]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
PCI: read revision ID by default
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
491976b2 87#define DRV_VERSION "2.0.23.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
26df54bf
AB
93static int rxd_size[4] = {32,48,48,64};
94static int rxd_count[4] = {127,85,85,63};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
133/* Ethtool related variables and Macros. */
134static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140};
141
fa1f0cb3 142static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
1da177e4 152 {"tmac_any_err_frms"},
bd1034f0 153 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
bd1034f0 168 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
1da177e4 175 {"rmac_discarded_frms"},
bd1034f0
AR
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
1da177e4
LT
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
bd1034f0
AR
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
bd1034f0
AR
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
1da177e4 214 {"rmac_pause_cnt"},
bd1034f0
AR
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
bd1034f0
AR
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
fa1f0cb3
SS
236 {"rxf_wr_cnt"}
237};
238
239static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
255 {"link_fault_cnt"}
256};
257
258static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
bd1034f0
AR
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
7d3d0439
RA
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
c53d4945 284 ("mem_alloc_fail_cnt"),
491976b2
SH
285 ("watchdog_timer_cnt"),
286 ("mem_allocated"),
287 ("mem_freed"),
288 ("link_up_cnt"),
289 ("link_down_cnt"),
290 ("link_up_time"),
291 ("link_down_time"),
292 ("tx_tcode_buf_abort_cnt"),
293 ("tx_tcode_desc_abort_cnt"),
294 ("tx_tcode_parity_err_cnt"),
295 ("tx_tcode_link_loss_cnt"),
296 ("tx_tcode_list_proc_err_cnt"),
297 ("rx_tcode_parity_err_cnt"),
298 ("rx_tcode_abort_cnt"),
299 ("rx_tcode_parity_abort_cnt"),
300 ("rx_tcode_rda_fail_cnt"),
301 ("rx_tcode_unkn_prot_cnt"),
302 ("rx_tcode_fcs_err_cnt"),
303 ("rx_tcode_buf_size_err_cnt"),
304 ("rx_tcode_rxd_corrupt_cnt"),
305 ("rx_tcode_unkn_err_cnt")
1da177e4
LT
306};
307
fa1f0cb3
SS
308#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310 ETH_GSTRING_LEN
311#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
312
313#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
315
316#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
318
319#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
321
25fff88e
K
322#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
323 init_timer(&timer); \
324 timer.function = handle; \
325 timer.data = (unsigned long) arg; \
326 mod_timer(&timer, (jiffies + exp)) \
327
be3a6b02
K
328/* Add the vlan */
329static void s2io_vlan_rx_register(struct net_device *dev,
330 struct vlan_group *grp)
331{
1ee6dd77 332 struct s2io_nic *nic = dev->priv;
be3a6b02
K
333 unsigned long flags;
334
335 spin_lock_irqsave(&nic->tx_lock, flags);
336 nic->vlgrp = grp;
337 spin_unlock_irqrestore(&nic->tx_lock, flags);
338}
339
926930b2 340/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 341static int vlan_strip_flag;
926930b2 342
20346722 343/*
1da177e4
LT
344 * Constants to be programmed into the Xena's registers, to configure
345 * the XAUI.
346 */
347
1da177e4 348#define END_SIGN 0x0
f71e1309 349static const u64 herc_act_dtx_cfg[] = {
541ae68f 350 /* Set address */
e960fc5c 351 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 352 /* Write data */
e960fc5c 353 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
354 /* Set address */
355 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
356 /* Write data */
357 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
358 /* Set address */
e960fc5c 359 0x801205150D440000ULL, 0x801205150D4400E0ULL,
360 /* Write data */
361 0x801205150D440004ULL, 0x801205150D4400E4ULL,
362 /* Set address */
541ae68f
K
363 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
364 /* Write data */
365 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
366 /* Done */
367 END_SIGN
368};
369
f71e1309 370static const u64 xena_dtx_cfg[] = {
c92ca04b 371 /* Set address */
1da177e4 372 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
373 /* Write data */
374 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
375 /* Set address */
376 0x8001051500000000ULL, 0x80010515000000E0ULL,
377 /* Write data */
378 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
379 /* Set address */
1da177e4 380 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
381 /* Write data */
382 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
383 END_SIGN
384};
385
20346722 386/*
1da177e4
LT
387 * Constants for Fixing the MacAddress problem seen mostly on
388 * Alpha machines.
389 */
f71e1309 390static const u64 fix_mac[] = {
1da177e4
LT
391 0x0060000000000000ULL, 0x0060600000000000ULL,
392 0x0040600000000000ULL, 0x0000600000000000ULL,
393 0x0020600000000000ULL, 0x0060600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0000600000000000ULL,
404 0x0040600000000000ULL, 0x0060600000000000ULL,
405 END_SIGN
406};
407
b41477f3
AR
408MODULE_LICENSE("GPL");
409MODULE_VERSION(DRV_VERSION);
410
411
1da177e4 412/* Module Loadable parameters. */
b41477f3
AR
413S2IO_PARM_INT(tx_fifo_num, 1);
414S2IO_PARM_INT(rx_ring_num, 1);
415
416
417S2IO_PARM_INT(rx_ring_mode, 1);
418S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419S2IO_PARM_INT(rmac_pause_time, 0x100);
420S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422S2IO_PARM_INT(shared_splits, 0);
423S2IO_PARM_INT(tmac_util_period, 5);
424S2IO_PARM_INT(rmac_util_period, 5);
425S2IO_PARM_INT(bimodal, 0);
426S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 427/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 428S2IO_PARM_INT(rxsync_frequency, 3);
cc6e7c44 429/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
b41477f3 430S2IO_PARM_INT(intr_type, 0);
7d3d0439 431/* Large receive offload feature */
b41477f3 432S2IO_PARM_INT(lro, 0);
7d3d0439
RA
433/* Max pkts to be aggregated by LRO at one time. If not specified,
434 * aggregation happens until we hit max IP pkt size(64K)
435 */
b41477f3 436S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 437S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
438
439S2IO_PARM_INT(napi, 1);
440S2IO_PARM_INT(ufo, 0);
926930b2 441S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
442
443static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447static unsigned int rts_frm_len[MAX_RX_RINGS] =
448 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
449
450module_param_array(tx_fifo_len, uint, NULL, 0);
451module_param_array(rx_ring_sz, uint, NULL, 0);
452module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 453
20346722 454/*
1da177e4 455 * S2IO device table.
20346722 456 * This table lists all the devices that this driver supports.
1da177e4
LT
457 */
458static struct pci_device_id s2io_tbl[] __devinitdata = {
459 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460 PCI_ANY_ID, PCI_ANY_ID},
461 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462 PCI_ANY_ID, PCI_ANY_ID},
463 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
464 PCI_ANY_ID, PCI_ANY_ID},
465 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
467 {0,}
468};
469
470MODULE_DEVICE_TABLE(pci, s2io_tbl);
471
d796fdb7
LV
472static struct pci_error_handlers s2io_err_handler = {
473 .error_detected = s2io_io_error_detected,
474 .slot_reset = s2io_io_slot_reset,
475 .resume = s2io_io_resume,
476};
477
1da177e4
LT
478static struct pci_driver s2io_driver = {
479 .name = "S2IO",
480 .id_table = s2io_tbl,
481 .probe = s2io_init_nic,
482 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 483 .err_handler = &s2io_err_handler,
1da177e4
LT
484};
485
486/* A simplifier macro used both by init and free shared_mem Fns(). */
487#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
488
489/**
490 * init_shared_mem - Allocation and Initialization of Memory
491 * @nic: Device private variable.
20346722
K
492 * Description: The function allocates all the memory areas shared
493 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
494 * Rx descriptors and the statistics block.
495 */
496
497static int init_shared_mem(struct s2io_nic *nic)
498{
499 u32 size;
500 void *tmp_v_addr, *tmp_v_addr_next;
501 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 502 struct RxD_block *pre_rxd_blk = NULL;
372cc597 503 int i, j, blk_cnt;
1da177e4
LT
504 int lst_size, lst_per_page;
505 struct net_device *dev = nic->dev;
8ae418cf 506 unsigned long tmp;
1ee6dd77 507 struct buffAdd *ba;
1da177e4 508
1ee6dd77 509 struct mac_info *mac_control;
1da177e4 510 struct config_param *config;
491976b2 511 unsigned long long mem_allocated = 0;
1da177e4
LT
512
513 mac_control = &nic->mac_control;
514 config = &nic->config;
515
516
517 /* Allocation and initialization of TXDLs in FIOFs */
518 size = 0;
519 for (i = 0; i < config->tx_fifo_num; i++) {
520 size += config->tx_cfg[i].fifo_len;
521 }
522 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 523 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 524 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 525 return -EINVAL;
1da177e4
LT
526 }
527
1ee6dd77 528 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
529 lst_per_page = PAGE_SIZE / lst_size;
530
531 for (i = 0; i < config->tx_fifo_num; i++) {
532 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 533 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
534 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
535 GFP_KERNEL);
536 if (!mac_control->fifos[i].list_info) {
0c61ed5f 537 DBG_PRINT(INFO_DBG,
1da177e4
LT
538 "Malloc failed for list_info\n");
539 return -ENOMEM;
540 }
491976b2 541 mem_allocated += list_holder_size;
20346722 542 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
543 }
544 for (i = 0; i < config->tx_fifo_num; i++) {
545 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
546 lst_per_page);
20346722
K
547 mac_control->fifos[i].tx_curr_put_info.offset = 0;
548 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 549 config->tx_cfg[i].fifo_len - 1;
20346722
K
550 mac_control->fifos[i].tx_curr_get_info.offset = 0;
551 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 552 config->tx_cfg[i].fifo_len - 1;
20346722
K
553 mac_control->fifos[i].fifo_no = i;
554 mac_control->fifos[i].nic = nic;
fed5eccd 555 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 556
1da177e4
LT
557 for (j = 0; j < page_num; j++) {
558 int k = 0;
559 dma_addr_t tmp_p;
560 void *tmp_v;
561 tmp_v = pci_alloc_consistent(nic->pdev,
562 PAGE_SIZE, &tmp_p);
563 if (!tmp_v) {
0c61ed5f 564 DBG_PRINT(INFO_DBG,
1da177e4 565 "pci_alloc_consistent ");
0c61ed5f 566 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
567 return -ENOMEM;
568 }
776bd20f 569 /* If we got a zero DMA address(can happen on
570 * certain platforms like PPC), reallocate.
571 * Store virtual address of page we don't want,
572 * to be freed later.
573 */
574 if (!tmp_p) {
575 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 576 DBG_PRINT(INIT_DBG,
776bd20f 577 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 578 DBG_PRINT(INIT_DBG,
6b4d617d 579 "Virtual address %p\n", tmp_v);
776bd20f 580 tmp_v = pci_alloc_consistent(nic->pdev,
581 PAGE_SIZE, &tmp_p);
582 if (!tmp_v) {
0c61ed5f 583 DBG_PRINT(INFO_DBG,
776bd20f 584 "pci_alloc_consistent ");
0c61ed5f 585 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 586 return -ENOMEM;
587 }
491976b2 588 mem_allocated += PAGE_SIZE;
776bd20f 589 }
1da177e4
LT
590 while (k < lst_per_page) {
591 int l = (j * lst_per_page) + k;
592 if (l == config->tx_cfg[i].fifo_len)
20346722
K
593 break;
594 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 595 tmp_v + (k * lst_size);
20346722 596 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
597 tmp_p + (k * lst_size);
598 k++;
599 }
600 }
601 }
1da177e4 602
4384247b 603 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
604 if (!nic->ufo_in_band_v)
605 return -ENOMEM;
491976b2 606 mem_allocated += (size * sizeof(u64));
fed5eccd 607
1da177e4
LT
608 /* Allocation and initialization of RXDs in Rings */
609 size = 0;
610 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
611 if (config->rx_cfg[i].num_rxd %
612 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
613 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
614 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
615 i);
616 DBG_PRINT(ERR_DBG, "RxDs per Block");
617 return FAILURE;
618 }
619 size += config->rx_cfg[i].num_rxd;
20346722 620 mac_control->rings[i].block_count =
da6971d8
AR
621 config->rx_cfg[i].num_rxd /
622 (rxd_count[nic->rxd_mode] + 1 );
623 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
624 mac_control->rings[i].block_count;
1da177e4 625 }
da6971d8 626 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 627 size = (size * (sizeof(struct RxD1)));
da6971d8 628 else
1ee6dd77 629 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
630
631 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
632 mac_control->rings[i].rx_curr_get_info.block_index = 0;
633 mac_control->rings[i].rx_curr_get_info.offset = 0;
634 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 635 config->rx_cfg[i].num_rxd - 1;
20346722
K
636 mac_control->rings[i].rx_curr_put_info.block_index = 0;
637 mac_control->rings[i].rx_curr_put_info.offset = 0;
638 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 639 config->rx_cfg[i].num_rxd - 1;
20346722
K
640 mac_control->rings[i].nic = nic;
641 mac_control->rings[i].ring_no = i;
642
da6971d8
AR
643 blk_cnt = config->rx_cfg[i].num_rxd /
644 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
645 /* Allocating all the Rx blocks */
646 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 647 struct rx_block_info *rx_blocks;
da6971d8
AR
648 int l;
649
650 rx_blocks = &mac_control->rings[i].rx_blocks[j];
651 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
652 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
653 &tmp_p_addr);
654 if (tmp_v_addr == NULL) {
655 /*
20346722
K
656 * In case of failure, free_shared_mem()
657 * is called, which should free any
658 * memory that was alloced till the
1da177e4
LT
659 * failure happened.
660 */
da6971d8 661 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
662 return -ENOMEM;
663 }
491976b2 664 mem_allocated += size;
1da177e4 665 memset(tmp_v_addr, 0, size);
da6971d8
AR
666 rx_blocks->block_virt_addr = tmp_v_addr;
667 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 668 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
669 rxd_count[nic->rxd_mode],
670 GFP_KERNEL);
372cc597
SS
671 if (!rx_blocks->rxds)
672 return -ENOMEM;
491976b2
SH
673 mem_allocated +=
674 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
675 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
676 rx_blocks->rxds[l].virt_addr =
677 rx_blocks->block_virt_addr +
678 (rxd_size[nic->rxd_mode] * l);
679 rx_blocks->rxds[l].dma_addr =
680 rx_blocks->block_dma_addr +
681 (rxd_size[nic->rxd_mode] * l);
682 }
1da177e4
LT
683 }
684 /* Interlinking all Rx Blocks */
685 for (j = 0; j < blk_cnt; j++) {
20346722
K
686 tmp_v_addr =
687 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 688 tmp_v_addr_next =
20346722 689 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 690 blk_cnt].block_virt_addr;
20346722
K
691 tmp_p_addr =
692 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 693 tmp_p_addr_next =
20346722 694 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
695 blk_cnt].block_dma_addr;
696
1ee6dd77 697 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
698 pre_rxd_blk->reserved_2_pNext_RxD_block =
699 (unsigned long) tmp_v_addr_next;
1da177e4
LT
700 pre_rxd_blk->pNext_RxD_Blk_physical =
701 (u64) tmp_p_addr_next;
702 }
703 }
da6971d8
AR
704 if (nic->rxd_mode >= RXD_MODE_3A) {
705 /*
706 * Allocation of Storages for buffer addresses in 2BUFF mode
707 * and the buffers as well.
708 */
709 for (i = 0; i < config->rx_ring_num; i++) {
710 blk_cnt = config->rx_cfg[i].num_rxd /
711 (rxd_count[nic->rxd_mode]+ 1);
712 mac_control->rings[i].ba =
1ee6dd77 713 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 714 GFP_KERNEL);
da6971d8 715 if (!mac_control->rings[i].ba)
1da177e4 716 return -ENOMEM;
491976b2 717 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
718 for (j = 0; j < blk_cnt; j++) {
719 int k = 0;
720 mac_control->rings[i].ba[j] =
1ee6dd77 721 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
722 (rxd_count[nic->rxd_mode] + 1)),
723 GFP_KERNEL);
724 if (!mac_control->rings[i].ba[j])
1da177e4 725 return -ENOMEM;
491976b2
SH
726 mem_allocated += (sizeof(struct buffAdd) * \
727 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
728 while (k != rxd_count[nic->rxd_mode]) {
729 ba = &mac_control->rings[i].ba[j][k];
730
731 ba->ba_0_org = (void *) kmalloc
732 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
733 if (!ba->ba_0_org)
734 return -ENOMEM;
491976b2
SH
735 mem_allocated +=
736 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
737 tmp = (unsigned long)ba->ba_0_org;
738 tmp += ALIGN_SIZE;
739 tmp &= ~((unsigned long) ALIGN_SIZE);
740 ba->ba_0 = (void *) tmp;
741
742 ba->ba_1_org = (void *) kmalloc
743 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
744 if (!ba->ba_1_org)
745 return -ENOMEM;
491976b2
SH
746 mem_allocated
747 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
748 tmp = (unsigned long) ba->ba_1_org;
749 tmp += ALIGN_SIZE;
750 tmp &= ~((unsigned long) ALIGN_SIZE);
751 ba->ba_1 = (void *) tmp;
752 k++;
753 }
1da177e4
LT
754 }
755 }
756 }
1da177e4
LT
757
758 /* Allocation and initialization of Statistics block */
1ee6dd77 759 size = sizeof(struct stat_block);
1da177e4
LT
760 mac_control->stats_mem = pci_alloc_consistent
761 (nic->pdev, size, &mac_control->stats_mem_phy);
762
763 if (!mac_control->stats_mem) {
20346722
K
764 /*
765 * In case of failure, free_shared_mem() is called, which
766 * should free any memory that was alloced till the
1da177e4
LT
767 * failure happened.
768 */
769 return -ENOMEM;
770 }
491976b2 771 mem_allocated += size;
1da177e4
LT
772 mac_control->stats_mem_sz = size;
773
774 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 775 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 776 memset(tmp_v_addr, 0, size);
1da177e4
LT
777 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
778 (unsigned long long) tmp_p_addr);
491976b2 779 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
780 return SUCCESS;
781}
782
20346722
K
783/**
784 * free_shared_mem - Free the allocated Memory
1da177e4
LT
785 * @nic: Device private variable.
786 * Description: This function is to free all memory locations allocated by
787 * the init_shared_mem() function and return it to the kernel.
788 */
789
790static void free_shared_mem(struct s2io_nic *nic)
791{
792 int i, j, blk_cnt, size;
491976b2 793 u32 ufo_size = 0;
1da177e4
LT
794 void *tmp_v_addr;
795 dma_addr_t tmp_p_addr;
1ee6dd77 796 struct mac_info *mac_control;
1da177e4
LT
797 struct config_param *config;
798 int lst_size, lst_per_page;
776bd20f 799 struct net_device *dev = nic->dev;
491976b2 800 int page_num = 0;
1da177e4
LT
801
802 if (!nic)
803 return;
804
805 mac_control = &nic->mac_control;
806 config = &nic->config;
807
1ee6dd77 808 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
809 lst_per_page = PAGE_SIZE / lst_size;
810
811 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
812 ufo_size += config->tx_cfg[i].fifo_len;
813 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
814 lst_per_page);
1da177e4
LT
815 for (j = 0; j < page_num; j++) {
816 int mem_blks = (j * lst_per_page);
776bd20f 817 if (!mac_control->fifos[i].list_info)
6aa20a22 818 return;
776bd20f 819 if (!mac_control->fifos[i].list_info[mem_blks].
820 list_virt_addr)
1da177e4
LT
821 break;
822 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
823 mac_control->fifos[i].
824 list_info[mem_blks].
1da177e4 825 list_virt_addr,
20346722
K
826 mac_control->fifos[i].
827 list_info[mem_blks].
1da177e4 828 list_phy_addr);
491976b2
SH
829 nic->mac_control.stats_info->sw_stat.mem_freed
830 += PAGE_SIZE;
1da177e4 831 }
776bd20f 832 /* If we got a zero DMA address during allocation,
833 * free the page now
834 */
835 if (mac_control->zerodma_virt_addr) {
836 pci_free_consistent(nic->pdev, PAGE_SIZE,
837 mac_control->zerodma_virt_addr,
838 (dma_addr_t)0);
6aa20a22 839 DBG_PRINT(INIT_DBG,
6b4d617d
AM
840 "%s: Freeing TxDL with zero DMA addr. ",
841 dev->name);
842 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
843 mac_control->zerodma_virt_addr);
491976b2
SH
844 nic->mac_control.stats_info->sw_stat.mem_freed
845 += PAGE_SIZE;
776bd20f 846 }
20346722 847 kfree(mac_control->fifos[i].list_info);
491976b2
SH
848 nic->mac_control.stats_info->sw_stat.mem_freed +=
849 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
850 }
851
1da177e4 852 size = SIZE_OF_BLOCK;
1da177e4 853 for (i = 0; i < config->rx_ring_num; i++) {
20346722 854 blk_cnt = mac_control->rings[i].block_count;
1da177e4 855 for (j = 0; j < blk_cnt; j++) {
20346722
K
856 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
857 block_virt_addr;
858 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
859 block_dma_addr;
1da177e4
LT
860 if (tmp_v_addr == NULL)
861 break;
862 pci_free_consistent(nic->pdev, size,
863 tmp_v_addr, tmp_p_addr);
491976b2 864 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 865 kfree(mac_control->rings[i].rx_blocks[j].rxds);
491976b2
SH
866 nic->mac_control.stats_info->sw_stat.mem_freed +=
867 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
868 }
869 }
870
da6971d8
AR
871 if (nic->rxd_mode >= RXD_MODE_3A) {
872 /* Freeing buffer storage addresses in 2BUFF mode. */
873 for (i = 0; i < config->rx_ring_num; i++) {
874 blk_cnt = config->rx_cfg[i].num_rxd /
875 (rxd_count[nic->rxd_mode] + 1);
876 for (j = 0; j < blk_cnt; j++) {
877 int k = 0;
878 if (!mac_control->rings[i].ba[j])
879 continue;
880 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 881 struct buffAdd *ba =
da6971d8
AR
882 &mac_control->rings[i].ba[j][k];
883 kfree(ba->ba_0_org);
491976b2
SH
884 nic->mac_control.stats_info->sw_stat.\
885 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 886 kfree(ba->ba_1_org);
491976b2
SH
887 nic->mac_control.stats_info->sw_stat.\
888 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
889 k++;
890 }
891 kfree(mac_control->rings[i].ba[j]);
491976b2
SH
892 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
893 (rxd_count[nic->rxd_mode] + 1));
1da177e4 894 }
da6971d8 895 kfree(mac_control->rings[i].ba);
491976b2
SH
896 nic->mac_control.stats_info->sw_stat.mem_freed +=
897 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 898 }
1da177e4 899 }
1da177e4
LT
900
901 if (mac_control->stats_mem) {
902 pci_free_consistent(nic->pdev,
903 mac_control->stats_mem_sz,
904 mac_control->stats_mem,
905 mac_control->stats_mem_phy);
491976b2
SH
906 nic->mac_control.stats_info->sw_stat.mem_freed +=
907 mac_control->stats_mem_sz;
1da177e4 908 }
491976b2 909 if (nic->ufo_in_band_v) {
fed5eccd 910 kfree(nic->ufo_in_band_v);
491976b2
SH
911 nic->mac_control.stats_info->sw_stat.mem_freed
912 += (ufo_size * sizeof(u64));
913 }
1da177e4
LT
914}
915
541ae68f
K
916/**
917 * s2io_verify_pci_mode -
918 */
919
1ee6dd77 920static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 921{
1ee6dd77 922 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
923 register u64 val64 = 0;
924 int mode;
925
926 val64 = readq(&bar0->pci_mode);
927 mode = (u8)GET_PCI_MODE(val64);
928
929 if ( val64 & PCI_MODE_UNKNOWN_MODE)
930 return -1; /* Unknown PCI mode */
931 return mode;
932}
933
c92ca04b
AR
934#define NEC_VENID 0x1033
935#define NEC_DEVID 0x0125
936static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
937{
938 struct pci_dev *tdev = NULL;
26d36b64
AC
939 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
940 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 941 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 942 pci_dev_put(tdev);
c92ca04b
AR
943 return 1;
944 }
945 }
946 return 0;
947}
541ae68f 948
7b32a312 949static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
950/**
951 * s2io_print_pci_mode -
952 */
1ee6dd77 953static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 954{
1ee6dd77 955 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
956 register u64 val64 = 0;
957 int mode;
958 struct config_param *config = &nic->config;
959
960 val64 = readq(&bar0->pci_mode);
961 mode = (u8)GET_PCI_MODE(val64);
962
963 if ( val64 & PCI_MODE_UNKNOWN_MODE)
964 return -1; /* Unknown PCI mode */
965
c92ca04b
AR
966 config->bus_speed = bus_speed[mode];
967
968 if (s2io_on_nec_bridge(nic->pdev)) {
969 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
970 nic->dev->name);
971 return mode;
972 }
973
541ae68f
K
974 if (val64 & PCI_MODE_32_BITS) {
975 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
976 } else {
977 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
978 }
979
980 switch(mode) {
981 case PCI_MODE_PCI_33:
982 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
983 break;
984 case PCI_MODE_PCI_66:
985 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
986 break;
987 case PCI_MODE_PCIX_M1_66:
988 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
989 break;
990 case PCI_MODE_PCIX_M1_100:
991 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
992 break;
993 case PCI_MODE_PCIX_M1_133:
994 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
995 break;
996 case PCI_MODE_PCIX_M2_66:
997 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
998 break;
999 case PCI_MODE_PCIX_M2_100:
1000 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1001 break;
1002 case PCI_MODE_PCIX_M2_133:
1003 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1004 break;
1005 default:
1006 return -1; /* Unsupported bus speed */
1007 }
1008
1009 return mode;
1010}
1011
20346722
K
1012/**
1013 * init_nic - Initialization of hardware
1da177e4 1014 * @nic: device peivate variable
20346722
K
1015 * Description: The function sequentially configures every block
1016 * of the H/W from their reset values.
1017 * Return Value: SUCCESS on success and
1da177e4
LT
1018 * '-1' on failure (endian settings incorrect).
1019 */
1020
1021static int init_nic(struct s2io_nic *nic)
1022{
1ee6dd77 1023 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1024 struct net_device *dev = nic->dev;
1025 register u64 val64 = 0;
1026 void __iomem *add;
1027 u32 time;
1028 int i, j;
1ee6dd77 1029 struct mac_info *mac_control;
1da177e4 1030 struct config_param *config;
c92ca04b 1031 int dtx_cnt = 0;
1da177e4 1032 unsigned long long mem_share;
20346722 1033 int mem_size;
1da177e4
LT
1034
1035 mac_control = &nic->mac_control;
1036 config = &nic->config;
1037
5e25b9dd 1038 /* to set the swapper controle on the card */
20346722 1039 if(s2io_set_swapper(nic)) {
1da177e4
LT
1040 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1041 return -1;
1042 }
1043
541ae68f
K
1044 /*
1045 * Herc requires EOI to be removed from reset before XGXS, so..
1046 */
1047 if (nic->device_type & XFRAME_II_DEVICE) {
1048 val64 = 0xA500000000ULL;
1049 writeq(val64, &bar0->sw_reset);
1050 msleep(500);
1051 val64 = readq(&bar0->sw_reset);
1052 }
1053
1da177e4
LT
1054 /* Remove XGXS from reset state */
1055 val64 = 0;
1056 writeq(val64, &bar0->sw_reset);
1da177e4 1057 msleep(500);
20346722 1058 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1059
1060 /* Enable Receiving broadcasts */
1061 add = &bar0->mac_cfg;
1062 val64 = readq(&bar0->mac_cfg);
1063 val64 |= MAC_RMAC_BCAST_ENABLE;
1064 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1065 writel((u32) val64, add);
1066 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1067 writel((u32) (val64 >> 32), (add + 4));
1068
1069 /* Read registers in all blocks */
1070 val64 = readq(&bar0->mac_int_mask);
1071 val64 = readq(&bar0->mc_int_mask);
1072 val64 = readq(&bar0->xgxs_int_mask);
1073
1074 /* Set MTU */
1075 val64 = dev->mtu;
1076 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1077
541ae68f
K
1078 if (nic->device_type & XFRAME_II_DEVICE) {
1079 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1080 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1081 &bar0->dtx_control, UF);
541ae68f
K
1082 if (dtx_cnt & 0x1)
1083 msleep(1); /* Necessary!! */
1da177e4
LT
1084 dtx_cnt++;
1085 }
541ae68f 1086 } else {
c92ca04b
AR
1087 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1088 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1089 &bar0->dtx_control, UF);
1090 val64 = readq(&bar0->dtx_control);
1091 dtx_cnt++;
1da177e4
LT
1092 }
1093 }
1094
1095 /* Tx DMA Initialization */
1096 val64 = 0;
1097 writeq(val64, &bar0->tx_fifo_partition_0);
1098 writeq(val64, &bar0->tx_fifo_partition_1);
1099 writeq(val64, &bar0->tx_fifo_partition_2);
1100 writeq(val64, &bar0->tx_fifo_partition_3);
1101
1102
1103 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1104 val64 |=
1105 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1106 13) | vBIT(config->tx_cfg[i].fifo_priority,
1107 ((i * 32) + 5), 3);
1108
1109 if (i == (config->tx_fifo_num - 1)) {
1110 if (i % 2 == 0)
1111 i++;
1112 }
1113
1114 switch (i) {
1115 case 1:
1116 writeq(val64, &bar0->tx_fifo_partition_0);
1117 val64 = 0;
1118 break;
1119 case 3:
1120 writeq(val64, &bar0->tx_fifo_partition_1);
1121 val64 = 0;
1122 break;
1123 case 5:
1124 writeq(val64, &bar0->tx_fifo_partition_2);
1125 val64 = 0;
1126 break;
1127 case 7:
1128 writeq(val64, &bar0->tx_fifo_partition_3);
1129 break;
1130 }
1131 }
1132
5e25b9dd
K
1133 /*
1134 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1135 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1136 */
541ae68f
K
1137 if ((nic->device_type == XFRAME_I_DEVICE) &&
1138 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
1139 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1140
1da177e4
LT
1141 val64 = readq(&bar0->tx_fifo_partition_0);
1142 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1143 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1144
20346722
K
1145 /*
1146 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1147 * integrity checking.
1148 */
1149 val64 = readq(&bar0->tx_pa_cfg);
1150 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1151 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1152 writeq(val64, &bar0->tx_pa_cfg);
1153
1154 /* Rx DMA intialization. */
1155 val64 = 0;
1156 for (i = 0; i < config->rx_ring_num; i++) {
1157 val64 |=
1158 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1159 3);
1160 }
1161 writeq(val64, &bar0->rx_queue_priority);
1162
20346722
K
1163 /*
1164 * Allocating equal share of memory to all the
1da177e4
LT
1165 * configured Rings.
