]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
[VLAN] vlan_dev: Use skb_reset_network_header().
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
d8d70caf 87#define DRV_VERSION "2.0.17.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
26df54bf
AB
93static int rxd_size[4] = {32,48,48,64};
94static int rxd_count[4] = {127,85,85,63};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
133/* Ethtool related variables and Macros. */
134static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140};
141
fa1f0cb3 142static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
1da177e4 152 {"tmac_any_err_frms"},
bd1034f0 153 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
bd1034f0 168 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
1da177e4 175 {"rmac_discarded_frms"},
bd1034f0
AR
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
1da177e4
LT
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
bd1034f0
AR
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
bd1034f0
AR
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
1da177e4 214 {"rmac_pause_cnt"},
bd1034f0
AR
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
bd1034f0
AR
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
fa1f0cb3
SS
236 {"rxf_wr_cnt"}
237};
238
239static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
255 {"link_fault_cnt"}
256};
257
258static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
bd1034f0
AR
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
7d3d0439
RA
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
1da177e4
LT
284};
285
fa1f0cb3
SS
286#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
287#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
288 ETH_GSTRING_LEN
289#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
290
291#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
292#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
293
294#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
295#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
296
297#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
298#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
299
25fff88e
K
300#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
301 init_timer(&timer); \
302 timer.function = handle; \
303 timer.data = (unsigned long) arg; \
304 mod_timer(&timer, (jiffies + exp)) \
305
be3a6b02
K
306/* Add the vlan */
307static void s2io_vlan_rx_register(struct net_device *dev,
308 struct vlan_group *grp)
309{
1ee6dd77 310 struct s2io_nic *nic = dev->priv;
be3a6b02
K
311 unsigned long flags;
312
313 spin_lock_irqsave(&nic->tx_lock, flags);
314 nic->vlgrp = grp;
315 spin_unlock_irqrestore(&nic->tx_lock, flags);
316}
317
926930b2
SS
318/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
319int vlan_strip_flag;
320
be3a6b02
K
321/* Unregister the vlan */
322static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
323{
1ee6dd77 324 struct s2io_nic *nic = dev->priv;
be3a6b02
K
325 unsigned long flags;
326
327 spin_lock_irqsave(&nic->tx_lock, flags);
5c15bdec 328 vlan_group_set_device(nic->vlgrp, vid, NULL);
be3a6b02
K
329 spin_unlock_irqrestore(&nic->tx_lock, flags);
330}
331
20346722 332/*
1da177e4
LT
333 * Constants to be programmed into the Xena's registers, to configure
334 * the XAUI.
335 */
336
1da177e4 337#define END_SIGN 0x0
f71e1309 338static const u64 herc_act_dtx_cfg[] = {
541ae68f 339 /* Set address */
e960fc5c 340 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 341 /* Write data */
e960fc5c 342 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
343 /* Set address */
344 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
345 /* Write data */
346 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
347 /* Set address */
e960fc5c 348 0x801205150D440000ULL, 0x801205150D4400E0ULL,
349 /* Write data */
350 0x801205150D440004ULL, 0x801205150D4400E4ULL,
351 /* Set address */
541ae68f
K
352 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
353 /* Write data */
354 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
355 /* Done */
356 END_SIGN
357};
358
f71e1309 359static const u64 xena_dtx_cfg[] = {
c92ca04b 360 /* Set address */
1da177e4 361 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
362 /* Write data */
363 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
364 /* Set address */
365 0x8001051500000000ULL, 0x80010515000000E0ULL,
366 /* Write data */
367 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
368 /* Set address */
1da177e4 369 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
370 /* Write data */
371 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
372 END_SIGN
373};
374
20346722 375/*
1da177e4
LT
376 * Constants for Fixing the MacAddress problem seen mostly on
377 * Alpha machines.
378 */
f71e1309 379static const u64 fix_mac[] = {
1da177e4
LT
380 0x0060000000000000ULL, 0x0060600000000000ULL,
381 0x0040600000000000ULL, 0x0000600000000000ULL,
382 0x0020600000000000ULL, 0x0060600000000000ULL,
383 0x0020600000000000ULL, 0x0060600000000000ULL,
384 0x0020600000000000ULL, 0x0060600000000000ULL,
385 0x0020600000000000ULL, 0x0060600000000000ULL,
386 0x0020600000000000ULL, 0x0060600000000000ULL,
387 0x0020600000000000ULL, 0x0060600000000000ULL,
388 0x0020600000000000ULL, 0x0060600000000000ULL,
389 0x0020600000000000ULL, 0x0060600000000000ULL,
390 0x0020600000000000ULL, 0x0060600000000000ULL,
391 0x0020600000000000ULL, 0x0060600000000000ULL,
392 0x0020600000000000ULL, 0x0000600000000000ULL,
393 0x0040600000000000ULL, 0x0060600000000000ULL,
394 END_SIGN
395};
396
b41477f3
AR
397MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
398MODULE_LICENSE("GPL");
399MODULE_VERSION(DRV_VERSION);
400
401
1da177e4 402/* Module Loadable parameters. */
b41477f3
AR
403S2IO_PARM_INT(tx_fifo_num, 1);
404S2IO_PARM_INT(rx_ring_num, 1);
405
406
407S2IO_PARM_INT(rx_ring_mode, 1);
408S2IO_PARM_INT(use_continuous_tx_intrs, 1);
409S2IO_PARM_INT(rmac_pause_time, 0x100);
410S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
411S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
412S2IO_PARM_INT(shared_splits, 0);
413S2IO_PARM_INT(tmac_util_period, 5);
414S2IO_PARM_INT(rmac_util_period, 5);
415S2IO_PARM_INT(bimodal, 0);
416S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 417/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 418S2IO_PARM_INT(rxsync_frequency, 3);
cc6e7c44 419/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
b41477f3 420S2IO_PARM_INT(intr_type, 0);
7d3d0439 421/* Large receive offload feature */
b41477f3 422S2IO_PARM_INT(lro, 0);
7d3d0439
RA
423/* Max pkts to be aggregated by LRO at one time. If not specified,
424 * aggregation happens until we hit max IP pkt size(64K)
425 */
b41477f3 426S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 427S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
428
429S2IO_PARM_INT(napi, 1);
430S2IO_PARM_INT(ufo, 0);
926930b2 431S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
432
433static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
434 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
435static unsigned int rx_ring_sz[MAX_RX_RINGS] =
436 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
437static unsigned int rts_frm_len[MAX_RX_RINGS] =
438 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
439
440module_param_array(tx_fifo_len, uint, NULL, 0);
441module_param_array(rx_ring_sz, uint, NULL, 0);
442module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 443
20346722 444/*
1da177e4 445 * S2IO device table.
20346722 446 * This table lists all the devices that this driver supports.
1da177e4
LT
447 */
448static struct pci_device_id s2io_tbl[] __devinitdata = {
449 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
450 PCI_ANY_ID, PCI_ANY_ID},
451 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
452 PCI_ANY_ID, PCI_ANY_ID},
453 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
454 PCI_ANY_ID, PCI_ANY_ID},
455 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
456 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
457 {0,}
458};
459
460MODULE_DEVICE_TABLE(pci, s2io_tbl);
461
462static struct pci_driver s2io_driver = {
463 .name = "S2IO",
464 .id_table = s2io_tbl,
465 .probe = s2io_init_nic,
466 .remove = __devexit_p(s2io_rem_nic),
467};
468
469/* A simplifier macro used both by init and free shared_mem Fns(). */
470#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
471
472/**
473 * init_shared_mem - Allocation and Initialization of Memory
474 * @nic: Device private variable.
20346722
K
475 * Description: The function allocates all the memory areas shared
476 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
477 * Rx descriptors and the statistics block.
478 */
479
480static int init_shared_mem(struct s2io_nic *nic)
481{
482 u32 size;
483 void *tmp_v_addr, *tmp_v_addr_next;
484 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 485 struct RxD_block *pre_rxd_blk = NULL;
372cc597 486 int i, j, blk_cnt;
1da177e4
LT
487 int lst_size, lst_per_page;
488 struct net_device *dev = nic->dev;
8ae418cf 489 unsigned long tmp;
1ee6dd77 490 struct buffAdd *ba;
1da177e4 491
1ee6dd77 492 struct mac_info *mac_control;
1da177e4
LT
493 struct config_param *config;
494
495 mac_control = &nic->mac_control;
496 config = &nic->config;
497
498
499 /* Allocation and initialization of TXDLs in FIOFs */
500 size = 0;
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 size += config->tx_cfg[i].fifo_len;
503 }
504 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 505 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 506 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 507 return -EINVAL;
1da177e4
LT
508 }
509
1ee6dd77 510 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
511 lst_per_page = PAGE_SIZE / lst_size;
512
513 for (i = 0; i < config->tx_fifo_num; i++) {
514 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 515 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
516 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
517 GFP_KERNEL);
518 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
519 DBG_PRINT(ERR_DBG,
520 "Malloc failed for list_info\n");
521 return -ENOMEM;
522 }
20346722 523 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
524 }
525 for (i = 0; i < config->tx_fifo_num; i++) {
526 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
527 lst_per_page);
20346722
K
528 mac_control->fifos[i].tx_curr_put_info.offset = 0;
529 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 530 config->tx_cfg[i].fifo_len - 1;
20346722
K
531 mac_control->fifos[i].tx_curr_get_info.offset = 0;
532 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 533 config->tx_cfg[i].fifo_len - 1;
20346722
K
534 mac_control->fifos[i].fifo_no = i;
535 mac_control->fifos[i].nic = nic;
fed5eccd 536 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 537
1da177e4
LT
538 for (j = 0; j < page_num; j++) {
539 int k = 0;
540 dma_addr_t tmp_p;
541 void *tmp_v;
542 tmp_v = pci_alloc_consistent(nic->pdev,
543 PAGE_SIZE, &tmp_p);
544 if (!tmp_v) {
545 DBG_PRINT(ERR_DBG,
546 "pci_alloc_consistent ");
547 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
548 return -ENOMEM;
549 }
776bd20f 550 /* If we got a zero DMA address(can happen on
551 * certain platforms like PPC), reallocate.
552 * Store virtual address of page we don't want,
553 * to be freed later.
554 */
555 if (!tmp_p) {
556 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 557 DBG_PRINT(INIT_DBG,
776bd20f 558 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 559 DBG_PRINT(INIT_DBG,
6b4d617d 560 "Virtual address %p\n", tmp_v);
776bd20f 561 tmp_v = pci_alloc_consistent(nic->pdev,
562 PAGE_SIZE, &tmp_p);
563 if (!tmp_v) {
564 DBG_PRINT(ERR_DBG,
565 "pci_alloc_consistent ");
566 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
567 return -ENOMEM;
568 }
569 }
1da177e4
LT
570 while (k < lst_per_page) {
571 int l = (j * lst_per_page) + k;
572 if (l == config->tx_cfg[i].fifo_len)
20346722
K
573 break;
574 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 575 tmp_v + (k * lst_size);
20346722 576 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
577 tmp_p + (k * lst_size);
578 k++;
579 }
580 }
581 }
1da177e4 582
4384247b 583 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
584 if (!nic->ufo_in_band_v)
585 return -ENOMEM;
586
1da177e4
LT
587 /* Allocation and initialization of RXDs in Rings */
588 size = 0;
589 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
590 if (config->rx_cfg[i].num_rxd %
591 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
592 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
593 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
594 i);
595 DBG_PRINT(ERR_DBG, "RxDs per Block");
596 return FAILURE;
597 }
598 size += config->rx_cfg[i].num_rxd;
20346722 599 mac_control->rings[i].block_count =
da6971d8
AR
600 config->rx_cfg[i].num_rxd /
601 (rxd_count[nic->rxd_mode] + 1 );
602 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
603 mac_control->rings[i].block_count;
1da177e4 604 }
da6971d8 605 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 606 size = (size * (sizeof(struct RxD1)));
da6971d8 607 else
1ee6dd77 608 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
609
610 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
611 mac_control->rings[i].rx_curr_get_info.block_index = 0;
612 mac_control->rings[i].rx_curr_get_info.offset = 0;
613 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 614 config->rx_cfg[i].num_rxd - 1;
20346722
K
615 mac_control->rings[i].rx_curr_put_info.block_index = 0;
616 mac_control->rings[i].rx_curr_put_info.offset = 0;
617 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 618 config->rx_cfg[i].num_rxd - 1;
20346722
K
619 mac_control->rings[i].nic = nic;
620 mac_control->rings[i].ring_no = i;
621
da6971d8
AR
622 blk_cnt = config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
624 /* Allocating all the Rx blocks */
625 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 626 struct rx_block_info *rx_blocks;
da6971d8
AR
627 int l;
628
629 rx_blocks = &mac_control->rings[i].rx_blocks[j];
630 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
631 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
632 &tmp_p_addr);
633 if (tmp_v_addr == NULL) {
634 /*
20346722
K
635 * In case of failure, free_shared_mem()
636 * is called, which should free any
637 * memory that was alloced till the
1da177e4
LT
638 * failure happened.
639 */
da6971d8 640 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
641 return -ENOMEM;
642 }
643 memset(tmp_v_addr, 0, size);
da6971d8
AR
644 rx_blocks->block_virt_addr = tmp_v_addr;
645 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 646 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
647 rxd_count[nic->rxd_mode],
648 GFP_KERNEL);
372cc597
SS
649 if (!rx_blocks->rxds)
650 return -ENOMEM;
da6971d8
AR
651 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
652 rx_blocks->rxds[l].virt_addr =
653 rx_blocks->block_virt_addr +
654 (rxd_size[nic->rxd_mode] * l);
655 rx_blocks->rxds[l].dma_addr =
656 rx_blocks->block_dma_addr +
657 (rxd_size[nic->rxd_mode] * l);
658 }
1da177e4
LT
659 }
660 /* Interlinking all Rx Blocks */
661 for (j = 0; j < blk_cnt; j++) {
20346722
K
662 tmp_v_addr =
663 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 664 tmp_v_addr_next =
20346722 665 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 666 blk_cnt].block_virt_addr;
20346722
K
667 tmp_p_addr =
668 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 669 tmp_p_addr_next =
20346722 670 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
671 blk_cnt].block_dma_addr;
672
1ee6dd77 673 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
674 pre_rxd_blk->reserved_2_pNext_RxD_block =
675 (unsigned long) tmp_v_addr_next;
1da177e4
LT
676 pre_rxd_blk->pNext_RxD_Blk_physical =
677 (u64) tmp_p_addr_next;
678 }
679 }
da6971d8
AR
680 if (nic->rxd_mode >= RXD_MODE_3A) {
681 /*
682 * Allocation of Storages for buffer addresses in 2BUFF mode
683 * and the buffers as well.
684 */
685 for (i = 0; i < config->rx_ring_num; i++) {
686 blk_cnt = config->rx_cfg[i].num_rxd /
687 (rxd_count[nic->rxd_mode]+ 1);
688 mac_control->rings[i].ba =
1ee6dd77 689 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 690 GFP_KERNEL);
da6971d8 691 if (!mac_control->rings[i].ba)
1da177e4 692 return -ENOMEM;
da6971d8
AR
693 for (j = 0; j < blk_cnt; j++) {
694 int k = 0;
695 mac_control->rings[i].ba[j] =
1ee6dd77 696 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
697 (rxd_count[nic->rxd_mode] + 1)),
698 GFP_KERNEL);
699 if (!mac_control->rings[i].ba[j])
1da177e4 700 return -ENOMEM;
da6971d8
AR
701 while (k != rxd_count[nic->rxd_mode]) {
702 ba = &mac_control->rings[i].ba[j][k];
703
704 ba->ba_0_org = (void *) kmalloc
705 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
706 if (!ba->ba_0_org)
707 return -ENOMEM;
708 tmp = (unsigned long)ba->ba_0_org;
709 tmp += ALIGN_SIZE;
710 tmp &= ~((unsigned long) ALIGN_SIZE);
711 ba->ba_0 = (void *) tmp;
712
713 ba->ba_1_org = (void *) kmalloc
714 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
715 if (!ba->ba_1_org)
716 return -ENOMEM;
717 tmp = (unsigned long) ba->ba_1_org;
718 tmp += ALIGN_SIZE;
719 tmp &= ~((unsigned long) ALIGN_SIZE);
720 ba->ba_1 = (void *) tmp;
721 k++;
722 }
1da177e4
LT
723 }
724 }
725 }
1da177e4
LT
726
727 /* Allocation and initialization of Statistics block */
1ee6dd77 728 size = sizeof(struct stat_block);
1da177e4
LT
729 mac_control->stats_mem = pci_alloc_consistent
730 (nic->pdev, size, &mac_control->stats_mem_phy);
731
732 if (!mac_control->stats_mem) {
20346722
K
733 /*
734 * In case of failure, free_shared_mem() is called, which
735 * should free any memory that was alloced till the
1da177e4
LT
736 * failure happened.
737 */
738 return -ENOMEM;
739 }
740 mac_control->stats_mem_sz = size;
741
742 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 743 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 744 memset(tmp_v_addr, 0, size);
1da177e4
LT
745 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
746 (unsigned long long) tmp_p_addr);
747
748 return SUCCESS;
749}
750
20346722
K
751/**
752 * free_shared_mem - Free the allocated Memory
1da177e4
LT
753 * @nic: Device private variable.
754 * Description: This function is to free all memory locations allocated by
755 * the init_shared_mem() function and return it to the kernel.
756 */
757
758static void free_shared_mem(struct s2io_nic *nic)
759{
760 int i, j, blk_cnt, size;
761 void *tmp_v_addr;
762 dma_addr_t tmp_p_addr;
1ee6dd77 763 struct mac_info *mac_control;
1da177e4
LT
764 struct config_param *config;
765 int lst_size, lst_per_page;
776bd20f 766 struct net_device *dev = nic->dev;
1da177e4
LT
767
768 if (!nic)
769 return;
770
771 mac_control = &nic->mac_control;
772 config = &nic->config;
773
1ee6dd77 774 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
775 lst_per_page = PAGE_SIZE / lst_size;
776
777 for (i = 0; i < config->tx_fifo_num; i++) {
778 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
779 lst_per_page);
780 for (j = 0; j < page_num; j++) {
781 int mem_blks = (j * lst_per_page);
776bd20f 782 if (!mac_control->fifos[i].list_info)
6aa20a22 783 return;
776bd20f 784 if (!mac_control->fifos[i].list_info[mem_blks].
785 list_virt_addr)
1da177e4
LT
786 break;
787 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
788 mac_control->fifos[i].
789 list_info[mem_blks].
1da177e4 790 list_virt_addr,
20346722
K
791 mac_control->fifos[i].
792 list_info[mem_blks].
1da177e4
LT
793 list_phy_addr);
794 }
776bd20f 795 /* If we got a zero DMA address during allocation,
796 * free the page now
797 */
798 if (mac_control->zerodma_virt_addr) {
799 pci_free_consistent(nic->pdev, PAGE_SIZE,
800 mac_control->zerodma_virt_addr,
801 (dma_addr_t)0);
6aa20a22 802 DBG_PRINT(INIT_DBG,
6b4d617d
AM
803 "%s: Freeing TxDL with zero DMA addr. ",
804 dev->name);
805 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
806 mac_control->zerodma_virt_addr);
776bd20f 807 }
20346722 808 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
809 }
810
1da177e4 811 size = SIZE_OF_BLOCK;
1da177e4 812 for (i = 0; i < config->rx_ring_num; i++) {
20346722 813 blk_cnt = mac_control->rings[i].block_count;
1da177e4 814 for (j = 0; j < blk_cnt; j++) {
20346722
K
815 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
816 block_virt_addr;
817 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
818 block_dma_addr;
1da177e4
LT
819 if (tmp_v_addr == NULL)
820 break;
821 pci_free_consistent(nic->pdev, size,
822 tmp_v_addr, tmp_p_addr);
da6971d8 823 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
824 }
825 }
826
da6971d8
AR
827 if (nic->rxd_mode >= RXD_MODE_3A) {
828 /* Freeing buffer storage addresses in 2BUFF mode. */
829 for (i = 0; i < config->rx_ring_num; i++) {
830 blk_cnt = config->rx_cfg[i].num_rxd /
831 (rxd_count[nic->rxd_mode] + 1);
832 for (j = 0; j < blk_cnt; j++) {
833 int k = 0;
834 if (!mac_control->rings[i].ba[j])
835 continue;
836 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 837 struct buffAdd *ba =
da6971d8
AR
838 &mac_control->rings[i].ba[j][k];
839 kfree(ba->ba_0_org);
840 kfree(ba->ba_1_org);
841 k++;
842 }
843 kfree(mac_control->rings[i].ba[j]);
1da177e4 844 }
da6971d8 845 kfree(mac_control->rings[i].ba);
1da177e4 846 }
1da177e4 847 }
1da177e4
LT
848
849 if (mac_control->stats_mem) {
850 pci_free_consistent(nic->pdev,
851 mac_control->stats_mem_sz,
852 mac_control->stats_mem,
853 mac_control->stats_mem_phy);
854 }
fed5eccd
AR
855 if (nic->ufo_in_band_v)
856 kfree(nic->ufo_in_band_v);
1da177e4
LT
857}
858
541ae68f
K
859/**
860 * s2io_verify_pci_mode -
861 */
862
1ee6dd77 863static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 864{
1ee6dd77 865 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
866 register u64 val64 = 0;
867 int mode;
868
869 val64 = readq(&bar0->pci_mode);
870 mode = (u8)GET_PCI_MODE(val64);
871
872 if ( val64 & PCI_MODE_UNKNOWN_MODE)
873 return -1; /* Unknown PCI mode */
874 return mode;
875}
876
c92ca04b
AR
877#define NEC_VENID 0x1033
878#define NEC_DEVID 0x0125
879static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
880{
881 struct pci_dev *tdev = NULL;
26d36b64
AC
882 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
883 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 884 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 885 pci_dev_put(tdev);
c92ca04b
AR
886 return 1;
887 }
888 }
889 return 0;
890}
541ae68f 891
7b32a312 892static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
893/**
894 * s2io_print_pci_mode -
895 */
1ee6dd77 896static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 897{
1ee6dd77 898 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
899 register u64 val64 = 0;
900 int mode;
901 struct config_param *config = &nic->config;
902
903 val64 = readq(&bar0->pci_mode);
904 mode = (u8)GET_PCI_MODE(val64);
905
906 if ( val64 & PCI_MODE_UNKNOWN_MODE)
907 return -1; /* Unknown PCI mode */
908
c92ca04b
AR
909 config->bus_speed = bus_speed[mode];
910
911 if (s2io_on_nec_bridge(nic->pdev)) {
912 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
913 nic->dev->name);
914 return mode;
915 }
916
541ae68f
K
917 if (val64 & PCI_MODE_32_BITS) {
918 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
919 } else {
920 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
921 }
922
923 switch(mode) {
924 case PCI_MODE_PCI_33:
925 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
926 break;
927 case PCI_MODE_PCI_66:
928 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
929 break;
930 case PCI_MODE_PCIX_M1_66:
931 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
932 break;
933 case PCI_MODE_PCIX_M1_100:
934 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
935 break;
936 case PCI_MODE_PCIX_M1_133:
937 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
938 break;
939 case PCI_MODE_PCIX_M2_66:
940 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
941 break;
942 case PCI_MODE_PCIX_M2_100:
943 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
944 break;
945 case PCI_MODE_PCIX_M2_133:
946 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
947 break;
948 default:
949 return -1; /* Unsupported bus speed */
950 }
951
952 return mode;
953}
954
20346722
K
955/**
956 * init_nic - Initialization of hardware
1da177e4 957 * @nic: device peivate variable
20346722
K
958 * Description: The function sequentially configures every block
959 * of the H/W from their reset values.
960 * Return Value: SUCCESS on success and
1da177e4
LT
961 * '-1' on failure (endian settings incorrect).
962 */
963
964static int init_nic(struct s2io_nic *nic)
965{
1ee6dd77 966 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
967 struct net_device *dev = nic->dev;
968 register u64 val64 = 0;
969 void __iomem *add;
970 u32 time;
971 int i, j;
1ee6dd77 972 struct mac_info *mac_control;
1da177e4 973 struct config_param *config;
c92ca04b 974 int dtx_cnt = 0;
1da177e4 975 unsigned long long mem_share;
20346722 976 int mem_size;
1da177e4
LT
977
978 mac_control = &nic->mac_control;
979 config = &nic->config;
980
5e25b9dd 981 /* to set the swapper controle on the card */
20346722 982 if(s2io_set_swapper(nic)) {
1da177e4
LT
983 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
984 return -1;
985 }
986
541ae68f
K
987 /*
988 * Herc requires EOI to be removed from reset before XGXS, so..
989 */
990 if (nic->device_type & XFRAME_II_DEVICE) {
991 val64 = 0xA500000000ULL;
992 writeq(val64, &bar0->sw_reset);
993 msleep(500);
994 val64 = readq(&bar0->sw_reset);
995 }
996
1da177e4
LT
997 /* Remove XGXS from reset state */
998 val64 = 0;
999 writeq(val64, &bar0->sw_reset);
1da177e4 1000 msleep(500);
20346722 1001 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1002
1003 /* Enable Receiving broadcasts */
1004 add = &bar0->mac_cfg;
1005 val64 = readq(&bar0->mac_cfg);
1006 val64 |= MAC_RMAC_BCAST_ENABLE;
1007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1008 writel((u32) val64, add);
1009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1010 writel((u32) (val64 >> 32), (add + 4));
1011
1012 /* Read registers in all blocks */
1013 val64 = readq(&bar0->mac_int_mask);
1014 val64 = readq(&bar0->mc_int_mask);
1015 val64 = readq(&bar0->xgxs_int_mask);
1016
1017 /* Set MTU */
1018 val64 = dev->mtu;
1019 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1020
541ae68f
K
1021 if (nic->device_type & XFRAME_II_DEVICE) {
1022 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1023 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1024 &bar0->dtx_control, UF);
541ae68f
K
1025 if (dtx_cnt & 0x1)
1026 msleep(1); /* Necessary!! */
1da177e4
LT
1027 dtx_cnt++;
1028 }
541ae68f 1029 } else {
c92ca04b
AR
1030 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1031 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1032 &bar0->dtx_control, UF);
1033 val64 = readq(&bar0->dtx_control);
1034 dtx_cnt++;
1da177e4
LT
1035 }
1036 }
1037
1038 /* Tx DMA Initialization */
1039 val64 = 0;
1040 writeq(val64, &bar0->tx_fifo_partition_0);
1041 writeq(val64, &bar0->tx_fifo_partition_1);
1042 writeq(val64, &bar0->tx_fifo_partition_2);
1043 writeq(val64, &bar0->tx_fifo_partition_3);
1044
1045
1046 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1047 val64 |=
1048 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1049 13) | vBIT(config->tx_cfg[i].fifo_priority,
1050 ((i * 32) + 5), 3);
1051
1052 if (i == (config->tx_fifo_num - 1)) {
1053 if (i % 2 == 0)
1054 i++;
1055 }
1056
1057 switch (i) {
1058 case 1:
1059 writeq(val64, &bar0->tx_fifo_partition_0);
1060 val64 = 0;
1061 break;
1062 case 3:
1063 writeq(val64, &bar0->tx_fifo_partition_1);
1064 val64 = 0;
1065 break;
1066 case 5:
1067 writeq(val64, &bar0->tx_fifo_partition_2);
1068 val64 = 0;
1069 break;
1070 case 7:
1071 writeq(val64, &bar0->tx_fifo_partition_3);
1072 break;
1073 }
1074 }
1075
5e25b9dd
K
1076 /*
1077 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1078 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1079 */
541ae68f
K
1080 if ((nic->device_type == XFRAME_I_DEVICE) &&
1081 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
1082 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1083
1da177e4
LT
1084 val64 = readq(&bar0->tx_fifo_partition_0);
1085 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1086 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1087
20346722
K
1088 /*
1089 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1090 * integrity checking.
1091 */
1092 val64 = readq(&bar0->tx_pa_cfg);
1093 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1094 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1095 writeq(val64, &bar0->tx_pa_cfg);
1096
1097 /* Rx DMA intialization. */
1098 val64 = 0;
1099 for (i = 0; i < config->rx_ring_num; i++) {
1100 val64 |=
1101 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1102 3);
1103 }
1104 writeq(val64, &bar0->rx_queue_priority);
1105
20346722
K
1106 /*
1107 * Allocating equal share of memory to all the
1da177e4
LT
1108 * configured Rings.
