]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/sfc/efx.c
sfc: Remove efx_channel::has_interrupt
[net-next-2.6.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
dc8cfa55 54static int lro = true;
8ceee660
BH
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
dc8cfa55 67static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
dc8cfa55 83static unsigned int monitor_reset = true;
8ceee660
BH
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
147
148/**************************************************************************
149 *
150 * Event queue processing
151 *
152 *************************************************************************/
153
154/* Process channel's event queue
155 *
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
160 */
4d566063 161static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660
BH
162{
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
165
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
169
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
171
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
177 }
178
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
181
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
189 }
190
191 return rx_quota;
192}
193
194/* Mark channel as finished processing
195 *
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
199 */
200static inline void efx_channel_processed(struct efx_channel *channel)
201{
5b9e207c
BH
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
dc8cfa55 205 channel->work_pending = false;
5b9e207c
BH
206 smp_wmb();
207
8ceee660
BH
208 falcon_eventq_read_ack(channel);
209}
210
211/* NAPI poll handler
212 *
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
215 */
216static int efx_poll(struct napi_struct *napi, int budget)
217{
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
223
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
226
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
229
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
235 */
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
238 }
239
240 return rx_packets;
241}
242
243/* Process the eventq of the specified channel immediately on this CPU
244 *
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
248 *
249 * Since we are touching interrupts the caller should hold the suspend lock
250 */
251void efx_process_channel_now(struct efx_channel *channel)
252{
253 struct efx_nic *efx = channel->efx;
254
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
257
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
64ee3120 262 if (channel->irq)
8ceee660
BH
263 synchronize_irq(channel->irq);
264
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
267
268 /* Poll the channel */
91ad757c 269 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
270
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
274
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
277}
278
279/* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
283 */
284static int efx_probe_eventq(struct efx_channel *channel)
285{
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
287
288 return falcon_probe_eventq(channel);
289}
290
291/* Prepare channel's event queue */
292static int efx_init_eventq(struct efx_channel *channel)
293{
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
295
296 channel->eventq_read_ptr = 0;
297
298 return falcon_init_eventq(channel);
299}
300
301static void efx_fini_eventq(struct efx_channel *channel)
302{
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
304
305 falcon_fini_eventq(channel);
306}
307
308static void efx_remove_eventq(struct efx_channel *channel)
309{
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
311
312 falcon_remove_eventq(channel);
313}
314
315/**************************************************************************
316 *
317 * Channel handling
318 *
319 *************************************************************************/
320
8ceee660
BH
321static int efx_probe_channel(struct efx_channel *channel)
322{
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
326
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
328
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
332
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
337 }
338
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
343 }
344
345 channel->n_rx_frm_trunc = 0;
346
347 return 0;
348
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
357}
358
359
360/* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
364static int efx_init_channels(struct efx_nic *efx)
365{
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
370
f7f13b0b
BH
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
374 */
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
379
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
383
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
387
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
392 }
393
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
396
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
401 }
402
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
405 }
406
407 return 0;
408
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
414}
415
416/* This enables event queue processing and packet transmission.
417 *
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
420 */
421static void efx_start_channel(struct efx_channel *channel)
422{
423 struct efx_rx_queue *rx_queue;
424
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
430
5b9e207c
BH
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
434 channel->work_pending = false;
435 channel->enabled = true;
5b9e207c 436 smp_wmb();
8ceee660
BH
437
438 napi_enable(&channel->napi_str);
439
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
443}
444
445/* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
448 */
449static void efx_stop_channel(struct efx_channel *channel)
450{
451 struct efx_rx_queue *rx_queue;
452
453 if (!channel->enabled)
454 return;
455
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457
dc8cfa55 458 channel->enabled = false;
8ceee660
BH
459 napi_disable(&channel->napi_str);
460
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
465 }
466}
467
468static void efx_fini_channels(struct efx_nic *efx)
469{
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
479
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
484 }
485
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
490
491 efx_fini_eventq(channel);
492 }
493}
494
495static void efx_remove_channel(struct efx_channel *channel)
496{
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
499
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
507
508 channel->used_flags = 0;
509}
510
511void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512{
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
514}
515
516/**************************************************************************
517 *
518 * Port handling
519 *
520 **************************************************************************/
521
522/* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
525 */
526static void efx_link_status_changed(struct efx_nic *efx)
527{
8ceee660
BH
528 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 * that no events are triggered between unregister_netdev() and the
530 * driver unloading. A more general condition is that NETDEV_CHANGE
531 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 if (!netif_running(efx->net_dev))
533 return;
534
dc8cfa55 535 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
536 efx->n_link_state_changes++;
537
538 if (efx->link_up)
539 netif_carrier_on(efx->net_dev);
540 else
541 netif_carrier_off(efx->net_dev);
542 }
543
544 /* Status message for kernel log */
545 if (efx->link_up) {
546 struct mii_if_info *gmii = &efx->mii;
547 unsigned adv, lpa;
548 /* NONE here means direct XAUI from the controller, with no
549 * MDIO-attached device we can query. */
550 if (efx->phy_type != PHY_TYPE_NONE) {
551 adv = gmii_advertised(gmii);
552 lpa = gmii_lpa(gmii);
553 } else {
554 lpa = GM_LPA_10000 | LPA_DUPLEX;
555 adv = lpa;
556 }
557 EFX_INFO(efx, "link up at %dMbps %s-duplex "
558 "(adv %04x lpa %04x) (MTU %d)%s\n",
559 (efx->link_options & GM_LPA_10000 ? 10000 :
560 (efx->link_options & GM_LPA_1000 ? 1000 :
561 (efx->link_options & GM_LPA_100 ? 100 :
562 10))),
563 (efx->link_options & GM_LPA_DUPLEX ?