1166 */
1167 val64 = 0;
541ae68f
K
1168 if (nic->device_type & XFRAME_II_DEVICE)
1169 mem_size = 32;
1170 else
1171 mem_size = 64;
1172
1da177e4
LT
1173 for (i = 0; i < config->rx_ring_num; i++) {
1174 switch (i) {
1175 case 0:
20346722
K
1176 mem_share = (mem_size / config->rx_ring_num +
1177 mem_size % config->rx_ring_num);
1da177e4
LT
1178 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1179 continue;
1180 case 1:
20346722 1181 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1182 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1183 continue;
1184 case 2:
20346722 1185 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1186 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1187 continue;
1188 case 3:
20346722 1189 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1190 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1191 continue;
1192 case 4:
20346722 1193 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1194 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1195 continue;
1196 case 5:
20346722 1197 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1198 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1199 continue;
1200 case 6:
20346722 1201 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1202 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1203 continue;
1204 case 7:
20346722 1205 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1206 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1207 continue;
1208 }
1209 }
1210 writeq(val64, &bar0->rx_queue_cfg);
1211
20346722 1212 /*
5e25b9dd
K
1213 * Filling Tx round robin registers
1214 * as per the number of FIFOs
1da177e4 1215 */
5e25b9dd
K
1216 switch (config->tx_fifo_num) {
1217 case 1:
1218 val64 = 0x0000000000000000ULL;
1219 writeq(val64, &bar0->tx_w_round_robin_0);
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 writeq(val64, &bar0->tx_w_round_robin_2);
1222 writeq(val64, &bar0->tx_w_round_robin_3);
1223 writeq(val64, &bar0->tx_w_round_robin_4);
1224 break;
1225 case 2:
1226 val64 = 0x0000010000010000ULL;
1227 writeq(val64, &bar0->tx_w_round_robin_0);
1228 val64 = 0x0100000100000100ULL;
1229 writeq(val64, &bar0->tx_w_round_robin_1);
1230 val64 = 0x0001000001000001ULL;
1231 writeq(val64, &bar0->tx_w_round_robin_2);
1232 val64 = 0x0000010000010000ULL;
1233 writeq(val64, &bar0->tx_w_round_robin_3);
1234 val64 = 0x0100000000000000ULL;
1235 writeq(val64, &bar0->tx_w_round_robin_4);
1236 break;
1237 case 3:
1238 val64 = 0x0001000102000001ULL;
1239 writeq(val64, &bar0->tx_w_round_robin_0);
1240 val64 = 0x0001020000010001ULL;
1241 writeq(val64, &bar0->tx_w_round_robin_1);
1242 val64 = 0x0200000100010200ULL;
1243 writeq(val64, &bar0->tx_w_round_robin_2);
1244 val64 = 0x0001000102000001ULL;
1245 writeq(val64, &bar0->tx_w_round_robin_3);
1246 val64 = 0x0001020000000000ULL;
1247 writeq(val64, &bar0->tx_w_round_robin_4);
1248 break;
1249 case 4:
1250 val64 = 0x0001020300010200ULL;
1251 writeq(val64, &bar0->tx_w_round_robin_0);
1252 val64 = 0x0100000102030001ULL;
1253 writeq(val64, &bar0->tx_w_round_robin_1);
1254 val64 = 0x0200010000010203ULL;
1255 writeq(val64, &bar0->tx_w_round_robin_2);
1256 val64 = 0x0001020001000001ULL;
1257 writeq(val64, &bar0->tx_w_round_robin_3);
1258 val64 = 0x0203000100000000ULL;
1259 writeq(val64, &bar0->tx_w_round_robin_4);
1260 break;
1261 case 5:
1262 val64 = 0x0001000203000102ULL;
1263 writeq(val64, &bar0->tx_w_round_robin_0);
1264 val64 = 0x0001020001030004ULL;
1265 writeq(val64, &bar0->tx_w_round_robin_1);
1266 val64 = 0x0001000203000102ULL;
1267 writeq(val64, &bar0->tx_w_round_robin_2);
1268 val64 = 0x0001020001030004ULL;
1269 writeq(val64, &bar0->tx_w_round_robin_3);
1270 val64 = 0x0001000000000000ULL;
1271 writeq(val64, &bar0->tx_w_round_robin_4);
1272 break;
1273 case 6:
1274 val64 = 0x0001020304000102ULL;
1275 writeq(val64, &bar0->tx_w_round_robin_0);
1276 val64 = 0x0304050001020001ULL;
1277 writeq(val64, &bar0->tx_w_round_robin_1);
1278 val64 = 0x0203000100000102ULL;
1279 writeq(val64, &bar0->tx_w_round_robin_2);
1280 val64 = 0x0304000102030405ULL;
1281 writeq(val64, &bar0->tx_w_round_robin_3);
1282 val64 = 0x0001000200000000ULL;
1283 writeq(val64, &bar0->tx_w_round_robin_4);
1284 break;
1285 case 7:
1286 val64 = 0x0001020001020300ULL;
1287 writeq(val64, &bar0->tx_w_round_robin_0);
1288 val64 = 0x0102030400010203ULL;
1289 writeq(val64, &bar0->tx_w_round_robin_1);
1290 val64 = 0x0405060001020001ULL;
1291 writeq(val64, &bar0->tx_w_round_robin_2);
1292 val64 = 0x0304050000010200ULL;
1293 writeq(val64, &bar0->tx_w_round_robin_3);
1294 val64 = 0x0102030000000000ULL;
1295 writeq(val64, &bar0->tx_w_round_robin_4);
1296 break;
1297 case 8:
1298 val64 = 0x0001020300040105ULL;
1299 writeq(val64, &bar0->tx_w_round_robin_0);
1300 val64 = 0x0200030106000204ULL;
1301 writeq(val64, &bar0->tx_w_round_robin_1);
1302 val64 = 0x0103000502010007ULL;
1303 writeq(val64, &bar0->tx_w_round_robin_2);
1304 val64 = 0x0304010002060500ULL;
1305 writeq(val64, &bar0->tx_w_round_robin_3);
1306 val64 = 0x0103020400000000ULL;
1307 writeq(val64, &bar0->tx_w_round_robin_4);
1308 break;
1309 }
1310
b41477f3 1311 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1312 val64 = readq(&bar0->tx_fifo_partition_0);
1313 val64 |= (TX_FIFO_PARTITION_EN);
1314 writeq(val64, &bar0->tx_fifo_partition_0);
1315
5e25b9dd
K
1316 /* Filling the Rx round robin registers as per the
1317 * number of Rings and steering based on QoS.
1318 */
1319 switch (config->rx_ring_num) {
1320 case 1:
1321 val64 = 0x8080808080808080ULL;
1322 writeq(val64, &bar0->rts_qos_steering);
1323 break;
1324 case 2:
1325 val64 = 0x0000010000010000ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_0);
1327 val64 = 0x0100000100000100ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_1);
1329 val64 = 0x0001000001000001ULL;
1330 writeq(val64, &bar0->rx_w_round_robin_2);
1331 val64 = 0x0000010000010000ULL;
1332 writeq(val64, &bar0->rx_w_round_robin_3);
1333 val64 = 0x0100000000000000ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_4);
1335
1336 val64 = 0x8080808040404040ULL;
1337 writeq(val64, &bar0->rts_qos_steering);
1338 break;
1339 case 3:
1340 val64 = 0x0001000102000001ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_0);
1342 val64 = 0x0001020000010001ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_1);
1344 val64 = 0x0200000100010200ULL;
1345 writeq(val64, &bar0->rx_w_round_robin_2);
1346 val64 = 0x0001000102000001ULL;
1347 writeq(val64, &bar0->rx_w_round_robin_3);
1348 val64 = 0x0001020000000000ULL;
1349 writeq(val64, &bar0->rx_w_round_robin_4);
1350
1351 val64 = 0x8080804040402020ULL;
1352 writeq(val64, &bar0->rts_qos_steering);
1353 break;
1354 case 4:
1355 val64 = 0x0001020300010200ULL;
1356 writeq(val64, &bar0->rx_w_round_robin_0);
1357 val64 = 0x0100000102030001ULL;
1358 writeq(val64, &bar0->rx_w_round_robin_1);
1359 val64 = 0x0200010000010203ULL;
1360 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1361 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1362 writeq(val64, &bar0->rx_w_round_robin_3);
1363 val64 = 0x0203000100000000ULL;
1364 writeq(val64, &bar0->rx_w_round_robin_4);
1365
1366 val64 = 0x8080404020201010ULL;
1367 writeq(val64, &bar0->rts_qos_steering);
1368 break;
1369 case 5:
1370 val64 = 0x0001000203000102ULL;
1371 writeq(val64, &bar0->rx_w_round_robin_0);
1372 val64 = 0x0001020001030004ULL;
1373 writeq(val64, &bar0->rx_w_round_robin_1);
1374 val64 = 0x0001000203000102ULL;
1375 writeq(val64, &bar0->rx_w_round_robin_2);
1376 val64 = 0x0001020001030004ULL;
1377 writeq(val64, &bar0->rx_w_round_robin_3);
1378 val64 = 0x0001000000000000ULL;
1379 writeq(val64, &bar0->rx_w_round_robin_4);
1380
1381 val64 = 0x8080404020201008ULL;
1382 writeq(val64, &bar0->rts_qos_steering);
1383 break;
1384 case 6:
1385 val64 = 0x0001020304000102ULL;
1386 writeq(val64, &bar0->rx_w_round_robin_0);
1387 val64 = 0x0304050001020001ULL;
1388 writeq(val64, &bar0->rx_w_round_robin_1);
1389 val64 = 0x0203000100000102ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_2);
1391 val64 = 0x0304000102030405ULL;
1392 writeq(val64, &bar0->rx_w_round_robin_3);
1393 val64 = 0x0001000200000000ULL;
1394 writeq(val64, &bar0->rx_w_round_robin_4);
1395
1396 val64 = 0x8080404020100804ULL;
1397 writeq(val64, &bar0->rts_qos_steering);
1398 break;
1399 case 7:
1400 val64 = 0x0001020001020300ULL;
1401 writeq(val64, &bar0->rx_w_round_robin_0);
1402 val64 = 0x0102030400010203ULL;
1403 writeq(val64, &bar0->rx_w_round_robin_1);
1404 val64 = 0x0405060001020001ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_2);
1406 val64 = 0x0304050000010200ULL;
1407 writeq(val64, &bar0->rx_w_round_robin_3);
1408 val64 = 0x0102030000000000ULL;
1409 writeq(val64, &bar0->rx_w_round_robin_4);
1410
1411 val64 = 0x8080402010080402ULL;
1412 writeq(val64, &bar0->rts_qos_steering);
1413 break;
1414 case 8:
1415 val64 = 0x0001020300040105ULL;
1416 writeq(val64, &bar0->rx_w_round_robin_0);
1417 val64 = 0x0200030106000204ULL;
1418 writeq(val64, &bar0->rx_w_round_robin_1);
1419 val64 = 0x0103000502010007ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_2);
1421 val64 = 0x0304010002060500ULL;
1422 writeq(val64, &bar0->rx_w_round_robin_3);
1423 val64 = 0x0103020400000000ULL;
1424 writeq(val64, &bar0->rx_w_round_robin_4);
1425
1426 val64 = 0x8040201008040201ULL;
1427 writeq(val64, &bar0->rts_qos_steering);
1428 break;
1429 }
1da177e4
LT
1430
1431 /* UDP Fix */
1432 val64 = 0;
20346722 1433 for (i = 0; i < 8; i++)
1da177e4
LT
1434 writeq(val64, &bar0->rts_frm_len_n[i]);
1435
5e25b9dd
K
1436 /* Set the default rts frame length for the rings configured */
1437 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1438 for (i = 0 ; i < config->rx_ring_num ; i++)
1439 writeq(val64, &bar0->rts_frm_len_n[i]);
1440
1441 /* Set the frame length for the configured rings
1442 * desired by the user
1443 */
1444 for (i = 0; i < config->rx_ring_num; i++) {
1445 /* If rts_frm_len[i] == 0 then it is assumed that user not
1446 * specified frame length steering.
1447 * If the user provides the frame length then program
1448 * the rts_frm_len register for those values or else
1449 * leave it as it is.
1450 */
1451 if (rts_frm_len[i] != 0) {
1452 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1453 &bar0->rts_frm_len_n[i]);
1454 }
1455 }
926930b2 1456
9fc93a41
SS
1457 /* Disable differentiated services steering logic */
1458 for (i = 0; i < 64; i++) {
1459 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1460 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1461 dev->name);
1462 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1463 return FAILURE;
1464 }
1465 }
1466
20346722 1467 /* Program statistics memory */
1da177e4 1468 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1469
541ae68f
K
1470 if (nic->device_type == XFRAME_II_DEVICE) {
1471 val64 = STAT_BC(0x320);
1472 writeq(val64, &bar0->stat_byte_cnt);
1473 }
1474
20346722 1475 /*
1da177e4
LT
1476 * Initializing the sampling rate for the device to calculate the
1477 * bandwidth utilization.
1478 */
1479 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1480 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1481 writeq(val64, &bar0->mac_link_util);
1482
1483
20346722
K
1484 /*
1485 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1486 * Scheme.
1487 */
20346722
K
1488 /*
1489 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1490 * 250 interrupts per sec. Continuous interrupts are enabled
1491 * by default.
1492 */
541ae68f
K
1493 if (nic->device_type == XFRAME_II_DEVICE) {
1494 int count = (nic->config.bus_speed * 125)/2;
1495 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1496 } else {
1497
1498 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1499 }
1500 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1501 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1502 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1503 if (use_continuous_tx_intrs)
1504 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1505 writeq(val64, &bar0->tti_data1_mem);
1506
1507 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1508 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1509 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1510 writeq(val64, &bar0->tti_data2_mem);
1511
1512 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1513 writeq(val64, &bar0->tti_command_mem);
1514
20346722 1515 /*
1da177e4
LT
1516 * Once the operation completes, the Strobe bit of the command
1517 * register will be reset. We poll for this particular condition
1518 * We wait for a maximum of 500ms for the operation to complete,
1519 * if it's not complete by then we return error.
1520 */
1521 time = 0;
1522 while (TRUE) {
1523 val64 = readq(&bar0->tti_command_mem);
1524 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1525 break;
1526 }
1527 if (time > 10) {
1528 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1529 dev->name);
1530 return -1;
1531 }
1532 msleep(50);
1533 time++;
1534 }
1535
b6e3f982
K
1536 if (nic->config.bimodal) {
1537 int k = 0;
1538 for (k = 0; k < config->rx_ring_num; k++) {
1539 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1540 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1541 writeq(val64, &bar0->tti_command_mem);
541ae68f 1542
541ae68f 1543 /*
b6e3f982
K
1544 * Once the operation completes, the Strobe bit of the command
1545 * register will be reset. We poll for this particular condition
1546 * We wait for a maximum of 500ms for the operation to complete,
1547 * if it's not complete by then we return error.
1548 */
1549 time = 0;
1550 while (TRUE) {
1551 val64 = readq(&bar0->tti_command_mem);
1552 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1553 break;
1554 }
1555 if (time > 10) {
1556 DBG_PRINT(ERR_DBG,
1557 "%s: TTI init Failed\n",
1558 dev->name);
1559 return -1;
1560 }
1561 time++;
1562 msleep(50);
1563 }
1564 }
541ae68f 1565 } else {
1da177e4 1566
b6e3f982
K
1567 /* RTI Initialization */
1568 if (nic->device_type == XFRAME_II_DEVICE) {
1569 /*
1570 * Programmed to generate Apprx 500 Intrs per
1571 * second
1572 */
1573 int count = (nic->config.bus_speed * 125)/4;
1574 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1575 } else {
1576 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1577 }
1578 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1579 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1580 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1581
b6e3f982 1582 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1583
b6e3f982 1584 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1585 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1586 if (nic->intr_type == MSI_X)
1587 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1588 RTI_DATA2_MEM_RX_UFC_D(0x40));
1589 else
1590 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1592 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1593
b6e3f982
K
1594 for (i = 0; i < config->rx_ring_num; i++) {
1595 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1596 | RTI_CMD_MEM_OFFSET(i);
1597 writeq(val64, &bar0->rti_command_mem);
1598
1599 /*
1600 * Once the operation completes, the Strobe bit of the
1601 * command register will be reset. We poll for this
1602 * particular condition. We wait for a maximum of 500ms
1603 * for the operation to complete, if it's not complete
1604 * by then we return error.
1605 */
1606 time = 0;
1607 while (TRUE) {
1608 val64 = readq(&bar0->rti_command_mem);
1609 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1610 break;
1611 }
1612 if (time > 10) {
1613 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1614 dev->name);
1615 return -1;
1616 }
1617 time++;
1618 msleep(50);
1619 }
1da177e4 1620 }
1da177e4
LT
1621 }
1622
20346722
K
1623 /*
1624 * Initializing proper values as Pause threshold into all
1da177e4
LT
1625 * the 8 Queues on Rx side.
1626 */
1627 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1628 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1629
1630 /* Disable RMAC PAD STRIPPING */
509a2671 1631 add = &bar0->mac_cfg;
1da177e4
LT
1632 val64 = readq(&bar0->mac_cfg);
1633 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1634 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1635 writel((u32) (val64), add);
1636 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1637 writel((u32) (val64 >> 32), (add + 4));
1638 val64 = readq(&bar0->mac_cfg);
1639
7d3d0439
RA
1640 /* Enable FCS stripping by adapter */
1641 add = &bar0->mac_cfg;
1642 val64 = readq(&bar0->mac_cfg);
1643 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1644 if (nic->device_type == XFRAME_II_DEVICE)
1645 writeq(val64, &bar0->mac_cfg);
1646 else {
1647 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1648 writel((u32) (val64), add);
1649 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1650 writel((u32) (val64 >> 32), (add + 4));
1651 }
1652
20346722
K
1653 /*
1654 * Set the time value to be inserted in the pause frame
1da177e4
LT
1655 * generated by xena.
1656 */
1657 val64 = readq(&bar0->rmac_pause_cfg);
1658 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1659 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1660 writeq(val64, &bar0->rmac_pause_cfg);
1661
20346722 1662 /*
1da177e4
LT
1663 * Set the Threshold Limit for Generating the pause frame
1664 * If the amount of data in any Queue exceeds ratio of
1665 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1666 * pause frame is generated
1667 */
1668 val64 = 0;
1669 for (i = 0; i < 4; i++) {
1670 val64 |=
1671 (((u64) 0xFF00 | nic->mac_control.
1672 mc_pause_threshold_q0q3)
1673 << (i * 2 * 8));
1674 }
1675 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1676
1677 val64 = 0;
1678 for (i = 0; i < 4; i++) {
1679 val64 |=
1680 (((u64) 0xFF00 | nic->mac_control.
1681 mc_pause_threshold_q4q7)
1682 << (i * 2 * 8));
1683 }
1684 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1685
20346722
K
1686 /*
1687 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1688 * exceeded the limit pointed by shared_splits
1689 */
1690 val64 = readq(&bar0->pic_control);
1691 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1692 writeq(val64, &bar0->pic_control);
1693
863c11a9
AR
1694 if (nic->config.bus_speed == 266) {
1695 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1696 writeq(0x0, &bar0->read_retry_delay);
1697 writeq(0x0, &bar0->write_retry_delay);
1698 }
1699
541ae68f
K
1700 /*
1701 * Programming the Herc to split every write transaction
1702 * that does not start on an ADB to reduce disconnects.
1703 */
1704 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1705 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1706 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1707 writeq(val64, &bar0->misc_control);
1708 val64 = readq(&bar0->pic_control2);
1709 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1710 writeq(val64, &bar0->pic_control2);
541ae68f 1711 }
c92ca04b
AR
1712 if (strstr(nic->product_name, "CX4")) {
1713 val64 = TMAC_AVG_IPG(0x17);
1714 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1715 }
1716
1da177e4
LT
1717 return SUCCESS;
1718}
a371a07d
K
1719#define LINK_UP_DOWN_INTERRUPT 1
1720#define MAC_RMAC_ERR_TIMER 2
1721
1ee6dd77 1722static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1723{
cc6e7c44
RA
1724 if (nic->intr_type != INTA)
1725 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1726 if (nic->device_type == XFRAME_II_DEVICE)
1727 return LINK_UP_DOWN_INTERRUPT;
1728 else
1729 return MAC_RMAC_ERR_TIMER;
1730}
1da177e4 1731
20346722
K
1732/**
1733 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1734 * @nic: device private variable,
1735 * @mask: A mask indicating which Intr block must be modified and,
1736 * @flag: A flag indicating whether to enable or disable the Intrs.
1737 * Description: This function will either disable or enable the interrupts
20346722
K
1738 * depending on the flag argument. The mask argument can be used to
1739 * enable/disable any Intr block.
1da177e4
LT
1740 * Return Value: NONE.
1741 */
1742
1743static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1744{
1ee6dd77 1745 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1746 register u64 val64 = 0, temp64 = 0;
1747
1748 /* Top level interrupt classification */
1749 /* PIC Interrupts */
1750 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1751 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1752 val64 = TXPIC_INT_M;
1da177e4
LT
1753 if (flag == ENABLE_INTRS) {
1754 temp64 = readq(&bar0->general_int_mask);
1755 temp64 &= ~((u64) val64);
1756 writeq(temp64, &bar0->general_int_mask);
20346722 1757 /*
a371a07d 1758 * If Hercules adapter enable GPIO otherwise
b41477f3 1759 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1760 * interrupts for now.
1761 * TODO
1da177e4 1762 */
a371a07d
K
1763 if (s2io_link_fault_indication(nic) ==
1764 LINK_UP_DOWN_INTERRUPT ) {
1765 temp64 = readq(&bar0->pic_int_mask);
1766 temp64 &= ~((u64) PIC_INT_GPIO);
1767 writeq(temp64, &bar0->pic_int_mask);
1768 temp64 = readq(&bar0->gpio_int_mask);
1769 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1770 writeq(temp64, &bar0->gpio_int_mask);
1771 } else {
1772 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1773 }
20346722 1774 /*
1da177e4
LT
1775 * No MSI Support is available presently, so TTI and
1776 * RTI interrupts are also disabled.
1777 */
1778 } else if (flag == DISABLE_INTRS) {
20346722
K
1779 /*
1780 * Disable PIC Intrs in the general
1781 * intr mask register
1da177e4
LT
1782 */
1783 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1784 temp64 = readq(&bar0->general_int_mask);
1785 val64 |= temp64;
1786 writeq(val64, &bar0->general_int_mask);
1787 }
1788 }
1789
1da177e4
LT
1790 /* MAC Interrupts */
1791 /* Enabling/Disabling MAC interrupts */
1792 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1793 val64 = TXMAC_INT_M | RXMAC_INT_M;
1794 if (flag == ENABLE_INTRS) {
1795 temp64 = readq(&bar0->general_int_mask);
1796 temp64 &= ~((u64) val64);
1797 writeq(temp64, &bar0->general_int_mask);
20346722
K
1798 /*
1799 * All MAC block error interrupts are disabled for now
1da177e4
LT
1800 * TODO
1801 */
1da177e4 1802 } else if (flag == DISABLE_INTRS) {
20346722
K
1803 /*
1804 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1805 */
1806 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1807 writeq(DISABLE_ALL_INTRS,
1808 &bar0->mac_rmac_err_mask);
1809
1810 temp64 = readq(&bar0->general_int_mask);
1811 val64 |= temp64;
1812 writeq(val64, &bar0->general_int_mask);
1813 }
1814 }
1815
1da177e4
LT
1816 /* Tx traffic interrupts */
1817 if (mask & TX_TRAFFIC_INTR) {
1818 val64 = TXTRAFFIC_INT_M;
1819 if (flag == ENABLE_INTRS) {
1820 temp64 = readq(&bar0->general_int_mask);
1821 temp64 &= ~((u64) val64);
1822 writeq(temp64, &bar0->general_int_mask);
20346722 1823 /*
1da177e4 1824 * Enable all the Tx side interrupts
20346722 1825 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1826 */
1827 writeq(0x0, &bar0->tx_traffic_mask);
1828 } else if (flag == DISABLE_INTRS) {
20346722
K
1829 /*
1830 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1831 * register.
1832 */
1833 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1834 temp64 = readq(&bar0->general_int_mask);
1835 val64 |= temp64;
1836 writeq(val64, &bar0->general_int_mask);
1837 }
1838 }
1839
1840 /* Rx traffic interrupts */
1841 if (mask & RX_TRAFFIC_INTR) {
1842 val64 = RXTRAFFIC_INT_M;
1843 if (flag == ENABLE_INTRS) {
1844 temp64 = readq(&bar0->general_int_mask);
1845 temp64 &= ~((u64) val64);
1846 writeq(temp64, &bar0->general_int_mask);
1847 /* writing 0 Enables all 8 RX interrupt levels */
1848 writeq(0x0, &bar0->rx_traffic_mask);
1849 } else if (flag == DISABLE_INTRS) {
20346722
K
1850 /*
1851 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1852 * register.
1853 */
1854 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1855 temp64 = readq(&bar0->general_int_mask);
1856 val64 |= temp64;
1857 writeq(val64, &bar0->general_int_mask);
1858 }
1859 }
1860}
1861
19a60522
SS
1862/**
1863 * verify_pcc_quiescent- Checks for PCC quiescent state
1864 * Return: 1 If PCC is quiescence
1865 * 0 If PCC is not quiescence
1866 */
1ee6dd77 1867static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1868{
19a60522 1869 int ret = 0, herc;
1ee6dd77 1870 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1871 u64 val64 = readq(&bar0->adapter_status);
1872
1873 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
1874
1875 if (flag == FALSE) {
19a60522
SS
1876 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1877 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1878 ret = 1;
19a60522
SS
1879 } else {
1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1881 ret = 1;
20346722
K
1882 }
1883 } else {
19a60522 1884 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
5e25b9dd 1885 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1886 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1887 ret = 1;
5e25b9dd
K
1888 } else {
1889 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1890 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1891 ret = 1;
20346722
K
1892 }
1893 }
1894
1895 return ret;
1896}
1897/**
1898 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1899 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1900 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1901 * differs and the calling function passes the input argument flag to
1902 * indicate this.
20346722 1903 * Return: 1 If xena is quiescence
1da177e4
LT
1904 * 0 If Xena is not quiescence
1905 */
1906
1ee6dd77 1907static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1908{
19a60522 1909 int mode;
1ee6dd77 1910 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1911 u64 val64 = readq(&bar0->adapter_status);
1912 mode = s2io_verify_pci_mode(sp);
1da177e4 1913
19a60522
SS
1914 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1915 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1916 return 0;
1917 }
1918 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1919 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1920 return 0;
1921 }
1922 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1923 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1924 return 0;
1925 }
1926 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1927 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1928 return 0;
1929 }
1930 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1931 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1932 return 0;
1933 }
1934 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1935 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1936 return 0;
1937 }
1938 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1939 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1940 return 0;
1941 }
1942 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1943 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1944 return 0;
1da177e4
LT
1945 }
1946
19a60522
SS
1947 /*
1948 * In PCI 33 mode, the P_PLL is not used, and therefore,
1949 * the the P_PLL_LOCK bit in the adapter_status register will
1950 * not be asserted.
1951 */
1952 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1953 sp->device_type == XFRAME_II_DEVICE && mode !=
1954 PCI_MODE_PCI_33) {
1955 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1956 return 0;
1957 }
1958 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1959 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1960 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1961 return 0;
1962 }
1963 return 1;
1da177e4
LT
1964}
1965
1966/**
1967 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1968 * @sp: Pointer to device specifc structure
20346722 1969 * Description :
1da177e4
LT
1970 * New procedure to clear mac address reading problems on Alpha platforms
1971 *
1972 */
1973
1ee6dd77 1974static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1975{
1ee6dd77 1976 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1977 u64 val64;
1978 int i = 0;
1979
1980 while (fix_mac[i] != END_SIGN) {
1981 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1982 udelay(10);
1da177e4
LT
1983 val64 = readq(&bar0->gpio_control);
1984 }
1985}
1986
1987/**
20346722 1988 * start_nic - Turns the device on
1da177e4 1989 * @nic : device private variable.
20346722
K
1990 * Description:
1991 * This function actually turns the device on. Before this function is
1992 * called,all Registers are configured from their reset states
1993 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1994 * calling this function, the device interrupts are cleared and the NIC is
1995 * literally switched on by writing into the adapter control register.
20346722 1996 * Return Value:
1da177e4
LT
1997 * SUCCESS on success and -1 on failure.
1998 */
1999
2000static int start_nic(struct s2io_nic *nic)
2001{
1ee6dd77 2002 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2003 struct net_device *dev = nic->dev;
2004 register u64 val64 = 0;
20346722 2005 u16 subid, i;
1ee6dd77 2006 struct mac_info *mac_control;
1da177e4
LT
2007 struct config_param *config;
2008
2009 mac_control = &nic->mac_control;
2010 config = &nic->config;
2011
2012 /* PRC Initialization and configuration */
2013 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2014 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2015 &bar0->prc_rxd0_n[i]);
2016
2017 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
2018 if (nic->config.bimodal)
2019 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
2020 if (nic->rxd_mode == RXD_MODE_1)
2021 val64 |= PRC_CTRL_RC_ENABLED;
2022 else
2023 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2024 if (nic->device_type == XFRAME_II_DEVICE)
2025 val64 |= PRC_CTRL_GROUP_READS;
2026 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2027 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2028 writeq(val64, &bar0->prc_ctrl_n[i]);
2029 }
2030
da6971d8
AR
2031 if (nic->rxd_mode == RXD_MODE_3B) {
2032 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2033 val64 = readq(&bar0->rx_pa_cfg);
2034 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2035 writeq(val64, &bar0->rx_pa_cfg);
2036 }
1da177e4 2037
926930b2
SS
2038 if (vlan_tag_strip == 0) {
2039 val64 = readq(&bar0->rx_pa_cfg);
2040 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2041 writeq(val64, &bar0->rx_pa_cfg);
2042 vlan_strip_flag = 0;
2043 }
2044
20346722 2045 /*
1da177e4
LT
2046 * Enabling MC-RLDRAM. After enabling the device, we timeout
2047 * for around 100ms, which is approximately the time required
2048 * for the device to be ready for operation.
2049 */
2050 val64 = readq(&bar0->mc_rldram_mrs);
2051 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2052 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2053 val64 = readq(&bar0->mc_rldram_mrs);
2054
20346722 2055 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2056
2057 /* Enabling ECC Protection. */
2058 val64 = readq(&bar0->adapter_control);
2059 val64 &= ~ADAPTER_ECC_EN;
2060 writeq(val64, &bar0->adapter_control);
2061
20346722
K
2062 /*
2063 * Clearing any possible Link state change interrupts that
1da177e4
LT
2064 * could have popped up just before Enabling the card.
2065 */
2066 val64 = readq(&bar0->mac_rmac_err_reg);
2067 if (val64)
2068 writeq(val64, &bar0->mac_rmac_err_reg);
2069
20346722
K
2070 /*
2071 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2072 * it.
2073 */
2074 val64 = readq(&bar0->adapter_status);
19a60522 2075 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2076 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2077 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2078 (unsigned long long) val64);
2079 return FAILURE;
2080 }
2081
20346722 2082 /*
1da177e4 2083 * With some switches, link might be already up at this point.
20346722
K
2084 * Because of this weird behavior, when we enable laser,
2085 * we may not get link. We need to handle this. We cannot
2086 * figure out which switch is misbehaving. So we are forced to
2087 * make a global change.