1109 */
1110 val64 = 0;
541ae68f
K
1111 if (nic->device_type & XFRAME_II_DEVICE)
1112 mem_size = 32;
1113 else
1114 mem_size = 64;
1115
1da177e4
LT
1116 for (i = 0; i < config->rx_ring_num; i++) {
1117 switch (i) {
1118 case 0:
20346722
K
1119 mem_share = (mem_size / config->rx_ring_num +
1120 mem_size % config->rx_ring_num);
1da177e4
LT
1121 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1122 continue;
1123 case 1:
20346722 1124 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1125 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1126 continue;
1127 case 2:
20346722 1128 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1129 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1130 continue;
1131 case 3:
20346722 1132 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1133 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1134 continue;
1135 case 4:
20346722 1136 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1137 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1138 continue;
1139 case 5:
20346722 1140 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1141 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1142 continue;
1143 case 6:
20346722 1144 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1145 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1146 continue;
1147 case 7:
20346722 1148 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1149 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1150 continue;
1151 }
1152 }
1153 writeq(val64, &bar0->rx_queue_cfg);
1154
20346722 1155 /*
5e25b9dd
K
1156 * Filling Tx round robin registers
1157 * as per the number of FIFOs
1da177e4 1158 */
5e25b9dd
K
1159 switch (config->tx_fifo_num) {
1160 case 1:
1161 val64 = 0x0000000000000000ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_0);
1163 writeq(val64, &bar0->tx_w_round_robin_1);
1164 writeq(val64, &bar0->tx_w_round_robin_2);
1165 writeq(val64, &bar0->tx_w_round_robin_3);
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1167 break;
1168 case 2:
1169 val64 = 0x0000010000010000ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000100000100ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0001000001000001ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0000010000010000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0100000000000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1179 break;
1180 case 3:
1181 val64 = 0x0001000102000001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020000010001ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0200000100010200ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001000102000001ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001020000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1191 break;
1192 case 4:
1193 val64 = 0x0001020300010200ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0100000102030001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0200010000010203ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0001020001000001ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0203000100000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1203 break;
1204 case 5:
1205 val64 = 0x0001000203000102ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0001020001030004ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0001000203000102ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0001020001030004ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0001000000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1215 break;
1216 case 6:
1217 val64 = 0x0001020304000102ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0304050001020001ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0203000100000102ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304000102030405ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0001000200000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 7:
1229 val64 = 0x0001020001020300ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0102030400010203ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0405060001020001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0304050000010200ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0102030000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 8:
1241 val64 = 0x0001020300040105ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0200030106000204ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0103000502010007ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0304010002060500ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0103020400000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 }
1253
b41477f3 1254 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1255 val64 = readq(&bar0->tx_fifo_partition_0);
1256 val64 |= (TX_FIFO_PARTITION_EN);
1257 writeq(val64, &bar0->tx_fifo_partition_0);
1258
5e25b9dd
K
1259 /* Filling the Rx round robin registers as per the
1260 * number of Rings and steering based on QoS.
1261 */
1262 switch (config->rx_ring_num) {
1263 case 1:
1264 val64 = 0x8080808080808080ULL;
1265 writeq(val64, &bar0->rts_qos_steering);
1266 break;
1267 case 2:
1268 val64 = 0x0000010000010000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_0);
1270 val64 = 0x0100000100000100ULL;
1271 writeq(val64, &bar0->rx_w_round_robin_1);
1272 val64 = 0x0001000001000001ULL;
1273 writeq(val64, &bar0->rx_w_round_robin_2);
1274 val64 = 0x0000010000010000ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_3);
1276 val64 = 0x0100000000000000ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_4);
1278
1279 val64 = 0x8080808040404040ULL;
1280 writeq(val64, &bar0->rts_qos_steering);
1281 break;
1282 case 3:
1283 val64 = 0x0001000102000001ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_0);
1285 val64 = 0x0001020000010001ULL;
1286 writeq(val64, &bar0->rx_w_round_robin_1);
1287 val64 = 0x0200000100010200ULL;
1288 writeq(val64, &bar0->rx_w_round_robin_2);
1289 val64 = 0x0001000102000001ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_3);
1291 val64 = 0x0001020000000000ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_4);
1293
1294 val64 = 0x8080804040402020ULL;
1295 writeq(val64, &bar0->rts_qos_steering);
1296 break;
1297 case 4:
1298 val64 = 0x0001020300010200ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_0);
1300 val64 = 0x0100000102030001ULL;
1301 writeq(val64, &bar0->rx_w_round_robin_1);
1302 val64 = 0x0200010000010203ULL;
1303 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1304 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1305 writeq(val64, &bar0->rx_w_round_robin_3);
1306 val64 = 0x0203000100000000ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_4);
1308
1309 val64 = 0x8080404020201010ULL;
1310 writeq(val64, &bar0->rts_qos_steering);
1311 break;
1312 case 5:
1313 val64 = 0x0001000203000102ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_0);
1315 val64 = 0x0001020001030004ULL;
1316 writeq(val64, &bar0->rx_w_round_robin_1);
1317 val64 = 0x0001000203000102ULL;
1318 writeq(val64, &bar0->rx_w_round_robin_2);
1319 val64 = 0x0001020001030004ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_3);
1321 val64 = 0x0001000000000000ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_4);
1323
1324 val64 = 0x8080404020201008ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 6:
1328 val64 = 0x0001020304000102ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0304050001020001ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0203000100000102ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0304000102030405ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0001000200000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339 val64 = 0x8080404020100804ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 7:
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354 val64 = 0x8080402010080402ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 8:
1358 val64 = 0x0001020300040105ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0200030106000204ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0103000502010007ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0304010002060500ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0103020400000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8040201008040201ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 }
1da177e4
LT
1373
1374 /* UDP Fix */
1375 val64 = 0;
20346722 1376 for (i = 0; i < 8; i++)
1da177e4
LT
1377 writeq(val64, &bar0->rts_frm_len_n[i]);
1378
5e25b9dd
K
1379 /* Set the default rts frame length for the rings configured */
1380 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1381 for (i = 0 ; i < config->rx_ring_num ; i++)
1382 writeq(val64, &bar0->rts_frm_len_n[i]);
1383
1384 /* Set the frame length for the configured rings
1385 * desired by the user
1386 */
1387 for (i = 0; i < config->rx_ring_num; i++) {
1388 /* If rts_frm_len[i] == 0 then it is assumed that user not
1389 * specified frame length steering.
1390 * If the user provides the frame length then program
1391 * the rts_frm_len register for those values or else
1392 * leave it as it is.
1393 */
1394 if (rts_frm_len[i] != 0) {
1395 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1396 &bar0->rts_frm_len_n[i]);
1397 }
1398 }
926930b2 1399
9fc93a41
SS
1400 /* Disable differentiated services steering logic */
1401 for (i = 0; i < 64; i++) {
1402 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1403 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1404 dev->name);
1405 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1406 return FAILURE;
1407 }
1408 }
1409
20346722 1410 /* Program statistics memory */
1da177e4 1411 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1412
541ae68f
K
1413 if (nic->device_type == XFRAME_II_DEVICE) {
1414 val64 = STAT_BC(0x320);
1415 writeq(val64, &bar0->stat_byte_cnt);
1416 }
1417
20346722 1418 /*
1da177e4
LT
1419 * Initializing the sampling rate for the device to calculate the
1420 * bandwidth utilization.
1421 */
1422 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1423 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1424 writeq(val64, &bar0->mac_link_util);
1425
1426
20346722
K
1427 /*
1428 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1429 * Scheme.
1430 */
20346722
K
1431 /*
1432 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1433 * 250 interrupts per sec. Continuous interrupts are enabled
1434 * by default.
1435 */
541ae68f
K
1436 if (nic->device_type == XFRAME_II_DEVICE) {
1437 int count = (nic->config.bus_speed * 125)/2;
1438 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1439 } else {
1440
1441 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1442 }
1443 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1444 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1445 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1446 if (use_continuous_tx_intrs)
1447 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1448 writeq(val64, &bar0->tti_data1_mem);
1449
1450 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1451 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1452 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1453 writeq(val64, &bar0->tti_data2_mem);
1454
1455 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1456 writeq(val64, &bar0->tti_command_mem);
1457
20346722 1458 /*
1da177e4
LT
1459 * Once the operation completes, the Strobe bit of the command
1460 * register will be reset. We poll for this particular condition
1461 * We wait for a maximum of 500ms for the operation to complete,
1462 * if it's not complete by then we return error.
1463 */
1464 time = 0;
1465 while (TRUE) {
1466 val64 = readq(&bar0->tti_command_mem);
1467 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1468 break;
1469 }
1470 if (time > 10) {
1471 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1472 dev->name);
1473 return -1;
1474 }
1475 msleep(50);
1476 time++;
1477 }
1478
b6e3f982
K
1479 if (nic->config.bimodal) {
1480 int k = 0;
1481 for (k = 0; k < config->rx_ring_num; k++) {
1482 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1483 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1484 writeq(val64, &bar0->tti_command_mem);
541ae68f 1485
541ae68f 1486 /*
b6e3f982
K
1487 * Once the operation completes, the Strobe bit of the command
1488 * register will be reset. We poll for this particular condition
1489 * We wait for a maximum of 500ms for the operation to complete,
1490 * if it's not complete by then we return error.
1491 */
1492 time = 0;
1493 while (TRUE) {
1494 val64 = readq(&bar0->tti_command_mem);
1495 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1496 break;
1497 }
1498 if (time > 10) {
1499 DBG_PRINT(ERR_DBG,
1500 "%s: TTI init Failed\n",
1501 dev->name);
1502 return -1;
1503 }
1504 time++;
1505 msleep(50);
1506 }
1507 }
541ae68f 1508 } else {
1da177e4 1509
b6e3f982
K
1510 /* RTI Initialization */
1511 if (nic->device_type == XFRAME_II_DEVICE) {
1512 /*
1513 * Programmed to generate Apprx 500 Intrs per
1514 * second
1515 */
1516 int count = (nic->config.bus_speed * 125)/4;
1517 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1518 } else {
1519 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1520 }
1521 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1522 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1523 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1524
b6e3f982 1525 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1526
b6e3f982 1527 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1528 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1529 if (nic->intr_type == MSI_X)
1530 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1531 RTI_DATA2_MEM_RX_UFC_D(0x40));
1532 else
1533 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1534 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1535 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1536
b6e3f982
K
1537 for (i = 0; i < config->rx_ring_num; i++) {
1538 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1539 | RTI_CMD_MEM_OFFSET(i);
1540 writeq(val64, &bar0->rti_command_mem);
1541
1542 /*
1543 * Once the operation completes, the Strobe bit of the
1544 * command register will be reset. We poll for this
1545 * particular condition. We wait for a maximum of 500ms
1546 * for the operation to complete, if it's not complete
1547 * by then we return error.
1548 */
1549 time = 0;
1550 while (TRUE) {
1551 val64 = readq(&bar0->rti_command_mem);
1552 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1553 break;
1554 }
1555 if (time > 10) {
1556 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1557 dev->name);
1558 return -1;
1559 }
1560 time++;
1561 msleep(50);
1562 }
1da177e4 1563 }
1da177e4
LT
1564 }
1565
20346722
K
1566 /*
1567 * Initializing proper values as Pause threshold into all
1da177e4
LT
1568 * the 8 Queues on Rx side.
1569 */
1570 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1571 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1572
1573 /* Disable RMAC PAD STRIPPING */
509a2671 1574 add = &bar0->mac_cfg;
1da177e4
LT
1575 val64 = readq(&bar0->mac_cfg);
1576 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1577 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1578 writel((u32) (val64), add);
1579 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1580 writel((u32) (val64 >> 32), (add + 4));
1581 val64 = readq(&bar0->mac_cfg);
1582
7d3d0439
RA
1583 /* Enable FCS stripping by adapter */
1584 add = &bar0->mac_cfg;
1585 val64 = readq(&bar0->mac_cfg);
1586 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1587 if (nic->device_type == XFRAME_II_DEVICE)
1588 writeq(val64, &bar0->mac_cfg);
1589 else {
1590 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1591 writel((u32) (val64), add);
1592 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1593 writel((u32) (val64 >> 32), (add + 4));
1594 }
1595
20346722
K
1596 /*
1597 * Set the time value to be inserted in the pause frame
1da177e4
LT
1598 * generated by xena.
1599 */
1600 val64 = readq(&bar0->rmac_pause_cfg);
1601 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1602 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1603 writeq(val64, &bar0->rmac_pause_cfg);
1604
20346722 1605 /*
1da177e4
LT
1606 * Set the Threshold Limit for Generating the pause frame
1607 * If the amount of data in any Queue exceeds ratio of
1608 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1609 * pause frame is generated
1610 */
1611 val64 = 0;
1612 for (i = 0; i < 4; i++) {
1613 val64 |=
1614 (((u64) 0xFF00 | nic->mac_control.
1615 mc_pause_threshold_q0q3)
1616 << (i * 2 * 8));
1617 }
1618 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1619
1620 val64 = 0;
1621 for (i = 0; i < 4; i++) {
1622 val64 |=
1623 (((u64) 0xFF00 | nic->mac_control.
1624 mc_pause_threshold_q4q7)
1625 << (i * 2 * 8));
1626 }
1627 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1628
20346722
K
1629 /*
1630 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1631 * exceeded the limit pointed by shared_splits
1632 */
1633 val64 = readq(&bar0->pic_control);
1634 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1635 writeq(val64, &bar0->pic_control);
1636
863c11a9
AR
1637 if (nic->config.bus_speed == 266) {
1638 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1639 writeq(0x0, &bar0->read_retry_delay);
1640 writeq(0x0, &bar0->write_retry_delay);
1641 }
1642
541ae68f
K
1643 /*
1644 * Programming the Herc to split every write transaction
1645 * that does not start on an ADB to reduce disconnects.
1646 */
1647 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1648 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1649 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1650 writeq(val64, &bar0->misc_control);
1651 val64 = readq(&bar0->pic_control2);
1652 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1653 writeq(val64, &bar0->pic_control2);
541ae68f 1654 }
c92ca04b
AR
1655 if (strstr(nic->product_name, "CX4")) {
1656 val64 = TMAC_AVG_IPG(0x17);
1657 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1658 }
1659
1da177e4
LT
1660 return SUCCESS;
1661}
a371a07d
K
1662#define LINK_UP_DOWN_INTERRUPT 1
1663#define MAC_RMAC_ERR_TIMER 2
1664
1ee6dd77 1665static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1666{
cc6e7c44
RA
1667 if (nic->intr_type != INTA)
1668 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1669 if (nic->device_type == XFRAME_II_DEVICE)
1670 return LINK_UP_DOWN_INTERRUPT;
1671 else
1672 return MAC_RMAC_ERR_TIMER;
1673}
1da177e4 1674
20346722
K
1675/**
1676 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1677 * @nic: device private variable,
1678 * @mask: A mask indicating which Intr block must be modified and,
1679 * @flag: A flag indicating whether to enable or disable the Intrs.
1680 * Description: This function will either disable or enable the interrupts
20346722
K
1681 * depending on the flag argument. The mask argument can be used to
1682 * enable/disable any Intr block.
1da177e4
LT
1683 * Return Value: NONE.
1684 */
1685
1686static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1687{
1ee6dd77 1688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1689 register u64 val64 = 0, temp64 = 0;
1690
1691 /* Top level interrupt classification */
1692 /* PIC Interrupts */
1693 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1694 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1695 val64 = TXPIC_INT_M;
1da177e4
LT
1696 if (flag == ENABLE_INTRS) {
1697 temp64 = readq(&bar0->general_int_mask);
1698 temp64 &= ~((u64) val64);
1699 writeq(temp64, &bar0->general_int_mask);
20346722 1700 /*
a371a07d 1701 * If Hercules adapter enable GPIO otherwise
b41477f3 1702 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1703 * interrupts for now.
1704 * TODO
1da177e4 1705 */
a371a07d
K
1706 if (s2io_link_fault_indication(nic) ==
1707 LINK_UP_DOWN_INTERRUPT ) {
1708 temp64 = readq(&bar0->pic_int_mask);
1709 temp64 &= ~((u64) PIC_INT_GPIO);
1710 writeq(temp64, &bar0->pic_int_mask);
1711 temp64 = readq(&bar0->gpio_int_mask);
1712 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1713 writeq(temp64, &bar0->gpio_int_mask);
1714 } else {
1715 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1716 }
20346722 1717 /*
1da177e4
LT
1718 * No MSI Support is available presently, so TTI and
1719 * RTI interrupts are also disabled.
1720 */
1721 } else if (flag == DISABLE_INTRS) {
20346722
K
1722 /*
1723 * Disable PIC Intrs in the general
1724 * intr mask register
1da177e4
LT
1725 */
1726 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1727 temp64 = readq(&bar0->general_int_mask);
1728 val64 |= temp64;
1729 writeq(val64, &bar0->general_int_mask);
1730 }
1731 }
1732
1da177e4
LT
1733 /* MAC Interrupts */
1734 /* Enabling/Disabling MAC interrupts */
1735 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1736 val64 = TXMAC_INT_M | RXMAC_INT_M;
1737 if (flag == ENABLE_INTRS) {
1738 temp64 = readq(&bar0->general_int_mask);
1739 temp64 &= ~((u64) val64);
1740 writeq(temp64, &bar0->general_int_mask);
20346722
K
1741 /*
1742 * All MAC block error interrupts are disabled for now
1da177e4
LT
1743 * TODO
1744 */
1da177e4 1745 } else if (flag == DISABLE_INTRS) {
20346722
K
1746 /*
1747 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1748 */
1749 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1750 writeq(DISABLE_ALL_INTRS,
1751 &bar0->mac_rmac_err_mask);
1752
1753 temp64 = readq(&bar0->general_int_mask);
1754 val64 |= temp64;
1755 writeq(val64, &bar0->general_int_mask);
1756 }
1757 }
1758
1da177e4
LT
1759 /* Tx traffic interrupts */
1760 if (mask & TX_TRAFFIC_INTR) {
1761 val64 = TXTRAFFIC_INT_M;
1762 if (flag == ENABLE_INTRS) {
1763 temp64 = readq(&bar0->general_int_mask);
1764 temp64 &= ~((u64) val64);
1765 writeq(temp64, &bar0->general_int_mask);
20346722 1766 /*
1da177e4 1767 * Enable all the Tx side interrupts
20346722 1768 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1769 */
1770 writeq(0x0, &bar0->tx_traffic_mask);
1771 } else if (flag == DISABLE_INTRS) {
20346722
K
1772 /*
1773 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1774 * register.
1775 */
1776 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1777 temp64 = readq(&bar0->general_int_mask);
1778 val64 |= temp64;
1779 writeq(val64, &bar0->general_int_mask);
1780 }
1781 }
1782
1783 /* Rx traffic interrupts */
1784 if (mask & RX_TRAFFIC_INTR) {
1785 val64 = RXTRAFFIC_INT_M;
1786 if (flag == ENABLE_INTRS) {
1787 temp64 = readq(&bar0->general_int_mask);
1788 temp64 &= ~((u64) val64);
1789 writeq(temp64, &bar0->general_int_mask);
1790 /* writing 0 Enables all 8 RX interrupt levels */
1791 writeq(0x0, &bar0->rx_traffic_mask);
1792 } else if (flag == DISABLE_INTRS) {
20346722
K
1793 /*
1794 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1795 * register.
1796 */
1797 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1798 temp64 = readq(&bar0->general_int_mask);
1799 val64 |= temp64;
1800 writeq(val64, &bar0->general_int_mask);
1801 }
1802 }
1803}
1804
19a60522
SS
1805/**
1806 * verify_pcc_quiescent- Checks for PCC quiescent state
1807 * Return: 1 If PCC is quiescence
1808 * 0 If PCC is not quiescence
1809 */
1ee6dd77 1810static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1811{
19a60522 1812 int ret = 0, herc;
1ee6dd77 1813 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1814 u64 val64 = readq(&bar0->adapter_status);
1815
1816 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
1817
1818 if (flag == FALSE) {
19a60522
SS
1819 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1820 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1821 ret = 1;
19a60522
SS
1822 } else {
1823 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1824 ret = 1;
20346722
K
1825 }
1826 } else {
19a60522 1827 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
5e25b9dd 1828 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1829 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1830 ret = 1;
5e25b9dd
K
1831 } else {
1832 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1833 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1834 ret = 1;
20346722
K
1835 }
1836 }
1837
1838 return ret;
1839}
1840/**
1841 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1842 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1843 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1844 * differs and the calling function passes the input argument flag to
1845 * indicate this.
20346722 1846 * Return: 1 If xena is quiescence
1da177e4
LT
1847 * 0 If Xena is not quiescence
1848 */
1849
1ee6dd77 1850static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1851{
19a60522 1852 int mode;
1ee6dd77 1853 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1854 u64 val64 = readq(&bar0->adapter_status);
1855 mode = s2io_verify_pci_mode(sp);
1da177e4 1856
19a60522
SS
1857 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1858 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1859 return 0;
1860 }
1861 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1862 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1863 return 0;
1864 }
1865 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1866 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1867 return 0;
1868 }
1869 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1870 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1871 return 0;
1872 }
1873 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1874 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1875 return 0;
1876 }
1877 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1878 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1879 return 0;
1880 }
1881 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1882 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1883 return 0;
1884 }
1885 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1886 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1887 return 0;
1da177e4
LT
1888 }
1889
19a60522
SS
1890 /*
1891 * In PCI 33 mode, the P_PLL is not used, and therefore,
1892 * the the P_PLL_LOCK bit in the adapter_status register will
1893 * not be asserted.
1894 */
1895 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1896 sp->device_type == XFRAME_II_DEVICE && mode !=
1897 PCI_MODE_PCI_33) {
1898 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1899 return 0;
1900 }
1901 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1902 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1903 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1904 return 0;
1905 }
1906 return 1;
1da177e4
LT
1907}
1908
1909/**
1910 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1911 * @sp: Pointer to device specifc structure
20346722 1912 * Description :
1da177e4
LT
1913 * New procedure to clear mac address reading problems on Alpha platforms
1914 *
1915 */
1916
1ee6dd77 1917static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1918{
1ee6dd77 1919 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1920 u64 val64;
1921 int i = 0;
1922
1923 while (fix_mac[i] != END_SIGN) {
1924 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1925 udelay(10);
1da177e4
LT
1926 val64 = readq(&bar0->gpio_control);
1927 }
1928}
1929
1930/**
20346722 1931 * start_nic - Turns the device on
1da177e4 1932 * @nic : device private variable.
20346722
K
1933 * Description:
1934 * This function actually turns the device on. Before this function is
1935 * called,all Registers are configured from their reset states
1936 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1937 * calling this function, the device interrupts are cleared and the NIC is
1938 * literally switched on by writing into the adapter control register.
20346722 1939 * Return Value:
1da177e4
LT
1940 * SUCCESS on success and -1 on failure.
1941 */
1942
1943static int start_nic(struct s2io_nic *nic)
1944{
1ee6dd77 1945 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1946 struct net_device *dev = nic->dev;
1947 register u64 val64 = 0;
20346722 1948 u16 subid, i;
1ee6dd77 1949 struct mac_info *mac_control;
1da177e4
LT
1950 struct config_param *config;
1951
1952 mac_control = &nic->mac_control;
1953 config = &nic->config;
1954
1955 /* PRC Initialization and configuration */
1956 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1957 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1958 &bar0->prc_rxd0_n[i]);
1959
1960 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1961 if (nic->config.bimodal)
1962 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1963 if (nic->rxd_mode == RXD_MODE_1)
1964 val64 |= PRC_CTRL_RC_ENABLED;
1965 else
1966 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
1967 if (nic->device_type == XFRAME_II_DEVICE)
1968 val64 |= PRC_CTRL_GROUP_READS;
1969 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1970 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
1971 writeq(val64, &bar0->prc_ctrl_n[i]);
1972 }
1973
da6971d8
AR
1974 if (nic->rxd_mode == RXD_MODE_3B) {
1975 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1976 val64 = readq(&bar0->rx_pa_cfg);
1977 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1978 writeq(val64, &bar0->rx_pa_cfg);
1979 }
1da177e4 1980
926930b2
SS
1981 if (vlan_tag_strip == 0) {
1982 val64 = readq(&bar0->rx_pa_cfg);
1983 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
1984 writeq(val64, &bar0->rx_pa_cfg);
1985 vlan_strip_flag = 0;
1986 }
1987
20346722 1988 /*
1da177e4
LT
1989 * Enabling MC-RLDRAM. After enabling the device, we timeout
1990 * for around 100ms, which is approximately the time required
1991 * for the device to be ready for operation.
1992 */
1993 val64 = readq(&bar0->mc_rldram_mrs);
1994 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1995 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1996 val64 = readq(&bar0->mc_rldram_mrs);
1997
20346722 1998 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1999
2000 /* Enabling ECC Protection. */
2001 val64 = readq(&bar0->adapter_control);
2002 val64 &= ~ADAPTER_ECC_EN;
2003 writeq(val64, &bar0->adapter_control);
2004
20346722
K
2005 /*
2006 * Clearing any possible Link state change interrupts that
1da177e4
LT
2007 * could have popped up just before Enabling the card.
2008 */
2009 val64 = readq(&bar0->mac_rmac_err_reg);
2010 if (val64)
2011 writeq(val64, &bar0->mac_rmac_err_reg);
2012
20346722
K
2013 /*
2014 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2015 * it.
2016 */
2017 val64 = readq(&bar0->adapter_status);
19a60522 2018 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2019 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2020 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2021 (unsigned long long) val64);
2022 return FAILURE;
2023 }
2024
20346722 2025 /*
1da177e4 2026 * With some switches, link might be already up at this point.
20346722
K
2027 * Because of this weird behavior, when we enable laser,
2028 * we may not get link. We need to handle this. We cannot
2029 * figure out which switch is misbehaving. So we are forced to
2030 * make a global change.
1da177e4
LT
2031 */
2032
2033 /* Enabling Laser. */
2034 val64 = readq(&bar0->adapter_control);
2035 val64 |= ADAPTER_EOI_TX_ON;
2036 writeq(val64, &bar0->adapter_control);
2037
c92ca04b
AR
2038 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2039 /*
2040 * Dont see link state interrupts initally on some switches,
2041 * so directly scheduling the link state task here.
2042 */
2043 schedule_work(&nic->set_link_task);
2044 }
1da177e4
LT
2045 /* SXE-002: Initialize link and activity LED */
2046 subid = nic->pdev->subsystem_device;
541ae68f
K
2047 if (((subid & 0xFF) >= 0x07) &&
2048 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2049 val64 = readq(&bar0->gpio_control);
2050 val64 |= 0x0000800000000000ULL;
2051 writeq(val64, &bar0->gpio_control);
2052 val64 = 0x0411040400000000ULL;
509a2671 2053 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2054 }
2055
1da177e4
LT
2056 return SUCCESS;
2057}
fed5eccd
AR
2058/**
2059 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2060 */
1ee6dd77
RB
2061static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2062 TxD *txdlp, int get_off)
fed5eccd 2063{
1ee6dd77 2064 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2065 struct sk_buff *skb;
1ee6dd77 2066 struct TxD *txds;
fed5eccd
AR
2067 u16 j, frg_cnt;
2068
2069 txds = txdlp;
26b7625c 2070 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2071 pci_unmap_single(nic->pdev, (dma_addr_t)
2072 txds->Buffer_Pointer, sizeof(u64),
2073 PCI_DMA_TODEVICE);
2074 txds++;
2075 }
2076
2077 skb = (struct sk_buff *) ((unsigned long)
2078 txds->Host_Control);
2079 if (!skb) {
1ee6dd77 2080 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2081 return NULL;
2082 }
2083 pci_unmap_single(nic->pdev, (dma_addr_t)
2084 txds->Buffer_Pointer,
2085 skb->len - skb->data_len,
2086 PCI_DMA_TODEVICE);
2087 frg_cnt = skb_shinfo(skb)->nr_frags;
2088 if (frg_cnt) {
2089 txds++;
2090 for (j = 0; j < frg_cnt; j++, txds++) {
2091 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2092 if (!txds->Buffer_Pointer)
2093 break;
6aa20a22 2094 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2095 txds->Buffer_Pointer,
2096 frag->size, PCI_DMA_TODEVICE);
2097 }
2098 }
1ee6dd77 2099 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2100 return(skb);
2101}
1da177e4 2102
20346722
K
2103/**
2104 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2105 * @nic : device private variable.
20346722 2106 * Description:
1da177e4 2107 * Free all queued Tx buffers.
20346722 2108 * Return Value: void
1da177e4
LT
2109*/
2110
2111static void free_tx_buffers(struct s2io_nic *nic)
2112{
2113 struct net_device *dev = nic->dev;
2114 struct sk_buff *skb;
1ee6dd77 2115 struct TxD *txdp;
1da177e4 2116 int i, j;
1ee6dd77 2117 struct mac_info *mac_control;
1da177e4 2118 struct config_param *config;
fed5eccd 2119 int cnt = 0;
1da177e4
LT
2120
2121 mac_control = &nic->mac_control;
2122 config = &nic->config;
2123
2124 for (i = 0; i < config->tx_fifo_num; i++) {
2125 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
1ee6dd77 2126 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
1da177e4 2127 list_virt_addr;
fed5eccd
AR
2128 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2129 if (skb) {
2130 dev_kfree_skb(skb);
2131 cnt++;
1da177e4 2132 }
1da177e4
LT
2133 }
2134 DBG_PRINT(INTR_DBG,
2135 "%s:forcibly freeing %d skbs on FIFO%d\n",
2136 dev->name, cnt, i);
20346722
K
2137 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2138 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2139 }
2140}
2141
20346722
K
2142/**
2143 * stop_nic - To stop the nic
1da177e4 2144 * @nic ; device private variable.
