]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
[PATCH] kill include/linux/eeprom.h
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
20346722
K
29 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver.
776bd20f 31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
1da177e4 32 * is also an array of size 8.
da6971d8
AR
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3.
1da177e4 35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 36 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 37 * Tx descriptors that can be associated with each corresponding FIFO.
1da177e4
LT
38 ************************************************************************/
39
40#include <linux/config.h>
41#include <linux/module.h>
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/ioport.h>
45#include <linux/pci.h>
1e7f0bd8 46#include <linux/dma-mapping.h>
1da177e4
LT
47#include <linux/kernel.h>
48#include <linux/netdevice.h>
49#include <linux/etherdevice.h>
50#include <linux/skbuff.h>
51#include <linux/init.h>
52#include <linux/delay.h>
53#include <linux/stddef.h>
54#include <linux/ioctl.h>
55#include <linux/timex.h>
56#include <linux/sched.h>
57#include <linux/ethtool.h>
58#include <linux/version.h>
59#include <linux/workqueue.h>
be3a6b02 60#include <linux/if_vlan.h>
1da177e4 61
1da177e4
LT
62#include <asm/system.h>
63#include <asm/uaccess.h>
20346722 64#include <asm/io.h>
1da177e4
LT
65
66/* local include */
67#include "s2io.h"
68#include "s2io-regs.h"
69
da6971d8 70#define DRV_VERSION "Version 2.0.9.3"
6c1792f4 71
1da177e4 72/* S2io Driver name & version. */
20346722 73static char s2io_driver_name[] = "Neterion";
6c1792f4 74static char s2io_driver_version[] = DRV_VERSION;
1da177e4 75
da6971d8
AR
76int rxd_size[4] = {32,48,48,64};
77int rxd_count[4] = {127,85,85,63};
78
5e25b9dd
K
79static inline int RXD_IS_UP2DT(RxD_t *rxdp)
80{
81 int ret;
82
83 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
84 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
85
86 return ret;
87}
88
20346722 89/*
1da177e4
LT
90 * Cards with following subsystem_id have a link state indication
91 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
92 * macro below identifies these cards given the subsystem_id.
93 */
541ae68f
K
94#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
95 (dev_type == XFRAME_I_DEVICE) ? \
96 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
97 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
98
99#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
100 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
101#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
102#define PANIC 1
103#define LOW 2
104static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
105{
106 int level = 0;
20346722
K
107 mac_info_t *mac_control;
108
109 mac_control = &sp->mac_control;
110 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
1da177e4 111 level = LOW;
da6971d8 112 if (rxb_size <= rxd_count[sp->rxd_mode]) {
1da177e4
LT
113 level = PANIC;
114 }
115 }
116
117 return level;
118}
119
120/* Ethtool related variables and Macros. */
121static char s2io_gstrings[][ETH_GSTRING_LEN] = {
122 "Register test\t(offline)",
123 "Eeprom test\t(offline)",
124 "Link test\t(online)",
125 "RLDRAM test\t(offline)",
126 "BIST Test\t(offline)"
127};
128
129static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
130 {"tmac_frms"},
131 {"tmac_data_octets"},
132 {"tmac_drop_frms"},
133 {"tmac_mcst_frms"},
134 {"tmac_bcst_frms"},
135 {"tmac_pause_ctrl_frms"},
136 {"tmac_any_err_frms"},
137 {"tmac_vld_ip_octets"},
138 {"tmac_vld_ip"},
139 {"tmac_drop_ip"},
140 {"tmac_icmp"},
141 {"tmac_rst_tcp"},
142 {"tmac_tcp"},
143 {"tmac_udp"},
144 {"rmac_vld_frms"},
145 {"rmac_data_octets"},
146 {"rmac_fcs_err_frms"},
147 {"rmac_drop_frms"},
148 {"rmac_vld_mcst_frms"},
149 {"rmac_vld_bcst_frms"},
150 {"rmac_in_rng_len_err_frms"},
151 {"rmac_long_frms"},
152 {"rmac_pause_ctrl_frms"},