564 "full" : "half"),
565 adv, lpa,
566 efx->net_dev->mtu,
567 (efx->promiscuous ? " [PROMISC]" : ""));
568 } else {
569 EFX_INFO(efx, "link down\n");
570 }
571
572}
573
574/* This call reinitialises the MAC to pick up new PHY settings. The
575 * caller must hold the mac_lock */
576static void __efx_reconfigure_port(struct efx_nic *efx)
577{
578 WARN_ON(!mutex_is_locked(&efx->mac_lock));
579
580 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
581 raw_smp_processor_id());
582
583 falcon_reconfigure_xmac(efx);
584
585 /* Inform kernel of loss/gain of carrier */
586 efx_link_status_changed(efx);
587}
588
589/* Reinitialise the MAC to pick up new PHY settings, even if the port is
590 * disabled. */
591void efx_reconfigure_port(struct efx_nic *efx)
592{
593 EFX_ASSERT_RESET_SERIALISED(efx);
594
595 mutex_lock(&efx->mac_lock);
596 __efx_reconfigure_port(efx);
597 mutex_unlock(&efx->mac_lock);
598}
599
600/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
601 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
602 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
603static void efx_reconfigure_work(struct work_struct *data)
604{
605 struct efx_nic *efx = container_of(data, struct efx_nic,
606 reconfigure_work);
607
608 mutex_lock(&efx->mac_lock);
609 if (efx->port_enabled)
610 __efx_reconfigure_port(efx);
611 mutex_unlock(&efx->mac_lock);
612}
613
614static int efx_probe_port(struct efx_nic *efx)
615{
616 int rc;
617
618 EFX_LOG(efx, "create port\n");
619
620 /* Connect up MAC/PHY operations table and read MAC address */
621 rc = falcon_probe_port(efx);
622 if (rc)
623 goto err;
624
625 /* Sanity check MAC address */
626 if (is_valid_ether_addr(efx->mac_address)) {
627 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
628 } else {
629 DECLARE_MAC_BUF(mac);
630
631 EFX_ERR(efx, "invalid MAC address %s\n",
632 print_mac(mac, efx->mac_address));
633 if (!allow_bad_hwaddr) {
634 rc = -EINVAL;
635 goto err;
636 }
637 random_ether_addr(efx->net_dev->dev_addr);
638 EFX_INFO(efx, "using locally-generated MAC %s\n",
639 print_mac(mac, efx->net_dev->dev_addr));
640 }
641
642 return 0;
643
644 err:
645 efx_remove_port(efx);
646 return rc;
647}
648
649static int efx_init_port(struct efx_nic *efx)
650{
651 int rc;
652
653 EFX_LOG(efx, "init port\n");
654
655 /* Initialise the MAC and PHY */
656 rc = falcon_init_xmac(efx);
657 if (rc)
658 return rc;
659
dc8cfa55 660 efx->port_initialized = true;
8ceee660
BH
661
662 /* Reconfigure port to program MAC registers */
663 falcon_reconfigure_xmac(efx);
664
665 return 0;
666}
667
668/* Allow efx_reconfigure_port() to be scheduled, and close the window
669 * between efx_stop_port and efx_flush_all whereby a previously scheduled
670 * efx_reconfigure_port() may have been cancelled */
671static void efx_start_port(struct efx_nic *efx)
672{
673 EFX_LOG(efx, "start port\n");
674 BUG_ON(efx->port_enabled);
675
676 mutex_lock(&efx->mac_lock);
dc8cfa55 677 efx->port_enabled = true;
8ceee660
BH
678 __efx_reconfigure_port(efx);
679 mutex_unlock(&efx->mac_lock);
680}
681
682/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
683 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
684 * efx_reconfigure_work can still be scheduled via NAPI processing
685 * until efx_flush_all() is called */
686static void efx_stop_port(struct efx_nic *efx)
687{
688 EFX_LOG(efx, "stop port\n");
689
690 mutex_lock(&efx->mac_lock);
dc8cfa55 691 efx->port_enabled = false;
8ceee660
BH
692 mutex_unlock(&efx->mac_lock);
693
694 /* Serialise against efx_set_multicast_list() */
55668611 695 if (efx_dev_registered(efx)) {
b9e40857
DM
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
698 }
699}
700
701static void efx_fini_port(struct efx_nic *efx)
702{
703 EFX_LOG(efx, "shut down port\n");
704
705 if (!efx->port_initialized)
706 return;
707
708 falcon_fini_xmac(efx);
dc8cfa55 709 efx->port_initialized = false;
8ceee660 710
dc8cfa55 711 efx->link_up = false;
8ceee660
BH
712 efx_link_status_changed(efx);
713}
714
715static void efx_remove_port(struct efx_nic *efx)
716{
717 EFX_LOG(efx, "destroying port\n");
718
719 falcon_remove_port(efx);
720}
721
722/**************************************************************************
723 *
724 * NIC handling
725 *
726 **************************************************************************/
727
728/* This configures the PCI device to enable I/O and DMA. */
729static int efx_init_io(struct efx_nic *efx)
730{
731 struct pci_dev *pci_dev = efx->pci_dev;
732 dma_addr_t dma_mask = efx->type->max_dma_mask;
733 int rc;
734
735 EFX_LOG(efx, "initialising I/O\n");
736
737 rc = pci_enable_device(pci_dev);
738 if (rc) {
739 EFX_ERR(efx, "failed to enable PCI device\n");
740 goto fail1;
741 }
742
743 pci_set_master(pci_dev);
744
745 /* Set the PCI DMA mask. Try all possibilities from our
746 * genuine mask down to 32 bits, because some architectures
747 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
748 * masks event though they reject 46 bit masks.
749 */
750 while (dma_mask > 0x7fffffffUL) {
751 if (pci_dma_supported(pci_dev, dma_mask) &&
752 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
753 break;
754 dma_mask >>= 1;
755 }
756 if (rc) {
757 EFX_ERR(efx, "could not find a suitable DMA mask\n");
758 goto fail2;
759 }
760 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
761 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
762 if (rc) {
763 /* pci_set_consistent_dma_mask() is not *allowed* to
764 * fail with a mask that pci_set_dma_mask() accepted,
765 * but just in case...
766 */
767 EFX_ERR(efx, "failed to set consistent DMA mask\n");
768 goto fail2;
769 }
770
771 efx->membase_phys = pci_resource_start(efx->pci_dev,
772 efx->type->mem_bar);
773 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
774 if (rc) {
775 EFX_ERR(efx, "request for memory BAR failed\n");
776 rc = -EIO;
777 goto fail3;
778 }
779 efx->membase = ioremap_nocache(efx->membase_phys,
780 efx->type->mem_map_size);
781 if (!efx->membase) {
086ea356
BH
782 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
783 efx->type->mem_bar,
784 (unsigned long long)efx->membase_phys,
8ceee660
BH
785 efx->type->mem_map_size);
786 rc = -ENOMEM;
787 goto fail4;
788 }
086ea356
BH
789 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
790 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
791 efx->type->mem_map_size, efx->membase);
8ceee660
BH
792
793 return 0;
794
795 fail4:
796 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
797 fail3:
2c118e0f 798 efx->membase_phys = 0;
8ceee660
BH
799 fail2:
800 pci_disable_device(efx->pci_dev);
801 fail1:
802 return rc;
803}
804
805static void efx_fini_io(struct efx_nic *efx)
806{
807 EFX_LOG(efx, "shutting down I/O\n");
808
809 if (efx->membase) {
810 iounmap(efx->membase);
811 efx->membase = NULL;
812 }
813
814 if (efx->membase_phys) {
815 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 816 efx->membase_phys = 0;
8ceee660
BH
817 }
818
819 pci_disable_device(efx->pci_dev);
820}
821
46123d04
BH
822/* Get number of RX queues wanted. Return number of online CPU
823 * packages in the expectation that an IRQ balancer will spread
824 * interrupts across them. */
825static int efx_wanted_rx_queues(void)
826{
827 cpumask_t core_mask;
828 int count;
829 int cpu;
830
831 cpus_clear(core_mask);
832 count = 0;
833 for_each_online_cpu(cpu) {
834 if (!cpu_isset(cpu, core_mask)) {
835 ++count;
836 cpus_or(core_mask, core_mask,
837 topology_core_siblings(cpu));
838 }
839 }
840
841 return count;
842}
843
844/* Probe the number and type of interrupts we are able to obtain, and
845 * the resulting numbers of channels and RX queues.