1da177e4
LT
2088 */
2089
2090 /* Enabling Laser. */
2091 val64 = readq(&bar0->adapter_control);
2092 val64 |= ADAPTER_EOI_TX_ON;
2093 writeq(val64, &bar0->adapter_control);
2094
c92ca04b
AR
2095 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2096 /*
2097 * Dont see link state interrupts initally on some switches,
2098 * so directly scheduling the link state task here.
2099 */
2100 schedule_work(&nic->set_link_task);
2101 }
1da177e4
LT
2102 /* SXE-002: Initialize link and activity LED */
2103 subid = nic->pdev->subsystem_device;
541ae68f
K
2104 if (((subid & 0xFF) >= 0x07) &&
2105 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2106 val64 = readq(&bar0->gpio_control);
2107 val64 |= 0x0000800000000000ULL;
2108 writeq(val64, &bar0->gpio_control);
2109 val64 = 0x0411040400000000ULL;
509a2671 2110 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2111 }
2112
1da177e4
LT
2113 return SUCCESS;
2114}
fed5eccd
AR
2115/**
2116 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2117 */
1ee6dd77
RB
2118static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2119 TxD *txdlp, int get_off)
fed5eccd 2120{
1ee6dd77 2121 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2122 struct sk_buff *skb;
1ee6dd77 2123 struct TxD *txds;
fed5eccd
AR
2124 u16 j, frg_cnt;
2125
2126 txds = txdlp;
26b7625c 2127 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2128 pci_unmap_single(nic->pdev, (dma_addr_t)
2129 txds->Buffer_Pointer, sizeof(u64),
2130 PCI_DMA_TODEVICE);
2131 txds++;
2132 }
2133
2134 skb = (struct sk_buff *) ((unsigned long)
2135 txds->Host_Control);
2136 if (!skb) {
1ee6dd77 2137 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2138 return NULL;
2139 }
2140 pci_unmap_single(nic->pdev, (dma_addr_t)
2141 txds->Buffer_Pointer,
2142 skb->len - skb->data_len,
2143 PCI_DMA_TODEVICE);
2144 frg_cnt = skb_shinfo(skb)->nr_frags;
2145 if (frg_cnt) {
2146 txds++;
2147 for (j = 0; j < frg_cnt; j++, txds++) {
2148 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2149 if (!txds->Buffer_Pointer)
2150 break;
6aa20a22 2151 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2152 txds->Buffer_Pointer,
2153 frag->size, PCI_DMA_TODEVICE);
2154 }
2155 }
1ee6dd77 2156 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2157 return(skb);
2158}
1da177e4 2159
20346722
K
2160/**
2161 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2162 * @nic : device private variable.
20346722 2163 * Description:
1da177e4 2164 * Free all queued Tx buffers.
20346722 2165 * Return Value: void
1da177e4
LT
2166*/
2167
2168static void free_tx_buffers(struct s2io_nic *nic)
2169{
2170 struct net_device *dev = nic->dev;
2171 struct sk_buff *skb;
1ee6dd77 2172 struct TxD *txdp;
1da177e4 2173 int i, j;
1ee6dd77 2174 struct mac_info *mac_control;
1da177e4 2175 struct config_param *config;
fed5eccd 2176 int cnt = 0;
1da177e4
LT
2177
2178 mac_control = &nic->mac_control;
2179 config = &nic->config;
2180
2181 for (i = 0; i < config->tx_fifo_num; i++) {
2182 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2183 txdp = (struct TxD *) \
2184 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2185 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2186 if (skb) {
491976b2
SH
2187 nic->mac_control.stats_info->sw_stat.mem_freed
2188 += skb->truesize;
fed5eccd
AR
2189 dev_kfree_skb(skb);
2190 cnt++;
1da177e4 2191 }
1da177e4
LT
2192 }
2193 DBG_PRINT(INTR_DBG,
2194 "%s:forcibly freeing %d skbs on FIFO%d\n",
2195 dev->name, cnt, i);
20346722
K
2196 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2197 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2198 }
2199}
2200
20346722
K
2201/**
2202 * stop_nic - To stop the nic
1da177e4 2203 * @nic ; device private variable.
20346722
K
2204 * Description:
2205 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2206 * function does. This function is called to stop the device.
2207 * Return Value:
2208 * void.
2209 */
2210
2211static void stop_nic(struct s2io_nic *nic)
2212{
1ee6dd77 2213 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2214 register u64 val64 = 0;
5d3213cc 2215 u16 interruptible;
1ee6dd77 2216 struct mac_info *mac_control;
1da177e4
LT
2217 struct config_param *config;
2218
2219 mac_control = &nic->mac_control;
2220 config = &nic->config;
2221
2222 /* Disable all interrupts */
e960fc5c 2223 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2224 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2225 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2226 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2227
5d3213cc
AR
2228 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2229 val64 = readq(&bar0->adapter_control);
2230 val64 &= ~(ADAPTER_CNTL_EN);
2231 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2232}
2233
1ee6dd77
RB
2234static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2235 sk_buff *skb)
da6971d8
AR
2236{
2237 struct net_device *dev = nic->dev;
2238 struct sk_buff *frag_list;
50eb8006 2239 void *tmp;
da6971d8
AR
2240
2241 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 2242 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
da6971d8
AR
2243 (nic->pdev, skb->data, l3l4hdr_size + 4,
2244 PCI_DMA_FROMDEVICE);
2245
2246 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2247 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2248 if (skb_shinfo(skb)->frag_list == NULL) {
c53d4945 2249 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
0c61ed5f 2250 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
da6971d8
AR
2251 return -ENOMEM ;
2252 }
2253 frag_list = skb_shinfo(skb)->frag_list;
372cc597 2254 skb->truesize += frag_list->truesize;
491976b2
SH
2255 nic->mac_control.stats_info->sw_stat.mem_allocated
2256 += frag_list->truesize;
da6971d8 2257 frag_list->next = NULL;
50eb8006
JG
2258 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2259 frag_list->data = tmp;
27a884dc 2260 skb_reset_tail_pointer(frag_list);
da6971d8
AR
2261
2262 /* Buffer-2 receives L4 data payload */
1ee6dd77 2263 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
da6971d8
AR
2264 frag_list->data, dev->mtu,
2265 PCI_DMA_FROMDEVICE);
2266 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2267 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2268
2269 return SUCCESS;
2270}
2271
20346722
K
2272/**
2273 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2274 * @nic: device private variable
20346722
K
2275 * @ring_no: ring number
2276 * Description:
1da177e4
LT
2277 * The function allocates Rx side skbs and puts the physical
2278 * address of these buffers into the RxD buffer pointers, so that the NIC
2279 * can DMA the received frame into these locations.
2280 * The NIC supports 3 receive modes, viz
2281 * 1. single buffer,
2282 * 2. three buffer and
2283 * 3. Five buffer modes.
20346722
K
2284 * Each mode defines how many fragments the received frame will be split
2285 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2286 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2287 * is split into 3 fragments. As of now only single buffer mode is
2288 * supported.
2289 * Return Value:
2290 * SUCCESS on success or an appropriate -ve value on failure.
2291 */
2292
ac1f60db 2293static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2294{
2295 struct net_device *dev = nic->dev;
2296 struct sk_buff *skb;
1ee6dd77 2297 struct RxD_t *rxdp;
1da177e4 2298 int off, off1, size, block_no, block_no1;
1da177e4 2299 u32 alloc_tab = 0;
20346722 2300 u32 alloc_cnt;
1ee6dd77 2301 struct mac_info *mac_control;
1da177e4 2302 struct config_param *config;
20346722 2303 u64 tmp;
1ee6dd77 2304 struct buffAdd *ba;
1da177e4 2305 unsigned long flags;
1ee6dd77 2306 struct RxD_t *first_rxdp = NULL;
363dc367 2307 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
1da177e4
LT
2308
2309 mac_control = &nic->mac_control;
2310 config = &nic->config;
20346722
K
2311 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2312 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2313
5d3213cc 2314 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2315 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2316 while (alloc_tab < alloc_cnt) {
20346722 2317 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2318 block_index;
20346722 2319 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2320
da6971d8
AR
2321 rxdp = mac_control->rings[ring_no].
2322 rx_blocks[block_no].rxds[off].virt_addr;
2323
2324 if ((block_no == block_no1) && (off == off1) &&
2325 (rxdp->Host_Control)) {
2326 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2327 dev->name);
1da177e4
LT
2328 DBG_PRINT(INTR_DBG, " info equated\n");
2329 goto end;
2330 }
da6971d8 2331 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2332 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2333 block_index++;
da6971d8
AR
2334 if (mac_control->rings[ring_no].rx_curr_put_info.
2335 block_index == mac_control->rings[ring_no].
2336 block_count)
2337 mac_control->rings[ring_no].rx_curr_put_info.
2338 block_index = 0;
2339 block_no = mac_control->rings[ring_no].
2340 rx_curr_put_info.block_index;
2341 if (off == rxd_count[nic->rxd_mode])
2342 off = 0;
20346722 2343 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2344 offset = off;
2345 rxdp = mac_control->rings[ring_no].
2346 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2347 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2348 dev->name, rxdp);
2349 }
db874e65
SS
2350 if(!napi) {
2351 spin_lock_irqsave(&nic->put_lock, flags);
2352 mac_control->rings[ring_no].put_pos =
2353 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2354 spin_unlock_irqrestore(&nic->put_lock, flags);
2355 } else {
2356 mac_control->rings[ring_no].put_pos =
2357 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2358 }
da6971d8
AR
2359 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2360 ((nic->rxd_mode >= RXD_MODE_3A) &&
2361 (rxdp->Control_2 & BIT(0)))) {
20346722 2362 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2363 offset = off;
1da177e4
LT
2364 goto end;
2365 }
da6971d8
AR
2366 /* calculate size of skb based on ring mode */
2367 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2368 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2369 if (nic->rxd_mode == RXD_MODE_1)
2370 size += NET_IP_ALIGN;
2371 else if (nic->rxd_mode == RXD_MODE_3B)
2372 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2373 else
2374 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2375
da6971d8
AR
2376 /* allocate skb */
2377 skb = dev_alloc_skb(size);
2378 if(!skb) {
0c61ed5f
RV
2379 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2380 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2381 if (first_rxdp) {
2382 wmb();
2383 first_rxdp->Control_1 |= RXD_OWN_XENA;
2384 }
c53d4945
SH
2385 nic->mac_control.stats_info->sw_stat. \
2386 mem_alloc_fail_cnt++;
da6971d8
AR
2387 return -ENOMEM ;
2388 }
491976b2
SH
2389 nic->mac_control.stats_info->sw_stat.mem_allocated
2390 += skb->truesize;
da6971d8
AR
2391 if (nic->rxd_mode == RXD_MODE_1) {
2392 /* 1 buffer mode - normal operation mode */
1ee6dd77 2393 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2394 skb_reserve(skb, NET_IP_ALIGN);
1ee6dd77 2395 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2396 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2397 PCI_DMA_FROMDEVICE);
491976b2
SH
2398 rxdp->Control_2 =
2399 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2400
2401 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2402 /*
2403 * 2 or 3 buffer mode -
2404 * Both 2 buffer mode and 3 buffer mode provides 128
2405 * byte aligned receive buffers.
2406 *
2407 * 3 buffer mode provides header separation where in
2408 * skb->data will have L3/L4 headers where as
2409 * skb_shinfo(skb)->frag_list will have the L4 data
2410 * payload
2411 */
2412
491976b2 2413 /* save buffer pointers to avoid frequent dma mapping */
363dc367
RV
2414 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2415 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
1ee6dd77 2416 memset(rxdp, 0, sizeof(struct RxD3));
363dc367
RV
2417 /* restore the buffer pointers for dma sync*/
2418 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2419 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2420
da6971d8
AR
2421 ba = &mac_control->rings[ring_no].ba[block_no][off];
2422 skb_reserve(skb, BUF0_LEN);
2423 tmp = (u64)(unsigned long) skb->data;
2424 tmp += ALIGN_SIZE;
2425 tmp &= ~ALIGN_SIZE;
2426 skb->data = (void *) (unsigned long)tmp;
27a884dc 2427 skb_reset_tail_pointer(skb);
da6971d8 2428
1ee6dd77
RB
2429 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2430 ((struct RxD3*)rxdp)->Buffer0_ptr =
75c30b13 2431 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2432 PCI_DMA_FROMDEVICE);
75c30b13
AR
2433 else
2434 pci_dma_sync_single_for_device(nic->pdev,
491976b2 2435 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
75c30b13 2436 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2437 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2438 if (nic->rxd_mode == RXD_MODE_3B) {
2439 /* Two buffer mode */
2440
2441 /*
6aa20a22 2442 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2443 * L4 payload
2444 */
1ee6dd77 2445 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
da6971d8
AR
2446 (nic->pdev, skb->data, dev->mtu + 4,
2447 PCI_DMA_FROMDEVICE);
2448
75c30b13 2449 /* Buffer-1 will be dummy buffer. Not used */
1ee6dd77
RB
2450 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2451 ((struct RxD3*)rxdp)->Buffer1_ptr =
6aa20a22 2452 pci_map_single(nic->pdev,
75c30b13
AR
2453 ba->ba_1, BUF1_LEN,
2454 PCI_DMA_FROMDEVICE);
2455 }
da6971d8
AR
2456 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2457 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2458 (dev->mtu + 4);
2459 } else {
2460 /* 3 buffer mode */
2461 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
491976b2
SH
2462 nic->mac_control.stats_info->sw_stat.\
2463 mem_freed += skb->truesize;
da6971d8
AR
2464 dev_kfree_skb_irq(skb);
2465 if (first_rxdp) {
2466 wmb();
2467 first_rxdp->Control_1 |=
2468 RXD_OWN_XENA;
2469 }
2470 return -ENOMEM ;
2471 }
2472 }
2473 rxdp->Control_2 |= BIT(0);
1da177e4 2474 }
1da177e4 2475 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2476 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2477 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2478 off++;
da6971d8
AR
2479 if (off == (rxd_count[nic->rxd_mode] + 1))
2480 off = 0;
20346722 2481 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2482
da6971d8 2483 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2484 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2485 if (first_rxdp) {
2486 wmb();
2487 first_rxdp->Control_1 |= RXD_OWN_XENA;
2488 }
2489 first_rxdp = rxdp;
2490 }
1da177e4
LT
2491 atomic_inc(&nic->rx_bufs_left[ring_no]);
2492 alloc_tab++;
2493 }
2494
2495 end:
303bcb4b
K
2496 /* Transfer ownership of first descriptor to adapter just before
2497 * exiting. Before that, use memory barrier so that ownership
2498 * and other fields are seen by adapter correctly.
2499 */
2500 if (first_rxdp) {
2501 wmb();
2502 first_rxdp->Control_1 |= RXD_OWN_XENA;
2503 }
2504
1da177e4
LT
2505 return SUCCESS;
2506}
2507
da6971d8
AR
2508static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2509{
2510 struct net_device *dev = sp->dev;
2511 int j;
2512 struct sk_buff *skb;
1ee6dd77
RB
2513 struct RxD_t *rxdp;
2514 struct mac_info *mac_control;
2515 struct buffAdd *ba;
da6971d8
AR
2516
2517 mac_control = &sp->mac_control;
2518 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2519 rxdp = mac_control->rings[ring_no].
2520 rx_blocks[blk].rxds[j].virt_addr;
2521 skb = (struct sk_buff *)
2522 ((unsigned long) rxdp->Host_Control);
2523 if (!skb) {
2524 continue;
2525 }
2526 if (sp->rxd_mode == RXD_MODE_1) {
2527 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2528 ((struct RxD1*)rxdp)->Buffer0_ptr,
da6971d8
AR
2529 dev->mtu +
2530 HEADER_ETHERNET_II_802_3_SIZE
2531 + HEADER_802_2_SIZE +
2532 HEADER_SNAP_SIZE,
2533 PCI_DMA_FROMDEVICE);
1ee6dd77 2534 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8
AR
2535 } else if(sp->rxd_mode == RXD_MODE_3B) {
2536 ba = &mac_control->rings[ring_no].
2537 ba[blk][j];
2538 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2539 ((struct RxD3*)rxdp)->Buffer0_ptr,
da6971d8
AR
2540 BUF0_LEN,
2541 PCI_DMA_FROMDEVICE);
2542 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2543 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2544 BUF1_LEN,
2545 PCI_DMA_FROMDEVICE);
2546 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2547 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2548 dev->mtu + 4,
2549 PCI_DMA_FROMDEVICE);
1ee6dd77 2550 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2551 } else {
2552 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2553 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2554 PCI_DMA_FROMDEVICE);
2555 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2556 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2557 l3l4hdr_size + 4,
2558 PCI_DMA_FROMDEVICE);
2559 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2560 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
da6971d8 2561 PCI_DMA_FROMDEVICE);
1ee6dd77 2562 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2563 }
491976b2 2564 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2565 dev_kfree_skb(skb);
2566 atomic_dec(&sp->rx_bufs_left[ring_no]);
2567 }
2568}
2569
1da177e4 2570/**
20346722 2571 * free_rx_buffers - Frees all Rx buffers
1da177e4 2572 * @sp: device private variable.
20346722 2573 * Description:
1da177e4
LT
2574 * This function will free all Rx buffers allocated by host.
2575 * Return Value:
2576 * NONE.
2577 */
2578
2579static void free_rx_buffers(struct s2io_nic *sp)
2580{
2581 struct net_device *dev = sp->dev;
da6971d8 2582 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2583 struct mac_info *mac_control;
1da177e4 2584 struct config_param *config;
1da177e4
LT
2585
2586 mac_control = &sp->mac_control;
2587 config = &sp->config;
2588
2589 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2590 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2591 free_rxd_blk(sp,i,blk);
1da177e4 2592
20346722
K
2593 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2594 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2595 mac_control->rings[i].rx_curr_put_info.offset = 0;
2596 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2597 atomic_set(&sp->rx_bufs_left[i], 0);
2598 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2599 dev->name, buf_cnt, i);
2600 }
2601}
2602
2603/**
2604 * s2io_poll - Rx interrupt handler for NAPI support
2605 * @dev : pointer to the device structure.
20346722 2606 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2607 * during one pass through the 'Poll" function.
2608 * Description:
2609 * Comes into picture only if NAPI support has been incorporated. It does
2610 * the same thing that rx_intr_handler does, but not in a interrupt context
2611 * also It will process only a given number of packets.
2612 * Return value:
2613 * 0 on success and 1 if there are No Rx packets to be processed.
2614 */
2615
1da177e4
LT
2616static int s2io_poll(struct net_device *dev, int *budget)
2617{
1ee6dd77 2618 struct s2io_nic *nic = dev->priv;
20346722 2619 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2620 struct mac_info *mac_control;
1da177e4 2621 struct config_param *config;
1ee6dd77 2622 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2623 int i;
1da177e4 2624
7ba013ac 2625 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2626 mac_control = &nic->mac_control;
2627 config = &nic->config;
2628
20346722
K
2629 nic->pkts_to_process = *budget;
2630 if (nic->pkts_to_process > dev->quota)
2631 nic->pkts_to_process = dev->quota;
2632 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2633
19a60522
SS
2634 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2635 readl(&bar0->rx_traffic_int);
1da177e4
LT
2636
2637 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2638 rx_intr_handler(&mac_control->rings[i]);
2639 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2640 if (!nic->pkts_to_process) {
2641 /* Quota for the current iteration has been met */
2642 goto no_rx;
1da177e4 2643 }
1da177e4
LT
2644 }
2645 if (!pkt_cnt)
2646 pkt_cnt = 1;
2647
2648 dev->quota -= pkt_cnt;
2649 *budget -= pkt_cnt;
2650 netif_rx_complete(dev);
2651
2652 for (i = 0; i < config->rx_ring_num; i++) {
2653 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2654 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2655 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2656 break;
2657 }
2658 }
2659 /* Re enable the Rx interrupts. */
c92ca04b 2660 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2661 readl(&bar0->rx_traffic_mask);
7ba013ac 2662 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2663 return 0;
2664
20346722 2665no_rx:
1da177e4
LT
2666 dev->quota -= pkt_cnt;
2667 *budget -= pkt_cnt;
2668
2669 for (i = 0; i < config->rx_ring_num; i++) {
2670 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2671 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2672 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2673 break;
2674 }
2675 }
7ba013ac 2676 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2677 return 1;
2678}
20346722 2679
b41477f3 2680#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2681/**
b41477f3 2682 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2683 * @dev : pointer to the device structure.
2684 * Description:
b41477f3
AR
2685 * This function will be called by upper layer to check for events on the
2686 * interface in situations where interrupts are disabled. It is used for
2687 * specific in-kernel networking tasks, such as remote consoles and kernel
2688 * debugging over the network (example netdump in RedHat).
612eff0e 2689 */
612eff0e
BH
2690static void s2io_netpoll(struct net_device *dev)
2691{
1ee6dd77
RB
2692 struct s2io_nic *nic = dev->priv;
2693 struct mac_info *mac_control;
612eff0e 2694 struct config_param *config;
1ee6dd77 2695 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2696 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2697 int i;
2698
d796fdb7
LV
2699 if (pci_channel_offline(nic->pdev))
2700 return;
2701
612eff0e
BH
2702 disable_irq(dev->irq);
2703
2704 atomic_inc(&nic->isr_cnt);
2705 mac_control = &nic->mac_control;
2706 config = &nic->config;
2707
612eff0e 2708 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2709 writeq(val64, &bar0->tx_traffic_int);
2710
6aa20a22 2711 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2712 * run out of skbs and will fail and eventually netpoll application such
2713 * as netdump will fail.
2714 */
2715 for (i = 0; i < config->tx_fifo_num; i++)
2716 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2717
b41477f3 2718 /* check for received packet and indicate up to network */
612eff0e
BH
2719 for (i = 0; i < config->rx_ring_num; i++)
2720 rx_intr_handler(&mac_control->rings[i]);
2721
2722 for (i = 0; i < config->rx_ring_num; i++) {
2723 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2724 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2725 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2726 break;
2727 }
2728 }
2729 atomic_dec(&nic->isr_cnt);
2730 enable_irq(dev->irq);
2731 return;
2732}
2733#endif
2734
20346722 2735/**
1da177e4
LT
2736 * rx_intr_handler - Rx interrupt handler
2737 * @nic: device private variable.
20346722
K
2738 * Description:
2739 * If the interrupt is because of a received frame or if the
1da177e4 2740 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2741 * called. It picks out the RxD at which place the last Rx processing had
2742 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2743 * the offset.
2744 * Return Value:
2745 * NONE.
2746 */
1ee6dd77 2747static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2748{
1ee6dd77 2749 struct s2io_nic *nic = ring_data->nic;
1da177e4 2750 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2751 int get_block, put_block, put_offset;
1ee6dd77
RB
2752 struct rx_curr_get_info get_info, put_info;
2753 struct RxD_t *rxdp;
1da177e4 2754 struct sk_buff *skb;
20346722 2755 int pkt_cnt = 0;
7d3d0439
RA
2756 int i;
2757
7ba013ac
K
2758 spin_lock(&nic->rx_lock);
2759 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2760 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2761 __FUNCTION__, dev->name);
2762 spin_unlock(&nic->rx_lock);
776bd20f 2763 return;
7ba013ac
K
2764 }
2765
20346722
K
2766 get_info = ring_data->rx_curr_get_info;
2767 get_block = get_info.block_index;
1ee6dd77 2768 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2769 put_block = put_info.block_index;
da6971d8 2770 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2771 if (!napi) {
2772 spin_lock(&nic->put_lock);
2773 put_offset = ring_data->put_pos;
2774 spin_unlock(&nic->put_lock);
2775 } else
2776 put_offset = ring_data->put_pos;
2777
da6971d8 2778 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2779 /*
2780 * If your are next to put index then it's
2781 * FIFO full condition
2782 */
da6971d8
AR
2783 if ((get_block == put_block) &&
2784 (get_info.offset + 1) == put_info.offset) {
75c30b13 2785 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2786 break;
2787 }
20346722
K
2788 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2789 if (skb == NULL) {
2790 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2791 dev->name);
2792 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2793 spin_unlock(&nic->rx_lock);
20346722 2794 return;
1da177e4 2795 }
da6971d8
AR
2796 if (nic->rxd_mode == RXD_MODE_1) {
2797 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2798 ((struct RxD1*)rxdp)->Buffer0_ptr,
20346722
K
2799 dev->mtu +
2800 HEADER_ETHERNET_II_802_3_SIZE +
2801 HEADER_802_2_SIZE +
2802 HEADER_SNAP_SIZE,
2803 PCI_DMA_FROMDEVICE);
da6971d8 2804 } else if (nic->rxd_mode == RXD_MODE_3B) {
75c30b13 2805 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2806 ((struct RxD3*)rxdp)->Buffer0_ptr,
20346722 2807 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2808 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2809 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8 2810 dev->mtu + 4,
20346722 2811 PCI_DMA_FROMDEVICE);
da6971d8 2812 } else {
75c30b13 2813 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2814 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2815 PCI_DMA_FROMDEVICE);
2816 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2817 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2818 l3l4hdr_size + 4,
2819 PCI_DMA_FROMDEVICE);
2820 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2821 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2822 dev->mtu, PCI_DMA_FROMDEVICE);
2823 }
863c11a9 2824 prefetch(skb->data);
20346722
K
2825 rx_osm_handler(ring_data, rxdp);
2826 get_info.offset++;
da6971d8
AR
2827 ring_data->rx_curr_get_info.offset = get_info.offset;
2828 rxdp = ring_data->rx_blocks[get_block].
2829 rxds[get_info.offset].virt_addr;
2830 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2831 get_info.offset = 0;
da6971d8 2832 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2833 get_block++;
da6971d8
AR
2834 if (get_block == ring_data->block_count)
2835 get_block = 0;
2836 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2837 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2838 }
1da177e4 2839
20346722 2840 nic->pkts_to_process -= 1;
db874e65 2841 if ((napi) && (!nic->pkts_to_process))
20346722 2842 break;
20346722 2843 pkt_cnt++;
1da177e4
LT
2844 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2845 break;
2846 }
7d3d0439
RA
2847 if (nic->lro) {
2848 /* Clear all LRO sessions before exiting */
2849 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2850 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2851 if (lro->in_use) {
2852 update_L3L4_header(nic, lro);
2853 queue_rx_frame(lro->parent);
2854 clear_lro_session(lro);
2855 }
2856 }
2857 }
2858
7ba013ac 2859 spin_unlock(&nic->rx_lock);
1da177e4 2860}
20346722
K
2861
2862/**
1da177e4
LT
2863 * tx_intr_handler - Transmit interrupt handler
2864 * @nic : device private variable
20346722
K
2865 * Description:
2866 * If an interrupt was raised to indicate DMA complete of the
2867 * Tx packet, this function is called. It identifies the last TxD
2868 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2869 * DMA'ed into the NICs internal memory.
2870 * Return Value:
2871 * NONE
2872 */
2873
1ee6dd77 2874static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2875{
1ee6dd77 2876 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2877 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2878 struct tx_curr_get_info get_info, put_info;
1da177e4 2879 struct sk_buff *skb;
1ee6dd77 2880 struct TxD *txdlp;
f9046eb3 2881 u8 err_mask;
1da177e4 2882
20346722 2883 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2884 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2885 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2886 list_virt_addr;
2887 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2888 (get_info.offset != put_info.offset) &&
2889 (txdlp->Host_Control)) {
2890 /* Check for TxD errors */
2891 if (txdlp->Control_1 & TXD_T_CODE) {
2892 unsigned long long err;
2893 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2894 if (err & 0x1) {
2895 nic->mac_control.stats_info->sw_stat.
2896 parity_err_cnt++;
2897 }
491976b2
SH
2898
2899 /* update t_code statistics */
f9046eb3
OH
2900 err_mask = err >> 48;
2901 switch(err_mask) {
491976b2
SH
2902 case 2:
2903 nic->mac_control.stats_info->sw_stat.
2904 tx_buf_abort_cnt++;
2905 break;
2906
2907 case 3:
2908 nic->mac_control.stats_info->sw_stat.
2909 tx_desc_abort_cnt++;
2910 break;
2911
2912 case 7:
2913 nic->mac_control.stats_info->sw_stat.
2914 tx_parity_err_cnt++;
2915 break;
2916
2917 case 10:
2918 nic->mac_control.stats_info->sw_stat.
2919 tx_link_loss_cnt++;
2920 break;
2921
2922 case 15:
2923 nic->mac_control.stats_info->sw_stat.