20346722
K
2145 * Description:
2146 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2147 * function does. This function is called to stop the device.
2148 * Return Value:
2149 * void.
2150 */
2151
2152static void stop_nic(struct s2io_nic *nic)
2153{
1ee6dd77 2154 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2155 register u64 val64 = 0;
5d3213cc 2156 u16 interruptible;
1ee6dd77 2157 struct mac_info *mac_control;
1da177e4
LT
2158 struct config_param *config;
2159
2160 mac_control = &nic->mac_control;
2161 config = &nic->config;
2162
2163 /* Disable all interrupts */
e960fc5c 2164 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2165 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2166 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2167 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2168
5d3213cc
AR
2169 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2170 val64 = readq(&bar0->adapter_control);
2171 val64 &= ~(ADAPTER_CNTL_EN);
2172 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2173}
2174
1ee6dd77
RB
2175static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2176 sk_buff *skb)
da6971d8
AR
2177{
2178 struct net_device *dev = nic->dev;
2179 struct sk_buff *frag_list;
50eb8006 2180 void *tmp;
da6971d8
AR
2181
2182 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 2183 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
da6971d8
AR
2184 (nic->pdev, skb->data, l3l4hdr_size + 4,
2185 PCI_DMA_FROMDEVICE);
2186
2187 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2188 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2189 if (skb_shinfo(skb)->frag_list == NULL) {
2190 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2191 return -ENOMEM ;
2192 }
2193 frag_list = skb_shinfo(skb)->frag_list;
372cc597 2194 skb->truesize += frag_list->truesize;
da6971d8 2195 frag_list->next = NULL;
50eb8006
JG
2196 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2197 frag_list->data = tmp;
2198 frag_list->tail = tmp;
da6971d8
AR
2199
2200 /* Buffer-2 receives L4 data payload */
1ee6dd77 2201 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
da6971d8
AR
2202 frag_list->data, dev->mtu,
2203 PCI_DMA_FROMDEVICE);
2204 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2205 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2206
2207 return SUCCESS;
2208}
2209
20346722
K
2210/**
2211 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2212 * @nic: device private variable
20346722
K
2213 * @ring_no: ring number
2214 * Description:
1da177e4
LT
2215 * The function allocates Rx side skbs and puts the physical
2216 * address of these buffers into the RxD buffer pointers, so that the NIC
2217 * can DMA the received frame into these locations.
2218 * The NIC supports 3 receive modes, viz
2219 * 1. single buffer,
2220 * 2. three buffer and
2221 * 3. Five buffer modes.
20346722
K
2222 * Each mode defines how many fragments the received frame will be split
2223 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2224 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2225 * is split into 3 fragments. As of now only single buffer mode is
2226 * supported.
2227 * Return Value:
2228 * SUCCESS on success or an appropriate -ve value on failure.
2229 */
2230
ac1f60db 2231static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2232{
2233 struct net_device *dev = nic->dev;
2234 struct sk_buff *skb;
1ee6dd77 2235 struct RxD_t *rxdp;
1da177e4 2236 int off, off1, size, block_no, block_no1;
1da177e4 2237 u32 alloc_tab = 0;
20346722 2238 u32 alloc_cnt;
1ee6dd77 2239 struct mac_info *mac_control;
1da177e4 2240 struct config_param *config;
20346722 2241 u64 tmp;
1ee6dd77 2242 struct buffAdd *ba;
1da177e4 2243 unsigned long flags;
1ee6dd77 2244 struct RxD_t *first_rxdp = NULL;
1da177e4
LT
2245
2246 mac_control = &nic->mac_control;
2247 config = &nic->config;
20346722
K
2248 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2249 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2250
5d3213cc 2251 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2252 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2253 while (alloc_tab < alloc_cnt) {
20346722 2254 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2255 block_index;
20346722 2256 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2257
da6971d8
AR
2258 rxdp = mac_control->rings[ring_no].
2259 rx_blocks[block_no].rxds[off].virt_addr;
2260
2261 if ((block_no == block_no1) && (off == off1) &&
2262 (rxdp->Host_Control)) {
2263 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2264 dev->name);
1da177e4
LT
2265 DBG_PRINT(INTR_DBG, " info equated\n");
2266 goto end;
2267 }
da6971d8 2268 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2269 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2270 block_index++;
da6971d8
AR
2271 if (mac_control->rings[ring_no].rx_curr_put_info.
2272 block_index == mac_control->rings[ring_no].
2273 block_count)
2274 mac_control->rings[ring_no].rx_curr_put_info.
2275 block_index = 0;
2276 block_no = mac_control->rings[ring_no].
2277 rx_curr_put_info.block_index;
2278 if (off == rxd_count[nic->rxd_mode])
2279 off = 0;
20346722 2280 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2281 offset = off;
2282 rxdp = mac_control->rings[ring_no].
2283 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2284 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2285 dev->name, rxdp);
2286 }
db874e65
SS
2287 if(!napi) {
2288 spin_lock_irqsave(&nic->put_lock, flags);
2289 mac_control->rings[ring_no].put_pos =
2290 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2291 spin_unlock_irqrestore(&nic->put_lock, flags);
2292 } else {
2293 mac_control->rings[ring_no].put_pos =
2294 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2295 }
da6971d8
AR
2296 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2297 ((nic->rxd_mode >= RXD_MODE_3A) &&
2298 (rxdp->Control_2 & BIT(0)))) {
20346722 2299 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2300 offset = off;
1da177e4
LT
2301 goto end;
2302 }
da6971d8
AR
2303 /* calculate size of skb based on ring mode */
2304 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2305 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2306 if (nic->rxd_mode == RXD_MODE_1)
2307 size += NET_IP_ALIGN;
2308 else if (nic->rxd_mode == RXD_MODE_3B)
2309 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2310 else
2311 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2312
da6971d8
AR
2313 /* allocate skb */
2314 skb = dev_alloc_skb(size);
2315 if(!skb) {
1da177e4
LT
2316 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2317 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2318 if (first_rxdp) {
2319 wmb();
2320 first_rxdp->Control_1 |= RXD_OWN_XENA;
2321 }
da6971d8
AR
2322 return -ENOMEM ;
2323 }
2324 if (nic->rxd_mode == RXD_MODE_1) {
2325 /* 1 buffer mode - normal operation mode */
1ee6dd77 2326 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2327 skb_reserve(skb, NET_IP_ALIGN);
1ee6dd77 2328 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2329 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2330 PCI_DMA_FROMDEVICE);
2331 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2332
2333 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2334 /*
2335 * 2 or 3 buffer mode -
2336 * Both 2 buffer mode and 3 buffer mode provides 128
2337 * byte aligned receive buffers.
2338 *
2339 * 3 buffer mode provides header separation where in
2340 * skb->data will have L3/L4 headers where as
2341 * skb_shinfo(skb)->frag_list will have the L4 data
2342 * payload
2343 */
2344
1ee6dd77 2345 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2346 ba = &mac_control->rings[ring_no].ba[block_no][off];
2347 skb_reserve(skb, BUF0_LEN);
2348 tmp = (u64)(unsigned long) skb->data;
2349 tmp += ALIGN_SIZE;
2350 tmp &= ~ALIGN_SIZE;
2351 skb->data = (void *) (unsigned long)tmp;
2352 skb->tail = (void *) (unsigned long)tmp;
2353
1ee6dd77
RB
2354 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2355 ((struct RxD3*)rxdp)->Buffer0_ptr =
75c30b13 2356 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2357 PCI_DMA_FROMDEVICE);
75c30b13
AR
2358 else
2359 pci_dma_sync_single_for_device(nic->pdev,
1ee6dd77 2360 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
75c30b13 2361 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2362 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2363 if (nic->rxd_mode == RXD_MODE_3B) {
2364 /* Two buffer mode */
2365
2366 /*
6aa20a22 2367 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2368 * L4 payload
2369 */
1ee6dd77 2370 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
da6971d8
AR
2371 (nic->pdev, skb->data, dev->mtu + 4,
2372 PCI_DMA_FROMDEVICE);
2373
75c30b13 2374 /* Buffer-1 will be dummy buffer. Not used */
1ee6dd77
RB
2375 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2376 ((struct RxD3*)rxdp)->Buffer1_ptr =
6aa20a22 2377 pci_map_single(nic->pdev,
75c30b13
AR
2378 ba->ba_1, BUF1_LEN,
2379 PCI_DMA_FROMDEVICE);
2380 }
da6971d8
AR
2381 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2382 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2383 (dev->mtu + 4);
2384 } else {
2385 /* 3 buffer mode */
2386 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2387 dev_kfree_skb_irq(skb);
2388 if (first_rxdp) {
2389 wmb();
2390 first_rxdp->Control_1 |=
2391 RXD_OWN_XENA;
2392 }
2393 return -ENOMEM ;
2394 }
2395 }
2396 rxdp->Control_2 |= BIT(0);
1da177e4 2397 }
1da177e4 2398 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2399 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2400 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2401 off++;
da6971d8
AR
2402 if (off == (rxd_count[nic->rxd_mode] + 1))
2403 off = 0;
20346722 2404 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2405
da6971d8 2406 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2407 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2408 if (first_rxdp) {
2409 wmb();
2410 first_rxdp->Control_1 |= RXD_OWN_XENA;
2411 }
2412 first_rxdp = rxdp;
2413 }
1da177e4
LT
2414 atomic_inc(&nic->rx_bufs_left[ring_no]);
2415 alloc_tab++;
2416 }
2417
2418 end:
303bcb4b
K
2419 /* Transfer ownership of first descriptor to adapter just before
2420 * exiting. Before that, use memory barrier so that ownership
2421 * and other fields are seen by adapter correctly.
2422 */
2423 if (first_rxdp) {
2424 wmb();
2425 first_rxdp->Control_1 |= RXD_OWN_XENA;
2426 }
2427
1da177e4
LT
2428 return SUCCESS;
2429}
2430
da6971d8
AR
2431static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2432{
2433 struct net_device *dev = sp->dev;
2434 int j;
2435 struct sk_buff *skb;
1ee6dd77
RB
2436 struct RxD_t *rxdp;
2437 struct mac_info *mac_control;
2438 struct buffAdd *ba;
da6971d8
AR
2439
2440 mac_control = &sp->mac_control;
2441 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2442 rxdp = mac_control->rings[ring_no].
2443 rx_blocks[blk].rxds[j].virt_addr;
2444 skb = (struct sk_buff *)
2445 ((unsigned long) rxdp->Host_Control);
2446 if (!skb) {
2447 continue;
2448 }
2449 if (sp->rxd_mode == RXD_MODE_1) {
2450 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2451 ((struct RxD1*)rxdp)->Buffer0_ptr,
da6971d8
AR
2452 dev->mtu +
2453 HEADER_ETHERNET_II_802_3_SIZE
2454 + HEADER_802_2_SIZE +
2455 HEADER_SNAP_SIZE,
2456 PCI_DMA_FROMDEVICE);
1ee6dd77 2457 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8
AR
2458 } else if(sp->rxd_mode == RXD_MODE_3B) {
2459 ba = &mac_control->rings[ring_no].
2460 ba[blk][j];
2461 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2462 ((struct RxD3*)rxdp)->Buffer0_ptr,
da6971d8
AR
2463 BUF0_LEN,
2464 PCI_DMA_FROMDEVICE);
2465 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2466 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2467 BUF1_LEN,
2468 PCI_DMA_FROMDEVICE);
2469 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2470 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2471 dev->mtu + 4,
2472 PCI_DMA_FROMDEVICE);
1ee6dd77 2473 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2474 } else {
2475 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2476 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2477 PCI_DMA_FROMDEVICE);
2478 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2479 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2480 l3l4hdr_size + 4,
2481 PCI_DMA_FROMDEVICE);
2482 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2483 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
da6971d8 2484 PCI_DMA_FROMDEVICE);
1ee6dd77 2485 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2486 }
2487 dev_kfree_skb(skb);
2488 atomic_dec(&sp->rx_bufs_left[ring_no]);
2489 }
2490}
2491
1da177e4 2492/**
20346722 2493 * free_rx_buffers - Frees all Rx buffers
1da177e4 2494 * @sp: device private variable.
20346722 2495 * Description:
1da177e4
LT
2496 * This function will free all Rx buffers allocated by host.
2497 * Return Value:
2498 * NONE.
2499 */
2500
2501static void free_rx_buffers(struct s2io_nic *sp)
2502{
2503 struct net_device *dev = sp->dev;
da6971d8 2504 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2505 struct mac_info *mac_control;
1da177e4 2506 struct config_param *config;
1da177e4
LT
2507
2508 mac_control = &sp->mac_control;
2509 config = &sp->config;
2510
2511 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2512 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2513 free_rxd_blk(sp,i,blk);
1da177e4 2514
20346722
K
2515 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2516 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2517 mac_control->rings[i].rx_curr_put_info.offset = 0;
2518 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2519 atomic_set(&sp->rx_bufs_left[i], 0);
2520 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2521 dev->name, buf_cnt, i);
2522 }
2523}
2524
2525/**
2526 * s2io_poll - Rx interrupt handler for NAPI support
2527 * @dev : pointer to the device structure.
20346722 2528 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2529 * during one pass through the 'Poll" function.
2530 * Description:
2531 * Comes into picture only if NAPI support has been incorporated. It does
2532 * the same thing that rx_intr_handler does, but not in a interrupt context
2533 * also It will process only a given number of packets.
2534 * Return value:
2535 * 0 on success and 1 if there are No Rx packets to be processed.
2536 */
2537
1da177e4
LT
2538static int s2io_poll(struct net_device *dev, int *budget)
2539{
1ee6dd77 2540 struct s2io_nic *nic = dev->priv;
20346722 2541 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2542 struct mac_info *mac_control;
1da177e4 2543 struct config_param *config;
1ee6dd77 2544 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2545 int i;
1da177e4 2546
7ba013ac 2547 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2548 mac_control = &nic->mac_control;
2549 config = &nic->config;
2550
20346722
K
2551 nic->pkts_to_process = *budget;
2552 if (nic->pkts_to_process > dev->quota)
2553 nic->pkts_to_process = dev->quota;
2554 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2555
19a60522
SS
2556 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2557 readl(&bar0->rx_traffic_int);
1da177e4
LT
2558
2559 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2560 rx_intr_handler(&mac_control->rings[i]);
2561 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2562 if (!nic->pkts_to_process) {
2563 /* Quota for the current iteration has been met */
2564 goto no_rx;
1da177e4 2565 }
1da177e4
LT
2566 }
2567 if (!pkt_cnt)
2568 pkt_cnt = 1;
2569
2570 dev->quota -= pkt_cnt;
2571 *budget -= pkt_cnt;
2572 netif_rx_complete(dev);
2573
2574 for (i = 0; i < config->rx_ring_num; i++) {
2575 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2576 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2577 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2578 break;
2579 }
2580 }
2581 /* Re enable the Rx interrupts. */
c92ca04b 2582 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2583 readl(&bar0->rx_traffic_mask);
7ba013ac 2584 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2585 return 0;
2586
20346722 2587no_rx:
1da177e4
LT
2588 dev->quota -= pkt_cnt;
2589 *budget -= pkt_cnt;
2590
2591 for (i = 0; i < config->rx_ring_num; i++) {
2592 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2593 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2594 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2595 break;
2596 }
2597 }
7ba013ac 2598 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2599 return 1;
2600}
20346722 2601
b41477f3 2602#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2603/**
b41477f3 2604 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2605 * @dev : pointer to the device structure.
2606 * Description:
b41477f3
AR
2607 * This function will be called by upper layer to check for events on the
2608 * interface in situations where interrupts are disabled. It is used for
2609 * specific in-kernel networking tasks, such as remote consoles and kernel
2610 * debugging over the network (example netdump in RedHat).
612eff0e 2611 */
612eff0e
BH
2612static void s2io_netpoll(struct net_device *dev)
2613{
1ee6dd77
RB
2614 struct s2io_nic *nic = dev->priv;
2615 struct mac_info *mac_control;
612eff0e 2616 struct config_param *config;
1ee6dd77 2617 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2618 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2619 int i;
2620
2621 disable_irq(dev->irq);
2622
2623 atomic_inc(&nic->isr_cnt);
2624 mac_control = &nic->mac_control;
2625 config = &nic->config;
2626
612eff0e 2627 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2628 writeq(val64, &bar0->tx_traffic_int);
2629
6aa20a22 2630 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2631 * run out of skbs and will fail and eventually netpoll application such
2632 * as netdump will fail.
2633 */
2634 for (i = 0; i < config->tx_fifo_num; i++)
2635 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2636
b41477f3 2637 /* check for received packet and indicate up to network */
612eff0e
BH
2638 for (i = 0; i < config->rx_ring_num; i++)
2639 rx_intr_handler(&mac_control->rings[i]);
2640
2641 for (i = 0; i < config->rx_ring_num; i++) {
2642 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2643 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2644 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2645 break;
2646 }
2647 }
2648 atomic_dec(&nic->isr_cnt);
2649 enable_irq(dev->irq);
2650 return;
2651}
2652#endif
2653
20346722 2654/**
1da177e4
LT
2655 * rx_intr_handler - Rx interrupt handler
2656 * @nic: device private variable.
20346722
K
2657 * Description:
2658 * If the interrupt is because of a received frame or if the
1da177e4 2659 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2660 * called. It picks out the RxD at which place the last Rx processing had
2661 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2662 * the offset.
2663 * Return Value:
2664 * NONE.
2665 */
1ee6dd77 2666static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2667{
1ee6dd77 2668 struct s2io_nic *nic = ring_data->nic;
1da177e4 2669 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2670 int get_block, put_block, put_offset;
1ee6dd77
RB
2671 struct rx_curr_get_info get_info, put_info;
2672 struct RxD_t *rxdp;
1da177e4 2673 struct sk_buff *skb;
20346722 2674 int pkt_cnt = 0;
7d3d0439
RA
2675 int i;
2676
7ba013ac
K
2677 spin_lock(&nic->rx_lock);
2678 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2679 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2680 __FUNCTION__, dev->name);
2681 spin_unlock(&nic->rx_lock);
776bd20f 2682 return;
7ba013ac
K
2683 }
2684
20346722
K
2685 get_info = ring_data->rx_curr_get_info;
2686 get_block = get_info.block_index;
1ee6dd77 2687 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2688 put_block = put_info.block_index;
da6971d8 2689 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2690 if (!napi) {
2691 spin_lock(&nic->put_lock);
2692 put_offset = ring_data->put_pos;
2693 spin_unlock(&nic->put_lock);
2694 } else
2695 put_offset = ring_data->put_pos;
2696
da6971d8 2697 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2698 /*
2699 * If your are next to put index then it's
2700 * FIFO full condition
2701 */
da6971d8
AR
2702 if ((get_block == put_block) &&
2703 (get_info.offset + 1) == put_info.offset) {
75c30b13 2704 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2705 break;
2706 }
20346722
K
2707 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2708 if (skb == NULL) {
2709 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2710 dev->name);
2711 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2712 spin_unlock(&nic->rx_lock);
20346722 2713 return;
1da177e4 2714 }
da6971d8
AR
2715 if (nic->rxd_mode == RXD_MODE_1) {
2716 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2717 ((struct RxD1*)rxdp)->Buffer0_ptr,
20346722
K
2718 dev->mtu +
2719 HEADER_ETHERNET_II_802_3_SIZE +
2720 HEADER_802_2_SIZE +
2721 HEADER_SNAP_SIZE,
2722 PCI_DMA_FROMDEVICE);
da6971d8 2723 } else if (nic->rxd_mode == RXD_MODE_3B) {
75c30b13 2724 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2725 ((struct RxD3*)rxdp)->Buffer0_ptr,
20346722 2726 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2727 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2728 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8 2729 dev->mtu + 4,
20346722 2730 PCI_DMA_FROMDEVICE);
da6971d8 2731 } else {
75c30b13 2732 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2733 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2734 PCI_DMA_FROMDEVICE);
2735 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2736 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2737 l3l4hdr_size + 4,
2738 PCI_DMA_FROMDEVICE);
2739 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2740 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2741 dev->mtu, PCI_DMA_FROMDEVICE);
2742 }
863c11a9 2743 prefetch(skb->data);
20346722
K
2744 rx_osm_handler(ring_data, rxdp);
2745 get_info.offset++;
da6971d8
AR
2746 ring_data->rx_curr_get_info.offset = get_info.offset;
2747 rxdp = ring_data->rx_blocks[get_block].
2748 rxds[get_info.offset].virt_addr;
2749 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2750 get_info.offset = 0;
da6971d8 2751 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2752 get_block++;
da6971d8
AR
2753 if (get_block == ring_data->block_count)
2754 get_block = 0;
2755 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2756 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2757 }
1da177e4 2758
20346722 2759 nic->pkts_to_process -= 1;
db874e65 2760 if ((napi) && (!nic->pkts_to_process))
20346722 2761 break;
20346722 2762 pkt_cnt++;
1da177e4
LT
2763 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2764 break;
2765 }
7d3d0439
RA
2766 if (nic->lro) {
2767 /* Clear all LRO sessions before exiting */
2768 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2769 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2770 if (lro->in_use) {
2771 update_L3L4_header(nic, lro);
2772 queue_rx_frame(lro->parent);
2773 clear_lro_session(lro);
2774 }
2775 }
2776 }
2777
7ba013ac 2778 spin_unlock(&nic->rx_lock);
1da177e4 2779}
20346722
K
2780
2781/**
1da177e4
LT
2782 * tx_intr_handler - Transmit interrupt handler
2783 * @nic : device private variable
20346722
K
2784 * Description:
2785 * If an interrupt was raised to indicate DMA complete of the
2786 * Tx packet, this function is called. It identifies the last TxD
2787 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2788 * DMA'ed into the NICs internal memory.
2789 * Return Value:
2790 * NONE
2791 */
2792
1ee6dd77 2793static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2794{
1ee6dd77 2795 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2796 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2797 struct tx_curr_get_info get_info, put_info;
1da177e4 2798 struct sk_buff *skb;
1ee6dd77 2799 struct TxD *txdlp;
1da177e4 2800
20346722 2801 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2802 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2803 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2804 list_virt_addr;
2805 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2806 (get_info.offset != put_info.offset) &&
2807 (txdlp->Host_Control)) {
2808 /* Check for TxD errors */
2809 if (txdlp->Control_1 & TXD_T_CODE) {
2810 unsigned long long err;
2811 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2812 if (err & 0x1) {
2813 nic->mac_control.stats_info->sw_stat.
2814 parity_err_cnt++;
2815 }
776bd20f 2816 if ((err >> 48) == 0xA) {
2817 DBG_PRINT(TX_DBG, "TxD returned due \
19a60522 2818 to loss of link\n");
776bd20f 2819 }
2820 else {
19a60522 2821 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
776bd20f 2822 }
20346722 2823 }
1da177e4 2824
fed5eccd 2825 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2826 if (skb == NULL) {
2827 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2828 __FUNCTION__);
2829 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2830 return;
2831 }
2832
20346722 2833 /* Updating the statistics block */
20346722
K
2834 nic->stats.tx_bytes += skb->len;
2835 dev_kfree_skb_irq(skb);
2836
2837 get_info.offset++;
863c11a9
AR
2838 if (get_info.offset == get_info.fifo_len + 1)
2839 get_info.offset = 0;
1ee6dd77 2840 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
2841 [get_info.offset].list_virt_addr;
2842 fifo_data->tx_curr_get_info.offset =
2843 get_info.offset;
1da177e4
LT
2844 }
2845
2846 spin_lock(&nic->tx_lock);
2847 if (netif_queue_stopped(dev))
2848 netif_wake_queue(dev);
2849 spin_unlock(&nic->tx_lock);
2850}
2851
bd1034f0
AR
2852/**
2853 * s2io_mdio_write - Function to write in to MDIO registers
2854 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2855 * @addr : address value
2856 * @value : data value
2857 * @dev : pointer to net_device structure
2858 * Description:
2859 * This function is used to write values to the MDIO registers
2860 * NONE
2861 */
2862static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2863{
2864 u64 val64 = 0x0;
1ee6dd77
RB
2865 struct s2io_nic *sp = dev->priv;
2866 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2867
2868 //address transaction
2869 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2870 | MDIO_MMD_DEV_ADDR(mmd_type)
2871 | MDIO_MMS_PRT_ADDR(0x0);
2872 writeq(val64, &bar0->mdio_control);
2873 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2874 writeq(val64, &bar0->mdio_control);
2875 udelay(100);
2876
2877 //Data transaction
2878 val64 = 0x0;
2879 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2880 | MDIO_MMD_DEV_ADDR(mmd_type)
2881 | MDIO_MMS_PRT_ADDR(0x0)
2882 | MDIO_MDIO_DATA(value)
2883 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2884 writeq(val64, &bar0->mdio_control);
2885 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2886 writeq(val64, &bar0->mdio_control);
2887 udelay(100);
2888
2889 val64 = 0x0;
2890 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2891 | MDIO_MMD_DEV_ADDR(mmd_type)
2892 | MDIO_MMS_PRT_ADDR(0x0)
2893 | MDIO_OP(MDIO_OP_READ_TRANS);
2894 writeq(val64, &bar0->mdio_control);
2895 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2896 writeq(val64, &bar0->mdio_control);
2897 udelay(100);
2898
2899}
2900
2901/**
2902 * s2io_mdio_read - Function to write in to MDIO registers
2903 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2904 * @addr : address value
2905 * @dev : pointer to net_device structure
2906 * Description:
2907 * This function is used to read values to the MDIO registers
2908 * NONE
2909 */
2910static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2911{
2912 u64 val64 = 0x0;
2913 u64 rval64 = 0x0;
1ee6dd77
RB
2914 struct s2io_nic *sp = dev->priv;
2915 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2916
2917 /* address transaction */
2918 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2919 | MDIO_MMD_DEV_ADDR(mmd_type)
2920 | MDIO_MMS_PRT_ADDR(0x0);
2921 writeq(val64, &bar0->mdio_control);
2922 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2923 writeq(val64, &bar0->mdio_control);
2924 udelay(100);
2925
2926 /* Data transaction */
2927 val64 = 0x0;
2928 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2929 | MDIO_MMD_DEV_ADDR(mmd_type)
2930 | MDIO_MMS_PRT_ADDR(0x0)
2931 | MDIO_OP(MDIO_OP_READ_TRANS);
2932 writeq(val64, &bar0->mdio_control);
2933 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2934 writeq(val64, &bar0->mdio_control);
2935 udelay(100);
2936
2937 /* Read the value from regs */
2938 rval64 = readq(&bar0->mdio_control);
2939 rval64 = rval64 & 0xFFFF0000;
2940 rval64 = rval64 >> 16;
2941 return rval64;
2942}
2943/**
2944 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2945 * @counter : couter value to be updated
2946 * @flag : flag to indicate the status
2947 * @type : counter type
2948 * Description:
2949 * This function is to check the status of the xpak counters value
2950 * NONE
2951 */
2952
2953static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2954{
2955 u64 mask = 0x3;
2956 u64 val64;
2957 int i;
2958 for(i = 0; i <index; i++)
2959 mask = mask << 0x2;
2960
2961 if(flag > 0)
2962 {
2963 *counter = *counter + 1;
2964 val64 = *regs_stat & mask;
2965 val64 = val64 >> (index * 0x2);
2966 val64 = val64 + 1;
2967 if(val64 == 3)
2968 {
2969 switch(type)
2970 {
2971 case 1:
2972 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2973 "service. Excessive temperatures may "
2974 "result in premature transceiver "
2975 "failure \n");
2976 break;
2977 case 2:
2978 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2979 "service Excessive bias currents may "
2980 "indicate imminent laser diode "
2981 "failure \n");
2982 break;
2983 case 3:
2984 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2985 "service Excessive laser output "
2986 "power may saturate far-end "
2987 "receiver\n");
2988 break;
2989 default:
2990 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2991 "type \n");
2992 }
2993 val64 = 0x0;
2994 }
2995 val64 = val64 << (index * 0x2);
2996 *regs_stat = (*regs_stat & (~mask)) | (val64);
2997
2998 } else {
2999 *regs_stat = *regs_stat & (~mask);
3000 }
3001}
3002
3003/**
3004 * s2io_updt_xpak_counter - Function to update the xpak counters
3005 * @dev : pointer to net_device struct
3006 * Description:
3007 * This function is to upate the status of the xpak counters value
3008 * NONE
3009 */
3010static void s2io_updt_xpak_counter(struct net_device *dev)
3011{
3012 u16 flag = 0x0;
3013 u16 type = 0x0;
3014 u16 val16 = 0x0;
3015 u64 val64 = 0x0;
3016 u64 addr = 0x0;
3017
1ee6dd77
RB
3018 struct s2io_nic *sp = dev->priv;
3019 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3020
3021 /* Check the communication with the MDIO slave */
3022 addr = 0x0000;
3023 val64 = 0x0;
3024 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3025 if((val64 == 0xFFFF) || (val64 == 0x0000))
3026 {
3027 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3028 "Returned %llx\n", (unsigned long long)val64);
3029 return;
3030 }
3031
3032 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3033 if(val64 != 0x2040)
3034 {
3035 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3036 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3037 (unsigned long long)val64);
3038 return;
3039 }
3040
3041 /* Loading the DOM register to MDIO register */
3042 addr = 0xA100;
3043 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3044 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3045
3046 /* Reading the Alarm flags */
3047 addr = 0xA070;
3048 val64 = 0x0;
3049 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3050
3051 flag = CHECKBIT(val64, 0x7);
3052 type = 1;
3053 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3054 &stat_info->xpak_stat.xpak_regs_stat,
3055 0x0, flag, type);
3056
3057 if(CHECKBIT(val64, 0x6))
3058 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3059
3060 flag = CHECKBIT(val64, 0x3);
3061 type = 2;
3062 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3063 &stat_info->xpak_stat.xpak_regs_stat,
3064 0x2, flag, type);
3065
3066 if(CHECKBIT(val64, 0x2))
3067 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3068
3069 flag = CHECKBIT(val64, 0x1);
3070 type = 3;
3071 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3072 &stat_info->xpak_stat.xpak_regs_stat,
3073 0x4, flag, type);
3074
3075 if(CHECKBIT(val64, 0x0))
3076 stat_info->xpak_stat.alarm_laser_output_power_low++;
3077
3078 /* Reading the Warning flags */
3079 addr = 0xA074;
3080 val64 = 0x0;
3081 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3082
3083 if(CHECKBIT(val64, 0x7))
3084 stat_info->xpak_stat.warn_transceiver_temp_high++;
3085
3086 if(CHECKBIT(val64, 0x6))
3087 stat_info->xpak_stat.warn_transceiver_temp_low++;
3088
3089 if(CHECKBIT(val64, 0x3))
3090 stat_info->xpak_stat.warn_laser_bias_current_high++;
3091
3092 if(CHECKBIT(val64, 0x2))
3093 stat_info->xpak_stat.warn_laser_bias_current_low++;
3094
3095 if(CHECKBIT(val64, 0x1))
3096 stat_info->xpak_stat.warn_laser_output_power_high++;
3097
3098 if(CHECKBIT(val64, 0x0))
3099 stat_info->xpak_stat.warn_laser_output_power_low++;
3100}
3101
20346722 3102/**
1da177e4
LT
3103 * alarm_intr_handler - Alarm Interrrupt handler
3104 * @nic: device private variable
20346722 3105 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3106 * complete, this function is called. If the interrupt was to indicate
20346722
K
3107 * a loss of link, the OSM link status handler is invoked for any other
3108 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3109 * and a H/W reset is issued.
