]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
[PATCH] xfs: missing gfp_t annotations
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
20346722
K
29 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver.
776bd20f 31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
1da177e4 32 * is also an array of size 8.
da6971d8
AR
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3.
1da177e4 35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 36 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 37 * Tx descriptors that can be associated with each corresponding FIFO.
1da177e4
LT
38 ************************************************************************/
39
40#include <linux/config.h>
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/ioport.h>
45#include <linux/pci.h>
1e7f0bd8 46#include <linux/dma-mapping.h>
1da177e4
LT
47#include <linux/kernel.h>
48#include <linux/netdevice.h>
49#include <linux/etherdevice.h>
50#include <linux/skbuff.h>
51#include <linux/init.h>
52#include <linux/delay.h>
53#include <linux/stddef.h>
54#include <linux/ioctl.h>
55#include <linux/timex.h>
56#include <linux/sched.h>
57#include <linux/ethtool.h>
1da177e4 58#include <linux/workqueue.h>
be3a6b02 59#include <linux/if_vlan.h>
1da177e4 60
1da177e4
LT
61#include <asm/system.h>
62#include <asm/uaccess.h>
20346722 63#include <asm/io.h>
1da177e4
LT
64
65/* local include */
66#include "s2io.h"
67#include "s2io-regs.h"
68
da6971d8 69#define DRV_VERSION "Version 2.0.9.3"
6c1792f4 70
1da177e4 71/* S2io Driver name & version. */
20346722 72static char s2io_driver_name[] = "Neterion";
6c1792f4 73static char s2io_driver_version[] = DRV_VERSION;
1da177e4 74
da6971d8
AR
75int rxd_size[4] = {32,48,48,64};
76int rxd_count[4] = {127,85,85,63};
77
5e25b9dd
K
78static inline int RXD_IS_UP2DT(RxD_t *rxdp)
79{
80 int ret;
81
82 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
83 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
84
85 return ret;
86}
87
20346722 88/*
1da177e4
LT
89 * Cards with following subsystem_id have a link state indication
90 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
91 * macro below identifies these cards given the subsystem_id.
92 */
541ae68f
K
93#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
94 (dev_type == XFRAME_I_DEVICE) ? \
95 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
96 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
97
98#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
99 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
100#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
101#define PANIC 1
102#define LOW 2
103static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
104{
105 int level = 0;
20346722
K
106 mac_info_t *mac_control;
107
108 mac_control = &sp->mac_control;
109 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
1da177e4 110 level = LOW;
da6971d8 111 if (rxb_size <= rxd_count[sp->rxd_mode]) {
1da177e4
LT
112 level = PANIC;
113 }
114 }
115
116 return level;
117}
118
119/* Ethtool related variables and Macros. */
120static char s2io_gstrings[][ETH_GSTRING_LEN] = {
121 "Register test\t(offline)",
122 "Eeprom test\t(offline)",
123 "Link test\t(online)",
124 "RLDRAM test\t(offline)",
125 "BIST Test\t(offline)"
126};
127
128static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
129 {"tmac_frms"},
130 {"tmac_data_octets"},
131 {"tmac_drop_frms"},
132 {"tmac_mcst_frms"},
133 {"tmac_bcst_frms"},
134 {"tmac_pause_ctrl_frms"},
135 {"tmac_any_err_frms"},
136 {"tmac_vld_ip_octets"},
137 {"tmac_vld_ip"},
138 {"tmac_drop_ip"},
139 {"tmac_icmp"},
140 {"tmac_rst_tcp"},
141 {"tmac_tcp"},
142 {"tmac_udp"},
143 {"rmac_vld_frms"},
144 {"rmac_data_octets"},
145 {"rmac_fcs_err_frms"},
146 {"rmac_drop_frms"},
147 {"rmac_vld_mcst_frms"},
148 {"rmac_vld_bcst_frms"},
149 {"rmac_in_rng_len_err_frms"},
150 {"rmac_long_frms"},
151 {"rmac_pause_ctrl_frms"},
152 {"rmac_discarded_frms"},
153 {"rmac_usized_frms"},
154 {"rmac_osized_frms"},
155 {"rmac_frag_frms"},
156 {"rmac_jabber_frms"},
157 {"rmac_ip"},
158 {"rmac_ip_octets"},
159 {"rmac_hdr_err_ip"},
160 {"rmac_drop_ip"},
161 {"rmac_icmp"},
162 {"rmac_tcp"},
163 {"rmac_udp"},
164 {"rmac_err_drp_udp"},
165 {"rmac_pause_cnt"},
166 {"rmac_accepted_ip"},
167 {"rmac_err_tcp"},
7ba013ac
K
168 {"\n DRIVER STATISTICS"},
169 {"single_bit_ecc_errs"},
170 {"double_bit_ecc_errs"},
1da177e4
LT
171};
172
173#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
174#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
175
176#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
177#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
178
25fff88e
K
179#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
180 init_timer(&timer); \
181 timer.function = handle; \
182 timer.data = (unsigned long) arg; \
183 mod_timer(&timer, (jiffies + exp)) \
184
be3a6b02
K
185/* Add the vlan */
186static void s2io_vlan_rx_register(struct net_device *dev,
187 struct vlan_group *grp)
188{
189 nic_t *nic = dev->priv;
190 unsigned long flags;
191
192 spin_lock_irqsave(&nic->tx_lock, flags);
193 nic->vlgrp = grp;
194 spin_unlock_irqrestore(&nic->tx_lock, flags);
195}
196
197/* Unregister the vlan */
198static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
199{
200 nic_t *nic = dev->priv;
201 unsigned long flags;
202
203 spin_lock_irqsave(&nic->tx_lock, flags);
204 if (nic->vlgrp)
205 nic->vlgrp->vlan_devices[vid] = NULL;
206 spin_unlock_irqrestore(&nic->tx_lock, flags);
207}
208
20346722 209/*
1da177e4
LT
210 * Constants to be programmed into the Xena's registers, to configure
211 * the XAUI.
212 */
213
214#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
215#define END_SIGN 0x0
216
541ae68f
K
217static u64 herc_act_dtx_cfg[] = {
218 /* Set address */
e960fc5c 219 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 220 /* Write data */
e960fc5c 221 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
222 /* Set address */
223 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
224 /* Write data */
225 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
226 /* Set address */
e960fc5c 227 0x801205150D440000ULL, 0x801205150D4400E0ULL,
228 /* Write data */
229 0x801205150D440004ULL, 0x801205150D4400E4ULL,
230 /* Set address */
541ae68f
K
231 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
232 /* Write data */
233 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
234 /* Done */
235 END_SIGN
236};
237
238static u64 xena_mdio_cfg[] = {
1da177e4
LT
239 /* Reset PMA PLL */
240 0xC001010000000000ULL, 0xC0010100000000E0ULL,
241 0xC0010100008000E4ULL,
242 /* Remove Reset from PMA PLL */
243 0xC001010000000000ULL, 0xC0010100000000E0ULL,
244 0xC0010100000000E4ULL,
245 END_SIGN
246};
247
541ae68f 248static u64 xena_dtx_cfg[] = {
1da177e4
LT
249 0x8000051500000000ULL, 0x80000515000000E0ULL,
250 0x80000515D93500E4ULL, 0x8001051500000000ULL,
251 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
252 0x8002051500000000ULL, 0x80020515000000E0ULL,
253 0x80020515F21000E4ULL,
254 /* Set PADLOOPBACKN */
255 0x8002051500000000ULL, 0x80020515000000E0ULL,
256 0x80020515B20000E4ULL, 0x8003051500000000ULL,
257 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
258 0x8004051500000000ULL, 0x80040515000000E0ULL,
259 0x80040515B20000E4ULL, 0x8005051500000000ULL,
260 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
261 SWITCH_SIGN,
262 /* Remove PADLOOPBACKN */
263 0x8002051500000000ULL, 0x80020515000000E0ULL,
264 0x80020515F20000E4ULL, 0x8003051500000000ULL,
265 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
266 0x8004051500000000ULL, 0x80040515000000E0ULL,
267 0x80040515F20000E4ULL, 0x8005051500000000ULL,
268 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
269 END_SIGN
270};
271
20346722 272/*
1da177e4
LT
273 * Constants for Fixing the MacAddress problem seen mostly on
274 * Alpha machines.
275 */
276static u64 fix_mac[] = {
277 0x0060000000000000ULL, 0x0060600000000000ULL,
278 0x0040600000000000ULL, 0x0000600000000000ULL,
279 0x0020600000000000ULL, 0x0060600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0060600000000000ULL,
286 0x0020600000000000ULL, 0x0060600000000000ULL,
287 0x0020600000000000ULL, 0x0060600000000000ULL,
288 0x0020600000000000ULL, 0x0060600000000000ULL,
289 0x0020600000000000ULL, 0x0000600000000000ULL,
290 0x0040600000000000ULL, 0x0060600000000000ULL,
291 END_SIGN
292};
293
294/* Module Loadable parameters. */
295static unsigned int tx_fifo_num = 1;
296static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
297 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
298static unsigned int rx_ring_num = 1;
299static unsigned int rx_ring_sz[MAX_RX_RINGS] =
300 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
20346722
K
301static unsigned int rts_frm_len[MAX_RX_RINGS] =
302 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
da6971d8 303static unsigned int rx_ring_mode = 1;
5e25b9dd 304static unsigned int use_continuous_tx_intrs = 1;
1da177e4
LT
305static unsigned int rmac_pause_time = 65535;
306static unsigned int mc_pause_threshold_q0q3 = 187;
307static unsigned int mc_pause_threshold_q4q7 = 187;
308static unsigned int shared_splits;
309static unsigned int tmac_util_period = 5;
310static unsigned int rmac_util_period = 5;
b6e3f982 311static unsigned int bimodal = 0;
da6971d8 312static unsigned int l3l4hdr_size = 128;
1da177e4
LT
313#ifndef CONFIG_S2IO_NAPI
314static unsigned int indicate_max_pkts;
315#endif
303bcb4b
K
316/* Frequency of Rx desc syncs expressed as power of 2 */
317static unsigned int rxsync_frequency = 3;
cc6e7c44
RA
318/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
319static unsigned int intr_type = 0;
1da177e4 320
20346722 321/*
1da177e4 322 * S2IO device table.
20346722 323 * This table lists all the devices that this driver supports.
1da177e4
LT
324 */
325static struct pci_device_id s2io_tbl[] __devinitdata = {
326 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
327 PCI_ANY_ID, PCI_ANY_ID},
328 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
329 PCI_ANY_ID, PCI_ANY_ID},
330 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
331 PCI_ANY_ID, PCI_ANY_ID},
332 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
333 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
334 {0,}
335};
336
337MODULE_DEVICE_TABLE(pci, s2io_tbl);
338
339static struct pci_driver s2io_driver = {
340 .name = "S2IO",
341 .id_table = s2io_tbl,
342 .probe = s2io_init_nic,
343 .remove = __devexit_p(s2io_rem_nic),
344};
345
346/* A simplifier macro used both by init and free shared_mem Fns(). */
347#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
348
349/**
350 * init_shared_mem - Allocation and Initialization of Memory
351 * @nic: Device private variable.
20346722
K
352 * Description: The function allocates all the memory areas shared
353 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
354 * Rx descriptors and the statistics block.
355 */
356
357static int init_shared_mem(struct s2io_nic *nic)
358{
359 u32 size;
360 void *tmp_v_addr, *tmp_v_addr_next;
361 dma_addr_t tmp_p_addr, tmp_p_addr_next;
362 RxD_block_t *pre_rxd_blk = NULL;
20346722 363 int i, j, blk_cnt, rx_sz, tx_sz;
1da177e4
LT
364 int lst_size, lst_per_page;
365 struct net_device *dev = nic->dev;
8ae418cf 366 unsigned long tmp;
1da177e4 367 buffAdd_t *ba;
1da177e4
LT
368
369 mac_info_t *mac_control;
370 struct config_param *config;
371
372 mac_control = &nic->mac_control;
373 config = &nic->config;
374
375
376 /* Allocation and initialization of TXDLs in FIOFs */
377 size = 0;
378 for (i = 0; i < config->tx_fifo_num; i++) {
379 size += config->tx_cfg[i].fifo_len;
380 }
381 if (size > MAX_AVAILABLE_TXDS) {
0b1f7ebe
K
382 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
383 __FUNCTION__);
384 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
1da177e4
LT
385 return FAILURE;
386 }
387
388 lst_size = (sizeof(TxD_t) * config->max_txds);
20346722 389 tx_sz = lst_size * size;
1da177e4
LT
390 lst_per_page = PAGE_SIZE / lst_size;
391
392 for (i = 0; i < config->tx_fifo_num; i++) {
393 int fifo_len = config->tx_cfg[i].fifo_len;
394 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
20346722
K
395 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
396 GFP_KERNEL);
397 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
398 DBG_PRINT(ERR_DBG,
399 "Malloc failed for list_info\n");
400 return -ENOMEM;
401 }
20346722 402 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
403 }
404 for (i = 0; i < config->tx_fifo_num; i++) {
405 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
406 lst_per_page);
20346722
K
407 mac_control->fifos[i].tx_curr_put_info.offset = 0;
408 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 409 config->tx_cfg[i].fifo_len - 1;
20346722
K
410 mac_control->fifos[i].tx_curr_get_info.offset = 0;
411 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 412 config->tx_cfg[i].fifo_len - 1;
20346722
K
413 mac_control->fifos[i].fifo_no = i;
414 mac_control->fifos[i].nic = nic;
776bd20f 415 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
20346722 416
1da177e4
LT
417 for (j = 0; j < page_num; j++) {
418 int k = 0;
419 dma_addr_t tmp_p;
420 void *tmp_v;
421 tmp_v = pci_alloc_consistent(nic->pdev,
422 PAGE_SIZE, &tmp_p);
423 if (!tmp_v) {
424 DBG_PRINT(ERR_DBG,
425 "pci_alloc_consistent ");
426 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
427 return -ENOMEM;
428 }
776bd20f 429 /* If we got a zero DMA address(can happen on
430 * certain platforms like PPC), reallocate.
431 * Store virtual address of page we don't want,
432 * to be freed later.
433 */
434 if (!tmp_p) {
435 mac_control->zerodma_virt_addr = tmp_v;
436 DBG_PRINT(INIT_DBG,
437 "%s: Zero DMA address for TxDL. ", dev->name);
438 DBG_PRINT(INIT_DBG,
6b4d617d 439 "Virtual address %p\n", tmp_v);
776bd20f 440 tmp_v = pci_alloc_consistent(nic->pdev,
441 PAGE_SIZE, &tmp_p);
442 if (!tmp_v) {
443 DBG_PRINT(ERR_DBG,
444 "pci_alloc_consistent ");
445 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
446 return -ENOMEM;
447 }
448 }
1da177e4
LT
449 while (k < lst_per_page) {
450 int l = (j * lst_per_page) + k;
451 if (l == config->tx_cfg[i].fifo_len)
20346722
K
452 break;
453 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 454 tmp_v + (k * lst_size);
20346722 455 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
456 tmp_p + (k * lst_size);
457 k++;
458 }
459 }
460 }
1da177e4
LT
461
462 /* Allocation and initialization of RXDs in Rings */
463 size = 0;
464 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
465 if (config->rx_cfg[i].num_rxd %
466 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
467 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
468 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
469 i);
470 DBG_PRINT(ERR_DBG, "RxDs per Block");
471 return FAILURE;
472 }
473 size += config->rx_cfg[i].num_rxd;
20346722 474 mac_control->rings[i].block_count =
da6971d8
AR
475 config->rx_cfg[i].num_rxd /
476 (rxd_count[nic->rxd_mode] + 1 );
477 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
478 mac_control->rings[i].block_count;
1da177e4 479 }
da6971d8
AR
480 if (nic->rxd_mode == RXD_MODE_1)
481 size = (size * (sizeof(RxD1_t)));
482 else
483 size = (size * (sizeof(RxD3_t)));
20346722 484 rx_sz = size;
1da177e4
LT
485
486 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
487 mac_control->rings[i].rx_curr_get_info.block_index = 0;
488 mac_control->rings[i].rx_curr_get_info.offset = 0;
489 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 490 config->rx_cfg[i].num_rxd - 1;
20346722
K
491 mac_control->rings[i].rx_curr_put_info.block_index = 0;
492 mac_control->rings[i].rx_curr_put_info.offset = 0;
493 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 494 config->rx_cfg[i].num_rxd - 1;
20346722
K
495 mac_control->rings[i].nic = nic;
496 mac_control->rings[i].ring_no = i;
497
da6971d8
AR
498 blk_cnt = config->rx_cfg[i].num_rxd /
499 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
500 /* Allocating all the Rx blocks */
501 for (j = 0; j < blk_cnt; j++) {
da6971d8
AR
502 rx_block_info_t *rx_blocks;
503 int l;
504
505 rx_blocks = &mac_control->rings[i].rx_blocks[j];
506 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
507 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
508 &tmp_p_addr);
509 if (tmp_v_addr == NULL) {
510 /*
20346722
K
511 * In case of failure, free_shared_mem()
512 * is called, which should free any
513 * memory that was alloced till the
1da177e4
LT
514 * failure happened.
515 */
da6971d8 516 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
517 return -ENOMEM;
518 }
519 memset(tmp_v_addr, 0, size);
da6971d8
AR
520 rx_blocks->block_virt_addr = tmp_v_addr;
521 rx_blocks->block_dma_addr = tmp_p_addr;
522 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
523 rxd_count[nic->rxd_mode],
524 GFP_KERNEL);
525 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
526 rx_blocks->rxds[l].virt_addr =
527 rx_blocks->block_virt_addr +
528 (rxd_size[nic->rxd_mode] * l);
529 rx_blocks->rxds[l].dma_addr =
530 rx_blocks->block_dma_addr +
531 (rxd_size[nic->rxd_mode] * l);
532 }
533
20346722
K
534 mac_control->rings[i].rx_blocks[j].block_virt_addr =
535 tmp_v_addr;
536 mac_control->rings[i].rx_blocks[j].block_dma_addr =
537 tmp_p_addr;
1da177e4
LT
538 }
539 /* Interlinking all Rx Blocks */
540 for (j = 0; j < blk_cnt; j++) {
20346722
K
541 tmp_v_addr =
542 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 543 tmp_v_addr_next =
20346722 544 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 545 blk_cnt].block_virt_addr;
20346722
K
546 tmp_p_addr =
547 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 548 tmp_p_addr_next =
20346722 549 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
550 blk_cnt].block_dma_addr;
551
552 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
1da177e4
LT
553 pre_rxd_blk->reserved_2_pNext_RxD_block =
554 (unsigned long) tmp_v_addr_next;
1da177e4
LT
555 pre_rxd_blk->pNext_RxD_Blk_physical =
556 (u64) tmp_p_addr_next;
557 }
558 }
da6971d8
AR
559 if (nic->rxd_mode >= RXD_MODE_3A) {
560 /*
561 * Allocation of Storages for buffer addresses in 2BUFF mode
562 * and the buffers as well.
563 */
564 for (i = 0; i < config->rx_ring_num; i++) {
565 blk_cnt = config->rx_cfg[i].num_rxd /
566 (rxd_count[nic->rxd_mode]+ 1);
567 mac_control->rings[i].ba =
568 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
1da177e4 569 GFP_KERNEL);
da6971d8 570 if (!mac_control->rings[i].ba)
1da177e4 571 return -ENOMEM;
da6971d8
AR
572 for (j = 0; j < blk_cnt; j++) {
573 int k = 0;
574 mac_control->rings[i].ba[j] =
575 kmalloc((sizeof(buffAdd_t) *
576 (rxd_count[nic->rxd_mode] + 1)),
577 GFP_KERNEL);
578 if (!mac_control->rings[i].ba[j])
1da177e4 579 return -ENOMEM;
da6971d8
AR
580 while (k != rxd_count[nic->rxd_mode]) {
581 ba = &mac_control->rings[i].ba[j][k];
582
583 ba->ba_0_org = (void *) kmalloc
584 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
585 if (!ba->ba_0_org)
586 return -ENOMEM;
587 tmp = (unsigned long)ba->ba_0_org;
588 tmp += ALIGN_SIZE;
589 tmp &= ~((unsigned long) ALIGN_SIZE);
590 ba->ba_0 = (void *) tmp;
591
592 ba->ba_1_org = (void *) kmalloc
593 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
594 if (!ba->ba_1_org)
595 return -ENOMEM;
596 tmp = (unsigned long) ba->ba_1_org;
597 tmp += ALIGN_SIZE;
598 tmp &= ~((unsigned long) ALIGN_SIZE);
599 ba->ba_1 = (void *) tmp;
600 k++;
601 }
1da177e4
LT
602 }
603 }
604 }
1da177e4
LT
605
606 /* Allocation and initialization of Statistics block */
607 size = sizeof(StatInfo_t);
608 mac_control->stats_mem = pci_alloc_consistent
609 (nic->pdev, size, &mac_control->stats_mem_phy);
610
611 if (!mac_control->stats_mem) {
20346722
K
612 /*
613 * In case of failure, free_shared_mem() is called, which
614 * should free any memory that was alloced till the
1da177e4
LT
615 * failure happened.
616 */
617 return -ENOMEM;
618 }
619 mac_control->stats_mem_sz = size;
620
621 tmp_v_addr = mac_control->stats_mem;
622 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
623 memset(tmp_v_addr, 0, size);
1da177e4
LT
624 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
625 (unsigned long long) tmp_p_addr);
626
627 return SUCCESS;
628}
629
20346722
K
630/**
631 * free_shared_mem - Free the allocated Memory
1da177e4
LT
632 * @nic: Device private variable.
633 * Description: This function is to free all memory locations allocated by
634 * the init_shared_mem() function and return it to the kernel.
635 */
636
637static void free_shared_mem(struct s2io_nic *nic)
638{
639 int i, j, blk_cnt, size;
640 void *tmp_v_addr;
641 dma_addr_t tmp_p_addr;
642 mac_info_t *mac_control;
643 struct config_param *config;
644 int lst_size, lst_per_page;
776bd20f 645 struct net_device *dev = nic->dev;
1da177e4
LT
646
647 if (!nic)
648 return;
649
650 mac_control = &nic->mac_control;
651 config = &nic->config;
652
653 lst_size = (sizeof(TxD_t) * config->max_txds);
654 lst_per_page = PAGE_SIZE / lst_size;
655
656 for (i = 0; i < config->tx_fifo_num; i++) {
657 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
658 lst_per_page);
659 for (j = 0; j < page_num; j++) {
660 int mem_blks = (j * lst_per_page);
776bd20f 661 if (!mac_control->fifos[i].list_info)
662 return;
663 if (!mac_control->fifos[i].list_info[mem_blks].
664 list_virt_addr)
1da177e4
LT
665 break;
666 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
667 mac_control->fifos[i].
668 list_info[mem_blks].
1da177e4 669 list_virt_addr,
20346722
K
670 mac_control->fifos[i].
671 list_info[mem_blks].
1da177e4
LT
672 list_phy_addr);
673 }
776bd20f 674 /* If we got a zero DMA address during allocation,
675 * free the page now
676 */
677 if (mac_control->zerodma_virt_addr) {
678 pci_free_consistent(nic->pdev, PAGE_SIZE,
679 mac_control->zerodma_virt_addr,
680 (dma_addr_t)0);
681 DBG_PRINT(INIT_DBG,
6b4d617d
AM
682 "%s: Freeing TxDL with zero DMA addr. ",
683 dev->name);
684 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
685 mac_control->zerodma_virt_addr);
776bd20f 686 }
20346722 687 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
688 }
689
1da177e4 690 size = SIZE_OF_BLOCK;
1da177e4 691 for (i = 0; i < config->rx_ring_num; i++) {
20346722 692 blk_cnt = mac_control->rings[i].block_count;
1da177e4 693 for (j = 0; j < blk_cnt; j++) {
20346722
K
694 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
695 block_virt_addr;
696 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
697 block_dma_addr;
1da177e4
LT
698 if (tmp_v_addr == NULL)
699 break;
700 pci_free_consistent(nic->pdev, size,
701 tmp_v_addr, tmp_p_addr);
da6971d8 702 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
703 }
704 }
705
da6971d8
AR
706 if (nic->rxd_mode >= RXD_MODE_3A) {
707 /* Freeing buffer storage addresses in 2BUFF mode. */
708 for (i = 0; i < config->rx_ring_num; i++) {
709 blk_cnt = config->rx_cfg[i].num_rxd /
710 (rxd_count[nic->rxd_mode] + 1);
711 for (j = 0; j < blk_cnt; j++) {
712 int k = 0;
713 if (!mac_control->rings[i].ba[j])
714 continue;
715 while (k != rxd_count[nic->rxd_mode]) {
716 buffAdd_t *ba =
717 &mac_control->rings[i].ba[j][k];
718 kfree(ba->ba_0_org);
719 kfree(ba->ba_1_org);
720 k++;
721 }
722 kfree(mac_control->rings[i].ba[j]);
1da177e4 723 }
da6971d8 724 kfree(mac_control->rings[i].ba);
1da177e4 725 }
1da177e4 726 }
1da177e4
LT
727
728 if (mac_control->stats_mem) {
729 pci_free_consistent(nic->pdev,
730 mac_control->stats_mem_sz,
731 mac_control->stats_mem,
732 mac_control->stats_mem_phy);
733 }
734}
735
541ae68f
K
736/**
737 * s2io_verify_pci_mode -
738 */
739
740static int s2io_verify_pci_mode(nic_t *nic)
741{
509a2671 742 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
743 register u64 val64 = 0;
744 int mode;
745
746 val64 = readq(&bar0->pci_mode);
747 mode = (u8)GET_PCI_MODE(val64);
748
749 if ( val64 & PCI_MODE_UNKNOWN_MODE)
750 return -1; /* Unknown PCI mode */
751 return mode;
752}
753
754
755/**
756 * s2io_print_pci_mode -
757 */
758static int s2io_print_pci_mode(nic_t *nic)
759{
509a2671 760 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
761 register u64 val64 = 0;
762 int mode;
763 struct config_param *config = &nic->config;
764
765 val64 = readq(&bar0->pci_mode);
766 mode = (u8)GET_PCI_MODE(val64);
767
768 if ( val64 & PCI_MODE_UNKNOWN_MODE)
769 return -1; /* Unknown PCI mode */
770
771 if (val64 & PCI_MODE_32_BITS) {
772 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
773 } else {
774 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
775 }
776
777 switch(mode) {
778 case PCI_MODE_PCI_33:
779 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
780 config->bus_speed = 33;
781 break;
782 case PCI_MODE_PCI_66:
783 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
784 config->bus_speed = 133;
785 break;
786 case PCI_MODE_PCIX_M1_66:
787 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
788 config->bus_speed = 133; /* Herc doubles the clock rate */
789 break;
790 case PCI_MODE_PCIX_M1_100:
791 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
792 config->bus_speed = 200;
793 break;
794 case PCI_MODE_PCIX_M1_133:
795 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
796 config->bus_speed = 266;
797 break;
798 case PCI_MODE_PCIX_M2_66:
799 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
800 config->bus_speed = 133;
801 break;
802 case PCI_MODE_PCIX_M2_100:
803 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
804 config->bus_speed = 200;
805 break;
806 case PCI_MODE_PCIX_M2_133:
807 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
808 config->bus_speed = 266;
809 break;
810 default:
811 return -1; /* Unsupported bus speed */
812 }
813
814 return mode;
815}
816
20346722
K
817/**
818 * init_nic - Initialization of hardware
1da177e4 819 * @nic: device peivate variable
20346722
K
820 * Description: The function sequentially configures every block
821 * of the H/W from their reset values.