2924 tx_list_proc_err_cnt++;
2925 break;
2926 }
20346722 2927 }
1da177e4 2928
fed5eccd 2929 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2930 if (skb == NULL) {
2931 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2932 __FUNCTION__);
2933 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2934 return;
2935 }
2936
20346722 2937 /* Updating the statistics block */
20346722 2938 nic->stats.tx_bytes += skb->len;
491976b2 2939 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
2940 dev_kfree_skb_irq(skb);
2941
2942 get_info.offset++;
863c11a9
AR
2943 if (get_info.offset == get_info.fifo_len + 1)
2944 get_info.offset = 0;
1ee6dd77 2945 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
2946 [get_info.offset].list_virt_addr;
2947 fifo_data->tx_curr_get_info.offset =
2948 get_info.offset;
1da177e4
LT
2949 }
2950
2951 spin_lock(&nic->tx_lock);
2952 if (netif_queue_stopped(dev))
2953 netif_wake_queue(dev);
2954 spin_unlock(&nic->tx_lock);
2955}
2956
bd1034f0
AR
2957/**
2958 * s2io_mdio_write - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @value : data value
2962 * @dev : pointer to net_device structure
2963 * Description:
2964 * This function is used to write values to the MDIO registers
2965 * NONE
2966 */
2967static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2968{
2969 u64 val64 = 0x0;
1ee6dd77
RB
2970 struct s2io_nic *sp = dev->priv;
2971 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2972
2973 //address transaction
2974 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975 | MDIO_MMD_DEV_ADDR(mmd_type)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64, &bar0->mdio_control);
2978 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64, &bar0->mdio_control);
2980 udelay(100);
2981
2982 //Data transaction
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_MDIO_DATA(value)
2988 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2989 writeq(val64, &bar0->mdio_control);
2990 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2991 writeq(val64, &bar0->mdio_control);
2992 udelay(100);
2993
2994 val64 = 0x0;
2995 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2996 | MDIO_MMD_DEV_ADDR(mmd_type)
2997 | MDIO_MMS_PRT_ADDR(0x0)
2998 | MDIO_OP(MDIO_OP_READ_TRANS);
2999 writeq(val64, &bar0->mdio_control);
3000 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3001 writeq(val64, &bar0->mdio_control);
3002 udelay(100);
3003
3004}
3005
3006/**
3007 * s2io_mdio_read - Function to write in to MDIO registers
3008 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3009 * @addr : address value
3010 * @dev : pointer to net_device structure
3011 * Description:
3012 * This function is used to read values to the MDIO registers
3013 * NONE
3014 */
3015static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3016{
3017 u64 val64 = 0x0;
3018 u64 rval64 = 0x0;
1ee6dd77
RB
3019 struct s2io_nic *sp = dev->priv;
3020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3021
3022 /* address transaction */
3023 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3024 | MDIO_MMD_DEV_ADDR(mmd_type)
3025 | MDIO_MMS_PRT_ADDR(0x0);
3026 writeq(val64, &bar0->mdio_control);
3027 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3028 writeq(val64, &bar0->mdio_control);
3029 udelay(100);
3030
3031 /* Data transaction */
3032 val64 = 0x0;
3033 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3034 | MDIO_MMD_DEV_ADDR(mmd_type)
3035 | MDIO_MMS_PRT_ADDR(0x0)
3036 | MDIO_OP(MDIO_OP_READ_TRANS);
3037 writeq(val64, &bar0->mdio_control);
3038 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3039 writeq(val64, &bar0->mdio_control);
3040 udelay(100);
3041
3042 /* Read the value from regs */
3043 rval64 = readq(&bar0->mdio_control);
3044 rval64 = rval64 & 0xFFFF0000;
3045 rval64 = rval64 >> 16;
3046 return rval64;
3047}
3048/**
3049 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3050 * @counter : couter value to be updated
3051 * @flag : flag to indicate the status
3052 * @type : counter type
3053 * Description:
3054 * This function is to check the status of the xpak counters value
3055 * NONE
3056 */
3057
3058static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3059{
3060 u64 mask = 0x3;
3061 u64 val64;
3062 int i;
3063 for(i = 0; i <index; i++)
3064 mask = mask << 0x2;
3065
3066 if(flag > 0)
3067 {
3068 *counter = *counter + 1;
3069 val64 = *regs_stat & mask;
3070 val64 = val64 >> (index * 0x2);
3071 val64 = val64 + 1;
3072 if(val64 == 3)
3073 {
3074 switch(type)
3075 {
3076 case 1:
3077 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3078 "service. Excessive temperatures may "
3079 "result in premature transceiver "
3080 "failure \n");
3081 break;
3082 case 2:
3083 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3084 "service Excessive bias currents may "
3085 "indicate imminent laser diode "
3086 "failure \n");
3087 break;
3088 case 3:
3089 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3090 "service Excessive laser output "
3091 "power may saturate far-end "
3092 "receiver\n");
3093 break;
3094 default:
3095 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3096 "type \n");
3097 }
3098 val64 = 0x0;
3099 }
3100 val64 = val64 << (index * 0x2);
3101 *regs_stat = (*regs_stat & (~mask)) | (val64);
3102
3103 } else {
3104 *regs_stat = *regs_stat & (~mask);
3105 }
3106}
3107
3108/**
3109 * s2io_updt_xpak_counter - Function to update the xpak counters
3110 * @dev : pointer to net_device struct
3111 * Description:
3112 * This function is to upate the status of the xpak counters value
3113 * NONE
3114 */
3115static void s2io_updt_xpak_counter(struct net_device *dev)
3116{
3117 u16 flag = 0x0;
3118 u16 type = 0x0;
3119 u16 val16 = 0x0;
3120 u64 val64 = 0x0;
3121 u64 addr = 0x0;
3122
1ee6dd77
RB
3123 struct s2io_nic *sp = dev->priv;
3124 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3125
3126 /* Check the communication with the MDIO slave */
3127 addr = 0x0000;
3128 val64 = 0x0;
3129 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3130 if((val64 == 0xFFFF) || (val64 == 0x0000))
3131 {
3132 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3133 "Returned %llx\n", (unsigned long long)val64);
3134 return;
3135 }
3136
3137 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3138 if(val64 != 0x2040)
3139 {
3140 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3141 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3142 (unsigned long long)val64);
3143 return;
3144 }
3145
3146 /* Loading the DOM register to MDIO register */
3147 addr = 0xA100;
3148 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3149 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3150
3151 /* Reading the Alarm flags */
3152 addr = 0xA070;
3153 val64 = 0x0;
3154 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3155
3156 flag = CHECKBIT(val64, 0x7);
3157 type = 1;
3158 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3159 &stat_info->xpak_stat.xpak_regs_stat,
3160 0x0, flag, type);
3161
3162 if(CHECKBIT(val64, 0x6))
3163 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3164
3165 flag = CHECKBIT(val64, 0x3);
3166 type = 2;
3167 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3168 &stat_info->xpak_stat.xpak_regs_stat,
3169 0x2, flag, type);
3170
3171 if(CHECKBIT(val64, 0x2))
3172 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3173
3174 flag = CHECKBIT(val64, 0x1);
3175 type = 3;
3176 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3177 &stat_info->xpak_stat.xpak_regs_stat,
3178 0x4, flag, type);
3179
3180 if(CHECKBIT(val64, 0x0))
3181 stat_info->xpak_stat.alarm_laser_output_power_low++;
3182
3183 /* Reading the Warning flags */
3184 addr = 0xA074;
3185 val64 = 0x0;
3186 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3187
3188 if(CHECKBIT(val64, 0x7))
3189 stat_info->xpak_stat.warn_transceiver_temp_high++;
3190
3191 if(CHECKBIT(val64, 0x6))
3192 stat_info->xpak_stat.warn_transceiver_temp_low++;
3193
3194 if(CHECKBIT(val64, 0x3))
3195 stat_info->xpak_stat.warn_laser_bias_current_high++;
3196
3197 if(CHECKBIT(val64, 0x2))
3198 stat_info->xpak_stat.warn_laser_bias_current_low++;
3199
3200 if(CHECKBIT(val64, 0x1))
3201 stat_info->xpak_stat.warn_laser_output_power_high++;
3202
3203 if(CHECKBIT(val64, 0x0))
3204 stat_info->xpak_stat.warn_laser_output_power_low++;
3205}
3206
20346722 3207/**
1da177e4
LT
3208 * alarm_intr_handler - Alarm Interrrupt handler
3209 * @nic: device private variable
20346722 3210 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3211 * complete, this function is called. If the interrupt was to indicate
20346722
K
3212 * a loss of link, the OSM link status handler is invoked for any other
3213 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3214 * and a H/W reset is issued.
3215 * Return Value:
3216 * NONE
3217*/
3218
3219static void alarm_intr_handler(struct s2io_nic *nic)
3220{
3221 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3222 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3223 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3224 u64 cnt;
3225 int i;
372cc597
SS
3226 if (atomic_read(&nic->card_state) == CARD_DOWN)
3227 return;
d796fdb7
LV
3228 if (pci_channel_offline(nic->pdev))
3229 return;
bd1034f0
AR
3230 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3231 /* Handling the XPAK counters update */
3232 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3233 /* waiting for an hour */
3234 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3235 } else {
3236 s2io_updt_xpak_counter(dev);
3237 /* reset the count to zero */
3238 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3239 }
1da177e4
LT
3240
3241 /* Handling link status change error Intr */
a371a07d
K
3242 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3243 err_reg = readq(&bar0->mac_rmac_err_reg);
3244 writeq(err_reg, &bar0->mac_rmac_err_reg);
3245 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3246 schedule_work(&nic->set_link_task);
3247 }
1da177e4
LT
3248 }
3249
5e25b9dd
K
3250 /* Handling Ecc errors */
3251 val64 = readq(&bar0->mc_err_reg);
3252 writeq(val64, &bar0->mc_err_reg);
3253 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3254 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3255 nic->mac_control.stats_info->sw_stat.
3256 double_ecc_errs++;
776bd20f 3257 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3258 dev->name);
776bd20f 3259 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3260 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3261 /* Reset XframeI only if critical error */
3262 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3263 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3264 netif_stop_queue(dev);
3265 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3266 nic->mac_control.stats_info->sw_stat.
3267 soft_reset_cnt++;
776bd20f 3268 }
e960fc5c 3269 }
5e25b9dd 3270 } else {
7ba013ac
K
3271 nic->mac_control.stats_info->sw_stat.
3272 single_ecc_errs++;
5e25b9dd
K
3273 }
3274 }
3275
1da177e4
LT
3276 /* In case of a serious error, the device will be Reset. */
3277 val64 = readq(&bar0->serr_source);
3278 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3279 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3280 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3281 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3282 (unsigned long long)val64);
1da177e4
LT
3283 netif_stop_queue(dev);
3284 schedule_work(&nic->rst_timer_task);
bd1034f0 3285 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3286 }
3287
3288 /*
3289 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3290 * Error occurs, the adapter will be recycled by disabling the
20346722 3291 * adapter enable bit and enabling it again after the device
1da177e4
LT
3292 * becomes Quiescent.
3293 */
3294 val64 = readq(&bar0->pcc_err_reg);
3295 writeq(val64, &bar0->pcc_err_reg);
3296 if (val64 & PCC_FB_ECC_DB_ERR) {
3297 u64 ac = readq(&bar0->adapter_control);
3298 ac &= ~(ADAPTER_CNTL_EN);
3299 writeq(ac, &bar0->adapter_control);
3300 ac = readq(&bar0->adapter_control);
3301 schedule_work(&nic->set_link_task);
3302 }
bd1034f0
AR
3303 /* Check for data parity error */
3304 val64 = readq(&bar0->pic_int_status);
3305 if (val64 & PIC_INT_GPIO) {
3306 val64 = readq(&bar0->gpio_int_reg);
3307 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3308 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3309 schedule_work(&nic->rst_timer_task);
3310 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3311 }
3312 }
3313
3314 /* Check for ring full counter */
3315 if (nic->device_type & XFRAME_II_DEVICE) {
3316 val64 = readq(&bar0->ring_bump_counter1);
3317 for (i=0; i<4; i++) {
3318 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3319 cnt >>= 64 - ((i+1)*16);
3320 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3321 += cnt;
3322 }
3323
3324 val64 = readq(&bar0->ring_bump_counter2);
3325 for (i=0; i<4; i++) {
3326 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3327 cnt >>= 64 - ((i+1)*16);
3328 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3329 += cnt;
3330 }
3331 }
1da177e4
LT
3332
3333 /* Other type of interrupts are not being handled now, TODO */
3334}
3335
20346722 3336/**
1da177e4 3337 * wait_for_cmd_complete - waits for a command to complete.
20346722 3338 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3339 * s2io_nic structure.
20346722
K
3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
1da177e4
LT
3343 * Return value:
3344 * SUCCESS on success and FAILURE on failure.
3345 */
3346
9fc93a41
SS
3347static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348 int bit_state)
1da177e4 3349{
9fc93a41 3350 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3351 u64 val64;
3352
9fc93a41
SS
3353 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 return FAILURE;
3355
3356 do {
c92ca04b 3357 val64 = readq(addr);
9fc93a41
SS
3358 if (bit_state == S2IO_BIT_RESET) {
3359 if (!(val64 & busy_bit)) {
3360 ret = SUCCESS;
3361 break;
3362 }
3363 } else {
3364 if (!(val64 & busy_bit)) {
3365 ret = SUCCESS;
3366 break;
3367 }
1da177e4 3368 }
c92ca04b
AR
3369
3370 if(in_interrupt())
9fc93a41 3371 mdelay(delay);
c92ca04b 3372 else
9fc93a41 3373 msleep(delay);
c92ca04b 3374
9fc93a41
SS
3375 if (++cnt >= 10)
3376 delay = 50;
3377 } while (cnt < 20);
1da177e4
LT
3378 return ret;
3379}
19a60522
SS
3380/*
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3385 */
3386static u16 check_pci_device_id(u16 id)
3387{
3388 switch (id) {
3389 case PCI_DEVICE_ID_HERC_WIN:
3390 case PCI_DEVICE_ID_HERC_UNI:
3391 return XFRAME_II_DEVICE;
3392 case PCI_DEVICE_ID_S2IO_UNI:
3393 case PCI_DEVICE_ID_S2IO_WIN:
3394 return XFRAME_I_DEVICE;
3395 default:
3396 return PCI_ANY_ID;
3397 }
3398}
1da177e4 3399
20346722
K
3400/**
3401 * s2io_reset - Resets the card.
1da177e4
LT
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
20346722 3404 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3405 * the card reset also resets the configuration space.
3406 * Return value:
3407 * void.
3408 */
3409
1ee6dd77 3410static void s2io_reset(struct s2io_nic * sp)
1da177e4 3411{
1ee6dd77 3412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3413 u64 val64;
5e25b9dd 3414 u16 subid, pci_cmd;
19a60522
SS
3415 int i;
3416 u16 val16;
491976b2
SH
3417 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419
19a60522
SS
3420 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3421 __FUNCTION__, sp->dev->name);
1da177e4 3422
0b1f7ebe 3423 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3424 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3425
19a60522
SS
3426 if (sp->device_type == XFRAME_II_DEVICE) {
3427 int ret;
3428 ret = pci_set_power_state(sp->pdev, 3);
3429 if (!ret)
3430 ret = pci_set_power_state(sp->pdev, 0);
3431 else {
3432 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3433 __FUNCTION__);
3434 goto old_way;
3435 }
3436 msleep(20);
3437 goto new_way;
3438 }
3439old_way:
1da177e4
LT
3440 val64 = SW_RESET_ALL;
3441 writeq(val64, &bar0->sw_reset);
19a60522 3442new_way:
c92ca04b
AR
3443 if (strstr(sp->product_name, "CX4")) {
3444 msleep(750);
3445 }
19a60522
SS
3446 msleep(250);
3447 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3448
19a60522
SS
3449 /* Restore the PCI state saved during initialization. */
3450 pci_restore_state(sp->pdev);
3451 pci_read_config_word(sp->pdev, 0x2, &val16);
3452 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3453 break;
3454 msleep(200);
3455 }
1da177e4 3456
19a60522
SS
3457 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3458 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3459 }
3460
3461 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3462
3463 s2io_init_pci(sp);
1da177e4 3464
20346722
K
3465 /* Set swapper to enable I/O register access */
3466 s2io_set_swapper(sp);
3467
cc6e7c44
RA
3468 /* Restore the MSIX table entries from local variables */
3469 restore_xmsi_data(sp);
3470
5e25b9dd 3471 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3472 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3473 /* Clear "detected parity error" bit */
303bcb4b 3474 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3475
303bcb4b
K
3476 /* Clearing PCIX Ecc status register */
3477 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3478
303bcb4b
K
3479 /* Clearing PCI_STATUS error reflected here */
3480 writeq(BIT(62), &bar0->txpic_int_reg);
3481 }
5e25b9dd 3482
20346722
K
3483 /* Reset device statistics maintained by OS */
3484 memset(&sp->stats, 0, sizeof (struct net_device_stats));
491976b2
SH
3485
3486 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3487 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3488 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3489 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3490 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3491 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3492 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3493 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3494 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3495 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3496 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3497 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3498 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3499 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3500 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3501 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3502 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3503 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3504 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3505
1da177e4
LT
3506 /* SXE-002: Configure link and activity LED to turn it off */
3507 subid = sp->pdev->subsystem_device;
541ae68f
K
3508 if (((subid & 0xFF) >= 0x07) &&
3509 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3510 val64 = readq(&bar0->gpio_control);
3511 val64 |= 0x0000800000000000ULL;
3512 writeq(val64, &bar0->gpio_control);
3513 val64 = 0x0411040400000000ULL;
509a2671 3514 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3515 }
3516
541ae68f
K
3517 /*
3518 * Clear spurious ECC interrupts that would have occured on
3519 * XFRAME II cards after reset.
3520 */
3521 if (sp->device_type == XFRAME_II_DEVICE) {
3522 val64 = readq(&bar0->pcc_err_reg);
3523 writeq(val64, &bar0->pcc_err_reg);
3524 }
3525
d8d70caf
SS
3526 /* restore the previously assigned mac address */
3527 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3528
1da177e4
LT
3529 sp->device_enabled_once = FALSE;
3530}
3531
3532/**
20346722
K
3533 * s2io_set_swapper - to set the swapper controle on the card
3534 * @sp : private member of the device structure,
1da177e4 3535 * pointer to the s2io_nic structure.
20346722 3536 * Description: Function to set the swapper control on the card
1da177e4
LT
3537 * correctly depending on the 'endianness' of the system.
3538 * Return value:
3539 * SUCCESS on success and FAILURE on failure.
3540 */
3541
1ee6dd77 3542static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3543{
3544 struct net_device *dev = sp->dev;
1ee6dd77 3545 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3546 u64 val64, valt, valr;
3547
20346722 3548 /*
1da177e4
LT
3549 * Set proper endian settings and verify the same by reading
3550 * the PIF Feed-back register.
3551 */
3552
3553 val64 = readq(&bar0->pif_rd_swapper_fb);
3554 if (val64 != 0x0123456789ABCDEFULL) {
3555 int i = 0;
3556 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3557 0x8100008181000081ULL, /* FE=1, SE=0 */
3558 0x4200004242000042ULL, /* FE=0, SE=1 */
3559 0}; /* FE=0, SE=0 */
3560
3561 while(i<4) {
3562 writeq(value[i], &bar0->swapper_ctrl);
3563 val64 = readq(&bar0->pif_rd_swapper_fb);
3564 if (val64 == 0x0123456789ABCDEFULL)
3565 break;
3566 i++;
3567 }
3568 if (i == 4) {
3569 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3570 dev->name);
3571 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3572 (unsigned long long) val64);
3573 return FAILURE;
3574 }
3575 valr = value[i];
3576 } else {
3577 valr = readq(&bar0->swapper_ctrl);
3578 }
3579
3580 valt = 0x0123456789ABCDEFULL;
3581 writeq(valt, &bar0->xmsi_address);
3582 val64 = readq(&bar0->xmsi_address);
3583
3584 if(val64 != valt) {
3585 int i = 0;
3586 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3587 0x0081810000818100ULL, /* FE=1, SE=0 */
3588 0x0042420000424200ULL, /* FE=0, SE=1 */
3589 0}; /* FE=0, SE=0 */
3590
3591 while(i<4) {
3592 writeq((value[i] | valr), &bar0->swapper_ctrl);
3593 writeq(valt, &bar0->xmsi_address);
3594 val64 = readq(&bar0->xmsi_address);
3595 if(val64 == valt)
3596 break;
3597 i++;
3598 }
3599 if(i == 4) {
20346722 3600 unsigned long long x = val64;
1da177e4 3601 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3602 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3603 return FAILURE;
3604 }
3605 }
3606 val64 = readq(&bar0->swapper_ctrl);
3607 val64 &= 0xFFFF000000000000ULL;
3608
3609#ifdef __BIG_ENDIAN
20346722
K
3610 /*
3611 * The device by default set to a big endian format, so a
1da177e4
LT
3612 * big endian driver need not set anything.
3613 */
3614 val64 |= (SWAPPER_CTRL_TXP_FE |
3615 SWAPPER_CTRL_TXP_SE |
3616 SWAPPER_CTRL_TXD_R_FE |
3617 SWAPPER_CTRL_TXD_W_FE |
3618 SWAPPER_CTRL_TXF_R_FE |
3619 SWAPPER_CTRL_RXD_R_FE |
3620 SWAPPER_CTRL_RXD_W_FE |
3621 SWAPPER_CTRL_RXF_W_FE |
3622 SWAPPER_CTRL_XMSI_FE |
1da177e4 3623 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3624 if (sp->intr_type == INTA)
cc6e7c44 3625 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3626 writeq(val64, &bar0->swapper_ctrl);
3627#else
20346722 3628 /*
1da177e4 3629 * Initially we enable all bits to make it accessible by the
20346722 3630 * driver, then we selectively enable only those bits that
1da177e4
LT
3631 * we want to set.
3632 */
3633 val64 |= (SWAPPER_CTRL_TXP_FE |
3634 SWAPPER_CTRL_TXP_SE |
3635 SWAPPER_CTRL_TXD_R_FE |
3636 SWAPPER_CTRL_TXD_R_SE |
3637 SWAPPER_CTRL_TXD_W_FE |
3638 SWAPPER_CTRL_TXD_W_SE |
3639 SWAPPER_CTRL_TXF_R_FE |
3640 SWAPPER_CTRL_RXD_R_FE |
3641 SWAPPER_CTRL_RXD_R_SE |
3642 SWAPPER_CTRL_RXD_W_FE |
3643 SWAPPER_CTRL_RXD_W_SE |
3644 SWAPPER_CTRL_RXF_W_FE |
3645 SWAPPER_CTRL_XMSI_FE |
1da177e4 3646 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3647 if (sp->intr_type == INTA)
3648 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3649 writeq(val64, &bar0->swapper_ctrl);
3650#endif
3651 val64 = readq(&bar0->swapper_ctrl);
3652
20346722
K
3653 /*
3654 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3655 * feedback register.
3656 */
3657 val64 = readq(&bar0->pif_rd_swapper_fb);
3658 if (val64 != 0x0123456789ABCDEFULL) {
3659 /* Endian settings are incorrect, calls for another dekko. */
3660 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3661 dev->name);
3662 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3663 (unsigned long long) val64);
3664 return FAILURE;
3665 }
3666
3667 return SUCCESS;
3668}
3669
1ee6dd77 3670static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3671{
1ee6dd77 3672 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3673 u64 val64;
3674 int ret = 0, cnt = 0;
3675
3676 do {
3677 val64 = readq(&bar0->xmsi_access);
3678 if (!(val64 & BIT(15)))
3679 break;
3680 mdelay(1);
3681 cnt++;
3682 } while(cnt < 5);
3683 if (cnt == 5) {
3684 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3685 ret = 1;
3686 }
3687
3688 return ret;
3689}
3690
1ee6dd77 3691static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3692{
1ee6dd77 3693 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3694 u64 val64;
3695 int i;
3696
75c30b13 3697 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3698 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3699 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3700 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3701 writeq(val64, &bar0->xmsi_access);
3702 if (wait_for_msix_trans(nic, i)) {
3703 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3704 continue;
3705 }
3706 }
3707}
3708
1ee6dd77 3709static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3710{
1ee6dd77 3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3712 u64 val64, addr, data;
3713 int i;
3714
3715 /* Store and display */
75c30b13 3716 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3717 val64 = (BIT(15) | vBIT(i, 26, 6));
3718 writeq(val64, &bar0->xmsi_access);
3719 if (wait_for_msix_trans(nic, i)) {
3720 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3721 continue;
3722 }
3723 addr = readq(&bar0->xmsi_address);
3724 data = readq(&bar0->xmsi_data);
3725 if (addr && data) {
3726 nic->msix_info[i].addr = addr;
3727 nic->msix_info[i].data = data;
3728 }
3729 }
3730}
3731
1ee6dd77 3732int s2io_enable_msi(struct s2io_nic *nic)
cc6e7c44 3733{
1ee6dd77 3734 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3735 u16 msi_ctrl, msg_val;
3736 struct config_param *config = &nic->config;
3737 struct net_device *dev = nic->dev;
3738 u64 val64, tx_mat, rx_mat;
3739 int i, err;
3740
3741 val64 = readq(&bar0->pic_control);
3742 val64 &= ~BIT(1);
3743 writeq(val64, &bar0->pic_control);
3744
3745 err = pci_enable_msi(nic->pdev);
3746 if (err) {
3747 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3748 nic->dev->name);
3749 return err;
3750 }
3751
3752 /*
3753 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3754 * for interrupt handling.
3755 */
3756 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3757 msg_val ^= 0x1;
3758 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3759 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3760
3761 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3762 msi_ctrl |= 0x10;
3763 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3764
3765 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3766 tx_mat = readq(&bar0->tx_mat0_n[0]);
3767 for (i=0; i<config->tx_fifo_num; i++) {
3768 tx_mat |= TX_MAT_SET(i, 1);
3769 }
3770 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3771
3772 rx_mat = readq(&bar0->rx_mat);
3773 for (i=0; i<config->rx_ring_num; i++) {
3774 rx_mat |= RX_MAT_SET(i, 1);
3775 }
3776 writeq(rx_mat, &bar0->rx_mat);
3777
3778 dev->irq = nic->pdev->irq;
3779 return 0;
3780}
3781
1ee6dd77 3782static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3783{
1ee6dd77 3784 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3785 u64 tx_mat, rx_mat;
3786 u16 msi_control; /* Temp variable */
3787 int ret, i, j, msix_indx = 1;
3788
3789 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3790 GFP_KERNEL);
3791 if (nic->entries == NULL) {
491976b2
SH
3792 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3793 __FUNCTION__);
c53d4945 3794 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3795 return -ENOMEM;
3796 }
491976b2
SH
3797 nic->mac_control.stats_info->sw_stat.mem_allocated
3798 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3799 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3800
3801 nic->s2io_entries =
3802 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3803 GFP_KERNEL);
3804 if (nic->s2io_entries == NULL) {
491976b2
SH
3805 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806 __FUNCTION__);
c53d4945 3807 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3808 kfree(nic->entries);
491976b2
SH
3809 nic->mac_control.stats_info->sw_stat.mem_freed
3810 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3811 return -ENOMEM;
3812 }
491976b2
SH
3813 nic->mac_control.stats_info->sw_stat.mem_allocated
3814 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3815 memset(nic->s2io_entries, 0,
3816 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3817
3818 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3819 nic->entries[i].entry = i;
3820 nic->s2io_entries[i].entry = i;
3821 nic->s2io_entries[i].arg = NULL;
3822 nic->s2io_entries[i].in_use = 0;
3823 }
3824
3825 tx_mat = readq(&bar0->tx_mat0_n[0]);
3826 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3827 tx_mat |= TX_MAT_SET(i, msix_indx);
3828 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3829 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3830 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3831 }
3832 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3833
3834 if (!nic->config.bimodal) {
3835 rx_mat = readq(&bar0->rx_mat);
3836 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3837 rx_mat |= RX_MAT_SET(j, msix_indx);
491976b2
SH
3838 nic->s2io_entries[msix_indx].arg
3839 = &nic->mac_control.rings[j];
cc6e7c44
RA
3840 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3841 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3842 }
3843 writeq(rx_mat, &bar0->rx_mat);
3844 } else {
3845 tx_mat = readq(&bar0->tx_mat0_n[7]);
3846 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3847 tx_mat |= TX_MAT_SET(i, msix_indx);
491976b2
SH
3848 nic->s2io_entries[msix_indx].arg
3849 = &nic->mac_control.rings[j];
cc6e7c44
RA
3850 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3851 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3852 }
3853 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3854 }
3855
c92ca04b 3856 nic->avail_msix_vectors = 0;
cc6e7c44 3857 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3858 /* We fail init if error or we get less vectors than min required */
3859 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3860 nic->avail_msix_vectors = ret;
3861 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3862 }
cc6e7c44
RA
3863 if (ret) {
3864 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3865 kfree(nic->entries);
491976b2
SH
3866 nic->mac_control.stats_info->sw_stat.mem_freed
3867 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3868 kfree(nic->s2io_entries);
491976b2
SH
3869 nic->mac_control.stats_info->sw_stat.mem_freed
3870 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3871 nic->entries = NULL;
3872 nic->s2io_entries = NULL;
c92ca04b 3873 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3874 return -ENOMEM;
3875 }
c92ca04b
AR
3876 if (!nic->avail_msix_vectors)
3877 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3878
3879 /*
3880 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3881 * in the herc NIC. (Temp change, needs to be removed later)
3882 */
3883 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3884 msi_control |= 0x1; /* Enable MSI */
3885 pci_write_config_word(nic->pdev, 0x42, msi_control);
3886
3887 return 0;
3888}
3889
1da177e4
LT
3890/* ********************************************************* *
3891 * Functions defined below concern the OS part of the driver *
3892 * ********************************************************* */
3893
20346722 3894/**
1da177e4
LT
3895 * s2io_open - open entry point of the driver
3896 * @dev : pointer to the device structure.
3897 * Description:
3898 * This function is the open entry point of the driver. It mainly calls a
3899 * function to allocate Rx buffers and inserts them into the buffer
20346722 3900 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3901 * Return value:
3902 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3903 * file on failure.
3904 */
3905
ac1f60db 3906static int s2io_open(struct net_device *dev)
1da177e4 3907{
1ee6dd77 3908 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3909 int err = 0;
3910
20346722
K
3911 /*
3912 * Make sure you have link off by default every time
1da177e4
LT
3913 * Nic is initialized
3914 */
3915 netif_carrier_off(dev);
0b1f7ebe 3916 sp->last_link_state = 0;
1da177e4
LT
3917
3918 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3919 err = s2io_card_up(sp);
3920 if (err) {
1da177e4
LT
3921 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3922 dev->name);
e6a8fee2 3923 goto hw_init_failed;
1da177e4
LT
3924 }
3925
3926 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3927 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3928 s2io_card_down(sp);
20346722 3929 err = -ENODEV;
e6a8fee2 3930 goto hw_init_failed;
1da177e4
LT
3931 }
3932
3933 netif_start_queue(dev);
3934 return 0;
20346722 3935
20346722 3936hw_init_failed:
cc6e7c44 3937 if (sp->intr_type == MSI_X) {
491976b2 3938 if (sp->entries) {
cc6e7c44 3939 kfree(sp->entries);
491976b2
SH
3940 sp->mac_control.stats_info->sw_stat.mem_freed
3941 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3942 }
3943 if (sp->s2io_entries) {
cc6e7c44 3944 kfree(sp->s2io_entries);
491976b2
SH
3945 sp->mac_control.stats_info->sw_stat.mem_freed
3946 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3947 }
cc6e7c44 3948 }
20346722 3949 return err;
1da177e4
LT
3950}
3951
3952/**
3953 * s2io_close -close entry point of the driver
3954 * @dev : device pointer.
3955 * Description:
3956 * This is the stop entry point of the driver. It needs to undo exactly
3957 * whatever was done by the open entry point,thus it's usually referred to
3958 * as the close function.Among other things this function mainly stops the
3959 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3960 * Return value:
3961 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3962 * file on failure.
3963 */
3964
ac1f60db 3965static int s2io_close(struct net_device *dev)
1da177e4 3966{
1ee6dd77 3967 struct s2io_nic *sp = dev->priv;
cc6e7c44 3968
1da177e4
LT
3969 netif_stop_queue(dev);
3970 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3971 s2io_card_down(sp);
cc6e7c44 3972
1da177e4
LT
3973 return 0;
3974}
3975
3976/**
3977 * s2io_xmit - Tx entry point of te driver
3978 * @skb : the socket buffer containing the Tx data.
3979 * @dev : device pointer.
3980 * Description :
3981 * This function is the Tx entry point of the driver. S2IO NIC supports
3982 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3983 * NOTE: when device cant queue the pkt,just the trans_start variable will
3984 * not be upadted.
3985 * Return value:
3986 * 0 on success & 1 on failure.