3110 * Return Value:
3111 * NONE
3112*/
3113
3114static void alarm_intr_handler(struct s2io_nic *nic)
3115{
3116 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3117 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3118 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3119 u64 cnt;
3120 int i;
372cc597
SS
3121 if (atomic_read(&nic->card_state) == CARD_DOWN)
3122 return;
bd1034f0
AR
3123 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3124 /* Handling the XPAK counters update */
3125 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3126 /* waiting for an hour */
3127 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3128 } else {
3129 s2io_updt_xpak_counter(dev);
3130 /* reset the count to zero */
3131 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3132 }
1da177e4
LT
3133
3134 /* Handling link status change error Intr */
a371a07d
K
3135 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3136 err_reg = readq(&bar0->mac_rmac_err_reg);
3137 writeq(err_reg, &bar0->mac_rmac_err_reg);
3138 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3139 schedule_work(&nic->set_link_task);
3140 }
1da177e4
LT
3141 }
3142
5e25b9dd
K
3143 /* Handling Ecc errors */
3144 val64 = readq(&bar0->mc_err_reg);
3145 writeq(val64, &bar0->mc_err_reg);
3146 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3147 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3148 nic->mac_control.stats_info->sw_stat.
3149 double_ecc_errs++;
776bd20f 3150 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3151 dev->name);
776bd20f 3152 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3153 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3154 /* Reset XframeI only if critical error */
3155 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3156 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3157 netif_stop_queue(dev);
3158 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3159 nic->mac_control.stats_info->sw_stat.
3160 soft_reset_cnt++;
776bd20f 3161 }
e960fc5c 3162 }
5e25b9dd 3163 } else {
7ba013ac
K
3164 nic->mac_control.stats_info->sw_stat.
3165 single_ecc_errs++;
5e25b9dd
K
3166 }
3167 }
3168
1da177e4
LT
3169 /* In case of a serious error, the device will be Reset. */
3170 val64 = readq(&bar0->serr_source);
3171 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3172 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3173 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3174 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3175 (unsigned long long)val64);
1da177e4
LT
3176 netif_stop_queue(dev);
3177 schedule_work(&nic->rst_timer_task);
bd1034f0 3178 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3179 }
3180
3181 /*
3182 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3183 * Error occurs, the adapter will be recycled by disabling the
20346722 3184 * adapter enable bit and enabling it again after the device
1da177e4
LT
3185 * becomes Quiescent.
3186 */
3187 val64 = readq(&bar0->pcc_err_reg);
3188 writeq(val64, &bar0->pcc_err_reg);
3189 if (val64 & PCC_FB_ECC_DB_ERR) {
3190 u64 ac = readq(&bar0->adapter_control);
3191 ac &= ~(ADAPTER_CNTL_EN);
3192 writeq(ac, &bar0->adapter_control);
3193 ac = readq(&bar0->adapter_control);
3194 schedule_work(&nic->set_link_task);
3195 }
bd1034f0
AR
3196 /* Check for data parity error */
3197 val64 = readq(&bar0->pic_int_status);
3198 if (val64 & PIC_INT_GPIO) {
3199 val64 = readq(&bar0->gpio_int_reg);
3200 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3201 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3202 schedule_work(&nic->rst_timer_task);
3203 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3204 }
3205 }
3206
3207 /* Check for ring full counter */
3208 if (nic->device_type & XFRAME_II_DEVICE) {
3209 val64 = readq(&bar0->ring_bump_counter1);
3210 for (i=0; i<4; i++) {
3211 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3212 cnt >>= 64 - ((i+1)*16);
3213 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3214 += cnt;
3215 }
3216
3217 val64 = readq(&bar0->ring_bump_counter2);
3218 for (i=0; i<4; i++) {
3219 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3220 cnt >>= 64 - ((i+1)*16);
3221 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3222 += cnt;
3223 }
3224 }
1da177e4
LT
3225
3226 /* Other type of interrupts are not being handled now, TODO */
3227}
3228
20346722 3229/**
1da177e4 3230 * wait_for_cmd_complete - waits for a command to complete.
20346722 3231 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3232 * s2io_nic structure.
20346722
K
3233 * Description: Function that waits for a command to Write into RMAC
3234 * ADDR DATA registers to be completed and returns either success or
3235 * error depending on whether the command was complete or not.
1da177e4
LT
3236 * Return value:
3237 * SUCCESS on success and FAILURE on failure.
3238 */
3239
9fc93a41
SS
3240static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3241 int bit_state)
1da177e4 3242{
9fc93a41 3243 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3244 u64 val64;
3245
9fc93a41
SS
3246 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3247 return FAILURE;
3248
3249 do {
c92ca04b 3250 val64 = readq(addr);
9fc93a41
SS
3251 if (bit_state == S2IO_BIT_RESET) {
3252 if (!(val64 & busy_bit)) {
3253 ret = SUCCESS;
3254 break;
3255 }
3256 } else {
3257 if (!(val64 & busy_bit)) {
3258 ret = SUCCESS;
3259 break;
3260 }
1da177e4 3261 }
c92ca04b
AR
3262
3263 if(in_interrupt())
9fc93a41 3264 mdelay(delay);
c92ca04b 3265 else
9fc93a41 3266 msleep(delay);
c92ca04b 3267
9fc93a41
SS
3268 if (++cnt >= 10)
3269 delay = 50;
3270 } while (cnt < 20);
1da177e4
LT
3271 return ret;
3272}
19a60522
SS
3273/*
3274 * check_pci_device_id - Checks if the device id is supported
3275 * @id : device id
3276 * Description: Function to check if the pci device id is supported by driver.
3277 * Return value: Actual device id if supported else PCI_ANY_ID
3278 */
3279static u16 check_pci_device_id(u16 id)
3280{
3281 switch (id) {
3282 case PCI_DEVICE_ID_HERC_WIN:
3283 case PCI_DEVICE_ID_HERC_UNI:
3284 return XFRAME_II_DEVICE;
3285 case PCI_DEVICE_ID_S2IO_UNI:
3286 case PCI_DEVICE_ID_S2IO_WIN:
3287 return XFRAME_I_DEVICE;
3288 default:
3289 return PCI_ANY_ID;
3290 }
3291}
1da177e4 3292
20346722
K
3293/**
3294 * s2io_reset - Resets the card.
1da177e4
LT
3295 * @sp : private member of the device structure.
3296 * Description: Function to Reset the card. This function then also
20346722 3297 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3298 * the card reset also resets the configuration space.
3299 * Return value:
3300 * void.
3301 */
3302
1ee6dd77 3303static void s2io_reset(struct s2io_nic * sp)
1da177e4 3304{
1ee6dd77 3305 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3306 u64 val64;
5e25b9dd 3307 u16 subid, pci_cmd;
19a60522
SS
3308 int i;
3309 u16 val16;
3310 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3311 __FUNCTION__, sp->dev->name);
1da177e4 3312
0b1f7ebe 3313 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3314 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3315
19a60522
SS
3316 if (sp->device_type == XFRAME_II_DEVICE) {
3317 int ret;
3318 ret = pci_set_power_state(sp->pdev, 3);
3319 if (!ret)
3320 ret = pci_set_power_state(sp->pdev, 0);
3321 else {
3322 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3323 __FUNCTION__);
3324 goto old_way;
3325 }
3326 msleep(20);
3327 goto new_way;
3328 }
3329old_way:
1da177e4
LT
3330 val64 = SW_RESET_ALL;
3331 writeq(val64, &bar0->sw_reset);
19a60522 3332new_way:
c92ca04b
AR
3333 if (strstr(sp->product_name, "CX4")) {
3334 msleep(750);
3335 }
19a60522
SS
3336 msleep(250);
3337 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3338
19a60522
SS
3339 /* Restore the PCI state saved during initialization. */
3340 pci_restore_state(sp->pdev);
3341 pci_read_config_word(sp->pdev, 0x2, &val16);
3342 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3343 break;
3344 msleep(200);
3345 }
1da177e4 3346
19a60522
SS
3347 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3348 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3349 }
3350
3351 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3352
3353 s2io_init_pci(sp);
1da177e4 3354
20346722
K
3355 /* Set swapper to enable I/O register access */
3356 s2io_set_swapper(sp);
3357
cc6e7c44
RA
3358 /* Restore the MSIX table entries from local variables */
3359 restore_xmsi_data(sp);
3360
5e25b9dd 3361 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3362 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3363 /* Clear "detected parity error" bit */
303bcb4b 3364 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3365
303bcb4b
K
3366 /* Clearing PCIX Ecc status register */
3367 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3368
303bcb4b
K
3369 /* Clearing PCI_STATUS error reflected here */
3370 writeq(BIT(62), &bar0->txpic_int_reg);
3371 }
5e25b9dd 3372
20346722
K
3373 /* Reset device statistics maintained by OS */
3374 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3375
1da177e4
LT
3376 /* SXE-002: Configure link and activity LED to turn it off */
3377 subid = sp->pdev->subsystem_device;
541ae68f
K
3378 if (((subid & 0xFF) >= 0x07) &&
3379 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3380 val64 = readq(&bar0->gpio_control);
3381 val64 |= 0x0000800000000000ULL;
3382 writeq(val64, &bar0->gpio_control);
3383 val64 = 0x0411040400000000ULL;
509a2671 3384 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3385 }
3386
541ae68f
K
3387 /*
3388 * Clear spurious ECC interrupts that would have occured on
3389 * XFRAME II cards after reset.
3390 */
3391 if (sp->device_type == XFRAME_II_DEVICE) {
3392 val64 = readq(&bar0->pcc_err_reg);
3393 writeq(val64, &bar0->pcc_err_reg);
3394 }
3395
d8d70caf
SS
3396 /* restore the previously assigned mac address */
3397 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3398
1da177e4
LT
3399 sp->device_enabled_once = FALSE;
3400}
3401
3402/**
20346722
K
3403 * s2io_set_swapper - to set the swapper controle on the card
3404 * @sp : private member of the device structure,
1da177e4 3405 * pointer to the s2io_nic structure.
20346722 3406 * Description: Function to set the swapper control on the card
1da177e4
LT
3407 * correctly depending on the 'endianness' of the system.
3408 * Return value:
3409 * SUCCESS on success and FAILURE on failure.
3410 */
3411
1ee6dd77 3412static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3413{
3414 struct net_device *dev = sp->dev;
1ee6dd77 3415 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3416 u64 val64, valt, valr;
3417
20346722 3418 /*
1da177e4
LT
3419 * Set proper endian settings and verify the same by reading
3420 * the PIF Feed-back register.
3421 */
3422
3423 val64 = readq(&bar0->pif_rd_swapper_fb);
3424 if (val64 != 0x0123456789ABCDEFULL) {
3425 int i = 0;
3426 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3427 0x8100008181000081ULL, /* FE=1, SE=0 */
3428 0x4200004242000042ULL, /* FE=0, SE=1 */
3429 0}; /* FE=0, SE=0 */
3430
3431 while(i<4) {
3432 writeq(value[i], &bar0->swapper_ctrl);
3433 val64 = readq(&bar0->pif_rd_swapper_fb);
3434 if (val64 == 0x0123456789ABCDEFULL)
3435 break;
3436 i++;
3437 }
3438 if (i == 4) {
3439 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3440 dev->name);
3441 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3442 (unsigned long long) val64);
3443 return FAILURE;
3444 }
3445 valr = value[i];
3446 } else {
3447 valr = readq(&bar0->swapper_ctrl);
3448 }
3449
3450 valt = 0x0123456789ABCDEFULL;
3451 writeq(valt, &bar0->xmsi_address);
3452 val64 = readq(&bar0->xmsi_address);
3453
3454 if(val64 != valt) {
3455 int i = 0;
3456 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3457 0x0081810000818100ULL, /* FE=1, SE=0 */
3458 0x0042420000424200ULL, /* FE=0, SE=1 */
3459 0}; /* FE=0, SE=0 */
3460
3461 while(i<4) {
3462 writeq((value[i] | valr), &bar0->swapper_ctrl);
3463 writeq(valt, &bar0->xmsi_address);
3464 val64 = readq(&bar0->xmsi_address);
3465 if(val64 == valt)
3466 break;
3467 i++;
3468 }
3469 if(i == 4) {
20346722 3470 unsigned long long x = val64;
1da177e4 3471 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3472 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3473 return FAILURE;
3474 }
3475 }
3476 val64 = readq(&bar0->swapper_ctrl);
3477 val64 &= 0xFFFF000000000000ULL;
3478
3479#ifdef __BIG_ENDIAN
20346722
K
3480 /*
3481 * The device by default set to a big endian format, so a
1da177e4
LT
3482 * big endian driver need not set anything.
3483 */
3484 val64 |= (SWAPPER_CTRL_TXP_FE |
3485 SWAPPER_CTRL_TXP_SE |
3486 SWAPPER_CTRL_TXD_R_FE |
3487 SWAPPER_CTRL_TXD_W_FE |
3488 SWAPPER_CTRL_TXF_R_FE |
3489 SWAPPER_CTRL_RXD_R_FE |
3490 SWAPPER_CTRL_RXD_W_FE |
3491 SWAPPER_CTRL_RXF_W_FE |
3492 SWAPPER_CTRL_XMSI_FE |
1da177e4 3493 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3494 if (sp->intr_type == INTA)
cc6e7c44 3495 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3496 writeq(val64, &bar0->swapper_ctrl);
3497#else
20346722 3498 /*
1da177e4 3499 * Initially we enable all bits to make it accessible by the
20346722 3500 * driver, then we selectively enable only those bits that
1da177e4
LT
3501 * we want to set.
3502 */
3503 val64 |= (SWAPPER_CTRL_TXP_FE |
3504 SWAPPER_CTRL_TXP_SE |
3505 SWAPPER_CTRL_TXD_R_FE |
3506 SWAPPER_CTRL_TXD_R_SE |
3507 SWAPPER_CTRL_TXD_W_FE |
3508 SWAPPER_CTRL_TXD_W_SE |
3509 SWAPPER_CTRL_TXF_R_FE |
3510 SWAPPER_CTRL_RXD_R_FE |
3511 SWAPPER_CTRL_RXD_R_SE |
3512 SWAPPER_CTRL_RXD_W_FE |
3513 SWAPPER_CTRL_RXD_W_SE |
3514 SWAPPER_CTRL_RXF_W_FE |
3515 SWAPPER_CTRL_XMSI_FE |
1da177e4 3516 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3517 if (sp->intr_type == INTA)
3518 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3519 writeq(val64, &bar0->swapper_ctrl);
3520#endif
3521 val64 = readq(&bar0->swapper_ctrl);
3522
20346722
K
3523 /*
3524 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3525 * feedback register.
3526 */
3527 val64 = readq(&bar0->pif_rd_swapper_fb);
3528 if (val64 != 0x0123456789ABCDEFULL) {
3529 /* Endian settings are incorrect, calls for another dekko. */
3530 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3531 dev->name);
3532 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3533 (unsigned long long) val64);
3534 return FAILURE;
3535 }
3536
3537 return SUCCESS;
3538}
3539
1ee6dd77 3540static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3541{
1ee6dd77 3542 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3543 u64 val64;
3544 int ret = 0, cnt = 0;
3545
3546 do {
3547 val64 = readq(&bar0->xmsi_access);
3548 if (!(val64 & BIT(15)))
3549 break;
3550 mdelay(1);
3551 cnt++;
3552 } while(cnt < 5);
3553 if (cnt == 5) {
3554 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3555 ret = 1;
3556 }
3557
3558 return ret;
3559}
3560
1ee6dd77 3561static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3562{
1ee6dd77 3563 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3564 u64 val64;
3565 int i;
3566
75c30b13 3567 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3568 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3569 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3570 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3571 writeq(val64, &bar0->xmsi_access);
3572 if (wait_for_msix_trans(nic, i)) {
3573 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3574 continue;
3575 }
3576 }
3577}
3578
1ee6dd77 3579static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3580{
1ee6dd77 3581 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3582 u64 val64, addr, data;
3583 int i;
3584
3585 /* Store and display */
75c30b13 3586 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3587 val64 = (BIT(15) | vBIT(i, 26, 6));
3588 writeq(val64, &bar0->xmsi_access);
3589 if (wait_for_msix_trans(nic, i)) {
3590 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3591 continue;
3592 }
3593 addr = readq(&bar0->xmsi_address);
3594 data = readq(&bar0->xmsi_data);
3595 if (addr && data) {
3596 nic->msix_info[i].addr = addr;
3597 nic->msix_info[i].data = data;
3598 }
3599 }
3600}
3601
1ee6dd77 3602int s2io_enable_msi(struct s2io_nic *nic)
cc6e7c44 3603{
1ee6dd77 3604 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3605 u16 msi_ctrl, msg_val;
3606 struct config_param *config = &nic->config;
3607 struct net_device *dev = nic->dev;
3608 u64 val64, tx_mat, rx_mat;
3609 int i, err;
3610
3611 val64 = readq(&bar0->pic_control);
3612 val64 &= ~BIT(1);
3613 writeq(val64, &bar0->pic_control);
3614
3615 err = pci_enable_msi(nic->pdev);
3616 if (err) {
3617 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3618 nic->dev->name);
3619 return err;
3620 }
3621
3622 /*
3623 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3624 * for interrupt handling.
3625 */
3626 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3627 msg_val ^= 0x1;
3628 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3629 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3630
3631 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3632 msi_ctrl |= 0x10;
3633 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3634
3635 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3636 tx_mat = readq(&bar0->tx_mat0_n[0]);
3637 for (i=0; i<config->tx_fifo_num; i++) {
3638 tx_mat |= TX_MAT_SET(i, 1);
3639 }
3640 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3641
3642 rx_mat = readq(&bar0->rx_mat);
3643 for (i=0; i<config->rx_ring_num; i++) {
3644 rx_mat |= RX_MAT_SET(i, 1);
3645 }
3646 writeq(rx_mat, &bar0->rx_mat);
3647
3648 dev->irq = nic->pdev->irq;
3649 return 0;
3650}
3651
1ee6dd77 3652static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3653{
1ee6dd77 3654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3655 u64 tx_mat, rx_mat;
3656 u16 msi_control; /* Temp variable */
3657 int ret, i, j, msix_indx = 1;
3658
3659 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3660 GFP_KERNEL);
3661 if (nic->entries == NULL) {
3662 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3663 return -ENOMEM;
3664 }
3665 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3666
3667 nic->s2io_entries =
3668 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3669 GFP_KERNEL);
3670 if (nic->s2io_entries == NULL) {
3671 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3672 kfree(nic->entries);
3673 return -ENOMEM;
3674 }
3675 memset(nic->s2io_entries, 0,
3676 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3677
3678 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3679 nic->entries[i].entry = i;
3680 nic->s2io_entries[i].entry = i;
3681 nic->s2io_entries[i].arg = NULL;
3682 nic->s2io_entries[i].in_use = 0;
3683 }
3684
3685 tx_mat = readq(&bar0->tx_mat0_n[0]);
3686 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3687 tx_mat |= TX_MAT_SET(i, msix_indx);
3688 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3689 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3690 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3691 }
3692 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3693
3694 if (!nic->config.bimodal) {
3695 rx_mat = readq(&bar0->rx_mat);
3696 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3697 rx_mat |= RX_MAT_SET(j, msix_indx);
3698 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3699 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3700 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3701 }
3702 writeq(rx_mat, &bar0->rx_mat);
3703 } else {
3704 tx_mat = readq(&bar0->tx_mat0_n[7]);
3705 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3706 tx_mat |= TX_MAT_SET(i, msix_indx);
3707 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3708 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3709 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3710 }
3711 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3712 }
3713
c92ca04b 3714 nic->avail_msix_vectors = 0;
cc6e7c44 3715 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3716 /* We fail init if error or we get less vectors than min required */
3717 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3718 nic->avail_msix_vectors = ret;
3719 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3720 }
cc6e7c44
RA
3721 if (ret) {
3722 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3723 kfree(nic->entries);
3724 kfree(nic->s2io_entries);
3725 nic->entries = NULL;
3726 nic->s2io_entries = NULL;
c92ca04b 3727 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3728 return -ENOMEM;
3729 }
c92ca04b
AR
3730 if (!nic->avail_msix_vectors)
3731 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3732
3733 /*
3734 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3735 * in the herc NIC. (Temp change, needs to be removed later)
3736 */
3737 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3738 msi_control |= 0x1; /* Enable MSI */
3739 pci_write_config_word(nic->pdev, 0x42, msi_control);
3740
3741 return 0;
3742}
3743
1da177e4
LT
3744/* ********************************************************* *
3745 * Functions defined below concern the OS part of the driver *
3746 * ********************************************************* */
3747
20346722 3748/**
1da177e4
LT
3749 * s2io_open - open entry point of the driver
3750 * @dev : pointer to the device structure.
3751 * Description:
3752 * This function is the open entry point of the driver. It mainly calls a
3753 * function to allocate Rx buffers and inserts them into the buffer
20346722 3754 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3755 * Return value:
3756 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3757 * file on failure.
3758 */
3759
ac1f60db 3760static int s2io_open(struct net_device *dev)
1da177e4 3761{
1ee6dd77 3762 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3763 int err = 0;
3764
20346722
K
3765 /*
3766 * Make sure you have link off by default every time
1da177e4
LT
3767 * Nic is initialized
3768 */
3769 netif_carrier_off(dev);
0b1f7ebe 3770 sp->last_link_state = 0;
1da177e4
LT
3771
3772 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3773 err = s2io_card_up(sp);
3774 if (err) {
1da177e4
LT
3775 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3776 dev->name);
e6a8fee2 3777 goto hw_init_failed;
1da177e4
LT
3778 }
3779
3780 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3781 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3782 s2io_card_down(sp);
20346722 3783 err = -ENODEV;
e6a8fee2 3784 goto hw_init_failed;
1da177e4
LT
3785 }
3786
3787 netif_start_queue(dev);
3788 return 0;
20346722 3789
20346722 3790hw_init_failed:
cc6e7c44
RA
3791 if (sp->intr_type == MSI_X) {
3792 if (sp->entries)
3793 kfree(sp->entries);
3794 if (sp->s2io_entries)
3795 kfree(sp->s2io_entries);
3796 }
20346722 3797 return err;
1da177e4
LT
3798}
3799
3800/**
3801 * s2io_close -close entry point of the driver
3802 * @dev : device pointer.
3803 * Description:
3804 * This is the stop entry point of the driver. It needs to undo exactly
3805 * whatever was done by the open entry point,thus it's usually referred to
3806 * as the close function.Among other things this function mainly stops the
3807 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3808 * Return value:
3809 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3810 * file on failure.
3811 */
3812
ac1f60db 3813static int s2io_close(struct net_device *dev)
1da177e4 3814{
1ee6dd77 3815 struct s2io_nic *sp = dev->priv;
cc6e7c44 3816
1da177e4
LT
3817 netif_stop_queue(dev);
3818 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3819 s2io_card_down(sp);
cc6e7c44 3820
1da177e4
LT
3821 sp->device_close_flag = TRUE; /* Device is shut down. */
3822 return 0;
3823}
3824
3825/**
3826 * s2io_xmit - Tx entry point of te driver
3827 * @skb : the socket buffer containing the Tx data.
3828 * @dev : device pointer.
3829 * Description :
3830 * This function is the Tx entry point of the driver. S2IO NIC supports
3831 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3832 * NOTE: when device cant queue the pkt,just the trans_start variable will
3833 * not be upadted.
3834 * Return value:
3835 * 0 on success & 1 on failure.