822 * Return Value: SUCCESS on success and
1da177e4
LT
823 * '-1' on failure (endian settings incorrect).
824 */
825
826static int init_nic(struct s2io_nic *nic)
827{
828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
829 struct net_device *dev = nic->dev;
830 register u64 val64 = 0;
831 void __iomem *add;
832 u32 time;
833 int i, j;
834 mac_info_t *mac_control;
835 struct config_param *config;
836 int mdio_cnt = 0, dtx_cnt = 0;
837 unsigned long long mem_share;
20346722 838 int mem_size;
1da177e4
LT
839
840 mac_control = &nic->mac_control;
841 config = &nic->config;
842
5e25b9dd 843 /* to set the swapper controle on the card */
20346722 844 if(s2io_set_swapper(nic)) {
1da177e4
LT
845 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
846 return -1;
847 }
848
541ae68f
K
849 /*
850 * Herc requires EOI to be removed from reset before XGXS, so..
851 */
852 if (nic->device_type & XFRAME_II_DEVICE) {
853 val64 = 0xA500000000ULL;
854 writeq(val64, &bar0->sw_reset);
855 msleep(500);
856 val64 = readq(&bar0->sw_reset);
857 }
858
1da177e4
LT
859 /* Remove XGXS from reset state */
860 val64 = 0;
861 writeq(val64, &bar0->sw_reset);
1da177e4 862 msleep(500);
20346722 863 val64 = readq(&bar0->sw_reset);
1da177e4
LT
864
865 /* Enable Receiving broadcasts */
866 add = &bar0->mac_cfg;
867 val64 = readq(&bar0->mac_cfg);
868 val64 |= MAC_RMAC_BCAST_ENABLE;
869 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
870 writel((u32) val64, add);
871 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
872 writel((u32) (val64 >> 32), (add + 4));
873
874 /* Read registers in all blocks */
875 val64 = readq(&bar0->mac_int_mask);
876 val64 = readq(&bar0->mc_int_mask);
877 val64 = readq(&bar0->xgxs_int_mask);
878
879 /* Set MTU */
880 val64 = dev->mtu;
881 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
882
20346722
K
883 /*
884 * Configuring the XAUI Interface of Xena.
1da177e4 885 * ***************************************
20346722
K
886 * To Configure the Xena's XAUI, one has to write a series
887 * of 64 bit values into two registers in a particular
888 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
889 * which will be defined in the array of configuration values
541ae68f 890 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
20346722 891 * to switch writing from one regsiter to another. We continue
1da177e4 892 * writing these values until we encounter the 'END_SIGN' macro.
20346722
K
893 * For example, After making a series of 21 writes into
894 * dtx_control register the 'SWITCH_SIGN' appears and hence we
1da177e4
LT
895 * start writing into mdio_control until we encounter END_SIGN.
896 */
541ae68f
K
897 if (nic->device_type & XFRAME_II_DEVICE) {
898 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 899 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 900 &bar0->dtx_control, UF);
541ae68f
K
901 if (dtx_cnt & 0x1)
902 msleep(1); /* Necessary!! */
1da177e4
LT
903 dtx_cnt++;
904 }
541ae68f
K
905 } else {
906 while (1) {
907 dtx_cfg:
908 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
909 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
910 dtx_cnt++;
911 goto mdio_cfg;
912 }
913 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
914 &bar0->dtx_control, UF);
915 val64 = readq(&bar0->dtx_control);
916 dtx_cnt++;
917 }
918 mdio_cfg:
919 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
920 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
921 mdio_cnt++;
922 goto dtx_cfg;
923 }
924 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
925 &bar0->mdio_control, UF);
926 val64 = readq(&bar0->mdio_control);
1da177e4 927 mdio_cnt++;
541ae68f
K
928 }
929 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
930 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
931 break;
932 } else {
1da177e4
LT
933 goto dtx_cfg;
934 }
1da177e4
LT
935 }
936 }
937
938 /* Tx DMA Initialization */
939 val64 = 0;
940 writeq(val64, &bar0->tx_fifo_partition_0);
941 writeq(val64, &bar0->tx_fifo_partition_1);
942 writeq(val64, &bar0->tx_fifo_partition_2);
943 writeq(val64, &bar0->tx_fifo_partition_3);
944
945
946 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
947 val64 |=
948 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
949 13) | vBIT(config->tx_cfg[i].fifo_priority,
950 ((i * 32) + 5), 3);
951
952 if (i == (config->tx_fifo_num - 1)) {
953 if (i % 2 == 0)
954 i++;
955 }
956
957 switch (i) {
958 case 1:
959 writeq(val64, &bar0->tx_fifo_partition_0);
960 val64 = 0;
961 break;
962 case 3:
963 writeq(val64, &bar0->tx_fifo_partition_1);
964 val64 = 0;
965 break;
966 case 5:
967 writeq(val64, &bar0->tx_fifo_partition_2);
968 val64 = 0;
969 break;
970 case 7:
971 writeq(val64, &bar0->tx_fifo_partition_3);
972 break;
973 }
974 }
975
976 /* Enable Tx FIFO partition 0. */
977 val64 = readq(&bar0->tx_fifo_partition_0);
978 val64 |= BIT(0); /* To enable the FIFO partition. */
979 writeq(val64, &bar0->tx_fifo_partition_0);
980
5e25b9dd
K
981 /*
982 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
983 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
984 */
541ae68f
K
985 if ((nic->device_type == XFRAME_I_DEVICE) &&
986 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
987 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
988
1da177e4
LT
989 val64 = readq(&bar0->tx_fifo_partition_0);
990 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
991 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
992
20346722
K
993 /*
994 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
995 * integrity checking.
996 */
997 val64 = readq(&bar0->tx_pa_cfg);
998 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
999 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1000 writeq(val64, &bar0->tx_pa_cfg);
1001
1002 /* Rx DMA intialization. */
1003 val64 = 0;
1004 for (i = 0; i < config->rx_ring_num; i++) {
1005 val64 |=
1006 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1007 3);
1008 }
1009 writeq(val64, &bar0->rx_queue_priority);
1010
20346722
K
1011 /*
1012 * Allocating equal share of memory to all the
1da177e4
LT
1013 * configured Rings.
1014 */
1015 val64 = 0;
541ae68f
K
1016 if (nic->device_type & XFRAME_II_DEVICE)
1017 mem_size = 32;
1018 else
1019 mem_size = 64;
1020
1da177e4
LT
1021 for (i = 0; i < config->rx_ring_num; i++) {
1022 switch (i) {
1023 case 0:
20346722
K
1024 mem_share = (mem_size / config->rx_ring_num +
1025 mem_size % config->rx_ring_num);
1da177e4
LT
1026 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1027 continue;
1028 case 1:
20346722 1029 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1030 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1031 continue;
1032 case 2:
20346722 1033 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1034 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1035 continue;
1036 case 3:
20346722 1037 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1038 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1039 continue;
1040 case 4:
20346722 1041 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1042 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1043 continue;
1044 case 5:
20346722 1045 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1046 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1047 continue;
1048 case 6:
20346722 1049 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1050 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1051 continue;
1052 case 7:
20346722 1053 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1054 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1055 continue;
1056 }
1057 }
1058 writeq(val64, &bar0->rx_queue_cfg);
1059
20346722 1060 /*
5e25b9dd
K
1061 * Filling Tx round robin registers
1062 * as per the number of FIFOs
1da177e4 1063 */
5e25b9dd
K
1064 switch (config->tx_fifo_num) {
1065 case 1:
1066 val64 = 0x0000000000000000ULL;
1067 writeq(val64, &bar0->tx_w_round_robin_0);
1068 writeq(val64, &bar0->tx_w_round_robin_1);
1069 writeq(val64, &bar0->tx_w_round_robin_2);
1070 writeq(val64, &bar0->tx_w_round_robin_3);
1071 writeq(val64, &bar0->tx_w_round_robin_4);
1072 break;
1073 case 2:
1074 val64 = 0x0000010000010000ULL;
1075 writeq(val64, &bar0->tx_w_round_robin_0);
1076 val64 = 0x0100000100000100ULL;
1077 writeq(val64, &bar0->tx_w_round_robin_1);
1078 val64 = 0x0001000001000001ULL;
1079 writeq(val64, &bar0->tx_w_round_robin_2);
1080 val64 = 0x0000010000010000ULL;
1081 writeq(val64, &bar0->tx_w_round_robin_3);
1082 val64 = 0x0100000000000000ULL;
1083 writeq(val64, &bar0->tx_w_round_robin_4);
1084 break;
1085 case 3:
1086 val64 = 0x0001000102000001ULL;
1087 writeq(val64, &bar0->tx_w_round_robin_0);
1088 val64 = 0x0001020000010001ULL;
1089 writeq(val64, &bar0->tx_w_round_robin_1);
1090 val64 = 0x0200000100010200ULL;
1091 writeq(val64, &bar0->tx_w_round_robin_2);
1092 val64 = 0x0001000102000001ULL;
1093 writeq(val64, &bar0->tx_w_round_robin_3);
1094 val64 = 0x0001020000000000ULL;
1095 writeq(val64, &bar0->tx_w_round_robin_4);
1096 break;
1097 case 4:
1098 val64 = 0x0001020300010200ULL;
1099 writeq(val64, &bar0->tx_w_round_robin_0);
1100 val64 = 0x0100000102030001ULL;
1101 writeq(val64, &bar0->tx_w_round_robin_1);
1102 val64 = 0x0200010000010203ULL;
1103 writeq(val64, &bar0->tx_w_round_robin_2);
1104 val64 = 0x0001020001000001ULL;
1105 writeq(val64, &bar0->tx_w_round_robin_3);
1106 val64 = 0x0203000100000000ULL;
1107 writeq(val64, &bar0->tx_w_round_robin_4);
1108 break;
1109 case 5:
1110 val64 = 0x0001000203000102ULL;
1111 writeq(val64, &bar0->tx_w_round_robin_0);
1112 val64 = 0x0001020001030004ULL;
1113 writeq(val64, &bar0->tx_w_round_robin_1);
1114 val64 = 0x0001000203000102ULL;
1115 writeq(val64, &bar0->tx_w_round_robin_2);
1116 val64 = 0x0001020001030004ULL;
1117 writeq(val64, &bar0->tx_w_round_robin_3);
1118 val64 = 0x0001000000000000ULL;
1119 writeq(val64, &bar0->tx_w_round_robin_4);
1120 break;
1121 case 6:
1122 val64 = 0x0001020304000102ULL;
1123 writeq(val64, &bar0->tx_w_round_robin_0);
1124 val64 = 0x0304050001020001ULL;
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 val64 = 0x0203000100000102ULL;
1127 writeq(val64, &bar0->tx_w_round_robin_2);
1128 val64 = 0x0304000102030405ULL;
1129 writeq(val64, &bar0->tx_w_round_robin_3);
1130 val64 = 0x0001000200000000ULL;
1131 writeq(val64, &bar0->tx_w_round_robin_4);
1132 break;
1133 case 7:
1134 val64 = 0x0001020001020300ULL;
1135 writeq(val64, &bar0->tx_w_round_robin_0);
1136 val64 = 0x0102030400010203ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_1);
1138 val64 = 0x0405060001020001ULL;
1139 writeq(val64, &bar0->tx_w_round_robin_2);
1140 val64 = 0x0304050000010200ULL;
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 val64 = 0x0102030000000000ULL;
1143 writeq(val64, &bar0->tx_w_round_robin_4);
1144 break;
1145 case 8:
1146 val64 = 0x0001020300040105ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_0);
1148 val64 = 0x0200030106000204ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_1);
1150 val64 = 0x0103000502010007ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_2);
1152 val64 = 0x0304010002060500ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_3);
1154 val64 = 0x0103020400000000ULL;
1155 writeq(val64, &bar0->tx_w_round_robin_4);
1156 break;
1157 }
1158
1159 /* Filling the Rx round robin registers as per the
1160 * number of Rings and steering based on QoS.
1161 */
1162 switch (config->rx_ring_num) {
1163 case 1:
1164 val64 = 0x8080808080808080ULL;
1165 writeq(val64, &bar0->rts_qos_steering);
1166 break;
1167 case 2:
1168 val64 = 0x0000010000010000ULL;
1169 writeq(val64, &bar0->rx_w_round_robin_0);
1170 val64 = 0x0100000100000100ULL;
1171 writeq(val64, &bar0->rx_w_round_robin_1);
1172 val64 = 0x0001000001000001ULL;
1173 writeq(val64, &bar0->rx_w_round_robin_2);
1174 val64 = 0x0000010000010000ULL;
1175 writeq(val64, &bar0->rx_w_round_robin_3);
1176 val64 = 0x0100000000000000ULL;
1177 writeq(val64, &bar0->rx_w_round_robin_4);
1178
1179 val64 = 0x8080808040404040ULL;
1180 writeq(val64, &bar0->rts_qos_steering);
1181 break;
1182 case 3:
1183 val64 = 0x0001000102000001ULL;
1184 writeq(val64, &bar0->rx_w_round_robin_0);
1185 val64 = 0x0001020000010001ULL;
1186 writeq(val64, &bar0->rx_w_round_robin_1);
1187 val64 = 0x0200000100010200ULL;
1188 writeq(val64, &bar0->rx_w_round_robin_2);
1189 val64 = 0x0001000102000001ULL;
1190 writeq(val64, &bar0->rx_w_round_robin_3);
1191 val64 = 0x0001020000000000ULL;
1192 writeq(val64, &bar0->rx_w_round_robin_4);
1193
1194 val64 = 0x8080804040402020ULL;
1195 writeq(val64, &bar0->rts_qos_steering);
1196 break;
1197 case 4:
1198 val64 = 0x0001020300010200ULL;
1199 writeq(val64, &bar0->rx_w_round_robin_0);
1200 val64 = 0x0100000102030001ULL;
1201 writeq(val64, &bar0->rx_w_round_robin_1);
1202 val64 = 0x0200010000010203ULL;
1203 writeq(val64, &bar0->rx_w_round_robin_2);
1204 val64 = 0x0001020001000001ULL;
1205 writeq(val64, &bar0->rx_w_round_robin_3);
1206 val64 = 0x0203000100000000ULL;
1207 writeq(val64, &bar0->rx_w_round_robin_4);
1208
1209 val64 = 0x8080404020201010ULL;
1210 writeq(val64, &bar0->rts_qos_steering);
1211 break;
1212 case 5:
1213 val64 = 0x0001000203000102ULL;
1214 writeq(val64, &bar0->rx_w_round_robin_0);
1215 val64 = 0x0001020001030004ULL;
1216 writeq(val64, &bar0->rx_w_round_robin_1);
1217 val64 = 0x0001000203000102ULL;
1218 writeq(val64, &bar0->rx_w_round_robin_2);
1219 val64 = 0x0001020001030004ULL;
1220 writeq(val64, &bar0->rx_w_round_robin_3);
1221 val64 = 0x0001000000000000ULL;
1222 writeq(val64, &bar0->rx_w_round_robin_4);
1223
1224 val64 = 0x8080404020201008ULL;
1225 writeq(val64, &bar0->rts_qos_steering);
1226 break;
1227 case 6:
1228 val64 = 0x0001020304000102ULL;
1229 writeq(val64, &bar0->rx_w_round_robin_0);
1230 val64 = 0x0304050001020001ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_1);
1232 val64 = 0x0203000100000102ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_2);
1234 val64 = 0x0304000102030405ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_3);
1236 val64 = 0x0001000200000000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_4);
1238
1239 val64 = 0x8080404020100804ULL;
1240 writeq(val64, &bar0->rts_qos_steering);
1241 break;
1242 case 7:
1243 val64 = 0x0001020001020300ULL;
1244 writeq(val64, &bar0->rx_w_round_robin_0);
1245 val64 = 0x0102030400010203ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_1);
1247 val64 = 0x0405060001020001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_2);
1249 val64 = 0x0304050000010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_3);
1251 val64 = 0x0102030000000000ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254 val64 = 0x8080402010080402ULL;
1255 writeq(val64, &bar0->rts_qos_steering);
1256 break;
1257 case 8:
1258 val64 = 0x0001020300040105ULL;
1259 writeq(val64, &bar0->rx_w_round_robin_0);
1260 val64 = 0x0200030106000204ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_1);
1262 val64 = 0x0103000502010007ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_2);
1264 val64 = 0x0304010002060500ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_3);
1266 val64 = 0x0103020400000000ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269 val64 = 0x8040201008040201ULL;
1270 writeq(val64, &bar0->rts_qos_steering);
1271 break;
1272 }
1da177e4
LT
1273
1274 /* UDP Fix */
1275 val64 = 0;
20346722 1276 for (i = 0; i < 8; i++)
1da177e4
LT
1277 writeq(val64, &bar0->rts_frm_len_n[i]);
1278
5e25b9dd
K
1279 /* Set the default rts frame length for the rings configured */
1280 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1281 for (i = 0 ; i < config->rx_ring_num ; i++)
1282 writeq(val64, &bar0->rts_frm_len_n[i]);
1283
1284 /* Set the frame length for the configured rings
1285 * desired by the user
1286 */
1287 for (i = 0; i < config->rx_ring_num; i++) {
1288 /* If rts_frm_len[i] == 0 then it is assumed that user not
1289 * specified frame length steering.
1290 * If the user provides the frame length then program
1291 * the rts_frm_len register for those values or else
1292 * leave it as it is.
1293 */
1294 if (rts_frm_len[i] != 0) {
1295 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1296 &bar0->rts_frm_len_n[i]);
1297 }
1298 }
1da177e4 1299
20346722 1300 /* Program statistics memory */
1da177e4 1301 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1302
541ae68f
K
1303 if (nic->device_type == XFRAME_II_DEVICE) {
1304 val64 = STAT_BC(0x320);
1305 writeq(val64, &bar0->stat_byte_cnt);
1306 }
1307
20346722 1308 /*
1da177e4
LT
1309 * Initializing the sampling rate for the device to calculate the
1310 * bandwidth utilization.
1311 */
1312 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1313 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1314 writeq(val64, &bar0->mac_link_util);
1315
1316
20346722
K
1317 /*
1318 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1319 * Scheme.
1320 */
20346722
K
1321 /*
1322 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1323 * 250 interrupts per sec. Continuous interrupts are enabled
1324 * by default.
1325 */
541ae68f
K
1326 if (nic->device_type == XFRAME_II_DEVICE) {
1327 int count = (nic->config.bus_speed * 125)/2;
1328 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1329 } else {
1330
1331 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1332 }
1333 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1334 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1335 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1336 if (use_continuous_tx_intrs)
1337 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1338 writeq(val64, &bar0->tti_data1_mem);
1339
1340 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1341 TTI_DATA2_MEM_TX_UFC_B(0x20) |
5e25b9dd 1342 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1343 writeq(val64, &bar0->tti_data2_mem);
1344
1345 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1346 writeq(val64, &bar0->tti_command_mem);
1347
20346722 1348 /*
1da177e4
LT
1349 * Once the operation completes, the Strobe bit of the command
1350 * register will be reset. We poll for this particular condition
1351 * We wait for a maximum of 500ms for the operation to complete,
1352 * if it's not complete by then we return error.
1353 */
1354 time = 0;
1355 while (TRUE) {
1356 val64 = readq(&bar0->tti_command_mem);
1357 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1358 break;
1359 }
1360 if (time > 10) {
1361 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1362 dev->name);
1363 return -1;
1364 }
1365 msleep(50);
1366 time++;
1367 }
1368
b6e3f982
K
1369 if (nic->config.bimodal) {
1370 int k = 0;
1371 for (k = 0; k < config->rx_ring_num; k++) {
1372 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1373 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1374 writeq(val64, &bar0->tti_command_mem);
541ae68f 1375
541ae68f 1376 /*
b6e3f982
K
1377 * Once the operation completes, the Strobe bit of the command
1378 * register will be reset. We poll for this particular condition
1379 * We wait for a maximum of 500ms for the operation to complete,
1380 * if it's not complete by then we return error.
1381 */
1382 time = 0;
1383 while (TRUE) {
1384 val64 = readq(&bar0->tti_command_mem);
1385 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1386 break;
1387 }
1388 if (time > 10) {
1389 DBG_PRINT(ERR_DBG,
1390 "%s: TTI init Failed\n",
1391 dev->name);
1392 return -1;
1393 }
1394 time++;
1395 msleep(50);
1396 }
1397 }
541ae68f 1398 } else {
1da177e4 1399
b6e3f982
K
1400 /* RTI Initialization */
1401 if (nic->device_type == XFRAME_II_DEVICE) {
1402 /*
1403 * Programmed to generate Apprx 500 Intrs per
1404 * second
1405 */
1406 int count = (nic->config.bus_speed * 125)/4;
1407 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1408 } else {
1409 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1410 }
1411 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1412 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1413 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1414
b6e3f982 1415 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1416
b6e3f982 1417 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1418 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1419 if (nic->intr_type == MSI_X)
1420 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1421 RTI_DATA2_MEM_RX_UFC_D(0x40));
1422 else
1423 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1424 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1425 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1426
b6e3f982
K
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1429 | RTI_CMD_MEM_OFFSET(i);
1430 writeq(val64, &bar0->rti_command_mem);
1431
1432 /*
1433 * Once the operation completes, the Strobe bit of the
1434 * command register will be reset. We poll for this
1435 * particular condition. We wait for a maximum of 500ms
1436 * for the operation to complete, if it's not complete
1437 * by then we return error.
1438 */
1439 time = 0;
1440 while (TRUE) {
1441 val64 = readq(&bar0->rti_command_mem);
1442 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1443 break;
1444 }
1445 if (time > 10) {
1446 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1447 dev->name);
1448 return -1;
1449 }
1450 time++;
1451 msleep(50);
1452 }
1da177e4 1453 }
1da177e4
LT
1454 }
1455
20346722
K
1456 /*
1457 * Initializing proper values as Pause threshold into all
1da177e4
LT
1458 * the 8 Queues on Rx side.
1459 */
1460 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1461 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1462
1463 /* Disable RMAC PAD STRIPPING */
509a2671 1464 add = &bar0->mac_cfg;
1da177e4
LT
1465 val64 = readq(&bar0->mac_cfg);
1466 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1467 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1468 writel((u32) (val64), add);
1469 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1470 writel((u32) (val64 >> 32), (add + 4));
1471 val64 = readq(&bar0->mac_cfg);
1472
20346722
K
1473 /*
1474 * Set the time value to be inserted in the pause frame
1da177e4
LT
1475 * generated by xena.
1476 */
1477 val64 = readq(&bar0->rmac_pause_cfg);
1478 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1479 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1480 writeq(val64, &bar0->rmac_pause_cfg);
1481
20346722 1482 /*
1da177e4
LT
1483 * Set the Threshold Limit for Generating the pause frame
1484 * If the amount of data in any Queue exceeds ratio of
1485 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1486 * pause frame is generated
1487 */
1488 val64 = 0;
1489 for (i = 0; i < 4; i++) {
1490 val64 |=
1491 (((u64) 0xFF00 | nic->mac_control.
1492 mc_pause_threshold_q0q3)
1493 << (i * 2 * 8));
1494 }
1495 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1496
1497 val64 = 0;
1498 for (i = 0; i < 4; i++) {
1499 val64 |=
1500 (((u64) 0xFF00 | nic->mac_control.
1501 mc_pause_threshold_q4q7)
1502 << (i * 2 * 8));
1503 }
1504 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1505
20346722
K
1506 /*
1507 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1508 * exceeded the limit pointed by shared_splits
1509 */
1510 val64 = readq(&bar0->pic_control);
1511 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1512 writeq(val64, &bar0->pic_control);
1513
541ae68f
K
1514 /*
1515 * Programming the Herc to split every write transaction
1516 * that does not start on an ADB to reduce disconnects.
1517 */
1518 if (nic->device_type == XFRAME_II_DEVICE) {
1519 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1520 writeq(val64, &bar0->wreq_split_mask);
1521 }
1522
a371a07d
K
1523 /* Setting Link stability period to 64 ms */
1524 if (nic->device_type == XFRAME_II_DEVICE) {
1525 val64 = MISC_LINK_STABILITY_PRD(3);
1526 writeq(val64, &bar0->misc_control);
1527 }
1528
1da177e4
LT
1529 return SUCCESS;
1530}
a371a07d
K
1531#define LINK_UP_DOWN_INTERRUPT 1
1532#define MAC_RMAC_ERR_TIMER 2
1533
ac1f60db 1534static int s2io_link_fault_indication(nic_t *nic)
a371a07d 1535{
cc6e7c44
RA
1536 if (nic->intr_type != INTA)
1537 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1538 if (nic->device_type == XFRAME_II_DEVICE)
1539 return LINK_UP_DOWN_INTERRUPT;
1540 else
1541 return MAC_RMAC_ERR_TIMER;
1542}
1da177e4 1543
20346722
K
1544/**
1545 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1546 * @nic: device private variable,
1547 * @mask: A mask indicating which Intr block must be modified and,
1548 * @flag: A flag indicating whether to enable or disable the Intrs.
1549 * Description: This function will either disable or enable the interrupts
20346722
K
1550 * depending on the flag argument. The mask argument can be used to
1551 * enable/disable any Intr block.
1da177e4
LT
1552 * Return Value: NONE.