3987 */
3988
ac1f60db 3989static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3990{
1ee6dd77 3991 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3992 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3993 register u64 val64;
1ee6dd77
RB
3994 struct TxD *txdp;
3995 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3996 unsigned long flags;
be3a6b02
K
3997 u16 vlan_tag = 0;
3998 int vlan_priority = 0;
1ee6dd77 3999 struct mac_info *mac_control;
1da177e4 4000 struct config_param *config;
75c30b13 4001 int offload_type;
1da177e4
LT
4002
4003 mac_control = &sp->mac_control;
4004 config = &sp->config;
4005
20346722 4006 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4007
4008 if (unlikely(skb->len <= 0)) {
4009 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4010 dev_kfree_skb_any(skb);
4011 return 0;
4012}
4013
1da177e4 4014 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 4015 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 4016 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
4017 dev->name);
4018 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
4019 dev_kfree_skb(skb);
4020 return 0;
1da177e4
LT
4021 }
4022
4023 queue = 0;
be3a6b02
K
4024 /* Get Fifo number to Transmit based on vlan priority */
4025 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4026 vlan_tag = vlan_tx_tag_get(skb);
4027 vlan_priority = vlan_tag >> 13;
4028 queue = config->fifo_mapping[vlan_priority];
4029 }
4030
20346722
K
4031 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4032 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 4033 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
4034 list_virt_addr;
4035
4036 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 4037 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4038 if (txdp->Host_Control ||
4039 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4040 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
4041 netif_stop_queue(dev);
4042 dev_kfree_skb(skb);
4043 spin_unlock_irqrestore(&sp->tx_lock, flags);
4044 return 0;
4045 }
0b1f7ebe 4046
75c30b13 4047 offload_type = s2io_offload_type(skb);
75c30b13 4048 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4049 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4050 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4051 }
84fa7933 4052 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4053 txdp->Control_2 |=
4054 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4055 TXD_TX_CKO_UDP_EN);
4056 }
fed5eccd
AR
4057 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4058 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 4059 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 4060
be3a6b02
K
4061 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4062 txdp->Control_2 |= TXD_VLAN_ENABLE;
4063 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4064 }
4065
fed5eccd 4066 frg_len = skb->len - skb->data_len;
75c30b13 4067 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4068 int ufo_size;
4069
75c30b13 4070 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4071 ufo_size &= ~7;
4072 txdp->Control_1 |= TXD_UFO_EN;
4073 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4074 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4075#ifdef __BIG_ENDIAN
4076 sp->ufo_in_band_v[put_off] =
4077 (u64)skb_shinfo(skb)->ip6_frag_id;
4078#else
4079 sp->ufo_in_band_v[put_off] =
4080 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4081#endif
4082 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4083 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4084 sp->ufo_in_band_v,
4085 sizeof(u64), PCI_DMA_TODEVICE);
4086 txdp++;
fed5eccd 4087 }
1da177e4 4088
fed5eccd
AR
4089 txdp->Buffer_Pointer = pci_map_single
4090 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4091 txdp->Host_Control = (unsigned long) skb;
4092 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4093 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4094 txdp->Control_1 |= TXD_UFO_EN;
4095
4096 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4097 /* For fragmented SKB. */
4098 for (i = 0; i < frg_cnt; i++) {
4099 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4100 /* A '0' length fragment will be ignored */
4101 if (!frag->size)
4102 continue;
1da177e4
LT
4103 txdp++;
4104 txdp->Buffer_Pointer = (u64) pci_map_page
4105 (sp->pdev, frag->page, frag->page_offset,
4106 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4107 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4108 if (offload_type == SKB_GSO_UDP)
fed5eccd 4109 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4110 }
4111 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4112
75c30b13 4113 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4114 frg_cnt++; /* as Txd0 was used for inband header */
4115
1da177e4 4116 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 4117 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
4118 writeq(val64, &tx_fifo->TxDL_Pointer);
4119
4120 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4121 TX_FIFO_LAST_LIST);
75c30b13 4122 if (offload_type)
fed5eccd 4123 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4124
1da177e4
LT
4125 writeq(val64, &tx_fifo->List_Control);
4126
303bcb4b
K
4127 mmiowb();
4128
1da177e4 4129 put_off++;
863c11a9
AR
4130 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4131 put_off = 0;
20346722 4132 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4133
4134 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4135 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4136 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4137 DBG_PRINT(TX_DBG,
4138 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4139 put_off, get_off);
4140 netif_stop_queue(dev);
4141 }
491976b2 4142 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4
LT
4143 dev->trans_start = jiffies;
4144 spin_unlock_irqrestore(&sp->tx_lock, flags);
4145
4146 return 0;
4147}
4148
25fff88e
K
4149static void
4150s2io_alarm_handle(unsigned long data)
4151{
1ee6dd77 4152 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e
K
4153
4154 alarm_intr_handler(sp);
4155 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4156}
4157
1ee6dd77 4158static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4159{
4160 int rxb_size, level;
4161
4162 if (!sp->lro) {
4163 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4164 level = rx_buffer_level(sp, rxb_size, rng_n);
4165
4166 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4167 int ret;
4168 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4169 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4170 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4171 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4172 __FUNCTION__);
4173 clear_bit(0, (&sp->tasklet_status));
4174 return -1;
4175 }
4176 clear_bit(0, (&sp->tasklet_status));
4177 } else if (level == LOW)
4178 tasklet_schedule(&sp->task);
4179
4180 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4181 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4182 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4183 }
4184 return 0;
4185}
4186
7d12e780 4187static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
cc6e7c44
RA
4188{
4189 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77 4190 struct s2io_nic *sp = dev->priv;
cc6e7c44 4191 int i;
1ee6dd77 4192 struct mac_info *mac_control;
cc6e7c44
RA
4193 struct config_param *config;
4194
4195 atomic_inc(&sp->isr_cnt);
4196 mac_control = &sp->mac_control;
4197 config = &sp->config;
4198 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4199
4200 /* If Intr is because of Rx Traffic */
4201 for (i = 0; i < config->rx_ring_num; i++)
4202 rx_intr_handler(&mac_control->rings[i]);
4203
4204 /* If Intr is because of Tx Traffic */
4205 for (i = 0; i < config->tx_fifo_num; i++)
4206 tx_intr_handler(&mac_control->fifos[i]);
4207
4208 /*
4209 * If the Rx buffer count is below the panic threshold then
4210 * reallocate the buffers from the interrupt handler itself,
4211 * else schedule a tasklet to reallocate the buffers.
4212 */
75c30b13
AR
4213 for (i = 0; i < config->rx_ring_num; i++)
4214 s2io_chk_rx_buffers(sp, i);
cc6e7c44
RA
4215
4216 atomic_dec(&sp->isr_cnt);
4217 return IRQ_HANDLED;
4218}
4219
7d12e780 4220static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4221{
1ee6dd77
RB
4222 struct ring_info *ring = (struct ring_info *)dev_id;
4223 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4224
4225 atomic_inc(&sp->isr_cnt);
cc6e7c44 4226
75c30b13
AR
4227 rx_intr_handler(ring);
4228 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4229
cc6e7c44 4230 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4231 return IRQ_HANDLED;
4232}
4233
7d12e780 4234static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4235{
1ee6dd77
RB
4236 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4237 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4238
4239 atomic_inc(&sp->isr_cnt);
4240 tx_intr_handler(fifo);
4241 atomic_dec(&sp->isr_cnt);
4242 return IRQ_HANDLED;
4243}
1ee6dd77 4244static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4245{
1ee6dd77 4246 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4247 u64 val64;
4248
4249 val64 = readq(&bar0->pic_int_status);
4250 if (val64 & PIC_INT_GPIO) {
4251 val64 = readq(&bar0->gpio_int_reg);
4252 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4253 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4254 /*
4255 * This is unstable state so clear both up/down
4256 * interrupt and adapter to re-evaluate the link state.
4257 */
a371a07d
K
4258 val64 |= GPIO_INT_REG_LINK_DOWN;
4259 val64 |= GPIO_INT_REG_LINK_UP;
4260 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4261 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4262 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4263 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4264 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4265 }
c92ca04b
AR
4266 else if (val64 & GPIO_INT_REG_LINK_UP) {
4267 val64 = readq(&bar0->adapter_status);
c92ca04b 4268 /* Enable Adapter */
19a60522
SS
4269 val64 = readq(&bar0->adapter_control);
4270 val64 |= ADAPTER_CNTL_EN;
4271 writeq(val64, &bar0->adapter_control);
4272 val64 |= ADAPTER_LED_ON;
4273 writeq(val64, &bar0->adapter_control);
4274 if (!sp->device_enabled_once)
4275 sp->device_enabled_once = 1;
c92ca04b 4276
19a60522
SS
4277 s2io_link(sp, LINK_UP);
4278 /*
4279 * unmask link down interrupt and mask link-up
4280 * intr
4281 */
4282 val64 = readq(&bar0->gpio_int_mask);
4283 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4284 val64 |= GPIO_INT_MASK_LINK_UP;
4285 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4286
c92ca04b
AR
4287 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4288 val64 = readq(&bar0->adapter_status);
19a60522
SS
4289 s2io_link(sp, LINK_DOWN);
4290 /* Link is down so unmaks link up interrupt */
4291 val64 = readq(&bar0->gpio_int_mask);
4292 val64 &= ~GPIO_INT_MASK_LINK_UP;
4293 val64 |= GPIO_INT_MASK_LINK_DOWN;
4294 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4295
4296 /* turn off LED */
4297 val64 = readq(&bar0->adapter_control);
4298 val64 = val64 &(~ADAPTER_LED_ON);
4299 writeq(val64, &bar0->adapter_control);
a371a07d
K
4300 }
4301 }
c92ca04b 4302 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4303}
4304
1da177e4
LT
4305/**
4306 * s2io_isr - ISR handler of the device .
4307 * @irq: the irq of the device.
4308 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4309 * Description: This function is the ISR handler of the device. It
4310 * identifies the reason for the interrupt and calls the relevant
4311 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4312 * recv buffers, if their numbers are below the panic value which is
4313 * presently set to 25% of the original number of rcv buffers allocated.
4314 * Return value:
20346722 4315 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4316 * IRQ_NONE: will be returned if interrupt is not from our device
4317 */
7d12e780 4318static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4319{
4320 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4321 struct s2io_nic *sp = dev->priv;
4322 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4323 int i;
19a60522 4324 u64 reason = 0;
1ee6dd77 4325 struct mac_info *mac_control;
1da177e4
LT
4326 struct config_param *config;
4327
d796fdb7
LV
4328 /* Pretend we handled any irq's from a disconnected card */
4329 if (pci_channel_offline(sp->pdev))
4330 return IRQ_NONE;
4331
7ba013ac 4332 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4333 mac_control = &sp->mac_control;
4334 config = &sp->config;
4335
20346722 4336 /*
1da177e4
LT
4337 * Identify the cause for interrupt and call the appropriate
4338 * interrupt handler. Causes for the interrupt could be;
4339 * 1. Rx of packet.
4340 * 2. Tx complete.
4341 * 3. Link down.
20346722 4342 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4343 */
4344 reason = readq(&bar0->general_int_status);
4345
4346 if (!reason) {
19a60522
SS
4347 /* The interrupt was not raised by us. */
4348 atomic_dec(&sp->isr_cnt);
4349 return IRQ_NONE;
4350 }
4351 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4352 /* Disable device and get out */
7ba013ac 4353 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4354 return IRQ_NONE;
4355 }
5d3213cc 4356
db874e65
SS
4357 if (napi) {
4358 if (reason & GEN_INTR_RXTRAFFIC) {
19a60522 4359 if ( likely ( netif_rx_schedule_prep(dev)) ) {
db874e65 4360 __netif_rx_schedule(dev);
19a60522 4361 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4362 }
19a60522
SS
4363 else
4364 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4365 }
4366 } else {
4367 /*
4368 * Rx handler is called by default, without checking for the
4369 * cause of interrupt.
4370 * rx_traffic_int reg is an R1 register, writing all 1's
4371 * will ensure that the actual interrupt causing bit get's
4372 * cleared and hence a read can be avoided.
4373 */
19a60522
SS
4374 if (reason & GEN_INTR_RXTRAFFIC)
4375 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4376
db874e65
SS
4377 for (i = 0; i < config->rx_ring_num; i++) {
4378 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4379 }
4380 }
1da177e4 4381
863c11a9
AR
4382 /*
4383 * tx_traffic_int reg is an R1 register, writing all 1's
4384 * will ensure that the actual interrupt causing bit get's
4385 * cleared and hence a read can be avoided.
4386 */
19a60522
SS
4387 if (reason & GEN_INTR_TXTRAFFIC)
4388 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4389
863c11a9
AR
4390 for (i = 0; i < config->tx_fifo_num; i++)
4391 tx_intr_handler(&mac_control->fifos[i]);
20346722 4392
a371a07d
K
4393 if (reason & GEN_INTR_TXPIC)
4394 s2io_txpic_intr_handle(sp);
20346722
K
4395 /*
4396 * If the Rx buffer count is below the panic threshold then
4397 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4398 * else schedule a tasklet to reallocate the buffers.
4399 */
db874e65
SS
4400 if (!napi) {
4401 for (i = 0; i < config->rx_ring_num; i++)
4402 s2io_chk_rx_buffers(sp, i);
4403 }
4404
4405 writeq(0, &bar0->general_int_mask);
4406 readl(&bar0->general_int_status);
4407
7ba013ac 4408 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4409 return IRQ_HANDLED;
4410}
4411
7ba013ac
K
4412/**
4413 * s2io_updt_stats -
4414 */
1ee6dd77 4415static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4416{
1ee6dd77 4417 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4418 u64 val64;
4419 int cnt = 0;
4420
4421 if (atomic_read(&sp->card_state) == CARD_UP) {
4422 /* Apprx 30us on a 133 MHz bus */
4423 val64 = SET_UPDT_CLICKS(10) |
4424 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4425 writeq(val64, &bar0->stat_cfg);
4426 do {
4427 udelay(100);
4428 val64 = readq(&bar0->stat_cfg);
4429 if (!(val64 & BIT(0)))
4430 break;
4431 cnt++;
4432 if (cnt == 5)
4433 break; /* Updt failed */
4434 } while(1);
363dc367 4435 }
7ba013ac
K
4436}
4437
1da177e4 4438/**
20346722 4439 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4440 * @dev : pointer to the device structure.
4441 * Description:
20346722 4442 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4443 * structure and returns a pointer to the same.
4444 * Return value:
4445 * pointer to the updated net_device_stats structure.
4446 */
4447
ac1f60db 4448static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4449{
1ee6dd77
RB
4450 struct s2io_nic *sp = dev->priv;
4451 struct mac_info *mac_control;
1da177e4
LT
4452 struct config_param *config;
4453
20346722 4454
1da177e4
LT
4455 mac_control = &sp->mac_control;
4456 config = &sp->config;
4457
7ba013ac
K
4458 /* Configure Stats for immediate updt */
4459 s2io_updt_stats(sp);
4460
4461 sp->stats.tx_packets =
4462 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4463 sp->stats.tx_errors =
4464 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4465 sp->stats.rx_errors =
ee705dba 4466 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4467 sp->stats.multicast =
4468 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4469 sp->stats.rx_length_errors =
ee705dba 4470 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4471
4472 return (&sp->stats);
4473}
4474
4475/**
4476 * s2io_set_multicast - entry point for multicast address enable/disable.
4477 * @dev : pointer to the device structure
4478 * Description:
20346722
K
4479 * This function is a driver entry point which gets called by the kernel
4480 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4481 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4482 * determine, if multicast address must be enabled or if promiscuous mode
4483 * is to be disabled etc.
4484 * Return value:
4485 * void.
4486 */
4487
4488static void s2io_set_multicast(struct net_device *dev)
4489{
4490 int i, j, prev_cnt;
4491 struct dev_mc_list *mclist;
1ee6dd77
RB
4492 struct s2io_nic *sp = dev->priv;
4493 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4494 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4495 0xfeffffffffffULL;
4496 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4497 void __iomem *add;
4498
4499 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4500 /* Enable all Multicast addresses */
4501 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4502 &bar0->rmac_addr_data0_mem);
4503 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4504 &bar0->rmac_addr_data1_mem);
4505 val64 = RMAC_ADDR_CMD_MEM_WE |
4506 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4507 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4508 writeq(val64, &bar0->rmac_addr_cmd_mem);
4509 /* Wait till command completes */
c92ca04b 4510 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4511 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4512 S2IO_BIT_RESET);
1da177e4
LT
4513
4514 sp->m_cast_flg = 1;
4515 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4516 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4517 /* Disable all Multicast addresses */
4518 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4519 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4520 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4521 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4522 val64 = RMAC_ADDR_CMD_MEM_WE |
4523 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4524 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4525 writeq(val64, &bar0->rmac_addr_cmd_mem);
4526 /* Wait till command completes */
c92ca04b 4527 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4528 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4529 S2IO_BIT_RESET);
1da177e4
LT
4530
4531 sp->m_cast_flg = 0;
4532 sp->all_multi_pos = 0;
4533 }
4534
4535 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4536 /* Put the NIC into promiscuous mode */
4537 add = &bar0->mac_cfg;
4538 val64 = readq(&bar0->mac_cfg);
4539 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4540
4541 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4542 writel((u32) val64, add);
4543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4544 writel((u32) (val64 >> 32), (add + 4));
4545
926930b2
SS
4546 if (vlan_tag_strip != 1) {
4547 val64 = readq(&bar0->rx_pa_cfg);
4548 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4549 writeq(val64, &bar0->rx_pa_cfg);
4550 vlan_strip_flag = 0;
4551 }
4552
1da177e4
LT
4553 val64 = readq(&bar0->mac_cfg);
4554 sp->promisc_flg = 1;
776bd20f 4555 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4556 dev->name);
4557 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4558 /* Remove the NIC from promiscuous mode */
4559 add = &bar0->mac_cfg;
4560 val64 = readq(&bar0->mac_cfg);
4561 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4562
4563 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4564 writel((u32) val64, add);
4565 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4566 writel((u32) (val64 >> 32), (add + 4));
4567
926930b2
SS
4568 if (vlan_tag_strip != 0) {
4569 val64 = readq(&bar0->rx_pa_cfg);
4570 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4571 writeq(val64, &bar0->rx_pa_cfg);
4572 vlan_strip_flag = 1;
4573 }
4574
1da177e4
LT
4575 val64 = readq(&bar0->mac_cfg);
4576 sp->promisc_flg = 0;
776bd20f 4577 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4578 dev->name);
4579 }
4580
4581 /* Update individual M_CAST address list */
4582 if ((!sp->m_cast_flg) && dev->mc_count) {
4583 if (dev->mc_count >
4584 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4585 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4586 dev->name);
4587 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4588 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4589 return;
4590 }
4591
4592 prev_cnt = sp->mc_addr_count;
4593 sp->mc_addr_count = dev->mc_count;
4594
4595 /* Clear out the previous list of Mc in the H/W. */
4596 for (i = 0; i < prev_cnt; i++) {
4597 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4598 &bar0->rmac_addr_data0_mem);
4599 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4600 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4601 val64 = RMAC_ADDR_CMD_MEM_WE |
4602 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4603 RMAC_ADDR_CMD_MEM_OFFSET
4604 (MAC_MC_ADDR_START_OFFSET + i);
4605 writeq(val64, &bar0->rmac_addr_cmd_mem);
4606
4607 /* Wait for command completes */
c92ca04b 4608 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4609 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4610 S2IO_BIT_RESET)) {
1da177e4
LT
4611 DBG_PRINT(ERR_DBG, "%s: Adding ",
4612 dev->name);
4613 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4614 return;
4615 }
4616 }
4617
4618 /* Create the new Rx filter list and update the same in H/W. */
4619 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4620 i++, mclist = mclist->next) {
4621 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4622 ETH_ALEN);
a7a80d5a 4623 mac_addr = 0;
1da177e4
LT
4624 for (j = 0; j < ETH_ALEN; j++) {
4625 mac_addr |= mclist->dmi_addr[j];
4626 mac_addr <<= 8;
4627 }
4628 mac_addr >>= 8;
4629 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4630 &bar0->rmac_addr_data0_mem);
4631 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4632 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4633 val64 = RMAC_ADDR_CMD_MEM_WE |
4634 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4635 RMAC_ADDR_CMD_MEM_OFFSET
4636 (i + MAC_MC_ADDR_START_OFFSET);
4637 writeq(val64, &bar0->rmac_addr_cmd_mem);
4638
4639 /* Wait for command completes */
c92ca04b 4640 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4641 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4642 S2IO_BIT_RESET)) {
1da177e4
LT
4643 DBG_PRINT(ERR_DBG, "%s: Adding ",
4644 dev->name);
4645 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4646 return;
4647 }
4648 }
4649 }
4650}
4651
4652/**
20346722 4653 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4654 * @dev : pointer to the device structure.
4655 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4656 * Description : This procedure will program the Xframe to receive
1da177e4 4657 * frames with new Mac Address
20346722 4658 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4659 * as defined in errno.h file on failure.
4660 */
4661
26df54bf 4662static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4663{
1ee6dd77
RB
4664 struct s2io_nic *sp = dev->priv;
4665 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4666 register u64 val64, mac_addr = 0;
4667 int i;
d8d70caf 4668 u64 old_mac_addr = 0;
1da177e4 4669
20346722 4670 /*
1da177e4
LT
4671 * Set the new MAC address as the new unicast filter and reflect this
4672 * change on the device address registered with the OS. It will be
20346722 4673 * at offset 0.
1da177e4
LT
4674 */
4675 for (i = 0; i < ETH_ALEN; i++) {
4676 mac_addr <<= 8;
4677 mac_addr |= addr[i];
d8d70caf
SS
4678 old_mac_addr <<= 8;
4679 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4680 }
4681
4682 if(0 == mac_addr)
4683 return SUCCESS;
4684
4685 /* Update the internal structure with this new mac address */
4686 if(mac_addr != old_mac_addr) {
4687 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4688 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4689 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4690 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4691 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4692 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4693 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4694 }
4695
4696 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4697 &bar0->rmac_addr_data0_mem);
4698
4699 val64 =
4700 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4701 RMAC_ADDR_CMD_MEM_OFFSET(0);
4702 writeq(val64, &bar0->rmac_addr_cmd_mem);
4703 /* Wait till command completes */
c92ca04b 4704 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4705 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4706 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4707 return FAILURE;
4708 }
4709
4710 return SUCCESS;
4711}
4712
4713/**
20346722 4714 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4715 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4716 * @info: pointer to the structure with parameters given by ethtool to set
4717 * link information.
4718 * Description:
20346722 4719 * The function sets different link parameters provided by the user onto
1da177e4
LT
4720 * the NIC.
4721 * Return value:
4722 * 0 on success.
4723*/
4724
4725static int s2io_ethtool_sset(struct net_device *dev,
4726 struct ethtool_cmd *info)
4727{
1ee6dd77 4728 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4729 if ((info->autoneg == AUTONEG_ENABLE) ||
4730 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4731 return -EINVAL;
4732 else {
4733 s2io_close(sp->dev);
4734 s2io_open(sp->dev);
4735 }
4736
4737 return 0;
4738}
4739
4740/**
20346722 4741 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4742 * @sp : private member of the device structure, pointer to the
4743 * s2io_nic structure.
4744 * @info : pointer to the structure with parameters given by ethtool
4745 * to return link information.
4746 * Description:
4747 * Returns link specific information like speed, duplex etc.. to ethtool.
4748 * Return value :
4749 * return 0 on success.
4750 */
4751
4752static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4753{
1ee6dd77 4754 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4755 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4756 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4757 info->port = PORT_FIBRE;
4758 /* info->transceiver?? TODO */
4759
4760 if (netif_carrier_ok(sp->dev)) {
4761 info->speed = 10000;
4762 info->duplex = DUPLEX_FULL;
4763 } else {
4764 info->speed = -1;
4765 info->duplex = -1;
4766 }
4767
4768 info->autoneg = AUTONEG_DISABLE;
4769 return 0;
4770}
4771
4772/**
20346722
K
4773 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4774 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4775 * s2io_nic structure.
4776 * @info : pointer to the structure with parameters given by ethtool to
4777 * return driver information.
4778 * Description:
4779 * Returns driver specefic information like name, version etc.. to ethtool.
4780 * Return value:
4781 * void
4782 */
4783
4784static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4785 struct ethtool_drvinfo *info)
4786{
1ee6dd77 4787 struct s2io_nic *sp = dev->priv;
1da177e4 4788
dbc2309d
JL
4789 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4790 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4791 strncpy(info->fw_version, "", sizeof(info->fw_version));
4792 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4793 info->regdump_len = XENA_REG_SPACE;
4794 info->eedump_len = XENA_EEPROM_SPACE;
4795 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
4796
4797 if (sp->device_type == XFRAME_I_DEVICE)
4798 info->n_stats = XFRAME_I_STAT_LEN;
4799 else
4800 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
4801}
4802
4803/**
4804 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4805 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4806 * s2io_nic structure.
20346722 4807 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4808 * dumping the registers.
4809 * @reg_space: The input argumnet into which all the registers are dumped.
4810 * Description:
4811 * Dumps the entire register space of xFrame NIC into the user given
4812 * buffer area.
4813 * Return value :
4814 * void .
4815*/
4816
4817static void s2io_ethtool_gregs(struct net_device *dev,
4818 struct ethtool_regs *regs, void *space)
4819{
4820 int i;
4821 u64 reg;
4822 u8 *reg_space = (u8 *) space;
1ee6dd77 4823 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4824
4825 regs->len = XENA_REG_SPACE;
4826 regs->version = sp->pdev->subsystem_device;
4827
4828 for (i = 0; i < regs->len; i += 8) {
4829 reg = readq(sp->bar0 + i);
4830 memcpy((reg_space + i), &reg, 8);
4831 }
4832}
4833
4834/**
4835 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4836 * @data : address of the private member of the device structure, which
1da177e4 4837 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4838 * Description: This is actually the timer function that alternates the
4839 * adapter LED bit of the adapter control bit to set/reset every time on
4840 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4841 * once every second.
4842*/
4843static void s2io_phy_id(unsigned long data)
4844{
1ee6dd77
RB
4845 struct s2io_nic *sp = (struct s2io_nic *) data;
4846 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4847 u64 val64 = 0;
4848 u16 subid;
4849
4850 subid = sp->pdev->subsystem_device;
541ae68f
K
4851 if ((sp->device_type == XFRAME_II_DEVICE) ||
4852 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4853 val64 = readq(&bar0->gpio_control);
4854 val64 ^= GPIO_CTRL_GPIO_0;
4855 writeq(val64, &bar0->gpio_control);
4856 } else {
4857 val64 = readq(&bar0->adapter_control);
4858 val64 ^= ADAPTER_LED_ON;
4859 writeq(val64, &bar0->adapter_control);
4860 }
4861
4862 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4863}
4864
4865/**
4866 * s2io_ethtool_idnic - To physically identify the nic on the system.
4867 * @sp : private member of the device structure, which is a pointer to the
4868 * s2io_nic structure.
20346722 4869 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4870 * ethtool.
4871 * Description: Used to physically identify the NIC on the system.
20346722 4872 * The Link LED will blink for a time specified by the user for
1da177e4 4873 * identification.
20346722 4874 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4875 * identification is possible only if it's link is up.
4876 * Return value:
4877 * int , returns 0 on success
4878 */
4879
4880static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4881{
4882 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4883 struct s2io_nic *sp = dev->priv;
4884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4885 u16 subid;
4886
4887 subid = sp->pdev->subsystem_device;
4888 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4889 if ((sp->device_type == XFRAME_I_DEVICE) &&
4890 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4891 val64 = readq(&bar0->adapter_control);
4892 if (!(val64 & ADAPTER_CNTL_EN)) {
4893 printk(KERN_ERR
4894 "Adapter Link down, cannot blink LED\n");
4895 return -EFAULT;
4896 }
4897 }
4898 if (sp->id_timer.function == NULL) {
4899 init_timer(&sp->id_timer);
4900 sp->id_timer.function = s2io_phy_id;
4901 sp->id_timer.data = (unsigned long) sp;
4902 }
4903 mod_timer(&sp->id_timer, jiffies);
4904 if (data)
20346722 4905 msleep_interruptible(data * HZ);
1da177e4 4906 else
20346722 4907 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4908 del_timer_sync(&sp->id_timer);
4909
541ae68f 4910 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4911 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4912 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4913 }
4914
4915 return 0;
4916}
4917
0cec35eb
SH
4918static void s2io_ethtool_gringparam(struct net_device *dev,
4919 struct ethtool_ringparam *ering)
4920{
4921 struct s2io_nic *sp = dev->priv;
4922 int i,tx_desc_count=0,rx_desc_count=0;
4923
4924 if (sp->rxd_mode == RXD_MODE_1)
4925 ering->rx_max_pending = MAX_RX_DESC_1;
4926 else if (sp->rxd_mode == RXD_MODE_3B)
4927 ering->rx_max_pending = MAX_RX_DESC_2;
4928 else if (sp->rxd_mode == RXD_MODE_3A)
4929 ering->rx_max_pending = MAX_RX_DESC_3;
4930
4931 ering->tx_max_pending = MAX_TX_DESC;
4932 for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4933 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4934 }
4935 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4936 ering->tx_pending = tx_desc_count;
4937 rx_desc_count = 0;
4938 for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4939 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4940 }
4941 ering->rx_pending = rx_desc_count;
4942
4943 ering->rx_mini_max_pending = 0;
4944 ering->rx_mini_pending = 0;
4945 if(sp->rxd_mode == RXD_MODE_1)
4946 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4947 else if (sp->rxd_mode == RXD_MODE_3B)
4948 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4949 ering->rx_jumbo_pending = rx_desc_count;
4950}
4951
1da177e4
LT
4952/**
4953 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4954 * @sp : private member of the device structure, which is a pointer to the
4955 * s2io_nic structure.
1da177e4
LT
4956 * @ep : pointer to the structure with pause parameters given by ethtool.
4957 * Description:
4958 * Returns the Pause frame generation and reception capability of the NIC.
4959 * Return value:
4960 * void
4961 */
4962static void s2io_ethtool_getpause_data(struct net_device *dev,
4963 struct ethtool_pauseparam *ep)
4964{
4965 u64 val64;
1ee6dd77
RB
4966 struct s2io_nic *sp = dev->priv;
4967 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4968
4969 val64 = readq(&bar0->rmac_pause_cfg);
4970 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4971 ep->tx_pause = TRUE;
4972 if (val64 & RMAC_PAUSE_RX_ENABLE)
4973 ep->rx_pause = TRUE;
4974 ep->autoneg = FALSE;
4975}
4976
4977/**
4978 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4979 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4980 * s2io_nic structure.
4981 * @ep : pointer to the structure with pause parameters given by ethtool.
4982 * Description:
4983 * It can be used to set or reset Pause frame generation or reception
4984 * support of the NIC.
4985 * Return value:
4986 * int, returns 0 on Success
4987 */
4988
4989static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4990 struct ethtool_pauseparam *ep)
1da177e4
LT
4991{
4992 u64 val64;
1ee6dd77
RB
4993 struct s2io_nic *sp = dev->priv;
4994 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4995
4996 val64 = readq(&bar0->rmac_pause_cfg);
4997 if (ep->tx_pause)
4998 val64 |= RMAC_PAUSE_GEN_ENABLE;
4999 else
5000 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5001 if (ep->rx_pause)
5002 val64 |= RMAC_PAUSE_RX_ENABLE;
5003 else
5004 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5005 writeq(val64, &bar0->rmac_pause_cfg);
5006 return 0;
5007}
5008
5009/**
5010 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5011 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5012 * s2io_nic structure.
5013 * @off : offset at which the data must be written
5014 * @data : Its an output parameter where the data read at the given
20346722 5015 * offset is stored.
1da177e4 5016 * Description:
20346722 5017 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5018 * read data.
5019 * NOTE: Will allow to read only part of the EEPROM visible through the
5020 * I2C bus.
5021 * Return value:
5022 * -1 on failure and 0 on success.
