]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
sfc: Create multiple TX queues
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec
BH
29#include "mcdi.h"
30
c459302d
BH
31/**************************************************************************
32 *
33 * Type name strings
34 *
35 **************************************************************************
36 */
37
38/* Loopback mode names (see LOOPBACK_MODE()) */
39const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
40const char *efx_loopback_mode_names[] = {
41 [LOOPBACK_NONE] = "NONE",
e58f69f4 42 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
43 [LOOPBACK_GMAC] = "GMAC",
44 [LOOPBACK_XGMII] = "XGMII",
45 [LOOPBACK_XGXS] = "XGXS",
46 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
47 [LOOPBACK_GMII] = "GMII",
48 [LOOPBACK_SGMII] = "SGMII",
49 [LOOPBACK_XGBR] = "XGBR",
50 [LOOPBACK_XFI] = "XFI",
51 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
52 [LOOPBACK_GMII_FAR] = "GMII_FAR",
53 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
54 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
55 [LOOPBACK_GPHY] = "GPHY",
56 [LOOPBACK_PHYXS] = "PHYXS",
57 [LOOPBACK_PCS] = "PCS",
58 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
59 [LOOPBACK_XPORT] = "XPORT",
60 [LOOPBACK_XGMII_WS] = "XGMII_WS",
61 [LOOPBACK_XAUI_WS] = "XAUI_WS",
62 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
63 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
64 [LOOPBACK_GMII_WS] = "GMII_WS",
65 [LOOPBACK_XFI_WS] = "XFI_WS",
66 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
67 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
68};
69
70/* Interrupt mode names (see INT_MODE())) */
71const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
72const char *efx_interrupt_mode_names[] = {
73 [EFX_INT_MODE_MSIX] = "MSI-X",
74 [EFX_INT_MODE_MSI] = "MSI",
75 [EFX_INT_MODE_LEGACY] = "legacy",
76};
77
78const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
79const char *efx_reset_type_names[] = {
80 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
81 [RESET_TYPE_ALL] = "ALL",
82 [RESET_TYPE_WORLD] = "WORLD",
83 [RESET_TYPE_DISABLE] = "DISABLE",
84 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
85 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
86 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
87 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
88 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
89 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 90 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
91};
92
8ceee660
BH
93#define EFX_MAX_MTU (9 * 1024)
94
95/* RX slow fill workqueue. If memory allocation fails in the fast path,
96 * a work item is pushed onto this work queue to retry the allocation later,
97 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
98 * workqueue, there is nothing to be gained in making it per NIC
99 */
100static struct workqueue_struct *refill_workqueue;
101
1ab00629
SH
102/* Reset workqueue. If any NIC has a hardware failure then a reset will be
103 * queued onto this work queue. This is not a per-nic work queue, because
104 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
105 */
106static struct workqueue_struct *reset_workqueue;
107
8ceee660
BH
108/**************************************************************************
109 *
110 * Configurable values
111 *
112 *************************************************************************/
113
8ceee660
BH
114/*
115 * Use separate channels for TX and RX events
116 *
28b581ab
NT
117 * Set this to 1 to use separate channels for TX and RX. It allows us
118 * to control interrupt affinity separately for TX and RX.
8ceee660 119 *
28b581ab 120 * This is only used in MSI-X interrupt mode
8ceee660 121 */
28b581ab
NT
122static unsigned int separate_tx_channels;
123module_param(separate_tx_channels, uint, 0644);
124MODULE_PARM_DESC(separate_tx_channels,
125 "Use separate channels for TX and RX");
8ceee660
BH
126
127/* This is the weight assigned to each of the (per-channel) virtual
128 * NAPI devices.
129 */
130static int napi_weight = 64;
131
132/* This is the time (in jiffies) between invocations of the hardware
133 * monitor, which checks for known hardware bugs and resets the
134 * hardware and driver as necessary.
135 */
136unsigned int efx_monitor_interval = 1 * HZ;
137
8ceee660
BH
138/* This controls whether or not the driver will initialise devices
139 * with invalid MAC addresses stored in the EEPROM or flash. If true,
140 * such devices will be initialised with a random locally-generated
141 * MAC address. This allows for loading the sfc_mtd driver to
142 * reprogram the flash, even if the flash contents (including the MAC
143 * address) have previously been erased.
144 */
145static unsigned int allow_bad_hwaddr;
146
147/* Initial interrupt moderation settings. They can be modified after
148 * module load with ethtool.
149 *
150 * The default for RX should strike a balance between increasing the
151 * round-trip latency and reducing overhead.
152 */
153static unsigned int rx_irq_mod_usec = 60;
154
155/* Initial interrupt moderation settings. They can be modified after
156 * module load with ethtool.
157 *
158 * This default is chosen to ensure that a 10G link does not go idle
159 * while a TX queue is stopped after it has become full. A queue is
160 * restarted when it drops below half full. The time this takes (assuming
161 * worst case 3 descriptors per packet and 1024 descriptors) is
162 * 512 / 3 * 1.2 = 205 usec.
163 */
164static unsigned int tx_irq_mod_usec = 150;
165
166/* This is the first interrupt mode to try out of:
167 * 0 => MSI-X
168 * 1 => MSI
169 * 2 => legacy
170 */
171static unsigned int interrupt_mode;
172
173/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
174 * i.e. the number of CPUs among which we may distribute simultaneous
175 * interrupt handling.
176 *
177 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
178 * The default (0) means to assign an interrupt to each package (level II cache)
179 */
180static unsigned int rss_cpus;
181module_param(rss_cpus, uint, 0444);
182MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
183
84ae48fe
BH
184static int phy_flash_cfg;
185module_param(phy_flash_cfg, int, 0644);
186MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
187
6fb70fd1
BH
188static unsigned irq_adapt_low_thresh = 10000;
189module_param(irq_adapt_low_thresh, uint, 0644);
190MODULE_PARM_DESC(irq_adapt_low_thresh,
191 "Threshold score for reducing IRQ moderation");
192
193static unsigned irq_adapt_high_thresh = 20000;
194module_param(irq_adapt_high_thresh, uint, 0644);
195MODULE_PARM_DESC(irq_adapt_high_thresh,
196 "Threshold score for increasing IRQ moderation");
197
8ceee660
BH
198/**************************************************************************
199 *
200 * Utility functions and prototypes
201 *
202 *************************************************************************/
203static void efx_remove_channel(struct efx_channel *channel);
204static void efx_remove_port(struct efx_nic *efx);
205static void efx_fini_napi(struct efx_nic *efx);
206static void efx_fini_channels(struct efx_nic *efx);
207
208#define EFX_ASSERT_RESET_SERIALISED(efx) \
209 do { \
332c1ce9
BH
210 if ((efx->state == STATE_RUNNING) || \
211 (efx->state == STATE_DISABLED)) \
8ceee660
BH
212 ASSERT_RTNL(); \
213 } while (0)
214
215/**************************************************************************
216 *
217 * Event queue processing
218 *
219 *************************************************************************/
220
221/* Process channel's event queue
222 *
223 * This function is responsible for processing the event queue of a
224 * single channel. The caller must guarantee that this function will
225 * never be concurrently called more than once on the same channel,
226 * though different channels may be being processed concurrently.
227 */
fa236e18 228static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 229{
42cbe2d7 230 struct efx_nic *efx = channel->efx;
fa236e18 231 int spent;
8ceee660 232
42cbe2d7 233 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 234 !channel->enabled))
42cbe2d7 235 return 0;
8ceee660 236
fa236e18
BH
237 spent = efx_nic_process_eventq(channel, budget);
238 if (spent == 0)
42cbe2d7 239 return 0;
8ceee660
BH
240
241 /* Deliver last RX packet. */
242 if (channel->rx_pkt) {
243 __efx_rx_packet(channel, channel->rx_pkt,
244 channel->rx_pkt_csummed);
245 channel->rx_pkt = NULL;
246 }
247
8ceee660
BH
248 efx_rx_strategy(channel);
249
42cbe2d7 250 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 251
fa236e18 252 return spent;
8ceee660
BH
253}
254
255/* Mark channel as finished processing
256 *
257 * Note that since we will not receive further interrupts for this
258 * channel before we finish processing and call the eventq_read_ack()
259 * method, there is no need to use the interrupt hold-off timers.
260 */
261static inline void efx_channel_processed(struct efx_channel *channel)
262{
5b9e207c
BH
263 /* The interrupt handler for this channel may set work_pending
264 * as soon as we acknowledge the events we've seen. Make sure
265 * it's cleared before then. */
dc8cfa55 266 channel->work_pending = false;
5b9e207c
BH
267 smp_wmb();
268
152b6a62 269 efx_nic_eventq_read_ack(channel);
8ceee660
BH
270}
271
272/* NAPI poll handler
273 *
274 * NAPI guarantees serialisation of polls of the same device, which
275 * provides the guarantee required by efx_process_channel().
276 */
277static int efx_poll(struct napi_struct *napi, int budget)
278{
279 struct efx_channel *channel =
280 container_of(napi, struct efx_channel, napi_str);
fa236e18 281 int spent;
8ceee660
BH
282
283 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
284 channel->channel, raw_smp_processor_id());
285
fa236e18 286 spent = efx_process_channel(channel, budget);
8ceee660 287
fa236e18 288 if (spent < budget) {
6fb70fd1
BH
289 struct efx_nic *efx = channel->efx;
290
a4900ac9 291 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
292 efx->irq_rx_adaptive &&
293 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
294 if (unlikely(channel->irq_mod_score <
295 irq_adapt_low_thresh)) {
0d86ebd8
BH
296 if (channel->irq_moderation > 1) {
297 channel->irq_moderation -= 1;
ef2b90ee 298 efx->type->push_irq_moderation(channel);
0d86ebd8 299 }
6fb70fd1
BH
300 } else if (unlikely(channel->irq_mod_score >
301 irq_adapt_high_thresh)) {
0d86ebd8
BH
302 if (channel->irq_moderation <
303 efx->irq_rx_moderation) {
304 channel->irq_moderation += 1;
ef2b90ee 305 efx->type->push_irq_moderation(channel);
0d86ebd8 306 }
6fb70fd1 307 }
6fb70fd1
BH
308 channel->irq_count = 0;
309 channel->irq_mod_score = 0;
310 }
311
8ceee660 312 /* There is no race here; although napi_disable() will
288379f0 313 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
314 * since efx_channel_processed() will have no effect if
315 * interrupts have already been disabled.