846 */
8ceee660
BH
847static void efx_probe_interrupts(struct efx_nic *efx)
848{
46123d04
BH
849 int max_channels =
850 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
851 int rc, i;
852
853 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
854 struct msix_entry xentries[EFX_MAX_CHANNELS];
855 int wanted_ints;
aa6ef27e 856
46123d04
BH
857 /* We want one RX queue and interrupt per CPU package
858 * (or as specified by the rss_cpus module parameter).
859 * We will need one channel per interrupt.
860 */
861 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
862 efx->rss_queues = min(wanted_ints, max_channels);
8ceee660 863
8ceee660
BH
864 for (i = 0; i < efx->rss_queues; i++)
865 xentries[i].entry = i;
866 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
867 if (rc > 0) {
868 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
869 efx->rss_queues = rc;
870 rc = pci_enable_msix(efx->pci_dev, xentries,
871 efx->rss_queues);
872 }
873
874 if (rc == 0) {
64ee3120 875 for (i = 0; i < efx->rss_queues; i++)
8ceee660 876 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
877 } else {
878 /* Fall back to single channel MSI */
879 efx->interrupt_mode = EFX_INT_MODE_MSI;
880 EFX_ERR(efx, "could not enable MSI-X\n");
881 }
882 }
883
884 /* Try single interrupt MSI */
885 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
886 efx->rss_queues = 1;
887 rc = pci_enable_msi(efx->pci_dev);
888 if (rc == 0) {
889 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
890 } else {
891 EFX_ERR(efx, "could not enable MSI\n");
892 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
893 }
894 }
895
896 /* Assume legacy interrupts */
897 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
898 efx->rss_queues = 1;
8ceee660
BH
899 efx->legacy_irq = efx->pci_dev->irq;
900 }
901}
902
903static void efx_remove_interrupts(struct efx_nic *efx)
904{
905 struct efx_channel *channel;
906
907 /* Remove MSI/MSI-X interrupts */
64ee3120 908 efx_for_each_channel(channel, efx)
8ceee660
BH
909 channel->irq = 0;
910 pci_disable_msi(efx->pci_dev);
911 pci_disable_msix(efx->pci_dev);
912
913 /* Remove legacy interrupt */
914 efx->legacy_irq = 0;
915}
916
917/* Select number of used resources
918 * Should be called after probe_interrupts()
919 */
920static void efx_select_used(struct efx_nic *efx)
921{
922 struct efx_tx_queue *tx_queue;
923 struct efx_rx_queue *rx_queue;
924 int i;
925
60ac1065
BH
926 efx_for_each_tx_queue(tx_queue, efx) {
927 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
928 tx_queue->channel = &efx->channel[1];
929 else
930 tx_queue->channel = &efx->channel[0];
931 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
932 }
8ceee660
BH
933
934 /* RX queues. Each has a dedicated channel. */
935 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
936 rx_queue = &efx->rx_queue[i];
937
938 if (i < efx->rss_queues) {
dc8cfa55 939 rx_queue->used = true;
8ceee660
BH
940 /* If we allow multiple RX queues per channel
941 * we need to decide that here
942 */
943 rx_queue->channel = &efx->channel[rx_queue->queue];
944 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
945 rx_queue++;
946 }
947 }
948}
949
950static int efx_probe_nic(struct efx_nic *efx)
951{
952 int rc;
953
954 EFX_LOG(efx, "creating NIC\n");
955
956 /* Carry out hardware-type specific initialisation */
957 rc = falcon_probe_nic(efx);
958 if (rc)
959 return rc;
960
961 /* Determine the number of channels and RX queues by trying to hook
962 * in MSI-X interrupts. */
963 efx_probe_interrupts(efx);
964
965 /* Determine number of RX queues and TX queues */
966 efx_select_used(efx);
967
968 /* Initialise the interrupt moderation settings */
969 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
970
971 return 0;
972}
973
974static void efx_remove_nic(struct efx_nic *efx)
975{
976 EFX_LOG(efx, "destroying NIC\n");
977
978 efx_remove_interrupts(efx);
979 falcon_remove_nic(efx);
980}
981
982/**************************************************************************
983 *
984 * NIC startup/shutdown
985 *
986 *************************************************************************/
987
988static int efx_probe_all(struct efx_nic *efx)
989{
990 struct efx_channel *channel;
991 int rc;
992
993 /* Create NIC */
994 rc = efx_probe_nic(efx);
995 if (rc) {
996 EFX_ERR(efx, "failed to create NIC\n");
997 goto fail1;
998 }
999
1000 /* Create port */
1001 rc = efx_probe_port(efx);
1002 if (rc) {
1003 EFX_ERR(efx, "failed to create port\n");
1004 goto fail2;
1005 }
1006
1007 /* Create channels */
1008 efx_for_each_channel(channel, efx) {
1009 rc = efx_probe_channel(channel);
1010 if (rc) {
1011 EFX_ERR(efx, "failed to create channel %d\n",
1012 channel->channel);
1013 goto fail3;
1014 }
1015 }
1016
1017 return 0;
1018
1019 fail3:
1020 efx_for_each_channel(channel, efx)
1021 efx_remove_channel(channel);
1022 efx_remove_port(efx);
1023 fail2:
1024 efx_remove_nic(efx);
1025 fail1:
1026 return rc;
1027}
1028
1029/* Called after previous invocation(s) of efx_stop_all, restarts the
1030 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1031 * and ensures that the port is scheduled to be reconfigured.
1032 * This function is safe to call multiple times when the NIC is in any
1033 * state. */
1034static void efx_start_all(struct efx_nic *efx)
1035{
1036 struct efx_channel *channel;
1037
1038 EFX_ASSERT_RESET_SERIALISED(efx);
1039
1040 /* Check that it is appropriate to restart the interface. All
1041 * of these flags are safe to read under just the rtnl lock */
1042 if (efx->port_enabled)
1043 return;
1044 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1045 return;
55668611 1046 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1047 return;
1048
1049 /* Mark the port as enabled so port reconfigurations can start, then
1050 * restart the transmit interface early so the watchdog timer stops */
1051 efx_start_port(efx);
1052 efx_wake_queue(efx);
1053
1054 efx_for_each_channel(channel, efx)
1055 efx_start_channel(channel);
1056
1057 falcon_enable_interrupts(efx);
1058
1059 /* Start hardware monitor if we're in RUNNING */
1060 if (efx->state == STATE_RUNNING)
1061 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1062 efx_monitor_interval);
1063}
1064
1065/* Flush all delayed work. Should only be called when no more delayed work
1066 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1067 * since we're holding the rtnl_lock at this point. */
1068static void efx_flush_all(struct efx_nic *efx)
1069{
1070 struct efx_rx_queue *rx_queue;
1071
1072 /* Make sure the hardware monitor is stopped */
1073 cancel_delayed_work_sync(&efx->monitor_work);
1074
1075 /* Ensure that all RX slow refills are complete. */
b3475645 1076 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1077 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1078
1079 /* Stop scheduled port reconfigurations */
1080 cancel_work_sync(&efx->reconfigure_work);
1081
1082}
1083
1084/* Quiesce hardware and software without bringing the link down.