153 {"rmac_discarded_frms"},
154 {"rmac_usized_frms"},
155 {"rmac_osized_frms"},
156 {"rmac_frag_frms"},
157 {"rmac_jabber_frms"},
158 {"rmac_ip"},
159 {"rmac_ip_octets"},
160 {"rmac_hdr_err_ip"},
161 {"rmac_drop_ip"},
162 {"rmac_icmp"},
163 {"rmac_tcp"},
164 {"rmac_udp"},
165 {"rmac_err_drp_udp"},
166 {"rmac_pause_cnt"},
167 {"rmac_accepted_ip"},
168 {"rmac_err_tcp"},
7ba013ac
K
169 {"\n DRIVER STATISTICS"},
170 {"single_bit_ecc_errs"},
171 {"double_bit_ecc_errs"},
1da177e4
LT
172};
173
174#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
175#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
176
177#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
178#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
179
25fff88e
K
180#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
181 init_timer(&timer); \
182 timer.function = handle; \
183 timer.data = (unsigned long) arg; \
184 mod_timer(&timer, (jiffies + exp)) \
185
be3a6b02
K
186/* Add the vlan */
187static void s2io_vlan_rx_register(struct net_device *dev,
188 struct vlan_group *grp)
189{
190 nic_t *nic = dev->priv;
191 unsigned long flags;
192
193 spin_lock_irqsave(&nic->tx_lock, flags);
194 nic->vlgrp = grp;
195 spin_unlock_irqrestore(&nic->tx_lock, flags);
196}
197
198/* Unregister the vlan */
199static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
200{
201 nic_t *nic = dev->priv;
202 unsigned long flags;
203
204 spin_lock_irqsave(&nic->tx_lock, flags);
205 if (nic->vlgrp)
206 nic->vlgrp->vlan_devices[vid] = NULL;
207 spin_unlock_irqrestore(&nic->tx_lock, flags);
208}
209
20346722 210/*
1da177e4
LT
211 * Constants to be programmed into the Xena's registers, to configure
212 * the XAUI.
213 */
214
215#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
216#define END_SIGN 0x0
217
541ae68f
K
218static u64 herc_act_dtx_cfg[] = {
219 /* Set address */
e960fc5c 220 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 221 /* Write data */
e960fc5c 222 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
223 /* Set address */
224 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
225 /* Write data */
226 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
227 /* Set address */
e960fc5c 228 0x801205150D440000ULL, 0x801205150D4400E0ULL,
229 /* Write data */
230 0x801205150D440004ULL, 0x801205150D4400E4ULL,
231 /* Set address */
541ae68f
K
232 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
233 /* Write data */
234 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
235 /* Done */
236 END_SIGN
237};
238
239static u64 xena_mdio_cfg[] = {
1da177e4
LT
240 /* Reset PMA PLL */
241 0xC001010000000000ULL, 0xC0010100000000E0ULL,
242 0xC0010100008000E4ULL,
243 /* Remove Reset from PMA PLL */
244 0xC001010000000000ULL, 0xC0010100000000E0ULL,
245 0xC0010100000000E4ULL,
246 END_SIGN
247};
248
541ae68f 249static u64 xena_dtx_cfg[] = {
1da177e4
LT
250 0x8000051500000000ULL, 0x80000515000000E0ULL,
251 0x80000515D93500E4ULL, 0x8001051500000000ULL,
252 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
253 0x8002051500000000ULL, 0x80020515000000E0ULL,
254 0x80020515F21000E4ULL,
255 /* Set PADLOOPBACKN */
256 0x8002051500000000ULL, 0x80020515000000E0ULL,
257 0x80020515B20000E4ULL, 0x8003051500000000ULL,
258 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
259 0x8004051500000000ULL, 0x80040515000000E0ULL,
260 0x80040515B20000E4ULL, 0x8005051500000000ULL,
261 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
262 SWITCH_SIGN,
263 /* Remove PADLOOPBACKN */
264 0x8002051500000000ULL, 0x80020515000000E0ULL,
265 0x80020515F20000E4ULL, 0x8003051500000000ULL,
266 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
267 0x8004051500000000ULL, 0x80040515000000E0ULL,
268 0x80040515F20000E4ULL, 0x8005051500000000ULL,
269 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
270 END_SIGN
271};
272
20346722 273/*
1da177e4
LT
274 * Constants for Fixing the MacAddress problem seen mostly on
275 * Alpha machines.