316 */
288379f0 317 napi_complete(napi);
8ceee660
BH
318 efx_channel_processed(channel);
319 }
320
fa236e18 321 return spent;
8ceee660
BH
322}
323
324/* Process the eventq of the specified channel immediately on this CPU
325 *
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
329 *
330 * Since we are touching interrupts the caller should hold the suspend lock
331 */
332void efx_process_channel_now(struct efx_channel *channel)
333{
334 struct efx_nic *efx = channel->efx;
335
8ceee660
BH
336 BUG_ON(!channel->enabled);
337
338 /* Disable interrupts and wait for ISRs to complete */
152b6a62 339 efx_nic_disable_interrupts(efx);
8ceee660
BH
340 if (efx->legacy_irq)
341 synchronize_irq(efx->legacy_irq);
64ee3120 342 if (channel->irq)
8ceee660
BH
343 synchronize_irq(channel->irq);
344
345 /* Wait for any NAPI processing to complete */
346 napi_disable(&channel->napi_str);
347
348 /* Poll the channel */
3ffeabdd 349 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
350
351 /* Ack the eventq. This may cause an interrupt to be generated
352 * when they are reenabled */
353 efx_channel_processed(channel);
354
355 napi_enable(&channel->napi_str);
152b6a62 356 efx_nic_enable_interrupts(efx);
8ceee660
BH
357}
358
359/* Create event queue
360 * Event queue memory allocations are done only once. If the channel
361 * is reset, the memory buffer will be reused; this guards against
362 * errors during channel reset and also simplifies interrupt handling.
363 */
364static int efx_probe_eventq(struct efx_channel *channel)
365{
366 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
367
152b6a62 368 return efx_nic_probe_eventq(channel);
8ceee660
BH
369}
370
371/* Prepare channel's event queue */
bc3c90a2 372static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
373{
374 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
375
376 channel->eventq_read_ptr = 0;
377
152b6a62 378 efx_nic_init_eventq(channel);
8ceee660
BH
379}
380
381static void efx_fini_eventq(struct efx_channel *channel)
382{
383 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
384
152b6a62 385 efx_nic_fini_eventq(channel);
8ceee660
BH
386}
387
388static void efx_remove_eventq(struct efx_channel *channel)
389{
390 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
391
152b6a62 392 efx_nic_remove_eventq(channel);
8ceee660
BH
393}
394
395/**************************************************************************
396 *
397 * Channel handling
398 *
399 *************************************************************************/
400
8ceee660
BH
401static int efx_probe_channel(struct efx_channel *channel)
402{
403 struct efx_tx_queue *tx_queue;
404 struct efx_rx_queue *rx_queue;
405 int rc;
406
407 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
408
409 rc = efx_probe_eventq(channel);
410 if (rc)
411 goto fail1;
412
413 efx_for_each_channel_tx_queue(tx_queue, channel) {
414 rc = efx_probe_tx_queue(tx_queue);
415 if (rc)
416 goto fail2;
417 }
418
419 efx_for_each_channel_rx_queue(rx_queue, channel) {
420 rc = efx_probe_rx_queue(rx_queue);
421 if (rc)
422 goto fail3;
423 }
424
425 channel->n_rx_frm_trunc = 0;
426
427 return 0;
428
429 fail3:
430 efx_for_each_channel_rx_queue(rx_queue, channel)
431 efx_remove_rx_queue(rx_queue);
432 fail2:
433 efx_for_each_channel_tx_queue(tx_queue, channel)
434 efx_remove_tx_queue(tx_queue);
435 fail1:
436 return rc;
437}
438
439
56536e9c
BH
440static void efx_set_channel_names(struct efx_nic *efx)
441{
442 struct efx_channel *channel;
443 const char *type = "";
444 int number;
445
446 efx_for_each_channel(channel, efx) {
447 number = channel->channel;
a4900ac9
BH
448 if (efx->n_channels > efx->n_rx_channels) {
449 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
450 type = "-rx";
451 } else {
452 type = "-tx";
a4900ac9 453 number -= efx->n_rx_channels;
56536e9c
BH
454 }
455 }
456 snprintf(channel->name, sizeof(channel->name),
457 "%s%s-%d", efx->name, type, number);
458 }
459}
460
8ceee660
BH
461/* Channels are shutdown and reinitialised whilst the NIC is running
462 * to propagate configuration changes (mtu, checksum offload), or
463 * to clear hardware error conditions
464 */
bc3c90a2 465static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
466{
467 struct efx_tx_queue *tx_queue;
468 struct efx_rx_queue *rx_queue;
469 struct efx_channel *channel;
8ceee660 470
f7f13b0b
BH
471 /* Calculate the rx buffer allocation parameters required to
472 * support the current MTU, including padding for header
473 * alignment and overruns.
474 */
475 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
476 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
477 efx->type->rx_buffer_padding);
478 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
479
480 /* Initialise the channels */
481 efx_for_each_channel(channel, efx) {
482 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
483
bc3c90a2 484 efx_init_eventq(channel);
8ceee660 485
bc3c90a2
BH
486 efx_for_each_channel_tx_queue(tx_queue, channel)
487 efx_init_tx_queue(tx_queue);
8ceee660
BH
488
489 /* The rx buffer allocation strategy is MTU dependent */
490 efx_rx_strategy(channel);
491
bc3c90a2
BH
492 efx_for_each_channel_rx_queue(rx_queue, channel)
493 efx_init_rx_queue(rx_queue);
8ceee660
BH
494
495 WARN_ON(channel->rx_pkt != NULL);
496 efx_rx_strategy(channel);
497 }
8ceee660
BH
498}
499
500/* This enables event queue processing and packet transmission.
501 *
502 * Note that this function is not allowed to fail, since that would
503 * introduce too much complexity into the suspend/resume path.
504 */
505static void efx_start_channel(struct efx_channel *channel)
506{
507 struct efx_rx_queue *rx_queue;
508
509 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
510
5b9e207c
BH
511 /* The interrupt handler for this channel may set work_pending
512 * as soon as we enable it. Make sure it's cleared before
513 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
514 channel->work_pending = false;
515 channel->enabled = true;
5b9e207c 516 smp_wmb();
8ceee660
BH
517
518 napi_enable(&channel->napi_str);
519
520 /* Load up RX descriptors */
521 efx_for_each_channel_rx_queue(rx_queue, channel)
522 efx_fast_push_rx_descriptors(rx_queue);
523}
524
525/* This disables event queue processing and packet transmission.
526 * This function does not guarantee that all queue processing
527 * (e.g. RX refill) is complete.
528 */
529static void efx_stop_channel(struct efx_channel *channel)
530{
531 struct efx_rx_queue *rx_queue;
532
533 if (!channel->enabled)
534 return;
535
536 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
537
dc8cfa55 538 channel->enabled = false;
8ceee660
BH
539 napi_disable(&channel->napi_str);
540
541 /* Ensure that any worker threads have exited or will be no-ops */
542 efx_for_each_channel_rx_queue(rx_queue, channel) {
543 spin_lock_bh(&rx_queue->add_lock);
544 spin_unlock_bh(&rx_queue->add_lock);
545 }
546}
547
548static void efx_fini_channels(struct efx_nic *efx)
549{
550 struct efx_channel *channel;
551 struct efx_tx_queue *tx_queue;
552 struct efx_rx_queue *rx_queue;
6bc5d3a9 553 int rc;
8ceee660
BH
554
555 EFX_ASSERT_RESET_SERIALISED(efx);
556 BUG_ON(efx->port_enabled);
557
152b6a62 558 rc = efx_nic_flush_queues(efx);
6bc5d3a9
BH
559 if (rc)
560 EFX_ERR(efx, "failed to flush queues\n");
561 else
562 EFX_LOG(efx, "successfully flushed all queues\n");
563
8ceee660
BH
564 efx_for_each_channel(channel, efx) {
565 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
566
567 efx_for_each_channel_rx_queue(rx_queue, channel)
568 efx_fini_rx_queue(rx_queue);
569 efx_for_each_channel_tx_queue(tx_queue, channel)
570 efx_fini_tx_queue(tx_queue);
8ceee660
BH
571 efx_fini_eventq(channel);
572 }
573}
574
575static void efx_remove_channel(struct efx_channel *channel)
576{
577 struct efx_tx_queue *tx_queue;
578 struct efx_rx_queue *rx_queue;
579
580 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
581
582 efx_for_each_channel_rx_queue(rx_queue, channel)
583 efx_remove_rx_queue(rx_queue);
584 efx_for_each_channel_tx_queue(tx_queue, channel)
585 efx_remove_tx_queue(tx_queue);
586 efx_remove_eventq(channel);
8ceee660
BH
587}
588
589void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
590{
591 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
592}
593
594/**************************************************************************
595 *
596 * Port handling
597 *
598 **************************************************************************/
599
600/* This ensures that the kernel is kept informed (via
601 * netif_carrier_on/off) of the link status, and also maintains the
602 * link status's stop on the port's TX queue.