1085 * Safe to call multiple times, when the nic and interface is in any
1086 * state. The caller is guaranteed to subsequently be in a position
1087 * to modify any hardware and software state they see fit without
1088 * taking locks. */
1089static void efx_stop_all(struct efx_nic *efx)
1090{
1091 struct efx_channel *channel;
1092
1093 EFX_ASSERT_RESET_SERIALISED(efx);
1094
1095 /* port_enabled can be read safely under the rtnl lock */
1096 if (!efx->port_enabled)
1097 return;
1098
1099 /* Disable interrupts and wait for ISR to complete */
1100 falcon_disable_interrupts(efx);
1101 if (efx->legacy_irq)
1102 synchronize_irq(efx->legacy_irq);
64ee3120 1103 efx_for_each_channel(channel, efx) {
8ceee660
BH
1104 if (channel->irq)
1105 synchronize_irq(channel->irq);
b3475645 1106 }
8ceee660
BH
1107
1108 /* Stop all NAPI processing and synchronous rx refills */
1109 efx_for_each_channel(channel, efx)
1110 efx_stop_channel(channel);
1111
1112 /* Stop all asynchronous port reconfigurations. Since all
1113 * event processing has already been stopped, there is no
1114 * window to loose phy events */
1115 efx_stop_port(efx);
1116
1117 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1118 efx_flush_all(efx);
1119
1120 /* Isolate the MAC from the TX and RX engines, so that queue
1121 * flushes will complete in a timely fashion. */
1122 falcon_deconfigure_mac_wrapper(efx);
1123 falcon_drain_tx_fifo(efx);
1124
1125 /* Stop the kernel transmit interface late, so the watchdog
1126 * timer isn't ticking over the flush */
1127 efx_stop_queue(efx);
55668611 1128 if (efx_dev_registered(efx)) {
8ceee660
BH
1129 netif_tx_lock_bh(efx->net_dev);
1130 netif_tx_unlock_bh(efx->net_dev);
1131 }
1132}
1133
1134static void efx_remove_all(struct efx_nic *efx)
1135{
1136 struct efx_channel *channel;
1137
1138 efx_for_each_channel(channel, efx)
1139 efx_remove_channel(channel);
1140 efx_remove_port(efx);
1141 efx_remove_nic(efx);
1142}
1143
1144/* A convinience function to safely flush all the queues */
1145int efx_flush_queues(struct efx_nic *efx)
1146{
1147 int rc;
1148
1149 EFX_ASSERT_RESET_SERIALISED(efx);
1150
1151 efx_stop_all(efx);
1152
1153 efx_fini_channels(efx);
1154 rc = efx_init_channels(efx);
1155 if (rc) {
1156 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1157 return rc;
1158 }
1159
1160 efx_start_all(efx);
1161
1162 return 0;
1163}
1164
1165/**************************************************************************
1166 *
1167 * Interrupt moderation
1168 *
1169 **************************************************************************/
1170
1171/* Set interrupt moderation parameters */
1172void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1173{
1174 struct efx_tx_queue *tx_queue;
1175 struct efx_rx_queue *rx_queue;
1176
1177 EFX_ASSERT_RESET_SERIALISED(efx);
1178
1179 efx_for_each_tx_queue(tx_queue, efx)
1180 tx_queue->channel->irq_moderation = tx_usecs;
1181
1182 efx_for_each_rx_queue(rx_queue, efx)
1183 rx_queue->channel->irq_moderation = rx_usecs;
1184}
1185
1186/**************************************************************************
1187 *
1188 * Hardware monitor
1189 *
1190 **************************************************************************/
1191
1192/* Run periodically off the general workqueue. Serialised against
1193 * efx_reconfigure_port via the mac_lock */
1194static void efx_monitor(struct work_struct *data)
1195{
1196 struct efx_nic *efx = container_of(data, struct efx_nic,
1197 monitor_work.work);
1198 int rc = 0;
1199
1200 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1201 raw_smp_processor_id());
1202
1203
1204 /* If the mac_lock is already held then it is likely a port
1205 * reconfiguration is already in place, which will likely do
1206 * most of the work of check_hw() anyway. */
1207 if (!mutex_trylock(&efx->mac_lock)) {
1208 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1209 efx_monitor_interval);
1210 return;
1211 }
1212
1213 if (efx->port_enabled)
1214 rc = falcon_check_xmac(efx);
1215 mutex_unlock(&efx->mac_lock);
1216
1217 if (rc) {
1218 if (monitor_reset) {
1219 EFX_ERR(efx, "hardware monitor detected a fault: "
1220 "triggering reset\n");
1221 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1222 } else {
1223 EFX_ERR(efx, "hardware monitor detected a fault, "
1224 "skipping reset\n");
1225 }
1226 }
1227
1228 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1229 efx_monitor_interval);
1230}
1231
1232/**************************************************************************
1233 *
1234 * ioctls
1235 *
1236 *************************************************************************/
1237
1238/* Net device ioctl
1239 * Context: process, rtnl_lock() held.
1240 */
1241static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1242{
767e468c 1243 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1244
1245 EFX_ASSERT_RESET_SERIALISED(efx);
1246
1247 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1248}
1249
1250/**************************************************************************
1251 *
1252 * NAPI interface
1253 *
1254 **************************************************************************/
1255
1256static int efx_init_napi(struct efx_nic *efx)
1257{
1258 struct efx_channel *channel;
1259 int rc;
1260
1261 efx_for_each_channel(channel, efx) {
1262 channel->napi_dev = efx->net_dev;
1263 rc = efx_lro_init(&channel->lro_mgr, efx);
1264 if (rc)
1265 goto err;
1266 }
1267 return 0;
1268 err:
1269 efx_fini_napi(efx);
1270 return rc;
1271}
1272
1273static void efx_fini_napi(struct efx_nic *efx)
1274{
1275 struct efx_channel *channel;
1276
1277 efx_for_each_channel(channel, efx) {
1278 efx_lro_fini(&channel->lro_mgr);
1279 channel->napi_dev = NULL;
1280 }
1281}
1282
1283/**************************************************************************
1284 *
1285 * Kernel netpoll interface
1286 *
1287 *************************************************************************/
1288
1289#ifdef CONFIG_NET_POLL_CONTROLLER
1290
1291/* Although in the common case interrupts will be disabled, this is not
1292 * guaranteed. However, all our work happens inside the NAPI callback,
1293 * so no locking is required.
1294 */
1295static void efx_netpoll(struct net_device *net_dev)
1296{
767e468c 1297 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1298 struct efx_channel *channel;
1299
64ee3120 1300 efx_for_each_channel(channel, efx)
8ceee660
BH
1301 efx_schedule_channel(channel);
1302}
1303
1304#endif
1305
1306/**************************************************************************
1307 *
1308 * Kernel net device interface
1309 *
1310 *************************************************************************/
1311
1312/* Context: process, rtnl_lock() held. */
1313static int efx_net_open(struct net_device *net_dev)
1314{
767e468c 1315 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1316 EFX_ASSERT_RESET_SERIALISED(efx);
1317
1318 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1319 raw_smp_processor_id());
1320
1321 efx_start_all(efx);
1322 return 0;
1323}
1324
1325/* Context: process, rtnl_lock() held.
1326 * Note that the kernel will ignore our return code; this method
1327 * should really be a void.