276 */
277static u64 fix_mac[] = {
278 0x0060000000000000ULL, 0x0060600000000000ULL,
279 0x0040600000000000ULL, 0x0000600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0060600000000000ULL,
286 0x0020600000000000ULL, 0x0060600000000000ULL,
287 0x0020600000000000ULL, 0x0060600000000000ULL,
288 0x0020600000000000ULL, 0x0060600000000000ULL,
289 0x0020600000000000ULL, 0x0060600000000000ULL,
290 0x0020600000000000ULL, 0x0000600000000000ULL,
291 0x0040600000000000ULL, 0x0060600000000000ULL,
292 END_SIGN
293};
294
295/* Module Loadable parameters. */
296static unsigned int tx_fifo_num = 1;
297static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
298 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
299static unsigned int rx_ring_num = 1;
300static unsigned int rx_ring_sz[MAX_RX_RINGS] =
301 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
20346722
K
302static unsigned int rts_frm_len[MAX_RX_RINGS] =
303 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
da6971d8 304static unsigned int rx_ring_mode = 1;
5e25b9dd 305static unsigned int use_continuous_tx_intrs = 1;
1da177e4
LT
306static unsigned int rmac_pause_time = 65535;
307static unsigned int mc_pause_threshold_q0q3 = 187;
308static unsigned int mc_pause_threshold_q4q7 = 187;
309static unsigned int shared_splits;
310static unsigned int tmac_util_period = 5;
311static unsigned int rmac_util_period = 5;
b6e3f982 312static unsigned int bimodal = 0;
da6971d8 313static unsigned int l3l4hdr_size = 128;
1da177e4
LT
314#ifndef CONFIG_S2IO_NAPI
315static unsigned int indicate_max_pkts;
316#endif
303bcb4b
K
317/* Frequency of Rx desc syncs expressed as power of 2 */
318static unsigned int rxsync_frequency = 3;
cc6e7c44
RA
319/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
320static unsigned int intr_type = 0;
1da177e4 321
20346722 322/*
1da177e4 323 * S2IO device table.
20346722 324 * This table lists all the devices that this driver supports.
1da177e4
LT
325 */
326static struct pci_device_id s2io_tbl[] __devinitdata = {
327 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
328 PCI_ANY_ID, PCI_ANY_ID},
329 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
330 PCI_ANY_ID, PCI_ANY_ID},
331 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
332 PCI_ANY_ID, PCI_ANY_ID},
333 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
334 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
335 {0,}
336};
337
338MODULE_DEVICE_TABLE(pci, s2io_tbl);
339
340static struct pci_driver s2io_driver = {
341 .name = "S2IO",
342 .id_table = s2io_tbl,
343 .probe = s2io_init_nic,
344 .remove = __devexit_p(s2io_rem_nic),
345};
346
347/* A simplifier macro used both by init and free shared_mem Fns(). */
348#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
349
350/**
351 * init_shared_mem - Allocation and Initialization of Memory
352 * @nic: Device private variable.
20346722
K
353 * Description: The function allocates all the memory areas shared
354 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
355 * Rx descriptors and the statistics block.