603 */
fdaa9aed 604void efx_link_status_changed(struct efx_nic *efx)
8ceee660 605{
eb50c0d6
BH
606 struct efx_link_state *link_state = &efx->link_state;
607
8ceee660
BH
608 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
609 * that no events are triggered between unregister_netdev() and the
610 * driver unloading. A more general condition is that NETDEV_CHANGE
611 * can only be generated between NETDEV_UP and NETDEV_DOWN */
612 if (!netif_running(efx->net_dev))
613 return;
614
8c8661e4
BH
615 if (efx->port_inhibited) {
616 netif_carrier_off(efx->net_dev);
617 return;
618 }
619
eb50c0d6 620 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
621 efx->n_link_state_changes++;
622
eb50c0d6 623 if (link_state->up)
8ceee660
BH
624 netif_carrier_on(efx->net_dev);
625 else
626 netif_carrier_off(efx->net_dev);
627 }
628
629 /* Status message for kernel log */
eb50c0d6 630 if (link_state->up) {
f31a45d2 631 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 632 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
633 efx->net_dev->mtu,
634 (efx->promiscuous ? " [PROMISC]" : ""));
635 } else {
636 EFX_INFO(efx, "link down\n");
637 }
638
639}
640
d3245b28
BH
641void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
642{
643 efx->link_advertising = advertising;
644 if (advertising) {
645 if (advertising & ADVERTISED_Pause)
646 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
647 else
648 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
649 if (advertising & ADVERTISED_Asym_Pause)
650 efx->wanted_fc ^= EFX_FC_TX;
651 }
652}
653
654void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
655{
656 efx->wanted_fc = wanted_fc;
657 if (efx->link_advertising) {
658 if (wanted_fc & EFX_FC_RX)
659 efx->link_advertising |= (ADVERTISED_Pause |
660 ADVERTISED_Asym_Pause);
661 else
662 efx->link_advertising &= ~(ADVERTISED_Pause |
663 ADVERTISED_Asym_Pause);
664 if (wanted_fc & EFX_FC_TX)
665 efx->link_advertising ^= ADVERTISED_Asym_Pause;
666 }
667}
668
115122af
BH
669static void efx_fini_port(struct efx_nic *efx);
670
d3245b28
BH
671/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
672 * the MAC appropriately. All other PHY configuration changes are pushed
673 * through phy_op->set_settings(), and pushed asynchronously to the MAC
674 * through efx_monitor().
675 *
676 * Callers must hold the mac_lock
677 */
678int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 679{
d3245b28
BH
680 enum efx_phy_mode phy_mode;
681 int rc;
8ceee660 682
d3245b28 683 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 684
a816f75a
BH
685 /* Serialise the promiscuous flag with efx_set_multicast_list. */
686 if (efx_dev_registered(efx)) {
687 netif_addr_lock_bh(efx->net_dev);
688 netif_addr_unlock_bh(efx->net_dev);
689 }
690
d3245b28
BH
691 /* Disable PHY transmit in mac level loopbacks */
692 phy_mode = efx->phy_mode;
177dfcd8
BH
693 if (LOOPBACK_INTERNAL(efx))
694 efx->phy_mode |= PHY_MODE_TX_DISABLED;
695 else
696 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 697
d3245b28 698 rc = efx->type->reconfigure_port(efx);
8ceee660 699
d3245b28
BH
700 if (rc)
701 efx->phy_mode = phy_mode;
177dfcd8 702
d3245b28 703 return rc;
8ceee660
BH
704}
705
706/* Reinitialise the MAC to pick up new PHY settings, even if the port is
707 * disabled. */
d3245b28 708int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 709{
d3245b28
BH
710 int rc;
711
8ceee660
BH
712 EFX_ASSERT_RESET_SERIALISED(efx);
713
714 mutex_lock(&efx->mac_lock);
d3245b28 715 rc = __efx_reconfigure_port(efx);
8ceee660 716 mutex_unlock(&efx->mac_lock);
d3245b28
BH
717
718 return rc;
8ceee660
BH
719}
720
8be4f3e6
BH
721/* Asynchronous work item for changing MAC promiscuity and multicast
722 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
723 * MAC directly. */
766ca0fa
BH
724static void efx_mac_work(struct work_struct *data)
725{
726 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
727
728 mutex_lock(&efx->mac_lock);
8be4f3e6 729 if (efx->port_enabled) {
ef2b90ee 730 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
731 efx->mac_op->reconfigure(efx);
732 }
766ca0fa
BH
733 mutex_unlock(&efx->mac_lock);
734}
735
8ceee660
BH
736static int efx_probe_port(struct efx_nic *efx)
737{
738 int rc;
739
740 EFX_LOG(efx, "create port\n");
741
ff3b00a0
SH
742 if (phy_flash_cfg)
743 efx->phy_mode = PHY_MODE_SPECIAL;
744
ef2b90ee
BH
745 /* Connect up MAC/PHY operations table */
746 rc = efx->type->probe_port(efx);
8ceee660
BH
747 if (rc)
748 goto err;
749
750 /* Sanity check MAC address */
751 if (is_valid_ether_addr(efx->mac_address)) {
752 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
753 } else {
e174961c
JB
754 EFX_ERR(efx, "invalid MAC address %pM\n",
755 efx->mac_address);
8ceee660
BH
756 if (!allow_bad_hwaddr) {
757 rc = -EINVAL;
758 goto err;
759 }
760 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
761 EFX_INFO(efx, "using locally-generated MAC %pM\n",
762 efx->net_dev->dev_addr);
8ceee660
BH
763 }
764
765 return 0;
766
767 err:
768 efx_remove_port(efx);
769 return rc;
770}
771
772static int efx_init_port(struct efx_nic *efx)
773{
774 int rc;
775
776 EFX_LOG(efx, "init port\n");
777
1dfc5cea
BH
778 mutex_lock(&efx->mac_lock);
779
177dfcd8 780 rc = efx->phy_op->init(efx);
8ceee660 781 if (rc)
1dfc5cea 782 goto fail1;
8ceee660 783
dc8cfa55 784 efx->port_initialized = true;
1dfc5cea 785
d3245b28
BH
786 /* Reconfigure the MAC before creating dma queues (required for
787 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
788 efx->mac_op->reconfigure(efx);
789
790 /* Ensure the PHY advertises the correct flow control settings */
791 rc = efx->phy_op->reconfigure(efx);
792 if (rc)
793 goto fail2;
794
1dfc5cea 795 mutex_unlock(&efx->mac_lock);
8ceee660 796 return 0;
177dfcd8 797
1dfc5cea 798fail2:
177dfcd8 799 efx->phy_op->fini(efx);
1dfc5cea
BH
800fail1:
801 mutex_unlock(&efx->mac_lock);
177dfcd8 802 return rc;
8ceee660
BH
803}
804
8ceee660
BH
805static void efx_start_port(struct efx_nic *efx)
806{
807 EFX_LOG(efx, "start port\n");
808 BUG_ON(efx->port_enabled);
809
810 mutex_lock(&efx->mac_lock);
dc8cfa55 811 efx->port_enabled = true;
8be4f3e6
BH
812
813 /* efx_mac_work() might have been scheduled after efx_stop_port(),
814 * and then cancelled by efx_flush_all() */
ef2b90ee 815 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
816 efx->mac_op->reconfigure(efx);
817
8ceee660
BH
818 mutex_unlock(&efx->mac_lock);
819}
820
fdaa9aed 821/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
822static void efx_stop_port(struct efx_nic *efx)
823{
824 EFX_LOG(efx, "stop port\n");
825
826 mutex_lock(&efx->mac_lock);
dc8cfa55 827 efx->port_enabled = false;
8ceee660
BH
828 mutex_unlock(&efx->mac_lock);
829
830 /* Serialise against efx_set_multicast_list() */
55668611 831 if (efx_dev_registered(efx)) {
b9e40857
DM
832 netif_addr_lock_bh(efx->net_dev);
833 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
834 }
835}
836
837static void efx_fini_port(struct efx_nic *efx)
838{
839 EFX_LOG(efx, "shut down port\n");
840
841 if (!efx->port_initialized)
842 return;
843
177dfcd8 844 efx->phy_op->fini(efx);
dc8cfa55 845 efx->port_initialized = false;
8ceee660 846
eb50c0d6 847 efx->link_state.up = false;
8ceee660
BH
848 efx_link_status_changed(efx);
849}
850
851static void efx_remove_port(struct efx_nic *efx)
852{
853 EFX_LOG(efx, "destroying port\n");
854
ef2b90ee 855 efx->type->remove_port(efx);
8ceee660
BH
856}
857
858/**************************************************************************
859 *
860 * NIC handling
861 *
862 **************************************************************************/
863
864/* This configures the PCI device to enable I/O and DMA. */
865static int efx_init_io(struct efx_nic *efx)
866{
867 struct pci_dev *pci_dev = efx->pci_dev;
868 dma_addr_t dma_mask = efx->type->max_dma_mask;
869 int rc;
870
871 EFX_LOG(efx, "initialising I/O\n");
872
873 rc = pci_enable_device(pci_dev);
874 if (rc) {
875 EFX_ERR(efx, "failed to enable PCI device\n");
876 goto fail1;
877 }
878
879 pci_set_master(pci_dev);
880
881 /* Set the PCI DMA mask. Try all possibilities from our
882 * genuine mask down to 32 bits, because some architectures
883 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
884 * masks event though they reject 46 bit masks.
885 */
886 while (dma_mask > 0x7fffffffUL) {
887 if (pci_dma_supported(pci_dev, dma_mask) &&
888 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
889 break;
890 dma_mask >>= 1;
891 }
892 if (rc) {
893 EFX_ERR(efx, "could not find a suitable DMA mask\n");
894 goto fail2;
895 }
896 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
897 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
898 if (rc) {
899 /* pci_set_consistent_dma_mask() is not *allowed* to
900 * fail with a mask that pci_set_dma_mask() accepted,
901 * but just in case...