5023 */
5024
5025#define S2IO_DEV_ID 5
1ee6dd77 5026static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5027{
5028 int ret = -1;
5029 u32 exit_cnt = 0;
5030 u64 val64;
1ee6dd77 5031 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5032
ad4ebed0 5033 if (sp->device_type == XFRAME_I_DEVICE) {
5034 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5035 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5036 I2C_CONTROL_CNTL_START;
5037 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5038
ad4ebed0 5039 while (exit_cnt < 5) {
5040 val64 = readq(&bar0->i2c_control);
5041 if (I2C_CONTROL_CNTL_END(val64)) {
5042 *data = I2C_CONTROL_GET_DATA(val64);
5043 ret = 0;
5044 break;
5045 }
5046 msleep(50);
5047 exit_cnt++;
1da177e4 5048 }
1da177e4
LT
5049 }
5050
ad4ebed0 5051 if (sp->device_type == XFRAME_II_DEVICE) {
5052 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5053 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5054 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5055 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5056 val64 |= SPI_CONTROL_REQ;
5057 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5058 while (exit_cnt < 5) {
5059 val64 = readq(&bar0->spi_control);
5060 if (val64 & SPI_CONTROL_NACK) {
5061 ret = 1;
5062 break;
5063 } else if (val64 & SPI_CONTROL_DONE) {
5064 *data = readq(&bar0->spi_data);
5065 *data &= 0xffffff;
5066 ret = 0;
5067 break;
5068 }
5069 msleep(50);
5070 exit_cnt++;
5071 }
5072 }
1da177e4
LT
5073 return ret;
5074}
5075
5076/**
5077 * write_eeprom - actually writes the relevant part of the data value.
5078 * @sp : private member of the device structure, which is a pointer to the
5079 * s2io_nic structure.
5080 * @off : offset at which the data must be written
5081 * @data : The data that is to be written
20346722 5082 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5083 * the Eeprom. (max of 3)
5084 * Description:
5085 * Actually writes the relevant part of the data value into the Eeprom
5086 * through the I2C bus.
5087 * Return value:
5088 * 0 on success, -1 on failure.
5089 */
5090
1ee6dd77 5091static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5092{
5093 int exit_cnt = 0, ret = -1;
5094 u64 val64;
1ee6dd77 5095 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5096
ad4ebed0 5097 if (sp->device_type == XFRAME_I_DEVICE) {
5098 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5099 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5100 I2C_CONTROL_CNTL_START;
5101 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5102
5103 while (exit_cnt < 5) {
5104 val64 = readq(&bar0->i2c_control);
5105 if (I2C_CONTROL_CNTL_END(val64)) {
5106 if (!(val64 & I2C_CONTROL_NACK))
5107 ret = 0;
5108 break;
5109 }
5110 msleep(50);
5111 exit_cnt++;
5112 }
5113 }
1da177e4 5114
ad4ebed0 5115 if (sp->device_type == XFRAME_II_DEVICE) {
5116 int write_cnt = (cnt == 8) ? 0 : cnt;
5117 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5118
5119 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5120 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5121 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5122 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5123 val64 |= SPI_CONTROL_REQ;
5124 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5125 while (exit_cnt < 5) {
5126 val64 = readq(&bar0->spi_control);
5127 if (val64 & SPI_CONTROL_NACK) {
5128 ret = 1;
5129 break;
5130 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5131 ret = 0;
ad4ebed0 5132 break;
5133 }
5134 msleep(50);
5135 exit_cnt++;
1da177e4 5136 }
1da177e4 5137 }
1da177e4
LT
5138 return ret;
5139}
1ee6dd77 5140static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5141{
b41477f3
AR
5142 u8 *vpd_data;
5143 u8 data;
9dc737a7
AR
5144 int i=0, cnt, fail = 0;
5145 int vpd_addr = 0x80;
5146
5147 if (nic->device_type == XFRAME_II_DEVICE) {
5148 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5149 vpd_addr = 0x80;
5150 }
5151 else {
5152 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5153 vpd_addr = 0x50;
5154 }
19a60522 5155 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5156
b41477f3 5157 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5158 if (!vpd_data) {
5159 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5160 return;
c53d4945 5161 }
491976b2 5162 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5163
9dc737a7
AR
5164 for (i = 0; i < 256; i +=4 ) {
5165 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5166 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5167 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5168 for (cnt = 0; cnt <5; cnt++) {
5169 msleep(2);
5170 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5171 if (data == 0x80)
5172 break;
5173 }
5174 if (cnt >= 5) {
5175 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5176 fail = 1;
5177 break;
5178 }
5179 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5180 (u32 *)&vpd_data[i]);
5181 }
19a60522
SS
5182
5183 if(!fail) {
5184 /* read serial number of adapter */
5185 for (cnt = 0; cnt < 256; cnt++) {
5186 if ((vpd_data[cnt] == 'S') &&
5187 (vpd_data[cnt+1] == 'N') &&
5188 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5189 memset(nic->serial_num, 0, VPD_STRING_LEN);
5190 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5191 vpd_data[cnt+2]);
5192 break;
5193 }
5194 }
5195 }
5196
5197 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5198 memset(nic->product_name, 0, vpd_data[1]);
5199 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5200 }
b41477f3 5201 kfree(vpd_data);
491976b2 5202 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5203}
5204
1da177e4
LT
5205/**
5206 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5207 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5208 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5209 * containing all relevant information.
5210 * @data_buf : user defined value to be written into Eeprom.
5211 * Description: Reads the values stored in the Eeprom at given offset
5212 * for a given length. Stores these values int the input argument data
5213 * buffer 'data_buf' and returns these to the caller (ethtool.)
5214 * Return value:
5215 * int 0 on success
5216 */
5217
5218static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5219 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5220{
ad4ebed0 5221 u32 i, valid;
5222 u64 data;
1ee6dd77 5223 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5224
5225 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5226
5227 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5228 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5229
5230 for (i = 0; i < eeprom->len; i += 4) {
5231 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5232 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5233 return -EFAULT;
5234 }
5235 valid = INV(data);
5236 memcpy((data_buf + i), &valid, 4);
5237 }
5238 return 0;
5239}
5240
5241/**
5242 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5243 * @sp : private member of the device structure, which is a pointer to the
5244 * s2io_nic structure.
20346722 5245 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5246 * containing all relevant information.
5247 * @data_buf ; user defined value to be written into Eeprom.
5248 * Description:
5249 * Tries to write the user provided value in the Eeprom, at the offset
5250 * given by the user.
5251 * Return value:
5252 * 0 on success, -EFAULT on failure.
5253 */
5254
5255static int s2io_ethtool_seeprom(struct net_device *dev,
5256 struct ethtool_eeprom *eeprom,
5257 u8 * data_buf)
5258{
5259 int len = eeprom->len, cnt = 0;
ad4ebed0 5260 u64 valid = 0, data;
1ee6dd77 5261 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5262
5263 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5264 DBG_PRINT(ERR_DBG,
5265 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5266 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5267 eeprom->magic);
5268 return -EFAULT;
5269 }
5270
5271 while (len) {
5272 data = (u32) data_buf[cnt] & 0x000000FF;
5273 if (data) {
5274 valid = (u32) (data << 24);
5275 } else
5276 valid = data;
5277
5278 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5279 DBG_PRINT(ERR_DBG,
5280 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5281 DBG_PRINT(ERR_DBG,
5282 "write into the specified offset\n");
5283 return -EFAULT;
5284 }
5285 cnt++;
5286 len--;
5287 }
5288
5289 return 0;
5290}
5291
5292/**
20346722
K
5293 * s2io_register_test - reads and writes into all clock domains.
5294 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5295 * s2io_nic structure.
5296 * @data : variable that returns the result of each of the test conducted b
5297 * by the driver.
5298 * Description:
5299 * Read and write into all clock domains. The NIC has 3 clock domains,
5300 * see that registers in all the three regions are accessible.
5301 * Return value:
5302 * 0 on success.
5303 */
5304
1ee6dd77 5305static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5306{
1ee6dd77 5307 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5308 u64 val64 = 0, exp_val;
1da177e4
LT
5309 int fail = 0;
5310
20346722
K
5311 val64 = readq(&bar0->pif_rd_swapper_fb);
5312 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5313 fail = 1;
5314 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5315 }
5316
5317 val64 = readq(&bar0->rmac_pause_cfg);
5318 if (val64 != 0xc000ffff00000000ULL) {
5319 fail = 1;
5320 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5321 }
5322
5323 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5324 if (sp->device_type == XFRAME_II_DEVICE)
5325 exp_val = 0x0404040404040404ULL;
5326 else
5327 exp_val = 0x0808080808080808ULL;
5328 if (val64 != exp_val) {
1da177e4
LT
5329 fail = 1;
5330 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5331 }
5332
5333 val64 = readq(&bar0->xgxs_efifo_cfg);
5334 if (val64 != 0x000000001923141EULL) {
5335 fail = 1;
5336 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5337 }
5338
5339 val64 = 0x5A5A5A5A5A5A5A5AULL;
5340 writeq(val64, &bar0->xmsi_data);
5341 val64 = readq(&bar0->xmsi_data);
5342 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5343 fail = 1;
5344 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5345 }
5346
5347 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5348 writeq(val64, &bar0->xmsi_data);
5349 val64 = readq(&bar0->xmsi_data);
5350 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5351 fail = 1;
5352 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5353 }
5354
5355 *data = fail;
ad4ebed0 5356 return fail;
1da177e4
LT
5357}
5358
5359/**
20346722 5360 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5361 * @sp : private member of the device structure, which is a pointer to the
5362 * s2io_nic structure.
5363 * @data:variable that returns the result of each of the test conducted by
5364 * the driver.
5365 * Description:
20346722 5366 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5367 * register.
5368 * Return value:
5369 * 0 on success.
5370 */
5371
1ee6dd77 5372static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5373{
5374 int fail = 0;
ad4ebed0 5375 u64 ret_data, org_4F0, org_7F0;
5376 u8 saved_4F0 = 0, saved_7F0 = 0;
5377 struct net_device *dev = sp->dev;
1da177e4
LT
5378
5379 /* Test Write Error at offset 0 */
ad4ebed0 5380 /* Note that SPI interface allows write access to all areas
5381 * of EEPROM. Hence doing all negative testing only for Xframe I.
5382 */
5383 if (sp->device_type == XFRAME_I_DEVICE)
5384 if (!write_eeprom(sp, 0, 0, 3))
5385 fail = 1;
5386
5387 /* Save current values at offsets 0x4F0 and 0x7F0 */
5388 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5389 saved_4F0 = 1;
5390 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5391 saved_7F0 = 1;
1da177e4
LT
5392
5393 /* Test Write at offset 4f0 */
ad4ebed0 5394 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5395 fail = 1;
5396 if (read_eeprom(sp, 0x4F0, &ret_data))
5397 fail = 1;
5398
ad4ebed0 5399 if (ret_data != 0x012345) {
26b7625c
AM
5400 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5401 "Data written %llx Data read %llx\n",
5402 dev->name, (unsigned long long)0x12345,
5403 (unsigned long long)ret_data);
1da177e4 5404 fail = 1;
ad4ebed0 5405 }
1da177e4
LT
5406
5407 /* Reset the EEPROM data go FFFF */
ad4ebed0 5408 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5409
5410 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5411 if (sp->device_type == XFRAME_I_DEVICE)
5412 if (!write_eeprom(sp, 0x07C, 0, 3))
5413 fail = 1;
1da177e4 5414
ad4ebed0 5415 /* Test Write Request at offset 0x7f0 */
5416 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5417 fail = 1;
ad4ebed0 5418 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5419 fail = 1;
5420
ad4ebed0 5421 if (ret_data != 0x012345) {
26b7625c
AM
5422 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5423 "Data written %llx Data read %llx\n",
5424 dev->name, (unsigned long long)0x12345,
5425 (unsigned long long)ret_data);
1da177e4 5426 fail = 1;
ad4ebed0 5427 }
1da177e4
LT
5428
5429 /* Reset the EEPROM data go FFFF */
ad4ebed0 5430 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5431
ad4ebed0 5432 if (sp->device_type == XFRAME_I_DEVICE) {
5433 /* Test Write Error at offset 0x80 */
5434 if (!write_eeprom(sp, 0x080, 0, 3))
5435 fail = 1;
1da177e4 5436
ad4ebed0 5437 /* Test Write Error at offset 0xfc */
5438 if (!write_eeprom(sp, 0x0FC, 0, 3))
5439 fail = 1;
1da177e4 5440
ad4ebed0 5441 /* Test Write Error at offset 0x100 */
5442 if (!write_eeprom(sp, 0x100, 0, 3))
5443 fail = 1;
1da177e4 5444
ad4ebed0 5445 /* Test Write Error at offset 4ec */
5446 if (!write_eeprom(sp, 0x4EC, 0, 3))
5447 fail = 1;
5448 }
5449
5450 /* Restore values at offsets 0x4F0 and 0x7F0 */
5451 if (saved_4F0)
5452 write_eeprom(sp, 0x4F0, org_4F0, 3);
5453 if (saved_7F0)
5454 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5455
5456 *data = fail;
ad4ebed0 5457 return fail;
1da177e4
LT
5458}
5459
5460/**
5461 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5462 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5463 * s2io_nic structure.
20346722 5464 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5465 * the driver.
5466 * Description:
5467 * This invokes the MemBist test of the card. We give around
5468 * 2 secs time for the Test to complete. If it's still not complete
20346722 5469 * within this peiod, we consider that the test failed.
1da177e4
LT
5470 * Return value:
5471 * 0 on success and -1 on failure.
5472 */
5473
1ee6dd77 5474static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5475{
5476 u8 bist = 0;
5477 int cnt = 0, ret = -1;
5478
5479 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5480 bist |= PCI_BIST_START;
5481 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5482
5483 while (cnt < 20) {
5484 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5485 if (!(bist & PCI_BIST_START)) {
5486 *data = (bist & PCI_BIST_CODE_MASK);
5487 ret = 0;
5488 break;
5489 }
5490 msleep(100);
5491 cnt++;
5492 }
5493
5494 return ret;
5495}
5496
5497/**
20346722
K
5498 * s2io-link_test - verifies the link state of the nic
5499 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5500 * s2io_nic structure.
5501 * @data: variable that returns the result of each of the test conducted by
5502 * the driver.
5503 * Description:
20346722 5504 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5505 * argument 'data' appropriately.
5506 * Return value:
5507 * 0 on success.
5508 */
5509
1ee6dd77 5510static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5511{
1ee6dd77 5512 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5513 u64 val64;
5514
5515 val64 = readq(&bar0->adapter_status);
c92ca04b 5516 if(!(LINK_IS_UP(val64)))
1da177e4 5517 *data = 1;
c92ca04b
AR
5518 else
5519 *data = 0;
1da177e4 5520
b41477f3 5521 return *data;
1da177e4
LT
5522}
5523
5524/**
20346722
K
5525 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5526 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5527 * s2io_nic structure.
20346722 5528 * @data - variable that returns the result of each of the test
1da177e4
LT
5529 * conducted by the driver.
5530 * Description:
20346722 5531 * This is one of the offline test that tests the read and write
1da177e4
LT
5532 * access to the RldRam chip on the NIC.
5533 * Return value:
5534 * 0 on success.
5535 */
5536
1ee6dd77 5537static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5538{
1ee6dd77 5539 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5540 u64 val64;
ad4ebed0 5541 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5542
5543 val64 = readq(&bar0->adapter_control);
5544 val64 &= ~ADAPTER_ECC_EN;
5545 writeq(val64, &bar0->adapter_control);
5546
5547 val64 = readq(&bar0->mc_rldram_test_ctrl);
5548 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5549 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5550
5551 val64 = readq(&bar0->mc_rldram_mrs);
5552 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5553 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5554
5555 val64 |= MC_RLDRAM_MRS_ENABLE;
5556 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5557
5558 while (iteration < 2) {
5559 val64 = 0x55555555aaaa0000ULL;
5560 if (iteration == 1) {
5561 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5562 }
5563 writeq(val64, &bar0->mc_rldram_test_d0);
5564
5565 val64 = 0xaaaa5a5555550000ULL;
5566 if (iteration == 1) {
5567 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5568 }
5569 writeq(val64, &bar0->mc_rldram_test_d1);
5570
5571 val64 = 0x55aaaaaaaa5a0000ULL;
5572 if (iteration == 1) {
5573 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5574 }
5575 writeq(val64, &bar0->mc_rldram_test_d2);
5576
ad4ebed0 5577 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5578 writeq(val64, &bar0->mc_rldram_test_add);
5579
ad4ebed0 5580 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5581 MC_RLDRAM_TEST_GO;
5582 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5583
5584 for (cnt = 0; cnt < 5; cnt++) {
5585 val64 = readq(&bar0->mc_rldram_test_ctrl);
5586 if (val64 & MC_RLDRAM_TEST_DONE)
5587 break;
5588 msleep(200);
5589 }
5590
5591 if (cnt == 5)
5592 break;
5593
ad4ebed0 5594 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5595 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5596
5597 for (cnt = 0; cnt < 5; cnt++) {
5598 val64 = readq(&bar0->mc_rldram_test_ctrl);
5599 if (val64 & MC_RLDRAM_TEST_DONE)
5600 break;
5601 msleep(500);
5602 }
5603
5604 if (cnt == 5)
5605 break;
5606
5607 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5608 if (!(val64 & MC_RLDRAM_TEST_PASS))
5609 test_fail = 1;
1da177e4
LT
5610
5611 iteration++;
5612 }
5613
ad4ebed0 5614 *data = test_fail;
1da177e4 5615
ad4ebed0 5616 /* Bring the adapter out of test mode */
5617 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5618
5619 return test_fail;
1da177e4
LT
5620}
5621
5622/**
5623 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5624 * @sp : private member of the device structure, which is a pointer to the
5625 * s2io_nic structure.
5626 * @ethtest : pointer to a ethtool command specific structure that will be
5627 * returned to the user.
20346722 5628 * @data : variable that returns the result of each of the test
1da177e4
LT
5629 * conducted by the driver.
5630 * Description:
5631 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5632 * the health of the card.
5633 * Return value:
5634 * void
5635 */
5636
5637static void s2io_ethtool_test(struct net_device *dev,
5638 struct ethtool_test *ethtest,
5639 uint64_t * data)
5640{
1ee6dd77 5641 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5642 int orig_state = netif_running(sp->dev);
5643
5644 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5645 /* Offline Tests. */
20346722 5646 if (orig_state)
1da177e4 5647 s2io_close(sp->dev);
1da177e4
LT
5648
5649 if (s2io_register_test(sp, &data[0]))
5650 ethtest->flags |= ETH_TEST_FL_FAILED;
5651
5652 s2io_reset(sp);
1da177e4
LT
5653
5654 if (s2io_rldram_test(sp, &data[3]))
5655 ethtest->flags |= ETH_TEST_FL_FAILED;
5656
5657 s2io_reset(sp);
1da177e4
LT
5658
5659 if (s2io_eeprom_test(sp, &data[1]))
5660 ethtest->flags |= ETH_TEST_FL_FAILED;
5661
5662 if (s2io_bist_test(sp, &data[4]))
5663 ethtest->flags |= ETH_TEST_FL_FAILED;
5664
5665 if (orig_state)
5666 s2io_open(sp->dev);
5667
5668 data[2] = 0;
5669 } else {
5670 /* Online Tests. */
5671 if (!orig_state) {
5672 DBG_PRINT(ERR_DBG,
5673 "%s: is not up, cannot run test\n",
5674 dev->name);
5675 data[0] = -1;
5676 data[1] = -1;
5677 data[2] = -1;
5678 data[3] = -1;
5679 data[4] = -1;
5680 }
5681
5682 if (s2io_link_test(sp, &data[2]))
5683 ethtest->flags |= ETH_TEST_FL_FAILED;
5684
5685 data[0] = 0;
5686 data[1] = 0;
5687 data[3] = 0;
5688 data[4] = 0;
5689 }
5690}
5691
5692static void s2io_get_ethtool_stats(struct net_device *dev,
5693 struct ethtool_stats *estats,
5694 u64 * tmp_stats)
5695{
5696 int i = 0;
1ee6dd77
RB
5697 struct s2io_nic *sp = dev->priv;
5698 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5699
7ba013ac 5700 s2io_updt_stats(sp);
541ae68f
K
5701 tmp_stats[i++] =
5702 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5703 le32_to_cpu(stat_info->tmac_frms);
5704 tmp_stats[i++] =
5705 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5706 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5707 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5708 tmp_stats[i++] =
5709 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5710 le32_to_cpu(stat_info->tmac_mcst_frms);
5711 tmp_stats[i++] =
5712 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5713 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5714 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5715 tmp_stats[i++] =
5716 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5717 le32_to_cpu(stat_info->tmac_ttl_octets);
5718 tmp_stats[i++] =
5719 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5720 le32_to_cpu(stat_info->tmac_ucst_frms);
5721 tmp_stats[i++] =
5722 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5723 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5724 tmp_stats[i++] =
5725 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5726 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5727 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5728 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5729 tmp_stats[i++] =
5730 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5731 le32_to_cpu(stat_info->tmac_vld_ip);
5732 tmp_stats[i++] =
5733 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5734 le32_to_cpu(stat_info->tmac_drop_ip);
5735 tmp_stats[i++] =
5736 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5737 le32_to_cpu(stat_info->tmac_icmp);
5738 tmp_stats[i++] =
5739 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5740 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5741 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5742 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5743 le32_to_cpu(stat_info->tmac_udp);
5744 tmp_stats[i++] =
5745 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5746 le32_to_cpu(stat_info->rmac_vld_frms);
5747 tmp_stats[i++] =
5748 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5749 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5750 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5751 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5752 tmp_stats[i++] =
5753 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5754 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5755 tmp_stats[i++] =
5756 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5757 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5758 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5759 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5760 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5761 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5762 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5763 tmp_stats[i++] =
5764 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5765 le32_to_cpu(stat_info->rmac_ttl_octets);
5766 tmp_stats[i++] =
5767 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5768 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5769 tmp_stats[i++] =
5770 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5771 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5772 tmp_stats[i++] =
5773 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5774 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5775 tmp_stats[i++] =
5776 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5777 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5778 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5779 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5780 tmp_stats[i++] =
5781 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5782 le32_to_cpu(stat_info->rmac_usized_frms);
5783 tmp_stats[i++] =
5784 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5785 le32_to_cpu(stat_info->rmac_osized_frms);
5786 tmp_stats[i++] =
5787 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5788 le32_to_cpu(stat_info->rmac_frag_frms);
5789 tmp_stats[i++] =
5790 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5791 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5792 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5793 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5794 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5795 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5796 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5797 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5798 tmp_stats[i++] =
5799 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5800 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5801 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5802 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5803 tmp_stats[i++] =
5804 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5805 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5806 tmp_stats[i++] =
5807 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5808 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5809 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5810 tmp_stats[i++] =
5811 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5812 le32_to_cpu(stat_info->rmac_udp);
5813 tmp_stats[i++] =
5814 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5815 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5816 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5817 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5818 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5819 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5820 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5821 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5822 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5823 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5824 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5825 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5826 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5827 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5828 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5829 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5830 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5831 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5832 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5833 tmp_stats[i++] =
5834 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5835 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5836 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5837 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5838 tmp_stats[i++] =
5839 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5840 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5841 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5842 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5844 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5845 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5846 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5847 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5848 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5849 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5850 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5851 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5852 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5853 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5854 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5855 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5856 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5857 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5858 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5859 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
5860
5861 /* Enhanced statistics exist only for Hercules */
5862 if(sp->device_type == XFRAME_II_DEVICE) {
5863 tmp_stats[i++] =
5864 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5865 tmp_stats[i++] =
5866 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5867 tmp_stats[i++] =
5868 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5869 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5870 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5871 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5872 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5873 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5874 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5875 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5876 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5877 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5878 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5879 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5880 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5881 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5882 }
5883
7ba013ac
K
5884 tmp_stats[i++] = 0;
5885 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5886 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5887 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5888 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5889 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5890 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5891 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5892 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5893 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5894 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5895 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5896 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5897 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5898 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5899 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5900 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5901 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5902 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5903 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5904 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5905 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5906 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5907 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5908 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5909 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5910 int count = 0;
6aa20a22 5911 /*
bd1034f0
AR
5912 * Since 64-bit divide does not work on all platforms,
5913 * do repeated subtraction.
5914 */
5915 while (tmp >= stat_info->sw_stat.num_aggregations) {
5916 tmp -= stat_info->sw_stat.num_aggregations;
5917 count++;
5918 }
5919 tmp_stats[i++] = count;
fe931395 5920 }
bd1034f0
AR
5921 else
5922 tmp_stats[i++] = 0;
c53d4945
SH
5923 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5924 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
5925 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5926 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5927 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5928 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5929 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5930 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5931
5932 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5933 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5934 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5935 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5936 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5937
5938 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5939 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5940 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5941 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5942 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5943 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5944 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5945 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5946 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
1da177e4
LT
5947}
5948
ac1f60db 5949static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5950{
5951 return (XENA_REG_SPACE);
5952}
5953
5954
ac1f60db 5955static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5956{
1ee6dd77 5957 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5958
5959 return (sp->rx_csum);
5960}
ac1f60db
AB
5961
5962static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5963{
1ee6dd77 5964 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5965
5966 if (data)
5967 sp->rx_csum = 1;
5968 else
5969 sp->rx_csum = 0;
5970
5971 return 0;
5972}
ac1f60db
AB
5973
5974static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5975{
5976 return (XENA_EEPROM_SPACE);
5977}
5978
ac1f60db 5979static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5980{
5981 return (S2IO_TEST_LEN);
5982}
ac1f60db
AB
5983
5984static void s2io_ethtool_get_strings(struct net_device *dev,
5985 u32 stringset, u8 * data)
1da177e4 5986{
fa1f0cb3
SS
5987 int stat_size = 0;
5988 struct s2io_nic *sp = dev->priv;
5989
1da177e4
LT
5990 switch (stringset) {
5991 case ETH_SS_TEST:
5992 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5993 break;
5994 case ETH_SS_STATS:
fa1f0cb3
SS
5995 stat_size = sizeof(ethtool_xena_stats_keys);
5996 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5997 if(sp->device_type == XFRAME_II_DEVICE) {
5998 memcpy(data + stat_size,
5999 &ethtool_enhanced_stats_keys,
6000 sizeof(ethtool_enhanced_stats_keys));
6001 stat_size += sizeof(ethtool_enhanced_stats_keys);
6002 }
6003
6004 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6005 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6006 }
6007}
1da177e4
LT
6008static int s2io_ethtool_get_stats_count(struct net_device *dev)
6009{
fa1f0cb3
SS
6010 struct s2io_nic *sp = dev->priv;
6011 int stat_count = 0;
6012 switch(sp->device_type) {
6013 case XFRAME_I_DEVICE:
6014 stat_count = XFRAME_I_STAT_LEN;
6015 break;
6016
6017 case XFRAME_II_DEVICE:
6018 stat_count = XFRAME_II_STAT_LEN;
6019 break;
6020 }
6021
6022 return stat_count;
1da177e4
LT
6023}
6024
ac1f60db 6025static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6026{
6027 if (data)
6028 dev->features |= NETIF_F_IP_CSUM;
6029 else
6030 dev->features &= ~NETIF_F_IP_CSUM;
6031
6032 return 0;
6033}
6034
75c30b13
AR
6035static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6036{
6037 return (dev->features & NETIF_F_TSO) != 0;
6038}
6039static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6040{
6041 if (data)
6042 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6043 else
6044 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6045
6046 return 0;
6047}
1da177e4 6048
7282d491 6049static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6050 .get_settings = s2io_ethtool_gset,
6051 .set_settings = s2io_ethtool_sset,
6052 .get_drvinfo = s2io_ethtool_gdrvinfo,
6053 .get_regs_len = s2io_ethtool_get_regs_len,
6054 .get_regs = s2io_ethtool_gregs,
6055 .get_link = ethtool_op_get_link,
6056 .get_eeprom_len = s2io_get_eeprom_len,
6057 .get_eeprom = s2io_ethtool_geeprom,
6058 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6059 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6060 .get_pauseparam = s2io_ethtool_getpause_data,
6061 .set_pauseparam = s2io_ethtool_setpause_data,
6062 .get_rx_csum = s2io_ethtool_get_rx_csum,
6063 .set_rx_csum = s2io_ethtool_set_rx_csum,
6064 .get_tx_csum = ethtool_op_get_tx_csum,
6065 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6066 .get_sg = ethtool_op_get_sg,
6067 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6068 .get_tso = s2io_ethtool_op_get_tso,
6069 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
6070 .get_ufo = ethtool_op_get_ufo,
6071 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6072 .self_test_count = s2io_ethtool_self_test_count,
6073 .self_test = s2io_ethtool_test,
6074 .get_strings = s2io_ethtool_get_strings,
6075 .phys_id = s2io_ethtool_idnic,
6076 .get_stats_count = s2io_ethtool_get_stats_count,
6077 .get_ethtool_stats = s2io_get_ethtool_stats
6078};
6079
6080/**
20346722 6081 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6082 * @dev : Device pointer.
6083 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6084 * a proprietary structure used to pass information to the driver.
6085 * @cmd : This is used to distinguish between the different commands that
6086 * can be passed to the IOCTL functions.
6087 * Description:
20346722
K
6088 * Currently there are no special functionality supported in IOCTL, hence
6089 * function always return EOPNOTSUPPORTED
1da177e4
LT
6090 */
6091
ac1f60db 6092static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6093{
6094 return -EOPNOTSUPP;
6095}
6096
6097/**
6098 * s2io_change_mtu - entry point to change MTU size for the device.
6099 * @dev : device pointer.
6100 * @new_mtu : the new MTU size for the device.
6101 * Description: A driver entry point to change MTU size for the device.
6102 * Before changing the MTU the device must be stopped.
6103 * Return value:
6104 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6105 * file on failure.
6106 */
6107
ac1f60db 6108static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6109{
1ee6dd77 6110 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6111
6112 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6113 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6114 dev->name);
6115 return -EPERM;
6116 }
6117
1da177e4 6118 dev->mtu = new_mtu;
d8892c6e 6119 if (netif_running(dev)) {
e6a8fee2 6120 s2io_card_down(sp);
d8892c6e
K
6121 netif_stop_queue(dev);
6122 if (s2io_card_up(sp)) {
6123 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6124 __FUNCTION__);
6125 }
6126 if (netif_queue_stopped(dev))
6127 netif_wake_queue(dev);
6128 } else { /* Device is down */
1ee6dd77 6129 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6130 u64 val64 = new_mtu;
6131
6132 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6133 }
1da177e4
LT
6134
6135 return 0;
6136}
6137
6138/**
6139 * s2io_tasklet - Bottom half of the ISR.
6140 * @dev_adr : address of the device structure in dma_addr_t format.
6141 * Description:
6142 * This is the tasklet or the bottom half of the ISR. This is
20346722 6143 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6144 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6145 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6146 * replenish the Rx buffers in the Rx buffer descriptors.
6147 * Return value:
6148 * void.