356 */
357
358static int init_shared_mem(struct s2io_nic *nic)
359{
360 u32 size;
361 void *tmp_v_addr, *tmp_v_addr_next;
362 dma_addr_t tmp_p_addr, tmp_p_addr_next;
363 RxD_block_t *pre_rxd_blk = NULL;
20346722 364 int i, j, blk_cnt, rx_sz, tx_sz;
1da177e4
LT
365 int lst_size, lst_per_page;
366 struct net_device *dev = nic->dev;
8ae418cf 367 unsigned long tmp;
1da177e4 368 buffAdd_t *ba;
1da177e4
LT
369
370 mac_info_t *mac_control;
371 struct config_param *config;
372
373 mac_control = &nic->mac_control;
374 config = &nic->config;
375
376
377 /* Allocation and initialization of TXDLs in FIOFs */
378 size = 0;
379 for (i = 0; i < config->tx_fifo_num; i++) {
380 size += config->tx_cfg[i].fifo_len;
381 }
382 if (size > MAX_AVAILABLE_TXDS) {
0b1f7ebe
K
383 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
384 __FUNCTION__);
385 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
1da177e4
LT
386 return FAILURE;
387 }
388
389 lst_size = (sizeof(TxD_t) * config->max_txds);
20346722 390 tx_sz = lst_size * size;
1da177e4
LT
391 lst_per_page = PAGE_SIZE / lst_size;
392
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 int fifo_len = config->tx_cfg[i].fifo_len;
395 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
20346722
K
396 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
397 GFP_KERNEL);
398 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
399 DBG_PRINT(ERR_DBG,
400 "Malloc failed for list_info\n");
401 return -ENOMEM;
402 }
20346722 403 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
404 }
405 for (i = 0; i < config->tx_fifo_num; i++) {
406 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
407 lst_per_page);
20346722
K
408 mac_control->fifos[i].tx_curr_put_info.offset = 0;
409 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 410 config->tx_cfg[i].fifo_len - 1;
20346722
K
411 mac_control->fifos[i].tx_curr_get_info.offset = 0;
412 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 413 config->tx_cfg[i].fifo_len - 1;
20346722
K
414 mac_control->fifos[i].fifo_no = i;
415 mac_control->fifos[i].nic = nic;
776bd20f 416 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
20346722 417
1da177e4
LT
418 for (j = 0; j < page_num; j++) {
419 int k = 0;
420 dma_addr_t tmp_p;
421 void *tmp_v;
422 tmp_v = pci_alloc_consistent(nic->pdev,
423 PAGE_SIZE, &tmp_p);
424 if (!tmp_v) {
425 DBG_PRINT(ERR_DBG,
426 "pci_alloc_consistent ");
427 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
428 return -ENOMEM;
429 }
776bd20f 430 /* If we got a zero DMA address(can happen on
431 * certain platforms like PPC), reallocate.
432 * Store virtual address of page we don't want,
433 * to be freed later.
434 */
435 if (!tmp_p) {
436 mac_control->zerodma_virt_addr = tmp_v;
437 DBG_PRINT(INIT_DBG,
438 "%s: Zero DMA address for TxDL. ", dev->name);
439 DBG_PRINT(INIT_DBG,
6b4d617d 440 "Virtual address %p\n", tmp_v);
776bd20f 441 tmp_v = pci_alloc_consistent(nic->pdev,
442 PAGE_SIZE, &tmp_p);
443 if (!tmp_v) {
444 DBG_PRINT(ERR_DBG,
445 "pci_alloc_consistent ");
446 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
447 return -ENOMEM;
448 }
449 }
1da177e4
LT
450 while (k < lst_per_page) {
451 int l = (j * lst_per_page) + k;
452 if (l == config->tx_cfg[i].fifo_len)
20346722
K
453 break;
454 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 455 tmp_v + (k * lst_size);
20346722 456 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
457 tmp_p + (k * lst_size);
458 k++;
459 }
460 }
461 }
1da177e4
LT
462
463 /* Allocation and initialization of RXDs in Rings */
464 size = 0;
465 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