1328 */
1329static int efx_net_stop(struct net_device *net_dev)
1330{
767e468c 1331 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1332 int rc;
1333
1334 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1335 raw_smp_processor_id());
1336
1337 /* Stop the device and flush all the channels */
1338 efx_stop_all(efx);
1339 efx_fini_channels(efx);
1340 rc = efx_init_channels(efx);
1341 if (rc)
1342 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1343
1344 return 0;
1345}
1346
5b9e207c 1347/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1348static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1349{
767e468c 1350 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1351 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1352 struct net_device_stats *stats = &net_dev->stats;
1353
5b9e207c
BH
1354 /* Update stats if possible, but do not wait if another thread
1355 * is updating them (or resetting the NIC); slightly stale
1356 * stats are acceptable.
1357 */
8ceee660
BH
1358 if (!spin_trylock(&efx->stats_lock))
1359 return stats;
1360 if (efx->state == STATE_RUNNING) {
1361 falcon_update_stats_xmac(efx);
1362 falcon_update_nic_stats(efx);
1363 }
1364 spin_unlock(&efx->stats_lock);
1365
1366 stats->rx_packets = mac_stats->rx_packets;
1367 stats->tx_packets = mac_stats->tx_packets;
1368 stats->rx_bytes = mac_stats->rx_bytes;
1369 stats->tx_bytes = mac_stats->tx_bytes;
1370 stats->multicast = mac_stats->rx_multicast;
1371 stats->collisions = mac_stats->tx_collision;
1372 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1373 mac_stats->rx_length_error);
1374 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1375 stats->rx_crc_errors = mac_stats->rx_bad;
1376 stats->rx_frame_errors = mac_stats->rx_align_error;
1377 stats->rx_fifo_errors = mac_stats->rx_overflow;
1378 stats->rx_missed_errors = mac_stats->rx_missed;
1379 stats->tx_window_errors = mac_stats->tx_late_collision;
1380
1381 stats->rx_errors = (stats->rx_length_errors +
1382 stats->rx_over_errors +
1383 stats->rx_crc_errors +
1384 stats->rx_frame_errors +
1385 stats->rx_fifo_errors +
1386 stats->rx_missed_errors +
1387 mac_stats->rx_symbol_error);
1388 stats->tx_errors = (stats->tx_window_errors +
1389 mac_stats->tx_bad);
1390
1391 return stats;
1392}
1393
1394/* Context: netif_tx_lock held, BHs disabled. */
1395static void efx_watchdog(struct net_device *net_dev)
1396{
767e468c 1397 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1398
1399 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1400 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1401 monitor_reset ? "resetting channels" : "skipping reset");
1402
1403 if (monitor_reset)
1404 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1405}
1406
1407
1408/* Context: process, rtnl_lock() held. */
1409static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1410{
767e468c 1411 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1412 int rc = 0;
1413
1414 EFX_ASSERT_RESET_SERIALISED(efx);
1415
1416 if (new_mtu > EFX_MAX_MTU)
1417 return -EINVAL;
1418
1419 efx_stop_all(efx);
1420
1421 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1422
1423 efx_fini_channels(efx);
1424 net_dev->mtu = new_mtu;
1425 rc = efx_init_channels(efx);
1426 if (rc)
1427 goto fail;
1428
1429 efx_start_all(efx);
1430 return rc;
1431
1432 fail:
1433 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1434 return rc;
1435}
1436
1437static int efx_set_mac_address(struct net_device *net_dev, void *data)
1438{
767e468c 1439 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1440 struct sockaddr *addr = data;
1441 char *new_addr = addr->sa_data;
1442
1443 EFX_ASSERT_RESET_SERIALISED(efx);
1444
1445 if (!is_valid_ether_addr(new_addr)) {
1446 DECLARE_MAC_BUF(mac);
1447 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1448 print_mac(mac, new_addr));
1449 return -EINVAL;
1450 }
1451
1452 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1453
1454 /* Reconfigure the MAC */
1455 efx_reconfigure_port(efx);
1456
1457 return 0;
1458}
1459
1460/* Context: netif_tx_lock held, BHs disabled. */
1461static void efx_set_multicast_list(struct net_device *net_dev)
1462{
767e468c 1463 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1464 struct dev_mc_list *mc_list = net_dev->mc_list;
1465 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
dc8cfa55 1466 bool promiscuous;
8ceee660
BH
1467 u32 crc;
1468 int bit;
1469 int i;
1470
1471 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
dc8cfa55 1472 promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1473 if (efx->promiscuous != promiscuous) {
1474 efx->promiscuous = promiscuous;
1475 /* Close the window between efx_stop_port() and efx_flush_all()
1476 * by only queuing work when the port is enabled. */
1477 if (efx->port_enabled)
1478 queue_work(efx->workqueue, &efx->reconfigure_work);
1479 }
1480
1481 /* Build multicast hash table */
1482 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1483 memset(mc_hash, 0xff, sizeof(*mc_hash));
1484 } else {
1485 memset(mc_hash, 0x00, sizeof(*mc_hash));
1486 for (i = 0; i < net_dev->mc_count; i++) {
1487 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1488 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1489 set_bit_le(bit, mc_hash->byte);
1490 mc_list = mc_list->next;
1491 }
1492 }
1493
1494 /* Create and activate new global multicast hash table */
1495 falcon_set_multicast_hash(efx);
1496}
1497
1498static int efx_netdev_event(struct notifier_block *this,
1499 unsigned long event, void *ptr)
1500{
d3208b5e 1501 struct net_device *net_dev = ptr;
8ceee660
BH
1502
1503 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1504 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1505
1506 strcpy(efx->name, net_dev->name);
1507 }
1508
1509 return NOTIFY_DONE;
1510}
1511
1512static struct notifier_block efx_netdev_notifier = {
1513 .notifier_call = efx_netdev_event,
1514};
1515
1516static int efx_register_netdev(struct efx_nic *efx)
1517{
1518 struct net_device *net_dev = efx->net_dev;
1519 int rc;
1520