1553 */
1554
1555static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1556{
1557 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1558 register u64 val64 = 0, temp64 = 0;
1559
1560 /* Top level interrupt classification */
1561 /* PIC Interrupts */
1562 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1563 /* Enable PIC Intrs in the general intr mask register */
1564 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1565 if (flag == ENABLE_INTRS) {
1566 temp64 = readq(&bar0->general_int_mask);
1567 temp64 &= ~((u64) val64);
1568 writeq(temp64, &bar0->general_int_mask);
20346722 1569 /*
a371a07d
K
1570 * If Hercules adapter enable GPIO otherwise
1571 * disabled all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1572 * interrupts for now.
1573 * TODO
1da177e4 1574 */
a371a07d
K
1575 if (s2io_link_fault_indication(nic) ==
1576 LINK_UP_DOWN_INTERRUPT ) {
1577 temp64 = readq(&bar0->pic_int_mask);
1578 temp64 &= ~((u64) PIC_INT_GPIO);
1579 writeq(temp64, &bar0->pic_int_mask);
1580 temp64 = readq(&bar0->gpio_int_mask);
1581 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1582 writeq(temp64, &bar0->gpio_int_mask);
1583 } else {
1584 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1585 }
20346722 1586 /*
1da177e4
LT
1587 * No MSI Support is available presently, so TTI and
1588 * RTI interrupts are also disabled.
1589 */
1590 } else if (flag == DISABLE_INTRS) {
20346722
K
1591 /*
1592 * Disable PIC Intrs in the general
1593 * intr mask register
1da177e4
LT
1594 */
1595 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1596 temp64 = readq(&bar0->general_int_mask);
1597 val64 |= temp64;
1598 writeq(val64, &bar0->general_int_mask);
1599 }
1600 }
1601
1602 /* DMA Interrupts */
1603 /* Enabling/Disabling Tx DMA interrupts */
1604 if (mask & TX_DMA_INTR) {
1605 /* Enable TxDMA Intrs in the general intr mask register */
1606 val64 = TXDMA_INT_M;
1607 if (flag == ENABLE_INTRS) {
1608 temp64 = readq(&bar0->general_int_mask);
1609 temp64 &= ~((u64) val64);
1610 writeq(temp64, &bar0->general_int_mask);
20346722
K
1611 /*
1612 * Keep all interrupts other than PFC interrupt
1da177e4
LT
1613 * and PCC interrupt disabled in DMA level.
1614 */
1615 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1616 TXDMA_PCC_INT_M);
1617 writeq(val64, &bar0->txdma_int_mask);
20346722
K
1618 /*
1619 * Enable only the MISC error 1 interrupt in PFC block
1da177e4
LT
1620 */
1621 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1622 writeq(val64, &bar0->pfc_err_mask);
20346722
K
1623 /*
1624 * Enable only the FB_ECC error interrupt in PCC block
1da177e4
LT
1625 */
1626 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1627 writeq(val64, &bar0->pcc_err_mask);
1628 } else if (flag == DISABLE_INTRS) {
20346722
K
1629 /*
1630 * Disable TxDMA Intrs in the general intr mask
1631 * register
1da177e4
LT
1632 */
1633 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1634 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1635 temp64 = readq(&bar0->general_int_mask);
1636 val64 |= temp64;
1637 writeq(val64, &bar0->general_int_mask);
1638 }
1639 }
1640
1641 /* Enabling/Disabling Rx DMA interrupts */
1642 if (mask & RX_DMA_INTR) {
1643 /* Enable RxDMA Intrs in the general intr mask register */
1644 val64 = RXDMA_INT_M;
1645 if (flag == ENABLE_INTRS) {
1646 temp64 = readq(&bar0->general_int_mask);
1647 temp64 &= ~((u64) val64);
1648 writeq(temp64, &bar0->general_int_mask);
20346722
K
1649 /*
1650 * All RxDMA block interrupts are disabled for now
1651 * TODO
1da177e4
LT
1652 */
1653 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1654 } else if (flag == DISABLE_INTRS) {
20346722
K
1655 /*
1656 * Disable RxDMA Intrs in the general intr mask
1657 * register
1da177e4
LT
1658 */
1659 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1660 temp64 = readq(&bar0->general_int_mask);
1661 val64 |= temp64;
1662 writeq(val64, &bar0->general_int_mask);
1663 }
1664 }
1665
1666 /* MAC Interrupts */
1667 /* Enabling/Disabling MAC interrupts */
1668 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1669 val64 = TXMAC_INT_M | RXMAC_INT_M;
1670 if (flag == ENABLE_INTRS) {
1671 temp64 = readq(&bar0->general_int_mask);
1672 temp64 &= ~((u64) val64);
1673 writeq(temp64, &bar0->general_int_mask);
20346722
K
1674 /*
1675 * All MAC block error interrupts are disabled for now
1da177e4
LT
1676 * TODO
1677 */
1da177e4 1678 } else if (flag == DISABLE_INTRS) {
20346722
K
1679 /*
1680 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1681 */
1682 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1683 writeq(DISABLE_ALL_INTRS,
1684 &bar0->mac_rmac_err_mask);
1685
1686 temp64 = readq(&bar0->general_int_mask);
1687 val64 |= temp64;
1688 writeq(val64, &bar0->general_int_mask);
1689 }
1690 }
1691
1692 /* XGXS Interrupts */
1693 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1694 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1695 if (flag == ENABLE_INTRS) {
1696 temp64 = readq(&bar0->general_int_mask);
1697 temp64 &= ~((u64) val64);
1698 writeq(temp64, &bar0->general_int_mask);
20346722 1699 /*
1da177e4 1700 * All XGXS block error interrupts are disabled for now
20346722 1701 * TODO
1da177e4
LT
1702 */
1703 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1704 } else if (flag == DISABLE_INTRS) {
20346722
K
1705 /*
1706 * Disable MC Intrs in the general intr mask register
1da177e4
LT
1707 */
1708 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1709 temp64 = readq(&bar0->general_int_mask);
1710 val64 |= temp64;
1711 writeq(val64, &bar0->general_int_mask);
1712 }
1713 }
1714
1715 /* Memory Controller(MC) interrupts */
1716 if (mask & MC_INTR) {
1717 val64 = MC_INT_M;
1718 if (flag == ENABLE_INTRS) {
1719 temp64 = readq(&bar0->general_int_mask);
1720 temp64 &= ~((u64) val64);
1721 writeq(temp64, &bar0->general_int_mask);
20346722 1722 /*
5e25b9dd 1723 * Enable all MC Intrs.
1da177e4 1724 */
5e25b9dd
K
1725 writeq(0x0, &bar0->mc_int_mask);
1726 writeq(0x0, &bar0->mc_err_mask);
1da177e4
LT
1727 } else if (flag == DISABLE_INTRS) {
1728 /*
1729 * Disable MC Intrs in the general intr mask register
1730 */
1731 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1732 temp64 = readq(&bar0->general_int_mask);
1733 val64 |= temp64;
1734 writeq(val64, &bar0->general_int_mask);
1735 }
1736 }
1737
1738
1739 /* Tx traffic interrupts */
1740 if (mask & TX_TRAFFIC_INTR) {
1741 val64 = TXTRAFFIC_INT_M;
1742 if (flag == ENABLE_INTRS) {
1743 temp64 = readq(&bar0->general_int_mask);
1744 temp64 &= ~((u64) val64);
1745 writeq(temp64, &bar0->general_int_mask);
20346722 1746 /*
1da177e4 1747 * Enable all the Tx side interrupts
20346722 1748 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1749 */
1750 writeq(0x0, &bar0->tx_traffic_mask);
1751 } else if (flag == DISABLE_INTRS) {
20346722
K
1752 /*
1753 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1754 * register.
1755 */
1756 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1757 temp64 = readq(&bar0->general_int_mask);
1758 val64 |= temp64;
1759 writeq(val64, &bar0->general_int_mask);
1760 }
1761 }
1762
1763 /* Rx traffic interrupts */
1764 if (mask & RX_TRAFFIC_INTR) {
1765 val64 = RXTRAFFIC_INT_M;
1766 if (flag == ENABLE_INTRS) {
1767 temp64 = readq(&bar0->general_int_mask);
1768 temp64 &= ~((u64) val64);
1769 writeq(temp64, &bar0->general_int_mask);
1770 /* writing 0 Enables all 8 RX interrupt levels */
1771 writeq(0x0, &bar0->rx_traffic_mask);
1772 } else if (flag == DISABLE_INTRS) {
20346722
K
1773 /*
1774 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1775 * register.
1776 */
1777 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1778 temp64 = readq(&bar0->general_int_mask);
1779 val64 |= temp64;
1780 writeq(val64, &bar0->general_int_mask);
1781 }
1782 }
1783}
1784
541ae68f 1785static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
20346722
K
1786{
1787 int ret = 0;
1788
1789 if (flag == FALSE) {
541ae68f 1790 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1791 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1792 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1793 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1794 ret = 1;
1795 }
541ae68f 1796 }else {
5e25b9dd
K
1797 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1798 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1799 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1800 ret = 1;
1801 }
20346722
K
1802 }
1803 } else {
541ae68f 1804 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1805 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1806 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1807 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1808 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1809 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1810 ret = 1;
1811 }
1812 } else {
1813 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1814 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1815 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1816 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1817 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1818 ret = 1;
1819 }
20346722
K
1820 }
1821 }
1822
1823 return ret;
1824}
1825/**
1826 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4
LT
1827 * @val64 : Value read from adapter status register.
1828 * @flag : indicates if the adapter enable bit was ever written once
1829 * before.
1830 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1831 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1832 * differs and the calling function passes the input argument flag to
1833 * indicate this.
20346722 1834 * Return: 1 If xena is quiescence
1da177e4
LT
1835 * 0 If Xena is not quiescence
1836 */
1837
20346722 1838static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1da177e4 1839{
541ae68f 1840 int ret = 0, herc;
1da177e4 1841 u64 tmp64 = ~((u64) val64);
5e25b9dd 1842 int rev_id = get_xena_rev_id(sp->pdev);
1da177e4 1843
541ae68f 1844 herc = (sp->device_type == XFRAME_II_DEVICE);
1da177e4
LT
1845 if (!
1846 (tmp64 &
1847 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1848 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1849 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1850 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1851 ADAPTER_STATUS_P_PLL_LOCK))) {
541ae68f 1852 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1da177e4
LT
1853 }
1854
1855 return ret;
1856}
1857
1858/**
1859 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1860 * @sp: Pointer to device specifc structure
20346722 1861 * Description :
1da177e4
LT
1862 * New procedure to clear mac address reading problems on Alpha platforms
1863 *
1864 */
1865
ac1f60db 1866static void fix_mac_address(nic_t * sp)
1da177e4
LT
1867{
1868 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1869 u64 val64;
1870 int i = 0;
1871
1872 while (fix_mac[i] != END_SIGN) {
1873 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1874 udelay(10);
1da177e4
LT
1875 val64 = readq(&bar0->gpio_control);
1876 }
1877}
1878
1879/**
20346722 1880 * start_nic - Turns the device on
1da177e4 1881 * @nic : device private variable.
20346722
K
1882 * Description:
1883 * This function actually turns the device on. Before this function is
1884 * called,all Registers are configured from their reset states
1885 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1886 * calling this function, the device interrupts are cleared and the NIC is
1887 * literally switched on by writing into the adapter control register.
20346722 1888 * Return Value:
1da177e4
LT
1889 * SUCCESS on success and -1 on failure.
1890 */
1891
1892static int start_nic(struct s2io_nic *nic)
1893{
1894 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1895 struct net_device *dev = nic->dev;
1896 register u64 val64 = 0;
20346722
K
1897 u16 interruptible;
1898 u16 subid, i;
1da177e4
LT
1899 mac_info_t *mac_control;
1900 struct config_param *config;
1901
1902 mac_control = &nic->mac_control;
1903 config = &nic->config;
1904
1905 /* PRC Initialization and configuration */
1906 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1907 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1908 &bar0->prc_rxd0_n[i]);
1909
1910 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1911 if (nic->config.bimodal)
1912 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1913 if (nic->rxd_mode == RXD_MODE_1)
1914 val64 |= PRC_CTRL_RC_ENABLED;
1915 else
1916 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1da177e4
LT
1917 writeq(val64, &bar0->prc_ctrl_n[i]);
1918 }
1919
da6971d8
AR
1920 if (nic->rxd_mode == RXD_MODE_3B) {
1921 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1922 val64 = readq(&bar0->rx_pa_cfg);
1923 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1924 writeq(val64, &bar0->rx_pa_cfg);
1925 }
1da177e4 1926
20346722 1927 /*
1da177e4
LT
1928 * Enabling MC-RLDRAM. After enabling the device, we timeout
1929 * for around 100ms, which is approximately the time required
1930 * for the device to be ready for operation.
1931 */
1932 val64 = readq(&bar0->mc_rldram_mrs);
1933 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1934 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1935 val64 = readq(&bar0->mc_rldram_mrs);
1936
20346722 1937 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1938
1939 /* Enabling ECC Protection. */
1940 val64 = readq(&bar0->adapter_control);
1941 val64 &= ~ADAPTER_ECC_EN;
1942 writeq(val64, &bar0->adapter_control);
1943
20346722
K
1944 /*
1945 * Clearing any possible Link state change interrupts that
1da177e4
LT
1946 * could have popped up just before Enabling the card.
1947 */
1948 val64 = readq(&bar0->mac_rmac_err_reg);
1949 if (val64)
1950 writeq(val64, &bar0->mac_rmac_err_reg);
1951
20346722
K
1952 /*
1953 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
1954 * it.
1955 */
1956 val64 = readq(&bar0->adapter_status);
20346722 1957 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
1958 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1959 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1960 (unsigned long long) val64);
1961 return FAILURE;
1962 }
1963
1964 /* Enable select interrupts */
cc6e7c44
RA
1965 if (nic->intr_type != INTA)
1966 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1967 else {
1968 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1969 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1970 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1971 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1972 }
1da177e4 1973
20346722 1974 /*
1da177e4 1975 * With some switches, link might be already up at this point.
20346722
K
1976 * Because of this weird behavior, when we enable laser,
1977 * we may not get link. We need to handle this. We cannot
1978 * figure out which switch is misbehaving. So we are forced to
1979 * make a global change.
1da177e4
LT
1980 */
1981
1982 /* Enabling Laser. */
1983 val64 = readq(&bar0->adapter_control);
1984 val64 |= ADAPTER_EOI_TX_ON;
1985 writeq(val64, &bar0->adapter_control);
1986
1987 /* SXE-002: Initialize link and activity LED */
1988 subid = nic->pdev->subsystem_device;
541ae68f
K
1989 if (((subid & 0xFF) >= 0x07) &&
1990 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
1991 val64 = readq(&bar0->gpio_control);
1992 val64 |= 0x0000800000000000ULL;
1993 writeq(val64, &bar0->gpio_control);
1994 val64 = 0x0411040400000000ULL;
509a2671 1995 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
1996 }
1997
20346722
K
1998 /*
1999 * Don't see link state interrupts on certain switches, so
1da177e4
LT
2000 * directly scheduling a link state task from here.
2001 */
2002 schedule_work(&nic->set_link_task);
2003
1da177e4
LT
2004 return SUCCESS;
2005}
2006
20346722
K
2007/**
2008 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2009 * @nic : device private variable.
20346722 2010 * Description:
1da177e4 2011 * Free all queued Tx buffers.
20346722 2012 * Return Value: void
1da177e4
LT
2013*/
2014
2015static void free_tx_buffers(struct s2io_nic *nic)
2016{
2017 struct net_device *dev = nic->dev;
2018 struct sk_buff *skb;
2019 TxD_t *txdp;
2020 int i, j;
2021 mac_info_t *mac_control;
2022 struct config_param *config;
1ddc50d4 2023 int cnt = 0, frg_cnt;
1da177e4
LT
2024
2025 mac_control = &nic->mac_control;
2026 config = &nic->config;
2027
2028 for (i = 0; i < config->tx_fifo_num; i++) {
2029 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
20346722 2030 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1da177e4
LT
2031 list_virt_addr;
2032 skb =
2033 (struct sk_buff *) ((unsigned long) txdp->
2034 Host_Control);
2035 if (skb == NULL) {
1ddc50d4
K
2036 memset(txdp, 0, sizeof(TxD_t) *
2037 config->max_txds);
1da177e4
LT
2038 continue;
2039 }
1ddc50d4
K
2040 frg_cnt = skb_shinfo(skb)->nr_frags;
2041 pci_unmap_single(nic->pdev, (dma_addr_t)
2042 txdp->Buffer_Pointer,
2043 skb->len - skb->data_len,
2044 PCI_DMA_TODEVICE);
2045 if (frg_cnt) {
2046 TxD_t *temp;
2047 temp = txdp;
2048 txdp++;
2049 for (j = 0; j < frg_cnt; j++, txdp++) {
2050 skb_frag_t *frag =
2051 &skb_shinfo(skb)->frags[j];
2052 pci_unmap_page(nic->pdev,
2053 (dma_addr_t)
2054 txdp->
2055 Buffer_Pointer,
2056 frag->size,
2057 PCI_DMA_TODEVICE);
2058 }
2059 txdp = temp;
2060 }
1da177e4 2061 dev_kfree_skb(skb);
1ddc50d4 2062 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
1da177e4
LT
2063 cnt++;
2064 }
2065 DBG_PRINT(INTR_DBG,
2066 "%s:forcibly freeing %d skbs on FIFO%d\n",
2067 dev->name, cnt, i);
20346722
K
2068 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2069 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2070 }
2071}
2072
20346722
K
2073/**
2074 * stop_nic - To stop the nic
1da177e4 2075 * @nic ; device private variable.
20346722
K
2076 * Description:
2077 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2078 * function does. This function is called to stop the device.
2079 * Return Value:
2080 * void.
2081 */
2082
2083static void stop_nic(struct s2io_nic *nic)
2084{
2085 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2086 register u64 val64 = 0;
2087 u16 interruptible, i;
2088 mac_info_t *mac_control;
2089 struct config_param *config;
2090
2091 mac_control = &nic->mac_control;
2092 config = &nic->config;
2093
2094 /* Disable all interrupts */
e960fc5c 2095 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2096 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2097 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2098 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2099
2100 /* Disable PRCs */
2101 for (i = 0; i < config->rx_ring_num; i++) {
2102 val64 = readq(&bar0->prc_ctrl_n[i]);
2103 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2104 writeq(val64, &bar0->prc_ctrl_n[i]);
2105 }
2106}
2107
da6971d8
AR
2108int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2109{
2110 struct net_device *dev = nic->dev;
2111 struct sk_buff *frag_list;
50eb8006 2112 void *tmp;
da6971d8
AR
2113
2114 /* Buffer-1 receives L3/L4 headers */
2115 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2116 (nic->pdev, skb->data, l3l4hdr_size + 4,
2117 PCI_DMA_FROMDEVICE);
2118
2119 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2120 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2121 if (skb_shinfo(skb)->frag_list == NULL) {
2122 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2123 return -ENOMEM ;
2124 }
2125 frag_list = skb_shinfo(skb)->frag_list;
2126 frag_list->next = NULL;
50eb8006
JG
2127 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2128 frag_list->data = tmp;
2129 frag_list->tail = tmp;
da6971d8
AR
2130
2131 /* Buffer-2 receives L4 data payload */
2132 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2133 frag_list->data, dev->mtu,
2134 PCI_DMA_FROMDEVICE);
2135 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2136 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2137
2138 return SUCCESS;
2139}
2140
20346722
K
2141/**
2142 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2143 * @nic: device private variable
20346722
K
2144 * @ring_no: ring number
2145 * Description:
1da177e4
LT
2146 * The function allocates Rx side skbs and puts the physical
2147 * address of these buffers into the RxD buffer pointers, so that the NIC
2148 * can DMA the received frame into these locations.
2149 * The NIC supports 3 receive modes, viz
2150 * 1. single buffer,
2151 * 2. three buffer and
2152 * 3. Five buffer modes.
20346722
K
2153 * Each mode defines how many fragments the received frame will be split
2154 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2155 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2156 * is split into 3 fragments. As of now only single buffer mode is
2157 * supported.
2158 * Return Value:
2159 * SUCCESS on success or an appropriate -ve value on failure.
2160 */
2161
ac1f60db 2162static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2163{
2164 struct net_device *dev = nic->dev;
2165 struct sk_buff *skb;
2166 RxD_t *rxdp;
2167 int off, off1, size, block_no, block_no1;
1da177e4 2168 u32 alloc_tab = 0;
20346722 2169 u32 alloc_cnt;
1da177e4
LT
2170 mac_info_t *mac_control;
2171 struct config_param *config;
20346722 2172 u64 tmp;
1da177e4 2173 buffAdd_t *ba;
1da177e4
LT
2174#ifndef CONFIG_S2IO_NAPI
2175 unsigned long flags;
2176#endif
303bcb4b 2177 RxD_t *first_rxdp = NULL;
1da177e4
LT
2178
2179 mac_control = &nic->mac_control;
2180 config = &nic->config;
20346722
K
2181 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2182 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4
LT
2183
2184 while (alloc_tab < alloc_cnt) {
20346722 2185 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2186 block_index;
20346722 2187 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
1da177e4 2188 block_index;
20346722
K
2189 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2190 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2191
da6971d8
AR
2192 rxdp = mac_control->rings[ring_no].
2193 rx_blocks[block_no].rxds[off].virt_addr;
2194
2195 if ((block_no == block_no1) && (off == off1) &&
2196 (rxdp->Host_Control)) {
2197 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2198 dev->name);
1da177e4
LT
2199 DBG_PRINT(INTR_DBG, " info equated\n");
2200 goto end;
2201 }
da6971d8 2202 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2203 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2204 block_index++;
da6971d8
AR
2205 if (mac_control->rings[ring_no].rx_curr_put_info.
2206 block_index == mac_control->rings[ring_no].
2207 block_count)
2208 mac_control->rings[ring_no].rx_curr_put_info.
2209 block_index = 0;
2210 block_no = mac_control->rings[ring_no].
2211 rx_curr_put_info.block_index;
2212 if (off == rxd_count[nic->rxd_mode])
2213 off = 0;
20346722 2214 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2215 offset = off;
2216 rxdp = mac_control->rings[ring_no].
2217 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2218 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2219 dev->name, rxdp);
2220 }
2221#ifndef CONFIG_S2IO_NAPI
2222 spin_lock_irqsave(&nic->put_lock, flags);
20346722 2223 mac_control->rings[ring_no].put_pos =
da6971d8 2224 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
1da177e4
LT
2225 spin_unlock_irqrestore(&nic->put_lock, flags);
2226#endif
da6971d8
AR
2227 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2228 ((nic->rxd_mode >= RXD_MODE_3A) &&
2229 (rxdp->Control_2 & BIT(0)))) {
20346722 2230 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2231 offset = off;
1da177e4
LT
2232 goto end;
2233 }
da6971d8
AR
2234 /* calculate size of skb based on ring mode */
2235 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2236 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2237 if (nic->rxd_mode == RXD_MODE_1)
2238 size += NET_IP_ALIGN;
2239 else if (nic->rxd_mode == RXD_MODE_3B)
2240 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2241 else
2242 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2243
da6971d8
AR
2244 /* allocate skb */
2245 skb = dev_alloc_skb(size);
2246 if(!skb) {
1da177e4
LT
2247 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2248 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2249 if (first_rxdp) {
2250 wmb();
2251 first_rxdp->Control_1 |= RXD_OWN_XENA;
2252 }
da6971d8
AR
2253 return -ENOMEM ;
2254 }
2255 if (nic->rxd_mode == RXD_MODE_1) {
2256 /* 1 buffer mode - normal operation mode */
2257 memset(rxdp, 0, sizeof(RxD1_t));
2258 skb_reserve(skb, NET_IP_ALIGN);
2259 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2260 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2261 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2262 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2263
2264 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2265 /*
2266 * 2 or 3 buffer mode -
2267 * Both 2 buffer mode and 3 buffer mode provides 128
2268 * byte aligned receive buffers.
2269 *
2270 * 3 buffer mode provides header separation where in
2271 * skb->data will have L3/L4 headers where as
2272 * skb_shinfo(skb)->frag_list will have the L4 data
2273 * payload
2274 */
2275
2276 memset(rxdp, 0, sizeof(RxD3_t));
2277 ba = &mac_control->rings[ring_no].ba[block_no][off];
2278 skb_reserve(skb, BUF0_LEN);
2279 tmp = (u64)(unsigned long) skb->data;
2280 tmp += ALIGN_SIZE;
2281 tmp &= ~ALIGN_SIZE;
2282 skb->data = (void *) (unsigned long)tmp;
2283 skb->tail = (void *) (unsigned long)tmp;
2284
2285 ((RxD3_t*)rxdp)->Buffer0_ptr =
2286 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2287 PCI_DMA_FROMDEVICE);
2288 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2289 if (nic->rxd_mode == RXD_MODE_3B) {
2290 /* Two buffer mode */
2291
2292 /*
2293 * Buffer2 will have L3/L4 header plus
2294 * L4 payload
2295 */
2296 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2297 (nic->pdev, skb->data, dev->mtu + 4,
2298 PCI_DMA_FROMDEVICE);
2299
2300 /* Buffer-1 will be dummy buffer not used */
2301 ((RxD3_t*)rxdp)->Buffer1_ptr =
2302 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2303 PCI_DMA_FROMDEVICE);
2304 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2305 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2306 (dev->mtu + 4);
2307 } else {
2308 /* 3 buffer mode */
2309 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2310 dev_kfree_skb_irq(skb);
2311 if (first_rxdp) {
2312 wmb();
2313 first_rxdp->Control_1 |=
2314 RXD_OWN_XENA;
2315 }
2316 return -ENOMEM ;
2317 }
2318 }
2319 rxdp->Control_2 |= BIT(0);
1da177e4 2320 }
1da177e4 2321 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2322 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2323 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2324 off++;
da6971d8
AR
2325 if (off == (rxd_count[nic->rxd_mode] + 1))
2326 off = 0;
20346722 2327 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2328
da6971d8 2329 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2330 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2331 if (first_rxdp) {
2332 wmb();
2333 first_rxdp->Control_1 |= RXD_OWN_XENA;
2334 }
2335 first_rxdp = rxdp;
2336 }
1da177e4
LT
2337 atomic_inc(&nic->rx_bufs_left[ring_no]);
2338 alloc_tab++;
2339 }
2340
2341 end:
303bcb4b
K
2342 /* Transfer ownership of first descriptor to adapter just before
2343 * exiting. Before that, use memory barrier so that ownership
2344 * and other fields are seen by adapter correctly.