6149 */
6150
6151static void s2io_tasklet(unsigned long dev_addr)
6152{
6153 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6154 struct s2io_nic *sp = dev->priv;
1da177e4 6155 int i, ret;
1ee6dd77 6156 struct mac_info *mac_control;
1da177e4
LT
6157 struct config_param *config;
6158
6159 mac_control = &sp->mac_control;
6160 config = &sp->config;
6161
6162 if (!TASKLET_IN_USE) {
6163 for (i = 0; i < config->rx_ring_num; i++) {
6164 ret = fill_rx_buffers(sp, i);
6165 if (ret == -ENOMEM) {
0c61ed5f 6166 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6167 dev->name);
491976b2 6168 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6169 break;
6170 } else if (ret == -EFILL) {
0c61ed5f 6171 DBG_PRINT(INFO_DBG,
1da177e4
LT
6172 "%s: Rx Ring %d is full\n",
6173 dev->name, i);
6174 break;
6175 }
6176 }
6177 clear_bit(0, (&sp->tasklet_status));
6178 }
6179}
6180
6181/**
6182 * s2io_set_link - Set the LInk status
6183 * @data: long pointer to device private structue
6184 * Description: Sets the link status for the adapter
6185 */
6186
c4028958 6187static void s2io_set_link(struct work_struct *work)
1da177e4 6188{
1ee6dd77 6189 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6190 struct net_device *dev = nic->dev;
1ee6dd77 6191 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6192 register u64 val64;
6193 u16 subid;
6194
22747d6b
FR
6195 rtnl_lock();
6196
6197 if (!netif_running(dev))
6198 goto out_unlock;
6199
1da177e4
LT
6200 if (test_and_set_bit(0, &(nic->link_state))) {
6201 /* The card is being reset, no point doing anything */
22747d6b 6202 goto out_unlock;
1da177e4
LT
6203 }
6204
6205 subid = nic->pdev->subsystem_device;
a371a07d
K
6206 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6207 /*
6208 * Allow a small delay for the NICs self initiated
6209 * cleanup to complete.
6210 */
6211 msleep(100);
6212 }
1da177e4
LT
6213
6214 val64 = readq(&bar0->adapter_status);
19a60522
SS
6215 if (LINK_IS_UP(val64)) {
6216 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6217 if (verify_xena_quiescence(nic)) {
6218 val64 = readq(&bar0->adapter_control);
6219 val64 |= ADAPTER_CNTL_EN;
1da177e4 6220 writeq(val64, &bar0->adapter_control);
19a60522
SS
6221 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6222 nic->device_type, subid)) {
6223 val64 = readq(&bar0->gpio_control);
6224 val64 |= GPIO_CTRL_GPIO_0;
6225 writeq(val64, &bar0->gpio_control);
6226 val64 = readq(&bar0->gpio_control);
6227 } else {
6228 val64 |= ADAPTER_LED_ON;
6229 writeq(val64, &bar0->adapter_control);
a371a07d 6230 }
1da177e4 6231 nic->device_enabled_once = TRUE;
19a60522
SS
6232 } else {
6233 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6234 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6235 netif_stop_queue(dev);
1da177e4 6236 }
19a60522
SS
6237 }
6238 val64 = readq(&bar0->adapter_status);
6239 if (!LINK_IS_UP(val64)) {
6240 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6241 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6242 DBG_PRINT(ERR_DBG, "device \n");
6243 } else
1da177e4 6244 s2io_link(nic, LINK_UP);
19a60522
SS
6245 } else {
6246 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6247 subid)) {
6248 val64 = readq(&bar0->gpio_control);
6249 val64 &= ~GPIO_CTRL_GPIO_0;
6250 writeq(val64, &bar0->gpio_control);
6251 val64 = readq(&bar0->gpio_control);
1da177e4 6252 }
19a60522 6253 s2io_link(nic, LINK_DOWN);
1da177e4
LT
6254 }
6255 clear_bit(0, &(nic->link_state));
22747d6b
FR
6256
6257out_unlock:
d8d70caf 6258 rtnl_unlock();
1da177e4
LT
6259}
6260
1ee6dd77
RB
6261static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6262 struct buffAdd *ba,
6263 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6264 u64 *temp2, int size)
5d3213cc
AR
6265{
6266 struct net_device *dev = sp->dev;
6267 struct sk_buff *frag_list;
6268
6269 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6270 /* allocate skb */
6271 if (*skb) {
6272 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6273 /*
6274 * As Rx frame are not going to be processed,
6275 * using same mapped address for the Rxd
6276 * buffer pointer
6277 */
1ee6dd77 6278 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5d3213cc
AR
6279 } else {
6280 *skb = dev_alloc_skb(size);
6281 if (!(*skb)) {
0c61ed5f 6282 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6283 DBG_PRINT(INFO_DBG, "memory to allocate ");
6284 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6285 sp->mac_control.stats_info->sw_stat. \
6286 mem_alloc_fail_cnt++;
5d3213cc
AR
6287 return -ENOMEM ;
6288 }
491976b2
SH
6289 sp->mac_control.stats_info->sw_stat.mem_allocated
6290 += (*skb)->truesize;
5d3213cc
AR
6291 /* storing the mapped addr in a temp variable
6292 * such it will be used for next rxd whose
6293 * Host Control is NULL
6294 */
1ee6dd77 6295 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6296 pci_map_single( sp->pdev, (*skb)->data,
6297 size - NET_IP_ALIGN,
6298 PCI_DMA_FROMDEVICE);
6299 rxdp->Host_Control = (unsigned long) (*skb);
6300 }
6301 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6302 /* Two buffer Mode */
6303 if (*skb) {
1ee6dd77
RB
6304 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6305 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6306 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5d3213cc
AR
6307 } else {
6308 *skb = dev_alloc_skb(size);
2ceaac75 6309 if (!(*skb)) {
c53d4945
SH
6310 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6311 DBG_PRINT(INFO_DBG, "memory to allocate ");
6312 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6313 sp->mac_control.stats_info->sw_stat. \
6314 mem_alloc_fail_cnt++;
2ceaac75
DR
6315 return -ENOMEM;
6316 }
491976b2
SH
6317 sp->mac_control.stats_info->sw_stat.mem_allocated
6318 += (*skb)->truesize;
1ee6dd77 6319 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6320 pci_map_single(sp->pdev, (*skb)->data,
6321 dev->mtu + 4,
6322 PCI_DMA_FROMDEVICE);
1ee6dd77 6323 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6324 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6325 PCI_DMA_FROMDEVICE);
6326 rxdp->Host_Control = (unsigned long) (*skb);
6327
6328 /* Buffer-1 will be dummy buffer not used */
1ee6dd77 6329 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6330 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6331 PCI_DMA_FROMDEVICE);
6332 }
6333 } else if ((rxdp->Host_Control == 0)) {
6334 /* Three buffer mode */
6335 if (*skb) {
1ee6dd77
RB
6336 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6337 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6338 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5d3213cc
AR
6339 } else {
6340 *skb = dev_alloc_skb(size);
2ceaac75 6341 if (!(*skb)) {
c53d4945
SH
6342 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6343 DBG_PRINT(INFO_DBG, "memory to allocate ");
6344 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6345 sp->mac_control.stats_info->sw_stat. \
6346 mem_alloc_fail_cnt++;
2ceaac75
DR
6347 return -ENOMEM;
6348 }
491976b2
SH
6349 sp->mac_control.stats_info->sw_stat.mem_allocated
6350 += (*skb)->truesize;
1ee6dd77 6351 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6352 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6353 PCI_DMA_FROMDEVICE);
6354 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 6355 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6356 pci_map_single( sp->pdev, (*skb)->data,
6357 l3l4hdr_size + 4,
6358 PCI_DMA_FROMDEVICE);
6359 /*
6360 * skb_shinfo(skb)->frag_list will have L4
6361 * data payload
6362 */
6363 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6364 ALIGN_SIZE);
6365 if (skb_shinfo(*skb)->frag_list == NULL) {
6366 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6367 failed\n ", dev->name);
c53d4945
SH
6368 sp->mac_control.stats_info->sw_stat. \
6369 mem_alloc_fail_cnt++;
5d3213cc
AR
6370 return -ENOMEM ;
6371 }
6372 frag_list = skb_shinfo(*skb)->frag_list;
6373 frag_list->next = NULL;
491976b2
SH
6374 sp->mac_control.stats_info->sw_stat.mem_allocated
6375 += frag_list->truesize;
5d3213cc
AR
6376 /*
6377 * Buffer-2 receives L4 data payload
6378 */
1ee6dd77 6379 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6380 pci_map_single( sp->pdev, frag_list->data,
6381 dev->mtu, PCI_DMA_FROMDEVICE);
6382 }
6383 }
6384 return 0;
6385}
1ee6dd77
RB
6386static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6387 int size)
5d3213cc
AR
6388{
6389 struct net_device *dev = sp->dev;
6390 if (sp->rxd_mode == RXD_MODE_1) {
6391 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6392 } else if (sp->rxd_mode == RXD_MODE_3B) {
6393 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6394 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6395 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6396 } else {
6397 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6398 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6399 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6400 }
6401}
6402
1ee6dd77 6403static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6404{
6405 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6406 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6407 struct config_param *config = &sp->config;
6408 struct net_device *dev = sp->dev;
1ee6dd77 6409 struct RxD_t *rxdp = NULL;
5d3213cc 6410 struct sk_buff *skb = NULL;
1ee6dd77 6411 struct buffAdd *ba = NULL;
5d3213cc
AR
6412 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6413
6414 /* Calculate the size based on ring mode */
6415 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6416 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6417 if (sp->rxd_mode == RXD_MODE_1)
6418 size += NET_IP_ALIGN;
6419 else if (sp->rxd_mode == RXD_MODE_3B)
6420 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6421 else
6422 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6423
6424 for (i = 0; i < config->rx_ring_num; i++) {
6425 blk_cnt = config->rx_cfg[i].num_rxd /
6426 (rxd_count[sp->rxd_mode] +1);
6427
6428 for (j = 0; j < blk_cnt; j++) {
6429 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6430 rxdp = mac_control->rings[i].
6431 rx_blocks[j].rxds[k].virt_addr;
6432 if(sp->rxd_mode >= RXD_MODE_3A)
6433 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6434 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6435 &skb,(u64 *)&temp0_64,
6436 (u64 *)&temp1_64,
ac1f90d6
SS
6437 (u64 *)&temp2_64,
6438 size) == ENOMEM) {
6439 return 0;
6440 }
5d3213cc
AR
6441
6442 set_rxd_buffer_size(sp, rxdp, size);
6443 wmb();
6444 /* flip the Ownership bit to Hardware */
6445 rxdp->Control_1 |= RXD_OWN_XENA;
6446 }
6447 }
6448 }
6449 return 0;
6450
6451}
6452
1ee6dd77 6453static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6454{
e6a8fee2 6455 int ret = 0;
c92ca04b 6456 struct net_device *dev = sp->dev;
e6a8fee2 6457 int err = 0;
1da177e4 6458
e6a8fee2
AR
6459 if (sp->intr_type == MSI)
6460 ret = s2io_enable_msi(sp);
6461 else if (sp->intr_type == MSI_X)
6462 ret = s2io_enable_msi_x(sp);
6463 if (ret) {
6464 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6465 sp->intr_type = INTA;
20346722 6466 }
1da177e4 6467
1ee6dd77 6468 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6469 store_xmsi_data(sp);
c92ca04b 6470
e6a8fee2
AR
6471 /* After proper initialization of H/W, register ISR */
6472 if (sp->intr_type == MSI) {
6473 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6474 IRQF_SHARED, sp->name, dev);
6475 if (err) {
6476 pci_disable_msi(sp->pdev);
6477 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6478 dev->name);
6479 return -1;
6480 }
6481 }
6482 if (sp->intr_type == MSI_X) {
fb6a825b 6483 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6484
e6a8fee2
AR
6485 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6486 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6487 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6488 dev->name, i);
6489 err = request_irq(sp->entries[i].vector,
6490 s2io_msix_fifo_handle, 0, sp->desc[i],
6491 sp->s2io_entries[i].arg);
fb6a825b
SS
6492 /* If either data or addr is zero print it */
6493 if(!(sp->msix_info[i].addr &&
6494 sp->msix_info[i].data)) {
6495 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6496 "Data:0x%lx\n",sp->desc[i],
6497 (unsigned long long)
6498 sp->msix_info[i].addr,
6499 (unsigned long)
6500 ntohl(sp->msix_info[i].data));
6501 } else {
6502 msix_tx_cnt++;
6503 }
e6a8fee2
AR
6504 } else {
6505 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6506 dev->name, i);
6507 err = request_irq(sp->entries[i].vector,
6508 s2io_msix_ring_handle, 0, sp->desc[i],
6509 sp->s2io_entries[i].arg);
fb6a825b
SS
6510 /* If either data or addr is zero print it */
6511 if(!(sp->msix_info[i].addr &&
6512 sp->msix_info[i].data)) {
6513 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6514 "Data:0x%lx\n",sp->desc[i],
6515 (unsigned long long)
6516 sp->msix_info[i].addr,
6517 (unsigned long)
6518 ntohl(sp->msix_info[i].data));
6519 } else {
6520 msix_rx_cnt++;
6521 }
c92ca04b 6522 }
e6a8fee2
AR
6523 if (err) {
6524 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6525 "failed\n", dev->name, i);
6526 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6527 return -1;
6528 }
6529 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6530 }
fb6a825b
SS
6531 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6532 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2
AR
6533 }
6534 if (sp->intr_type == INTA) {
6535 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6536 sp->name, dev);
6537 if (err) {
6538 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6539 dev->name);
6540 return -1;
6541 }
6542 }
6543 return 0;
6544}
1ee6dd77 6545static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6546{
6547 int cnt = 0;
6548 struct net_device *dev = sp->dev;
6549
6550 if (sp->intr_type == MSI_X) {
6551 int i;
6552 u16 msi_control;
6553
6554 for (i=1; (sp->s2io_entries[i].in_use ==
6555 MSIX_REGISTERED_SUCCESS); i++) {
6556 int vector = sp->entries[i].vector;
6557 void *arg = sp->s2io_entries[i].arg;
6558
6559 free_irq(vector, arg);
6560 }
6561 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6562 msi_control &= 0xFFFE; /* Disable MSI */
6563 pci_write_config_word(sp->pdev, 0x42, msi_control);
6564
6565 pci_disable_msix(sp->pdev);
6566 } else {
6567 free_irq(sp->pdev->irq, dev);
6568 if (sp->intr_type == MSI) {
6569 u16 val;
6570
6571 pci_disable_msi(sp->pdev);
6572 pci_read_config_word(sp->pdev, 0x4c, &val);
6573 val ^= 0x1;
6574 pci_write_config_word(sp->pdev, 0x4c, val);
c92ca04b
AR
6575 }
6576 }
6577 /* Waiting till all Interrupt handlers are complete */
6578 cnt = 0;
6579 do {
6580 msleep(10);
6581 if (!atomic_read(&sp->isr_cnt))
6582 break;
6583 cnt++;
6584 } while(cnt < 5);
e6a8fee2
AR
6585}
6586
d796fdb7 6587static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
6588{
6589 int cnt = 0;
1ee6dd77 6590 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6591 unsigned long flags;
6592 register u64 val64 = 0;
6593
6594 del_timer_sync(&sp->alarm_timer);
6595 /* If s2io_set_link task is executing, wait till it completes. */
6596 while (test_and_set_bit(0, &(sp->link_state))) {
6597 msleep(50);
6598 }
6599 atomic_set(&sp->card_state, CARD_DOWN);
6600
6601 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
6602 if (do_io)
6603 stop_nic(sp);
e6a8fee2
AR
6604
6605 s2io_rem_isr(sp);
1da177e4
LT
6606
6607 /* Kill tasklet. */
6608 tasklet_kill(&sp->task);
6609
6610 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 6611 while(do_io) {
5d3213cc
AR
6612 /* As per the HW requirement we need to replenish the
6613 * receive buffer to avoid the ring bump. Since there is
6614 * no intention of processing the Rx frame at this pointwe are
6615 * just settting the ownership bit of rxd in Each Rx
6616 * ring to HW and set the appropriate buffer size
6617 * based on the ring mode
6618 */
6619 rxd_owner_bit_reset(sp);
6620
1da177e4 6621 val64 = readq(&bar0->adapter_status);
19a60522
SS
6622 if (verify_xena_quiescence(sp)) {
6623 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6624 break;
6625 }
6626
6627 msleep(50);
6628 cnt++;
6629 if (cnt == 10) {
6630 DBG_PRINT(ERR_DBG,
6631 "s2io_close:Device not Quiescent ");
6632 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6633 (unsigned long long) val64);
6634 break;
6635 }
d796fdb7
LV
6636 }
6637 if (do_io)
6638 s2io_reset(sp);
1da177e4 6639
7ba013ac
K
6640 spin_lock_irqsave(&sp->tx_lock, flags);
6641 /* Free all Tx buffers */
1da177e4 6642 free_tx_buffers(sp);
7ba013ac
K
6643 spin_unlock_irqrestore(&sp->tx_lock, flags);
6644
6645 /* Free all Rx buffers */
6646 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6647 free_rx_buffers(sp);
7ba013ac 6648 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6649
1da177e4
LT
6650 clear_bit(0, &(sp->link_state));
6651}
6652
d796fdb7
LV
6653static void s2io_card_down(struct s2io_nic * sp)
6654{
6655 do_s2io_card_down(sp, 1);
6656}
6657
1ee6dd77 6658static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6659{
cc6e7c44 6660 int i, ret = 0;
1ee6dd77 6661 struct mac_info *mac_control;
1da177e4
LT
6662 struct config_param *config;
6663 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6664 u16 interruptible;
1da177e4
LT
6665
6666 /* Initialize the H/W I/O registers */
6667 if (init_nic(sp) != 0) {
6668 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6669 dev->name);
e6a8fee2 6670 s2io_reset(sp);
1da177e4
LT
6671 return -ENODEV;
6672 }
6673
20346722
K
6674 /*
6675 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6676 * Rx ring and initializing buffers into 30 Rx blocks
6677 */
6678 mac_control = &sp->mac_control;
6679 config = &sp->config;
6680
6681 for (i = 0; i < config->rx_ring_num; i++) {
6682 if ((ret = fill_rx_buffers(sp, i))) {
6683 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6684 dev->name);
6685 s2io_reset(sp);
6686 free_rx_buffers(sp);
6687 return -ENOMEM;
6688 }
6689 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6690 atomic_read(&sp->rx_bufs_left[i]));
6691 }
19a60522
SS
6692 /* Maintain the state prior to the open */
6693 if (sp->promisc_flg)
6694 sp->promisc_flg = 0;
6695 if (sp->m_cast_flg) {
6696 sp->m_cast_flg = 0;
6697 sp->all_multi_pos= 0;
6698 }
1da177e4
LT
6699
6700 /* Setting its receive mode */
6701 s2io_set_multicast(dev);
6702
7d3d0439 6703 if (sp->lro) {
b41477f3 6704 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6705 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6706 /* Check if we can use(if specified) user provided value */
6707 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6708 sp->lro_max_aggr_per_sess = lro_max_pkts;
6709 }
6710
1da177e4
LT
6711 /* Enable Rx Traffic and interrupts on the NIC */
6712 if (start_nic(sp)) {
6713 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6714 s2io_reset(sp);
e6a8fee2
AR
6715 free_rx_buffers(sp);
6716 return -ENODEV;
6717 }
6718
6719 /* Add interrupt service routine */
6720 if (s2io_add_isr(sp) != 0) {
6721 if (sp->intr_type == MSI_X)
6722 s2io_rem_isr(sp);
6723 s2io_reset(sp);
1da177e4
LT
6724 free_rx_buffers(sp);
6725 return -ENODEV;
6726 }
6727
25fff88e
K
6728 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6729
e6a8fee2
AR
6730 /* Enable tasklet for the device */
6731 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6732
6733 /* Enable select interrupts */
6734 if (sp->intr_type != INTA)
6735 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6736 else {
6737 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6738 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6739 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6740 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6741 }
6742
6743
1da177e4
LT
6744 atomic_set(&sp->card_state, CARD_UP);
6745 return 0;
6746}
6747
20346722 6748/**
1da177e4
LT
6749 * s2io_restart_nic - Resets the NIC.
6750 * @data : long pointer to the device private structure
6751 * Description:
6752 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6753 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6754 * the run time of the watch dog routine which is run holding a
6755 * spin lock.
6756 */
6757
c4028958 6758static void s2io_restart_nic(struct work_struct *work)
1da177e4 6759{
1ee6dd77 6760 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6761 struct net_device *dev = sp->dev;
1da177e4 6762
22747d6b
FR
6763 rtnl_lock();
6764
6765 if (!netif_running(dev))
6766 goto out_unlock;
6767
e6a8fee2 6768 s2io_card_down(sp);
1da177e4
LT
6769 if (s2io_card_up(sp)) {
6770 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6771 dev->name);
6772 }
6773 netif_wake_queue(dev);
6774 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6775 dev->name);
22747d6b
FR
6776out_unlock:
6777 rtnl_unlock();
1da177e4
LT
6778}
6779
20346722
K
6780/**
6781 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6782 * @dev : Pointer to net device structure
6783 * Description:
6784 * This function is triggered if the Tx Queue is stopped
6785 * for a pre-defined amount of time when the Interface is still up.
6786 * If the Interface is jammed in such a situation, the hardware is
6787 * reset (by s2io_close) and restarted again (by s2io_open) to
6788 * overcome any problem that might have been caused in the hardware.
6789 * Return value:
6790 * void
6791 */
6792
6793static void s2io_tx_watchdog(struct net_device *dev)
6794{
1ee6dd77 6795 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6796
6797 if (netif_carrier_ok(dev)) {
c53d4945 6798 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 6799 schedule_work(&sp->rst_timer_task);
bd1034f0 6800 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6801 }
6802}
6803
6804/**
6805 * rx_osm_handler - To perform some OS related operations on SKB.
6806 * @sp: private member of the device structure,pointer to s2io_nic structure.
6807 * @skb : the socket buffer pointer.
6808 * @len : length of the packet
6809 * @cksum : FCS checksum of the frame.
6810 * @ring_no : the ring from which this RxD was extracted.
20346722 6811 * Description:
b41477f3 6812 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6813 * some OS related operations on the SKB before passing it to the upper
6814 * layers. It mainly checks if the checksum is OK, if so adds it to the
6815 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6816 * to the upper layer. If the checksum is wrong, it increments the Rx
6817 * packet error count, frees the SKB and returns error.
6818 * Return value:
6819 * SUCCESS on success and -1 on failure.
6820 */
1ee6dd77 6821static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6822{
1ee6dd77 6823 struct s2io_nic *sp = ring_data->nic;
1da177e4 6824 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6825 struct sk_buff *skb = (struct sk_buff *)
6826 ((unsigned long) rxdp->Host_Control);
6827 int ring_no = ring_data->ring_no;
1da177e4 6828 u16 l3_csum, l4_csum;
863c11a9 6829 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6830 struct lro *lro;
f9046eb3 6831 u8 err_mask;
da6971d8 6832
20346722 6833 skb->dev = dev;
c92ca04b 6834
863c11a9 6835 if (err) {
bd1034f0
AR
6836 /* Check for parity error */
6837 if (err & 0x1) {
6838 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6839 }
f9046eb3
OH
6840 err_mask = err >> 48;
6841 switch(err_mask) {
491976b2
SH
6842 case 1:
6843 sp->mac_control.stats_info->sw_stat.
6844 rx_parity_err_cnt++;
6845 break;
6846
6847 case 2:
6848 sp->mac_control.stats_info->sw_stat.
6849 rx_abort_cnt++;
6850 break;
6851
6852 case 3:
6853 sp->mac_control.stats_info->sw_stat.
6854 rx_parity_abort_cnt++;
6855 break;
6856
6857 case 4:
6858 sp->mac_control.stats_info->sw_stat.
6859 rx_rda_fail_cnt++;
6860 break;
6861
6862 case 5:
6863 sp->mac_control.stats_info->sw_stat.
6864 rx_unkn_prot_cnt++;
6865 break;
6866
6867 case 6:
6868 sp->mac_control.stats_info->sw_stat.
6869 rx_fcs_err_cnt++;
6870 break;
bd1034f0 6871
491976b2
SH
6872 case 7:
6873 sp->mac_control.stats_info->sw_stat.
6874 rx_buf_size_err_cnt++;
6875 break;
6876
6877 case 8:
6878 sp->mac_control.stats_info->sw_stat.
6879 rx_rxd_corrupt_cnt++;
6880 break;
6881
6882 case 15:
6883 sp->mac_control.stats_info->sw_stat.
6884 rx_unkn_err_cnt++;
6885 break;
6886 }
863c11a9
AR
6887 /*
6888 * Drop the packet if bad transfer code. Exception being
6889 * 0x5, which could be due to unsupported IPv6 extension header.
6890 * In this case, we let stack handle the packet.
6891 * Note that in this case, since checksum will be incorrect,
6892 * stack will validate the same.
6893 */
f9046eb3
OH
6894 if (err_mask != 0x5) {
6895 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6896 dev->name, err_mask);
863c11a9 6897 sp->stats.rx_crc_errors++;
491976b2
SH
6898 sp->mac_control.stats_info->sw_stat.mem_freed
6899 += skb->truesize;
863c11a9
AR
6900 dev_kfree_skb(skb);
6901 atomic_dec(&sp->rx_bufs_left[ring_no]);
6902 rxdp->Host_Control = 0;
6903 return 0;
6904 }
20346722 6905 }
1da177e4 6906
20346722
K
6907 /* Updating statistics */
6908 rxdp->Host_Control = 0;
da6971d8
AR
6909 if (sp->rxd_mode == RXD_MODE_1) {
6910 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6911
da6971d8
AR
6912 sp->stats.rx_bytes += len;
6913 skb_put(skb, len);
6914
6915 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6916 int get_block = ring_data->rx_curr_get_info.block_index;
6917 int get_off = ring_data->rx_curr_get_info.offset;
6918 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6919 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6920 unsigned char *buff = skb_push(skb, buf0_len);
6921
1ee6dd77 6922 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6923 sp->stats.rx_bytes += buf0_len + buf2_len;
6924 memcpy(buff, ba->ba_0, buf0_len);
6925
6926 if (sp->rxd_mode == RXD_MODE_3A) {
6927 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6928
6929 skb_put(skb, buf1_len);
6930 skb->len += buf2_len;
6931 skb->data_len += buf2_len;
da6971d8
AR
6932 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6933 sp->stats.rx_bytes += buf1_len;
6934
6935 } else
6936 skb_put(skb, buf2_len);
6937 }
20346722 6938
7d3d0439
RA
6939 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6940 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6941 (sp->rx_csum)) {
6942 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6943 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6944 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6945 /*
1da177e4
LT
6946 * NIC verifies if the Checksum of the received
6947 * frame is Ok or not and accordingly returns
6948 * a flag in the RxD.
6949 */
6950 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6951 if (sp->lro) {
6952 u32 tcp_len;
6953 u8 *tcp;
6954 int ret = 0;
6955
6956 ret = s2io_club_tcp_session(skb->data, &tcp,
6957 &tcp_len, &lro, rxdp, sp);
6958 switch (ret) {
6959 case 3: /* Begin anew */
6960 lro->parent = skb;
6961 goto aggregate;
6962 case 1: /* Aggregate */
6963 {
6964 lro_append_pkt(sp, lro,
6965 skb, tcp_len);
6966 goto aggregate;
6967 }
6968 case 4: /* Flush session */
6969 {
6970 lro_append_pkt(sp, lro,
6971 skb, tcp_len);
6972 queue_rx_frame(lro->parent);
6973 clear_lro_session(lro);
6974 sp->mac_control.stats_info->
6975 sw_stat.flush_max_pkts++;
6976 goto aggregate;
6977 }
6978 case 2: /* Flush both */
6979 lro->parent->data_len =
6980 lro->frags_len;
6981 sp->mac_control.stats_info->
6982 sw_stat.sending_both++;
6983 queue_rx_frame(lro->parent);
6984 clear_lro_session(lro);
6985 goto send_up;
6986 case 0: /* sessions exceeded */
c92ca04b
AR
6987 case -1: /* non-TCP or not
6988 * L2 aggregatable
6989 */
7d3d0439
RA
6990 case 5: /*
6991 * First pkt in session not
6992 * L3/L4 aggregatable
6993 */
6994 break;
6995 default:
6996 DBG_PRINT(ERR_DBG,
6997 "%s: Samadhana!!\n",
6998 __FUNCTION__);
6999 BUG();
7000 }
7001 }
1da177e4 7002 } else {
20346722
K
7003 /*
7004 * Packet with erroneous checksum, let the
1da177e4
LT
7005 * upper layers deal with it.
7006 */
7007 skb->ip_summed = CHECKSUM_NONE;
7008 }
7009 } else {
7010 skb->ip_summed = CHECKSUM_NONE;
7011 }
491976b2 7012 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439
RA
7013 if (!sp->lro) {
7014 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
7015 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7016 vlan_strip_flag)) {
7d3d0439 7017 /* Queueing the vlan frame to the upper layer */
db874e65
SS
7018 if (napi)
7019 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7020 RXD_GET_VLAN_TAG(rxdp->Control_2));
7021 else
7022 vlan_hwaccel_rx(skb, sp->vlgrp,
7023 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7024 } else {
db874e65
SS
7025 if (napi)
7026 netif_receive_skb(skb);
7027 else
7028 netif_rx(skb);
7d3d0439 7029 }
7d3d0439
RA
7030 } else {
7031send_up:
7032 queue_rx_frame(skb);
6aa20a22 7033 }
1da177e4 7034 dev->last_rx = jiffies;
7d3d0439 7035aggregate:
1da177e4 7036 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
7037 return SUCCESS;
7038}
7039
7040/**
7041 * s2io_link - stops/starts the Tx queue.
7042 * @sp : private member of the device structure, which is a pointer to the
7043 * s2io_nic structure.
7044 * @link : inidicates whether link is UP/DOWN.
7045 * Description:
7046 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7047 * status of the NIC is is down or up. This is called by the Alarm
7048 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7049 * Return value:
7050 * void.
7051 */
7052
1ee6dd77 7053static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7054{
7055 struct net_device *dev = (struct net_device *) sp->dev;
7056
7057 if (link != sp->last_link_state) {
7058 if (link == LINK_DOWN) {
7059 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7060 netif_carrier_off(dev);
491976b2
SH
7061 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7062 sp->mac_control.stats_info->sw_stat.link_up_time =
7063 jiffies - sp->start_time;
7064 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7065 } else {
7066 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2
SH
7067 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7068 sp->mac_control.stats_info->sw_stat.link_down_time =
7069 jiffies - sp->start_time;
7070 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4
LT
7071 netif_carrier_on(dev);
7072 }
7073 }
7074 sp->last_link_state = link;
491976b2 7075 sp->start_time = jiffies;
1da177e4
LT
7076}
7077
7078/**
20346722
K
7079 * get_xena_rev_id - to identify revision ID of xena.
7080 * @pdev : PCI Dev structure
7081 * Description:
7082 * Function to identify the Revision ID of xena.
7083 * Return value:
7084 * returns the revision ID of the device.