466 if (config->rx_cfg[i].num_rxd %
467 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
468 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
469 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
470 i);
471 DBG_PRINT(ERR_DBG, "RxDs per Block");
472 return FAILURE;
473 }
474 size += config->rx_cfg[i].num_rxd;
20346722 475 mac_control->rings[i].block_count =
da6971d8
AR
476 config->rx_cfg[i].num_rxd /
477 (rxd_count[nic->rxd_mode] + 1 );
478 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
479 mac_control->rings[i].block_count;
1da177e4 480 }
da6971d8
AR
481 if (nic->rxd_mode == RXD_MODE_1)
482 size = (size * (sizeof(RxD1_t)));
483 else
484 size = (size * (sizeof(RxD3_t)));
20346722 485 rx_sz = size;
1da177e4
LT
486
487 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
488 mac_control->rings[i].rx_curr_get_info.block_index = 0;
489 mac_control->rings[i].rx_curr_get_info.offset = 0;
490 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 491 config->rx_cfg[i].num_rxd - 1;
20346722
K
492 mac_control->rings[i].rx_curr_put_info.block_index = 0;
493 mac_control->rings[i].rx_curr_put_info.offset = 0;
494 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 495 config->rx_cfg[i].num_rxd - 1;
20346722
K
496 mac_control->rings[i].nic = nic;
497 mac_control->rings[i].ring_no = i;
498
da6971d8
AR
499 blk_cnt = config->rx_cfg[i].num_rxd /
500 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
501 /* Allocating all the Rx blocks */
502 for (j = 0; j < blk_cnt; j++) {
da6971d8
AR
503 rx_block_info_t *rx_blocks;
504 int l;
505
506 rx_blocks = &mac_control->rings[i].rx_blocks[j];
507 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
508 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
509 &tmp_p_addr);
510 if (tmp_v_addr == NULL) {
511 /*
20346722
K
512 * In case of failure, free_shared_mem()
513 * is called, which should free any
514 * memory that was alloced till the
1da177e4
LT
515 * failure happened.
516 */
da6971d8 517 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
518 return -ENOMEM;
519 }
520 memset(tmp_v_addr, 0, size);
da6971d8
AR
521 rx_blocks->block_virt_addr = tmp_v_addr;
522 rx_blocks->block_dma_addr = tmp_p_addr;
523 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
524 rxd_count[nic->rxd_mode],
525 GFP_KERNEL);
526 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
527 rx_blocks->rxds[l].virt_addr =
528 rx_blocks->block_virt_addr +
529 (rxd_size[nic->rxd_mode] * l);
530 rx_blocks->rxds[l].dma_addr =
531 rx_blocks->block_dma_addr +
532 (rxd_size[nic->rxd_mode] * l);
533 }
534
20346722
K
535 mac_control->rings[i].rx_blocks[j].block_virt_addr =
536 tmp_v_addr;
537 mac_control->rings[i].rx_blocks[j].block_dma_addr =
538 tmp_p_addr;
1da177e4
LT
539 }
540 /* Interlinking all Rx Blocks */
541 for (j = 0; j < blk_cnt; j++) {
20346722
K
542 tmp_v_addr =
543 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 544 tmp_v_addr_next =
20346722 545 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 546 blk_cnt].block_virt_addr;
20346722
K
547 tmp_p_addr =
548 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 549 tmp_p_addr_next =
20346722 550 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
551 blk_cnt].block_dma_addr;
552
553 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
1da177e4
LT
554 pre_rxd_blk->reserved_2_pNext_RxD_block =
555 (unsigned long) tmp_v_addr_next;
1da177e4
LT
556 pre_rxd_blk->pNext_RxD_Blk_physical =
557 (u64) tmp_p_addr_next;
558 }
559 }
da6971d8
AR
560 if (nic->rxd_mode >= RXD_MODE_3A) {
561 /*
562 * Allocation of Storages for buffer addresses in 2BUFF mode
563 * and the buffers as well.