2345 */
2346 if (first_rxdp) {
2347 wmb();
2348 first_rxdp->Control_1 |= RXD_OWN_XENA;
2349 }
2350
1da177e4
LT
2351 return SUCCESS;
2352}
2353
da6971d8
AR
2354static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2355{
2356 struct net_device *dev = sp->dev;
2357 int j;
2358 struct sk_buff *skb;
2359 RxD_t *rxdp;
2360 mac_info_t *mac_control;
2361 buffAdd_t *ba;
2362
2363 mac_control = &sp->mac_control;
2364 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2365 rxdp = mac_control->rings[ring_no].
2366 rx_blocks[blk].rxds[j].virt_addr;
2367 skb = (struct sk_buff *)
2368 ((unsigned long) rxdp->Host_Control);
2369 if (!skb) {
2370 continue;
2371 }
2372 if (sp->rxd_mode == RXD_MODE_1) {
2373 pci_unmap_single(sp->pdev, (dma_addr_t)
2374 ((RxD1_t*)rxdp)->Buffer0_ptr,
2375 dev->mtu +
2376 HEADER_ETHERNET_II_802_3_SIZE
2377 + HEADER_802_2_SIZE +
2378 HEADER_SNAP_SIZE,
2379 PCI_DMA_FROMDEVICE);
2380 memset(rxdp, 0, sizeof(RxD1_t));
2381 } else if(sp->rxd_mode == RXD_MODE_3B) {
2382 ba = &mac_control->rings[ring_no].
2383 ba[blk][j];
2384 pci_unmap_single(sp->pdev, (dma_addr_t)
2385 ((RxD3_t*)rxdp)->Buffer0_ptr,
2386 BUF0_LEN,
2387 PCI_DMA_FROMDEVICE);
2388 pci_unmap_single(sp->pdev, (dma_addr_t)
2389 ((RxD3_t*)rxdp)->Buffer1_ptr,
2390 BUF1_LEN,
2391 PCI_DMA_FROMDEVICE);
2392 pci_unmap_single(sp->pdev, (dma_addr_t)
2393 ((RxD3_t*)rxdp)->Buffer2_ptr,
2394 dev->mtu + 4,
2395 PCI_DMA_FROMDEVICE);
2396 memset(rxdp, 0, sizeof(RxD3_t));
2397 } else {
2398 pci_unmap_single(sp->pdev, (dma_addr_t)
2399 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2400 PCI_DMA_FROMDEVICE);
2401 pci_unmap_single(sp->pdev, (dma_addr_t)
2402 ((RxD3_t*)rxdp)->Buffer1_ptr,
2403 l3l4hdr_size + 4,
2404 PCI_DMA_FROMDEVICE);
2405 pci_unmap_single(sp->pdev, (dma_addr_t)
2406 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2407 PCI_DMA_FROMDEVICE);
2408 memset(rxdp, 0, sizeof(RxD3_t));
2409 }
2410 dev_kfree_skb(skb);
2411 atomic_dec(&sp->rx_bufs_left[ring_no]);
2412 }
2413}
2414
1da177e4 2415/**
20346722 2416 * free_rx_buffers - Frees all Rx buffers
1da177e4 2417 * @sp: device private variable.
20346722 2418 * Description:
1da177e4
LT
2419 * This function will free all Rx buffers allocated by host.
2420 * Return Value:
2421 * NONE.
2422 */
2423
2424static void free_rx_buffers(struct s2io_nic *sp)
2425{
2426 struct net_device *dev = sp->dev;
da6971d8 2427 int i, blk = 0, buf_cnt = 0;
1da177e4
LT
2428 mac_info_t *mac_control;
2429 struct config_param *config;
1da177e4
LT
2430
2431 mac_control = &sp->mac_control;
2432 config = &sp->config;
2433
2434 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2435 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2436 free_rxd_blk(sp,i,blk);
1da177e4 2437
20346722
K
2438 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2439 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2440 mac_control->rings[i].rx_curr_put_info.offset = 0;
2441 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2442 atomic_set(&sp->rx_bufs_left[i], 0);
2443 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2444 dev->name, buf_cnt, i);
2445 }
2446}
2447
2448/**
2449 * s2io_poll - Rx interrupt handler for NAPI support
2450 * @dev : pointer to the device structure.
20346722 2451 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2452 * during one pass through the 'Poll" function.
2453 * Description:
2454 * Comes into picture only if NAPI support has been incorporated. It does
2455 * the same thing that rx_intr_handler does, but not in a interrupt context
2456 * also It will process only a given number of packets.
2457 * Return value:
2458 * 0 on success and 1 if there are No Rx packets to be processed.
2459 */
2460
20346722 2461#if defined(CONFIG_S2IO_NAPI)
1da177e4
LT
2462static int s2io_poll(struct net_device *dev, int *budget)
2463{
2464 nic_t *nic = dev->priv;
20346722 2465 int pkt_cnt = 0, org_pkts_to_process;
1da177e4
LT
2466 mac_info_t *mac_control;
2467 struct config_param *config;
509a2671 2468 XENA_dev_config_t __iomem *bar0 = nic->bar0;
20346722
K
2469 u64 val64;
2470 int i;
1da177e4 2471
7ba013ac 2472 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2473 mac_control = &nic->mac_control;
2474 config = &nic->config;
2475
20346722
K
2476 nic->pkts_to_process = *budget;
2477 if (nic->pkts_to_process > dev->quota)
2478 nic->pkts_to_process = dev->quota;
2479 org_pkts_to_process = nic->pkts_to_process;
1da177e4
LT
2480
2481 val64 = readq(&bar0->rx_traffic_int);
2482 writeq(val64, &bar0->rx_traffic_int);
2483
2484 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2485 rx_intr_handler(&mac_control->rings[i]);
2486 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2487 if (!nic->pkts_to_process) {
2488 /* Quota for the current iteration has been met */
2489 goto no_rx;
1da177e4 2490 }
1da177e4
LT
2491 }
2492 if (!pkt_cnt)
2493 pkt_cnt = 1;
2494
2495 dev->quota -= pkt_cnt;
2496 *budget -= pkt_cnt;
2497 netif_rx_complete(dev);
2498
2499 for (i = 0; i < config->rx_ring_num; i++) {
2500 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2501 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2502 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2503 break;
2504 }
2505 }
2506 /* Re enable the Rx interrupts. */
2507 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
7ba013ac 2508 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2509 return 0;
2510
20346722 2511no_rx:
1da177e4
LT
2512 dev->quota -= pkt_cnt;
2513 *budget -= pkt_cnt;
2514
2515 for (i = 0; i < config->rx_ring_num; i++) {
2516 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2517 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2518 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2519 break;
2520 }
2521 }
7ba013ac 2522 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2523 return 1;
2524}
20346722
K
2525#endif
2526
2527/**
1da177e4
LT
2528 * rx_intr_handler - Rx interrupt handler
2529 * @nic: device private variable.
20346722
K
2530 * Description:
2531 * If the interrupt is because of a received frame or if the
1da177e4 2532 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2533 * called. It picks out the RxD at which place the last Rx processing had
2534 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2535 * the offset.
2536 * Return Value:
2537 * NONE.
2538 */
20346722 2539static void rx_intr_handler(ring_info_t *ring_data)
1da177e4 2540{
20346722 2541 nic_t *nic = ring_data->nic;
1da177e4 2542 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2543 int get_block, put_block, put_offset;
1da177e4
LT
2544 rx_curr_get_info_t get_info, put_info;
2545 RxD_t *rxdp;
2546 struct sk_buff *skb;
20346722
K
2547#ifndef CONFIG_S2IO_NAPI
2548 int pkt_cnt = 0;
1da177e4 2549#endif
7ba013ac
K
2550 spin_lock(&nic->rx_lock);
2551 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2552 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2553 __FUNCTION__, dev->name);
2554 spin_unlock(&nic->rx_lock);
776bd20f 2555 return;
7ba013ac
K
2556 }
2557
20346722
K
2558 get_info = ring_data->rx_curr_get_info;
2559 get_block = get_info.block_index;
2560 put_info = ring_data->rx_curr_put_info;
2561 put_block = put_info.block_index;
da6971d8 2562 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
20346722
K
2563#ifndef CONFIG_S2IO_NAPI
2564 spin_lock(&nic->put_lock);
2565 put_offset = ring_data->put_pos;
2566 spin_unlock(&nic->put_lock);
2567#else
da6971d8 2568 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
20346722
K
2569 put_info.offset;
2570#endif
da6971d8
AR
2571 while (RXD_IS_UP2DT(rxdp)) {
2572 /* If your are next to put index then it's FIFO full condition */
2573 if ((get_block == put_block) &&
2574 (get_info.offset + 1) == put_info.offset) {
2575 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2576 break;
2577 }
20346722
K
2578 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2579 if (skb == NULL) {
2580 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2581 dev->name);
2582 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2583 spin_unlock(&nic->rx_lock);
20346722 2584 return;
1da177e4 2585 }
da6971d8
AR
2586 if (nic->rxd_mode == RXD_MODE_1) {
2587 pci_unmap_single(nic->pdev, (dma_addr_t)
2588 ((RxD1_t*)rxdp)->Buffer0_ptr,
20346722
K
2589 dev->mtu +
2590 HEADER_ETHERNET_II_802_3_SIZE +
2591 HEADER_802_2_SIZE +
2592 HEADER_SNAP_SIZE,
2593 PCI_DMA_FROMDEVICE);
da6971d8
AR
2594 } else if (nic->rxd_mode == RXD_MODE_3B) {
2595 pci_unmap_single(nic->pdev, (dma_addr_t)
2596 ((RxD3_t*)rxdp)->Buffer0_ptr,
20346722 2597 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2598 pci_unmap_single(nic->pdev, (dma_addr_t)
2599 ((RxD3_t*)rxdp)->Buffer1_ptr,
20346722 2600 BUF1_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2601 pci_unmap_single(nic->pdev, (dma_addr_t)
2602 ((RxD3_t*)rxdp)->Buffer2_ptr,
2603 dev->mtu + 4,
20346722 2604 PCI_DMA_FROMDEVICE);
da6971d8
AR
2605 } else {
2606 pci_unmap_single(nic->pdev, (dma_addr_t)
2607 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2608 PCI_DMA_FROMDEVICE);
2609 pci_unmap_single(nic->pdev, (dma_addr_t)
2610 ((RxD3_t*)rxdp)->Buffer1_ptr,
2611 l3l4hdr_size + 4,
2612 PCI_DMA_FROMDEVICE);
2613 pci_unmap_single(nic->pdev, (dma_addr_t)
2614 ((RxD3_t*)rxdp)->Buffer2_ptr,
2615 dev->mtu, PCI_DMA_FROMDEVICE);
2616 }
20346722
K
2617 rx_osm_handler(ring_data, rxdp);
2618 get_info.offset++;
da6971d8
AR
2619 ring_data->rx_curr_get_info.offset = get_info.offset;
2620 rxdp = ring_data->rx_blocks[get_block].
2621 rxds[get_info.offset].virt_addr;
2622 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2623 get_info.offset = 0;
da6971d8 2624 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2625 get_block++;
da6971d8
AR
2626 if (get_block == ring_data->block_count)
2627 get_block = 0;
2628 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2629 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2630 }
1da177e4 2631
20346722
K
2632#ifdef CONFIG_S2IO_NAPI
2633 nic->pkts_to_process -= 1;
2634 if (!nic->pkts_to_process)
2635 break;
2636#else
2637 pkt_cnt++;
1da177e4
LT
2638 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2639 break;
20346722 2640#endif
1da177e4 2641 }
7ba013ac 2642 spin_unlock(&nic->rx_lock);
1da177e4 2643}
20346722
K
2644
2645/**
1da177e4
LT
2646 * tx_intr_handler - Transmit interrupt handler
2647 * @nic : device private variable
20346722
K
2648 * Description:
2649 * If an interrupt was raised to indicate DMA complete of the
2650 * Tx packet, this function is called. It identifies the last TxD
2651 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2652 * DMA'ed into the NICs internal memory.
2653 * Return Value:
2654 * NONE
2655 */
2656
20346722 2657static void tx_intr_handler(fifo_info_t *fifo_data)
1da177e4 2658{
20346722 2659 nic_t *nic = fifo_data->nic;
1da177e4
LT
2660 struct net_device *dev = (struct net_device *) nic->dev;
2661 tx_curr_get_info_t get_info, put_info;
2662 struct sk_buff *skb;
2663 TxD_t *txdlp;
1da177e4 2664 u16 j, frg_cnt;
1da177e4 2665
20346722
K
2666 get_info = fifo_data->tx_curr_get_info;
2667 put_info = fifo_data->tx_curr_put_info;
2668 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2669 list_virt_addr;
2670 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2671 (get_info.offset != put_info.offset) &&
2672 (txdlp->Host_Control)) {
2673 /* Check for TxD errors */
2674 if (txdlp->Control_1 & TXD_T_CODE) {
2675 unsigned long long err;
2676 err = txdlp->Control_1 & TXD_T_CODE;
776bd20f 2677 if ((err >> 48) == 0xA) {
2678 DBG_PRINT(TX_DBG, "TxD returned due \
cc6e7c44 2679to loss of link\n");
776bd20f 2680 }
2681 else {
2682 DBG_PRINT(ERR_DBG, "***TxD error \
cc6e7c44 2683%llx\n", err);
776bd20f 2684 }
20346722 2685 }
1da177e4 2686
20346722
K
2687 skb = (struct sk_buff *) ((unsigned long)
2688 txdlp->Host_Control);
2689 if (skb == NULL) {
2690 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2691 __FUNCTION__);
2692 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2693 return;
2694 }
2695
2696 frg_cnt = skb_shinfo(skb)->nr_frags;
2697 nic->tx_pkt_count++;
2698
2699 pci_unmap_single(nic->pdev, (dma_addr_t)
2700 txdlp->Buffer_Pointer,
2701 skb->len - skb->data_len,
2702 PCI_DMA_TODEVICE);
2703 if (frg_cnt) {
2704 TxD_t *temp;
2705 temp = txdlp;
2706 txdlp++;
2707 for (j = 0; j < frg_cnt; j++, txdlp++) {
2708 skb_frag_t *frag =
2709 &skb_shinfo(skb)->frags[j];
0b1f7ebe
K
2710 if (!txdlp->Buffer_Pointer)
2711 break;
20346722
K
2712 pci_unmap_page(nic->pdev,
2713 (dma_addr_t)
2714 txdlp->
2715 Buffer_Pointer,
2716 frag->size,
2717 PCI_DMA_TODEVICE);
1da177e4 2718 }
20346722 2719 txdlp = temp;
1da177e4 2720 }
20346722
K
2721 memset(txdlp, 0,
2722 (sizeof(TxD_t) * fifo_data->max_txds));
2723
2724 /* Updating the statistics block */
20346722
K
2725 nic->stats.tx_bytes += skb->len;
2726 dev_kfree_skb_irq(skb);
2727
2728 get_info.offset++;
2729 get_info.offset %= get_info.fifo_len + 1;
2730 txdlp = (TxD_t *) fifo_data->list_info
2731 [get_info.offset].list_virt_addr;
2732 fifo_data->tx_curr_get_info.offset =
2733 get_info.offset;
1da177e4
LT
2734 }
2735
2736 spin_lock(&nic->tx_lock);
2737 if (netif_queue_stopped(dev))
2738 netif_wake_queue(dev);
2739 spin_unlock(&nic->tx_lock);
2740}
2741
20346722 2742/**
1da177e4
LT
2743 * alarm_intr_handler - Alarm Interrrupt handler
2744 * @nic: device private variable
20346722 2745 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 2746 * complete, this function is called. If the interrupt was to indicate
20346722
K
2747 * a loss of link, the OSM link status handler is invoked for any other
2748 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
2749 * and a H/W reset is issued.
2750 * Return Value:
2751 * NONE
2752*/
2753
2754static void alarm_intr_handler(struct s2io_nic *nic)
2755{
2756 struct net_device *dev = (struct net_device *) nic->dev;
2757 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2758 register u64 val64 = 0, err_reg = 0;
2759
2760 /* Handling link status change error Intr */
a371a07d
K
2761 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2762 err_reg = readq(&bar0->mac_rmac_err_reg);
2763 writeq(err_reg, &bar0->mac_rmac_err_reg);
2764 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2765 schedule_work(&nic->set_link_task);
2766 }
1da177e4
LT
2767 }
2768
5e25b9dd
K
2769 /* Handling Ecc errors */
2770 val64 = readq(&bar0->mc_err_reg);
2771 writeq(val64, &bar0->mc_err_reg);
2772 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2773 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
2774 nic->mac_control.stats_info->sw_stat.
2775 double_ecc_errs++;
776bd20f 2776 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 2777 dev->name);
776bd20f 2778 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 2779 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 2780 /* Reset XframeI only if critical error */
2781 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2782 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2783 netif_stop_queue(dev);
2784 schedule_work(&nic->rst_timer_task);
2785 }
e960fc5c 2786 }
5e25b9dd 2787 } else {
7ba013ac
K
2788 nic->mac_control.stats_info->sw_stat.
2789 single_ecc_errs++;
5e25b9dd
K
2790 }
2791 }
2792
1da177e4
LT
2793 /* In case of a serious error, the device will be Reset. */
2794 val64 = readq(&bar0->serr_source);
2795 if (val64 & SERR_SOURCE_ANY) {
2796 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
776bd20f 2797 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2798 (unsigned long long)val64);
1da177e4
LT
2799 netif_stop_queue(dev);
2800 schedule_work(&nic->rst_timer_task);
2801 }
2802
2803 /*
2804 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2805 * Error occurs, the adapter will be recycled by disabling the
20346722 2806 * adapter enable bit and enabling it again after the device
1da177e4
LT
2807 * becomes Quiescent.
2808 */
2809 val64 = readq(&bar0->pcc_err_reg);
2810 writeq(val64, &bar0->pcc_err_reg);
2811 if (val64 & PCC_FB_ECC_DB_ERR) {
2812 u64 ac = readq(&bar0->adapter_control);
2813 ac &= ~(ADAPTER_CNTL_EN);
2814 writeq(ac, &bar0->adapter_control);
2815 ac = readq(&bar0->adapter_control);
2816 schedule_work(&nic->set_link_task);
2817 }
2818
2819 /* Other type of interrupts are not being handled now, TODO */
2820}
2821
20346722 2822/**
1da177e4 2823 * wait_for_cmd_complete - waits for a command to complete.
20346722 2824 * @sp : private member of the device structure, which is a pointer to the
1da177e4 2825 * s2io_nic structure.
20346722
K
2826 * Description: Function that waits for a command to Write into RMAC
2827 * ADDR DATA registers to be completed and returns either success or
2828 * error depending on whether the command was complete or not.
1da177e4
LT
2829 * Return value:
2830 * SUCCESS on success and FAILURE on failure.
2831 */
2832
ac1f60db 2833static int wait_for_cmd_complete(nic_t * sp)
1da177e4
LT
2834{
2835 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2836 int ret = FAILURE, cnt = 0;
2837 u64 val64;
2838
2839 while (TRUE) {
2840 val64 = readq(&bar0->rmac_addr_cmd_mem);
2841 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2842 ret = SUCCESS;
2843 break;
2844 }
2845 msleep(50);
2846 if (cnt++ > 10)
2847 break;
2848 }
2849
2850 return ret;
2851}
2852
20346722
K
2853/**
2854 * s2io_reset - Resets the card.
1da177e4
LT
2855 * @sp : private member of the device structure.
2856 * Description: Function to Reset the card. This function then also
20346722 2857 * restores the previously saved PCI configuration space registers as
1da177e4
LT
2858 * the card reset also resets the configuration space.
2859 * Return value:
2860 * void.
2861 */
2862
20346722 2863void s2io_reset(nic_t * sp)
1da177e4
LT
2864{
2865 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2866 u64 val64;
5e25b9dd 2867 u16 subid, pci_cmd;
1da177e4 2868
0b1f7ebe 2869 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 2870 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 2871
1da177e4
LT
2872 val64 = SW_RESET_ALL;
2873 writeq(val64, &bar0->sw_reset);
2874
20346722
K
2875 /*
2876 * At this stage, if the PCI write is indeed completed, the
2877 * card is reset and so is the PCI Config space of the device.
2878 * So a read cannot be issued at this stage on any of the
1da177e4
LT
2879 * registers to ensure the write into "sw_reset" register
2880 * has gone through.
2881 * Question: Is there any system call that will explicitly force
2882 * all the write commands still pending on the bus to be pushed
2883 * through?
2884 * As of now I'am just giving a 250ms delay and hoping that the
2885 * PCI write to sw_reset register is done by this time.
2886 */
2887 msleep(250);
2888
e960fc5c 2889 /* Restore the PCI state saved during initialization. */
2890 pci_restore_state(sp->pdev);
2891 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
0b1f7ebe 2892 pci_cmd);
1da177e4
LT
2893 s2io_init_pci(sp);
2894
2895 msleep(250);
2896
20346722
K
2897 /* Set swapper to enable I/O register access */
2898 s2io_set_swapper(sp);
2899
cc6e7c44
RA
2900 /* Restore the MSIX table entries from local variables */
2901 restore_xmsi_data(sp);
2902
5e25b9dd 2903 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b
K
2904 if (sp->device_type == XFRAME_II_DEVICE) {
2905 /* Clear parity err detect bit */
2906 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 2907
303bcb4b
K
2908 /* Clearing PCIX Ecc status register */
2909 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 2910
303bcb4b
K
2911 /* Clearing PCI_STATUS error reflected here */
2912 writeq(BIT(62), &bar0->txpic_int_reg);
2913 }
5e25b9dd 2914
20346722
K
2915 /* Reset device statistics maintained by OS */
2916 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2917
1da177e4
LT
2918 /* SXE-002: Configure link and activity LED to turn it off */
2919 subid = sp->pdev->subsystem_device;
541ae68f
K
2920 if (((subid & 0xFF) >= 0x07) &&
2921 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2922 val64 = readq(&bar0->gpio_control);
2923 val64 |= 0x0000800000000000ULL;
2924 writeq(val64, &bar0->gpio_control);
2925 val64 = 0x0411040400000000ULL;
509a2671 2926 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2927 }
2928
541ae68f
K
2929 /*
2930 * Clear spurious ECC interrupts that would have occured on
2931 * XFRAME II cards after reset.
2932 */
2933 if (sp->device_type == XFRAME_II_DEVICE) {
2934 val64 = readq(&bar0->pcc_err_reg);
2935 writeq(val64, &bar0->pcc_err_reg);
2936 }
2937
1da177e4
LT
2938 sp->device_enabled_once = FALSE;
2939}
2940
2941/**
20346722
K
2942 * s2io_set_swapper - to set the swapper controle on the card
2943 * @sp : private member of the device structure,
1da177e4 2944 * pointer to the s2io_nic structure.
20346722 2945 * Description: Function to set the swapper control on the card
1da177e4
LT
2946 * correctly depending on the 'endianness' of the system.
2947 * Return value:
2948 * SUCCESS on success and FAILURE on failure.
2949 */
2950
20346722 2951int s2io_set_swapper(nic_t * sp)
1da177e4
LT
2952{
2953 struct net_device *dev = sp->dev;
2954 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2955 u64 val64, valt, valr;
2956
20346722 2957 /*
1da177e4
LT
2958 * Set proper endian settings and verify the same by reading
2959 * the PIF Feed-back register.
2960 */
2961
2962 val64 = readq(&bar0->pif_rd_swapper_fb);
2963 if (val64 != 0x0123456789ABCDEFULL) {
2964 int i = 0;
2965 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2966 0x8100008181000081ULL, /* FE=1, SE=0 */
2967 0x4200004242000042ULL, /* FE=0, SE=1 */
2968 0}; /* FE=0, SE=0 */
2969
2970 while(i<4) {
2971 writeq(value[i], &bar0->swapper_ctrl);
2972 val64 = readq(&bar0->pif_rd_swapper_fb);
2973 if (val64 == 0x0123456789ABCDEFULL)
2974 break;
2975 i++;
2976 }
2977 if (i == 4) {
2978 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2979 dev->name);
2980 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2981 (unsigned long long) val64);
2982 return FAILURE;
2983 }
2984 valr = value[i];
2985 } else {
2986 valr = readq(&bar0->swapper_ctrl);
2987 }
2988
2989 valt = 0x0123456789ABCDEFULL;
2990 writeq(valt, &bar0->xmsi_address);
2991 val64 = readq(&bar0->xmsi_address);
2992
2993 if(val64 != valt) {
2994 int i = 0;
2995 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2996 0x0081810000818100ULL, /* FE=1, SE=0 */
2997 0x0042420000424200ULL, /* FE=0, SE=1 */
2998 0}; /* FE=0, SE=0 */
2999
3000 while(i<4) {
3001 writeq((value[i] | valr), &bar0->swapper_ctrl);
3002 writeq(valt, &bar0->xmsi_address);
3003 val64 = readq(&bar0->xmsi_address);
3004 if(val64 == valt)
3005 break;
3006 i++;
3007 }
3008 if(i == 4) {
20346722 3009 unsigned long long x = val64;
1da177e4 3010 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3011 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3012 return FAILURE;
3013 }
3014 }
3015 val64 = readq(&bar0->swapper_ctrl);
3016 val64 &= 0xFFFF000000000000ULL;
3017
3018#ifdef __BIG_ENDIAN
20346722
K
3019 /*
3020 * The device by default set to a big endian format, so a
1da177e4
LT
3021 * big endian driver need not set anything.
3022 */
3023 val64 |= (SWAPPER_CTRL_TXP_FE |
3024 SWAPPER_CTRL_TXP_SE |
3025 SWAPPER_CTRL_TXD_R_FE |
3026 SWAPPER_CTRL_TXD_W_FE |
3027 SWAPPER_CTRL_TXF_R_FE |
3028 SWAPPER_CTRL_RXD_R_FE |
3029 SWAPPER_CTRL_RXD_W_FE |
3030 SWAPPER_CTRL_RXF_W_FE |
3031 SWAPPER_CTRL_XMSI_FE |
1da177e4 3032 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3033 if (sp->intr_type == INTA)
cc6e7c44 3034 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3035 writeq(val64, &bar0->swapper_ctrl);
3036#else
20346722 3037 /*
1da177e4 3038 * Initially we enable all bits to make it accessible by the
20346722 3039 * driver, then we selectively enable only those bits that
1da177e4
LT
3040 * we want to set.