3836 */
3837
ac1f60db 3838static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3839{
1ee6dd77 3840 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3841 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3842 register u64 val64;
1ee6dd77
RB
3843 struct TxD *txdp;
3844 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3845 unsigned long flags;
be3a6b02
K
3846 u16 vlan_tag = 0;
3847 int vlan_priority = 0;
1ee6dd77 3848 struct mac_info *mac_control;
1da177e4 3849 struct config_param *config;
75c30b13 3850 int offload_type;
1da177e4
LT
3851
3852 mac_control = &sp->mac_control;
3853 config = &sp->config;
3854
20346722 3855 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3856 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3857 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3858 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3859 dev->name);
3860 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3861 dev_kfree_skb(skb);
3862 return 0;
1da177e4
LT
3863 }
3864
3865 queue = 0;
1da177e4 3866
be3a6b02
K
3867 /* Get Fifo number to Transmit based on vlan priority */
3868 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3869 vlan_tag = vlan_tx_tag_get(skb);
3870 vlan_priority = vlan_tag >> 13;
3871 queue = config->fifo_mapping[vlan_priority];
3872 }
3873
20346722
K
3874 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3875 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 3876 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
3877 list_virt_addr;
3878
3879 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3880 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3881 if (txdp->Host_Control ||
3882 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3883 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3884 netif_stop_queue(dev);
3885 dev_kfree_skb(skb);
3886 spin_unlock_irqrestore(&sp->tx_lock, flags);
3887 return 0;
3888 }
0b1f7ebe
K
3889
3890 /* A buffer with no data will be dropped */
3891 if (!skb->len) {
3892 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3893 dev_kfree_skb(skb);
3894 spin_unlock_irqrestore(&sp->tx_lock, flags);
3895 return 0;
3896 }
3897
75c30b13 3898 offload_type = s2io_offload_type(skb);
75c30b13 3899 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 3900 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 3901 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 3902 }
84fa7933 3903 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
3904 txdp->Control_2 |=
3905 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3906 TXD_TX_CKO_UDP_EN);
3907 }
fed5eccd
AR
3908 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3909 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3910 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3911
be3a6b02
K
3912 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3913 txdp->Control_2 |= TXD_VLAN_ENABLE;
3914 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3915 }
3916
fed5eccd 3917 frg_len = skb->len - skb->data_len;
75c30b13 3918 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
3919 int ufo_size;
3920
75c30b13 3921 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
3922 ufo_size &= ~7;
3923 txdp->Control_1 |= TXD_UFO_EN;
3924 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3925 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3926#ifdef __BIG_ENDIAN
3927 sp->ufo_in_band_v[put_off] =
3928 (u64)skb_shinfo(skb)->ip6_frag_id;
3929#else
3930 sp->ufo_in_band_v[put_off] =
3931 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3932#endif
3933 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3934 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3935 sp->ufo_in_band_v,
3936 sizeof(u64), PCI_DMA_TODEVICE);
3937 txdp++;
fed5eccd 3938 }
1da177e4 3939
fed5eccd
AR
3940 txdp->Buffer_Pointer = pci_map_single
3941 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3942 txdp->Host_Control = (unsigned long) skb;
3943 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 3944 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3945 txdp->Control_1 |= TXD_UFO_EN;
3946
3947 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3948 /* For fragmented SKB. */
3949 for (i = 0; i < frg_cnt; i++) {
3950 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3951 /* A '0' length fragment will be ignored */
3952 if (!frag->size)
3953 continue;
1da177e4
LT
3954 txdp++;
3955 txdp->Buffer_Pointer = (u64) pci_map_page
3956 (sp->pdev, frag->page, frag->page_offset,
3957 frag->size, PCI_DMA_TODEVICE);
efd51b5c 3958 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 3959 if (offload_type == SKB_GSO_UDP)
fed5eccd 3960 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
3961 }
3962 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3963
75c30b13 3964 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3965 frg_cnt++; /* as Txd0 was used for inband header */
3966
1da177e4 3967 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3968 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3969 writeq(val64, &tx_fifo->TxDL_Pointer);
3970
3971 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3972 TX_FIFO_LAST_LIST);
75c30b13 3973 if (offload_type)
fed5eccd 3974 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 3975
1da177e4
LT
3976 writeq(val64, &tx_fifo->List_Control);
3977
303bcb4b
K
3978 mmiowb();
3979
1da177e4 3980 put_off++;
863c11a9
AR
3981 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3982 put_off = 0;
20346722 3983 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3984
3985 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 3986 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 3987 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
3988 DBG_PRINT(TX_DBG,
3989 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3990 put_off, get_off);
3991 netif_stop_queue(dev);
3992 }
3993
3994 dev->trans_start = jiffies;
3995 spin_unlock_irqrestore(&sp->tx_lock, flags);
3996
3997 return 0;
3998}
3999
25fff88e
K
4000static void
4001s2io_alarm_handle(unsigned long data)
4002{
1ee6dd77 4003 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e
K
4004
4005 alarm_intr_handler(sp);
4006 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4007}
4008
1ee6dd77 4009static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4010{
4011 int rxb_size, level;
4012
4013 if (!sp->lro) {
4014 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4015 level = rx_buffer_level(sp, rxb_size, rng_n);
4016
4017 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4018 int ret;
4019 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4020 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4021 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4022 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4023 __FUNCTION__);
4024 clear_bit(0, (&sp->tasklet_status));
4025 return -1;
4026 }
4027 clear_bit(0, (&sp->tasklet_status));
4028 } else if (level == LOW)
4029 tasklet_schedule(&sp->task);
4030
4031 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4032 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4033 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4034 }
4035 return 0;
4036}
4037
7d12e780 4038static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
cc6e7c44
RA
4039{
4040 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77 4041 struct s2io_nic *sp = dev->priv;
cc6e7c44 4042 int i;
1ee6dd77 4043 struct mac_info *mac_control;
cc6e7c44
RA
4044 struct config_param *config;
4045
4046 atomic_inc(&sp->isr_cnt);
4047 mac_control = &sp->mac_control;
4048 config = &sp->config;
4049 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4050
4051 /* If Intr is because of Rx Traffic */
4052 for (i = 0; i < config->rx_ring_num; i++)
4053 rx_intr_handler(&mac_control->rings[i]);
4054
4055 /* If Intr is because of Tx Traffic */
4056 for (i = 0; i < config->tx_fifo_num; i++)
4057 tx_intr_handler(&mac_control->fifos[i]);
4058
4059 /*
4060 * If the Rx buffer count is below the panic threshold then
4061 * reallocate the buffers from the interrupt handler itself,
4062 * else schedule a tasklet to reallocate the buffers.
4063 */
75c30b13
AR
4064 for (i = 0; i < config->rx_ring_num; i++)
4065 s2io_chk_rx_buffers(sp, i);
cc6e7c44
RA
4066
4067 atomic_dec(&sp->isr_cnt);
4068 return IRQ_HANDLED;
4069}
4070
7d12e780 4071static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4072{
1ee6dd77
RB
4073 struct ring_info *ring = (struct ring_info *)dev_id;
4074 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4075
4076 atomic_inc(&sp->isr_cnt);
cc6e7c44 4077
75c30b13
AR
4078 rx_intr_handler(ring);
4079 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4080
cc6e7c44 4081 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4082 return IRQ_HANDLED;
4083}
4084
7d12e780 4085static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4086{
1ee6dd77
RB
4087 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4088 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4089
4090 atomic_inc(&sp->isr_cnt);
4091 tx_intr_handler(fifo);
4092 atomic_dec(&sp->isr_cnt);
4093 return IRQ_HANDLED;
4094}
1ee6dd77 4095static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4096{
1ee6dd77 4097 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4098 u64 val64;
4099
4100 val64 = readq(&bar0->pic_int_status);
4101 if (val64 & PIC_INT_GPIO) {
4102 val64 = readq(&bar0->gpio_int_reg);
4103 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4104 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4105 /*
4106 * This is unstable state so clear both up/down
4107 * interrupt and adapter to re-evaluate the link state.
4108 */
a371a07d
K
4109 val64 |= GPIO_INT_REG_LINK_DOWN;
4110 val64 |= GPIO_INT_REG_LINK_UP;
4111 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4112 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4113 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4114 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4115 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4116 }
c92ca04b
AR
4117 else if (val64 & GPIO_INT_REG_LINK_UP) {
4118 val64 = readq(&bar0->adapter_status);
c92ca04b 4119 /* Enable Adapter */
19a60522
SS
4120 val64 = readq(&bar0->adapter_control);
4121 val64 |= ADAPTER_CNTL_EN;
4122 writeq(val64, &bar0->adapter_control);
4123 val64 |= ADAPTER_LED_ON;
4124 writeq(val64, &bar0->adapter_control);
4125 if (!sp->device_enabled_once)
4126 sp->device_enabled_once = 1;
c92ca04b 4127
19a60522
SS
4128 s2io_link(sp, LINK_UP);
4129 /*
4130 * unmask link down interrupt and mask link-up
4131 * intr
4132 */
4133 val64 = readq(&bar0->gpio_int_mask);
4134 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4135 val64 |= GPIO_INT_MASK_LINK_UP;
4136 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4137
c92ca04b
AR
4138 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4139 val64 = readq(&bar0->adapter_status);
19a60522
SS
4140 s2io_link(sp, LINK_DOWN);
4141 /* Link is down so unmaks link up interrupt */
4142 val64 = readq(&bar0->gpio_int_mask);
4143 val64 &= ~GPIO_INT_MASK_LINK_UP;
4144 val64 |= GPIO_INT_MASK_LINK_DOWN;
4145 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4146
4147 /* turn off LED */
4148 val64 = readq(&bar0->adapter_control);
4149 val64 = val64 &(~ADAPTER_LED_ON);
4150 writeq(val64, &bar0->adapter_control);
a371a07d
K
4151 }
4152 }
c92ca04b 4153 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4154}
4155
1da177e4
LT
4156/**
4157 * s2io_isr - ISR handler of the device .
4158 * @irq: the irq of the device.
4159 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4160 * Description: This function is the ISR handler of the device. It
4161 * identifies the reason for the interrupt and calls the relevant
4162 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4163 * recv buffers, if their numbers are below the panic value which is
4164 * presently set to 25% of the original number of rcv buffers allocated.
4165 * Return value:
20346722 4166 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4167 * IRQ_NONE: will be returned if interrupt is not from our device
4168 */
7d12e780 4169static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4170{
4171 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4172 struct s2io_nic *sp = dev->priv;
4173 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4174 int i;
19a60522 4175 u64 reason = 0;
1ee6dd77 4176 struct mac_info *mac_control;
1da177e4
LT
4177 struct config_param *config;
4178
7ba013ac 4179 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4180 mac_control = &sp->mac_control;
4181 config = &sp->config;
4182
20346722 4183 /*
1da177e4
LT
4184 * Identify the cause for interrupt and call the appropriate
4185 * interrupt handler. Causes for the interrupt could be;
4186 * 1. Rx of packet.
4187 * 2. Tx complete.
4188 * 3. Link down.
20346722 4189 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4190 */
4191 reason = readq(&bar0->general_int_status);
4192
4193 if (!reason) {
19a60522
SS
4194 /* The interrupt was not raised by us. */
4195 atomic_dec(&sp->isr_cnt);
4196 return IRQ_NONE;
4197 }
4198 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4199 /* Disable device and get out */
7ba013ac 4200 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4201 return IRQ_NONE;
4202 }
5d3213cc 4203
db874e65
SS
4204 if (napi) {
4205 if (reason & GEN_INTR_RXTRAFFIC) {
19a60522 4206 if ( likely ( netif_rx_schedule_prep(dev)) ) {
db874e65 4207 __netif_rx_schedule(dev);
19a60522 4208 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4209 }
19a60522
SS
4210 else
4211 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4212 }
4213 } else {
4214 /*
4215 * Rx handler is called by default, without checking for the
4216 * cause of interrupt.
4217 * rx_traffic_int reg is an R1 register, writing all 1's
4218 * will ensure that the actual interrupt causing bit get's
4219 * cleared and hence a read can be avoided.
4220 */
19a60522
SS
4221 if (reason & GEN_INTR_RXTRAFFIC)
4222 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4223
db874e65
SS
4224 for (i = 0; i < config->rx_ring_num; i++) {
4225 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4226 }
4227 }
1da177e4 4228
863c11a9
AR
4229 /*
4230 * tx_traffic_int reg is an R1 register, writing all 1's
4231 * will ensure that the actual interrupt causing bit get's
4232 * cleared and hence a read can be avoided.
4233 */
19a60522
SS
4234 if (reason & GEN_INTR_TXTRAFFIC)
4235 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4236
863c11a9
AR
4237 for (i = 0; i < config->tx_fifo_num; i++)
4238 tx_intr_handler(&mac_control->fifos[i]);
20346722 4239
a371a07d
K
4240 if (reason & GEN_INTR_TXPIC)
4241 s2io_txpic_intr_handle(sp);
20346722
K
4242 /*
4243 * If the Rx buffer count is below the panic threshold then
4244 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4245 * else schedule a tasklet to reallocate the buffers.
4246 */
db874e65
SS
4247 if (!napi) {
4248 for (i = 0; i < config->rx_ring_num; i++)
4249 s2io_chk_rx_buffers(sp, i);
4250 }
4251
4252 writeq(0, &bar0->general_int_mask);
4253 readl(&bar0->general_int_status);
4254
7ba013ac 4255 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4256 return IRQ_HANDLED;
4257}
4258
7ba013ac
K
4259/**
4260 * s2io_updt_stats -
4261 */
1ee6dd77 4262static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4263{
1ee6dd77 4264 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4265 u64 val64;
4266 int cnt = 0;
4267
4268 if (atomic_read(&sp->card_state) == CARD_UP) {
4269 /* Apprx 30us on a 133 MHz bus */
4270 val64 = SET_UPDT_CLICKS(10) |
4271 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4272 writeq(val64, &bar0->stat_cfg);
4273 do {
4274 udelay(100);
4275 val64 = readq(&bar0->stat_cfg);
4276 if (!(val64 & BIT(0)))
4277 break;
4278 cnt++;
4279 if (cnt == 5)
4280 break; /* Updt failed */
4281 } while(1);
75c30b13 4282 } else {
1ee6dd77 4283 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
7ba013ac
K
4284 }
4285}
4286
1da177e4 4287/**
20346722 4288 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4289 * @dev : pointer to the device structure.
4290 * Description:
20346722 4291 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4292 * structure and returns a pointer to the same.
4293 * Return value:
4294 * pointer to the updated net_device_stats structure.
4295 */
4296
ac1f60db 4297static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4298{
1ee6dd77
RB
4299 struct s2io_nic *sp = dev->priv;
4300 struct mac_info *mac_control;
1da177e4
LT
4301 struct config_param *config;
4302
20346722 4303
1da177e4
LT
4304 mac_control = &sp->mac_control;
4305 config = &sp->config;
4306
7ba013ac
K
4307 /* Configure Stats for immediate updt */
4308 s2io_updt_stats(sp);
4309
4310 sp->stats.tx_packets =
4311 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4312 sp->stats.tx_errors =
4313 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4314 sp->stats.rx_errors =
ee705dba 4315 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4316 sp->stats.multicast =
4317 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4318 sp->stats.rx_length_errors =
ee705dba 4319 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4320
4321 return (&sp->stats);
4322}
4323
4324/**
4325 * s2io_set_multicast - entry point for multicast address enable/disable.
4326 * @dev : pointer to the device structure
4327 * Description:
20346722
K
4328 * This function is a driver entry point which gets called by the kernel
4329 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4330 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4331 * determine, if multicast address must be enabled or if promiscuous mode
4332 * is to be disabled etc.
4333 * Return value:
4334 * void.
4335 */
4336
4337static void s2io_set_multicast(struct net_device *dev)
4338{
4339 int i, j, prev_cnt;
4340 struct dev_mc_list *mclist;
1ee6dd77
RB
4341 struct s2io_nic *sp = dev->priv;
4342 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4343 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4344 0xfeffffffffffULL;
4345 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4346 void __iomem *add;
4347
4348 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4349 /* Enable all Multicast addresses */
4350 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4351 &bar0->rmac_addr_data0_mem);
4352 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4353 &bar0->rmac_addr_data1_mem);
4354 val64 = RMAC_ADDR_CMD_MEM_WE |
4355 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4356 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4357 writeq(val64, &bar0->rmac_addr_cmd_mem);
4358 /* Wait till command completes */
c92ca04b 4359 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4360 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4361 S2IO_BIT_RESET);
1da177e4
LT
4362
4363 sp->m_cast_flg = 1;
4364 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4365 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4366 /* Disable all Multicast addresses */
4367 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4368 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4369 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4370 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4371 val64 = RMAC_ADDR_CMD_MEM_WE |
4372 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4373 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4374 writeq(val64, &bar0->rmac_addr_cmd_mem);
4375 /* Wait till command completes */
c92ca04b 4376 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4377 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4378 S2IO_BIT_RESET);
1da177e4
LT
4379
4380 sp->m_cast_flg = 0;
4381 sp->all_multi_pos = 0;
4382 }
4383
4384 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4385 /* Put the NIC into promiscuous mode */
4386 add = &bar0->mac_cfg;
4387 val64 = readq(&bar0->mac_cfg);
4388 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4389
4390 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4391 writel((u32) val64, add);
4392 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4393 writel((u32) (val64 >> 32), (add + 4));
4394
926930b2
SS
4395 if (vlan_tag_strip != 1) {
4396 val64 = readq(&bar0->rx_pa_cfg);
4397 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4398 writeq(val64, &bar0->rx_pa_cfg);
4399 vlan_strip_flag = 0;
4400 }
4401
1da177e4
LT
4402 val64 = readq(&bar0->mac_cfg);
4403 sp->promisc_flg = 1;
776bd20f 4404 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4405 dev->name);
4406 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4407 /* Remove the NIC from promiscuous mode */
4408 add = &bar0->mac_cfg;
4409 val64 = readq(&bar0->mac_cfg);
4410 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4411
4412 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4413 writel((u32) val64, add);
4414 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4415 writel((u32) (val64 >> 32), (add + 4));
4416
926930b2
SS
4417 if (vlan_tag_strip != 0) {
4418 val64 = readq(&bar0->rx_pa_cfg);
4419 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4420 writeq(val64, &bar0->rx_pa_cfg);
4421 vlan_strip_flag = 1;
4422 }
4423
1da177e4
LT
4424 val64 = readq(&bar0->mac_cfg);
4425 sp->promisc_flg = 0;
776bd20f 4426 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4427 dev->name);
4428 }
4429
4430 /* Update individual M_CAST address list */
4431 if ((!sp->m_cast_flg) && dev->mc_count) {
4432 if (dev->mc_count >
4433 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4434 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4435 dev->name);
4436 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4437 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4438 return;
4439 }
4440
4441 prev_cnt = sp->mc_addr_count;
4442 sp->mc_addr_count = dev->mc_count;
4443
4444 /* Clear out the previous list of Mc in the H/W. */
4445 for (i = 0; i < prev_cnt; i++) {
4446 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4447 &bar0->rmac_addr_data0_mem);
4448 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4449 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4450 val64 = RMAC_ADDR_CMD_MEM_WE |
4451 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4452 RMAC_ADDR_CMD_MEM_OFFSET
4453 (MAC_MC_ADDR_START_OFFSET + i);
4454 writeq(val64, &bar0->rmac_addr_cmd_mem);
4455
4456 /* Wait for command completes */
c92ca04b 4457 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4458 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4459 S2IO_BIT_RESET)) {
1da177e4
LT
4460 DBG_PRINT(ERR_DBG, "%s: Adding ",
4461 dev->name);
4462 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4463 return;
4464 }
4465 }
4466
4467 /* Create the new Rx filter list and update the same in H/W. */
4468 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4469 i++, mclist = mclist->next) {
4470 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4471 ETH_ALEN);
a7a80d5a 4472 mac_addr = 0;
1da177e4
LT
4473 for (j = 0; j < ETH_ALEN; j++) {
4474 mac_addr |= mclist->dmi_addr[j];
4475 mac_addr <<= 8;
4476 }
4477 mac_addr >>= 8;
4478 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4479 &bar0->rmac_addr_data0_mem);
4480 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4481 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4482 val64 = RMAC_ADDR_CMD_MEM_WE |
4483 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4484 RMAC_ADDR_CMD_MEM_OFFSET
4485 (i + MAC_MC_ADDR_START_OFFSET);
4486 writeq(val64, &bar0->rmac_addr_cmd_mem);
4487
4488 /* Wait for command completes */
c92ca04b 4489 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4490 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4491 S2IO_BIT_RESET)) {
1da177e4
LT
4492 DBG_PRINT(ERR_DBG, "%s: Adding ",
4493 dev->name);
4494 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4495 return;
4496 }
4497 }
4498 }
4499}
4500
4501/**
20346722 4502 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4503 * @dev : pointer to the device structure.
4504 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4505 * Description : This procedure will program the Xframe to receive
1da177e4 4506 * frames with new Mac Address
20346722 4507 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4508 * as defined in errno.h file on failure.
4509 */
4510
26df54bf 4511static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4512{
1ee6dd77
RB
4513 struct s2io_nic *sp = dev->priv;
4514 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4515 register u64 val64, mac_addr = 0;
4516 int i;
d8d70caf 4517 u64 old_mac_addr = 0;
1da177e4 4518
20346722 4519 /*
1da177e4
LT
4520 * Set the new MAC address as the new unicast filter and reflect this
4521 * change on the device address registered with the OS. It will be
20346722 4522 * at offset 0.
1da177e4
LT
4523 */
4524 for (i = 0; i < ETH_ALEN; i++) {
4525 mac_addr <<= 8;
4526 mac_addr |= addr[i];
d8d70caf
SS
4527 old_mac_addr <<= 8;
4528 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4529 }
4530
4531 if(0 == mac_addr)
4532 return SUCCESS;
4533
4534 /* Update the internal structure with this new mac address */
4535 if(mac_addr != old_mac_addr) {
4536 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4537 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4538 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4539 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4540 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4541 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4542 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4543 }
4544
4545 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4546 &bar0->rmac_addr_data0_mem);
4547
4548 val64 =
4549 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4550 RMAC_ADDR_CMD_MEM_OFFSET(0);
4551 writeq(val64, &bar0->rmac_addr_cmd_mem);
4552 /* Wait till command completes */
c92ca04b 4553 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4554 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4555 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4556 return FAILURE;
4557 }
4558
4559 return SUCCESS;
4560}
4561
4562/**
20346722 4563 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4564 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4565 * @info: pointer to the structure with parameters given by ethtool to set
4566 * link information.
4567 * Description:
20346722 4568 * The function sets different link parameters provided by the user onto
1da177e4
LT
4569 * the NIC.
4570 * Return value:
4571 * 0 on success.
4572*/
4573
4574static int s2io_ethtool_sset(struct net_device *dev,
4575 struct ethtool_cmd *info)
4576{
1ee6dd77 4577 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4578 if ((info->autoneg == AUTONEG_ENABLE) ||
4579 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4580 return -EINVAL;
4581 else {
4582 s2io_close(sp->dev);
4583 s2io_open(sp->dev);
4584 }
4585
4586 return 0;
4587}
4588
4589/**
20346722 4590 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4591 * @sp : private member of the device structure, pointer to the
4592 * s2io_nic structure.
4593 * @info : pointer to the structure with parameters given by ethtool
4594 * to return link information.
4595 * Description:
4596 * Returns link specific information like speed, duplex etc.. to ethtool.
4597 * Return value :
4598 * return 0 on success.
4599 */
4600
4601static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4602{
1ee6dd77 4603 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4604 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4605 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4606 info->port = PORT_FIBRE;
4607 /* info->transceiver?? TODO */
4608
4609 if (netif_carrier_ok(sp->dev)) {
4610 info->speed = 10000;
4611 info->duplex = DUPLEX_FULL;
4612 } else {
4613 info->speed = -1;
4614 info->duplex = -1;
4615 }
4616
4617 info->autoneg = AUTONEG_DISABLE;
4618 return 0;
4619}
4620
4621/**
20346722
K
4622 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4623 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4624 * s2io_nic structure.
4625 * @info : pointer to the structure with parameters given by ethtool to
4626 * return driver information.
4627 * Description:
4628 * Returns driver specefic information like name, version etc.. to ethtool.
4629 * Return value:
4630 * void
4631 */
4632
4633static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4634 struct ethtool_drvinfo *info)
4635{
1ee6dd77 4636 struct s2io_nic *sp = dev->priv;
1da177e4 4637
dbc2309d
JL
4638 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4639 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4640 strncpy(info->fw_version, "", sizeof(info->fw_version));
4641 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4642 info->regdump_len = XENA_REG_SPACE;
4643 info->eedump_len = XENA_EEPROM_SPACE;
4644 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
4645
4646 if (sp->device_type == XFRAME_I_DEVICE)
4647 info->n_stats = XFRAME_I_STAT_LEN;
4648 else
4649 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
4650}
4651
4652/**
4653 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4654 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4655 * s2io_nic structure.
20346722 4656 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4657 * dumping the registers.
4658 * @reg_space: The input argumnet into which all the registers are dumped.
4659 * Description:
4660 * Dumps the entire register space of xFrame NIC into the user given
4661 * buffer area.
4662 * Return value :
4663 * void .
4664*/
4665
4666static void s2io_ethtool_gregs(struct net_device *dev,
4667 struct ethtool_regs *regs, void *space)
4668{
4669 int i;
4670 u64 reg;
4671 u8 *reg_space = (u8 *) space;
1ee6dd77 4672 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4673
4674 regs->len = XENA_REG_SPACE;
4675 regs->version = sp->pdev->subsystem_device;
4676
4677 for (i = 0; i < regs->len; i += 8) {
4678 reg = readq(sp->bar0 + i);
4679 memcpy((reg_space + i), &reg, 8);
4680 }
4681}
4682
4683/**
4684 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4685 * @data : address of the private member of the device structure, which
1da177e4 4686 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4687 * Description: This is actually the timer function that alternates the
4688 * adapter LED bit of the adapter control bit to set/reset every time on
4689 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4690 * once every second.
4691*/
4692static void s2io_phy_id(unsigned long data)
4693{
1ee6dd77
RB
4694 struct s2io_nic *sp = (struct s2io_nic *) data;
4695 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4696 u64 val64 = 0;
4697 u16 subid;
4698
4699 subid = sp->pdev->subsystem_device;
541ae68f
K
4700 if ((sp->device_type == XFRAME_II_DEVICE) ||
4701 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4702 val64 = readq(&bar0->gpio_control);
4703 val64 ^= GPIO_CTRL_GPIO_0;
4704 writeq(val64, &bar0->gpio_control);
4705 } else {
4706 val64 = readq(&bar0->adapter_control);
4707 val64 ^= ADAPTER_LED_ON;
4708 writeq(val64, &bar0->adapter_control);
4709 }
4710
4711 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4712}
4713
4714/**
4715 * s2io_ethtool_idnic - To physically identify the nic on the system.
4716 * @sp : private member of the device structure, which is a pointer to the
4717 * s2io_nic structure.
20346722 4718 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4719 * ethtool.
4720 * Description: Used to physically identify the NIC on the system.
20346722 4721 * The Link LED will blink for a time specified by the user for
1da177e4 4722 * identification.
20346722 4723 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4724 * identification is possible only if it's link is up.
4725 * Return value:
4726 * int , returns 0 on success
4727 */
4728
4729static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4730{
4731 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4732 struct s2io_nic *sp = dev->priv;
4733 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4734 u16 subid;
4735
4736 subid = sp->pdev->subsystem_device;
4737 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4738 if ((sp->device_type == XFRAME_I_DEVICE) &&
4739 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4740 val64 = readq(&bar0->adapter_control);
4741 if (!(val64 & ADAPTER_CNTL_EN)) {
4742 printk(KERN_ERR
4743 "Adapter Link down, cannot blink LED\n");
4744 return -EFAULT;
4745 }
4746 }
4747 if (sp->id_timer.function == NULL) {
4748 init_timer(&sp->id_timer);
4749 sp->id_timer.function = s2io_phy_id;
4750 sp->id_timer.data = (unsigned long) sp;
4751 }
4752 mod_timer(&sp->id_timer, jiffies);
4753 if (data)
20346722 4754 msleep_interruptible(data * HZ);
1da177e4 4755 else
20346722 4756 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4757 del_timer_sync(&sp->id_timer);
4758
541ae68f 4759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4760 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4761 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4762 }
4763
4764 return 0;
4765}
4766
4767/**
4768 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4769 * @sp : private member of the device structure, which is a pointer to the
4770 * s2io_nic structure.
1da177e4
LT
4771 * @ep : pointer to the structure with pause parameters given by ethtool.
4772 * Description:
4773 * Returns the Pause frame generation and reception capability of the NIC.
4774 * Return value:
4775 * void
4776 */
4777static void s2io_ethtool_getpause_data(struct net_device *dev,
4778 struct ethtool_pauseparam *ep)
4779{
4780 u64 val64;
1ee6dd77
RB
4781 struct s2io_nic *sp = dev->priv;
4782 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4783
4784 val64 = readq(&bar0->rmac_pause_cfg);
4785 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4786 ep->tx_pause = TRUE;
4787 if (val64 & RMAC_PAUSE_RX_ENABLE)
4788 ep->rx_pause = TRUE;
4789 ep->autoneg = FALSE;
4790}
4791
4792/**
4793 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4794 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4795 * s2io_nic structure.
4796 * @ep : pointer to the structure with pause parameters given by ethtool.
4797 * Description:
4798 * It can be used to set or reset Pause frame generation or reception
4799 * support of the NIC.
4800 * Return value:
4801 * int, returns 0 on Success
4802 */
4803
4804static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4805 struct ethtool_pauseparam *ep)
1da177e4
LT
4806{
4807 u64 val64;
1ee6dd77
RB
4808 struct s2io_nic *sp = dev->priv;
4809 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4810
4811 val64 = readq(&bar0->rmac_pause_cfg);
4812 if (ep->tx_pause)
4813 val64 |= RMAC_PAUSE_GEN_ENABLE;
4814 else
4815 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4816 if (ep->rx_pause)
4817 val64 |= RMAC_PAUSE_RX_ENABLE;
4818 else
4819 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4820 writeq(val64, &bar0->rmac_pause_cfg);
4821 return 0;
4822}
4823
4824/**
4825 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4826 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4827 * s2io_nic structure.
4828 * @off : offset at which the data must be written
4829 * @data : Its an output parameter where the data read at the given
20346722 4830 * offset is stored.
1da177e4 4831 * Description:
20346722 4832 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4833 * read data.
4834 * NOTE: Will allow to read only part of the EEPROM visible through the
4835 * I2C bus.
4836 * Return value:
4837 * -1 on failure and 0 on success.