564 */
565 for (i = 0; i < config->rx_ring_num; i++) {
566 blk_cnt = config->rx_cfg[i].num_rxd /
567 (rxd_count[nic->rxd_mode]+ 1);
568 mac_control->rings[i].ba =
569 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
1da177e4 570 GFP_KERNEL);
da6971d8 571 if (!mac_control->rings[i].ba)
1da177e4 572 return -ENOMEM;
da6971d8
AR
573 for (j = 0; j < blk_cnt; j++) {
574 int k = 0;
575 mac_control->rings[i].ba[j] =
576 kmalloc((sizeof(buffAdd_t) *
577 (rxd_count[nic->rxd_mode] + 1)),
578 GFP_KERNEL);
579 if (!mac_control->rings[i].ba[j])
1da177e4 580 return -ENOMEM;
da6971d8
AR
581 while (k != rxd_count[nic->rxd_mode]) {
582 ba = &mac_control->rings[i].ba[j][k];
583
584 ba->ba_0_org = (void *) kmalloc
585 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
586 if (!ba->ba_0_org)
587 return -ENOMEM;
588 tmp = (unsigned long)ba->ba_0_org;
589 tmp += ALIGN_SIZE;
590 tmp &= ~((unsigned long) ALIGN_SIZE);
591 ba->ba_0 = (void *) tmp;
592
593 ba->ba_1_org = (void *) kmalloc
594 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
595 if (!ba->ba_1_org)
596 return -ENOMEM;
597 tmp = (unsigned long) ba->ba_1_org;
598 tmp += ALIGN_SIZE;
599 tmp &= ~((unsigned long) ALIGN_SIZE);
600 ba->ba_1 = (void *) tmp;
601 k++;
602 }
1da177e4
LT
603 }
604 }
605 }
1da177e4
LT
606
607 /* Allocation and initialization of Statistics block */
608 size = sizeof(StatInfo_t);
609 mac_control->stats_mem = pci_alloc_consistent
610 (nic->pdev, size, &mac_control->stats_mem_phy);
611
612 if (!mac_control->stats_mem) {
20346722
K
613 /*
614 * In case of failure, free_shared_mem() is called, which
615 * should free any memory that was alloced till the
1da177e4
LT
616 * failure happened.
617 */
618 return -ENOMEM;
619 }
620 mac_control->stats_mem_sz = size;
621
622 tmp_v_addr = mac_control->stats_mem;
623 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
624 memset(tmp_v_addr, 0, size);
1da177e4
LT
625 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
626 (unsigned long long) tmp_p_addr);
627
628 return SUCCESS;
629}
630
20346722
K
631/**
632 * free_shared_mem - Free the allocated Memory
1da177e4
LT
633 * @nic: Device private variable.
634 * Description: This function is to free all memory locations allocated by
635 * the init_shared_mem() function and return it to the kernel.
636 */
637
638static void free_shared_mem(struct s2io_nic *nic)
639{
640 int i, j, blk_cnt, size;
641 void *tmp_v_addr;
642 dma_addr_t tmp_p_addr;
643 mac_info_t *mac_control;
644 struct config_param *config;
645 int lst_size, lst_per_page;
776bd20f 646 struct net_device *dev = nic->dev;
1da177e4
LT
647
648 if (!nic)
649 return;
650
651 mac_control = &nic->mac_control;
652 config = &nic->config;
653
654 lst_size = (sizeof(TxD_t) * config->max_txds);
655 lst_per_page = PAGE_SIZE / lst_size;
656
657 for (i = 0; i < config->tx_fifo_num; i++) {
658 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
659 lst_per_page);
660 for (j = 0; j < page_num; j++) {
661 int mem_blks = (j * lst_per_page);
776bd20f 662 if (!mac_control->fifos[i].list_info)
663 return;
664 if (!mac_control->fifos[i].list_info[mem_blks].
665 list_virt_addr)
1da177e4
LT
666 break;
667 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
668 mac_control->fifos[i].
669 list_info[mem_blks].
1da177e4 670 list_virt_addr,
20346722
K
671 mac_control->fifos[i].
672 list_info[mem_blks].