3041 */
3042 val64 |= (SWAPPER_CTRL_TXP_FE |
3043 SWAPPER_CTRL_TXP_SE |
3044 SWAPPER_CTRL_TXD_R_FE |
3045 SWAPPER_CTRL_TXD_R_SE |
3046 SWAPPER_CTRL_TXD_W_FE |
3047 SWAPPER_CTRL_TXD_W_SE |
3048 SWAPPER_CTRL_TXF_R_FE |
3049 SWAPPER_CTRL_RXD_R_FE |
3050 SWAPPER_CTRL_RXD_R_SE |
3051 SWAPPER_CTRL_RXD_W_FE |
3052 SWAPPER_CTRL_RXD_W_SE |
3053 SWAPPER_CTRL_RXF_W_FE |
3054 SWAPPER_CTRL_XMSI_FE |
1da177e4 3055 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3056 if (sp->intr_type == INTA)
3057 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3058 writeq(val64, &bar0->swapper_ctrl);
3059#endif
3060 val64 = readq(&bar0->swapper_ctrl);
3061
20346722
K
3062 /*
3063 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3064 * feedback register.
3065 */
3066 val64 = readq(&bar0->pif_rd_swapper_fb);
3067 if (val64 != 0x0123456789ABCDEFULL) {
3068 /* Endian settings are incorrect, calls for another dekko. */
3069 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3070 dev->name);
3071 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3072 (unsigned long long) val64);
3073 return FAILURE;
3074 }
3075
3076 return SUCCESS;
3077}
3078
ac1f60db 3079static int wait_for_msix_trans(nic_t *nic, int i)
cc6e7c44 3080{
da6971d8 3081 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3082 u64 val64;
3083 int ret = 0, cnt = 0;
3084
3085 do {
3086 val64 = readq(&bar0->xmsi_access);
3087 if (!(val64 & BIT(15)))
3088 break;
3089 mdelay(1);
3090 cnt++;
3091 } while(cnt < 5);
3092 if (cnt == 5) {
3093 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3094 ret = 1;
3095 }
3096
3097 return ret;
3098}
3099
3100void restore_xmsi_data(nic_t *nic)
3101{
da6971d8 3102 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3103 u64 val64;
3104 int i;
3105
3106 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3107 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3108 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3109 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3110 writeq(val64, &bar0->xmsi_access);
3111 if (wait_for_msix_trans(nic, i)) {
3112 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3113 continue;
3114 }
3115 }
3116}
3117
ac1f60db 3118static void store_xmsi_data(nic_t *nic)
cc6e7c44 3119{
da6971d8 3120 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3121 u64 val64, addr, data;
3122 int i;
3123
3124 /* Store and display */
3125 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3126 val64 = (BIT(15) | vBIT(i, 26, 6));
3127 writeq(val64, &bar0->xmsi_access);
3128 if (wait_for_msix_trans(nic, i)) {
3129 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3130 continue;
3131 }
3132 addr = readq(&bar0->xmsi_address);
3133 data = readq(&bar0->xmsi_data);
3134 if (addr && data) {
3135 nic->msix_info[i].addr = addr;
3136 nic->msix_info[i].data = data;
3137 }
3138 }
3139}
3140
3141int s2io_enable_msi(nic_t *nic)
3142{
da6971d8 3143 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3144 u16 msi_ctrl, msg_val;
3145 struct config_param *config = &nic->config;
3146 struct net_device *dev = nic->dev;
3147 u64 val64, tx_mat, rx_mat;
3148 int i, err;
3149
3150 val64 = readq(&bar0->pic_control);
3151 val64 &= ~BIT(1);
3152 writeq(val64, &bar0->pic_control);
3153
3154 err = pci_enable_msi(nic->pdev);
3155 if (err) {
3156 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3157 nic->dev->name);
3158 return err;
3159 }
3160
3161 /*
3162 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3163 * for interrupt handling.
3164 */
3165 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3166 msg_val ^= 0x1;
3167 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3168 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3169
3170 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3171 msi_ctrl |= 0x10;
3172 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3173
3174 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3175 tx_mat = readq(&bar0->tx_mat0_n[0]);
3176 for (i=0; i<config->tx_fifo_num; i++) {
3177 tx_mat |= TX_MAT_SET(i, 1);
3178 }
3179 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3180
3181 rx_mat = readq(&bar0->rx_mat);
3182 for (i=0; i<config->rx_ring_num; i++) {
3183 rx_mat |= RX_MAT_SET(i, 1);
3184 }
3185 writeq(rx_mat, &bar0->rx_mat);
3186
3187 dev->irq = nic->pdev->irq;
3188 return 0;
3189}
3190
3191int s2io_enable_msi_x(nic_t *nic)
3192{
da6971d8 3193 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3194 u64 tx_mat, rx_mat;
3195 u16 msi_control; /* Temp variable */
3196 int ret, i, j, msix_indx = 1;
3197
3198 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3199 GFP_KERNEL);
3200 if (nic->entries == NULL) {
3201 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3202 return -ENOMEM;
3203 }
3204 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3205
3206 nic->s2io_entries =
3207 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3208 GFP_KERNEL);
3209 if (nic->s2io_entries == NULL) {
3210 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3211 kfree(nic->entries);
3212 return -ENOMEM;
3213 }
3214 memset(nic->s2io_entries, 0,
3215 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3216
3217 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3218 nic->entries[i].entry = i;
3219 nic->s2io_entries[i].entry = i;
3220 nic->s2io_entries[i].arg = NULL;
3221 nic->s2io_entries[i].in_use = 0;
3222 }
3223
3224 tx_mat = readq(&bar0->tx_mat0_n[0]);
3225 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3226 tx_mat |= TX_MAT_SET(i, msix_indx);
3227 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3228 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3229 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3230 }
3231 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3232
3233 if (!nic->config.bimodal) {
3234 rx_mat = readq(&bar0->rx_mat);
3235 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3236 rx_mat |= RX_MAT_SET(j, msix_indx);
3237 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3238 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3239 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3240 }
3241 writeq(rx_mat, &bar0->rx_mat);
3242 } else {
3243 tx_mat = readq(&bar0->tx_mat0_n[7]);
3244 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3245 tx_mat |= TX_MAT_SET(i, msix_indx);
3246 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3247 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3248 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3249 }
3250 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3251 }
3252
3253 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3254 if (ret) {
3255 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3256 kfree(nic->entries);
3257 kfree(nic->s2io_entries);
3258 nic->entries = NULL;
3259 nic->s2io_entries = NULL;
3260 return -ENOMEM;
3261 }
3262
3263 /*
3264 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3265 * in the herc NIC. (Temp change, needs to be removed later)
3266 */
3267 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3268 msi_control |= 0x1; /* Enable MSI */
3269 pci_write_config_word(nic->pdev, 0x42, msi_control);
3270
3271 return 0;
3272}
3273
1da177e4
LT
3274/* ********************************************************* *
3275 * Functions defined below concern the OS part of the driver *
3276 * ********************************************************* */
3277
20346722 3278/**
1da177e4
LT
3279 * s2io_open - open entry point of the driver
3280 * @dev : pointer to the device structure.
3281 * Description:
3282 * This function is the open entry point of the driver. It mainly calls a
3283 * function to allocate Rx buffers and inserts them into the buffer
20346722 3284 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3285 * Return value:
3286 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3287 * file on failure.
3288 */
3289
ac1f60db 3290static int s2io_open(struct net_device *dev)
1da177e4
LT
3291{
3292 nic_t *sp = dev->priv;
3293 int err = 0;
cc6e7c44
RA
3294 int i;
3295 u16 msi_control; /* Temp variable */
1da177e4 3296
20346722
K
3297 /*
3298 * Make sure you have link off by default every time
1da177e4
LT
3299 * Nic is initialized
3300 */
3301 netif_carrier_off(dev);
0b1f7ebe 3302 sp->last_link_state = 0;
1da177e4
LT
3303
3304 /* Initialize H/W and enable interrupts */
3305 if (s2io_card_up(sp)) {
3306 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3307 dev->name);
20346722
K
3308 err = -ENODEV;
3309 goto hw_init_failed;
1da177e4
LT
3310 }
3311
cc6e7c44
RA
3312 /* Store the values of the MSIX table in the nic_t structure */
3313 store_xmsi_data(sp);
3314
1da177e4 3315 /* After proper initialization of H/W, register ISR */
cc6e7c44
RA
3316 if (sp->intr_type == MSI) {
3317 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3318 SA_SHIRQ, sp->name, dev);
3319 if (err) {
3320 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3321failed\n", dev->name);
3322 goto isr_registration_failed;
3323 }
3324 }
3325 if (sp->intr_type == MSI_X) {
3326 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3327 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3328 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3329 dev->name, i);
3330 err = request_irq(sp->entries[i].vector,
3331 s2io_msix_fifo_handle, 0, sp->desc1,
3332 sp->s2io_entries[i].arg);
3333 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3334 sp->msix_info[i].addr);
3335 } else {
3336 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3337 dev->name, i);
3338 err = request_irq(sp->entries[i].vector,
3339 s2io_msix_ring_handle, 0, sp->desc2,
3340 sp->s2io_entries[i].arg);
3341 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3342 sp->msix_info[i].addr);
3343 }
3344 if (err) {
3345 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3346failed\n", dev->name, i);
3347 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3348 goto isr_registration_failed;
3349 }
3350 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3351 }
3352 }
3353 if (sp->intr_type == INTA) {
3354 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3355 sp->name, dev);
3356 if (err) {
3357 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3358 dev->name);
3359 goto isr_registration_failed;
3360 }
1da177e4
LT
3361 }
3362
3363 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3364 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
20346722
K
3365 err = -ENODEV;
3366 goto setting_mac_address_failed;
1da177e4
LT
3367 }
3368
3369 netif_start_queue(dev);
3370 return 0;
20346722
K
3371
3372setting_mac_address_failed:
cc6e7c44
RA
3373 if (sp->intr_type != MSI_X)
3374 free_irq(sp->pdev->irq, dev);
20346722 3375isr_registration_failed:
25fff88e 3376 del_timer_sync(&sp->alarm_timer);
cc6e7c44
RA
3377 if (sp->intr_type == MSI_X) {
3378 if (sp->device_type == XFRAME_II_DEVICE) {
3379 for (i=1; (sp->s2io_entries[i].in_use ==
3380 MSIX_REGISTERED_SUCCESS); i++) {
3381 int vector = sp->entries[i].vector;
3382 void *arg = sp->s2io_entries[i].arg;
3383
3384 free_irq(vector, arg);
3385 }
3386 pci_disable_msix(sp->pdev);
3387
3388 /* Temp */
3389 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3390 msi_control &= 0xFFFE; /* Disable MSI */
3391 pci_write_config_word(sp->pdev, 0x42, msi_control);
3392 }
3393 }
3394 else if (sp->intr_type == MSI)
3395 pci_disable_msi(sp->pdev);
20346722
K
3396 s2io_reset(sp);
3397hw_init_failed:
cc6e7c44
RA
3398 if (sp->intr_type == MSI_X) {
3399 if (sp->entries)
3400 kfree(sp->entries);
3401 if (sp->s2io_entries)
3402 kfree(sp->s2io_entries);
3403 }
20346722 3404 return err;
1da177e4
LT
3405}
3406
3407/**
3408 * s2io_close -close entry point of the driver
3409 * @dev : device pointer.
3410 * Description:
3411 * This is the stop entry point of the driver. It needs to undo exactly
3412 * whatever was done by the open entry point,thus it's usually referred to
3413 * as the close function.Among other things this function mainly stops the
3414 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3415 * Return value:
3416 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3417 * file on failure.
3418 */
3419
ac1f60db 3420static int s2io_close(struct net_device *dev)
1da177e4
LT
3421{
3422 nic_t *sp = dev->priv;
cc6e7c44
RA
3423 int i;
3424 u16 msi_control;
3425
1da177e4
LT
3426 flush_scheduled_work();
3427 netif_stop_queue(dev);
3428 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3429 s2io_card_down(sp);
3430
cc6e7c44
RA
3431 if (sp->intr_type == MSI_X) {
3432 if (sp->device_type == XFRAME_II_DEVICE) {
3433 for (i=1; (sp->s2io_entries[i].in_use ==
3434 MSIX_REGISTERED_SUCCESS); i++) {
3435 int vector = sp->entries[i].vector;
3436 void *arg = sp->s2io_entries[i].arg;
3437
3438 free_irq(vector, arg);
3439 }
3440 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3441 msi_control &= 0xFFFE; /* Disable MSI */
3442 pci_write_config_word(sp->pdev, 0x42, msi_control);
3443
3444 pci_disable_msix(sp->pdev);
3445 }
3446 }
3447 else {
3448 free_irq(sp->pdev->irq, dev);
3449 if (sp->intr_type == MSI)
3450 pci_disable_msi(sp->pdev);
3451 }
1da177e4
LT
3452 sp->device_close_flag = TRUE; /* Device is shut down. */
3453 return 0;
3454}
3455
3456/**
3457 * s2io_xmit - Tx entry point of te driver
3458 * @skb : the socket buffer containing the Tx data.
3459 * @dev : device pointer.
3460 * Description :
3461 * This function is the Tx entry point of the driver. S2IO NIC supports
3462 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3463 * NOTE: when device cant queue the pkt,just the trans_start variable will
3464 * not be upadted.
3465 * Return value:
3466 * 0 on success & 1 on failure.
3467 */
3468
ac1f60db 3469static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
3470{
3471 nic_t *sp = dev->priv;
3472 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3473 register u64 val64;
3474 TxD_t *txdp;
3475 TxFIFO_element_t __iomem *tx_fifo;
3476 unsigned long flags;
3477#ifdef NETIF_F_TSO
3478 int mss;
3479#endif
be3a6b02
K
3480 u16 vlan_tag = 0;
3481 int vlan_priority = 0;
1da177e4
LT
3482 mac_info_t *mac_control;
3483 struct config_param *config;
1da177e4
LT
3484
3485 mac_control = &sp->mac_control;
3486 config = &sp->config;
3487
20346722 3488 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3489 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3490 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3491 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3492 dev->name);
3493 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3494 dev_kfree_skb(skb);
3495 return 0;
1da177e4
LT
3496 }
3497
3498 queue = 0;
1da177e4 3499
be3a6b02
K
3500 /* Get Fifo number to Transmit based on vlan priority */
3501 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3502 vlan_tag = vlan_tx_tag_get(skb);
3503 vlan_priority = vlan_tag >> 13;
3504 queue = config->fifo_mapping[vlan_priority];
3505 }
3506
20346722
K
3507 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3508 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3509 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3510 list_virt_addr;
3511
3512 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4
LT
3513 /* Avoid "put" pointer going beyond "get" pointer */
3514 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
776bd20f 3515 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3516 netif_stop_queue(dev);
3517 dev_kfree_skb(skb);
3518 spin_unlock_irqrestore(&sp->tx_lock, flags);
3519 return 0;
3520 }
0b1f7ebe
K
3521
3522 /* A buffer with no data will be dropped */
3523 if (!skb->len) {
3524 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3525 dev_kfree_skb(skb);
3526 spin_unlock_irqrestore(&sp->tx_lock, flags);
3527 return 0;
3528 }
3529
1da177e4
LT
3530#ifdef NETIF_F_TSO
3531 mss = skb_shinfo(skb)->tso_size;
3532 if (mss) {
3533 txdp->Control_1 |= TXD_TCP_LSO_EN;
3534 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3535 }
3536#endif
3537
3538 frg_cnt = skb_shinfo(skb)->nr_frags;
3539 frg_len = skb->len - skb->data_len;
3540
1da177e4
LT
3541 txdp->Buffer_Pointer = pci_map_single
3542 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
20346722 3543 txdp->Host_Control = (unsigned long) skb;
1da177e4
LT
3544 if (skb->ip_summed == CHECKSUM_HW) {
3545 txdp->Control_2 |=
3546 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3547 TXD_TX_CKO_UDP_EN);
3548 }
3549
3550 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3551
be3a6b02
K
3552 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3553 txdp->Control_2 |= TXD_VLAN_ENABLE;
3554 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3555 }
3556
1da177e4
LT
3557 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3558 TXD_GATHER_CODE_FIRST);
3559 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3560
3561 /* For fragmented SKB. */
3562 for (i = 0; i < frg_cnt; i++) {
3563 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3564 /* A '0' length fragment will be ignored */
3565 if (!frag->size)
3566 continue;
1da177e4
LT
3567 txdp++;
3568 txdp->Buffer_Pointer = (u64) pci_map_page
3569 (sp->pdev, frag->page, frag->page_offset,
3570 frag->size, PCI_DMA_TODEVICE);
3571 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3572 }
3573 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3574
3575 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3576 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3577 writeq(val64, &tx_fifo->TxDL_Pointer);
3578
3579 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3580 TX_FIFO_LAST_LIST);
20346722 3581
1da177e4
LT
3582#ifdef NETIF_F_TSO
3583 if (mss)
3584 val64 |= TX_FIFO_SPECIAL_FUNC;
3585#endif
3586 writeq(val64, &tx_fifo->List_Control);
3587
303bcb4b
K
3588 mmiowb();
3589
1da177e4 3590 put_off++;
20346722
K
3591 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3592 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3593
3594 /* Avoid "put" pointer going beyond "get" pointer */
3595 if (((put_off + 1) % queue_len) == get_off) {
3596 DBG_PRINT(TX_DBG,
3597 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3598 put_off, get_off);
3599 netif_stop_queue(dev);
3600 }
3601
3602 dev->trans_start = jiffies;
3603 spin_unlock_irqrestore(&sp->tx_lock, flags);
3604
3605 return 0;
3606}
3607
25fff88e
K
3608static void
3609s2io_alarm_handle(unsigned long data)
3610{
3611 nic_t *sp = (nic_t *)data;
3612
3613 alarm_intr_handler(sp);
3614 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3615}
3616
cc6e7c44
RA
3617static irqreturn_t
3618s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3619{
3620 struct net_device *dev = (struct net_device *) dev_id;
3621 nic_t *sp = dev->priv;
3622 int i;
3623 int ret;
3624 mac_info_t *mac_control;
3625 struct config_param *config;
3626
3627 atomic_inc(&sp->isr_cnt);
3628 mac_control = &sp->mac_control;
3629 config = &sp->config;
3630 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3631
3632 /* If Intr is because of Rx Traffic */
3633 for (i = 0; i < config->rx_ring_num; i++)
3634 rx_intr_handler(&mac_control->rings[i]);
3635
3636 /* If Intr is because of Tx Traffic */
3637 for (i = 0; i < config->tx_fifo_num; i++)
3638 tx_intr_handler(&mac_control->fifos[i]);
3639
3640 /*
3641 * If the Rx buffer count is below the panic threshold then
3642 * reallocate the buffers from the interrupt handler itself,
3643 * else schedule a tasklet to reallocate the buffers.
3644 */
3645 for (i = 0; i < config->rx_ring_num; i++) {
3646 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3647 int level = rx_buffer_level(sp, rxb_size, i);
3648
3649 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3650 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3651 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3652 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3653 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3654 dev->name);
3655 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3656 clear_bit(0, (&sp->tasklet_status));
3657 atomic_dec(&sp->isr_cnt);
3658 return IRQ_HANDLED;
3659 }
3660 clear_bit(0, (&sp->tasklet_status));
3661 } else if (level == LOW) {
3662 tasklet_schedule(&sp->task);
3663 }
3664 }
3665
3666 atomic_dec(&sp->isr_cnt);
3667 return IRQ_HANDLED;
3668}
3669
3670static irqreturn_t
3671s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3672{
3673 ring_info_t *ring = (ring_info_t *)dev_id;
3674 nic_t *sp = ring->nic;
3675 int rxb_size, level, rng_n;
3676
3677 atomic_inc(&sp->isr_cnt);
3678 rx_intr_handler(ring);
3679
3680 rng_n = ring->ring_no;
3681 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3682 level = rx_buffer_level(sp, rxb_size, rng_n);
3683
3684 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3685 int ret;
3686 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3687 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3688 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3689 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3690 __FUNCTION__);
3691 clear_bit(0, (&sp->tasklet_status));
3692 return IRQ_HANDLED;
3693 }
3694 clear_bit(0, (&sp->tasklet_status));
3695 } else if (level == LOW) {
3696 tasklet_schedule(&sp->task);
3697 }
3698 atomic_dec(&sp->isr_cnt);
3699
3700 return IRQ_HANDLED;
3701}
3702
3703static irqreturn_t
3704s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3705{
3706 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3707 nic_t *sp = fifo->nic;
3708
3709 atomic_inc(&sp->isr_cnt);
3710 tx_intr_handler(fifo);
3711 atomic_dec(&sp->isr_cnt);
3712 return IRQ_HANDLED;
3713}
3714
a371a07d
K
3715static void s2io_txpic_intr_handle(nic_t *sp)
3716{
509a2671 3717 XENA_dev_config_t __iomem *bar0 = sp->bar0;
a371a07d
K
3718 u64 val64;
3719
3720 val64 = readq(&bar0->pic_int_status);
3721 if (val64 & PIC_INT_GPIO) {
3722 val64 = readq(&bar0->gpio_int_reg);
3723 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3724 (val64 & GPIO_INT_REG_LINK_UP)) {
3725 val64 |= GPIO_INT_REG_LINK_DOWN;
3726 val64 |= GPIO_INT_REG_LINK_UP;
3727 writeq(val64, &bar0->gpio_int_reg);
3728 goto masking;
3729 }
3730
3731 if (((sp->last_link_state == LINK_UP) &&
3732 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3733 ((sp->last_link_state == LINK_DOWN) &&
3734 (val64 & GPIO_INT_REG_LINK_UP))) {
3735 val64 = readq(&bar0->gpio_int_mask);
3736 val64 |= GPIO_INT_MASK_LINK_DOWN;
3737 val64 |= GPIO_INT_MASK_LINK_UP;
3738 writeq(val64, &bar0->gpio_int_mask);
3739 s2io_set_link((unsigned long)sp);
3740 }
3741masking:
3742 if (sp->last_link_state == LINK_UP) {
3743 /*enable down interrupt */
3744 val64 = readq(&bar0->gpio_int_mask);
3745 /* unmasks link down intr */
3746 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3747 /* masks link up intr */
3748 val64 |= GPIO_INT_MASK_LINK_UP;
3749 writeq(val64, &bar0->gpio_int_mask);
3750 } else {
3751 /*enable UP Interrupt */
3752 val64 = readq(&bar0->gpio_int_mask);
3753 /* unmasks link up interrupt */
3754 val64 &= ~GPIO_INT_MASK_LINK_UP;
3755 /* masks link down interrupt */
3756 val64 |= GPIO_INT_MASK_LINK_DOWN;
3757 writeq(val64, &bar0->gpio_int_mask);
3758 }
3759 }
3760}
3761
1da177e4
LT
3762/**
3763 * s2io_isr - ISR handler of the device .
3764 * @irq: the irq of the device.
3765 * @dev_id: a void pointer to the dev structure of the NIC.
3766 * @pt_regs: pointer to the registers pushed on the stack.
20346722
K
3767 * Description: This function is the ISR handler of the device. It
3768 * identifies the reason for the interrupt and calls the relevant
3769 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
3770 * recv buffers, if their numbers are below the panic value which is
3771 * presently set to 25% of the original number of rcv buffers allocated.
3772 * Return value:
20346722 3773 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
3774 * IRQ_NONE: will be returned if interrupt is not from our device
3775 */
3776static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3777{
3778 struct net_device *dev = (struct net_device *) dev_id;
3779 nic_t *sp = dev->priv;
3780 XENA_dev_config_t __iomem *bar0 = sp->bar0;
20346722 3781 int i;
fe113638 3782 u64 reason = 0, val64;
1da177e4
LT
3783 mac_info_t *mac_control;
3784 struct config_param *config;
3785
7ba013ac 3786 atomic_inc(&sp->isr_cnt);
1da177e4
LT
3787 mac_control = &sp->mac_control;
3788 config = &sp->config;
3789
20346722 3790 /*
1da177e4
LT
3791 * Identify the cause for interrupt and call the appropriate
3792 * interrupt handler. Causes for the interrupt could be;
3793 * 1. Rx of packet.
3794 * 2. Tx complete.
3795 * 3. Link down.
20346722 3796 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
3797 */
3798 reason = readq(&bar0->general_int_status);
3799
3800 if (!reason) {
3801 /* The interrupt was not raised by Xena. */
7ba013ac 3802 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3803 return IRQ_NONE;
3804 }
3805
1da177e4
LT
3806#ifdef CONFIG_S2IO_NAPI
3807 if (reason & GEN_INTR_RXTRAFFIC) {
3808 if (netif_rx_schedule_prep(dev)) {
3809 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3810 DISABLE_INTRS);
3811 __netif_rx_schedule(dev);
3812 }
3813 }
3814#else
3815 /* If Intr is because of Rx Traffic */
3816 if (reason & GEN_INTR_RXTRAFFIC) {
fe113638
K
3817 /*
3818 * rx_traffic_int reg is an R1 register, writing all 1's
3819 * will ensure that the actual interrupt causing bit get's
3820 * cleared and hence a read can be avoided.
3821 */
3822 val64 = 0xFFFFFFFFFFFFFFFFULL;
3823 writeq(val64, &bar0->rx_traffic_int);
20346722
K
3824 for (i = 0; i < config->rx_ring_num; i++) {
3825 rx_intr_handler(&mac_control->rings[i]);
3826 }
1da177e4
LT
3827 }
3828#endif
3829
20346722
K
3830 /* If Intr is because of Tx Traffic */
3831 if (reason & GEN_INTR_TXTRAFFIC) {
fe113638
K
3832 /*
3833 * tx_traffic_int reg is an R1 register, writing all 1's
3834 * will ensure that the actual interrupt causing bit get's
3835 * cleared and hence a read can be avoided.
3836 */
3837 val64 = 0xFFFFFFFFFFFFFFFFULL;
3838 writeq(val64, &bar0->tx_traffic_int);
3839
20346722
K
3840 for (i = 0; i < config->tx_fifo_num; i++)
3841 tx_intr_handler(&mac_control->fifos[i]);
3842 }
3843
a371a07d
K
3844 if (reason & GEN_INTR_TXPIC)
3845 s2io_txpic_intr_handle(sp);
20346722
K
3846 /*
3847 * If the Rx buffer count is below the panic threshold then
3848 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
3849 * else schedule a tasklet to reallocate the buffers.