902 */
903 EFX_ERR(efx, "failed to set consistent DMA mask\n");
904 goto fail2;
905 }
906
dc803df8
BH
907 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
908 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
909 if (rc) {
910 EFX_ERR(efx, "request for memory BAR failed\n");
911 rc = -EIO;
912 goto fail3;
913 }
914 efx->membase = ioremap_nocache(efx->membase_phys,
915 efx->type->mem_map_size);
916 if (!efx->membase) {
dc803df8 917 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 918 (unsigned long long)efx->membase_phys,
8ceee660
BH
919 efx->type->mem_map_size);
920 rc = -ENOMEM;
921 goto fail4;
922 }
dc803df8
BH
923 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
924 (unsigned long long)efx->membase_phys,
086ea356 925 efx->type->mem_map_size, efx->membase);
8ceee660
BH
926
927 return 0;
928
929 fail4:
dc803df8 930 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 931 fail3:
2c118e0f 932 efx->membase_phys = 0;
8ceee660
BH
933 fail2:
934 pci_disable_device(efx->pci_dev);
935 fail1:
936 return rc;
937}
938
939static void efx_fini_io(struct efx_nic *efx)
940{
941 EFX_LOG(efx, "shutting down I/O\n");
942
943 if (efx->membase) {
944 iounmap(efx->membase);
945 efx->membase = NULL;
946 }
947
948 if (efx->membase_phys) {
dc803df8 949 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 950 efx->membase_phys = 0;
8ceee660
BH
951 }
952
953 pci_disable_device(efx->pci_dev);
954}
955
a4900ac9
BH
956/* Get number of channels wanted. Each channel will have its own IRQ,
957 * 1 RX queue and/or 2 TX queues. */
958static int efx_wanted_channels(void)
46123d04 959{
2f8975fb 960 cpumask_var_t core_mask;
46123d04
BH
961 int count;
962 int cpu;
963
79f55997 964 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 965 printk(KERN_WARNING
3977d033 966 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
967 return 1;
968 }
969
46123d04
BH
970 count = 0;
971 for_each_online_cpu(cpu) {
2f8975fb 972 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 973 ++count;
2f8975fb 974 cpumask_or(core_mask, core_mask,
fbd59a8d 975 topology_core_cpumask(cpu));
46123d04
BH
976 }
977 }
978
2f8975fb 979 free_cpumask_var(core_mask);
46123d04
BH
980 return count;
981}
982
983/* Probe the number and type of interrupts we are able to obtain, and
984 * the resulting numbers of channels and RX queues.
985 */
8ceee660
BH
986static void efx_probe_interrupts(struct efx_nic *efx)
987{
46123d04
BH
988 int max_channels =
989 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
990 int rc, i;
991
992 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 993 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 994 int n_channels;
aa6ef27e 995
a4900ac9
BH
996 n_channels = efx_wanted_channels();
997 if (separate_tx_channels)
998 n_channels *= 2;
999 n_channels = min(n_channels, max_channels);
8ceee660 1000
a4900ac9 1001 for (i = 0; i < n_channels; i++)
8ceee660 1002 xentries[i].entry = i;
a4900ac9 1003 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1004 if (rc > 0) {
28b581ab 1005 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
a4900ac9 1006 " available (%d < %d).\n", rc, n_channels);
28b581ab 1007 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1008 EFX_BUG_ON_PARANOID(rc >= n_channels);
1009 n_channels = rc;
8ceee660 1010 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1011 n_channels);
8ceee660
BH
1012 }
1013
1014 if (rc == 0) {
a4900ac9
BH
1015 efx->n_channels = n_channels;
1016 if (separate_tx_channels) {
1017 efx->n_tx_channels =
1018 max(efx->n_channels / 2, 1U);
1019 efx->n_rx_channels =
1020 max(efx->n_channels -
1021 efx->n_tx_channels, 1U);
1022 } else {
1023 efx->n_tx_channels = efx->n_channels;
1024 efx->n_rx_channels = efx->n_channels;
1025 }
1026 for (i = 0; i < n_channels; i++)
8ceee660 1027 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1028 } else {
1029 /* Fall back to single channel MSI */
1030 efx->interrupt_mode = EFX_INT_MODE_MSI;
1031 EFX_ERR(efx, "could not enable MSI-X\n");
1032 }
1033 }
1034
1035 /* Try single interrupt MSI */
1036 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1037 efx->n_channels = 1;
a4900ac9
BH
1038 efx->n_rx_channels = 1;
1039 efx->n_tx_channels = 1;
8ceee660
BH
1040 rc = pci_enable_msi(efx->pci_dev);
1041 if (rc == 0) {
1042 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1043 } else {
1044 EFX_ERR(efx, "could not enable MSI\n");
1045 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1046 }
1047 }
1048
1049 /* Assume legacy interrupts */
1050 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1051 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1052 efx->n_rx_channels = 1;
1053 efx->n_tx_channels = 1;
8ceee660
BH
1054 efx->legacy_irq = efx->pci_dev->irq;
1055 }
1056}
1057
1058static void efx_remove_interrupts(struct efx_nic *efx)
1059{
1060 struct efx_channel *channel;
1061
1062 /* Remove MSI/MSI-X interrupts */
64ee3120 1063 efx_for_each_channel(channel, efx)
8ceee660
BH
1064 channel->irq = 0;
1065 pci_disable_msi(efx->pci_dev);
1066 pci_disable_msix(efx->pci_dev);
1067
1068 /* Remove legacy interrupt */
1069 efx->legacy_irq = 0;
1070}
1071
8831da7b 1072static void efx_set_channels(struct efx_nic *efx)
8ceee660 1073{
a4900ac9 1074 struct efx_channel *channel;
8ceee660
BH
1075 struct efx_tx_queue *tx_queue;
1076 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1077 unsigned tx_channel_offset =
1078 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1079
a4900ac9
BH
1080 efx_for_each_channel(channel, efx) {
1081 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1082 channel->tx_queue = &efx->tx_queue[
1083 (channel->channel - tx_channel_offset) *
1084 EFX_TXQ_TYPES];
1085 efx_for_each_channel_tx_queue(tx_queue, channel)
1086 tx_queue->channel = channel;
1087 }
60ac1065 1088 }
8ceee660 1089
a4900ac9 1090 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1091 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1092}
1093
1094static int efx_probe_nic(struct efx_nic *efx)
1095{
1096 int rc;
1097
1098 EFX_LOG(efx, "creating NIC\n");
1099
1100 /* Carry out hardware-type specific initialisation */
ef2b90ee 1101 rc = efx->type->probe(efx);
8ceee660
BH
1102 if (rc)
1103 return rc;
1104
a4900ac9 1105 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1106 * in MSI-X interrupts. */
1107 efx_probe_interrupts(efx);
1108
8831da7b 1109 efx_set_channels(efx);
a4900ac9 1110 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1111
1112 /* Initialise the interrupt moderation settings */
6fb70fd1 1113 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1114
1115 return 0;
1116}
1117
1118static void efx_remove_nic(struct efx_nic *efx)
1119{
1120 EFX_LOG(efx, "destroying NIC\n");
1121
1122 efx_remove_interrupts(efx);
ef2b90ee 1123 efx->type->remove(efx);
8ceee660
BH
1124}
1125
1126/**************************************************************************
1127 *
1128 * NIC startup/shutdown
1129 *
1130 *************************************************************************/
1131
1132static int efx_probe_all(struct efx_nic *efx)
1133{
1134 struct efx_channel *channel;
1135 int rc;
1136
1137 /* Create NIC */
1138 rc = efx_probe_nic(efx);
1139 if (rc) {
1140 EFX_ERR(efx, "failed to create NIC\n");
1141 goto fail1;
1142 }
1143
1144 /* Create port */
1145 rc = efx_probe_port(efx);
1146 if (rc) {
1147 EFX_ERR(efx, "failed to create port\n");
1148 goto fail2;
1149 }
1150
1151 /* Create channels */
1152 efx_for_each_channel(channel, efx) {
1153 rc = efx_probe_channel(channel);
1154 if (rc) {
1155 EFX_ERR(efx, "failed to create channel %d\n",
1156 channel->channel);
1157 goto fail3;
1158 }
1159 }
56536e9c 1160 efx_set_channel_names(efx);
8ceee660
BH
1161
1162 return 0;
1163
1164 fail3:
1165 efx_for_each_channel(channel, efx)
1166 efx_remove_channel(channel);
1167 efx_remove_port(efx);
1168 fail2:
1169 efx_remove_nic(efx);
1170 fail1:
1171 return rc;
1172}
1173
1174/* Called after previous invocation(s) of efx_stop_all, restarts the
1175 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1176 * and ensures that the port is scheduled to be reconfigured.
1177 * This function is safe to call multiple times when the NIC is in any
1178 * state. */
1179static void efx_start_all(struct efx_nic *efx)
1180{
1181 struct efx_channel *channel;
1182
1183 EFX_ASSERT_RESET_SERIALISED(efx);
1184
1185 /* Check that it is appropriate to restart the interface. All
1186 * of these flags are safe to read under just the rtnl lock */
1187 if (efx->port_enabled)
1188 return;
1189 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1190 return;
55668611 1191 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1192 return;
1193
1194 /* Mark the port as enabled so port reconfigurations can start, then
1195 * restart the transmit interface early so the watchdog timer stops */
1196 efx_start_port(efx);
8ceee660 1197
a4900ac9
BH
1198 efx_for_each_channel(channel, efx) {
1199 if (efx_dev_registered(efx))
1200 efx_wake_queue(channel);
8ceee660 1201 efx_start_channel(channel);
a4900ac9 1202 }
8ceee660 1203
152b6a62 1204 efx_nic_enable_interrupts(efx);
8ceee660 1205
8880f4ec
BH
1206 /* Switch to event based MCDI completions after enabling interrupts.
1207 * If a reset has been scheduled, then we need to stay in polled mode.
1208 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1209 * reset_pending [modified from an atomic context], we instead guarantee
1210 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1211 efx_mcdi_mode_event(efx);
1212 if (efx->reset_pending != RESET_TYPE_NONE)
1213 efx_mcdi_mode_poll(efx);
1214
78c1f0a0
SH
1215 /* Start the hardware monitor if there is one. Otherwise (we're link
1216 * event driven), we have to poll the PHY because after an event queue
1217 * flush, we could have a missed a link state change */
1218 if (efx->type->monitor != NULL) {
8ceee660
BH
1219 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1220 efx_monitor_interval);
78c1f0a0
SH
1221 } else {
1222 mutex_lock(&efx->mac_lock);
1223 if (efx->phy_op->poll(efx))
1224 efx_link_status_changed(efx);
1225 mutex_unlock(&efx->mac_lock);
1226 }
55edc6e6 1227
ef2b90ee 1228 efx->type->start_stats(efx);
8ceee660
BH
1229}
1230
1231/* Flush all delayed work. Should only be called when no more delayed work
1232 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1233 * since we're holding the rtnl_lock at this point. */
1234static void efx_flush_all(struct efx_nic *efx)
1235{
1236 struct efx_rx_queue *rx_queue;
1237
1238 /* Make sure the hardware monitor is stopped */
1239 cancel_delayed_work_sync(&efx->monitor_work);
1240
1241 /* Ensure that all RX slow refills are complete. */
b3475645 1242 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1243 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1244
1245 /* Stop scheduled port reconfigurations */
766ca0fa 1246 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1247}
1248
1249/* Quiesce hardware and software without bringing the link down.