4838 */
4839
4840#define S2IO_DEV_ID 5
1ee6dd77 4841static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
4842{
4843 int ret = -1;
4844 u32 exit_cnt = 0;
4845 u64 val64;
1ee6dd77 4846 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4847
ad4ebed0 4848 if (sp->device_type == XFRAME_I_DEVICE) {
4849 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4850 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4851 I2C_CONTROL_CNTL_START;
4852 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4853
ad4ebed0 4854 while (exit_cnt < 5) {
4855 val64 = readq(&bar0->i2c_control);
4856 if (I2C_CONTROL_CNTL_END(val64)) {
4857 *data = I2C_CONTROL_GET_DATA(val64);
4858 ret = 0;
4859 break;
4860 }
4861 msleep(50);
4862 exit_cnt++;
1da177e4 4863 }
1da177e4
LT
4864 }
4865
ad4ebed0 4866 if (sp->device_type == XFRAME_II_DEVICE) {
4867 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4868 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 4869 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4870 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4871 val64 |= SPI_CONTROL_REQ;
4872 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4873 while (exit_cnt < 5) {
4874 val64 = readq(&bar0->spi_control);
4875 if (val64 & SPI_CONTROL_NACK) {
4876 ret = 1;
4877 break;
4878 } else if (val64 & SPI_CONTROL_DONE) {
4879 *data = readq(&bar0->spi_data);
4880 *data &= 0xffffff;
4881 ret = 0;
4882 break;
4883 }
4884 msleep(50);
4885 exit_cnt++;
4886 }
4887 }
1da177e4
LT
4888 return ret;
4889}
4890
4891/**
4892 * write_eeprom - actually writes the relevant part of the data value.
4893 * @sp : private member of the device structure, which is a pointer to the
4894 * s2io_nic structure.
4895 * @off : offset at which the data must be written
4896 * @data : The data that is to be written
20346722 4897 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4898 * the Eeprom. (max of 3)
4899 * Description:
4900 * Actually writes the relevant part of the data value into the Eeprom
4901 * through the I2C bus.
4902 * Return value:
4903 * 0 on success, -1 on failure.
4904 */
4905
1ee6dd77 4906static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
4907{
4908 int exit_cnt = 0, ret = -1;
4909 u64 val64;
1ee6dd77 4910 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4911
ad4ebed0 4912 if (sp->device_type == XFRAME_I_DEVICE) {
4913 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4914 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4915 I2C_CONTROL_CNTL_START;
4916 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4917
4918 while (exit_cnt < 5) {
4919 val64 = readq(&bar0->i2c_control);
4920 if (I2C_CONTROL_CNTL_END(val64)) {
4921 if (!(val64 & I2C_CONTROL_NACK))
4922 ret = 0;
4923 break;
4924 }
4925 msleep(50);
4926 exit_cnt++;
4927 }
4928 }
1da177e4 4929
ad4ebed0 4930 if (sp->device_type == XFRAME_II_DEVICE) {
4931 int write_cnt = (cnt == 8) ? 0 : cnt;
4932 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4933
4934 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4935 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 4936 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4937 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4938 val64 |= SPI_CONTROL_REQ;
4939 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4940 while (exit_cnt < 5) {
4941 val64 = readq(&bar0->spi_control);
4942 if (val64 & SPI_CONTROL_NACK) {
4943 ret = 1;
4944 break;
4945 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4946 ret = 0;
ad4ebed0 4947 break;
4948 }
4949 msleep(50);
4950 exit_cnt++;
1da177e4 4951 }
1da177e4 4952 }
1da177e4
LT
4953 return ret;
4954}
1ee6dd77 4955static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 4956{
b41477f3
AR
4957 u8 *vpd_data;
4958 u8 data;
9dc737a7
AR
4959 int i=0, cnt, fail = 0;
4960 int vpd_addr = 0x80;
4961
4962 if (nic->device_type == XFRAME_II_DEVICE) {
4963 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4964 vpd_addr = 0x80;
4965 }
4966 else {
4967 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4968 vpd_addr = 0x50;
4969 }
19a60522 4970 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 4971
b41477f3
AR
4972 vpd_data = kmalloc(256, GFP_KERNEL);
4973 if (!vpd_data)
4974 return;
4975
9dc737a7
AR
4976 for (i = 0; i < 256; i +=4 ) {
4977 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4978 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4979 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4980 for (cnt = 0; cnt <5; cnt++) {
4981 msleep(2);
4982 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4983 if (data == 0x80)
4984 break;
4985 }
4986 if (cnt >= 5) {
4987 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4988 fail = 1;
4989 break;
4990 }
4991 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4992 (u32 *)&vpd_data[i]);
4993 }
19a60522
SS
4994
4995 if(!fail) {
4996 /* read serial number of adapter */
4997 for (cnt = 0; cnt < 256; cnt++) {
4998 if ((vpd_data[cnt] == 'S') &&
4999 (vpd_data[cnt+1] == 'N') &&
5000 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5001 memset(nic->serial_num, 0, VPD_STRING_LEN);
5002 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5003 vpd_data[cnt+2]);
5004 break;
5005 }
5006 }
5007 }
5008
5009 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5010 memset(nic->product_name, 0, vpd_data[1]);
5011 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5012 }
b41477f3 5013 kfree(vpd_data);
9dc737a7
AR
5014}
5015
1da177e4
LT
5016/**
5017 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5018 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5019 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5020 * containing all relevant information.
5021 * @data_buf : user defined value to be written into Eeprom.
5022 * Description: Reads the values stored in the Eeprom at given offset
5023 * for a given length. Stores these values int the input argument data
5024 * buffer 'data_buf' and returns these to the caller (ethtool.)
5025 * Return value:
5026 * int 0 on success
5027 */
5028
5029static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5030 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5031{
ad4ebed0 5032 u32 i, valid;
5033 u64 data;
1ee6dd77 5034 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5035
5036 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5037
5038 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5039 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5040
5041 for (i = 0; i < eeprom->len; i += 4) {
5042 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5043 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5044 return -EFAULT;
5045 }
5046 valid = INV(data);
5047 memcpy((data_buf + i), &valid, 4);
5048 }
5049 return 0;
5050}
5051
5052/**
5053 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5054 * @sp : private member of the device structure, which is a pointer to the
5055 * s2io_nic structure.
20346722 5056 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5057 * containing all relevant information.
5058 * @data_buf ; user defined value to be written into Eeprom.
5059 * Description:
5060 * Tries to write the user provided value in the Eeprom, at the offset
5061 * given by the user.
5062 * Return value:
5063 * 0 on success, -EFAULT on failure.
5064 */
5065
5066static int s2io_ethtool_seeprom(struct net_device *dev,
5067 struct ethtool_eeprom *eeprom,
5068 u8 * data_buf)
5069{
5070 int len = eeprom->len, cnt = 0;
ad4ebed0 5071 u64 valid = 0, data;
1ee6dd77 5072 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5073
5074 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5075 DBG_PRINT(ERR_DBG,
5076 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5077 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5078 eeprom->magic);
5079 return -EFAULT;
5080 }
5081
5082 while (len) {
5083 data = (u32) data_buf[cnt] & 0x000000FF;
5084 if (data) {
5085 valid = (u32) (data << 24);
5086 } else
5087 valid = data;
5088
5089 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5090 DBG_PRINT(ERR_DBG,
5091 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5092 DBG_PRINT(ERR_DBG,
5093 "write into the specified offset\n");
5094 return -EFAULT;
5095 }
5096 cnt++;
5097 len--;
5098 }
5099
5100 return 0;
5101}
5102
5103/**
20346722
K
5104 * s2io_register_test - reads and writes into all clock domains.
5105 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5106 * s2io_nic structure.
5107 * @data : variable that returns the result of each of the test conducted b
5108 * by the driver.
5109 * Description:
5110 * Read and write into all clock domains. The NIC has 3 clock domains,
5111 * see that registers in all the three regions are accessible.
5112 * Return value:
5113 * 0 on success.
5114 */
5115
1ee6dd77 5116static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5117{
1ee6dd77 5118 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5119 u64 val64 = 0, exp_val;
1da177e4
LT
5120 int fail = 0;
5121
20346722
K
5122 val64 = readq(&bar0->pif_rd_swapper_fb);
5123 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5124 fail = 1;
5125 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5126 }
5127
5128 val64 = readq(&bar0->rmac_pause_cfg);
5129 if (val64 != 0xc000ffff00000000ULL) {
5130 fail = 1;
5131 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5132 }
5133
5134 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5135 if (sp->device_type == XFRAME_II_DEVICE)
5136 exp_val = 0x0404040404040404ULL;
5137 else
5138 exp_val = 0x0808080808080808ULL;
5139 if (val64 != exp_val) {
1da177e4
LT
5140 fail = 1;
5141 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5142 }
5143
5144 val64 = readq(&bar0->xgxs_efifo_cfg);
5145 if (val64 != 0x000000001923141EULL) {
5146 fail = 1;
5147 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5148 }
5149
5150 val64 = 0x5A5A5A5A5A5A5A5AULL;
5151 writeq(val64, &bar0->xmsi_data);
5152 val64 = readq(&bar0->xmsi_data);
5153 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5154 fail = 1;
5155 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5156 }
5157
5158 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5159 writeq(val64, &bar0->xmsi_data);
5160 val64 = readq(&bar0->xmsi_data);
5161 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5162 fail = 1;
5163 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5164 }
5165
5166 *data = fail;
ad4ebed0 5167 return fail;
1da177e4
LT
5168}
5169
5170/**
20346722 5171 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5172 * @sp : private member of the device structure, which is a pointer to the
5173 * s2io_nic structure.
5174 * @data:variable that returns the result of each of the test conducted by
5175 * the driver.
5176 * Description:
20346722 5177 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5178 * register.
5179 * Return value:
5180 * 0 on success.
5181 */
5182
1ee6dd77 5183static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5184{
5185 int fail = 0;
ad4ebed0 5186 u64 ret_data, org_4F0, org_7F0;
5187 u8 saved_4F0 = 0, saved_7F0 = 0;
5188 struct net_device *dev = sp->dev;
1da177e4
LT
5189
5190 /* Test Write Error at offset 0 */
ad4ebed0 5191 /* Note that SPI interface allows write access to all areas
5192 * of EEPROM. Hence doing all negative testing only for Xframe I.
5193 */
5194 if (sp->device_type == XFRAME_I_DEVICE)
5195 if (!write_eeprom(sp, 0, 0, 3))
5196 fail = 1;
5197
5198 /* Save current values at offsets 0x4F0 and 0x7F0 */
5199 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5200 saved_4F0 = 1;
5201 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5202 saved_7F0 = 1;
1da177e4
LT
5203
5204 /* Test Write at offset 4f0 */
ad4ebed0 5205 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5206 fail = 1;
5207 if (read_eeprom(sp, 0x4F0, &ret_data))
5208 fail = 1;
5209
ad4ebed0 5210 if (ret_data != 0x012345) {
26b7625c
AM
5211 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5212 "Data written %llx Data read %llx\n",
5213 dev->name, (unsigned long long)0x12345,
5214 (unsigned long long)ret_data);
1da177e4 5215 fail = 1;
ad4ebed0 5216 }
1da177e4
LT
5217
5218 /* Reset the EEPROM data go FFFF */
ad4ebed0 5219 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5220
5221 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5222 if (sp->device_type == XFRAME_I_DEVICE)
5223 if (!write_eeprom(sp, 0x07C, 0, 3))
5224 fail = 1;
1da177e4 5225
ad4ebed0 5226 /* Test Write Request at offset 0x7f0 */
5227 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5228 fail = 1;
ad4ebed0 5229 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5230 fail = 1;
5231
ad4ebed0 5232 if (ret_data != 0x012345) {
26b7625c
AM
5233 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5234 "Data written %llx Data read %llx\n",
5235 dev->name, (unsigned long long)0x12345,
5236 (unsigned long long)ret_data);
1da177e4 5237 fail = 1;
ad4ebed0 5238 }
1da177e4
LT
5239
5240 /* Reset the EEPROM data go FFFF */
ad4ebed0 5241 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5242
ad4ebed0 5243 if (sp->device_type == XFRAME_I_DEVICE) {
5244 /* Test Write Error at offset 0x80 */
5245 if (!write_eeprom(sp, 0x080, 0, 3))
5246 fail = 1;
1da177e4 5247
ad4ebed0 5248 /* Test Write Error at offset 0xfc */
5249 if (!write_eeprom(sp, 0x0FC, 0, 3))
5250 fail = 1;
1da177e4 5251
ad4ebed0 5252 /* Test Write Error at offset 0x100 */
5253 if (!write_eeprom(sp, 0x100, 0, 3))
5254 fail = 1;
1da177e4 5255
ad4ebed0 5256 /* Test Write Error at offset 4ec */
5257 if (!write_eeprom(sp, 0x4EC, 0, 3))
5258 fail = 1;
5259 }
5260
5261 /* Restore values at offsets 0x4F0 and 0x7F0 */
5262 if (saved_4F0)
5263 write_eeprom(sp, 0x4F0, org_4F0, 3);
5264 if (saved_7F0)
5265 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5266
5267 *data = fail;
ad4ebed0 5268 return fail;
1da177e4
LT
5269}
5270
5271/**
5272 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5273 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5274 * s2io_nic structure.
20346722 5275 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5276 * the driver.
5277 * Description:
5278 * This invokes the MemBist test of the card. We give around
5279 * 2 secs time for the Test to complete. If it's still not complete
20346722 5280 * within this peiod, we consider that the test failed.
1da177e4
LT
5281 * Return value:
5282 * 0 on success and -1 on failure.
5283 */
5284
1ee6dd77 5285static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5286{
5287 u8 bist = 0;
5288 int cnt = 0, ret = -1;
5289
5290 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5291 bist |= PCI_BIST_START;
5292 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5293
5294 while (cnt < 20) {
5295 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5296 if (!(bist & PCI_BIST_START)) {
5297 *data = (bist & PCI_BIST_CODE_MASK);
5298 ret = 0;
5299 break;
5300 }
5301 msleep(100);
5302 cnt++;
5303 }
5304
5305 return ret;
5306}
5307
5308/**
20346722
K
5309 * s2io-link_test - verifies the link state of the nic
5310 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5311 * s2io_nic structure.
5312 * @data: variable that returns the result of each of the test conducted by
5313 * the driver.
5314 * Description:
20346722 5315 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5316 * argument 'data' appropriately.
5317 * Return value:
5318 * 0 on success.
5319 */
5320
1ee6dd77 5321static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5322{
1ee6dd77 5323 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5324 u64 val64;
5325
5326 val64 = readq(&bar0->adapter_status);
c92ca04b 5327 if(!(LINK_IS_UP(val64)))
1da177e4 5328 *data = 1;
c92ca04b
AR
5329 else
5330 *data = 0;
1da177e4 5331
b41477f3 5332 return *data;
1da177e4
LT
5333}
5334
5335/**
20346722
K
5336 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5337 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5338 * s2io_nic structure.
20346722 5339 * @data - variable that returns the result of each of the test
1da177e4
LT
5340 * conducted by the driver.
5341 * Description:
20346722 5342 * This is one of the offline test that tests the read and write
1da177e4
LT
5343 * access to the RldRam chip on the NIC.
5344 * Return value:
5345 * 0 on success.
5346 */
5347
1ee6dd77 5348static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5349{
1ee6dd77 5350 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5351 u64 val64;
ad4ebed0 5352 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5353
5354 val64 = readq(&bar0->adapter_control);
5355 val64 &= ~ADAPTER_ECC_EN;
5356 writeq(val64, &bar0->adapter_control);
5357
5358 val64 = readq(&bar0->mc_rldram_test_ctrl);
5359 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5360 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5361
5362 val64 = readq(&bar0->mc_rldram_mrs);
5363 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5364 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5365
5366 val64 |= MC_RLDRAM_MRS_ENABLE;
5367 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5368
5369 while (iteration < 2) {
5370 val64 = 0x55555555aaaa0000ULL;
5371 if (iteration == 1) {
5372 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5373 }
5374 writeq(val64, &bar0->mc_rldram_test_d0);
5375
5376 val64 = 0xaaaa5a5555550000ULL;
5377 if (iteration == 1) {
5378 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5379 }
5380 writeq(val64, &bar0->mc_rldram_test_d1);
5381
5382 val64 = 0x55aaaaaaaa5a0000ULL;
5383 if (iteration == 1) {
5384 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5385 }
5386 writeq(val64, &bar0->mc_rldram_test_d2);
5387
ad4ebed0 5388 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5389 writeq(val64, &bar0->mc_rldram_test_add);
5390
ad4ebed0 5391 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5392 MC_RLDRAM_TEST_GO;
5393 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5394
5395 for (cnt = 0; cnt < 5; cnt++) {
5396 val64 = readq(&bar0->mc_rldram_test_ctrl);
5397 if (val64 & MC_RLDRAM_TEST_DONE)
5398 break;
5399 msleep(200);
5400 }
5401
5402 if (cnt == 5)
5403 break;
5404
ad4ebed0 5405 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5406 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5407
5408 for (cnt = 0; cnt < 5; cnt++) {
5409 val64 = readq(&bar0->mc_rldram_test_ctrl);
5410 if (val64 & MC_RLDRAM_TEST_DONE)
5411 break;
5412 msleep(500);
5413 }
5414
5415 if (cnt == 5)
5416 break;
5417
5418 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5419 if (!(val64 & MC_RLDRAM_TEST_PASS))
5420 test_fail = 1;
1da177e4
LT
5421
5422 iteration++;
5423 }
5424
ad4ebed0 5425 *data = test_fail;
1da177e4 5426
ad4ebed0 5427 /* Bring the adapter out of test mode */
5428 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5429
5430 return test_fail;
1da177e4
LT
5431}
5432
5433/**
5434 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5435 * @sp : private member of the device structure, which is a pointer to the
5436 * s2io_nic structure.
5437 * @ethtest : pointer to a ethtool command specific structure that will be
5438 * returned to the user.
20346722 5439 * @data : variable that returns the result of each of the test
1da177e4
LT
5440 * conducted by the driver.
5441 * Description:
5442 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5443 * the health of the card.
5444 * Return value:
5445 * void
5446 */
5447
5448static void s2io_ethtool_test(struct net_device *dev,
5449 struct ethtool_test *ethtest,
5450 uint64_t * data)
5451{
1ee6dd77 5452 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5453 int orig_state = netif_running(sp->dev);
5454
5455 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5456 /* Offline Tests. */
20346722 5457 if (orig_state)
1da177e4 5458 s2io_close(sp->dev);
1da177e4
LT
5459
5460 if (s2io_register_test(sp, &data[0]))
5461 ethtest->flags |= ETH_TEST_FL_FAILED;
5462
5463 s2io_reset(sp);
1da177e4
LT
5464
5465 if (s2io_rldram_test(sp, &data[3]))
5466 ethtest->flags |= ETH_TEST_FL_FAILED;
5467
5468 s2io_reset(sp);
1da177e4
LT
5469
5470 if (s2io_eeprom_test(sp, &data[1]))
5471 ethtest->flags |= ETH_TEST_FL_FAILED;
5472
5473 if (s2io_bist_test(sp, &data[4]))
5474 ethtest->flags |= ETH_TEST_FL_FAILED;
5475
5476 if (orig_state)
5477 s2io_open(sp->dev);
5478
5479 data[2] = 0;
5480 } else {
5481 /* Online Tests. */
5482 if (!orig_state) {
5483 DBG_PRINT(ERR_DBG,
5484 "%s: is not up, cannot run test\n",
5485 dev->name);
5486 data[0] = -1;
5487 data[1] = -1;
5488 data[2] = -1;
5489 data[3] = -1;
5490 data[4] = -1;
5491 }
5492
5493 if (s2io_link_test(sp, &data[2]))
5494 ethtest->flags |= ETH_TEST_FL_FAILED;
5495
5496 data[0] = 0;
5497 data[1] = 0;
5498 data[3] = 0;
5499 data[4] = 0;
5500 }
5501}
5502
5503static void s2io_get_ethtool_stats(struct net_device *dev,
5504 struct ethtool_stats *estats,
5505 u64 * tmp_stats)
5506{
5507 int i = 0;
1ee6dd77
RB
5508 struct s2io_nic *sp = dev->priv;
5509 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5510
7ba013ac 5511 s2io_updt_stats(sp);
541ae68f
K
5512 tmp_stats[i++] =
5513 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5514 le32_to_cpu(stat_info->tmac_frms);
5515 tmp_stats[i++] =
5516 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5517 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5518 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5519 tmp_stats[i++] =
5520 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5521 le32_to_cpu(stat_info->tmac_mcst_frms);
5522 tmp_stats[i++] =
5523 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5524 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5525 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5528 le32_to_cpu(stat_info->tmac_ttl_octets);
5529 tmp_stats[i++] =
5530 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->tmac_ucst_frms);
5532 tmp_stats[i++] =
5533 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5535 tmp_stats[i++] =
5536 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5537 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5538 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5539 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5540 tmp_stats[i++] =
5541 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5542 le32_to_cpu(stat_info->tmac_vld_ip);
5543 tmp_stats[i++] =
5544 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5545 le32_to_cpu(stat_info->tmac_drop_ip);
5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5548 le32_to_cpu(stat_info->tmac_icmp);
5549 tmp_stats[i++] =
5550 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5551 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5552 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5553 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5554 le32_to_cpu(stat_info->tmac_udp);
5555 tmp_stats[i++] =
5556 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5557 le32_to_cpu(stat_info->rmac_vld_frms);
5558 tmp_stats[i++] =
5559 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5560 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5561 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5562 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5563 tmp_stats[i++] =
5564 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5565 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5566 tmp_stats[i++] =
5567 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5568 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5569 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5570 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5571 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5574 tmp_stats[i++] =
5575 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5576 le32_to_cpu(stat_info->rmac_ttl_octets);
5577 tmp_stats[i++] =
5578 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5579 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5580 tmp_stats[i++] =
5581 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5582 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5583 tmp_stats[i++] =
5584 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5585 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5586 tmp_stats[i++] =
5587 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5588 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5589 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5590 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5591 tmp_stats[i++] =
5592 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5593 le32_to_cpu(stat_info->rmac_usized_frms);
5594 tmp_stats[i++] =
5595 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5596 le32_to_cpu(stat_info->rmac_osized_frms);
5597 tmp_stats[i++] =
5598 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5599 le32_to_cpu(stat_info->rmac_frag_frms);
5600 tmp_stats[i++] =
5601 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5602 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5603 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5604 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5605 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5607 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5608 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5609 tmp_stats[i++] =
5610 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5611 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5612 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5613 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5614 tmp_stats[i++] =
5615 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5616 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5617 tmp_stats[i++] =
5618 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5619 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5621 tmp_stats[i++] =
5622 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5623 le32_to_cpu(stat_info->rmac_udp);
5624 tmp_stats[i++] =
5625 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5626 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5627 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5628 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5629 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5630 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5631 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5632 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5633 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5634 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5635 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5636 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5637 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5638 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5639 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5640 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5641 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5642 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5643 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5644 tmp_stats[i++] =
5645 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5646 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5647 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5649 tmp_stats[i++] =
5650 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5651 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5652 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5653 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5654 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5655 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5656 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5657 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5658 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5659 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5660 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5661 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5662 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5663 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5664 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5665 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5666 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5667 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5668 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
5671
5672 /* Enhanced statistics exist only for Hercules */
5673 if(sp->device_type == XFRAME_II_DEVICE) {
5674 tmp_stats[i++] =
5675 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5676 tmp_stats[i++] =
5677 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5678 tmp_stats[i++] =
5679 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5680 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5681 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5682 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5683 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5684 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5685 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5686 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5687 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5688 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5689 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5690 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5691 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5692 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5693 }
5694
7ba013ac
K
5695 tmp_stats[i++] = 0;
5696 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5697 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5698 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5699 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5700 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5701 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5702 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5703 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5704 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5705 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5706 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5707 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5708 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5709 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5710 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5711 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5712 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5713 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5714 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5715 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5716 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5717 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5718 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5719 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5720 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5721 int count = 0;
6aa20a22 5722 /*
bd1034f0
AR
5723 * Since 64-bit divide does not work on all platforms,
5724 * do repeated subtraction.
5725 */
5726 while (tmp >= stat_info->sw_stat.num_aggregations) {
5727 tmp -= stat_info->sw_stat.num_aggregations;
5728 count++;
5729 }
5730 tmp_stats[i++] = count;
fe931395 5731 }
bd1034f0
AR
5732 else
5733 tmp_stats[i++] = 0;
1da177e4
LT
5734}
5735
ac1f60db 5736static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5737{
5738 return (XENA_REG_SPACE);
5739}
5740
5741
ac1f60db 5742static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5743{
1ee6dd77 5744 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5745
5746 return (sp->rx_csum);
5747}
ac1f60db
AB
5748
5749static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5750{
1ee6dd77 5751 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5752
5753 if (data)
5754 sp->rx_csum = 1;
5755 else
5756 sp->rx_csum = 0;
5757
5758 return 0;
5759}
ac1f60db
AB
5760
5761static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5762{
5763 return (XENA_EEPROM_SPACE);
5764}
5765
ac1f60db 5766static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5767{
5768 return (S2IO_TEST_LEN);
5769}
ac1f60db
AB
5770
5771static void s2io_ethtool_get_strings(struct net_device *dev,
5772 u32 stringset, u8 * data)
1da177e4 5773{
fa1f0cb3
SS
5774 int stat_size = 0;
5775 struct s2io_nic *sp = dev->priv;
5776
1da177e4
LT
5777 switch (stringset) {
5778 case ETH_SS_TEST:
5779 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5780 break;
5781 case ETH_SS_STATS:
fa1f0cb3
SS
5782 stat_size = sizeof(ethtool_xena_stats_keys);
5783 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5784 if(sp->device_type == XFRAME_II_DEVICE) {
5785 memcpy(data + stat_size,
5786 &ethtool_enhanced_stats_keys,
5787 sizeof(ethtool_enhanced_stats_keys));
5788 stat_size += sizeof(ethtool_enhanced_stats_keys);
5789 }
5790
5791 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5792 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
5793 }
5794}
1da177e4
LT
5795static int s2io_ethtool_get_stats_count(struct net_device *dev)
5796{
fa1f0cb3
SS
5797 struct s2io_nic *sp = dev->priv;
5798 int stat_count = 0;
5799 switch(sp->device_type) {
5800 case XFRAME_I_DEVICE:
5801 stat_count = XFRAME_I_STAT_LEN;
5802 break;
5803
5804 case XFRAME_II_DEVICE:
5805 stat_count = XFRAME_II_STAT_LEN;
5806 break;
5807 }
5808
5809 return stat_count;
1da177e4
LT
5810}
5811
ac1f60db 5812static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5813{
5814 if (data)
5815 dev->features |= NETIF_F_IP_CSUM;
5816 else
5817 dev->features &= ~NETIF_F_IP_CSUM;
5818
5819 return 0;
5820}
5821
75c30b13
AR
5822static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5823{
5824 return (dev->features & NETIF_F_TSO) != 0;
5825}
5826static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5827{
5828 if (data)
5829 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5830 else
5831 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5832
5833 return 0;
5834}
1da177e4 5835
7282d491 5836static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
5837 .get_settings = s2io_ethtool_gset,
5838 .set_settings = s2io_ethtool_sset,
5839 .get_drvinfo = s2io_ethtool_gdrvinfo,
5840 .get_regs_len = s2io_ethtool_get_regs_len,
5841 .get_regs = s2io_ethtool_gregs,
5842 .get_link = ethtool_op_get_link,
5843 .get_eeprom_len = s2io_get_eeprom_len,
5844 .get_eeprom = s2io_ethtool_geeprom,
5845 .set_eeprom = s2io_ethtool_seeprom,
5846 .get_pauseparam = s2io_ethtool_getpause_data,
5847 .set_pauseparam = s2io_ethtool_setpause_data,
5848 .get_rx_csum = s2io_ethtool_get_rx_csum,
5849 .set_rx_csum = s2io_ethtool_set_rx_csum,
5850 .get_tx_csum = ethtool_op_get_tx_csum,
5851 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5852 .get_sg = ethtool_op_get_sg,
5853 .set_sg = ethtool_op_set_sg,
75c30b13
AR
5854 .get_tso = s2io_ethtool_op_get_tso,
5855 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
5856 .get_ufo = ethtool_op_get_ufo,
5857 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5858 .self_test_count = s2io_ethtool_self_test_count,
5859 .self_test = s2io_ethtool_test,
5860 .get_strings = s2io_ethtool_get_strings,
5861 .phys_id = s2io_ethtool_idnic,
5862 .get_stats_count = s2io_ethtool_get_stats_count,
5863 .get_ethtool_stats = s2io_get_ethtool_stats
5864};
5865
5866/**
20346722 5867 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5868 * @dev : Device pointer.
5869 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5870 * a proprietary structure used to pass information to the driver.
5871 * @cmd : This is used to distinguish between the different commands that
5872 * can be passed to the IOCTL functions.
5873 * Description:
20346722
K
5874 * Currently there are no special functionality supported in IOCTL, hence
5875 * function always return EOPNOTSUPPORTED
1da177e4
LT
5876 */
5877
ac1f60db 5878static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5879{
5880 return -EOPNOTSUPP;
5881}
5882
5883/**
5884 * s2io_change_mtu - entry point to change MTU size for the device.
5885 * @dev : device pointer.
5886 * @new_mtu : the new MTU size for the device.
5887 * Description: A driver entry point to change MTU size for the device.
5888 * Before changing the MTU the device must be stopped.