3850 */
3851#ifndef CONFIG_S2IO_NAPI
3852 for (i = 0; i < config->rx_ring_num; i++) {
20346722 3853 int ret;
1da177e4
LT
3854 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3855 int level = rx_buffer_level(sp, rxb_size, i);
3856
3857 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3858 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3859 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3860 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3861 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3862 dev->name);
3863 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3864 clear_bit(0, (&sp->tasklet_status));
7ba013ac 3865 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3866 return IRQ_HANDLED;
3867 }
3868 clear_bit(0, (&sp->tasklet_status));
3869 } else if (level == LOW) {
3870 tasklet_schedule(&sp->task);
3871 }
3872 }
3873#endif
3874
7ba013ac 3875 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3876 return IRQ_HANDLED;
3877}
3878
7ba013ac
K
3879/**
3880 * s2io_updt_stats -
3881 */
3882static void s2io_updt_stats(nic_t *sp)
3883{
3884 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3885 u64 val64;
3886 int cnt = 0;
3887
3888 if (atomic_read(&sp->card_state) == CARD_UP) {
3889 /* Apprx 30us on a 133 MHz bus */
3890 val64 = SET_UPDT_CLICKS(10) |
3891 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3892 writeq(val64, &bar0->stat_cfg);
3893 do {
3894 udelay(100);
3895 val64 = readq(&bar0->stat_cfg);
3896 if (!(val64 & BIT(0)))
3897 break;
3898 cnt++;
3899 if (cnt == 5)
3900 break; /* Updt failed */
3901 } while(1);
3902 }
3903}
3904
1da177e4 3905/**
20346722 3906 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
3907 * @dev : pointer to the device structure.
3908 * Description:
20346722 3909 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
3910 * structure and returns a pointer to the same.
3911 * Return value:
3912 * pointer to the updated net_device_stats structure.
3913 */
3914
ac1f60db 3915static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4
LT
3916{
3917 nic_t *sp = dev->priv;
3918 mac_info_t *mac_control;
3919 struct config_param *config;
3920
20346722 3921
1da177e4
LT
3922 mac_control = &sp->mac_control;
3923 config = &sp->config;
3924
7ba013ac
K
3925 /* Configure Stats for immediate updt */
3926 s2io_updt_stats(sp);
3927
3928 sp->stats.tx_packets =
3929 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
3930 sp->stats.tx_errors =
3931 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3932 sp->stats.rx_errors =
3933 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3934 sp->stats.multicast =
3935 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 3936 sp->stats.rx_length_errors =
20346722 3937 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
3938
3939 return (&sp->stats);
3940}
3941
3942/**
3943 * s2io_set_multicast - entry point for multicast address enable/disable.
3944 * @dev : pointer to the device structure
3945 * Description:
20346722
K
3946 * This function is a driver entry point which gets called by the kernel
3947 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
3948 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3949 * determine, if multicast address must be enabled or if promiscuous mode
3950 * is to be disabled etc.
3951 * Return value:
3952 * void.
3953 */
3954
3955static void s2io_set_multicast(struct net_device *dev)
3956{
3957 int i, j, prev_cnt;
3958 struct dev_mc_list *mclist;
3959 nic_t *sp = dev->priv;
3960 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3961 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3962 0xfeffffffffffULL;
3963 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3964 void __iomem *add;
3965
3966 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3967 /* Enable all Multicast addresses */
3968 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3969 &bar0->rmac_addr_data0_mem);
3970 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3971 &bar0->rmac_addr_data1_mem);
3972 val64 = RMAC_ADDR_CMD_MEM_WE |
3973 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3974 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3975 writeq(val64, &bar0->rmac_addr_cmd_mem);
3976 /* Wait till command completes */
3977 wait_for_cmd_complete(sp);
3978
3979 sp->m_cast_flg = 1;
3980 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3981 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3982 /* Disable all Multicast addresses */
3983 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3984 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
3985 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3986 &bar0->rmac_addr_data1_mem);
1da177e4
LT
3987 val64 = RMAC_ADDR_CMD_MEM_WE |
3988 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3989 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3990 writeq(val64, &bar0->rmac_addr_cmd_mem);
3991 /* Wait till command completes */
3992 wait_for_cmd_complete(sp);
3993
3994 sp->m_cast_flg = 0;
3995 sp->all_multi_pos = 0;
3996 }
3997
3998 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3999 /* Put the NIC into promiscuous mode */
4000 add = &bar0->mac_cfg;
4001 val64 = readq(&bar0->mac_cfg);
4002 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4003
4004 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4005 writel((u32) val64, add);
4006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4007 writel((u32) (val64 >> 32), (add + 4));
4008
4009 val64 = readq(&bar0->mac_cfg);
4010 sp->promisc_flg = 1;
776bd20f 4011 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4012 dev->name);
4013 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4014 /* Remove the NIC from promiscuous mode */
4015 add = &bar0->mac_cfg;
4016 val64 = readq(&bar0->mac_cfg);
4017 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4018
4019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4020 writel((u32) val64, add);
4021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4022 writel((u32) (val64 >> 32), (add + 4));
4023
4024 val64 = readq(&bar0->mac_cfg);
4025 sp->promisc_flg = 0;
776bd20f 4026 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4027 dev->name);
4028 }
4029
4030 /* Update individual M_CAST address list */
4031 if ((!sp->m_cast_flg) && dev->mc_count) {
4032 if (dev->mc_count >
4033 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4034 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4035 dev->name);
4036 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4037 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4038 return;
4039 }
4040
4041 prev_cnt = sp->mc_addr_count;
4042 sp->mc_addr_count = dev->mc_count;
4043
4044 /* Clear out the previous list of Mc in the H/W. */
4045 for (i = 0; i < prev_cnt; i++) {
4046 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4047 &bar0->rmac_addr_data0_mem);
4048 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4049 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4050 val64 = RMAC_ADDR_CMD_MEM_WE |
4051 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4052 RMAC_ADDR_CMD_MEM_OFFSET
4053 (MAC_MC_ADDR_START_OFFSET + i);
4054 writeq(val64, &bar0->rmac_addr_cmd_mem);
4055
4056 /* Wait for command completes */
4057 if (wait_for_cmd_complete(sp)) {
4058 DBG_PRINT(ERR_DBG, "%s: Adding ",
4059 dev->name);
4060 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4061 return;
4062 }
4063 }
4064
4065 /* Create the new Rx filter list and update the same in H/W. */
4066 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4067 i++, mclist = mclist->next) {
4068 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4069 ETH_ALEN);
4070 for (j = 0; j < ETH_ALEN; j++) {
4071 mac_addr |= mclist->dmi_addr[j];
4072 mac_addr <<= 8;
4073 }
4074 mac_addr >>= 8;
4075 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4076 &bar0->rmac_addr_data0_mem);
4077 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4078 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4079 val64 = RMAC_ADDR_CMD_MEM_WE |
4080 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4081 RMAC_ADDR_CMD_MEM_OFFSET
4082 (i + MAC_MC_ADDR_START_OFFSET);
4083 writeq(val64, &bar0->rmac_addr_cmd_mem);
4084
4085 /* Wait for command completes */
4086 if (wait_for_cmd_complete(sp)) {
4087 DBG_PRINT(ERR_DBG, "%s: Adding ",
4088 dev->name);
4089 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4090 return;
4091 }
4092 }
4093 }
4094}
4095
4096/**
20346722 4097 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4098 * @dev : pointer to the device structure.
4099 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4100 * Description : This procedure will program the Xframe to receive
1da177e4 4101 * frames with new Mac Address
20346722 4102 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4103 * as defined in errno.h file on failure.
4104 */
4105
4106int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4107{
4108 nic_t *sp = dev->priv;
4109 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4110 register u64 val64, mac_addr = 0;
4111 int i;
4112
20346722 4113 /*
1da177e4
LT
4114 * Set the new MAC address as the new unicast filter and reflect this
4115 * change on the device address registered with the OS. It will be
20346722 4116 * at offset 0.
1da177e4
LT
4117 */
4118 for (i = 0; i < ETH_ALEN; i++) {
4119 mac_addr <<= 8;
4120 mac_addr |= addr[i];
4121 }
4122
4123 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4124 &bar0->rmac_addr_data0_mem);
4125
4126 val64 =
4127 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4128 RMAC_ADDR_CMD_MEM_OFFSET(0);
4129 writeq(val64, &bar0->rmac_addr_cmd_mem);
4130 /* Wait till command completes */
4131 if (wait_for_cmd_complete(sp)) {
4132 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4133 return FAILURE;
4134 }
4135
4136 return SUCCESS;
4137}
4138
4139/**
20346722 4140 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4141 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4142 * @info: pointer to the structure with parameters given by ethtool to set
4143 * link information.
4144 * Description:
20346722 4145 * The function sets different link parameters provided by the user onto
1da177e4
LT
4146 * the NIC.
4147 * Return value:
4148 * 0 on success.
4149*/
4150
4151static int s2io_ethtool_sset(struct net_device *dev,
4152 struct ethtool_cmd *info)
4153{
4154 nic_t *sp = dev->priv;
4155 if ((info->autoneg == AUTONEG_ENABLE) ||
4156 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4157 return -EINVAL;
4158 else {
4159 s2io_close(sp->dev);
4160 s2io_open(sp->dev);
4161 }
4162
4163 return 0;
4164}
4165
4166/**
20346722 4167 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4168 * @sp : private member of the device structure, pointer to the
4169 * s2io_nic structure.
4170 * @info : pointer to the structure with parameters given by ethtool
4171 * to return link information.
4172 * Description:
4173 * Returns link specific information like speed, duplex etc.. to ethtool.
4174 * Return value :
4175 * return 0 on success.
4176 */
4177
4178static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4179{
4180 nic_t *sp = dev->priv;
4181 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4182 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4183 info->port = PORT_FIBRE;
4184 /* info->transceiver?? TODO */
4185
4186 if (netif_carrier_ok(sp->dev)) {
4187 info->speed = 10000;
4188 info->duplex = DUPLEX_FULL;
4189 } else {
4190 info->speed = -1;
4191 info->duplex = -1;
4192 }
4193
4194 info->autoneg = AUTONEG_DISABLE;
4195 return 0;
4196}
4197
4198/**
20346722
K
4199 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4200 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4201 * s2io_nic structure.
4202 * @info : pointer to the structure with parameters given by ethtool to
4203 * return driver information.
4204 * Description:
4205 * Returns driver specefic information like name, version etc.. to ethtool.
4206 * Return value:
4207 * void
4208 */
4209
4210static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4211 struct ethtool_drvinfo *info)
4212{
4213 nic_t *sp = dev->priv;
4214
dbc2309d
JL
4215 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4216 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4217 strncpy(info->fw_version, "", sizeof(info->fw_version));
4218 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4219 info->regdump_len = XENA_REG_SPACE;
4220 info->eedump_len = XENA_EEPROM_SPACE;
4221 info->testinfo_len = S2IO_TEST_LEN;
4222 info->n_stats = S2IO_STAT_LEN;
4223}
4224
4225/**
4226 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4227 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4228 * s2io_nic structure.
20346722 4229 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4230 * dumping the registers.
4231 * @reg_space: The input argumnet into which all the registers are dumped.
4232 * Description:
4233 * Dumps the entire register space of xFrame NIC into the user given
4234 * buffer area.
4235 * Return value :
4236 * void .
4237*/
4238
4239static void s2io_ethtool_gregs(struct net_device *dev,
4240 struct ethtool_regs *regs, void *space)
4241{
4242 int i;
4243 u64 reg;
4244 u8 *reg_space = (u8 *) space;
4245 nic_t *sp = dev->priv;
4246
4247 regs->len = XENA_REG_SPACE;
4248 regs->version = sp->pdev->subsystem_device;
4249
4250 for (i = 0; i < regs->len; i += 8) {
4251 reg = readq(sp->bar0 + i);
4252 memcpy((reg_space + i), &reg, 8);
4253 }
4254}
4255
4256/**
4257 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4258 * @data : address of the private member of the device structure, which
1da177e4 4259 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4260 * Description: This is actually the timer function that alternates the
4261 * adapter LED bit of the adapter control bit to set/reset every time on
4262 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4263 * once every second.
4264*/
4265static void s2io_phy_id(unsigned long data)
4266{
4267 nic_t *sp = (nic_t *) data;
4268 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4269 u64 val64 = 0;
4270 u16 subid;
4271
4272 subid = sp->pdev->subsystem_device;
541ae68f
K
4273 if ((sp->device_type == XFRAME_II_DEVICE) ||
4274 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4275 val64 = readq(&bar0->gpio_control);
4276 val64 ^= GPIO_CTRL_GPIO_0;
4277 writeq(val64, &bar0->gpio_control);
4278 } else {
4279 val64 = readq(&bar0->adapter_control);
4280 val64 ^= ADAPTER_LED_ON;
4281 writeq(val64, &bar0->adapter_control);
4282 }
4283
4284 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4285}
4286
4287/**
4288 * s2io_ethtool_idnic - To physically identify the nic on the system.
4289 * @sp : private member of the device structure, which is a pointer to the
4290 * s2io_nic structure.
20346722 4291 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4292 * ethtool.
4293 * Description: Used to physically identify the NIC on the system.
20346722 4294 * The Link LED will blink for a time specified by the user for
1da177e4 4295 * identification.
20346722 4296 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4297 * identification is possible only if it's link is up.
4298 * Return value:
4299 * int , returns 0 on success
4300 */
4301
4302static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4303{
4304 u64 val64 = 0, last_gpio_ctrl_val;
4305 nic_t *sp = dev->priv;
4306 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4307 u16 subid;
4308
4309 subid = sp->pdev->subsystem_device;
4310 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4311 if ((sp->device_type == XFRAME_I_DEVICE) &&
4312 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4313 val64 = readq(&bar0->adapter_control);
4314 if (!(val64 & ADAPTER_CNTL_EN)) {
4315 printk(KERN_ERR
4316 "Adapter Link down, cannot blink LED\n");
4317 return -EFAULT;
4318 }
4319 }
4320 if (sp->id_timer.function == NULL) {
4321 init_timer(&sp->id_timer);
4322 sp->id_timer.function = s2io_phy_id;
4323 sp->id_timer.data = (unsigned long) sp;
4324 }
4325 mod_timer(&sp->id_timer, jiffies);
4326 if (data)
20346722 4327 msleep_interruptible(data * HZ);
1da177e4 4328 else
20346722 4329 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4330 del_timer_sync(&sp->id_timer);
4331
541ae68f 4332 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4333 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4334 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4335 }
4336
4337 return 0;
4338}
4339
4340/**
4341 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4342 * @sp : private member of the device structure, which is a pointer to the
4343 * s2io_nic structure.
1da177e4
LT
4344 * @ep : pointer to the structure with pause parameters given by ethtool.
4345 * Description:
4346 * Returns the Pause frame generation and reception capability of the NIC.
4347 * Return value:
4348 * void
4349 */
4350static void s2io_ethtool_getpause_data(struct net_device *dev,
4351 struct ethtool_pauseparam *ep)
4352{
4353 u64 val64;
4354 nic_t *sp = dev->priv;
4355 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4356
4357 val64 = readq(&bar0->rmac_pause_cfg);
4358 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4359 ep->tx_pause = TRUE;
4360 if (val64 & RMAC_PAUSE_RX_ENABLE)
4361 ep->rx_pause = TRUE;
4362 ep->autoneg = FALSE;
4363}
4364
4365/**
4366 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4367 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4368 * s2io_nic structure.
4369 * @ep : pointer to the structure with pause parameters given by ethtool.
4370 * Description:
4371 * It can be used to set or reset Pause frame generation or reception
4372 * support of the NIC.
4373 * Return value:
4374 * int, returns 0 on Success
4375 */
4376
4377static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4378 struct ethtool_pauseparam *ep)
1da177e4
LT
4379{
4380 u64 val64;
4381 nic_t *sp = dev->priv;
4382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4383
4384 val64 = readq(&bar0->rmac_pause_cfg);
4385 if (ep->tx_pause)
4386 val64 |= RMAC_PAUSE_GEN_ENABLE;
4387 else
4388 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4389 if (ep->rx_pause)
4390 val64 |= RMAC_PAUSE_RX_ENABLE;
4391 else
4392 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4393 writeq(val64, &bar0->rmac_pause_cfg);
4394 return 0;
4395}
4396
4397/**
4398 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4399 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4400 * s2io_nic structure.
4401 * @off : offset at which the data must be written
4402 * @data : Its an output parameter where the data read at the given
20346722 4403 * offset is stored.
1da177e4 4404 * Description:
20346722 4405 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4406 * read data.
4407 * NOTE: Will allow to read only part of the EEPROM visible through the
4408 * I2C bus.
4409 * Return value:
4410 * -1 on failure and 0 on success.
4411 */
4412
4413#define S2IO_DEV_ID 5
ad4ebed0 4414static int read_eeprom(nic_t * sp, int off, u64 * data)
1da177e4
LT
4415{
4416 int ret = -1;
4417 u32 exit_cnt = 0;
4418 u64 val64;
4419 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4420
ad4ebed0 4421 if (sp->device_type == XFRAME_I_DEVICE) {
4422 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4423 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4424 I2C_CONTROL_CNTL_START;
4425 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4426
ad4ebed0 4427 while (exit_cnt < 5) {
4428 val64 = readq(&bar0->i2c_control);
4429 if (I2C_CONTROL_CNTL_END(val64)) {
4430 *data = I2C_CONTROL_GET_DATA(val64);
4431 ret = 0;
4432 break;
4433 }
4434 msleep(50);
4435 exit_cnt++;
1da177e4 4436 }
1da177e4
LT
4437 }
4438
ad4ebed0 4439 if (sp->device_type == XFRAME_II_DEVICE) {
4440 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4441 SPI_CONTROL_BYTECNT(0x3) |
4442 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4443 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4444 val64 |= SPI_CONTROL_REQ;
4445 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4446 while (exit_cnt < 5) {
4447 val64 = readq(&bar0->spi_control);
4448 if (val64 & SPI_CONTROL_NACK) {
4449 ret = 1;
4450 break;
4451 } else if (val64 & SPI_CONTROL_DONE) {
4452 *data = readq(&bar0->spi_data);
4453 *data &= 0xffffff;
4454 ret = 0;
4455 break;
4456 }
4457 msleep(50);
4458 exit_cnt++;
4459 }
4460 }
1da177e4
LT
4461 return ret;
4462}
4463
4464/**
4465 * write_eeprom - actually writes the relevant part of the data value.
4466 * @sp : private member of the device structure, which is a pointer to the
4467 * s2io_nic structure.
4468 * @off : offset at which the data must be written
4469 * @data : The data that is to be written
20346722 4470 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4471 * the Eeprom. (max of 3)
4472 * Description:
4473 * Actually writes the relevant part of the data value into the Eeprom
4474 * through the I2C bus.
4475 * Return value:
4476 * 0 on success, -1 on failure.
4477 */
4478
ad4ebed0 4479static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
1da177e4
LT
4480{
4481 int exit_cnt = 0, ret = -1;
4482 u64 val64;
4483 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4484
ad4ebed0 4485 if (sp->device_type == XFRAME_I_DEVICE) {
4486 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4487 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4488 I2C_CONTROL_CNTL_START;
4489 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4490
4491 while (exit_cnt < 5) {
4492 val64 = readq(&bar0->i2c_control);
4493 if (I2C_CONTROL_CNTL_END(val64)) {
4494 if (!(val64 & I2C_CONTROL_NACK))
4495 ret = 0;
4496 break;
4497 }
4498 msleep(50);
4499 exit_cnt++;
4500 }
4501 }
1da177e4 4502
ad4ebed0 4503 if (sp->device_type == XFRAME_II_DEVICE) {
4504 int write_cnt = (cnt == 8) ? 0 : cnt;
4505 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4506
4507 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4508 SPI_CONTROL_BYTECNT(write_cnt) |
4509 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4510 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4511 val64 |= SPI_CONTROL_REQ;
4512 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4513 while (exit_cnt < 5) {
4514 val64 = readq(&bar0->spi_control);
4515 if (val64 & SPI_CONTROL_NACK) {
4516 ret = 1;
4517 break;
4518 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4519 ret = 0;
ad4ebed0 4520 break;
4521 }
4522 msleep(50);
4523 exit_cnt++;
1da177e4 4524 }
1da177e4 4525 }
1da177e4
LT
4526 return ret;
4527}
4528
4529/**
4530 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4531 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 4532 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4533 * containing all relevant information.
4534 * @data_buf : user defined value to be written into Eeprom.
4535 * Description: Reads the values stored in the Eeprom at given offset
4536 * for a given length. Stores these values int the input argument data
4537 * buffer 'data_buf' and returns these to the caller (ethtool.)
4538 * Return value:
4539 * int 0 on success
4540 */
4541
4542static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 4543 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 4544{
ad4ebed0 4545 u32 i, valid;
4546 u64 data;
1da177e4
LT
4547 nic_t *sp = dev->priv;
4548
4549 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4550
4551 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4552 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4553
4554 for (i = 0; i < eeprom->len; i += 4) {
4555 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4556 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4557 return -EFAULT;
4558 }
4559 valid = INV(data);
4560 memcpy((data_buf + i), &valid, 4);
4561 }
4562 return 0;
4563}
4564
4565/**
4566 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4567 * @sp : private member of the device structure, which is a pointer to the
4568 * s2io_nic structure.
20346722 4569 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4570 * containing all relevant information.
4571 * @data_buf ; user defined value to be written into Eeprom.
4572 * Description:
4573 * Tries to write the user provided value in the Eeprom, at the offset
4574 * given by the user.
4575 * Return value:
4576 * 0 on success, -EFAULT on failure.
4577 */
4578
4579static int s2io_ethtool_seeprom(struct net_device *dev,
4580 struct ethtool_eeprom *eeprom,
4581 u8 * data_buf)
4582{
4583 int len = eeprom->len, cnt = 0;
ad4ebed0 4584 u64 valid = 0, data;
1da177e4
LT
4585 nic_t *sp = dev->priv;
4586
4587 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4588 DBG_PRINT(ERR_DBG,
4589 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4590 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4591 eeprom->magic);
4592 return -EFAULT;
4593 }
4594
4595 while (len) {
4596 data = (u32) data_buf[cnt] & 0x000000FF;
4597 if (data) {
4598 valid = (u32) (data << 24);
4599 } else
4600 valid = data;
4601
4602 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4603 DBG_PRINT(ERR_DBG,
4604 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4605 DBG_PRINT(ERR_DBG,
4606 "write into the specified offset\n");
4607 return -EFAULT;
4608 }
4609 cnt++;
4610 len--;
4611 }
4612
4613 return 0;
4614}
4615
4616/**
20346722
K
4617 * s2io_register_test - reads and writes into all clock domains.
4618 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4619 * s2io_nic structure.
4620 * @data : variable that returns the result of each of the test conducted b
4621 * by the driver.
4622 * Description:
4623 * Read and write into all clock domains. The NIC has 3 clock domains,
4624 * see that registers in all the three regions are accessible.
4625 * Return value:
4626 * 0 on success.
4627 */
4628
4629static int s2io_register_test(nic_t * sp, uint64_t * data)
4630{
4631 XENA_dev_config_t __iomem *bar0 = sp->bar0;
ad4ebed0 4632 u64 val64 = 0, exp_val;
1da177e4
LT
4633 int fail = 0;
4634
20346722
K
4635 val64 = readq(&bar0->pif_rd_swapper_fb);
4636 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
4637 fail = 1;
4638 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4639 }
4640
4641 val64 = readq(&bar0->rmac_pause_cfg);
4642 if (val64 != 0xc000ffff00000000ULL) {
4643 fail = 1;
4644 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4645 }
4646
4647 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 4648 if (sp->device_type == XFRAME_II_DEVICE)
4649 exp_val = 0x0404040404040404ULL;
4650 else
4651 exp_val = 0x0808080808080808ULL;
4652 if (val64 != exp_val) {
1da177e4
LT
4653 fail = 1;
4654 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4655 }
4656
4657 val64 = readq(&bar0->xgxs_efifo_cfg);
4658 if (val64 != 0x000000001923141EULL) {
4659 fail = 1;
4660 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4661 }
4662
4663 val64 = 0x5A5A5A5A5A5A5A5AULL;
4664 writeq(val64, &bar0->xmsi_data);
4665 val64 = readq(&bar0->xmsi_data);
4666 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4667 fail = 1;
4668 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4669 }
4670
4671 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4672 writeq(val64, &bar0->xmsi_data);
4673 val64 = readq(&bar0->xmsi_data);
4674 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4675 fail = 1;
4676 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4677 }
4678
4679 *data = fail;
ad4ebed0 4680 return fail;
1da177e4
LT
4681}
4682
4683/**
20346722 4684 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
4685 * @sp : private member of the device structure, which is a pointer to the
4686 * s2io_nic structure.
4687 * @data:variable that returns the result of each of the test conducted by
4688 * the driver.
4689 * Description:
20346722 4690 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
4691 * register.
4692 * Return value:
4693 * 0 on success.
4694 */
4695
4696static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4697{
4698 int fail = 0;
ad4ebed0 4699 u64 ret_data, org_4F0, org_7F0;
4700 u8 saved_4F0 = 0, saved_7F0 = 0;
4701 struct net_device *dev = sp->dev;
1da177e4
LT
4702
4703 /* Test Write Error at offset 0 */
ad4ebed0 4704 /* Note that SPI interface allows write access to all areas
4705 * of EEPROM. Hence doing all negative testing only for Xframe I.