1521 net_dev->watchdog_timeo = 5 * HZ;
1522 net_dev->irq = efx->pci_dev->irq;
1523 net_dev->open = efx_net_open;
1524 net_dev->stop = efx_net_stop;
1525 net_dev->get_stats = efx_net_stats;
1526 net_dev->tx_timeout = &efx_watchdog;
1527 net_dev->hard_start_xmit = efx_hard_start_xmit;
1528 net_dev->do_ioctl = efx_ioctl;
1529 net_dev->change_mtu = efx_change_mtu;
1530 net_dev->set_mac_address = efx_set_mac_address;
1531 net_dev->set_multicast_list = efx_set_multicast_list;
1532#ifdef CONFIG_NET_POLL_CONTROLLER
1533 net_dev->poll_controller = efx_netpoll;
1534#endif
1535 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1536 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1537
1538 /* Always start with carrier off; PHY events will detect the link */
1539 netif_carrier_off(efx->net_dev);
1540
1541 /* Clear MAC statistics */
1542 falcon_update_stats_xmac(efx);
1543 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1544
1545 rc = register_netdev(net_dev);
1546 if (rc) {
1547 EFX_ERR(efx, "could not register net dev\n");
1548 return rc;
1549 }
1550 strcpy(efx->name, net_dev->name);
1551
1552 return 0;
1553}
1554
1555static void efx_unregister_netdev(struct efx_nic *efx)
1556{
1557 struct efx_tx_queue *tx_queue;
1558
1559 if (!efx->net_dev)
1560 return;
1561
767e468c 1562 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1563
1564 /* Free up any skbs still remaining. This has to happen before
1565 * we try to unregister the netdev as running their destructors
1566 * may be needed to get the device ref. count to 0. */
1567 efx_for_each_tx_queue(tx_queue, efx)
1568 efx_release_tx_buffers(tx_queue);
1569
55668611 1570 if (efx_dev_registered(efx)) {
8ceee660
BH
1571 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1572 unregister_netdev(efx->net_dev);
1573 }
1574}
1575
1576/**************************************************************************
1577 *
1578 * Device reset and suspend
1579 *
1580 **************************************************************************/
1581
1582/* The final hardware and software finalisation before reset. */
1583static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1584{
1585 int rc;
1586
1587 EFX_ASSERT_RESET_SERIALISED(efx);
1588
1589 rc = falcon_xmac_get_settings(efx, ecmd);
1590 if (rc) {
1591 EFX_ERR(efx, "could not back up PHY settings\n");
1592 goto fail;
1593 }
1594
1595 efx_fini_channels(efx);
1596 return 0;
1597
1598 fail:
1599 return rc;
1600}
1601
1602/* The first part of software initialisation after a hardware reset
1603 * This function does not handle serialisation with the kernel, it
1604 * assumes the caller has done this */
1605static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1606{
1607 int rc;
1608
1609 rc = efx_init_channels(efx);
1610 if (rc)
1611 goto fail1;
1612
1613 /* Restore MAC and PHY settings. */
1614 rc = falcon_xmac_set_settings(efx, ecmd);
1615 if (rc) {
1616 EFX_ERR(efx, "could not restore PHY settings\n");
1617 goto fail2;
1618 }
1619
1620 return 0;
1621
1622 fail2:
1623 efx_fini_channels(efx);
1624 fail1:
1625 return rc;
1626}
1627
1628/* Reset the NIC as transparently as possible. Do not reset the PHY
1629 * Note that the reset may fail, in which case the card will be left
1630 * in a most-probably-unusable state.
1631 *
1632 * This function will sleep. You cannot reset from within an atomic
1633 * state; use efx_schedule_reset() instead.
1634 *
1635 * Grabs the rtnl_lock.
1636 */
1637static int efx_reset(struct efx_nic *efx)
1638{
1639 struct ethtool_cmd ecmd;
1640 enum reset_type method = efx->reset_pending;
1641 int rc;
1642
1643 /* Serialise with kernel interfaces */
1644 rtnl_lock();
1645
1646 /* If we're not RUNNING then don't reset. Leave the reset_pending
1647 * flag set so that efx_pci_probe_main will be retried */
1648 if (efx->state != STATE_RUNNING) {
1649 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1650 goto unlock_rtnl;
1651 }
1652
1653 efx->state = STATE_RESETTING;
1654 EFX_INFO(efx, "resetting (%d)\n", method);
1655
1656 /* The net_dev->get_stats handler is quite slow, and will fail
1657 * if a fetch is pending over reset. Serialise against it. */
1658 spin_lock(&efx->stats_lock);
1659 spin_unlock(&efx->stats_lock);
1660
1661 efx_stop_all(efx);
1662 mutex_lock(&efx->mac_lock);
1663
1664 rc = efx_reset_down(efx, &ecmd);
1665 if (rc)
1666 goto fail1;
1667
1668 rc = falcon_reset_hw(efx, method);
1669 if (rc) {
1670 EFX_ERR(efx, "failed to reset hardware\n");
1671 goto fail2;
1672 }
1673
1674 /* Allow resets to be rescheduled. */
1675 efx->reset_pending = RESET_TYPE_NONE;
1676
1677 /* Reinitialise bus-mastering, which may have been turned off before
1678 * the reset was scheduled. This is still appropriate, even in the
1679 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1680 * can respond to requests. */
1681 pci_set_master(efx->pci_dev);
1682
1683 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1684 * case so the driver can talk to external SRAM */
1685 rc = falcon_init_nic(efx);
1686 if (rc) {
1687 EFX_ERR(efx, "failed to initialise NIC\n");
1688 goto fail3;
1689 }
1690
1691 /* Leave device stopped if necessary */
1692 if (method == RESET_TYPE_DISABLE) {
1693 /* Reinitialise the device anyway so the driver unload sequence
1694 * can talk to the external SRAM */
91ad757c 1695 falcon_init_nic(efx);
8ceee660
BH
1696 rc = -EIO;
1697 goto fail4;
1698 }
1699
1700 rc = efx_reset_up(efx, &ecmd);
1701 if (rc)
1702 goto fail5;
1703
1704 mutex_unlock(&efx->mac_lock);
1705 EFX_LOG(efx, "reset complete\n");
1706
1707 efx->state = STATE_RUNNING;
1708 efx_start_all(efx);
1709
1710 unlock_rtnl:
1711 rtnl_unlock();
1712 return 0;
1713
1714 fail5:
1715 fail4:
1716 fail3:
1717 fail2:
1718 fail1:
1719 EFX_ERR(efx, "has been disabled\n");
1720 efx->state = STATE_DISABLED;
1721
1722 mutex_unlock(&efx->mac_lock);
1723 rtnl_unlock();
1724 efx_unregister_netdev(efx);
1725 efx_fini_port(efx);
1726 return rc;
1727}
1728
1729/* The worker thread exists so that code that cannot sleep can
1730 * schedule a reset for later.
