071}
2072
2073/* The worker thread exists so that code that cannot sleep can
2074 * schedule a reset for later.
2075 */
2076static void efx_reset_work(struct work_struct *data)
2077{
eb9f6744 2078 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 2079
319ba649
SH
2080 if (efx->reset_pending == RESET_TYPE_NONE)
2081 return;
2082
eb9f6744
BH
2083 /* If we're not RUNNING then don't reset. Leave the reset_pending
2084 * flag set so that efx_pci_probe_main will be retried */
2085 if (efx->state != STATE_RUNNING) {
62776d03
BH
2086 netif_info(efx, drv, efx->net_dev,
2087 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2088 return;
2089 }
2090
2091 rtnl_lock();
f49a4589 2092 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 2093 rtnl_unlock();
8ceee660
BH
2094}
2095
2096void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2097{
2098 enum reset_type method;
2099
2100 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
2101 netif_info(efx, drv, efx->net_dev,
2102 "quenching already scheduled reset\n");
8ceee660
BH
2103 return;
2104 }
2105
2106 switch (type) {
2107 case RESET_TYPE_INVISIBLE:
2108 case RESET_TYPE_ALL:
2109 case RESET_TYPE_WORLD:
2110 case RESET_TYPE_DISABLE:
2111 method = type;
2112 break;
2113 case RESET_TYPE_RX_RECOVERY:
2114 case RESET_TYPE_RX_DESC_FETCH:
2115 case RESET_TYPE_TX_DESC_FETCH:
2116 case RESET_TYPE_TX_SKIP:
2117 method = RESET_TYPE_INVISIBLE;
2118 break;
8880f4ec 2119 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
2120 default:
2121 method = RESET_TYPE_ALL;
2122 break;
2123 }
2124
2125 if (method != type)
62776d03
BH
2126 netif_dbg(efx, drv, efx->net_dev,
2127 "scheduling %s reset for %s\n",
2128 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 2129 else
62776d03
BH
2130 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2131 RESET_TYPE(method));
8ceee660
BH
2132
2133 efx->reset_pending = method;
2134
8880f4ec
BH
2135 /* efx_process_channel() will no longer read events once a
2136 * reset is scheduled. So switch back to poll'd MCDI completions. */
2137 efx_mcdi_mode_poll(efx);
2138
1ab00629 2139 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2140}
2141
2142/**************************************************************************
2143 *
2144 * List of NICs we support
2145 *
2146 **************************************************************************/
2147
2148/* PCI device ID table */
a3aa1884 2149static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 2150 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 2151 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 2152 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 2153 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
2154 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2155 .driver_data = (unsigned long) &siena_a0_nic_type},
2156 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2157 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2158 {0} /* end of list */
2159};
2160
2161/**************************************************************************
2162 *
3759433d 2163 * Dummy PHY/MAC operations
8ceee660 2164 *
01aad7b6 2165 * Can be used for some unimplemented operations
8ceee660
BH
2166 * Needed so all function pointers are valid and do not have to be tested
2167 * before use
2168 *
2169 **************************************************************************/
2170int efx_port_dummy_op_int(struct efx_nic *efx)
2171{
2172 return 0;
2173}
2174void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2175
2176static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2177{
2178 return false;
2179}
8ceee660
BH
2180
2181static struct efx_phy_operations efx_dummy_phy_operations = {
2182 .init = efx_port_dummy_op_int,
d3245b28 2183 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2184 .poll = efx_port_dummy_op_poll,
8ceee660 2185 .fini = efx_port_dummy_op_void,
8ceee660
BH
2186};
2187
8ceee660
BH
2188/**************************************************************************
2189 *
2190 * Data housekeeping
2191 *
2192 **************************************************************************/
2193
2194/* This zeroes out and then fills in the invariants in a struct
2195 * efx_nic (including all sub-structures).