4706 */
4707 if (sp->device_type == XFRAME_I_DEVICE)
4708 if (!write_eeprom(sp, 0, 0, 3))
4709 fail = 1;
4710
4711 /* Save current values at offsets 0x4F0 and 0x7F0 */
4712 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4713 saved_4F0 = 1;
4714 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4715 saved_7F0 = 1;
1da177e4
LT
4716
4717 /* Test Write at offset 4f0 */
ad4ebed0 4718 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
4719 fail = 1;
4720 if (read_eeprom(sp, 0x4F0, &ret_data))
4721 fail = 1;
4722
ad4ebed0 4723 if (ret_data != 0x012345) {
4724 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
1da177e4 4725 fail = 1;
ad4ebed0 4726 }
1da177e4
LT
4727
4728 /* Reset the EEPROM data go FFFF */
ad4ebed0 4729 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
4730
4731 /* Test Write Request Error at offset 0x7c */
ad4ebed0 4732 if (sp->device_type == XFRAME_I_DEVICE)
4733 if (!write_eeprom(sp, 0x07C, 0, 3))
4734 fail = 1;
1da177e4 4735
ad4ebed0 4736 /* Test Write Request at offset 0x7f0 */
4737 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 4738 fail = 1;
ad4ebed0 4739 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
4740 fail = 1;
4741
ad4ebed0 4742 if (ret_data != 0x012345) {
4743 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
1da177e4 4744 fail = 1;
ad4ebed0 4745 }
1da177e4
LT
4746
4747 /* Reset the EEPROM data go FFFF */
ad4ebed0 4748 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 4749
ad4ebed0 4750 if (sp->device_type == XFRAME_I_DEVICE) {
4751 /* Test Write Error at offset 0x80 */
4752 if (!write_eeprom(sp, 0x080, 0, 3))
4753 fail = 1;
1da177e4 4754
ad4ebed0 4755 /* Test Write Error at offset 0xfc */
4756 if (!write_eeprom(sp, 0x0FC, 0, 3))
4757 fail = 1;
1da177e4 4758
ad4ebed0 4759 /* Test Write Error at offset 0x100 */
4760 if (!write_eeprom(sp, 0x100, 0, 3))
4761 fail = 1;
1da177e4 4762
ad4ebed0 4763 /* Test Write Error at offset 4ec */
4764 if (!write_eeprom(sp, 0x4EC, 0, 3))
4765 fail = 1;
4766 }
4767
4768 /* Restore values at offsets 0x4F0 and 0x7F0 */
4769 if (saved_4F0)
4770 write_eeprom(sp, 0x4F0, org_4F0, 3);
4771 if (saved_7F0)
4772 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
4773
4774 *data = fail;
ad4ebed0 4775 return fail;
1da177e4
LT
4776}
4777
4778/**
4779 * s2io_bist_test - invokes the MemBist test of the card .
20346722 4780 * @sp : private member of the device structure, which is a pointer to the
1da177e4 4781 * s2io_nic structure.
20346722 4782 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
4783 * the driver.
4784 * Description:
4785 * This invokes the MemBist test of the card. We give around
4786 * 2 secs time for the Test to complete. If it's still not complete
20346722 4787 * within this peiod, we consider that the test failed.
1da177e4
LT
4788 * Return value:
4789 * 0 on success and -1 on failure.
4790 */
4791
4792static int s2io_bist_test(nic_t * sp, uint64_t * data)
4793{
4794 u8 bist = 0;
4795 int cnt = 0, ret = -1;
4796
4797 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4798 bist |= PCI_BIST_START;
4799 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4800
4801 while (cnt < 20) {
4802 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4803 if (!(bist & PCI_BIST_START)) {
4804 *data = (bist & PCI_BIST_CODE_MASK);
4805 ret = 0;
4806 break;
4807 }
4808 msleep(100);
4809 cnt++;
4810 }
4811
4812 return ret;
4813}
4814
4815/**
20346722
K
4816 * s2io-link_test - verifies the link state of the nic
4817 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
4818 * s2io_nic structure.
4819 * @data: variable that returns the result of each of the test conducted by
4820 * the driver.
4821 * Description:
20346722 4822 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
4823 * argument 'data' appropriately.
4824 * Return value:
4825 * 0 on success.
4826 */
4827
4828static int s2io_link_test(nic_t * sp, uint64_t * data)
4829{
4830 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4831 u64 val64;
4832
4833 val64 = readq(&bar0->adapter_status);
4834 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4835 *data = 1;
4836
4837 return 0;
4838}
4839
4840/**
20346722
K
4841 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4842 * @sp - private member of the device structure, which is a pointer to the
1da177e4 4843 * s2io_nic structure.
20346722 4844 * @data - variable that returns the result of each of the test
1da177e4
LT
4845 * conducted by the driver.
4846 * Description:
20346722 4847 * This is one of the offline test that tests the read and write
1da177e4
LT
4848 * access to the RldRam chip on the NIC.
4849 * Return value:
4850 * 0 on success.
4851 */
4852
4853static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4854{
4855 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4856 u64 val64;
ad4ebed0 4857 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
4858
4859 val64 = readq(&bar0->adapter_control);
4860 val64 &= ~ADAPTER_ECC_EN;
4861 writeq(val64, &bar0->adapter_control);
4862
4863 val64 = readq(&bar0->mc_rldram_test_ctrl);
4864 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 4865 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4866
4867 val64 = readq(&bar0->mc_rldram_mrs);
4868 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4869 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4870
4871 val64 |= MC_RLDRAM_MRS_ENABLE;
4872 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4873
4874 while (iteration < 2) {
4875 val64 = 0x55555555aaaa0000ULL;
4876 if (iteration == 1) {
4877 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4878 }
4879 writeq(val64, &bar0->mc_rldram_test_d0);
4880
4881 val64 = 0xaaaa5a5555550000ULL;
4882 if (iteration == 1) {
4883 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4884 }
4885 writeq(val64, &bar0->mc_rldram_test_d1);
4886
4887 val64 = 0x55aaaaaaaa5a0000ULL;
4888 if (iteration == 1) {
4889 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4890 }
4891 writeq(val64, &bar0->mc_rldram_test_d2);
4892
ad4ebed0 4893 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
4894 writeq(val64, &bar0->mc_rldram_test_add);
4895
ad4ebed0 4896 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4897 MC_RLDRAM_TEST_GO;
4898 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4899
4900 for (cnt = 0; cnt < 5; cnt++) {
4901 val64 = readq(&bar0->mc_rldram_test_ctrl);
4902 if (val64 & MC_RLDRAM_TEST_DONE)
4903 break;
4904 msleep(200);
4905 }
4906
4907 if (cnt == 5)
4908 break;
4909
ad4ebed0 4910 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4911 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4912
4913 for (cnt = 0; cnt < 5; cnt++) {
4914 val64 = readq(&bar0->mc_rldram_test_ctrl);
4915 if (val64 & MC_RLDRAM_TEST_DONE)
4916 break;
4917 msleep(500);
4918 }
4919
4920 if (cnt == 5)
4921 break;
4922
4923 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 4924 if (!(val64 & MC_RLDRAM_TEST_PASS))
4925 test_fail = 1;
1da177e4
LT
4926
4927 iteration++;
4928 }
4929
ad4ebed0 4930 *data = test_fail;
1da177e4 4931
ad4ebed0 4932 /* Bring the adapter out of test mode */
4933 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4934
4935 return test_fail;
1da177e4
LT
4936}
4937
4938/**
4939 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4940 * @sp : private member of the device structure, which is a pointer to the
4941 * s2io_nic structure.
4942 * @ethtest : pointer to a ethtool command specific structure that will be
4943 * returned to the user.
20346722 4944 * @data : variable that returns the result of each of the test
1da177e4
LT
4945 * conducted by the driver.
4946 * Description:
4947 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4948 * the health of the card.
4949 * Return value:
4950 * void
4951 */
4952
4953static void s2io_ethtool_test(struct net_device *dev,
4954 struct ethtool_test *ethtest,
4955 uint64_t * data)
4956{
4957 nic_t *sp = dev->priv;
4958 int orig_state = netif_running(sp->dev);
4959
4960 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4961 /* Offline Tests. */
20346722 4962 if (orig_state)
1da177e4 4963 s2io_close(sp->dev);
1da177e4
LT
4964
4965 if (s2io_register_test(sp, &data[0]))
4966 ethtest->flags |= ETH_TEST_FL_FAILED;
4967
4968 s2io_reset(sp);
1da177e4
LT
4969
4970 if (s2io_rldram_test(sp, &data[3]))
4971 ethtest->flags |= ETH_TEST_FL_FAILED;
4972
4973 s2io_reset(sp);
1da177e4
LT
4974
4975 if (s2io_eeprom_test(sp, &data[1]))
4976 ethtest->flags |= ETH_TEST_FL_FAILED;
4977
4978 if (s2io_bist_test(sp, &data[4]))
4979 ethtest->flags |= ETH_TEST_FL_FAILED;
4980
4981 if (orig_state)
4982 s2io_open(sp->dev);
4983
4984 data[2] = 0;
4985 } else {
4986 /* Online Tests. */
4987 if (!orig_state) {
4988 DBG_PRINT(ERR_DBG,
4989 "%s: is not up, cannot run test\n",
4990 dev->name);
4991 data[0] = -1;
4992 data[1] = -1;
4993 data[2] = -1;
4994 data[3] = -1;
4995 data[4] = -1;
4996 }
4997
4998 if (s2io_link_test(sp, &data[2]))
4999 ethtest->flags |= ETH_TEST_FL_FAILED;
5000
5001 data[0] = 0;
5002 data[1] = 0;
5003 data[3] = 0;
5004 data[4] = 0;
5005 }
5006}
5007
5008static void s2io_get_ethtool_stats(struct net_device *dev,
5009 struct ethtool_stats *estats,
5010 u64 * tmp_stats)
5011{
5012 int i = 0;
5013 nic_t *sp = dev->priv;
5014 StatInfo_t *stat_info = sp->mac_control.stats_info;
5015
7ba013ac 5016 s2io_updt_stats(sp);
541ae68f
K
5017 tmp_stats[i++] =
5018 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5019 le32_to_cpu(stat_info->tmac_frms);
5020 tmp_stats[i++] =
5021 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5022 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5023 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5024 tmp_stats[i++] =
5025 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5026 le32_to_cpu(stat_info->tmac_mcst_frms);
5027 tmp_stats[i++] =
5028 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5029 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5030 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
541ae68f
K
5031 tmp_stats[i++] =
5032 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5033 le32_to_cpu(stat_info->tmac_any_err_frms);
1da177e4 5034 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5035 tmp_stats[i++] =
5036 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5037 le32_to_cpu(stat_info->tmac_vld_ip);
5038 tmp_stats[i++] =
5039 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5040 le32_to_cpu(stat_info->tmac_drop_ip);
5041 tmp_stats[i++] =
5042 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5043 le32_to_cpu(stat_info->tmac_icmp);
5044 tmp_stats[i++] =
5045 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5046 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5047 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5048 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5049 le32_to_cpu(stat_info->tmac_udp);
5050 tmp_stats[i++] =
5051 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5052 le32_to_cpu(stat_info->rmac_vld_frms);
5053 tmp_stats[i++] =
5054 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5055 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5056 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5057 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5058 tmp_stats[i++] =
5059 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5060 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5061 tmp_stats[i++] =
5062 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5063 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4
LT
5064 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
541ae68f
K
5067 tmp_stats[i++] =
5068 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5069 le32_to_cpu(stat_info->rmac_discarded_frms);
5070 tmp_stats[i++] =
5071 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5072 le32_to_cpu(stat_info->rmac_usized_frms);
5073 tmp_stats[i++] =
5074 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5075 le32_to_cpu(stat_info->rmac_osized_frms);
5076 tmp_stats[i++] =
5077 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5078 le32_to_cpu(stat_info->rmac_frag_frms);
5079 tmp_stats[i++] =
5080 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5081 le32_to_cpu(stat_info->rmac_jabber_frms);
5082 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5083 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5084 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5085 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
541ae68f
K
5086 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5087 le32_to_cpu(stat_info->rmac_drop_ip);
5088 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5089 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5090 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
541ae68f
K
5091 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5092 le32_to_cpu(stat_info->rmac_udp);
5093 tmp_stats[i++] =
5094 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5095 le32_to_cpu(stat_info->rmac_err_drp_udp);
5096 tmp_stats[i++] =
5097 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5098 le32_to_cpu(stat_info->rmac_pause_cnt);
5099 tmp_stats[i++] =
5100 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5101 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5102 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
7ba013ac
K
5103 tmp_stats[i++] = 0;
5104 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5105 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
1da177e4
LT
5106}
5107
ac1f60db 5108static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5109{
5110 return (XENA_REG_SPACE);
5111}
5112
5113
ac1f60db 5114static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4
LT
5115{
5116 nic_t *sp = dev->priv;
5117
5118 return (sp->rx_csum);
5119}
ac1f60db
AB
5120
5121static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5122{
5123 nic_t *sp = dev->priv;
5124
5125 if (data)
5126 sp->rx_csum = 1;
5127 else
5128 sp->rx_csum = 0;
5129
5130 return 0;
5131}
ac1f60db
AB
5132
5133static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5134{
5135 return (XENA_EEPROM_SPACE);
5136}
5137
ac1f60db 5138static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5139{
5140 return (S2IO_TEST_LEN);
5141}
ac1f60db
AB
5142
5143static void s2io_ethtool_get_strings(struct net_device *dev,
5144 u32 stringset, u8 * data)
1da177e4
LT
5145{
5146 switch (stringset) {
5147 case ETH_SS_TEST:
5148 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5149 break;
5150 case ETH_SS_STATS:
5151 memcpy(data, &ethtool_stats_keys,
5152 sizeof(ethtool_stats_keys));
5153 }
5154}
1da177e4
LT
5155static int s2io_ethtool_get_stats_count(struct net_device *dev)
5156{
5157 return (S2IO_STAT_LEN);
5158}
5159
ac1f60db 5160static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5161{
5162 if (data)
5163 dev->features |= NETIF_F_IP_CSUM;
5164 else
5165 dev->features &= ~NETIF_F_IP_CSUM;
5166
5167 return 0;
5168}
5169
5170
5171static struct ethtool_ops netdev_ethtool_ops = {
5172 .get_settings = s2io_ethtool_gset,
5173 .set_settings = s2io_ethtool_sset,
5174 .get_drvinfo = s2io_ethtool_gdrvinfo,
5175 .get_regs_len = s2io_ethtool_get_regs_len,
5176 .get_regs = s2io_ethtool_gregs,
5177 .get_link = ethtool_op_get_link,
5178 .get_eeprom_len = s2io_get_eeprom_len,
5179 .get_eeprom = s2io_ethtool_geeprom,
5180 .set_eeprom = s2io_ethtool_seeprom,
5181 .get_pauseparam = s2io_ethtool_getpause_data,
5182 .set_pauseparam = s2io_ethtool_setpause_data,
5183 .get_rx_csum = s2io_ethtool_get_rx_csum,
5184 .set_rx_csum = s2io_ethtool_set_rx_csum,
5185 .get_tx_csum = ethtool_op_get_tx_csum,
5186 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5187 .get_sg = ethtool_op_get_sg,
5188 .set_sg = ethtool_op_set_sg,
5189#ifdef NETIF_F_TSO
5190 .get_tso = ethtool_op_get_tso,
5191 .set_tso = ethtool_op_set_tso,
5192#endif
5193 .self_test_count = s2io_ethtool_self_test_count,
5194 .self_test = s2io_ethtool_test,
5195 .get_strings = s2io_ethtool_get_strings,
5196 .phys_id = s2io_ethtool_idnic,
5197 .get_stats_count = s2io_ethtool_get_stats_count,
5198 .get_ethtool_stats = s2io_get_ethtool_stats
5199};
5200
5201/**
20346722 5202 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5203 * @dev : Device pointer.
5204 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5205 * a proprietary structure used to pass information to the driver.
5206 * @cmd : This is used to distinguish between the different commands that
5207 * can be passed to the IOCTL functions.
5208 * Description:
20346722
K
5209 * Currently there are no special functionality supported in IOCTL, hence
5210 * function always return EOPNOTSUPPORTED
1da177e4
LT
5211 */
5212
ac1f60db 5213static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5214{
5215 return -EOPNOTSUPP;
5216}
5217
5218/**
5219 * s2io_change_mtu - entry point to change MTU size for the device.
5220 * @dev : device pointer.
5221 * @new_mtu : the new MTU size for the device.
5222 * Description: A driver entry point to change MTU size for the device.
5223 * Before changing the MTU the device must be stopped.
5224 * Return value:
5225 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5226 * file on failure.
5227 */
5228
ac1f60db 5229static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4
LT
5230{
5231 nic_t *sp = dev->priv;
1da177e4
LT
5232
5233 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5234 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5235 dev->name);
5236 return -EPERM;
5237 }
5238
1da177e4 5239 dev->mtu = new_mtu;
d8892c6e
K
5240 if (netif_running(dev)) {
5241 s2io_card_down(sp);
5242 netif_stop_queue(dev);
5243 if (s2io_card_up(sp)) {
5244 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5245 __FUNCTION__);
5246 }
5247 if (netif_queue_stopped(dev))
5248 netif_wake_queue(dev);
5249 } else { /* Device is down */
5250 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5251 u64 val64 = new_mtu;
5252
5253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5254 }
1da177e4
LT
5255
5256 return 0;
5257}
5258
5259/**
5260 * s2io_tasklet - Bottom half of the ISR.
5261 * @dev_adr : address of the device structure in dma_addr_t format.
5262 * Description:
5263 * This is the tasklet or the bottom half of the ISR. This is
20346722 5264 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5265 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5266 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5267 * replenish the Rx buffers in the Rx buffer descriptors.
5268 * Return value:
5269 * void.
5270 */
5271
5272static void s2io_tasklet(unsigned long dev_addr)
5273{
5274 struct net_device *dev = (struct net_device *) dev_addr;
5275 nic_t *sp = dev->priv;
5276 int i, ret;
5277 mac_info_t *mac_control;
5278 struct config_param *config;
5279
5280 mac_control = &sp->mac_control;
5281 config = &sp->config;
5282
5283 if (!TASKLET_IN_USE) {
5284 for (i = 0; i < config->rx_ring_num; i++) {
5285 ret = fill_rx_buffers(sp, i);
5286 if (ret == -ENOMEM) {
5287 DBG_PRINT(ERR_DBG, "%s: Out of ",
5288 dev->name);
5289 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5290 break;
5291 } else if (ret == -EFILL) {
5292 DBG_PRINT(ERR_DBG,
5293 "%s: Rx Ring %d is full\n",
5294 dev->name, i);
5295 break;
5296 }
5297 }
5298 clear_bit(0, (&sp->tasklet_status));
5299 }
5300}
5301
5302/**
5303 * s2io_set_link - Set the LInk status
5304 * @data: long pointer to device private structue
5305 * Description: Sets the link status for the adapter
5306 */
5307
5308static void s2io_set_link(unsigned long data)
5309{
5310 nic_t *nic = (nic_t *) data;
5311 struct net_device *dev = nic->dev;
5312 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5313 register u64 val64;
5314 u16 subid;
5315
5316 if (test_and_set_bit(0, &(nic->link_state))) {
5317 /* The card is being reset, no point doing anything */
5318 return;
5319 }
5320
5321 subid = nic->pdev->subsystem_device;
a371a07d
K
5322 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5323 /*
5324 * Allow a small delay for the NICs self initiated
5325 * cleanup to complete.
5326 */
5327 msleep(100);
5328 }
1da177e4
LT
5329
5330 val64 = readq(&bar0->adapter_status);
20346722 5331 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
5332 if (LINK_IS_UP(val64)) {
5333 val64 = readq(&bar0->adapter_control);
5334 val64 |= ADAPTER_CNTL_EN;
5335 writeq(val64, &bar0->adapter_control);
541ae68f
K
5336 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5337 subid)) {
1da177e4
LT
5338 val64 = readq(&bar0->gpio_control);
5339 val64 |= GPIO_CTRL_GPIO_0;
5340 writeq(val64, &bar0->gpio_control);
5341 val64 = readq(&bar0->gpio_control);
5342 } else {
5343 val64 |= ADAPTER_LED_ON;
5344 writeq(val64, &bar0->adapter_control);
5345 }
a371a07d
K
5346 if (s2io_link_fault_indication(nic) ==
5347 MAC_RMAC_ERR_TIMER) {
5348 val64 = readq(&bar0->adapter_status);
5349 if (!LINK_IS_UP(val64)) {
5350 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5351 DBG_PRINT(ERR_DBG, " Link down");
5352 DBG_PRINT(ERR_DBG, "after ");
5353 DBG_PRINT(ERR_DBG, "enabling ");
5354 DBG_PRINT(ERR_DBG, "device \n");
5355 }
1da177e4
LT
5356 }
5357 if (nic->device_enabled_once == FALSE) {
5358 nic->device_enabled_once = TRUE;
5359 }
5360 s2io_link(nic, LINK_UP);
5361 } else {
541ae68f
K
5362 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5363 subid)) {
1da177e4
LT
5364 val64 = readq(&bar0->gpio_control);
5365 val64 &= ~GPIO_CTRL_GPIO_0;
5366 writeq(val64, &bar0->gpio_control);
5367 val64 = readq(&bar0->gpio_control);
5368 }
5369 s2io_link(nic, LINK_DOWN);
5370 }
5371 } else { /* NIC is not Quiescent. */
5372 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5373 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5374 netif_stop_queue(dev);
5375 }
5376 clear_bit(0, &(nic->link_state));
5377}
5378
5379static void s2io_card_down(nic_t * sp)
5380{
5381 int cnt = 0;
5382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5383 unsigned long flags;
5384 register u64 val64 = 0;
5385
25fff88e 5386 del_timer_sync(&sp->alarm_timer);
1da177e4 5387 /* If s2io_set_link task is executing, wait till it completes. */
20346722 5388 while (test_and_set_bit(0, &(sp->link_state))) {
1da177e4 5389 msleep(50);
20346722 5390 }
1da177e4
LT
5391 atomic_set(&sp->card_state, CARD_DOWN);
5392
5393 /* disable Tx and Rx traffic on the NIC */
5394 stop_nic(sp);
5395
5396 /* Kill tasklet. */
5397 tasklet_kill(&sp->task);
5398
5399 /* Check if the device is Quiescent and then Reset the NIC */
5400 do {
5401 val64 = readq(&bar0->adapter_status);
20346722 5402 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
1da177e4
LT
5403 break;
5404 }
5405
5406 msleep(50);
5407 cnt++;
5408 if (cnt == 10) {
5409 DBG_PRINT(ERR_DBG,
5410 "s2io_close:Device not Quiescent ");
5411 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5412 (unsigned long long) val64);
5413 break;
5414 }
5415 } while (1);
1da177e4
LT
5416 s2io_reset(sp);
5417
7ba013ac
K
5418 /* Waiting till all Interrupt handlers are complete */
5419 cnt = 0;
5420 do {
5421 msleep(10);
5422 if (!atomic_read(&sp->isr_cnt))
5423 break;
5424 cnt++;
5425 } while(cnt < 5);
5426
5427 spin_lock_irqsave(&sp->tx_lock, flags);
5428 /* Free all Tx buffers */
1da177e4 5429 free_tx_buffers(sp);
7ba013ac
K
5430 spin_unlock_irqrestore(&sp->tx_lock, flags);
5431
5432 /* Free all Rx buffers */
5433 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 5434 free_rx_buffers(sp);
7ba013ac 5435 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 5436
1da177e4
LT
5437 clear_bit(0, &(sp->link_state));
5438}
5439
5440static int s2io_card_up(nic_t * sp)
5441{
cc6e7c44 5442 int i, ret = 0;
1da177e4
LT
5443 mac_info_t *mac_control;
5444 struct config_param *config;
5445 struct net_device *dev = (struct net_device *) sp->dev;
5446
5447 /* Initialize the H/W I/O registers */
5448 if (init_nic(sp) != 0) {
5449 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5450 dev->name);
5451 return -ENODEV;
5452 }
5453
cc6e7c44
RA
5454 if (sp->intr_type == MSI)
5455 ret = s2io_enable_msi(sp);
5456 else if (sp->intr_type == MSI_X)
5457 ret = s2io_enable_msi_x(sp);
5458 if (ret) {
5459 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5460 sp->intr_type = INTA;
5461 }
5462
20346722
K
5463 /*
5464 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
5465 * Rx ring and initializing buffers into 30 Rx blocks
5466 */
5467 mac_control = &sp->mac_control;
5468 config = &sp->config;
5469
5470 for (i = 0; i < config->rx_ring_num; i++) {
5471 if ((ret = fill_rx_buffers(sp, i))) {
5472 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5473 dev->name);
5474 s2io_reset(sp);
5475 free_rx_buffers(sp);
5476 return -ENOMEM;
5477 }
5478 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5479 atomic_read(&sp->rx_bufs_left[i]));
5480 }
5481
5482 /* Setting its receive mode */
5483 s2io_set_multicast(dev);
5484
5485 /* Enable tasklet for the device */
5486 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5487
5488 /* Enable Rx Traffic and interrupts on the NIC */
5489 if (start_nic(sp)) {
5490 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5491 tasklet_kill(&sp->task);
5492 s2io_reset(sp);
5493 free_irq(dev->irq, dev);
5494 free_rx_buffers(sp);
5495 return -ENODEV;
5496 }
5497
25fff88e
K
5498 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5499
1da177e4
LT
5500 atomic_set(&sp->card_state, CARD_UP);
5501 return 0;
5502}
5503
20346722 5504/**
1da177e4
LT
5505 * s2io_restart_nic - Resets the NIC.
5506 * @data : long pointer to the device private structure
5507 * Description:
5508 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 5509 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
5510 * the run time of the watch dog routine which is run holding a
5511 * spin lock.
5512 */
5513
5514static void s2io_restart_nic(unsigned long data)
5515{
5516 struct net_device *dev = (struct net_device *) data;
5517 nic_t *sp = dev->priv;
5518
5519 s2io_card_down(sp);
5520 if (s2io_card_up(sp)) {
5521 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5522 dev->name);
5523 }
5524 netif_wake_queue(dev);
5525 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5526 dev->name);
20346722 5527
1da177e4
LT
5528}
5529
20346722
K
5530/**
5531 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
5532 * @dev : Pointer to net device structure
5533 * Description:
5534 * This function is triggered if the Tx Queue is stopped
5535 * for a pre-defined amount of time when the Interface is still up.
5536 * If the Interface is jammed in such a situation, the hardware is
5537 * reset (by s2io_close) and restarted again (by s2io_open) to
5538 * overcome any problem that might have been caused in the hardware.
5539 * Return value:
5540 * void
5541 */
5542
5543static void s2io_tx_watchdog(struct net_device *dev)
5544{
5545 nic_t *sp = dev->priv;
5546
5547 if (netif_carrier_ok(dev)) {
5548 schedule_work(&sp->rst_timer_task);
5549 }
5550}
5551
5552/**
5553 * rx_osm_handler - To perform some OS related operations on SKB.
5554 * @sp: private member of the device structure,pointer to s2io_nic structure.