5889 * Return value:
5890 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5891 * file on failure.
5892 */
5893
ac1f60db 5894static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 5895{
1ee6dd77 5896 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5897
5898 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5899 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5900 dev->name);
5901 return -EPERM;
5902 }
5903
1da177e4 5904 dev->mtu = new_mtu;
d8892c6e 5905 if (netif_running(dev)) {
e6a8fee2 5906 s2io_card_down(sp);
d8892c6e
K
5907 netif_stop_queue(dev);
5908 if (s2io_card_up(sp)) {
5909 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5910 __FUNCTION__);
5911 }
5912 if (netif_queue_stopped(dev))
5913 netif_wake_queue(dev);
5914 } else { /* Device is down */
1ee6dd77 5915 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
5916 u64 val64 = new_mtu;
5917
5918 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5919 }
1da177e4
LT
5920
5921 return 0;
5922}
5923
5924/**
5925 * s2io_tasklet - Bottom half of the ISR.
5926 * @dev_adr : address of the device structure in dma_addr_t format.
5927 * Description:
5928 * This is the tasklet or the bottom half of the ISR. This is
20346722 5929 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5930 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5931 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5932 * replenish the Rx buffers in the Rx buffer descriptors.
5933 * Return value:
5934 * void.
5935 */
5936
5937static void s2io_tasklet(unsigned long dev_addr)
5938{
5939 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 5940 struct s2io_nic *sp = dev->priv;
1da177e4 5941 int i, ret;
1ee6dd77 5942 struct mac_info *mac_control;
1da177e4
LT
5943 struct config_param *config;
5944
5945 mac_control = &sp->mac_control;
5946 config = &sp->config;
5947
5948 if (!TASKLET_IN_USE) {
5949 for (i = 0; i < config->rx_ring_num; i++) {
5950 ret = fill_rx_buffers(sp, i);
5951 if (ret == -ENOMEM) {
5952 DBG_PRINT(ERR_DBG, "%s: Out of ",
5953 dev->name);
5954 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5955 break;
5956 } else if (ret == -EFILL) {
5957 DBG_PRINT(ERR_DBG,
5958 "%s: Rx Ring %d is full\n",
5959 dev->name, i);
5960 break;
5961 }
5962 }
5963 clear_bit(0, (&sp->tasklet_status));
5964 }
5965}
5966
5967/**
5968 * s2io_set_link - Set the LInk status
5969 * @data: long pointer to device private structue
5970 * Description: Sets the link status for the adapter
5971 */
5972
c4028958 5973static void s2io_set_link(struct work_struct *work)
1da177e4 5974{
1ee6dd77 5975 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 5976 struct net_device *dev = nic->dev;
1ee6dd77 5977 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
5978 register u64 val64;
5979 u16 subid;
5980
22747d6b
FR
5981 rtnl_lock();
5982
5983 if (!netif_running(dev))
5984 goto out_unlock;
5985
1da177e4
LT
5986 if (test_and_set_bit(0, &(nic->link_state))) {
5987 /* The card is being reset, no point doing anything */
22747d6b 5988 goto out_unlock;
1da177e4
LT
5989 }
5990
5991 subid = nic->pdev->subsystem_device;
a371a07d
K
5992 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5993 /*
5994 * Allow a small delay for the NICs self initiated
5995 * cleanup to complete.
5996 */
5997 msleep(100);
5998 }
1da177e4
LT
5999
6000 val64 = readq(&bar0->adapter_status);
19a60522
SS
6001 if (LINK_IS_UP(val64)) {
6002 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6003 if (verify_xena_quiescence(nic)) {
6004 val64 = readq(&bar0->adapter_control);
6005 val64 |= ADAPTER_CNTL_EN;
1da177e4 6006 writeq(val64, &bar0->adapter_control);
19a60522
SS
6007 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6008 nic->device_type, subid)) {
6009 val64 = readq(&bar0->gpio_control);
6010 val64 |= GPIO_CTRL_GPIO_0;
6011 writeq(val64, &bar0->gpio_control);
6012 val64 = readq(&bar0->gpio_control);
6013 } else {
6014 val64 |= ADAPTER_LED_ON;
6015 writeq(val64, &bar0->adapter_control);
a371a07d 6016 }
1da177e4 6017 nic->device_enabled_once = TRUE;
19a60522
SS
6018 } else {
6019 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6020 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6021 netif_stop_queue(dev);
1da177e4 6022 }
19a60522
SS
6023 }
6024 val64 = readq(&bar0->adapter_status);
6025 if (!LINK_IS_UP(val64)) {
6026 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6027 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6028 DBG_PRINT(ERR_DBG, "device \n");
6029 } else
1da177e4 6030 s2io_link(nic, LINK_UP);
19a60522
SS
6031 } else {
6032 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6033 subid)) {
6034 val64 = readq(&bar0->gpio_control);
6035 val64 &= ~GPIO_CTRL_GPIO_0;
6036 writeq(val64, &bar0->gpio_control);
6037 val64 = readq(&bar0->gpio_control);
1da177e4 6038 }
19a60522 6039 s2io_link(nic, LINK_DOWN);
1da177e4
LT
6040 }
6041 clear_bit(0, &(nic->link_state));
22747d6b
FR
6042
6043out_unlock:
d8d70caf 6044 rtnl_unlock();
1da177e4
LT
6045}
6046
1ee6dd77
RB
6047static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6048 struct buffAdd *ba,
6049 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6050 u64 *temp2, int size)
5d3213cc
AR
6051{
6052 struct net_device *dev = sp->dev;
6053 struct sk_buff *frag_list;
6054
6055 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6056 /* allocate skb */
6057 if (*skb) {
6058 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6059 /*
6060 * As Rx frame are not going to be processed,
6061 * using same mapped address for the Rxd
6062 * buffer pointer
6063 */
1ee6dd77 6064 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5d3213cc
AR
6065 } else {
6066 *skb = dev_alloc_skb(size);
6067 if (!(*skb)) {
6068 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6069 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6070 return -ENOMEM ;
6071 }
6072 /* storing the mapped addr in a temp variable
6073 * such it will be used for next rxd whose
6074 * Host Control is NULL
6075 */
1ee6dd77 6076 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6077 pci_map_single( sp->pdev, (*skb)->data,
6078 size - NET_IP_ALIGN,
6079 PCI_DMA_FROMDEVICE);
6080 rxdp->Host_Control = (unsigned long) (*skb);
6081 }
6082 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6083 /* Two buffer Mode */
6084 if (*skb) {
1ee6dd77
RB
6085 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6086 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6087 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5d3213cc
AR
6088 } else {
6089 *skb = dev_alloc_skb(size);
2ceaac75
DR
6090 if (!(*skb)) {
6091 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
19a60522 6092 dev->name);
2ceaac75
DR
6093 return -ENOMEM;
6094 }
1ee6dd77 6095 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6096 pci_map_single(sp->pdev, (*skb)->data,
6097 dev->mtu + 4,
6098 PCI_DMA_FROMDEVICE);
1ee6dd77 6099 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6100 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6101 PCI_DMA_FROMDEVICE);
6102 rxdp->Host_Control = (unsigned long) (*skb);
6103
6104 /* Buffer-1 will be dummy buffer not used */
1ee6dd77 6105 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6106 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6107 PCI_DMA_FROMDEVICE);
6108 }
6109 } else if ((rxdp->Host_Control == 0)) {
6110 /* Three buffer mode */
6111 if (*skb) {
1ee6dd77
RB
6112 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6113 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6114 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5d3213cc
AR
6115 } else {
6116 *skb = dev_alloc_skb(size);
2ceaac75
DR
6117 if (!(*skb)) {
6118 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6119 dev->name);
6120 return -ENOMEM;
6121 }
1ee6dd77 6122 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6123 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6124 PCI_DMA_FROMDEVICE);
6125 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 6126 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6127 pci_map_single( sp->pdev, (*skb)->data,
6128 l3l4hdr_size + 4,
6129 PCI_DMA_FROMDEVICE);
6130 /*
6131 * skb_shinfo(skb)->frag_list will have L4
6132 * data payload
6133 */
6134 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6135 ALIGN_SIZE);
6136 if (skb_shinfo(*skb)->frag_list == NULL) {
6137 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6138 failed\n ", dev->name);
6139 return -ENOMEM ;
6140 }
6141 frag_list = skb_shinfo(*skb)->frag_list;
6142 frag_list->next = NULL;
6143 /*
6144 * Buffer-2 receives L4 data payload
6145 */
1ee6dd77 6146 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6147 pci_map_single( sp->pdev, frag_list->data,
6148 dev->mtu, PCI_DMA_FROMDEVICE);
6149 }
6150 }
6151 return 0;
6152}
1ee6dd77
RB
6153static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6154 int size)
5d3213cc
AR
6155{
6156 struct net_device *dev = sp->dev;
6157 if (sp->rxd_mode == RXD_MODE_1) {
6158 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6159 } else if (sp->rxd_mode == RXD_MODE_3B) {
6160 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6161 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6162 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6163 } else {
6164 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6165 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6166 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6167 }
6168}
6169
1ee6dd77 6170static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6171{
6172 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6173 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6174 struct config_param *config = &sp->config;
6175 struct net_device *dev = sp->dev;
1ee6dd77 6176 struct RxD_t *rxdp = NULL;
5d3213cc 6177 struct sk_buff *skb = NULL;
1ee6dd77 6178 struct buffAdd *ba = NULL;
5d3213cc
AR
6179 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6180
6181 /* Calculate the size based on ring mode */
6182 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6183 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6184 if (sp->rxd_mode == RXD_MODE_1)
6185 size += NET_IP_ALIGN;
6186 else if (sp->rxd_mode == RXD_MODE_3B)
6187 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6188 else
6189 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6190
6191 for (i = 0; i < config->rx_ring_num; i++) {
6192 blk_cnt = config->rx_cfg[i].num_rxd /
6193 (rxd_count[sp->rxd_mode] +1);
6194
6195 for (j = 0; j < blk_cnt; j++) {
6196 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6197 rxdp = mac_control->rings[i].
6198 rx_blocks[j].rxds[k].virt_addr;
6199 if(sp->rxd_mode >= RXD_MODE_3A)
6200 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6201 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6202 &skb,(u64 *)&temp0_64,
6203 (u64 *)&temp1_64,
ac1f90d6
SS
6204 (u64 *)&temp2_64,
6205 size) == ENOMEM) {
6206 return 0;
6207 }
5d3213cc
AR
6208
6209 set_rxd_buffer_size(sp, rxdp, size);
6210 wmb();
6211 /* flip the Ownership bit to Hardware */
6212 rxdp->Control_1 |= RXD_OWN_XENA;
6213 }
6214 }
6215 }
6216 return 0;
6217
6218}
6219
1ee6dd77 6220static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6221{
e6a8fee2 6222 int ret = 0;
c92ca04b 6223 struct net_device *dev = sp->dev;
e6a8fee2 6224 int err = 0;
1da177e4 6225
e6a8fee2
AR
6226 if (sp->intr_type == MSI)
6227 ret = s2io_enable_msi(sp);
6228 else if (sp->intr_type == MSI_X)
6229 ret = s2io_enable_msi_x(sp);
6230 if (ret) {
6231 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6232 sp->intr_type = INTA;
20346722 6233 }
1da177e4 6234
1ee6dd77 6235 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6236 store_xmsi_data(sp);
c92ca04b 6237
e6a8fee2
AR
6238 /* After proper initialization of H/W, register ISR */
6239 if (sp->intr_type == MSI) {
6240 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6241 IRQF_SHARED, sp->name, dev);
6242 if (err) {
6243 pci_disable_msi(sp->pdev);
6244 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6245 dev->name);
6246 return -1;
6247 }
6248 }
6249 if (sp->intr_type == MSI_X) {
fb6a825b 6250 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6251
e6a8fee2
AR
6252 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6253 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6254 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6255 dev->name, i);
6256 err = request_irq(sp->entries[i].vector,
6257 s2io_msix_fifo_handle, 0, sp->desc[i],
6258 sp->s2io_entries[i].arg);
fb6a825b
SS
6259 /* If either data or addr is zero print it */
6260 if(!(sp->msix_info[i].addr &&
6261 sp->msix_info[i].data)) {
6262 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6263 "Data:0x%lx\n",sp->desc[i],
6264 (unsigned long long)
6265 sp->msix_info[i].addr,
6266 (unsigned long)
6267 ntohl(sp->msix_info[i].data));
6268 } else {
6269 msix_tx_cnt++;
6270 }
e6a8fee2
AR
6271 } else {
6272 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6273 dev->name, i);
6274 err = request_irq(sp->entries[i].vector,
6275 s2io_msix_ring_handle, 0, sp->desc[i],
6276 sp->s2io_entries[i].arg);
fb6a825b
SS
6277 /* If either data or addr is zero print it */
6278 if(!(sp->msix_info[i].addr &&
6279 sp->msix_info[i].data)) {
6280 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6281 "Data:0x%lx\n",sp->desc[i],
6282 (unsigned long long)
6283 sp->msix_info[i].addr,
6284 (unsigned long)
6285 ntohl(sp->msix_info[i].data));
6286 } else {
6287 msix_rx_cnt++;
6288 }
c92ca04b 6289 }
e6a8fee2
AR
6290 if (err) {
6291 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6292 "failed\n", dev->name, i);
6293 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6294 return -1;
6295 }
6296 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6297 }
fb6a825b
SS
6298 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6299 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2
AR
6300 }
6301 if (sp->intr_type == INTA) {
6302 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6303 sp->name, dev);
6304 if (err) {
6305 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6306 dev->name);
6307 return -1;
6308 }
6309 }
6310 return 0;
6311}
1ee6dd77 6312static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6313{
6314 int cnt = 0;
6315 struct net_device *dev = sp->dev;
6316
6317 if (sp->intr_type == MSI_X) {
6318 int i;
6319 u16 msi_control;
6320
6321 for (i=1; (sp->s2io_entries[i].in_use ==
6322 MSIX_REGISTERED_SUCCESS); i++) {
6323 int vector = sp->entries[i].vector;
6324 void *arg = sp->s2io_entries[i].arg;
6325
6326 free_irq(vector, arg);
6327 }
6328 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6329 msi_control &= 0xFFFE; /* Disable MSI */
6330 pci_write_config_word(sp->pdev, 0x42, msi_control);
6331
6332 pci_disable_msix(sp->pdev);
6333 } else {
6334 free_irq(sp->pdev->irq, dev);
6335 if (sp->intr_type == MSI) {
6336 u16 val;
6337
6338 pci_disable_msi(sp->pdev);
6339 pci_read_config_word(sp->pdev, 0x4c, &val);
6340 val ^= 0x1;
6341 pci_write_config_word(sp->pdev, 0x4c, val);
c92ca04b
AR
6342 }
6343 }
6344 /* Waiting till all Interrupt handlers are complete */
6345 cnt = 0;
6346 do {
6347 msleep(10);
6348 if (!atomic_read(&sp->isr_cnt))
6349 break;
6350 cnt++;
6351 } while(cnt < 5);
e6a8fee2
AR
6352}
6353
1ee6dd77 6354static void s2io_card_down(struct s2io_nic * sp)
e6a8fee2
AR
6355{
6356 int cnt = 0;
1ee6dd77 6357 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6358 unsigned long flags;
6359 register u64 val64 = 0;
6360
6361 del_timer_sync(&sp->alarm_timer);
6362 /* If s2io_set_link task is executing, wait till it completes. */
6363 while (test_and_set_bit(0, &(sp->link_state))) {
6364 msleep(50);
6365 }
6366 atomic_set(&sp->card_state, CARD_DOWN);
6367
6368 /* disable Tx and Rx traffic on the NIC */
6369 stop_nic(sp);
6370
6371 s2io_rem_isr(sp);
1da177e4
LT
6372
6373 /* Kill tasklet. */
6374 tasklet_kill(&sp->task);
6375
6376 /* Check if the device is Quiescent and then Reset the NIC */
6377 do {
5d3213cc
AR
6378 /* As per the HW requirement we need to replenish the
6379 * receive buffer to avoid the ring bump. Since there is
6380 * no intention of processing the Rx frame at this pointwe are
6381 * just settting the ownership bit of rxd in Each Rx
6382 * ring to HW and set the appropriate buffer size
6383 * based on the ring mode
6384 */
6385 rxd_owner_bit_reset(sp);
6386
1da177e4 6387 val64 = readq(&bar0->adapter_status);
19a60522
SS
6388 if (verify_xena_quiescence(sp)) {
6389 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6390 break;
6391 }
6392
6393 msleep(50);
6394 cnt++;
6395 if (cnt == 10) {
6396 DBG_PRINT(ERR_DBG,
6397 "s2io_close:Device not Quiescent ");
6398 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6399 (unsigned long long) val64);
6400 break;
6401 }
6402 } while (1);
1da177e4
LT
6403 s2io_reset(sp);
6404
7ba013ac
K
6405 spin_lock_irqsave(&sp->tx_lock, flags);
6406 /* Free all Tx buffers */
1da177e4 6407 free_tx_buffers(sp);
7ba013ac
K
6408 spin_unlock_irqrestore(&sp->tx_lock, flags);
6409
6410 /* Free all Rx buffers */
6411 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6412 free_rx_buffers(sp);
7ba013ac 6413 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6414
1da177e4
LT
6415 clear_bit(0, &(sp->link_state));
6416}
6417
1ee6dd77 6418static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6419{
cc6e7c44 6420 int i, ret = 0;
1ee6dd77 6421 struct mac_info *mac_control;
1da177e4
LT
6422 struct config_param *config;
6423 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6424 u16 interruptible;
1da177e4
LT
6425
6426 /* Initialize the H/W I/O registers */
6427 if (init_nic(sp) != 0) {
6428 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6429 dev->name);
e6a8fee2 6430 s2io_reset(sp);
1da177e4
LT
6431 return -ENODEV;
6432 }
6433
20346722
K
6434 /*
6435 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6436 * Rx ring and initializing buffers into 30 Rx blocks
6437 */
6438 mac_control = &sp->mac_control;
6439 config = &sp->config;
6440
6441 for (i = 0; i < config->rx_ring_num; i++) {
6442 if ((ret = fill_rx_buffers(sp, i))) {
6443 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6444 dev->name);
6445 s2io_reset(sp);
6446 free_rx_buffers(sp);
6447 return -ENOMEM;
6448 }
6449 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6450 atomic_read(&sp->rx_bufs_left[i]));
6451 }
19a60522
SS
6452 /* Maintain the state prior to the open */
6453 if (sp->promisc_flg)
6454 sp->promisc_flg = 0;
6455 if (sp->m_cast_flg) {
6456 sp->m_cast_flg = 0;
6457 sp->all_multi_pos= 0;
6458 }
1da177e4
LT
6459
6460 /* Setting its receive mode */
6461 s2io_set_multicast(dev);
6462
7d3d0439 6463 if (sp->lro) {
b41477f3 6464 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6465 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6466 /* Check if we can use(if specified) user provided value */
6467 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6468 sp->lro_max_aggr_per_sess = lro_max_pkts;
6469 }
6470
1da177e4
LT
6471 /* Enable Rx Traffic and interrupts on the NIC */
6472 if (start_nic(sp)) {
6473 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6474 s2io_reset(sp);
e6a8fee2
AR
6475 free_rx_buffers(sp);
6476 return -ENODEV;
6477 }
6478
6479 /* Add interrupt service routine */
6480 if (s2io_add_isr(sp) != 0) {
6481 if (sp->intr_type == MSI_X)
6482 s2io_rem_isr(sp);
6483 s2io_reset(sp);
1da177e4
LT
6484 free_rx_buffers(sp);
6485 return -ENODEV;
6486 }
6487
25fff88e
K
6488 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6489
e6a8fee2
AR
6490 /* Enable tasklet for the device */
6491 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6492
6493 /* Enable select interrupts */
6494 if (sp->intr_type != INTA)
6495 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6496 else {
6497 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6498 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6499 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6500 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6501 }
6502
6503
1da177e4
LT
6504 atomic_set(&sp->card_state, CARD_UP);
6505 return 0;
6506}
6507
20346722 6508/**
1da177e4
LT
6509 * s2io_restart_nic - Resets the NIC.
6510 * @data : long pointer to the device private structure
6511 * Description:
6512 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6513 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6514 * the run time of the watch dog routine which is run holding a
6515 * spin lock.
6516 */
6517
c4028958 6518static void s2io_restart_nic(struct work_struct *work)
1da177e4 6519{
1ee6dd77 6520 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6521 struct net_device *dev = sp->dev;
1da177e4 6522
22747d6b
FR
6523 rtnl_lock();
6524
6525 if (!netif_running(dev))
6526 goto out_unlock;
6527
e6a8fee2 6528 s2io_card_down(sp);
1da177e4
LT
6529 if (s2io_card_up(sp)) {
6530 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6531 dev->name);
6532 }
6533 netif_wake_queue(dev);
6534 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6535 dev->name);
22747d6b
FR
6536out_unlock:
6537 rtnl_unlock();
1da177e4
LT
6538}
6539
20346722
K
6540/**
6541 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6542 * @dev : Pointer to net device structure
6543 * Description:
6544 * This function is triggered if the Tx Queue is stopped
6545 * for a pre-defined amount of time when the Interface is still up.
6546 * If the Interface is jammed in such a situation, the hardware is
6547 * reset (by s2io_close) and restarted again (by s2io_open) to
6548 * overcome any problem that might have been caused in the hardware.
6549 * Return value:
6550 * void
6551 */
6552
6553static void s2io_tx_watchdog(struct net_device *dev)
6554{
1ee6dd77 6555 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6556
6557 if (netif_carrier_ok(dev)) {
6558 schedule_work(&sp->rst_timer_task);
bd1034f0 6559 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6560 }
6561}
6562
6563/**
6564 * rx_osm_handler - To perform some OS related operations on SKB.
6565 * @sp: private member of the device structure,pointer to s2io_nic structure.
6566 * @skb : the socket buffer pointer.
6567 * @len : length of the packet
6568 * @cksum : FCS checksum of the frame.
6569 * @ring_no : the ring from which this RxD was extracted.
20346722 6570 * Description:
b41477f3 6571 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6572 * some OS related operations on the SKB before passing it to the upper
6573 * layers. It mainly checks if the checksum is OK, if so adds it to the
6574 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6575 * to the upper layer. If the checksum is wrong, it increments the Rx
6576 * packet error count, frees the SKB and returns error.
6577 * Return value:
6578 * SUCCESS on success and -1 on failure.
6579 */
1ee6dd77 6580static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6581{
1ee6dd77 6582 struct s2io_nic *sp = ring_data->nic;
1da177e4 6583 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6584 struct sk_buff *skb = (struct sk_buff *)
6585 ((unsigned long) rxdp->Host_Control);
6586 int ring_no = ring_data->ring_no;
1da177e4 6587 u16 l3_csum, l4_csum;
863c11a9 6588 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6589 struct lro *lro;
da6971d8 6590
20346722 6591 skb->dev = dev;
c92ca04b 6592
863c11a9 6593 if (err) {
bd1034f0
AR
6594 /* Check for parity error */
6595 if (err & 0x1) {
6596 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6597 }
6598
863c11a9
AR
6599 /*
6600 * Drop the packet if bad transfer code. Exception being
6601 * 0x5, which could be due to unsupported IPv6 extension header.
6602 * In this case, we let stack handle the packet.
6603 * Note that in this case, since checksum will be incorrect,
6604 * stack will validate the same.
6605 */
6606 if (err && ((err >> 48) != 0x5)) {
6607 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6608 dev->name, err);
6609 sp->stats.rx_crc_errors++;
6610 dev_kfree_skb(skb);
6611 atomic_dec(&sp->rx_bufs_left[ring_no]);
6612 rxdp->Host_Control = 0;
6613 return 0;
6614 }
20346722 6615 }
1da177e4 6616
20346722
K
6617 /* Updating statistics */
6618 rxdp->Host_Control = 0;
6619 sp->rx_pkt_count++;
6620 sp->stats.rx_packets++;
da6971d8
AR
6621 if (sp->rxd_mode == RXD_MODE_1) {
6622 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6623
da6971d8
AR
6624 sp->stats.rx_bytes += len;
6625 skb_put(skb, len);
6626
6627 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6628 int get_block = ring_data->rx_curr_get_info.block_index;
6629 int get_off = ring_data->rx_curr_get_info.offset;
6630 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6631 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6632 unsigned char *buff = skb_push(skb, buf0_len);
6633
1ee6dd77 6634 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6635 sp->stats.rx_bytes += buf0_len + buf2_len;
6636 memcpy(buff, ba->ba_0, buf0_len);
6637
6638 if (sp->rxd_mode == RXD_MODE_3A) {
6639 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6640
6641 skb_put(skb, buf1_len);
6642 skb->len += buf2_len;
6643 skb->data_len += buf2_len;
da6971d8
AR
6644 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6645 sp->stats.rx_bytes += buf1_len;
6646
6647 } else
6648 skb_put(skb, buf2_len);
6649 }
20346722 6650
7d3d0439
RA
6651 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6652 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6653 (sp->rx_csum)) {
6654 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6655 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6656 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6657 /*
1da177e4
LT
6658 * NIC verifies if the Checksum of the received
6659 * frame is Ok or not and accordingly returns
6660 * a flag in the RxD.
6661 */
6662 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6663 if (sp->lro) {
6664 u32 tcp_len;
6665 u8 *tcp;
6666 int ret = 0;
6667
6668 ret = s2io_club_tcp_session(skb->data, &tcp,
6669 &tcp_len, &lro, rxdp, sp);
6670 switch (ret) {
6671 case 3: /* Begin anew */
6672 lro->parent = skb;
6673 goto aggregate;
6674 case 1: /* Aggregate */
6675 {
6676 lro_append_pkt(sp, lro,
6677 skb, tcp_len);
6678 goto aggregate;
6679 }
6680 case 4: /* Flush session */
6681 {
6682 lro_append_pkt(sp, lro,
6683 skb, tcp_len);
6684 queue_rx_frame(lro->parent);
6685 clear_lro_session(lro);
6686 sp->mac_control.stats_info->
6687 sw_stat.flush_max_pkts++;
6688 goto aggregate;
6689 }
6690 case 2: /* Flush both */
6691 lro->parent->data_len =
6692 lro->frags_len;
6693 sp->mac_control.stats_info->
6694 sw_stat.sending_both++;
6695 queue_rx_frame(lro->parent);
6696 clear_lro_session(lro);
6697 goto send_up;
6698 case 0: /* sessions exceeded */
c92ca04b
AR
6699 case -1: /* non-TCP or not
6700 * L2 aggregatable
6701 */
7d3d0439
RA
6702 case 5: /*
6703 * First pkt in session not
6704 * L3/L4 aggregatable
6705 */
6706 break;
6707 default:
6708 DBG_PRINT(ERR_DBG,
6709 "%s: Samadhana!!\n",
6710 __FUNCTION__);
6711 BUG();
6712 }
6713 }
1da177e4 6714 } else {
20346722
K
6715 /*
6716 * Packet with erroneous checksum, let the
1da177e4
LT
6717 * upper layers deal with it.
6718 */
6719 skb->ip_summed = CHECKSUM_NONE;
6720 }
6721 } else {
6722 skb->ip_summed = CHECKSUM_NONE;
6723 }
6724
7d3d0439
RA
6725 if (!sp->lro) {
6726 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
6727 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6728 vlan_strip_flag)) {
7d3d0439 6729 /* Queueing the vlan frame to the upper layer */
db874e65
SS
6730 if (napi)
6731 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6732 RXD_GET_VLAN_TAG(rxdp->Control_2));
6733 else
6734 vlan_hwaccel_rx(skb, sp->vlgrp,
6735 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 6736 } else {
db874e65
SS
6737 if (napi)
6738 netif_receive_skb(skb);
6739 else
6740 netif_rx(skb);
7d3d0439 6741 }
7d3d0439
RA
6742 } else {
6743send_up:
6744 queue_rx_frame(skb);
6aa20a22 6745 }
1da177e4 6746 dev->last_rx = jiffies;
7d3d0439 6747aggregate:
1da177e4 6748 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6749 return SUCCESS;
6750}
6751
6752/**
6753 * s2io_link - stops/starts the Tx queue.
6754 * @sp : private member of the device structure, which is a pointer to the
6755 * s2io_nic structure.
6756 * @link : inidicates whether link is UP/DOWN.
6757 * Description:
6758 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6759 * status of the NIC is is down or up. This is called by the Alarm
6760 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6761 * Return value:
6762 * void.
6763 */
6764
1ee6dd77 6765static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
6766{
6767 struct net_device *dev = (struct net_device *) sp->dev;
6768
6769 if (link != sp->last_link_state) {
6770 if (link == LINK_DOWN) {
6771 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6772 netif_carrier_off(dev);
6773 } else {
6774 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6775 netif_carrier_on(dev);
6776 }
6777 }
6778 sp->last_link_state = link;
6779}
6780
6781/**
20346722
K
6782 * get_xena_rev_id - to identify revision ID of xena.