7085 */
7086
26df54bf 7087static int get_xena_rev_id(struct pci_dev *pdev)
20346722
K
7088{
7089 u8 id = 0;
7090 int ret;
7091 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
7092 return id;
7093}
7094
7095/**
7096 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7097 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7098 * s2io_nic structure.
7099 * Description:
7100 * This function initializes a few of the PCI and PCI-X configuration registers
7101 * with recommended values.
7102 * Return value:
7103 * void
7104 */
7105
1ee6dd77 7106static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7107{
20346722 7108 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7109
7110 /* Enable Data Parity Error Recovery in PCI-X command register. */
7111 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7112 &(pcix_cmd));
1da177e4 7113 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7114 (pcix_cmd | 1));
1da177e4 7115 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7116 &(pcix_cmd));
1da177e4
LT
7117
7118 /* Set the PErr Response bit in PCI command register. */
7119 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7120 pci_write_config_word(sp->pdev, PCI_COMMAND,
7121 (pci_cmd | PCI_COMMAND_PARITY));
7122 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7123}
7124
9dc737a7
AR
7125static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7126{
7127 if ( tx_fifo_num > 8) {
7128 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7129 "supported\n");
7130 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7131 tx_fifo_num = 8;
7132 }
7133 if ( rx_ring_num > 8) {
7134 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7135 "supported\n");
7136 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7137 rx_ring_num = 8;
7138 }
db874e65
SS
7139 if (*dev_intr_type != INTA)
7140 napi = 0;
7141
9dc737a7
AR
7142#ifndef CONFIG_PCI_MSI
7143 if (*dev_intr_type != INTA) {
7144 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7145 "MSI/MSI-X. Defaulting to INTA\n");
7146 *dev_intr_type = INTA;
7147 }
7148#else
7149 if (*dev_intr_type > MSI_X) {
7150 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7151 "Defaulting to INTA\n");
7152 *dev_intr_type = INTA;
7153 }
7154#endif
7155 if ((*dev_intr_type == MSI_X) &&
7156 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7157 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7158 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7159 "Defaulting to INTA\n");
7160 *dev_intr_type = INTA;
7161 }
fb6a825b 7162
9dc737a7
AR
7163 if (rx_ring_mode > 3) {
7164 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7165 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7166 rx_ring_mode = 3;
7167 }
7168 return SUCCESS;
7169}
7170
9fc93a41
SS
7171/**
7172 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7173 * or Traffic class respectively.
7174 * @nic: device peivate variable
7175 * Description: The function configures the receive steering to
7176 * desired receive ring.
7177 * Return Value: SUCCESS on success and
7178 * '-1' on failure (endian settings incorrect).
7179 */
7180static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7181{
7182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7183 register u64 val64 = 0;
7184
7185 if (ds_codepoint > 63)
7186 return FAILURE;
7187
7188 val64 = RTS_DS_MEM_DATA(ring);
7189 writeq(val64, &bar0->rts_ds_mem_data);
7190
7191 val64 = RTS_DS_MEM_CTRL_WE |
7192 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7193 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7194
7195 writeq(val64, &bar0->rts_ds_mem_ctrl);
7196
7197 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7198 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7199 S2IO_BIT_RESET);
7200}
7201
1da177e4 7202/**
20346722 7203 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7204 * @pdev : structure containing the PCI related information of the device.
7205 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7206 * Description:
7207 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7208 * All OS related initialization including memory and device structure and
7209 * initlaization of the device private variable is done. Also the swapper
7210 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7211 * registers of the device.
7212 * Return value:
7213 * returns 0 on success and negative on failure.
7214 */
7215
7216static int __devinit
7217s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7218{
1ee6dd77 7219 struct s2io_nic *sp;
1da177e4 7220 struct net_device *dev;
1da177e4
LT
7221 int i, j, ret;
7222 int dma_flag = FALSE;
7223 u32 mac_up, mac_down;
7224 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7225 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7226 u16 subid;
1ee6dd77 7227 struct mac_info *mac_control;
1da177e4 7228 struct config_param *config;
541ae68f 7229 int mode;
cc6e7c44 7230 u8 dev_intr_type = intr_type;
1da177e4 7231
9dc737a7
AR
7232 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7233 return ret;
1da177e4
LT
7234
7235 if ((ret = pci_enable_device(pdev))) {
7236 DBG_PRINT(ERR_DBG,
7237 "s2io_init_nic: pci_enable_device failed\n");
7238 return ret;
7239 }
7240
1e7f0bd8 7241 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7242 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7243 dma_flag = TRUE;
1da177e4 7244 if (pci_set_consistent_dma_mask
1e7f0bd8 7245 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7246 DBG_PRINT(ERR_DBG,
7247 "Unable to obtain 64bit DMA for \
7248 consistent allocations\n");
7249 pci_disable_device(pdev);
7250 return -ENOMEM;
7251 }
1e7f0bd8 7252 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7253 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7254 } else {
7255 pci_disable_device(pdev);
7256 return -ENOMEM;
7257 }
cc6e7c44
RA
7258 if (dev_intr_type != MSI_X) {
7259 if (pci_request_regions(pdev, s2io_driver_name)) {
b41477f3
AR
7260 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7261 pci_disable_device(pdev);
cc6e7c44
RA
7262 return -ENODEV;
7263 }
7264 }
7265 else {
7266 if (!(request_mem_region(pci_resource_start(pdev, 0),
7267 pci_resource_len(pdev, 0), s2io_driver_name))) {
7268 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7269 pci_disable_device(pdev);
7270 return -ENODEV;
7271 }
7272 if (!(request_mem_region(pci_resource_start(pdev, 2),
7273 pci_resource_len(pdev, 2), s2io_driver_name))) {
7274 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7275 release_mem_region(pci_resource_start(pdev, 0),
7276 pci_resource_len(pdev, 0));
7277 pci_disable_device(pdev);
7278 return -ENODEV;
7279 }
1da177e4
LT
7280 }
7281
1ee6dd77 7282 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7283 if (dev == NULL) {
7284 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7285 pci_disable_device(pdev);
7286 pci_release_regions(pdev);
7287 return -ENODEV;
7288 }
7289
7290 pci_set_master(pdev);
7291 pci_set_drvdata(pdev, dev);
7292 SET_MODULE_OWNER(dev);
7293 SET_NETDEV_DEV(dev, &pdev->dev);
7294
7295 /* Private member variable initialized to s2io NIC structure */
7296 sp = dev->priv;
1ee6dd77 7297 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7298 sp->dev = dev;
7299 sp->pdev = pdev;
1da177e4 7300 sp->high_dma_flag = dma_flag;
1da177e4 7301 sp->device_enabled_once = FALSE;
da6971d8
AR
7302 if (rx_ring_mode == 1)
7303 sp->rxd_mode = RXD_MODE_1;
7304 if (rx_ring_mode == 2)
7305 sp->rxd_mode = RXD_MODE_3B;
7306 if (rx_ring_mode == 3)
7307 sp->rxd_mode = RXD_MODE_3A;
7308
cc6e7c44 7309 sp->intr_type = dev_intr_type;
1da177e4 7310
541ae68f
K
7311 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7312 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7313 sp->device_type = XFRAME_II_DEVICE;
7314 else
7315 sp->device_type = XFRAME_I_DEVICE;
7316
7d3d0439 7317 sp->lro = lro;
6aa20a22 7318
1da177e4
LT
7319 /* Initialize some PCI/PCI-X fields of the NIC. */
7320 s2io_init_pci(sp);
7321
20346722 7322 /*
1da177e4 7323 * Setting the device configuration parameters.
20346722
K
7324 * Most of these parameters can be specified by the user during
7325 * module insertion as they are module loadable parameters. If
7326 * these parameters are not not specified during load time, they
1da177e4
LT
7327 * are initialized with default values.
7328 */
7329 mac_control = &sp->mac_control;
7330 config = &sp->config;
7331
7332 /* Tx side parameters. */
1da177e4
LT
7333 config->tx_fifo_num = tx_fifo_num;
7334 for (i = 0; i < MAX_TX_FIFOS; i++) {
7335 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7336 config->tx_cfg[i].fifo_priority = i;
7337 }
7338
20346722
K
7339 /* mapping the QoS priority to the configured fifos */
7340 for (i = 0; i < MAX_TX_FIFOS; i++)
7341 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7342
1da177e4
LT
7343 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7344 for (i = 0; i < config->tx_fifo_num; i++) {
7345 config->tx_cfg[i].f_no_snoop =
7346 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7347 if (config->tx_cfg[i].fifo_len < 65) {
7348 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7349 break;
7350 }
7351 }
fed5eccd
AR
7352 /* + 2 because one Txd for skb->data and one Txd for UFO */
7353 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7354
7355 /* Rx side parameters. */
1da177e4
LT
7356 config->rx_ring_num = rx_ring_num;
7357 for (i = 0; i < MAX_RX_RINGS; i++) {
7358 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7359 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7360 config->rx_cfg[i].ring_priority = i;
7361 }
7362
7363 for (i = 0; i < rx_ring_num; i++) {
7364 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7365 config->rx_cfg[i].f_no_snoop =
7366 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7367 }
7368
7369 /* Setting Mac Control parameters */
7370 mac_control->rmac_pause_time = rmac_pause_time;
7371 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7372 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7373
7374
7375 /* Initialize Ring buffer parameters. */
7376 for (i = 0; i < config->rx_ring_num; i++)
7377 atomic_set(&sp->rx_bufs_left[i], 0);
7378
7ba013ac
K
7379 /* Initialize the number of ISRs currently running */
7380 atomic_set(&sp->isr_cnt, 0);
7381
1da177e4
LT
7382 /* initialize the shared memory used by the NIC and the host */
7383 if (init_shared_mem(sp)) {
7384 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7385 dev->name);
1da177e4
LT
7386 ret = -ENOMEM;
7387 goto mem_alloc_failed;
7388 }
7389
7390 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7391 pci_resource_len(pdev, 0));
7392 if (!sp->bar0) {
19a60522 7393 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7394 dev->name);
7395 ret = -ENOMEM;
7396 goto bar0_remap_failed;
7397 }
7398
7399 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7400 pci_resource_len(pdev, 2));
7401 if (!sp->bar1) {
19a60522 7402 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7403 dev->name);
7404 ret = -ENOMEM;
7405 goto bar1_remap_failed;
7406 }
7407
7408 dev->irq = pdev->irq;
7409 dev->base_addr = (unsigned long) sp->bar0;
7410
7411 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7412 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7413 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7414 (sp->bar1 + (j * 0x00020000));
7415 }
7416
7417 /* Driver entry points */
7418 dev->open = &s2io_open;
7419 dev->stop = &s2io_close;
7420 dev->hard_start_xmit = &s2io_xmit;
7421 dev->get_stats = &s2io_get_stats;
7422 dev->set_multicast_list = &s2io_set_multicast;
7423 dev->do_ioctl = &s2io_ioctl;
7424 dev->change_mtu = &s2io_change_mtu;
7425 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7426 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7427 dev->vlan_rx_register = s2io_vlan_rx_register;
20346722 7428
1da177e4
LT
7429 /*
7430 * will use eth_mac_addr() for dev->set_mac_address
7431 * mac address will be set every time dev->open() is called
7432 */
1da177e4 7433 dev->poll = s2io_poll;
20346722 7434 dev->weight = 32;
1da177e4 7435
612eff0e
BH
7436#ifdef CONFIG_NET_POLL_CONTROLLER
7437 dev->poll_controller = s2io_netpoll;
7438#endif
7439
1da177e4
LT
7440 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7441 if (sp->high_dma_flag == TRUE)
7442 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7443 dev->features |= NETIF_F_TSO;
f83ef8c0 7444 dev->features |= NETIF_F_TSO6;
db874e65 7445 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7446 dev->features |= NETIF_F_UFO;
7447 dev->features |= NETIF_F_HW_CSUM;
7448 }
1da177e4
LT
7449
7450 dev->tx_timeout = &s2io_tx_watchdog;
7451 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7452 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7453 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7454
e960fc5c 7455 pci_save_state(sp->pdev);
1da177e4
LT
7456
7457 /* Setting swapper control on the NIC, for proper reset operation */
7458 if (s2io_set_swapper(sp)) {
7459 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7460 dev->name);
7461 ret = -EAGAIN;
7462 goto set_swap_failed;
7463 }
7464
541ae68f
K
7465 /* Verify if the Herc works on the slot its placed into */
7466 if (sp->device_type & XFRAME_II_DEVICE) {
7467 mode = s2io_verify_pci_mode(sp);
7468 if (mode < 0) {
7469 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7470 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7471 ret = -EBADSLT;
7472 goto set_swap_failed;
7473 }
7474 }
7475
7476 /* Not needed for Herc */
7477 if (sp->device_type & XFRAME_I_DEVICE) {
7478 /*
7479 * Fix for all "FFs" MAC address problems observed on
7480 * Alpha platforms
7481 */
7482 fix_mac_address(sp);
7483 s2io_reset(sp);
7484 }
1da177e4
LT
7485
7486 /*
1da177e4
LT
7487 * MAC address initialization.
7488 * For now only one mac address will be read and used.
7489 */
7490 bar0 = sp->bar0;
7491 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7492 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7493 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7494 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7495 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7496 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7497 mac_down = (u32) tmp64;
7498 mac_up = (u32) (tmp64 >> 32);
7499
1da177e4
LT
7500 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7501 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7502 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7503 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7504 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7505 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7506
1da177e4
LT
7507 /* Set the factory defined MAC address initially */
7508 dev->addr_len = ETH_ALEN;
7509 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7510
b41477f3
AR
7511 /* reset Nic and bring it to known state */
7512 s2io_reset(sp);
7513
1da177e4 7514 /*
20346722 7515 * Initialize the tasklet status and link state flags
541ae68f 7516 * and the card state parameter
1da177e4
LT
7517 */
7518 atomic_set(&(sp->card_state), 0);
7519 sp->tasklet_status = 0;
7520 sp->link_state = 0;
7521
1da177e4
LT
7522 /* Initialize spinlocks */
7523 spin_lock_init(&sp->tx_lock);
db874e65
SS
7524
7525 if (!napi)
7526 spin_lock_init(&sp->put_lock);
7ba013ac 7527 spin_lock_init(&sp->rx_lock);
1da177e4 7528
20346722
K
7529 /*
7530 * SXE-002: Configure link and activity LED to init state
7531 * on driver load.
1da177e4
LT
7532 */
7533 subid = sp->pdev->subsystem_device;
7534 if ((subid & 0xFF) >= 0x07) {
7535 val64 = readq(&bar0->gpio_control);
7536 val64 |= 0x0000800000000000ULL;
7537 writeq(val64, &bar0->gpio_control);
7538 val64 = 0x0411040400000000ULL;
7539 writeq(val64, (void __iomem *) bar0 + 0x2700);
7540 val64 = readq(&bar0->gpio_control);
7541 }
7542
7543 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7544
7545 if (register_netdev(dev)) {
7546 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7547 ret = -ENODEV;
7548 goto register_failed;
7549 }
9dc737a7 7550 s2io_vpd_read(sp);
0c61ed5f 7551 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3
AR
7552 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7553 sp->product_name, get_xena_rev_id(sp->pdev));
7554 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7555 s2io_driver_version);
9dc737a7 7556 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7557 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7558 sp->def_mac_addr[0].mac_addr[0],
7559 sp->def_mac_addr[0].mac_addr[1],
7560 sp->def_mac_addr[0].mac_addr[2],
7561 sp->def_mac_addr[0].mac_addr[3],
7562 sp->def_mac_addr[0].mac_addr[4],
7563 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7564 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7565 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7566 mode = s2io_print_pci_mode(sp);
541ae68f 7567 if (mode < 0) {
9dc737a7 7568 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7569 ret = -EBADSLT;
9dc737a7 7570 unregister_netdev(dev);
541ae68f
K
7571 goto set_swap_failed;
7572 }
541ae68f 7573 }
9dc737a7
AR
7574 switch(sp->rxd_mode) {
7575 case RXD_MODE_1:
7576 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7577 dev->name);
7578 break;
7579 case RXD_MODE_3B:
7580 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7581 dev->name);
7582 break;
7583 case RXD_MODE_3A:
7584 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7585 dev->name);
7586 break;
7587 }
db874e65
SS
7588
7589 if (napi)
7590 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7591 switch(sp->intr_type) {
7592 case INTA:
7593 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7594 break;
7595 case MSI:
7596 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7597 break;
7598 case MSI_X:
7599 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7600 break;
7601 }
7d3d0439
RA
7602 if (sp->lro)
7603 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7604 dev->name);
db874e65
SS
7605 if (ufo)
7606 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7607 " enabled\n", dev->name);
7ba013ac 7608 /* Initialize device name */
9dc737a7 7609 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7610
b6e3f982
K
7611 /* Initialize bimodal Interrupts */
7612 sp->config.bimodal = bimodal;
7613 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7614 sp->config.bimodal = 0;
7615 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7616 dev->name);
7617 }
7618
20346722
K
7619 /*
7620 * Make Link state as off at this point, when the Link change
7621 * interrupt comes the state will be automatically changed to
1da177e4
LT
7622 * the right state.
7623 */
7624 netif_carrier_off(dev);
1da177e4
LT
7625
7626 return 0;
7627
7628 register_failed:
7629 set_swap_failed:
7630 iounmap(sp->bar1);
7631 bar1_remap_failed:
7632 iounmap(sp->bar0);
7633 bar0_remap_failed:
7634 mem_alloc_failed:
7635 free_shared_mem(sp);
7636 pci_disable_device(pdev);
cc6e7c44
RA
7637 if (dev_intr_type != MSI_X)
7638 pci_release_regions(pdev);
7639 else {
7640 release_mem_region(pci_resource_start(pdev, 0),
7641 pci_resource_len(pdev, 0));
7642 release_mem_region(pci_resource_start(pdev, 2),
7643 pci_resource_len(pdev, 2));
7644 }
1da177e4
LT
7645 pci_set_drvdata(pdev, NULL);
7646 free_netdev(dev);
7647
7648 return ret;
7649}
7650
7651/**
20346722 7652 * s2io_rem_nic - Free the PCI device
1da177e4 7653 * @pdev: structure containing the PCI related information of the device.
20346722 7654 * Description: This function is called by the Pci subsystem to release a
1da177e4 7655 * PCI device and free up all resource held up by the device. This could
20346722 7656 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7657 * from memory.
7658 */
7659
7660static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7661{
7662 struct net_device *dev =
7663 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7664 struct s2io_nic *sp;
1da177e4
LT
7665
7666 if (dev == NULL) {
7667 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7668 return;
7669 }
7670
22747d6b
FR
7671 flush_scheduled_work();
7672
1da177e4
LT
7673 sp = dev->priv;
7674 unregister_netdev(dev);
7675
7676 free_shared_mem(sp);
7677 iounmap(sp->bar0);
7678 iounmap(sp->bar1);
cc6e7c44
RA
7679 if (sp->intr_type != MSI_X)
7680 pci_release_regions(pdev);
7681 else {
7682 release_mem_region(pci_resource_start(pdev, 0),
7683 pci_resource_len(pdev, 0));
7684 release_mem_region(pci_resource_start(pdev, 2),
7685 pci_resource_len(pdev, 2));
7686 }
1da177e4 7687 pci_set_drvdata(pdev, NULL);
1da177e4 7688 free_netdev(dev);
19a60522 7689 pci_disable_device(pdev);
1da177e4
LT
7690}
7691
7692/**
7693 * s2io_starter - Entry point for the driver
7694 * Description: This function is the entry point for the driver. It verifies
7695 * the module loadable parameters and initializes PCI configuration space.
7696 */
7697
7698int __init s2io_starter(void)
7699{
29917620 7700 return pci_register_driver(&s2io_driver);
1da177e4
LT
7701}
7702
7703/**
20346722 7704 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7705 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7706 */
7707
372cc597 7708static __exit void s2io_closer(void)
1da177e4
LT
7709{
7710 pci_unregister_driver(&s2io_driver);
7711 DBG_PRINT(INIT_DBG, "cleanup done\n");
7712}
7713
7714module_init(s2io_starter);
7715module_exit(s2io_closer);
7d3d0439 7716
6aa20a22 7717static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7718 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7719{
7720 int ip_off;
7721 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7722
7723 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7724 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7725 __FUNCTION__);
7726 return -1;
7727 }
7728
7729 /* TODO:
7730 * By default the VLAN field in the MAC is stripped by the card, if this
7731 * feature is turned off in rx_pa_cfg register, then the ip_off field
7732 * has to be shifted by a further 2 bytes
7733 */
7734 switch (l2_type) {
7735 case 0: /* DIX type */
7736 case 4: /* DIX type with VLAN */
7737 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7738 break;
7739 /* LLC, SNAP etc are considered non-mergeable */
7740 default:
7741 return -1;
7742 }
7743
7744 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7745 ip_len = (u8)((*ip)->ihl);
7746 ip_len <<= 2;
7747 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7748
7749 return 0;
7750}
7751
1ee6dd77 7752static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7753 struct tcphdr *tcp)
7754{
7755 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7756 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7757 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7758 return -1;
7759 return 0;
7760}
7761
7762static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7763{
7764 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7765}
7766
1ee6dd77 7767static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7768 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7769{
7770 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7771 lro->l2h = l2h;
7772 lro->iph = ip;
7773 lro->tcph = tcp;
7774 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7775 lro->tcp_ack = ntohl(tcp->ack_seq);
7776 lro->sg_num = 1;
7777 lro->total_len = ntohs(ip->tot_len);
7778 lro->frags_len = 0;
6aa20a22 7779 /*
7d3d0439
RA
7780 * check if we saw TCP timestamp. Other consistency checks have
7781 * already been done.
7782 */
7783 if (tcp->doff == 8) {
7784 u32 *ptr;
7785 ptr = (u32 *)(tcp+1);
7786 lro->saw_ts = 1;
7787 lro->cur_tsval = *(ptr+1);
7788 lro->cur_tsecr = *(ptr+2);
7789 }
7790 lro->in_use = 1;
7791}
7792
1ee6dd77 7793static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7794{
7795 struct iphdr *ip = lro->iph;
7796 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7797 __sum16 nchk;
1ee6dd77 7798 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7799 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7800
7801 /* Update L3 header */
7802 ip->tot_len = htons(lro->total_len);
7803 ip->check = 0;
7804 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7805 ip->check = nchk;
7806
7807 /* Update L4 header */
7808 tcp->ack_seq = lro->tcp_ack;
7809 tcp->window = lro->window;
7810
7811 /* Update tsecr field if this session has timestamps enabled */
7812 if (lro->saw_ts) {
7813 u32 *ptr = (u32 *)(tcp + 1);
7814 *(ptr+2) = lro->cur_tsecr;
7815 }
7816
7817 /* Update counters required for calculation of
7818 * average no. of packets aggregated.
7819 */
7820 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7821 statinfo->sw_stat.num_aggregations++;
7822}
7823
1ee6dd77 7824static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7825 struct tcphdr *tcp, u32 l4_pyld)
7826{
7827 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7828 lro->total_len += l4_pyld;
7829 lro->frags_len += l4_pyld;
7830 lro->tcp_next_seq += l4_pyld;
7831 lro->sg_num++;
7832
7833 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7834 lro->tcp_ack = tcp->ack_seq;
7835 lro->window = tcp->window;
6aa20a22 7836
7d3d0439
RA
7837 if (lro->saw_ts) {
7838 u32 *ptr;
7839 /* Update tsecr and tsval from this packet */
7840 ptr = (u32 *) (tcp + 1);
6aa20a22 7841 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7842 lro->cur_tsecr = *(ptr + 2);
7843 }
7844}
7845
1ee6dd77 7846static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7847 struct tcphdr *tcp, u32 tcp_pyld_len)
7848{
7d3d0439
RA
7849 u8 *ptr;
7850
79dc1901
AM
7851 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7852
7d3d0439
RA
7853 if (!tcp_pyld_len) {
7854 /* Runt frame or a pure ack */
7855 return -1;
7856 }
7857
7858 if (ip->ihl != 5) /* IP has options */
7859 return -1;
7860
75c30b13
AR
7861 /* If we see CE codepoint in IP header, packet is not mergeable */
7862 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7863 return -1;
7864
7865 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7866 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7867 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7868 /*
7869 * Currently recognize only the ack control word and
7870 * any other control field being set would result in
7871 * flushing the LRO session
7872 */
7873 return -1;
7874 }
7875
6aa20a22 7876 /*
7d3d0439
RA
7877 * Allow only one TCP timestamp option. Don't aggregate if
7878 * any other options are detected.
7879 */
7880 if (tcp->doff != 5 && tcp->doff != 8)
7881 return -1;
7882
7883 if (tcp->doff == 8) {
6aa20a22 7884 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7885 while (*ptr == TCPOPT_NOP)
7886 ptr++;
7887 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7888 return -1;
7889
7890 /* Ensure timestamp value increases monotonically */
7891 if (l_lro)
7892 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7893 return -1;
7894
7895 /* timestamp echo reply should be non-zero */
6aa20a22 7896 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7897 return -1;
7898 }
7899
7900 return 0;
7901}
7902
7903static int
1ee6dd77
RB
7904s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7905 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7906{
7907 struct iphdr *ip;
7908 struct tcphdr *tcph;
7909 int ret = 0, i;
7910
7911 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7912 rxdp))) {
7913 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7914 ip->saddr, ip->daddr);
7915 } else {
7916 return ret;
7917 }
7918
7919 tcph = (struct tcphdr *)*tcp;
7920 *tcp_len = get_l4_pyld_length(ip, tcph);
7921 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7922 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7923 if (l_lro->in_use) {
7924 if (check_for_socket_match(l_lro, ip, tcph))
7925 continue;
7926 /* Sock pair matched */
7927 *lro = l_lro;
7928
7929 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7930 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7931 "0x%x, actual 0x%x\n", __FUNCTION__,
7932 (*lro)->tcp_next_seq,
7933 ntohl(tcph->seq));
7934
7935 sp->mac_control.stats_info->
7936 sw_stat.outof_sequence_pkts++;
7937 ret = 2;
7938 break;
7939 }
7940
7941 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7942 ret = 1; /* Aggregate */
7943 else
7944 ret = 2; /* Flush both */
7945 break;
7946 }
7947 }
7948
7949 if (ret == 0) {
7950 /* Before searching for available LRO objects,
7951 * check if the pkt is L3/L4 aggregatable. If not
7952 * don't create new LRO session. Just send this
7953 * packet up.
7954 */
7955 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7956 return 5;
7957 }
7958
7959 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7960 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7961 if (!(l_lro->in_use)) {
7962 *lro = l_lro;
7963 ret = 3; /* Begin anew */
7964 break;
7965 }
7966 }
7967 }
7968
7969 if (ret == 0) { /* sessions exceeded */
7970 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7971 __FUNCTION__);
7972 *lro = NULL;
7973 return ret;
7974 }
7975
7976 switch (ret) {
7977 case 3:
7978 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7979 break;
7980 case 2:
7981 update_L3L4_header(sp, *lro);
7982 break;
7983 case 1:
7984 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7985 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7986 update_L3L4_header(sp, *lro);
7987 ret = 4; /* Flush the LRO */
7988 }
7989 break;
7990 default:
7991 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7992 __FUNCTION__);
7993 break;
7994 }
7995
7996 return ret;
7997}
7998
1ee6dd77 7999static void clear_lro_session(struct lro *lro)
7d3d0439 8000{
1ee6dd77 8001 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8002
8003 memset(lro, 0, lro_struct_size);
8004}
8005
8006static void queue_rx_frame(struct sk_buff *skb)
8007{
8008 struct net_device *dev = skb->dev;
8009
8010 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
8011 if (napi)
8012 netif_receive_skb(skb);
8013 else
8014 netif_rx(skb);
7d3d0439
RA
8015}
8016
1ee6dd77
RB
8017static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8018 struct sk_buff *skb,
7d3d0439
RA
8019 u32 tcp_len)
8020{
75c30b13 8021 struct sk_buff *first = lro->parent;
7d3d0439
RA
8022
8023 first->len += tcp_len;
8024 first->data_len = lro->frags_len;
8025 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8026 if (skb_shinfo(first)->frag_list)
8027 lro->last_frag->next = skb;
7d3d0439
RA
8028 else
8029 skb_shinfo(first)->frag_list = skb;
372cc597 8030 first->truesize += skb->truesize;
75c30b13 8031 lro->last_frag = skb;
7d3d0439
RA
8032 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8033 return;
8034}
d796fdb7
LV
8035
8036/**
8037 * s2io_io_error_detected - called when PCI error is detected
8038 * @pdev: Pointer to PCI device
8453d43f 8039 * @state: The current pci connection state
d796fdb7
LV
8040 *
8041 * This function is called after a PCI bus error affecting
8042 * this device has been detected.
8043 */
8044static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8045 pci_channel_state_t state)
8046{
8047 struct net_device *netdev = pci_get_drvdata(pdev);
8048 struct s2io_nic *sp = netdev->priv;
8049
8050 netif_device_detach(netdev);
8051
8052 if (netif_running(netdev)) {
8053 /* Bring down the card, while avoiding PCI I/O */
8054 do_s2io_card_down(sp, 0);
d796fdb7
LV
8055 }
8056 pci_disable_device(pdev);
8057
8058 return PCI_ERS_RESULT_NEED_RESET;
8059}
8060
8061/**
8062 * s2io_io_slot_reset - called after the pci bus has been reset.
8063 * @pdev: Pointer to PCI device
8064 *
8065 * Restart the card from scratch, as if from a cold-boot.
8066 * At this point, the card has exprienced a hard reset,
8067 * followed by fixups by BIOS, and has its config space
8068 * set up identically to what it was at cold boot.
8069 */
8070static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8071{
8072 struct net_device *netdev = pci_get_drvdata(pdev);
8073 struct s2io_nic *sp = netdev->priv;
8074
8075 if (pci_enable_device(pdev)) {
8076 printk(KERN_ERR "s2io: "
8077 "Cannot re-enable PCI device after reset.\n");
8078 return PCI_ERS_RESULT_DISCONNECT;
8079 }
8080
8081 pci_set_master(pdev);
8082 s2io_reset(sp);
8083
8084 return PCI_ERS_RESULT_RECOVERED;
8085}
8086
8087/**
8088 * s2io_io_resume - called when traffic can start flowing again.
8089 * @pdev: Pointer to PCI device
8090 *
8091 * This callback is called when the error recovery driver tells
8092 * us that its OK to resume normal operation.
8093 */
8094static void s2io_io_resume(struct pci_dev *pdev)
8095{
8096 struct net_device *netdev = pci_get_drvdata(pdev);
8097 struct s2io_nic *sp = netdev->priv;
8098
8099 if (netif_running(netdev)) {
8100 if (s2io_card_up(sp)) {
8101 printk(KERN_ERR "s2io: "
8102 "Can't bring device back up after reset.\n");
8103 return;
8104 }
8105
8106 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8107 s2io_card_down(sp);
8108 printk(KERN_ERR "s2io: "
8109 "Can't resetore mac addr after reset.\n");
8110 return;
8111 }
8112 }
8113
8114 netif_device_attach(netdev);
8115 netif_wake_queue(netdev);
8116}