1250 * Safe to call multiple times, when the nic and interface is in any
1251 * state. The caller is guaranteed to subsequently be in a position
1252 * to modify any hardware and software state they see fit without
1253 * taking locks. */
1254static void efx_stop_all(struct efx_nic *efx)
1255{
1256 struct efx_channel *channel;
1257
1258 EFX_ASSERT_RESET_SERIALISED(efx);
1259
1260 /* port_enabled can be read safely under the rtnl lock */
1261 if (!efx->port_enabled)
1262 return;
1263
ef2b90ee 1264 efx->type->stop_stats(efx);
55edc6e6 1265
8880f4ec
BH
1266 /* Switch to MCDI polling on Siena before disabling interrupts */
1267 efx_mcdi_mode_poll(efx);
1268
8ceee660 1269 /* Disable interrupts and wait for ISR to complete */
152b6a62 1270 efx_nic_disable_interrupts(efx);
8ceee660
BH
1271 if (efx->legacy_irq)
1272 synchronize_irq(efx->legacy_irq);
64ee3120 1273 efx_for_each_channel(channel, efx) {
8ceee660
BH
1274 if (channel->irq)
1275 synchronize_irq(channel->irq);
b3475645 1276 }
8ceee660
BH
1277
1278 /* Stop all NAPI processing and synchronous rx refills */
1279 efx_for_each_channel(channel, efx)
1280 efx_stop_channel(channel);
1281
1282 /* Stop all asynchronous port reconfigurations. Since all
1283 * event processing has already been stopped, there is no
1284 * window to loose phy events */
1285 efx_stop_port(efx);
1286
fdaa9aed 1287 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1288 efx_flush_all(efx);
1289
8ceee660
BH
1290 /* Stop the kernel transmit interface late, so the watchdog
1291 * timer isn't ticking over the flush */
55668611 1292 if (efx_dev_registered(efx)) {
a4900ac9
BH
1293 struct efx_channel *channel;
1294 efx_for_each_channel(channel, efx)
1295 efx_stop_queue(channel);
8ceee660
BH
1296 netif_tx_lock_bh(efx->net_dev);
1297 netif_tx_unlock_bh(efx->net_dev);
1298 }
1299}
1300
1301static void efx_remove_all(struct efx_nic *efx)
1302{
1303 struct efx_channel *channel;
1304
1305 efx_for_each_channel(channel, efx)
1306 efx_remove_channel(channel);
1307 efx_remove_port(efx);
1308 efx_remove_nic(efx);
1309}
1310
8ceee660
BH
1311/**************************************************************************
1312 *
1313 * Interrupt moderation
1314 *
1315 **************************************************************************/
1316
0d86ebd8
BH
1317static unsigned irq_mod_ticks(int usecs, int resolution)
1318{
1319 if (usecs <= 0)
1320 return 0; /* cannot receive interrupts ahead of time :-) */
1321 if (usecs < resolution)
1322 return 1; /* never round down to 0 */
1323 return usecs / resolution;
1324}
1325
8ceee660 1326/* Set interrupt moderation parameters */
6fb70fd1
BH
1327void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1328 bool rx_adaptive)
8ceee660
BH
1329{
1330 struct efx_tx_queue *tx_queue;
1331 struct efx_rx_queue *rx_queue;
152b6a62
BH
1332 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1333 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1334
1335 EFX_ASSERT_RESET_SERIALISED(efx);
1336
1337 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1338 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1339
6fb70fd1 1340 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1341 efx->irq_rx_moderation = rx_ticks;
8ceee660 1342 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1343 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1344}
1345
1346/**************************************************************************
1347 *
1348 * Hardware monitor
1349 *
1350 **************************************************************************/
1351
1352/* Run periodically off the general workqueue. Serialised against
1353 * efx_reconfigure_port via the mac_lock */
1354static void efx_monitor(struct work_struct *data)
1355{
1356 struct efx_nic *efx = container_of(data, struct efx_nic,
1357 monitor_work.work);
8ceee660
BH
1358
1359 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1360 raw_smp_processor_id());
ef2b90ee 1361 BUG_ON(efx->type->monitor == NULL);
8ceee660 1362
8ceee660
BH
1363 /* If the mac_lock is already held then it is likely a port
1364 * reconfiguration is already in place, which will likely do
1365 * most of the work of check_hw() anyway. */
766ca0fa
BH
1366 if (!mutex_trylock(&efx->mac_lock))
1367 goto out_requeue;
1368 if (!efx->port_enabled)
1369 goto out_unlock;
ef2b90ee 1370 efx->type->monitor(efx);
8ceee660 1371
766ca0fa 1372out_unlock:
8ceee660 1373 mutex_unlock(&efx->mac_lock);
766ca0fa 1374out_requeue:
8ceee660
BH
1375 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1376 efx_monitor_interval);
1377}
1378
1379/**************************************************************************
1380 *
1381 * ioctls
1382 *
1383 *************************************************************************/
1384
1385/* Net device ioctl
1386 * Context: process, rtnl_lock() held.
1387 */
1388static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1389{
767e468c 1390 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1391 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1392
1393 EFX_ASSERT_RESET_SERIALISED(efx);
1394
68e7f45e
BH
1395 /* Convert phy_id from older PRTAD/DEVAD format */
1396 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1397 (data->phy_id & 0xfc00) == 0x0400)
1398 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1399
1400 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1401}
1402
1403/**************************************************************************
1404 *
1405 * NAPI interface
1406 *
1407 **************************************************************************/
1408
1409static int efx_init_napi(struct efx_nic *efx)
1410{
1411 struct efx_channel *channel;
8ceee660
BH
1412
1413 efx_for_each_channel(channel, efx) {
1414 channel->napi_dev = efx->net_dev;
718cff1e
BH
1415 netif_napi_add(channel->napi_dev, &channel->napi_str,
1416 efx_poll, napi_weight);
8ceee660
BH
1417 }
1418 return 0;
8ceee660
BH
1419}
1420
1421static void efx_fini_napi(struct efx_nic *efx)
1422{
1423 struct efx_channel *channel;
1424
1425 efx_for_each_channel(channel, efx) {
718cff1e
BH
1426 if (channel->napi_dev)
1427 netif_napi_del(&channel->napi_str);
8ceee660
BH
1428 channel->napi_dev = NULL;
1429 }
1430}
1431
1432/**************************************************************************
1433 *
1434 * Kernel netpoll interface
1435 *
1436 *************************************************************************/
1437
1438#ifdef CONFIG_NET_POLL_CONTROLLER
1439
1440/* Although in the common case interrupts will be disabled, this is not
1441 * guaranteed. However, all our work happens inside the NAPI callback,
1442 * so no locking is required.
1443 */
1444static void efx_netpoll(struct net_device *net_dev)
1445{
767e468c 1446 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1447 struct efx_channel *channel;
1448
64ee3120 1449 efx_for_each_channel(channel, efx)
8ceee660
BH
1450 efx_schedule_channel(channel);
1451}
1452
1453#endif
1454
1455/**************************************************************************
1456 *
1457 * Kernel net device interface
1458 *
1459 *************************************************************************/
1460
1461/* Context: process, rtnl_lock() held. */
1462static int efx_net_open(struct net_device *net_dev)
1463{
767e468c 1464 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1465 EFX_ASSERT_RESET_SERIALISED(efx);
1466
1467 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1468 raw_smp_processor_id());
1469
f4bd954e
BH
1470 if (efx->state == STATE_DISABLED)
1471 return -EIO;
f8b87c17
BH
1472 if (efx->phy_mode & PHY_MODE_SPECIAL)
1473 return -EBUSY;
8880f4ec
BH
1474 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1475 return -EIO;
f8b87c17 1476
78c1f0a0
SH
1477 /* Notify the kernel of the link state polled during driver load,
1478 * before the monitor starts running */
1479 efx_link_status_changed(efx);
1480
8ceee660
BH
1481 efx_start_all(efx);
1482 return 0;
1483}
1484
1485/* Context: process, rtnl_lock() held.
1486 * Note that the kernel will ignore our return code; this method
1487 * should really be a void.