6783 * @pdev : PCI Dev structure
6784 * Description:
6785 * Function to identify the Revision ID of xena.
6786 * Return value:
6787 * returns the revision ID of the device.
6788 */
6789
26df54bf 6790static int get_xena_rev_id(struct pci_dev *pdev)
20346722
K
6791{
6792 u8 id = 0;
6793 int ret;
6794 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6795 return id;
6796}
6797
6798/**
6799 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6800 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6801 * s2io_nic structure.
6802 * Description:
6803 * This function initializes a few of the PCI and PCI-X configuration registers
6804 * with recommended values.
6805 * Return value:
6806 * void
6807 */
6808
1ee6dd77 6809static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 6810{
20346722 6811 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6812
6813 /* Enable Data Parity Error Recovery in PCI-X command register. */
6814 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6815 &(pcix_cmd));
1da177e4 6816 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6817 (pcix_cmd | 1));
1da177e4 6818 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6819 &(pcix_cmd));
1da177e4
LT
6820
6821 /* Set the PErr Response bit in PCI command register. */
6822 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6823 pci_write_config_word(sp->pdev, PCI_COMMAND,
6824 (pci_cmd | PCI_COMMAND_PARITY));
6825 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6826}
6827
9dc737a7
AR
6828static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6829{
6830 if ( tx_fifo_num > 8) {
6831 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6832 "supported\n");
6833 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6834 tx_fifo_num = 8;
6835 }
6836 if ( rx_ring_num > 8) {
6837 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6838 "supported\n");
6839 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6840 rx_ring_num = 8;
6841 }
db874e65
SS
6842 if (*dev_intr_type != INTA)
6843 napi = 0;
6844
9dc737a7
AR
6845#ifndef CONFIG_PCI_MSI
6846 if (*dev_intr_type != INTA) {
6847 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6848 "MSI/MSI-X. Defaulting to INTA\n");
6849 *dev_intr_type = INTA;
6850 }
6851#else
6852 if (*dev_intr_type > MSI_X) {
6853 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6854 "Defaulting to INTA\n");
6855 *dev_intr_type = INTA;
6856 }
6857#endif
6858 if ((*dev_intr_type == MSI_X) &&
6859 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6860 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 6861 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
6862 "Defaulting to INTA\n");
6863 *dev_intr_type = INTA;
6864 }
fb6a825b 6865
9dc737a7
AR
6866 if (rx_ring_mode > 3) {
6867 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6868 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6869 rx_ring_mode = 3;
6870 }
6871 return SUCCESS;
6872}
6873
9fc93a41
SS
6874/**
6875 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6876 * or Traffic class respectively.
6877 * @nic: device peivate variable
6878 * Description: The function configures the receive steering to
6879 * desired receive ring.
6880 * Return Value: SUCCESS on success and
6881 * '-1' on failure (endian settings incorrect).
6882 */
6883static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6884{
6885 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6886 register u64 val64 = 0;
6887
6888 if (ds_codepoint > 63)
6889 return FAILURE;
6890
6891 val64 = RTS_DS_MEM_DATA(ring);
6892 writeq(val64, &bar0->rts_ds_mem_data);
6893
6894 val64 = RTS_DS_MEM_CTRL_WE |
6895 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6896 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6897
6898 writeq(val64, &bar0->rts_ds_mem_ctrl);
6899
6900 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6901 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
6902 S2IO_BIT_RESET);
6903}
6904
1da177e4 6905/**
20346722 6906 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
6907 * @pdev : structure containing the PCI related information of the device.
6908 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6909 * Description:
6910 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
6911 * All OS related initialization including memory and device structure and
6912 * initlaization of the device private variable is done. Also the swapper
6913 * control register is initialized to enable read and write into the I/O
1da177e4
LT
6914 * registers of the device.
6915 * Return value:
6916 * returns 0 on success and negative on failure.
6917 */
6918
6919static int __devinit
6920s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6921{
1ee6dd77 6922 struct s2io_nic *sp;
1da177e4 6923 struct net_device *dev;
1da177e4
LT
6924 int i, j, ret;
6925 int dma_flag = FALSE;
6926 u32 mac_up, mac_down;
6927 u64 val64 = 0, tmp64 = 0;
1ee6dd77 6928 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 6929 u16 subid;
1ee6dd77 6930 struct mac_info *mac_control;
1da177e4 6931 struct config_param *config;
541ae68f 6932 int mode;
cc6e7c44 6933 u8 dev_intr_type = intr_type;
1da177e4 6934
9dc737a7
AR
6935 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6936 return ret;
1da177e4
LT
6937
6938 if ((ret = pci_enable_device(pdev))) {
6939 DBG_PRINT(ERR_DBG,
6940 "s2io_init_nic: pci_enable_device failed\n");
6941 return ret;
6942 }
6943
1e7f0bd8 6944 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6945 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6946 dma_flag = TRUE;
1da177e4 6947 if (pci_set_consistent_dma_mask
1e7f0bd8 6948 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6949 DBG_PRINT(ERR_DBG,
6950 "Unable to obtain 64bit DMA for \
6951 consistent allocations\n");
6952 pci_disable_device(pdev);
6953 return -ENOMEM;
6954 }
1e7f0bd8 6955 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
6956 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6957 } else {
6958 pci_disable_device(pdev);
6959 return -ENOMEM;
6960 }
cc6e7c44
RA
6961 if (dev_intr_type != MSI_X) {
6962 if (pci_request_regions(pdev, s2io_driver_name)) {
b41477f3
AR
6963 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6964 pci_disable_device(pdev);
cc6e7c44
RA
6965 return -ENODEV;
6966 }
6967 }
6968 else {
6969 if (!(request_mem_region(pci_resource_start(pdev, 0),
6970 pci_resource_len(pdev, 0), s2io_driver_name))) {
6971 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6972 pci_disable_device(pdev);
6973 return -ENODEV;
6974 }
6975 if (!(request_mem_region(pci_resource_start(pdev, 2),
6976 pci_resource_len(pdev, 2), s2io_driver_name))) {
6977 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6978 release_mem_region(pci_resource_start(pdev, 0),
6979 pci_resource_len(pdev, 0));
6980 pci_disable_device(pdev);
6981 return -ENODEV;
6982 }
1da177e4
LT
6983 }
6984
1ee6dd77 6985 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
6986 if (dev == NULL) {
6987 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6988 pci_disable_device(pdev);
6989 pci_release_regions(pdev);
6990 return -ENODEV;
6991 }
6992
6993 pci_set_master(pdev);
6994 pci_set_drvdata(pdev, dev);
6995 SET_MODULE_OWNER(dev);
6996 SET_NETDEV_DEV(dev, &pdev->dev);
6997
6998 /* Private member variable initialized to s2io NIC structure */
6999 sp = dev->priv;
1ee6dd77 7000 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7001 sp->dev = dev;
7002 sp->pdev = pdev;
1da177e4 7003 sp->high_dma_flag = dma_flag;
1da177e4 7004 sp->device_enabled_once = FALSE;
da6971d8
AR
7005 if (rx_ring_mode == 1)
7006 sp->rxd_mode = RXD_MODE_1;
7007 if (rx_ring_mode == 2)
7008 sp->rxd_mode = RXD_MODE_3B;
7009 if (rx_ring_mode == 3)
7010 sp->rxd_mode = RXD_MODE_3A;
7011
cc6e7c44 7012 sp->intr_type = dev_intr_type;
1da177e4 7013
541ae68f
K
7014 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7015 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7016 sp->device_type = XFRAME_II_DEVICE;
7017 else
7018 sp->device_type = XFRAME_I_DEVICE;
7019
7d3d0439 7020 sp->lro = lro;
6aa20a22 7021
1da177e4
LT
7022 /* Initialize some PCI/PCI-X fields of the NIC. */
7023 s2io_init_pci(sp);
7024
20346722 7025 /*
1da177e4 7026 * Setting the device configuration parameters.
20346722
K
7027 * Most of these parameters can be specified by the user during
7028 * module insertion as they are module loadable parameters. If
7029 * these parameters are not not specified during load time, they
1da177e4
LT
7030 * are initialized with default values.
7031 */
7032 mac_control = &sp->mac_control;
7033 config = &sp->config;
7034
7035 /* Tx side parameters. */
1da177e4
LT
7036 config->tx_fifo_num = tx_fifo_num;
7037 for (i = 0; i < MAX_TX_FIFOS; i++) {
7038 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7039 config->tx_cfg[i].fifo_priority = i;
7040 }
7041
20346722
K
7042 /* mapping the QoS priority to the configured fifos */
7043 for (i = 0; i < MAX_TX_FIFOS; i++)
7044 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7045
1da177e4
LT
7046 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7047 for (i = 0; i < config->tx_fifo_num; i++) {
7048 config->tx_cfg[i].f_no_snoop =
7049 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7050 if (config->tx_cfg[i].fifo_len < 65) {
7051 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7052 break;
7053 }
7054 }
fed5eccd
AR
7055 /* + 2 because one Txd for skb->data and one Txd for UFO */
7056 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7057
7058 /* Rx side parameters. */
1da177e4
LT
7059 config->rx_ring_num = rx_ring_num;
7060 for (i = 0; i < MAX_RX_RINGS; i++) {
7061 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7062 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7063 config->rx_cfg[i].ring_priority = i;
7064 }
7065
7066 for (i = 0; i < rx_ring_num; i++) {
7067 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7068 config->rx_cfg[i].f_no_snoop =
7069 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7070 }
7071
7072 /* Setting Mac Control parameters */
7073 mac_control->rmac_pause_time = rmac_pause_time;
7074 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7075 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7076
7077
7078 /* Initialize Ring buffer parameters. */
7079 for (i = 0; i < config->rx_ring_num; i++)
7080 atomic_set(&sp->rx_bufs_left[i], 0);
7081
7ba013ac
K
7082 /* Initialize the number of ISRs currently running */
7083 atomic_set(&sp->isr_cnt, 0);
7084
1da177e4
LT
7085 /* initialize the shared memory used by the NIC and the host */
7086 if (init_shared_mem(sp)) {
7087 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7088 dev->name);
1da177e4
LT
7089 ret = -ENOMEM;
7090 goto mem_alloc_failed;
7091 }
7092
7093 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7094 pci_resource_len(pdev, 0));
7095 if (!sp->bar0) {
19a60522 7096 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7097 dev->name);
7098 ret = -ENOMEM;
7099 goto bar0_remap_failed;
7100 }
7101
7102 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7103 pci_resource_len(pdev, 2));
7104 if (!sp->bar1) {
19a60522 7105 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7106 dev->name);
7107 ret = -ENOMEM;
7108 goto bar1_remap_failed;
7109 }
7110
7111 dev->irq = pdev->irq;
7112 dev->base_addr = (unsigned long) sp->bar0;
7113
7114 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7115 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7116 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7117 (sp->bar1 + (j * 0x00020000));
7118 }
7119
7120 /* Driver entry points */
7121 dev->open = &s2io_open;
7122 dev->stop = &s2io_close;
7123 dev->hard_start_xmit = &s2io_xmit;
7124 dev->get_stats = &s2io_get_stats;
7125 dev->set_multicast_list = &s2io_set_multicast;
7126 dev->do_ioctl = &s2io_ioctl;
7127 dev->change_mtu = &s2io_change_mtu;
7128 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7129 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7130 dev->vlan_rx_register = s2io_vlan_rx_register;
7131 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7132
1da177e4
LT
7133 /*
7134 * will use eth_mac_addr() for dev->set_mac_address
7135 * mac address will be set every time dev->open() is called
7136 */
1da177e4 7137 dev->poll = s2io_poll;
20346722 7138 dev->weight = 32;
1da177e4 7139
612eff0e
BH
7140#ifdef CONFIG_NET_POLL_CONTROLLER
7141 dev->poll_controller = s2io_netpoll;
7142#endif
7143
1da177e4
LT
7144 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7145 if (sp->high_dma_flag == TRUE)
7146 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7147 dev->features |= NETIF_F_TSO;
f83ef8c0 7148 dev->features |= NETIF_F_TSO6;
db874e65 7149 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7150 dev->features |= NETIF_F_UFO;
7151 dev->features |= NETIF_F_HW_CSUM;
7152 }
1da177e4
LT
7153
7154 dev->tx_timeout = &s2io_tx_watchdog;
7155 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7156 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7157 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7158
e960fc5c 7159 pci_save_state(sp->pdev);
1da177e4
LT
7160
7161 /* Setting swapper control on the NIC, for proper reset operation */
7162 if (s2io_set_swapper(sp)) {
7163 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7164 dev->name);
7165 ret = -EAGAIN;
7166 goto set_swap_failed;
7167 }
7168
541ae68f
K
7169 /* Verify if the Herc works on the slot its placed into */
7170 if (sp->device_type & XFRAME_II_DEVICE) {
7171 mode = s2io_verify_pci_mode(sp);
7172 if (mode < 0) {
7173 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7174 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7175 ret = -EBADSLT;
7176 goto set_swap_failed;
7177 }
7178 }
7179
7180 /* Not needed for Herc */
7181 if (sp->device_type & XFRAME_I_DEVICE) {
7182 /*
7183 * Fix for all "FFs" MAC address problems observed on
7184 * Alpha platforms
7185 */
7186 fix_mac_address(sp);
7187 s2io_reset(sp);
7188 }
1da177e4
LT
7189
7190 /*
1da177e4
LT
7191 * MAC address initialization.
7192 * For now only one mac address will be read and used.
7193 */
7194 bar0 = sp->bar0;
7195 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7196 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7197 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7198 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7199 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7200 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7201 mac_down = (u32) tmp64;
7202 mac_up = (u32) (tmp64 >> 32);
7203
1da177e4
LT
7204 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7205 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7206 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7207 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7208 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7209 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7210
1da177e4
LT
7211 /* Set the factory defined MAC address initially */
7212 dev->addr_len = ETH_ALEN;
7213 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7214
b41477f3
AR
7215 /* reset Nic and bring it to known state */
7216 s2io_reset(sp);
7217
1da177e4 7218 /*
20346722 7219 * Initialize the tasklet status and link state flags
541ae68f 7220 * and the card state parameter
1da177e4
LT
7221 */
7222 atomic_set(&(sp->card_state), 0);
7223 sp->tasklet_status = 0;
7224 sp->link_state = 0;
7225
1da177e4
LT
7226 /* Initialize spinlocks */
7227 spin_lock_init(&sp->tx_lock);
db874e65
SS
7228
7229 if (!napi)
7230 spin_lock_init(&sp->put_lock);
7ba013ac 7231 spin_lock_init(&sp->rx_lock);
1da177e4 7232
20346722
K
7233 /*
7234 * SXE-002: Configure link and activity LED to init state
7235 * on driver load.
1da177e4
LT
7236 */
7237 subid = sp->pdev->subsystem_device;
7238 if ((subid & 0xFF) >= 0x07) {
7239 val64 = readq(&bar0->gpio_control);
7240 val64 |= 0x0000800000000000ULL;
7241 writeq(val64, &bar0->gpio_control);
7242 val64 = 0x0411040400000000ULL;
7243 writeq(val64, (void __iomem *) bar0 + 0x2700);
7244 val64 = readq(&bar0->gpio_control);
7245 }
7246
7247 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7248
7249 if (register_netdev(dev)) {
7250 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7251 ret = -ENODEV;
7252 goto register_failed;
7253 }
9dc737a7 7254 s2io_vpd_read(sp);
9dc737a7 7255 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
b41477f3
AR
7256 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7257 sp->product_name, get_xena_rev_id(sp->pdev));
7258 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7259 s2io_driver_version);
9dc737a7 7260 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7261 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7262 sp->def_mac_addr[0].mac_addr[0],
7263 sp->def_mac_addr[0].mac_addr[1],
7264 sp->def_mac_addr[0].mac_addr[2],
7265 sp->def_mac_addr[0].mac_addr[3],
7266 sp->def_mac_addr[0].mac_addr[4],
7267 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7268 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7269 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7270 mode = s2io_print_pci_mode(sp);
541ae68f 7271 if (mode < 0) {
9dc737a7 7272 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7273 ret = -EBADSLT;
9dc737a7 7274 unregister_netdev(dev);
541ae68f
K
7275 goto set_swap_failed;
7276 }
541ae68f 7277 }
9dc737a7
AR
7278 switch(sp->rxd_mode) {
7279 case RXD_MODE_1:
7280 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7281 dev->name);
7282 break;
7283 case RXD_MODE_3B:
7284 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7285 dev->name);
7286 break;
7287 case RXD_MODE_3A:
7288 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7289 dev->name);
7290 break;
7291 }
db874e65
SS
7292
7293 if (napi)
7294 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7295 switch(sp->intr_type) {
7296 case INTA:
7297 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7298 break;
7299 case MSI:
7300 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7301 break;
7302 case MSI_X:
7303 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7304 break;
7305 }
7d3d0439
RA
7306 if (sp->lro)
7307 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7308 dev->name);
db874e65
SS
7309 if (ufo)
7310 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7311 " enabled\n", dev->name);
7ba013ac 7312 /* Initialize device name */
9dc737a7 7313 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7314
b6e3f982
K
7315 /* Initialize bimodal Interrupts */
7316 sp->config.bimodal = bimodal;
7317 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7318 sp->config.bimodal = 0;
7319 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7320 dev->name);
7321 }
7322
20346722
K
7323 /*
7324 * Make Link state as off at this point, when the Link change
7325 * interrupt comes the state will be automatically changed to
1da177e4
LT
7326 * the right state.
7327 */
7328 netif_carrier_off(dev);
1da177e4
LT
7329
7330 return 0;
7331
7332 register_failed:
7333 set_swap_failed:
7334 iounmap(sp->bar1);
7335 bar1_remap_failed:
7336 iounmap(sp->bar0);
7337 bar0_remap_failed:
7338 mem_alloc_failed:
7339 free_shared_mem(sp);
7340 pci_disable_device(pdev);
cc6e7c44
RA
7341 if (dev_intr_type != MSI_X)
7342 pci_release_regions(pdev);
7343 else {
7344 release_mem_region(pci_resource_start(pdev, 0),
7345 pci_resource_len(pdev, 0));
7346 release_mem_region(pci_resource_start(pdev, 2),
7347 pci_resource_len(pdev, 2));
7348 }
1da177e4
LT
7349 pci_set_drvdata(pdev, NULL);
7350 free_netdev(dev);
7351
7352 return ret;
7353}
7354
7355/**
20346722 7356 * s2io_rem_nic - Free the PCI device
1da177e4 7357 * @pdev: structure containing the PCI related information of the device.
20346722 7358 * Description: This function is called by the Pci subsystem to release a
1da177e4 7359 * PCI device and free up all resource held up by the device. This could
20346722 7360 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7361 * from memory.
7362 */
7363
7364static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7365{
7366 struct net_device *dev =
7367 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7368 struct s2io_nic *sp;
1da177e4
LT
7369
7370 if (dev == NULL) {
7371 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7372 return;
7373 }
7374
22747d6b
FR
7375 flush_scheduled_work();
7376
1da177e4
LT
7377 sp = dev->priv;
7378 unregister_netdev(dev);
7379
7380 free_shared_mem(sp);
7381 iounmap(sp->bar0);
7382 iounmap(sp->bar1);
cc6e7c44
RA
7383 if (sp->intr_type != MSI_X)
7384 pci_release_regions(pdev);
7385 else {
7386 release_mem_region(pci_resource_start(pdev, 0),
7387 pci_resource_len(pdev, 0));
7388 release_mem_region(pci_resource_start(pdev, 2),
7389 pci_resource_len(pdev, 2));
7390 }
1da177e4 7391 pci_set_drvdata(pdev, NULL);
1da177e4 7392 free_netdev(dev);
19a60522 7393 pci_disable_device(pdev);
1da177e4
LT
7394}
7395
7396/**
7397 * s2io_starter - Entry point for the driver
7398 * Description: This function is the entry point for the driver. It verifies
7399 * the module loadable parameters and initializes PCI configuration space.
7400 */
7401
7402int __init s2io_starter(void)
7403{
29917620 7404 return pci_register_driver(&s2io_driver);
1da177e4
LT
7405}
7406
7407/**
20346722 7408 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7409 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7410 */
7411
372cc597 7412static __exit void s2io_closer(void)
1da177e4
LT
7413{
7414 pci_unregister_driver(&s2io_driver);
7415 DBG_PRINT(INIT_DBG, "cleanup done\n");
7416}
7417
7418module_init(s2io_starter);
7419module_exit(s2io_closer);
7d3d0439 7420
6aa20a22 7421static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7422 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7423{
7424 int ip_off;
7425 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7426
7427 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7428 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7429 __FUNCTION__);
7430 return -1;
7431 }
7432
7433 /* TODO:
7434 * By default the VLAN field in the MAC is stripped by the card, if this
7435 * feature is turned off in rx_pa_cfg register, then the ip_off field
7436 * has to be shifted by a further 2 bytes
7437 */
7438 switch (l2_type) {
7439 case 0: /* DIX type */
7440 case 4: /* DIX type with VLAN */
7441 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7442 break;
7443 /* LLC, SNAP etc are considered non-mergeable */
7444 default:
7445 return -1;
7446 }
7447
7448 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7449 ip_len = (u8)((*ip)->ihl);
7450 ip_len <<= 2;
7451 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7452
7453 return 0;
7454}
7455
1ee6dd77 7456static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7457 struct tcphdr *tcp)
7458{
7459 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7460 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7461 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7462 return -1;
7463 return 0;
7464}
7465
7466static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7467{
7468 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7469}
7470
1ee6dd77 7471static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7472 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7473{
7474 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7475 lro->l2h = l2h;
7476 lro->iph = ip;
7477 lro->tcph = tcp;
7478 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7479 lro->tcp_ack = ntohl(tcp->ack_seq);
7480 lro->sg_num = 1;
7481 lro->total_len = ntohs(ip->tot_len);
7482 lro->frags_len = 0;
6aa20a22 7483 /*
7d3d0439
RA
7484 * check if we saw TCP timestamp. Other consistency checks have
7485 * already been done.
7486 */
7487 if (tcp->doff == 8) {
7488 u32 *ptr;
7489 ptr = (u32 *)(tcp+1);
7490 lro->saw_ts = 1;
7491 lro->cur_tsval = *(ptr+1);
7492 lro->cur_tsecr = *(ptr+2);
7493 }
7494 lro->in_use = 1;
7495}
7496
1ee6dd77 7497static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7498{
7499 struct iphdr *ip = lro->iph;
7500 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7501 __sum16 nchk;
1ee6dd77 7502 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7503 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7504
7505 /* Update L3 header */
7506 ip->tot_len = htons(lro->total_len);
7507 ip->check = 0;
7508 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7509 ip->check = nchk;
7510
7511 /* Update L4 header */
7512 tcp->ack_seq = lro->tcp_ack;
7513 tcp->window = lro->window;
7514
7515 /* Update tsecr field if this session has timestamps enabled */
7516 if (lro->saw_ts) {
7517 u32 *ptr = (u32 *)(tcp + 1);
7518 *(ptr+2) = lro->cur_tsecr;
7519 }
7520
7521 /* Update counters required for calculation of
7522 * average no. of packets aggregated.
7523 */
7524 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7525 statinfo->sw_stat.num_aggregations++;
7526}
7527
1ee6dd77 7528static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7529 struct tcphdr *tcp, u32 l4_pyld)
7530{
7531 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7532 lro->total_len += l4_pyld;
7533 lro->frags_len += l4_pyld;
7534 lro->tcp_next_seq += l4_pyld;
7535 lro->sg_num++;
7536
7537 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7538 lro->tcp_ack = tcp->ack_seq;
7539 lro->window = tcp->window;
6aa20a22 7540
7d3d0439
RA
7541 if (lro->saw_ts) {
7542 u32 *ptr;
7543 /* Update tsecr and tsval from this packet */
7544 ptr = (u32 *) (tcp + 1);
6aa20a22 7545 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7546 lro->cur_tsecr = *(ptr + 2);
7547 }
7548}
7549
1ee6dd77 7550static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7551 struct tcphdr *tcp, u32 tcp_pyld_len)
7552{
7d3d0439
RA
7553 u8 *ptr;
7554
79dc1901
AM
7555 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7556
7d3d0439
RA
7557 if (!tcp_pyld_len) {
7558 /* Runt frame or a pure ack */
7559 return -1;
7560 }
7561
7562 if (ip->ihl != 5) /* IP has options */
7563 return -1;
7564
75c30b13
AR
7565 /* If we see CE codepoint in IP header, packet is not mergeable */
7566 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7567 return -1;
7568
7569 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7570 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7571 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7572 /*
7573 * Currently recognize only the ack control word and
7574 * any other control field being set would result in
7575 * flushing the LRO session
7576 */
7577 return -1;
7578 }
7579
6aa20a22 7580 /*
7d3d0439
RA
7581 * Allow only one TCP timestamp option. Don't aggregate if
7582 * any other options are detected.
7583 */
7584 if (tcp->doff != 5 && tcp->doff != 8)
7585 return -1;
7586
7587 if (tcp->doff == 8) {
6aa20a22 7588 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7589 while (*ptr == TCPOPT_NOP)
7590 ptr++;
7591 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7592 return -1;
7593
7594 /* Ensure timestamp value increases monotonically */
7595 if (l_lro)
7596 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7597 return -1;
7598
7599 /* timestamp echo reply should be non-zero */
6aa20a22 7600 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7601 return -1;
7602 }
7603
7604 return 0;
7605}
7606
7607static int
1ee6dd77
RB
7608s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7609 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7610{
7611 struct iphdr *ip;
7612 struct tcphdr *tcph;
7613 int ret = 0, i;
7614
7615 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7616 rxdp))) {
7617 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7618 ip->saddr, ip->daddr);
7619 } else {
7620 return ret;
7621 }
7622
7623 tcph = (struct tcphdr *)*tcp;
7624 *tcp_len = get_l4_pyld_length(ip, tcph);
7625 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7626 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7627 if (l_lro->in_use) {
7628 if (check_for_socket_match(l_lro, ip, tcph))
7629 continue;
7630 /* Sock pair matched */
7631 *lro = l_lro;
7632
7633 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7634 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7635 "0x%x, actual 0x%x\n", __FUNCTION__,
7636 (*lro)->tcp_next_seq,
7637 ntohl(tcph->seq));
7638
7639 sp->mac_control.stats_info->
7640 sw_stat.outof_sequence_pkts++;
7641 ret = 2;
7642 break;
7643 }
7644
7645 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7646 ret = 1; /* Aggregate */
7647 else
7648 ret = 2; /* Flush both */
7649 break;
7650 }
7651 }
7652
7653 if (ret == 0) {
7654 /* Before searching for available LRO objects,
7655 * check if the pkt is L3/L4 aggregatable. If not
7656 * don't create new LRO session. Just send this
7657 * packet up.
7658 */
7659 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7660 return 5;
7661 }
7662
7663 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7664 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7665 if (!(l_lro->in_use)) {
7666 *lro = l_lro;
7667 ret = 3; /* Begin anew */
7668 break;
7669 }
7670 }
7671 }
7672
7673 if (ret == 0) { /* sessions exceeded */
7674 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7675 __FUNCTION__);
7676 *lro = NULL;
7677 return ret;
7678 }
7679
7680 switch (ret) {
7681 case 3:
7682 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7683 break;
7684 case 2:
7685 update_L3L4_header(sp, *lro);
7686 break;
7687 case 1:
7688 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7689 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7690 update_L3L4_header(sp, *lro);
7691 ret = 4; /* Flush the LRO */
7692 }
7693 break;
7694 default:
7695 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7696 __FUNCTION__);
7697 break;
7698 }
7699
7700 return ret;
7701}
7702
1ee6dd77 7703static void clear_lro_session(struct lro *lro)
7d3d0439 7704{
1ee6dd77 7705 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
7706
7707 memset(lro, 0, lro_struct_size);
7708}
7709
7710static void queue_rx_frame(struct sk_buff *skb)
7711{
7712 struct net_device *dev = skb->dev;
7713
7714 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
7715 if (napi)
7716 netif_receive_skb(skb);
7717 else
7718 netif_rx(skb);
7d3d0439
RA
7719}
7720
1ee6dd77
RB
7721static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7722 struct sk_buff *skb,
7d3d0439
RA
7723 u32 tcp_len)
7724{
75c30b13 7725 struct sk_buff *first = lro->parent;
7d3d0439
RA
7726
7727 first->len += tcp_len;
7728 first->data_len = lro->frags_len;
7729 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
7730 if (skb_shinfo(first)->frag_list)
7731 lro->last_frag->next = skb;
7d3d0439
RA
7732 else
7733 skb_shinfo(first)->frag_list = skb;
372cc597 7734 first->truesize += skb->truesize;
75c30b13 7735 lro->last_frag = skb;
7d3d0439
RA
7736 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7737 return;
7738}