1731 */
1732static void efx_reset_work(struct work_struct *data)
1733{
1734 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1735
1736 efx_reset(nic);
1737}
1738
1739void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1740{
1741 enum reset_type method;
1742
1743 if (efx->reset_pending != RESET_TYPE_NONE) {
1744 EFX_INFO(efx, "quenching already scheduled reset\n");
1745 return;
1746 }
1747
1748 switch (type) {
1749 case RESET_TYPE_INVISIBLE:
1750 case RESET_TYPE_ALL:
1751 case RESET_TYPE_WORLD:
1752 case RESET_TYPE_DISABLE:
1753 method = type;
1754 break;
1755 case RESET_TYPE_RX_RECOVERY:
1756 case RESET_TYPE_RX_DESC_FETCH:
1757 case RESET_TYPE_TX_DESC_FETCH:
1758 case RESET_TYPE_TX_SKIP:
1759 method = RESET_TYPE_INVISIBLE;
1760 break;
1761 default:
1762 method = RESET_TYPE_ALL;
1763 break;
1764 }
1765
1766 if (method != type)
1767 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1768 else
1769 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1770
1771 efx->reset_pending = method;
1772
8d9853d9 1773 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1774}
1775
1776/**************************************************************************
1777 *
1778 * List of NICs we support
1779 *
1780 **************************************************************************/
1781
1782/* PCI device ID table */
1783static struct pci_device_id efx_pci_table[] __devinitdata = {
1784 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1785 .driver_data = (unsigned long) &falcon_a_nic_type},
1786 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1787 .driver_data = (unsigned long) &falcon_b_nic_type},
1788 {0} /* end of list */
1789};
1790
1791/**************************************************************************
1792 *
1793 * Dummy PHY/MAC/Board operations
1794 *
1795 * Can be used where the MAC does not implement this operation
1796 * Needed so all function pointers are valid and do not have to be tested
1797 * before use
1798 *
1799 **************************************************************************/
1800int efx_port_dummy_op_int(struct efx_nic *efx)
1801{
1802 return 0;
1803}
1804void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1805void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1806
1807static struct efx_phy_operations efx_dummy_phy_operations = {
1808 .init = efx_port_dummy_op_int,
1809 .reconfigure = efx_port_dummy_op_void,
1810 .check_hw = efx_port_dummy_op_int,
1811 .fini = efx_port_dummy_op_void,
1812 .clear_interrupt = efx_port_dummy_op_void,
1813 .reset_xaui = efx_port_dummy_op_void,
1814};
1815
1816/* Dummy board operations */
1817static int efx_nic_dummy_op_int(struct efx_nic *nic)
1818{
1819 return 0;
1820}
1821
1822static struct efx_board efx_dummy_board_info = {
1823 .init = efx_nic_dummy_op_int,
1824 .init_leds = efx_port_dummy_op_int,
1825 .set_fault_led = efx_port_dummy_op_blink,
37b5a603 1826 .fini = efx_port_dummy_op_void,
8ceee660
BH
1827};
1828
1829/**************************************************************************
1830 *
1831 * Data housekeeping
1832 *
1833 **************************************************************************/
1834
1835/* This zeroes out and then fills in the invariants in a struct
1836 * efx_nic (including all sub-structures).
1837 */
1838static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1839 struct pci_dev *pci_dev, struct net_device *net_dev)
1840{
1841 struct efx_channel *channel;
1842 struct efx_tx_queue *tx_queue;
1843 struct efx_rx_queue *rx_queue;
1844 int i, rc;
1845
1846 /* Initialise common structures */
1847 memset(efx, 0, sizeof(*efx));
1848 spin_lock_init(&efx->biu_lock);
1849 spin_lock_init(&efx->phy_lock);
1850 INIT_WORK(&efx->reset_work, efx_reset_work);
1851 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1852 efx->pci_dev = pci_dev;
1853 efx->state = STATE_INIT;
1854 efx->reset_pending = RESET_TYPE_NONE;
1855 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1856 efx->board_info = efx_dummy_board_info;
1857
1858 efx->net_dev = net_dev;
dc8cfa55 1859 efx->rx_checksum_enabled = true;
8ceee660
BH
1860 spin_lock_init(&efx->netif_stop_lock);
1861 spin_lock_init(&efx->stats_lock);
1862 mutex_init(&efx->mac_lock);
1863 efx->phy_op = &efx_dummy_phy_operations;
1864 efx->mii.dev = net_dev;
1865 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1866 atomic_set(&efx->netif_stop_count, 1);
1867
1868 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1869 channel = &efx->channel[i];
1870 channel->efx = efx;
1871 channel->channel = i;
1872 channel->evqnum = i;
dc8cfa55 1873 channel->work_pending = false;
8ceee660 1874 }
60ac1065 1875 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1876 tx_queue = &efx->tx_queue[i];
1877 tx_queue->efx = efx;
1878 tx_queue->queue = i;
1879 tx_queue->buffer = NULL;
1880 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1881 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1882 }
1883 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1884 rx_queue = &efx->rx_queue[i];
1885 rx_queue->efx = efx;
1886 rx_queue->queue = i;
1887 rx_queue->channel = &efx->channel[0]; /* for safety */
1888 rx_queue->buffer = NULL;
1889 spin_lock_init(&rx_queue->add_lock);
1890 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1891 }
1892
1893 efx->type = type;
1894
1895 /* Sanity-check NIC type */
1896 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1897 (efx->type->txd_ring_mask + 1));
1898 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1899 (efx->type->rxd_ring_mask + 1));
1900 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1901 (efx->type->evq_size - 1));
1902 /* As close as we can get to guaranteeing that we don't overflow */
1903 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1904 (efx->type->txd_ring_mask + 1 +
1905 efx->type->rxd_ring_mask + 1));
1906 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1907
1908 /* Higher numbered interrupt modes are less capable! */
1909 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1910 interrupt_mode);
1911
1912 efx->workqueue = create_singlethread_workqueue("sfc_work");
1913 if (!efx->workqueue) {
1914 rc = -ENOMEM;
1915 goto fail1;
1916 }
1917
8d9853d9
BH
1918 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1919 if (!efx->reset_workqueue) {
1920 rc = -ENOMEM;
1921 goto fail2;
1922 }
1923
8ceee660
BH
1924 return 0;
1925
8d9853d9
BH
1926 fail2:
1927 destroy_workqueue(efx->workqueue);
1928 efx->workqueue = NULL;
1929
8ceee660
BH
1930 fail1:
1931 return rc;
1932}
1933
1934static void efx_fini_struct(struct efx_nic *efx)
1935{
8d9853d9
BH
1936 if (efx->reset_workqueue) {
1937 destroy_workqueue(efx->reset_workqueue);
1938 efx->reset_workqueue = NULL;
1939 }
8ceee660
BH
1940 if (efx->workqueue) {
1941 destroy_workqueue(efx->workqueue);
1942 efx->workqueue = NULL;
1943 }
1944}
1945
1946/**************************************************************************
1947 *
1948 * PCI interface
1949 *
1950 **************************************************************************/
1951
1952/* Main body of final NIC shutdown code
1953 * This is called only at module unload (or hotplug removal).
1954 */
1955static void efx_pci_remove_main(struct efx_nic *efx)
1956{
1957 EFX_ASSERT_RESET_SERIALISED(efx);
1958
1959 /* Skip everything if we never obtained a valid membase */
1960 if (!efx->membase)
1961 return;
1962
1963 efx_fini_channels(efx);
1964 efx_fini_port(efx);
1965
1966 /* Shutdown the board, then the NIC and board state */
37b5a603 1967 efx->board_info.fini(efx);
8ceee660
BH
1968 falcon_fini_interrupt(efx);
1969
1970 efx_fini_napi(efx);
1971 efx_remove_all(efx);
1972}
1973
1974/* Final NIC shutdown
1975 * This is called only at module unload (or hotplug removal).