1488 */
1489static int efx_net_stop(struct net_device *net_dev)
1490{
767e468c 1491 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1492
1493 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1494 raw_smp_processor_id());
1495
f4bd954e
BH
1496 if (efx->state != STATE_DISABLED) {
1497 /* Stop the device and flush all the channels */
1498 efx_stop_all(efx);
1499 efx_fini_channels(efx);
1500 efx_init_channels(efx);
1501 }
8ceee660
BH
1502
1503 return 0;
1504}
1505
5b9e207c 1506/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1507static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1508{
767e468c 1509 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1510 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1511 struct net_device_stats *stats = &net_dev->stats;
1512
55edc6e6 1513 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1514 efx->type->update_stats(efx);
55edc6e6 1515 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1516
1517 stats->rx_packets = mac_stats->rx_packets;
1518 stats->tx_packets = mac_stats->tx_packets;
1519 stats->rx_bytes = mac_stats->rx_bytes;
1520 stats->tx_bytes = mac_stats->tx_bytes;
1521 stats->multicast = mac_stats->rx_multicast;
1522 stats->collisions = mac_stats->tx_collision;
1523 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1524 mac_stats->rx_length_error);
1525 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1526 stats->rx_crc_errors = mac_stats->rx_bad;
1527 stats->rx_frame_errors = mac_stats->rx_align_error;
1528 stats->rx_fifo_errors = mac_stats->rx_overflow;
1529 stats->rx_missed_errors = mac_stats->rx_missed;
1530 stats->tx_window_errors = mac_stats->tx_late_collision;
1531
1532 stats->rx_errors = (stats->rx_length_errors +
1533 stats->rx_over_errors +
1534 stats->rx_crc_errors +
1535 stats->rx_frame_errors +
1536 stats->rx_fifo_errors +
1537 stats->rx_missed_errors +
1538 mac_stats->rx_symbol_error);
1539 stats->tx_errors = (stats->tx_window_errors +
1540 mac_stats->tx_bad);
1541
1542 return stats;
1543}
1544
1545/* Context: netif_tx_lock held, BHs disabled. */
1546static void efx_watchdog(struct net_device *net_dev)
1547{
767e468c 1548 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1549
a4900ac9
BH
1550 EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n",
1551 efx->port_enabled);
8ceee660 1552
739bb23d 1553 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1554}
1555
1556
1557/* Context: process, rtnl_lock() held. */
1558static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1559{
767e468c 1560 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1561 int rc = 0;
1562
1563 EFX_ASSERT_RESET_SERIALISED(efx);
1564
1565 if (new_mtu > EFX_MAX_MTU)
1566 return -EINVAL;
1567
1568 efx_stop_all(efx);
1569
1570 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1571
1572 efx_fini_channels(efx);
d3245b28
BH
1573
1574 mutex_lock(&efx->mac_lock);
1575 /* Reconfigure the MAC before enabling the dma queues so that
1576 * the RX buffers don't overflow */
8ceee660 1577 net_dev->mtu = new_mtu;
d3245b28
BH
1578 efx->mac_op->reconfigure(efx);
1579 mutex_unlock(&efx->mac_lock);
1580
bc3c90a2 1581 efx_init_channels(efx);
8ceee660
BH
1582
1583 efx_start_all(efx);
1584 return rc;
8ceee660
BH
1585}
1586
1587static int efx_set_mac_address(struct net_device *net_dev, void *data)
1588{
767e468c 1589 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1590 struct sockaddr *addr = data;
1591 char *new_addr = addr->sa_data;
1592
1593 EFX_ASSERT_RESET_SERIALISED(efx);
1594
1595 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1596 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1597 new_addr);
8ceee660
BH
1598 return -EINVAL;
1599 }
1600
1601 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1602
1603 /* Reconfigure the MAC */
d3245b28
BH
1604 mutex_lock(&efx->mac_lock);
1605 efx->mac_op->reconfigure(efx);
1606 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1607
1608 return 0;
1609}
1610
a816f75a 1611/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1612static void efx_set_multicast_list(struct net_device *net_dev)
1613{
767e468c 1614 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1615 struct netdev_hw_addr *ha;
8ceee660 1616 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1617 u32 crc;
1618 int bit;
8ceee660 1619
8be4f3e6 1620 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1621
1622 /* Build multicast hash table */
8be4f3e6 1623 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1624 memset(mc_hash, 0xff, sizeof(*mc_hash));
1625 } else {
1626 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1627 netdev_for_each_mc_addr(ha, net_dev) {
1628 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1629 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1630 set_bit_le(bit, mc_hash->byte);
8ceee660 1631 }
8ceee660 1632
8be4f3e6
BH
1633 /* Broadcast packets go through the multicast hash filter.
1634 * ether_crc_le() of the broadcast address is 0xbe2612ff
1635 * so we always add bit 0xff to the mask.
1636 */
1637 set_bit_le(0xff, mc_hash->byte);
1638 }
a816f75a 1639
8be4f3e6
BH
1640 if (efx->port_enabled)
1641 queue_work(efx->workqueue, &efx->mac_work);
1642 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1643}
1644
c3ecb9f3
SH
1645static const struct net_device_ops efx_netdev_ops = {
1646 .ndo_open = efx_net_open,
1647 .ndo_stop = efx_net_stop,
1648 .ndo_get_stats = efx_net_stats,
1649 .ndo_tx_timeout = efx_watchdog,
1650 .ndo_start_xmit = efx_hard_start_xmit,
1651 .ndo_validate_addr = eth_validate_addr,
1652 .ndo_do_ioctl = efx_ioctl,
1653 .ndo_change_mtu = efx_change_mtu,
1654 .ndo_set_mac_address = efx_set_mac_address,
1655 .ndo_set_multicast_list = efx_set_multicast_list,
1656#ifdef CONFIG_NET_POLL_CONTROLLER
1657 .ndo_poll_controller = efx_netpoll,
1658#endif
1659};
1660
7dde596e
BH
1661static void efx_update_name(struct efx_nic *efx)
1662{
1663 strcpy(efx->name, efx->net_dev->name);
1664 efx_mtd_rename(efx);
1665 efx_set_channel_names(efx);
1666}
1667
8ceee660
BH
1668static int efx_netdev_event(struct notifier_block *this,
1669 unsigned long event, void *ptr)
1670{
d3208b5e 1671 struct net_device *net_dev = ptr;
8ceee660 1672
7dde596e
BH
1673 if (net_dev->netdev_ops == &efx_netdev_ops &&
1674 event == NETDEV_CHANGENAME)
1675 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1676
1677 return NOTIFY_DONE;
1678}
1679
1680static struct notifier_block efx_netdev_notifier = {
1681 .notifier_call = efx_netdev_event,
1682};
1683
06d5e193
BH
1684static ssize_t
1685show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1686{
1687 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1688 return sprintf(buf, "%d\n", efx->phy_type);
1689}
1690static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1691
8ceee660
BH
1692static int efx_register_netdev(struct efx_nic *efx)
1693{
1694 struct net_device *net_dev = efx->net_dev;
1695 int rc;
1696
1697 net_dev->watchdog_timeo = 5 * HZ;
1698 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1699 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1700 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1701 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1702
8ceee660 1703 /* Clear MAC statistics */
177dfcd8 1704 efx->mac_op->update_stats(efx);
8ceee660
BH
1705 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1706
7dde596e 1707 rtnl_lock();
aed0628d
BH
1708
1709 rc = dev_alloc_name(net_dev, net_dev->name);
1710 if (rc < 0)
1711 goto fail_locked;
7dde596e 1712 efx_update_name(efx);
aed0628d
BH
1713
1714 rc = register_netdevice(net_dev);
1715 if (rc)
1716 goto fail_locked;
1717
1718 /* Always start with carrier off; PHY events will detect the link */
1719 netif_carrier_off(efx->net_dev);
1720
7dde596e 1721 rtnl_unlock();
8ceee660 1722
06d5e193
BH
1723 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1724 if (rc) {
1725 EFX_ERR(efx, "failed to init net dev attributes\n");
1726 goto fail_registered;
1727 }
1728
8ceee660 1729 return 0;
06d5e193 1730
aed0628d
BH
1731fail_locked:
1732 rtnl_unlock();
1733 EFX_ERR(efx, "could not register net dev\n");
1734 return rc;
1735
06d5e193
BH
1736fail_registered:
1737 unregister_netdev(net_dev);
1738 return rc;
8ceee660
BH
1739}
1740
1741static void efx_unregister_netdev(struct efx_nic *efx)
1742{
1743 struct efx_tx_queue *tx_queue;
1744
1745 if (!efx->net_dev)
1746 return;
1747
767e468c 1748 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1749
1750 /* Free up any skbs still remaining. This has to happen before
1751 * we try to unregister the netdev as running their destructors
1752 * may be needed to get the device ref. count to 0. */
1753 efx_for_each_tx_queue(tx_queue, efx)
1754 efx_release_tx_buffers(tx_queue);
1755
55668611 1756 if (efx_dev_registered(efx)) {
8ceee660 1757 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1758 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1759 unregister_netdev(efx->net_dev);
1760 }
1761}
1762
1763/**************************************************************************
1764 *
1765 * Device reset and suspend
1766 *
1767 **************************************************************************/
1768
2467ca46
BH
1769/* Tears down the entire software state and most of the hardware state
1770 * before reset. */
d3245b28 1771void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1772{
8ceee660
BH
1773 EFX_ASSERT_RESET_SERIALISED(efx);
1774
2467ca46
BH
1775 efx_stop_all(efx);
1776 mutex_lock(&efx->mac_lock);
f4150724 1777 mutex_lock(&efx->spi_lock);
2467ca46 1778
8ceee660 1779 efx_fini_channels(efx);
4b988280
SH
1780 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1781 efx->phy_op->fini(efx);
ef2b90ee 1782 efx->type->fini(efx);
8ceee660
BH
1783}
1784
2467ca46
BH
1785/* This function will always ensure that the locks acquired in
1786 * efx_reset_down() are released. A failure return code indicates
1787 * that we were unable to reinitialise the hardware, and the
1788 * driver should be disabled. If ok is false, then the rx and tx
1789 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1790int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1791{
1792 int rc;
1793
2467ca46 1794 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1795
ef2b90ee 1796 rc = efx->type->init(efx);
8ceee660 1797 if (rc) {
2467ca46 1798 EFX_ERR(efx, "failed to initialise NIC\n");
eb9f6744 1799 goto fail;
8ceee660
BH
1800 }
1801
eb9f6744
BH
1802 if (!ok)
1803 goto fail;
1804
4b988280 1805 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1806 rc = efx->phy_op->init(efx);
1807 if (rc)
1808 goto fail;
1809 if (efx->phy_op->reconfigure(efx))
1810 EFX_ERR(efx, "could not restore PHY settings\n");
4b988280
SH
1811 }
1812
eb9f6744 1813 efx->mac_op->reconfigure(efx);
8ceee660 1814
eb9f6744
BH
1815 efx_init_channels(efx);
1816
1817 mutex_unlock(&efx->spi_lock);
1818 mutex_unlock(&efx->mac_lock);
1819
1820 efx_start_all(efx);
1821
1822 return 0;
1823
1824fail:
1825 efx->port_initialized = false;
2467ca46 1826
f4150724 1827 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1828 mutex_unlock(&efx->mac_lock);
1829
8ceee660
BH
1830 return rc;
1831}
1832
eb9f6744
BH
1833/* Reset the NIC using the specified method. Note that the reset may
1834 * fail, in which case the card will be left in an unusable state.
8ceee660 1835 *
eb9f6744 1836 * Caller must hold the rtnl_lock.