2196 */
2197static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2198 struct pci_dev *pci_dev, struct net_device *net_dev)
2199{
4642610c 2200 int i;
8ceee660
BH
2201
2202 /* Initialise common structures */
2203 memset(efx, 0, sizeof(*efx));
2204 spin_lock_init(&efx->biu_lock);
ab867461 2205 mutex_init(&efx->mdio_lock);
f4150724 2206 mutex_init(&efx->spi_lock);
76884835
BH
2207#ifdef CONFIG_SFC_MTD
2208 INIT_LIST_HEAD(&efx->mtd_list);
2209#endif
8ceee660
BH
2210 INIT_WORK(&efx->reset_work, efx_reset_work);
2211 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2212 efx->pci_dev = pci_dev;
62776d03 2213 efx->msg_enable = debug;
8ceee660
BH
2214 efx->state = STATE_INIT;
2215 efx->reset_pending = RESET_TYPE_NONE;
2216 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2217
2218 efx->net_dev = net_dev;
dc8cfa55 2219 efx->rx_checksum_enabled = true;
8ceee660
BH
2220 spin_lock_init(&efx->stats_lock);
2221 mutex_init(&efx->mac_lock);
b895d73e 2222 efx->mac_op = type->default_mac_ops;
8ceee660 2223 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2224 efx->mdio.dev = net_dev;
766ca0fa 2225 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2226
2227 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2228 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2229 if (!efx->channel[i])
2230 goto fail;
8ceee660
BH
2231 }
2232
2233 efx->type = type;
2234
8ceee660
BH
2235 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2236
2237 /* Higher numbered interrupt modes are less capable! */
2238 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2239 interrupt_mode);
2240
6977dc63
BH
2241 /* Would be good to use the net_dev name, but we're too early */
2242 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2243 pci_name(pci_dev));
2244 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2245 if (!efx->workqueue)
4642610c 2246 goto fail;
8d9853d9 2247
8ceee660 2248 return 0;
4642610c
BH
2249
2250fail:
2251 efx_fini_struct(efx);
2252 return -ENOMEM;
8ceee660
BH
2253}
2254
2255static void efx_fini_struct(struct efx_nic *efx)
2256{
8313aca3
BH
2257 int i;
2258
2259 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2260 kfree(efx->channel[i]);
2261
8ceee660
BH
2262 if (efx->workqueue) {
2263 destroy_workqueue(efx->workqueue);
2264 efx->workqueue = NULL;
2265 }
2266}
2267
2268/**************************************************************************
2269 *
2270 * PCI interface
2271 *
2272 **************************************************************************/
2273
2274/* Main body of final NIC shutdown code
2275 * This is called only at module unload (or hotplug removal).
2276 */
2277static void efx_pci_remove_main(struct efx_nic *efx)
2278{
152b6a62 2279 efx_nic_fini_interrupt(efx);
8ceee660
BH
2280 efx_fini_channels(efx);
2281 efx_fini_port(efx);
ef2b90ee 2282 efx->type->fini(efx);
8ceee660
BH
2283 efx_fini_napi(efx);
2284 efx_remove_all(efx);
2285}
2286
2287/* Final NIC shutdown
2288 * This is called only at module unload (or hotplug removal).
2289 */
2290static void efx_pci_remove(struct pci_dev *pci_dev)
2291{
2292 struct efx_nic *efx;
2293
2294 efx = pci_get_drvdata(pci_dev);
2295 if (!efx)
2296 return;
2297
2298 /* Mark the NIC as fini, then stop the interface */
2299 rtnl_lock();
2300 efx->state = STATE_FINI;
2301 dev_close(efx->net_dev);
2302
2303 /* Allow any queued efx_resets() to complete */
2304 rtnl_unlock();
2305
8ceee660
BH
2306 efx_unregister_netdev(efx);
2307
7dde596e
BH
2308 efx_mtd_remove(efx);
2309
8ceee660
BH
2310 /* Wait for any scheduled resets to complete. No more will be
2311 * scheduled from this point because efx_stop_all() has been
2312 * called, we are no longer registered with driverlink, and
2313 * the net_device's have been removed. */
1ab00629 2314 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2315
2316 efx_pci_remove_main(efx);
2317
8ceee660 2318 efx_fini_io(efx);
62776d03 2319 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2320
2321 pci_set_drvdata(pci_dev, NULL);
2322 efx_fini_struct(efx);
2323 free_netdev(efx->net_dev);
2324};
2325
2326/* Main body of NIC initialisation
2327 * This is called at module load (or hotplug insertion, theoretically).
2328 */
2329static int efx_pci_probe_main(struct efx_nic *efx)
2330{
2331 int rc;
2332
2333 /* Do start-of-day initialisation */
2334 rc = efx_probe_all(efx);
2335 if (rc)
2336 goto fail1;
2337
2338 rc = efx_init_napi(efx);
2339 if (rc)
2340 goto fail2;
2341
ef2b90ee 2342 rc = efx->type->init(efx);
8ceee660 2343 if (rc) {
62776d03
BH
2344 netif_err(efx, probe, efx->net_dev,
2345 "failed to initialise NIC\n");
278c0621 2346 goto fail3;
8ceee660
BH
2347 }
2348
2349 rc = efx_init_port(efx);
2350 if (rc) {
62776d03
BH
2351 netif_err(efx, probe, efx->net_dev,
2352 "failed to initialise port\n");
278c0621 2353 goto fail4;
8ceee660
BH
2354 }
2355
bc3c90a2 2356 efx_init_channels(efx);
8ceee660 2357
152b6a62 2358 rc = efx_nic_init_interrupt(efx);
8ceee660 2359 if (rc)
278c0621 2360 goto fail5;
8ceee660
BH
2361
2362 return 0;
2363
278c0621 2364 fail5:
bc3c90a2 2365 efx_fini_channels(efx);
8ceee660 2366 efx_fini_port(efx);
8ceee660 2367 fail4:
ef2b90ee 2368 efx->type->fini(efx);
8ceee660
BH
2369 fail3:
2370 efx_fini_napi(efx);
2371 fail2:
2372 efx_remove_all(efx);
2373 fail1:
2374 return rc;
2375}
2376
2377/* NIC initialisation
2378 *
2379 * This is called at module load (or hotplug insertion,
2380 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2381 * sets up and registers the network devices with the kernel and hooks
2382 * the interrupt service routine. It does not prepare the device for
2383 * transmission; this is left to the first time one of the network
2384 * interfaces is brought up (i.e. efx_net_open).