5555 * @skb : the socket buffer pointer.
5556 * @len : length of the packet
5557 * @cksum : FCS checksum of the frame.
5558 * @ring_no : the ring from which this RxD was extracted.
20346722 5559 * Description:
1da177e4
LT
5560 * This function is called by the Tx interrupt serivce routine to perform
5561 * some OS related operations on the SKB before passing it to the upper
5562 * layers. It mainly checks if the checksum is OK, if so adds it to the
5563 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5564 * to the upper layer. If the checksum is wrong, it increments the Rx
5565 * packet error count, frees the SKB and returns error.
5566 * Return value:
5567 * SUCCESS on success and -1 on failure.
5568 */
20346722 5569static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
1da177e4 5570{
20346722 5571 nic_t *sp = ring_data->nic;
1da177e4 5572 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
5573 struct sk_buff *skb = (struct sk_buff *)
5574 ((unsigned long) rxdp->Host_Control);
5575 int ring_no = ring_data->ring_no;
1da177e4 5576 u16 l3_csum, l4_csum;
da6971d8 5577
20346722
K
5578 skb->dev = dev;
5579 if (rxdp->Control_1 & RXD_T_CODE) {
5580 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5581 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5582 dev->name, err);
1ddc50d4
K
5583 dev_kfree_skb(skb);
5584 sp->stats.rx_crc_errors++;
5585 atomic_dec(&sp->rx_bufs_left[ring_no]);
5586 rxdp->Host_Control = 0;
5587 return 0;
20346722 5588 }
1da177e4 5589
20346722
K
5590 /* Updating statistics */
5591 rxdp->Host_Control = 0;
5592 sp->rx_pkt_count++;
5593 sp->stats.rx_packets++;
da6971d8
AR
5594 if (sp->rxd_mode == RXD_MODE_1) {
5595 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 5596
da6971d8
AR
5597 sp->stats.rx_bytes += len;
5598 skb_put(skb, len);
5599
5600 } else if (sp->rxd_mode >= RXD_MODE_3A) {
5601 int get_block = ring_data->rx_curr_get_info.block_index;
5602 int get_off = ring_data->rx_curr_get_info.offset;
5603 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5604 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5605 unsigned char *buff = skb_push(skb, buf0_len);
5606
5607 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5608 sp->stats.rx_bytes += buf0_len + buf2_len;
5609 memcpy(buff, ba->ba_0, buf0_len);
5610
5611 if (sp->rxd_mode == RXD_MODE_3A) {
5612 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5613
5614 skb_put(skb, buf1_len);
5615 skb->len += buf2_len;
5616 skb->data_len += buf2_len;
5617 skb->truesize += buf2_len;
5618 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5619 sp->stats.rx_bytes += buf1_len;
5620
5621 } else
5622 skb_put(skb, buf2_len);
5623 }
20346722
K
5624
5625 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5626 (sp->rx_csum)) {
5627 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
5628 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5629 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 5630 /*
1da177e4
LT
5631 * NIC verifies if the Checksum of the received
5632 * frame is Ok or not and accordingly returns
5633 * a flag in the RxD.
5634 */
5635 skb->ip_summed = CHECKSUM_UNNECESSARY;
5636 } else {
20346722
K
5637 /*
5638 * Packet with erroneous checksum, let the
1da177e4
LT
5639 * upper layers deal with it.
5640 */
5641 skb->ip_summed = CHECKSUM_NONE;
5642 }
5643 } else {
5644 skb->ip_summed = CHECKSUM_NONE;
5645 }
5646
1da177e4 5647 skb->protocol = eth_type_trans(skb, dev);
1da177e4 5648#ifdef CONFIG_S2IO_NAPI
be3a6b02
K
5649 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5650 /* Queueing the vlan frame to the upper layer */
5651 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5652 RXD_GET_VLAN_TAG(rxdp->Control_2));
5653 } else {
5654 netif_receive_skb(skb);
5655 }
1da177e4 5656#else
be3a6b02
K
5657 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5658 /* Queueing the vlan frame to the upper layer */
5659 vlan_hwaccel_rx(skb, sp->vlgrp,
5660 RXD_GET_VLAN_TAG(rxdp->Control_2));
5661 } else {
5662 netif_rx(skb);
5663 }
1da177e4 5664#endif
1da177e4 5665 dev->last_rx = jiffies;
1da177e4 5666 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
5667 return SUCCESS;
5668}
5669
5670/**
5671 * s2io_link - stops/starts the Tx queue.
5672 * @sp : private member of the device structure, which is a pointer to the
5673 * s2io_nic structure.
5674 * @link : inidicates whether link is UP/DOWN.
5675 * Description:
5676 * This function stops/starts the Tx queue depending on whether the link
20346722
K
5677 * status of the NIC is is down or up. This is called by the Alarm
5678 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
5679 * Return value:
5680 * void.
5681 */
5682
20346722 5683void s2io_link(nic_t * sp, int link)
1da177e4
LT
5684{
5685 struct net_device *dev = (struct net_device *) sp->dev;
5686
5687 if (link != sp->last_link_state) {
5688 if (link == LINK_DOWN) {
5689 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5690 netif_carrier_off(dev);
5691 } else {
5692 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5693 netif_carrier_on(dev);
5694 }
5695 }
5696 sp->last_link_state = link;
5697}
5698
5699/**
20346722
K
5700 * get_xena_rev_id - to identify revision ID of xena.
5701 * @pdev : PCI Dev structure
5702 * Description:
5703 * Function to identify the Revision ID of xena.
5704 * Return value:
5705 * returns the revision ID of the device.
5706 */
5707
5708int get_xena_rev_id(struct pci_dev *pdev)
5709{
5710 u8 id = 0;
5711 int ret;
5712 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5713 return id;
5714}
5715
5716/**
5717 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5718 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5719 * s2io_nic structure.
5720 * Description:
5721 * This function initializes a few of the PCI and PCI-X configuration registers
5722 * with recommended values.
5723 * Return value:
5724 * void
5725 */
5726
5727static void s2io_init_pci(nic_t * sp)
5728{
20346722 5729 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
5730
5731 /* Enable Data Parity Error Recovery in PCI-X command register. */
5732 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5733 &(pcix_cmd));
1da177e4 5734 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5735 (pcix_cmd | 1));
1da177e4 5736 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5737 &(pcix_cmd));
1da177e4
LT
5738
5739 /* Set the PErr Response bit in PCI command register. */
5740 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5741 pci_write_config_word(sp->pdev, PCI_COMMAND,
5742 (pci_cmd | PCI_COMMAND_PARITY));
5743 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5744
1da177e4 5745 /* Forcibly disabling relaxed ordering capability of the card. */
20346722 5746 pcix_cmd &= 0xfffd;
1da177e4 5747 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5748 pcix_cmd);
1da177e4 5749 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5750 &(pcix_cmd));
1da177e4
LT
5751}
5752
5753MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5754MODULE_LICENSE("GPL");
6c1792f4
JL
5755MODULE_VERSION(DRV_VERSION);
5756
1da177e4 5757module_param(tx_fifo_num, int, 0);
1da177e4 5758module_param(rx_ring_num, int, 0);
da6971d8 5759module_param(rx_ring_mode, int, 0);
20346722
K
5760module_param_array(tx_fifo_len, uint, NULL, 0);
5761module_param_array(rx_ring_sz, uint, NULL, 0);
20346722 5762module_param_array(rts_frm_len, uint, NULL, 0);
5e25b9dd 5763module_param(use_continuous_tx_intrs, int, 1);
1da177e4
LT
5764module_param(rmac_pause_time, int, 0);
5765module_param(mc_pause_threshold_q0q3, int, 0);
5766module_param(mc_pause_threshold_q4q7, int, 0);
5767module_param(shared_splits, int, 0);
5768module_param(tmac_util_period, int, 0);
5769module_param(rmac_util_period, int, 0);
b6e3f982 5770module_param(bimodal, bool, 0);
da6971d8 5771module_param(l3l4hdr_size, int , 0);
1da177e4
LT
5772#ifndef CONFIG_S2IO_NAPI
5773module_param(indicate_max_pkts, int, 0);
5774#endif
303bcb4b 5775module_param(rxsync_frequency, int, 0);
cc6e7c44 5776module_param(intr_type, int, 0);
20346722 5777
1da177e4 5778/**
20346722 5779 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
5780 * @pdev : structure containing the PCI related information of the device.
5781 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5782 * Description:
5783 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
5784 * All OS related initialization including memory and device structure and
5785 * initlaization of the device private variable is done. Also the swapper
5786 * control register is initialized to enable read and write into the I/O
1da177e4
LT
5787 * registers of the device.
5788 * Return value:
5789 * returns 0 on success and negative on failure.
5790 */
5791
5792static int __devinit
5793s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5794{
5795 nic_t *sp;
5796 struct net_device *dev;
1da177e4
LT
5797 int i, j, ret;
5798 int dma_flag = FALSE;
5799 u32 mac_up, mac_down;
5800 u64 val64 = 0, tmp64 = 0;
5801 XENA_dev_config_t __iomem *bar0 = NULL;
5802 u16 subid;
5803 mac_info_t *mac_control;
5804 struct config_param *config;
541ae68f 5805 int mode;
cc6e7c44 5806 u8 dev_intr_type = intr_type;
1da177e4 5807
20346722 5808#ifdef CONFIG_S2IO_NAPI
cc6e7c44
RA
5809 if (dev_intr_type != INTA) {
5810 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5811is enabled. Defaulting to INTA\n");
5812 dev_intr_type = INTA;
5813 }
5814 else
5815 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
20346722 5816#endif
1da177e4
LT
5817
5818 if ((ret = pci_enable_device(pdev))) {
5819 DBG_PRINT(ERR_DBG,
5820 "s2io_init_nic: pci_enable_device failed\n");
5821 return ret;
5822 }
5823
1e7f0bd8 5824 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
5825 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5826 dma_flag = TRUE;
1da177e4 5827 if (pci_set_consistent_dma_mask
1e7f0bd8 5828 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
5829 DBG_PRINT(ERR_DBG,
5830 "Unable to obtain 64bit DMA for \
5831 consistent allocations\n");
5832 pci_disable_device(pdev);
5833 return -ENOMEM;
5834 }
1e7f0bd8 5835 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
5836 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5837 } else {
5838 pci_disable_device(pdev);
5839 return -ENOMEM;
5840 }
5841
cc6e7c44
RA
5842 if ((dev_intr_type == MSI_X) &&
5843 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5844 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5845 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5846Defaulting to INTA\n");
5847 dev_intr_type = INTA;
5848 }
5849 if (dev_intr_type != MSI_X) {
5850 if (pci_request_regions(pdev, s2io_driver_name)) {
5851 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5852 pci_disable_device(pdev);
5853 return -ENODEV;
5854 }
5855 }
5856 else {
5857 if (!(request_mem_region(pci_resource_start(pdev, 0),
5858 pci_resource_len(pdev, 0), s2io_driver_name))) {
5859 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5860 pci_disable_device(pdev);
5861 return -ENODEV;
5862 }
5863 if (!(request_mem_region(pci_resource_start(pdev, 2),
5864 pci_resource_len(pdev, 2), s2io_driver_name))) {
5865 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5866 release_mem_region(pci_resource_start(pdev, 0),
5867 pci_resource_len(pdev, 0));
5868 pci_disable_device(pdev);
5869 return -ENODEV;
5870 }
1da177e4
LT
5871 }
5872
5873 dev = alloc_etherdev(sizeof(nic_t));
5874 if (dev == NULL) {
5875 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5876 pci_disable_device(pdev);
5877 pci_release_regions(pdev);
5878 return -ENODEV;
5879 }
5880
5881 pci_set_master(pdev);
5882 pci_set_drvdata(pdev, dev);
5883 SET_MODULE_OWNER(dev);
5884 SET_NETDEV_DEV(dev, &pdev->dev);
5885
5886 /* Private member variable initialized to s2io NIC structure */
5887 sp = dev->priv;
5888 memset(sp, 0, sizeof(nic_t));
5889 sp->dev = dev;
5890 sp->pdev = pdev;
1da177e4 5891 sp->high_dma_flag = dma_flag;
1da177e4 5892 sp->device_enabled_once = FALSE;
da6971d8
AR
5893 if (rx_ring_mode == 1)
5894 sp->rxd_mode = RXD_MODE_1;
5895 if (rx_ring_mode == 2)
5896 sp->rxd_mode = RXD_MODE_3B;
5897 if (rx_ring_mode == 3)
5898 sp->rxd_mode = RXD_MODE_3A;
5899
cc6e7c44 5900 sp->intr_type = dev_intr_type;
1da177e4 5901
541ae68f
K
5902 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5903 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5904 sp->device_type = XFRAME_II_DEVICE;
5905 else
5906 sp->device_type = XFRAME_I_DEVICE;
5907
cc6e7c44 5908
1da177e4
LT
5909 /* Initialize some PCI/PCI-X fields of the NIC. */
5910 s2io_init_pci(sp);
5911
20346722 5912 /*
1da177e4 5913 * Setting the device configuration parameters.
20346722
K
5914 * Most of these parameters can be specified by the user during
5915 * module insertion as they are module loadable parameters. If
5916 * these parameters are not not specified during load time, they
1da177e4
LT
5917 * are initialized with default values.
5918 */
5919 mac_control = &sp->mac_control;
5920 config = &sp->config;
5921
5922 /* Tx side parameters. */
0b1f7ebe
K
5923 if (tx_fifo_len[0] == 0)
5924 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
1da177e4
LT
5925 config->tx_fifo_num = tx_fifo_num;
5926 for (i = 0; i < MAX_TX_FIFOS; i++) {
5927 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5928 config->tx_cfg[i].fifo_priority = i;
5929 }
5930
20346722
K
5931 /* mapping the QoS priority to the configured fifos */
5932 for (i = 0; i < MAX_TX_FIFOS; i++)
5933 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5934
1da177e4
LT
5935 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5936 for (i = 0; i < config->tx_fifo_num; i++) {
5937 config->tx_cfg[i].f_no_snoop =
5938 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5939 if (config->tx_cfg[i].fifo_len < 65) {
5940 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5941 break;
5942 }
5943 }
776bd20f 5944 config->max_txds = MAX_SKB_FRAGS + 1;
1da177e4
LT
5945
5946 /* Rx side parameters. */
0b1f7ebe
K
5947 if (rx_ring_sz[0] == 0)
5948 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
1da177e4
LT
5949 config->rx_ring_num = rx_ring_num;
5950 for (i = 0; i < MAX_RX_RINGS; i++) {
5951 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 5952 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
5953 config->rx_cfg[i].ring_priority = i;
5954 }
5955
5956 for (i = 0; i < rx_ring_num; i++) {
5957 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5958 config->rx_cfg[i].f_no_snoop =
5959 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5960 }
5961
5962 /* Setting Mac Control parameters */
5963 mac_control->rmac_pause_time = rmac_pause_time;
5964 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5965 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5966
5967
5968 /* Initialize Ring buffer parameters. */
5969 for (i = 0; i < config->rx_ring_num; i++)
5970 atomic_set(&sp->rx_bufs_left[i], 0);
5971
7ba013ac
K
5972 /* Initialize the number of ISRs currently running */
5973 atomic_set(&sp->isr_cnt, 0);
5974
1da177e4
LT
5975 /* initialize the shared memory used by the NIC and the host */
5976 if (init_shared_mem(sp)) {
5977 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
0b1f7ebe 5978 __FUNCTION__);
1da177e4
LT
5979 ret = -ENOMEM;
5980 goto mem_alloc_failed;
5981 }
5982
5983 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5984 pci_resource_len(pdev, 0));
5985 if (!sp->bar0) {
5986 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5987 dev->name);
5988 ret = -ENOMEM;
5989 goto bar0_remap_failed;
5990 }
5991
5992 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5993 pci_resource_len(pdev, 2));
5994 if (!sp->bar1) {
5995 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5996 dev->name);
5997 ret = -ENOMEM;
5998 goto bar1_remap_failed;
5999 }
6000
6001 dev->irq = pdev->irq;
6002 dev->base_addr = (unsigned long) sp->bar0;
6003
6004 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6005 for (j = 0; j < MAX_TX_FIFOS; j++) {
6006 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6007 (sp->bar1 + (j * 0x00020000));
6008 }
6009
6010 /* Driver entry points */
6011 dev->open = &s2io_open;
6012 dev->stop = &s2io_close;
6013 dev->hard_start_xmit = &s2io_xmit;
6014 dev->get_stats = &s2io_get_stats;
6015 dev->set_multicast_list = &s2io_set_multicast;
6016 dev->do_ioctl = &s2io_ioctl;
6017 dev->change_mtu = &s2io_change_mtu;
6018 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
6019 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6020 dev->vlan_rx_register = s2io_vlan_rx_register;
6021 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 6022
1da177e4
LT
6023 /*
6024 * will use eth_mac_addr() for dev->set_mac_address
6025 * mac address will be set every time dev->open() is called
6026 */
20346722 6027#if defined(CONFIG_S2IO_NAPI)
1da177e4 6028 dev->poll = s2io_poll;
20346722 6029 dev->weight = 32;
1da177e4
LT
6030#endif
6031
6032 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6033 if (sp->high_dma_flag == TRUE)
6034 dev->features |= NETIF_F_HIGHDMA;
6035#ifdef NETIF_F_TSO
6036 dev->features |= NETIF_F_TSO;
6037#endif
6038
6039 dev->tx_timeout = &s2io_tx_watchdog;
6040 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6041 INIT_WORK(&sp->rst_timer_task,
6042 (void (*)(void *)) s2io_restart_nic, dev);
6043 INIT_WORK(&sp->set_link_task,
6044 (void (*)(void *)) s2io_set_link, sp);
6045
e960fc5c 6046 pci_save_state(sp->pdev);
1da177e4
LT
6047
6048 /* Setting swapper control on the NIC, for proper reset operation */
6049 if (s2io_set_swapper(sp)) {
6050 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6051 dev->name);
6052 ret = -EAGAIN;
6053 goto set_swap_failed;
6054 }
6055
541ae68f
K
6056 /* Verify if the Herc works on the slot its placed into */
6057 if (sp->device_type & XFRAME_II_DEVICE) {
6058 mode = s2io_verify_pci_mode(sp);
6059 if (mode < 0) {
6060 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6061 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6062 ret = -EBADSLT;
6063 goto set_swap_failed;
6064 }
6065 }
6066
6067 /* Not needed for Herc */
6068 if (sp->device_type & XFRAME_I_DEVICE) {
6069 /*
6070 * Fix for all "FFs" MAC address problems observed on
6071 * Alpha platforms
6072 */
6073 fix_mac_address(sp);
6074 s2io_reset(sp);
6075 }
1da177e4
LT
6076
6077 /*
1da177e4
LT
6078 * MAC address initialization.
6079 * For now only one mac address will be read and used.
6080 */
6081 bar0 = sp->bar0;
6082 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6083 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6084 writeq(val64, &bar0->rmac_addr_cmd_mem);
6085 wait_for_cmd_complete(sp);
6086
6087 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6088 mac_down = (u32) tmp64;
6089 mac_up = (u32) (tmp64 >> 32);
6090
6091 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6092
6093 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6094 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6095 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6096 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6097 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6098 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6099
1da177e4
LT
6100 /* Set the factory defined MAC address initially */
6101 dev->addr_len = ETH_ALEN;
6102 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6103
6104 /*
20346722 6105 * Initialize the tasklet status and link state flags
541ae68f 6106 * and the card state parameter
1da177e4
LT
6107 */
6108 atomic_set(&(sp->card_state), 0);
6109 sp->tasklet_status = 0;
6110 sp->link_state = 0;
6111
1da177e4
LT
6112 /* Initialize spinlocks */
6113 spin_lock_init(&sp->tx_lock);
6114#ifndef CONFIG_S2IO_NAPI
6115 spin_lock_init(&sp->put_lock);
6116#endif
7ba013ac 6117 spin_lock_init(&sp->rx_lock);
1da177e4 6118
20346722
K
6119 /*
6120 * SXE-002: Configure link and activity LED to init state
6121 * on driver load.
1da177e4
LT
6122 */
6123 subid = sp->pdev->subsystem_device;
6124 if ((subid & 0xFF) >= 0x07) {
6125 val64 = readq(&bar0->gpio_control);
6126 val64 |= 0x0000800000000000ULL;
6127 writeq(val64, &bar0->gpio_control);
6128 val64 = 0x0411040400000000ULL;
6129 writeq(val64, (void __iomem *) bar0 + 0x2700);
6130 val64 = readq(&bar0->gpio_control);
6131 }
6132
6133 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6134
6135 if (register_netdev(dev)) {
6136 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6137 ret = -ENODEV;
6138 goto register_failed;
6139 }
6140
541ae68f
K
6141 if (sp->device_type & XFRAME_II_DEVICE) {
6142 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6143 dev->name);
6c1792f4 6144 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
541ae68f
K
6145 get_xena_rev_id(sp->pdev),
6146 s2io_driver_version);
cc6e7c44
RA
6147 switch(sp->intr_type) {
6148 case INTA:
6149 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6150 break;
6151 case MSI:
6152 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6153 break;
6154 case MSI_X:
6155 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6156 break;
6157 }
776bd20f 6158
6159 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
541ae68f
K
6160 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6161 sp->def_mac_addr[0].mac_addr[0],
6162 sp->def_mac_addr[0].mac_addr[1],
6163 sp->def_mac_addr[0].mac_addr[2],
6164 sp->def_mac_addr[0].mac_addr[3],
6165 sp->def_mac_addr[0].mac_addr[4],
6166 sp->def_mac_addr[0].mac_addr[5]);
0b1f7ebe 6167 mode = s2io_print_pci_mode(sp);
541ae68f
K
6168 if (mode < 0) {
6169 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6170 ret = -EBADSLT;
6171 goto set_swap_failed;
6172 }
6173 } else {
6174 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6175 dev->name);
6c1792f4 6176 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
541ae68f
K
6177 get_xena_rev_id(sp->pdev),
6178 s2io_driver_version);
cc6e7c44
RA
6179 switch(sp->intr_type) {
6180 case INTA:
6181 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6182 break;
6183 case MSI:
6184 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6185 break;
6186 case MSI_X:
6187 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6188 break;
6189 }
776bd20f 6190 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
541ae68f
K
6191 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6192 sp->def_mac_addr[0].mac_addr[0],
6193 sp->def_mac_addr[0].mac_addr[1],
6194 sp->def_mac_addr[0].mac_addr[2],
6195 sp->def_mac_addr[0].mac_addr[3],
6196 sp->def_mac_addr[0].mac_addr[4],
6197 sp->def_mac_addr[0].mac_addr[5]);
6198 }
da6971d8
AR
6199 if (sp->rxd_mode == RXD_MODE_3B)
6200 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6201 "enabled\n",dev->name);
6202 if (sp->rxd_mode == RXD_MODE_3A)
6203 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6204 "enabled\n",dev->name);
541ae68f 6205
7ba013ac
K
6206 /* Initialize device name */
6207 strcpy(sp->name, dev->name);
541ae68f
K
6208 if (sp->device_type & XFRAME_II_DEVICE)
6209 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6210 else
6211 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
7ba013ac 6212
b6e3f982
K
6213 /* Initialize bimodal Interrupts */
6214 sp->config.bimodal = bimodal;
6215 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6216 sp->config.bimodal = 0;
6217 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6218 dev->name);
6219 }
6220
20346722
K
6221 /*
6222 * Make Link state as off at this point, when the Link change
6223 * interrupt comes the state will be automatically changed to
1da177e4
LT
6224 * the right state.
6225 */
6226 netif_carrier_off(dev);
1da177e4
LT
6227
6228 return 0;
6229
6230 register_failed:
6231 set_swap_failed:
6232 iounmap(sp->bar1);
6233 bar1_remap_failed:
6234 iounmap(sp->bar0);
6235 bar0_remap_failed:
6236 mem_alloc_failed:
6237 free_shared_mem(sp);
6238 pci_disable_device(pdev);
cc6e7c44
RA
6239 if (dev_intr_type != MSI_X)
6240 pci_release_regions(pdev);
6241 else {
6242 release_mem_region(pci_resource_start(pdev, 0),
6243 pci_resource_len(pdev, 0));
6244 release_mem_region(pci_resource_start(pdev, 2),
6245 pci_resource_len(pdev, 2));
6246 }
1da177e4
LT
6247 pci_set_drvdata(pdev, NULL);
6248 free_netdev(dev);
6249
6250 return ret;
6251}
6252
6253/**
20346722 6254 * s2io_rem_nic - Free the PCI device
1da177e4 6255 * @pdev: structure containing the PCI related information of the device.
20346722 6256 * Description: This function is called by the Pci subsystem to release a
1da177e4 6257 * PCI device and free up all resource held up by the device. This could
20346722 6258 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
6259 * from memory.
6260 */
6261
6262static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6263{
6264 struct net_device *dev =
6265 (struct net_device *) pci_get_drvdata(pdev);
6266 nic_t *sp;
6267
6268 if (dev == NULL) {
6269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6270 return;
6271 }
6272
6273 sp = dev->priv;
6274 unregister_netdev(dev);
6275
6276 free_shared_mem(sp);
6277 iounmap(sp->bar0);
6278 iounmap(sp->bar1);
6279 pci_disable_device(pdev);
cc6e7c44
RA
6280 if (sp->intr_type != MSI_X)
6281 pci_release_regions(pdev);
6282 else {
6283 release_mem_region(pci_resource_start(pdev, 0),
6284 pci_resource_len(pdev, 0));
6285 release_mem_region(pci_resource_start(pdev, 2),
6286 pci_resource_len(pdev, 2));
6287 }
1da177e4 6288 pci_set_drvdata(pdev, NULL);
1da177e4
LT
6289 free_netdev(dev);
6290}
6291
6292/**
6293 * s2io_starter - Entry point for the driver
6294 * Description: This function is the entry point for the driver. It verifies
6295 * the module loadable parameters and initializes PCI configuration space.
6296 */
6297
6298int __init s2io_starter(void)
6299{
6300 return pci_module_init(&s2io_driver);
6301}
6302
6303/**
20346722 6304 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
6305 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6306 */
6307
20346722 6308void s2io_closer(void)
1da177e4
LT
6309{
6310 pci_unregister_driver(&s2io_driver);
6311 DBG_PRINT(INIT_DBG, "cleanup done\n");
6312}
6313
6314module_init(s2io_starter);
6315module_exit(s2io_closer);