8ceee660 1837 */
eb9f6744 1838int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1839{
eb9f6744
BH
1840 int rc, rc2;
1841 bool disabled;
8ceee660 1842
c459302d 1843 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1844
d3245b28 1845 efx_reset_down(efx, method);
8ceee660 1846
ef2b90ee 1847 rc = efx->type->reset(efx, method);
8ceee660
BH
1848 if (rc) {
1849 EFX_ERR(efx, "failed to reset hardware\n");
eb9f6744 1850 goto out;
8ceee660
BH
1851 }
1852
1853 /* Allow resets to be rescheduled. */
1854 efx->reset_pending = RESET_TYPE_NONE;
1855
1856 /* Reinitialise bus-mastering, which may have been turned off before
1857 * the reset was scheduled. This is still appropriate, even in the
1858 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1859 * can respond to requests. */
1860 pci_set_master(efx->pci_dev);
1861
eb9f6744 1862out:
8ceee660 1863 /* Leave device stopped if necessary */
eb9f6744
BH
1864 disabled = rc || method == RESET_TYPE_DISABLE;
1865 rc2 = efx_reset_up(efx, method, !disabled);
1866 if (rc2) {
1867 disabled = true;
1868 if (!rc)
1869 rc = rc2;
8ceee660
BH
1870 }
1871
eb9f6744 1872 if (disabled) {
f4bd954e
BH
1873 EFX_ERR(efx, "has been disabled\n");
1874 efx->state = STATE_DISABLED;
f4bd954e
BH
1875 } else {
1876 EFX_LOG(efx, "reset complete\n");
1877 }
8ceee660
BH
1878 return rc;
1879}
1880
1881/* The worker thread exists so that code that cannot sleep can
1882 * schedule a reset for later.
1883 */
1884static void efx_reset_work(struct work_struct *data)
1885{
eb9f6744 1886 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1887
eb9f6744
BH
1888 /* If we're not RUNNING then don't reset. Leave the reset_pending
1889 * flag set so that efx_pci_probe_main will be retried */
1890 if (efx->state != STATE_RUNNING) {
1891 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1892 return;
1893 }
1894
1895 rtnl_lock();
1896 if (efx_reset(efx, efx->reset_pending))
1897 dev_close(efx->net_dev);
1898 rtnl_unlock();
8ceee660
BH
1899}
1900
1901void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1902{
1903 enum reset_type method;
1904
1905 if (efx->reset_pending != RESET_TYPE_NONE) {
1906 EFX_INFO(efx, "quenching already scheduled reset\n");
1907 return;
1908 }
1909
1910 switch (type) {
1911 case RESET_TYPE_INVISIBLE:
1912 case RESET_TYPE_ALL:
1913 case RESET_TYPE_WORLD:
1914 case RESET_TYPE_DISABLE:
1915 method = type;
1916 break;
1917 case RESET_TYPE_RX_RECOVERY:
1918 case RESET_TYPE_RX_DESC_FETCH:
1919 case RESET_TYPE_TX_DESC_FETCH:
1920 case RESET_TYPE_TX_SKIP:
1921 method = RESET_TYPE_INVISIBLE;
1922 break;
8880f4ec 1923 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1924 default:
1925 method = RESET_TYPE_ALL;
1926 break;
1927 }
1928
1929 if (method != type)
c459302d
BH
1930 EFX_LOG(efx, "scheduling %s reset for %s\n",
1931 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1932 else
c459302d 1933 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1934
1935 efx->reset_pending = method;
1936
8880f4ec
BH
1937 /* efx_process_channel() will no longer read events once a
1938 * reset is scheduled. So switch back to poll'd MCDI completions. */
1939 efx_mcdi_mode_poll(efx);
1940
1ab00629 1941 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1942}
1943
1944/**************************************************************************
1945 *
1946 * List of NICs we support
1947 *
1948 **************************************************************************/
1949
1950/* PCI device ID table */
a3aa1884 1951static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1952 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1953 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1954 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1955 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1956 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1957 .driver_data = (unsigned long) &siena_a0_nic_type},
1958 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1959 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1960 {0} /* end of list */
1961};
1962
1963/**************************************************************************
1964 *
3759433d 1965 * Dummy PHY/MAC operations
8ceee660 1966 *
01aad7b6 1967 * Can be used for some unimplemented operations
8ceee660
BH
1968 * Needed so all function pointers are valid and do not have to be tested
1969 * before use
1970 *
1971 **************************************************************************/
1972int efx_port_dummy_op_int(struct efx_nic *efx)
1973{
1974 return 0;
1975}
1976void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1977void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1978{
1979}
fdaa9aed
SH
1980bool efx_port_dummy_op_poll(struct efx_nic *efx)
1981{
1982 return false;
1983}
8ceee660
BH
1984
1985static struct efx_phy_operations efx_dummy_phy_operations = {
1986 .init = efx_port_dummy_op_int,
d3245b28 1987 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 1988 .poll = efx_port_dummy_op_poll,
8ceee660 1989 .fini = efx_port_dummy_op_void,
8ceee660
BH
1990};
1991
8ceee660
BH
1992/**************************************************************************
1993 *
1994 * Data housekeeping
1995 *
1996 **************************************************************************/
1997
1998/* This zeroes out and then fills in the invariants in a struct
1999 * efx_nic (including all sub-structures).
2000 */
2001static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2002 struct pci_dev *pci_dev, struct net_device *net_dev)
2003{
2004 struct efx_channel *channel;
2005 struct efx_tx_queue *tx_queue;
2006 struct efx_rx_queue *rx_queue;
1ab00629 2007 int i;
8ceee660
BH
2008
2009 /* Initialise common structures */
2010 memset(efx, 0, sizeof(*efx));
2011 spin_lock_init(&efx->biu_lock);
ab867461 2012 mutex_init(&efx->mdio_lock);
f4150724 2013 mutex_init(&efx->spi_lock);
76884835
BH
2014#ifdef CONFIG_SFC_MTD
2015 INIT_LIST_HEAD(&efx->mtd_list);
2016#endif
8ceee660
BH
2017 INIT_WORK(&efx->reset_work, efx_reset_work);
2018 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2019 efx->pci_dev = pci_dev;
2020 efx->state = STATE_INIT;
2021 efx->reset_pending = RESET_TYPE_NONE;
2022 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2023
2024 efx->net_dev = net_dev;
dc8cfa55 2025 efx->rx_checksum_enabled = true;
8ceee660
BH
2026 spin_lock_init(&efx->stats_lock);
2027 mutex_init(&efx->mac_lock);
b895d73e 2028 efx->mac_op = type->default_mac_ops;
8ceee660 2029 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2030 efx->mdio.dev = net_dev;
766ca0fa 2031 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2032
2033 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2034 channel = &efx->channel[i];
2035 channel->efx = efx;
2036 channel->channel = i;
dc8cfa55 2037 channel->work_pending = false;
a4900ac9
BH
2038 spin_lock_init(&channel->tx_stop_lock);
2039 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2040 }
a4900ac9 2041 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2042 tx_queue = &efx->tx_queue[i];
2043 tx_queue->efx = efx;
2044 tx_queue->queue = i;
2045 tx_queue->buffer = NULL;
2046 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2047 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2048 }
2049 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2050 rx_queue = &efx->rx_queue[i];
2051 rx_queue->efx = efx;
2052 rx_queue->queue = i;
2053 rx_queue->channel = &efx->channel[0]; /* for safety */
2054 rx_queue->buffer = NULL;
2055 spin_lock_init(&rx_queue->add_lock);
2056 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2057 }
2058
2059 efx->type = type;
2060
8ceee660 2061 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2062 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2063
8ceee660
BH
2064 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2065
2066 /* Higher numbered interrupt modes are less capable! */
2067 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2068 interrupt_mode);
2069
6977dc63
BH
2070 /* Would be good to use the net_dev name, but we're too early */
2071 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2072 pci_name(pci_dev));
2073 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2074 if (!efx->workqueue)
2075 return -ENOMEM;
8d9853d9 2076
8ceee660 2077 return 0;
8ceee660
BH
2078}
2079
2080static void efx_fini_struct(struct efx_nic *efx)
2081{
2082 if (efx->workqueue) {
2083 destroy_workqueue(efx->workqueue);
2084 efx->workqueue = NULL;
2085 }
2086}
2087
2088/**************************************************************************
2089 *
2090 * PCI interface
2091 *
2092 **************************************************************************/
2093
2094/* Main body of final NIC shutdown code
2095 * This is called only at module unload (or hotplug removal).
2096 */
2097static void efx_pci_remove_main(struct efx_nic *efx)
2098{
152b6a62 2099 efx_nic_fini_interrupt(efx);
8ceee660
BH
2100 efx_fini_channels(efx);
2101 efx_fini_port(efx);
ef2b90ee 2102 efx->type->fini(efx);
8ceee660
BH
2103 efx_fini_napi(efx);
2104 efx_remove_all(efx);
2105}
2106
2107/* Final NIC shutdown
2108 * This is called only at module unload (or hotplug removal).
2109 */
2110static void efx_pci_remove(struct pci_dev *pci_dev)
2111{
2112 struct efx_nic *efx;
2113
2114 efx = pci_get_drvdata(pci_dev);
2115 if (!efx)
2116 return;
2117
2118 /* Mark the NIC as fini, then stop the interface */
2119 rtnl_lock();
2120 efx->state = STATE_FINI;
2121 dev_close(efx->net_dev);
2122
2123 /* Allow any queued efx_resets() to complete */
2124 rtnl_unlock();
2125
8ceee660
BH
2126 efx_unregister_netdev(efx);
2127
7dde596e
BH
2128 efx_mtd_remove(efx);
2129
8ceee660
BH
2130 /* Wait for any scheduled resets to complete. No more will be
2131 * scheduled from this point because efx_stop_all() has been
2132 * called, we are no longer registered with driverlink, and
2133 * the net_device's have been removed. */
1ab00629 2134 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2135
2136 efx_pci_remove_main(efx);
2137
8ceee660
BH
2138 efx_fini_io(efx);
2139 EFX_LOG(efx, "shutdown successful\n");
2140
2141 pci_set_drvdata(pci_dev, NULL);
2142 efx_fini_struct(efx);
2143 free_netdev(efx->net_dev);
2144};
2145
2146/* Main body of NIC initialisation
2147 * This is called at module load (or hotplug insertion, theoretically).