2385 */
2386static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2387 const struct pci_device_id *entry)
2388{
2389 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2390 struct net_device *net_dev;
2391 struct efx_nic *efx;
2392 int i, rc;
2393
2394 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2395 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2396 if (!net_dev)
2397 return -ENOMEM;
c383b537 2398 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2399 NETIF_F_HIGHDMA | NETIF_F_TSO |
2400 NETIF_F_GRO);
738a8f4b
BH
2401 if (type->offload_features & NETIF_F_V6_CSUM)
2402 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2403 /* Mask for features that also apply to VLAN devices */
2404 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2405 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2406 efx = netdev_priv(net_dev);
8ceee660 2407 pci_set_drvdata(pci_dev, efx);
62776d03 2408 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2409 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2410 if (rc)
2411 goto fail1;
2412
62776d03
BH
2413 netif_info(efx, probe, efx->net_dev,
2414 "Solarflare Communications NIC detected\n");
8ceee660
BH
2415
2416 /* Set up basic I/O (BAR mappings etc) */
2417 rc = efx_init_io(efx);
2418 if (rc)
2419 goto fail2;
2420
2421 /* No serialisation is required with the reset path because
2422 * we're in STATE_INIT. */
2423 for (i = 0; i < 5; i++) {
2424 rc = efx_pci_probe_main(efx);
8ceee660
BH
2425
2426 /* Serialise against efx_reset(). No more resets will be
2427 * scheduled since efx_stop_all() has been called, and we
2428 * have not and never have been registered with either
2429 * the rtnetlink or driverlink layers. */
1ab00629 2430 cancel_work_sync(&efx->reset_work);
8ceee660 2431
fa402b2e
SH
2432 if (rc == 0) {
2433 if (efx->reset_pending != RESET_TYPE_NONE) {
2434 /* If there was a scheduled reset during
2435 * probe, the NIC is probably hosed anyway */
2436 efx_pci_remove_main(efx);
2437 rc = -EIO;
2438 } else {
2439 break;
2440 }
2441 }
2442
8ceee660
BH
2443 /* Retry if a recoverably reset event has been scheduled */
2444 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2445 (efx->reset_pending != RESET_TYPE_ALL))
2446 goto fail3;
2447
2448 efx->reset_pending = RESET_TYPE_NONE;
2449 }
2450
2451 if (rc) {
62776d03 2452 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2453 goto fail4;
2454 }
2455
55edc6e6
BH
2456 /* Switch to the running state before we expose the device to the OS,
2457 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2458 efx->state = STATE_RUNNING;
7dde596e 2459
8ceee660
BH
2460 rc = efx_register_netdev(efx);
2461 if (rc)
2462 goto fail5;
2463
62776d03 2464 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2465
2466 rtnl_lock();
2467 efx_mtd_probe(efx); /* allowed to fail */
2468 rtnl_unlock();
8ceee660
BH
2469 return 0;
2470
2471 fail5:
2472 efx_pci_remove_main(efx);
2473 fail4:
2474 fail3:
2475 efx_fini_io(efx);
2476 fail2:
2477 efx_fini_struct(efx);
2478 fail1:
5e2a911c 2479 WARN_ON(rc > 0);
62776d03 2480 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2481 free_netdev(net_dev);
2482 return rc;
2483}
2484
89c758fa
BH
2485static int efx_pm_freeze(struct device *dev)
2486{
2487 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2488
2489 efx->state = STATE_FINI;
2490
2491 netif_device_detach(efx->net_dev);
2492
2493 efx_stop_all(efx);
2494 efx_fini_channels(efx);
2495
2496 return 0;
2497}
2498
2499static int efx_pm_thaw(struct device *dev)
2500{
2501 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2502
2503 efx->state = STATE_INIT;
2504
2505 efx_init_channels(efx);
2506
2507 mutex_lock(&efx->mac_lock);
2508 efx->phy_op->reconfigure(efx);