1976 */
1977static void efx_pci_remove(struct pci_dev *pci_dev)
1978{
1979 struct efx_nic *efx;
1980
1981 efx = pci_get_drvdata(pci_dev);
1982 if (!efx)
1983 return;
1984
1985 /* Mark the NIC as fini, then stop the interface */
1986 rtnl_lock();
1987 efx->state = STATE_FINI;
1988 dev_close(efx->net_dev);
1989
1990 /* Allow any queued efx_resets() to complete */
1991 rtnl_unlock();
1992
1993 if (efx->membase == NULL)
1994 goto out;
1995
1996 efx_unregister_netdev(efx);
1997
1998 /* Wait for any scheduled resets to complete. No more will be
1999 * scheduled from this point because efx_stop_all() has been
2000 * called, we are no longer registered with driverlink, and
2001 * the net_device's have been removed. */
8d9853d9 2002 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2003
2004 efx_pci_remove_main(efx);
2005
2006out:
2007 efx_fini_io(efx);
2008 EFX_LOG(efx, "shutdown successful\n");
2009
2010 pci_set_drvdata(pci_dev, NULL);
2011 efx_fini_struct(efx);
2012 free_netdev(efx->net_dev);
2013};
2014
2015/* Main body of NIC initialisation
2016 * This is called at module load (or hotplug insertion, theoretically).
2017 */
2018static int efx_pci_probe_main(struct efx_nic *efx)
2019{
2020 int rc;
2021
2022 /* Do start-of-day initialisation */
2023 rc = efx_probe_all(efx);
2024 if (rc)
2025 goto fail1;
2026
2027 rc = efx_init_napi(efx);
2028 if (rc)
2029 goto fail2;
2030
2031 /* Initialise the board */
2032 rc = efx->board_info.init(efx);
2033 if (rc) {
2034 EFX_ERR(efx, "failed to initialise board\n");
2035 goto fail3;
2036 }
2037
2038 rc = falcon_init_nic(efx);
2039 if (rc) {
2040 EFX_ERR(efx, "failed to initialise NIC\n");
2041 goto fail4;
2042 }
2043
2044 rc = efx_init_port(efx);
2045 if (rc) {
2046 EFX_ERR(efx, "failed to initialise port\n");
2047 goto fail5;
2048 }
2049
2050 rc = efx_init_channels(efx);
2051 if (rc)
2052 goto fail6;
2053
2054 rc = falcon_init_interrupt(efx);
2055 if (rc)
2056 goto fail7;
2057
2058 return 0;
2059
2060 fail7:
2061 efx_fini_channels(efx);
2062 fail6:
2063 efx_fini_port(efx);
2064 fail5:
2065 fail4:
2066 fail3:
2067 efx_fini_napi(efx);
2068 fail2:
2069 efx_remove_all(efx);
2070 fail1:
2071 return rc;
2072}
2073
2074/* NIC initialisation
2075 *
2076 * This is called at module load (or hotplug insertion,
2077 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2078 * sets up and registers the network devices with the kernel and hooks
2079 * the interrupt service routine. It does not prepare the device for
2080 * transmission; this is left to the first time one of the network
2081 * interfaces is brought up (i.e. efx_net_open).
2082 */
2083static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2084 const struct pci_device_id *entry)
2085{
2086 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2087 struct net_device *net_dev;
2088 struct efx_nic *efx;
2089 int i, rc;
2090
2091 /* Allocate and initialise a struct net_device and struct efx_nic */
2092 net_dev = alloc_etherdev(sizeof(*efx));
2093 if (!net_dev)
2094 return -ENOMEM;
b9b39b62
BH
2095 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2096 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2097 if (lro)
2098 net_dev->features |= NETIF_F_LRO;
28506563
BH
2099 /* Mask for features that also apply to VLAN devices */
2100 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2101 NETIF_F_HIGHDMA);
767e468c 2102 efx = netdev_priv(net_dev);
8ceee660
BH
2103 pci_set_drvdata(pci_dev, efx);
2104 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2105 if (rc)
2106 goto fail1;
2107
2108 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2109
2110 /* Set up basic I/O (BAR mappings etc) */
2111 rc = efx_init_io(efx);
2112 if (rc)
2113 goto fail2;
2114
2115 /* No serialisation is required with the reset path because
2116 * we're in STATE_INIT. */
2117 for (i = 0; i < 5; i++) {
2118 rc = efx_pci_probe_main(efx);
2119 if (rc == 0)
2120 break;
2121
2122 /* Serialise against efx_reset(). No more resets will be
2123 * scheduled since efx_stop_all() has been called, and we
2124 * have not and never have been registered with either
2125 * the rtnetlink or driverlink layers. */
8d9853d9 2126 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2127
2128 /* Retry if a recoverably reset event has been scheduled */
2129 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2130 (efx->reset_pending != RESET_TYPE_ALL))
2131 goto fail3;
2132
2133 efx->reset_pending = RESET_TYPE_NONE;
2134 }
2135
2136 if (rc) {
2137 EFX_ERR(efx, "Could not reset NIC\n");
2138 goto fail4;
2139 }
2140
2141 /* Switch to the running state before we expose the device to
2142 * the OS. This is to ensure that the initial gathering of
2143 * MAC stats succeeds. */
2144 rtnl_lock();
2145 efx->state = STATE_RUNNING;
2146 rtnl_unlock();
2147
2148 rc = efx_register_netdev(efx);
2149 if (rc)
2150 goto fail5;
2151
2152 EFX_LOG(efx, "initialisation successful\n");
2153
2154 return 0;
2155
2156 fail5:
2157 efx_pci_remove_main(efx);
2158 fail4:
2159 fail3:
2160 efx_fini_io(efx);
2161 fail2:
2162 efx_fini_struct(efx);
2163 fail1:
2164 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2165 free_netdev(net_dev);
2166 return rc;
2167}
2168
2169static struct pci_driver efx_pci_driver = {
2170 .name = EFX_DRIVER_NAME,
2171 .id_table = efx_pci_table,
2172 .probe = efx_pci_probe,
2173 .remove = efx_pci_remove,
2174};
2175
2176/**************************************************************************
2177 *
2178 * Kernel module interface
2179 *
2180 *************************************************************************/
2181
2182module_param(interrupt_mode, uint, 0444);
2183MODULE_PARM_DESC(interrupt_mode,
2184 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2185
2186static int __init efx_init_module(void)
2187{
2188 int rc;
2189
2190 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2191
2192 rc = register_netdevice_notifier(&efx_netdev_notifier);
2193 if (rc)
2194 goto err_notifier;
2195
2196 refill_workqueue = create_workqueue("sfc_refill");
2197 if (!refill_workqueue) {
2198 rc = -ENOMEM;
2199 goto err_refill;
2200 }
2201
2202 rc = pci_register_driver(&efx_pci_driver);
2203 if (rc < 0)
2204 goto err_pci;
2205
2206 return 0;
2207
2208 err_pci:
2209 destroy_workqueue(refill_workqueue);
2210 err_refill:
2211 unregister_netdevice_notifier(&efx_netdev_notifier);
2212 err_notifier:
2213 return rc;
2214}
2215
2216static void __exit efx_exit_module(void)
2217{
2218 printk(KERN_INFO "Solarflare NET driver unloading\n");
2219
2220 pci_unregister_driver(&efx_pci_driver);
2221 destroy_workqueue(refill_workqueue);
2222 unregister_netdevice_notifier(&efx_netdev_notifier);
2223
2224}
2225
2226module_init(efx_init_module);
2227module_exit(efx_exit_module);
2228
2229MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2230 "Solarflare Communications");
2231MODULE_DESCRIPTION("Solarflare Communications network driver");
2232MODULE_LICENSE("GPL");
2233MODULE_DEVICE_TABLE(pci, efx_pci_table);