2148 */
2149static int efx_pci_probe_main(struct efx_nic *efx)
2150{
2151 int rc;
2152
2153 /* Do start-of-day initialisation */
2154 rc = efx_probe_all(efx);
2155 if (rc)
2156 goto fail1;
2157
2158 rc = efx_init_napi(efx);
2159 if (rc)
2160 goto fail2;
2161
ef2b90ee 2162 rc = efx->type->init(efx);
8ceee660
BH
2163 if (rc) {
2164 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2165 goto fail3;
8ceee660
BH
2166 }
2167
2168 rc = efx_init_port(efx);
2169 if (rc) {
2170 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2171 goto fail4;
8ceee660
BH
2172 }
2173
bc3c90a2 2174 efx_init_channels(efx);
8ceee660 2175
152b6a62 2176 rc = efx_nic_init_interrupt(efx);
8ceee660 2177 if (rc)
278c0621 2178 goto fail5;
8ceee660
BH
2179
2180 return 0;
2181
278c0621 2182 fail5:
bc3c90a2 2183 efx_fini_channels(efx);
8ceee660 2184 efx_fini_port(efx);
8ceee660 2185 fail4:
ef2b90ee 2186 efx->type->fini(efx);
8ceee660
BH
2187 fail3:
2188 efx_fini_napi(efx);
2189 fail2:
2190 efx_remove_all(efx);
2191 fail1:
2192 return rc;
2193}
2194
2195/* NIC initialisation
2196 *
2197 * This is called at module load (or hotplug insertion,
2198 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2199 * sets up and registers the network devices with the kernel and hooks
2200 * the interrupt service routine. It does not prepare the device for
2201 * transmission; this is left to the first time one of the network
2202 * interfaces is brought up (i.e. efx_net_open).
2203 */
2204static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2205 const struct pci_device_id *entry)
2206{
2207 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2208 struct net_device *net_dev;
2209 struct efx_nic *efx;
2210 int i, rc;
2211
2212 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2213 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2214 if (!net_dev)
2215 return -ENOMEM;
c383b537 2216 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2217 NETIF_F_HIGHDMA | NETIF_F_TSO |
2218 NETIF_F_GRO);
738a8f4b
BH
2219 if (type->offload_features & NETIF_F_V6_CSUM)
2220 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2221 /* Mask for features that also apply to VLAN devices */
2222 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2223 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2224 efx = netdev_priv(net_dev);
8ceee660
BH
2225 pci_set_drvdata(pci_dev, efx);
2226 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2227 if (rc)
2228 goto fail1;
2229
2230 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2231
2232 /* Set up basic I/O (BAR mappings etc) */
2233 rc = efx_init_io(efx);
2234 if (rc)
2235 goto fail2;
2236
2237 /* No serialisation is required with the reset path because
2238 * we're in STATE_INIT. */
2239 for (i = 0; i < 5; i++) {
2240 rc = efx_pci_probe_main(efx);
8ceee660
BH
2241
2242 /* Serialise against efx_reset(). No more resets will be
2243 * scheduled since efx_stop_all() has been called, and we
2244 * have not and never have been registered with either
2245 * the rtnetlink or driverlink layers. */
1ab00629 2246 cancel_work_sync(&efx->reset_work);
8ceee660 2247
fa402b2e
SH
2248 if (rc == 0) {
2249 if (efx->reset_pending != RESET_TYPE_NONE) {
2250 /* If there was a scheduled reset during
2251 * probe, the NIC is probably hosed anyway */
2252 efx_pci_remove_main(efx);
2253 rc = -EIO;
2254 } else {
2255 break;
2256 }
2257 }
2258
8ceee660
BH
2259 /* Retry if a recoverably reset event has been scheduled */
2260 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2261 (efx->reset_pending != RESET_TYPE_ALL))
2262 goto fail3;
2263
2264 efx->reset_pending = RESET_TYPE_NONE;
2265 }
2266
2267 if (rc) {
2268 EFX_ERR(efx, "Could not reset NIC\n");
2269 goto fail4;
2270 }
2271
55edc6e6
BH
2272 /* Switch to the running state before we expose the device to the OS,
2273 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2274 efx->state = STATE_RUNNING;
7dde596e 2275
8ceee660
BH
2276 rc = efx_register_netdev(efx);
2277 if (rc)
2278 goto fail5;
2279
2280 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2281
2282 rtnl_lock();
2283 efx_mtd_probe(efx); /* allowed to fail */
2284 rtnl_unlock();
8ceee660
BH
2285 return 0;
2286
2287 fail5:
2288 efx_pci_remove_main(efx);
2289 fail4:
2290 fail3:
2291 efx_fini_io(efx);
2292 fail2:
2293 efx_fini_struct(efx);
2294 fail1:
5e2a911c 2295 WARN_ON(rc > 0);
8ceee660
BH
2296 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2297 free_netdev(net_dev);
2298 return rc;
2299}
2300
89c758fa
BH
2301static int efx_pm_freeze(struct device *dev)
2302{
2303 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2304
2305 efx->state = STATE_FINI;
2306
2307 netif_device_detach(efx->net_dev);
2308
2309 efx_stop_all(efx);
2310 efx_fini_channels(efx);
2311
2312 return 0;
2313}
2314
2315static int efx_pm_thaw(struct device *dev)
2316{
2317 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2318
2319 efx->state = STATE_INIT;
2320
2321 efx_init_channels(efx);
2322
2323 mutex_lock(&efx->mac_lock);
2324 efx->phy_op->reconfigure(efx);
2325 mutex_unlock(&efx->mac_lock);
2326
2327 efx_start_all(efx);
2328
2329 netif_device_attach(efx->net_dev);
2330
2331 efx->state = STATE_RUNNING;
2332
2333 efx->type->resume_wol(efx);
2334
2335 return 0;
2336}
2337
2338static int efx_pm_poweroff(struct device *dev)
2339{
2340 struct pci_dev *pci_dev = to_pci_dev(dev);
2341 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2342
2343 efx->type->fini(efx);
2344
2345 efx->reset_pending = RESET_TYPE_NONE;
2346
2347 pci_save_state(pci_dev);
2348 return pci_set_power_state(pci_dev, PCI_D3hot);
2349}
2350
2351/* Used for both resume and restore */
2352static int efx_pm_resume(struct device *dev)
2353{
2354 struct pci_dev *pci_dev = to_pci_dev(dev);
2355 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2356 int rc;
2357
2358 rc = pci_set_power_state(pci_dev, PCI_D0);
2359 if (rc)
2360 return rc;
2361 pci_restore_state(pci_dev);
2362 rc = pci_enable_device(pci_dev);
2363 if (rc)
2364 return rc;
2365 pci_set_master(efx->pci_dev);
2366 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2367 if (rc)
2368 return rc;
2369 rc = efx->type->init(efx);
2370 if (rc)
2371 return rc;
2372 efx_pm_thaw(dev);
2373 return 0;
2374}
2375
2376static int efx_pm_suspend(struct device *dev)
2377{
2378 int rc;
2379
2380 efx_pm_freeze(dev);
2381 rc = efx_pm_poweroff(dev);
2382 if (rc)
2383 efx_pm_resume(dev);
2384 return rc;
2385}
2386
2387static struct dev_pm_ops efx_pm_ops = {
2388 .suspend = efx_pm_suspend,
2389 .resume = efx_pm_resume,
2390 .freeze = efx_pm_freeze,
2391 .thaw = efx_pm_thaw,
2392 .poweroff = efx_pm_poweroff,
2393 .restore = efx_pm_resume,
2394};
2395
8ceee660
BH
2396static struct pci_driver efx_pci_driver = {
2397 .name = EFX_DRIVER_NAME,
2398 .id_table = efx_pci_table,
2399 .probe = efx_pci_probe,
2400 .remove = efx_pci_remove,
89c758fa 2401 .driver.pm = &efx_pm_ops,
8ceee660
BH
2402};
2403
2404/**************************************************************************
2405 *
2406 * Kernel module interface
2407 *
2408 *************************************************************************/
2409
2410module_param(interrupt_mode, uint, 0444);
2411MODULE_PARM_DESC(interrupt_mode,
2412 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2413
2414static int __init efx_init_module(void)
2415{
2416 int rc;
2417
2418 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2419
2420 rc = register_netdevice_notifier(&efx_netdev_notifier);
2421 if (rc)
2422 goto err_notifier;
2423
2424 refill_workqueue = create_workqueue("sfc_refill");
2425 if (!refill_workqueue) {
2426 rc = -ENOMEM;
2427 goto err_refill;
2428 }
1ab00629
SH
2429 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2430 if (!reset_workqueue) {
2431 rc = -ENOMEM;
2432 goto err_reset;
2433 }
8ceee660
BH
2434
2435 rc = pci_register_driver(&efx_pci_driver);
2436 if (rc < 0)
2437 goto err_pci;
2438
2439 return 0;
2440
2441 err_pci:
1ab00629
SH
2442 destroy_workqueue(reset_workqueue);
2443 err_reset:
8ceee660
BH
2444 destroy_workqueue(refill_workqueue);
2445 err_refill:
2446 unregister_netdevice_notifier(&efx_netdev_notifier);
2447 err_notifier:
2448 return rc;
2449}
2450
2451static void __exit efx_exit_module(void)
2452{
2453 printk(KERN_INFO "Solarflare NET driver unloading\n");
2454
2455 pci_unregister_driver(&efx_pci_driver);
1ab00629 2456 destroy_workqueue(reset_workqueue);
8ceee660
BH
2457 destroy_workqueue(refill_workqueue);
2458 unregister_netdevice_notifier(&efx_netdev_notifier);
2459
2460}
2461
2462module_init(efx_init_module);
2463module_exit(efx_exit_module);
2464
906bb26c
BH
2465MODULE_AUTHOR("Solarflare Communications and "
2466 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2467MODULE_DESCRIPTION("Solarflare Communications network driver");
2468MODULE_LICENSE("GPL");
2469MODULE_DEVICE_TABLE(pci, efx_pci_table);