2509 mutex_unlock(&efx->mac_lock);
2510
2511 efx_start_all(efx);
2512
2513 netif_device_attach(efx->net_dev);
2514
2515 efx->state = STATE_RUNNING;
2516
2517 efx->type->resume_wol(efx);
2518
319ba649
SH
2519 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2520 queue_work(reset_workqueue, &efx->reset_work);
2521
89c758fa
BH
2522 return 0;
2523}
2524
2525static int efx_pm_poweroff(struct device *dev)
2526{
2527 struct pci_dev *pci_dev = to_pci_dev(dev);
2528 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2529
2530 efx->type->fini(efx);
2531
2532 efx->reset_pending = RESET_TYPE_NONE;
2533
2534 pci_save_state(pci_dev);
2535 return pci_set_power_state(pci_dev, PCI_D3hot);
2536}
2537
2538/* Used for both resume and restore */
2539static int efx_pm_resume(struct device *dev)
2540{
2541 struct pci_dev *pci_dev = to_pci_dev(dev);
2542 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2543 int rc;
2544
2545 rc = pci_set_power_state(pci_dev, PCI_D0);
2546 if (rc)
2547 return rc;
2548 pci_restore_state(pci_dev);
2549 rc = pci_enable_device(pci_dev);
2550 if (rc)
2551 return rc;
2552 pci_set_master(efx->pci_dev);
2553 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2554 if (rc)
2555 return rc;
2556 rc = efx->type->init(efx);
2557 if (rc)
2558 return rc;
2559 efx_pm_thaw(dev);
2560 return 0;
2561}
2562
2563static int efx_pm_suspend(struct device *dev)
2564{
2565 int rc;
2566
2567 efx_pm_freeze(dev);
2568 rc = efx_pm_poweroff(dev);
2569 if (rc)
2570 efx_pm_resume(dev);
2571 return rc;
2572}
2573
2574static struct dev_pm_ops efx_pm_ops = {
2575 .suspend = efx_pm_suspend,
2576 .resume = efx_pm_resume,
2577 .freeze = efx_pm_freeze,
2578 .thaw = efx_pm_thaw,
2579 .poweroff = efx_pm_poweroff,
2580 .restore = efx_pm_resume,
2581};
2582
8ceee660 2583static struct pci_driver efx_pci_driver = {
c5d5f5fd 2584 .name = KBUILD_MODNAME,
8ceee660
BH
2585 .id_table = efx_pci_table,
2586 .probe = efx_pci_probe,
2587 .remove = efx_pci_remove,
89c758fa 2588 .driver.pm = &efx_pm_ops,
8ceee660
BH
2589};
2590
2591/**************************************************************************
2592 *
2593 * Kernel module interface
2594 *
2595 *************************************************************************/
2596
2597module_param(interrupt_mode, uint, 0444);
2598MODULE_PARM_DESC(interrupt_mode,
2599 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2600
2601static int __init efx_init_module(void)
2602{
2603 int rc;
2604
2605 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2606
2607 rc = register_netdevice_notifier(&efx_netdev_notifier);
2608 if (rc)
2609 goto err_notifier;
2610
1ab00629
SH
2611 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2612 if (!reset_workqueue) {
2613 rc = -ENOMEM;
2614 goto err_reset;
2615 }
8ceee660
BH
2616
2617 rc = pci_register_driver(&efx_pci_driver);
2618 if (rc < 0)
2619 goto err_pci;
2620
2621 return 0;
2622
2623 err_pci:
1ab00629
SH
2624 destroy_workqueue(reset_workqueue);
2625 err_reset:
8ceee660
BH
2626 unregister_netdevice_notifier(&efx_netdev_notifier);
2627 err_notifier:
2628 return rc;
2629}
2630
2631static void __exit efx_exit_module(void)
2632{
2633 printk(KERN_INFO "Solarflare NET driver unloading\n");
2634
2635 pci_unregister_driver(&efx_pci_driver);
1ab00629 2636 destroy_workqueue(reset_workqueue);
8ceee660
BH
2637 unregister_netdevice_notifier(&efx_netdev_notifier);
2638
2639}
2640
2641module_init(efx_init_module);
2642module_exit(efx_exit_module);
2643
906bb26c
BH
2644MODULE_AUTHOR("Solarflare Communications and "
2645 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2646MODULE_DESCRIPTION("Solarflare Communications network driver");
2647MODULE_LICENSE("GPL");
2648MODULE_DEVICE_TABLE(pci, efx_pci_table);