1da177e4
LT
673 list_phy_addr);
674 }
776bd20f 675 /* If we got a zero DMA address during allocation,
676 * free the page now
677 */
678 if (mac_control->zerodma_virt_addr) {
679 pci_free_consistent(nic->pdev, PAGE_SIZE,
680 mac_control->zerodma_virt_addr,
681 (dma_addr_t)0);
682 DBG_PRINT(INIT_DBG,
6b4d617d
AM
683 "%s: Freeing TxDL with zero DMA addr. ",
684 dev->name);
685 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
686 mac_control->zerodma_virt_addr);
776bd20f 687 }
20346722 688 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
689 }
690
1da177e4 691 size = SIZE_OF_BLOCK;
1da177e4 692 for (i = 0; i < config->rx_ring_num; i++) {
20346722 693 blk_cnt = mac_control->rings[i].block_count;
1da177e4 694 for (j = 0; j < blk_cnt; j++) {
20346722
K
695 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
696 block_virt_addr;
697 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
698 block_dma_addr;
1da177e4
LT
699 if (tmp_v_addr == NULL)
700 break;
701 pci_free_consistent(nic->pdev, size,
702 tmp_v_addr, tmp_p_addr);
da6971d8 703 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
704 }
705 }
706
da6971d8
AR
707 if (nic->rxd_mode >= RXD_MODE_3A) {
708 /* Freeing buffer storage addresses in 2BUFF mode. */
709 for (i = 0; i < config->rx_ring_num; i++) {
710 blk_cnt = config->rx_cfg[i].num_rxd /
711 (rxd_count[nic->rxd_mode] + 1);
712 for (j = 0; j < blk_cnt; j++) {
713 int k = 0;
714 if (!mac_control->rings[i].ba[j])
715 continue;
716 while (k != rxd_count[nic->rxd_mode]) {
717 buffAdd_t *ba =
718 &mac_control->rings[i].ba[j][k];
719 kfree(ba->ba_0_org);
720 kfree(ba->ba_1_org);
721 k++;
722 }
723 kfree(mac_control->rings[i].ba[j]);
1da177e4 724 }
da6971d8 725 kfree(mac_control->rings[i].ba);
1da177e4 726 }
1da177e4 727 }
1da177e4
LT
728
729 if (mac_control->stats_mem) {
730 pci_free_consistent(nic->pdev,
731 mac_control->stats_mem_sz,
732 mac_control->stats_mem,
733 mac_control->stats_mem_phy);
734 }
735}
736
541ae68f
K
737/**
738 * s2io_verify_pci_mode -
739 */
740
741static int s2io_verify_pci_mode(nic_t *nic)
742{
509a2671 743 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
744 register u64 val64 = 0;
745 int mode;
746
747 val64 = readq(&bar0->pci_mode);
748 mode = (u8)GET_PCI_MODE(val64);
749
750 if ( val64 & PCI_MODE_UNKNOWN_MODE)
751 return -1; /* Unknown PCI mode */
752 return mode;
753}
754
755
756/**
757 * s2io_print_pci_mode -
758 */
759static int s2io_print_pci_mode(nic_t *nic)
760{
509a2671 761 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
762 register u64 val64 = 0;
763 int mode;
764 struct config_param *config = &nic->config;
765
766 val64 = readq(&bar0->pci_mode);
767 mode = (u8)GET_PCI_MODE(val64);
768
769 if ( val64 & PCI_MODE_UNKNOWN_MODE)
770 return -1; /* Unknown PCI mode */
771
772 if (val64 & PCI_MODE_32_BITS) {
773 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
774 } else {
775 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
776 }
777
778 switch(mode) {
779 case PCI_MODE_PCI_33:
780 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
781 config->bus_speed = 33;
782 break;
783 case PCI_MODE_PCI_66:
784 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
785 config->bus_speed = 133;
786 break;
787 case PCI_MODE_PCIX_M1_66:
788 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
789 config->bus_speed = 133; /* Herc doubles the clock rate */
790 break;
791 case PCI_MODE_PCIX_M1_100:
792 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
793 config->bus_speed = 200;
794 break;
795 case PCI_MODE_PCIX_M1_133:
796 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
797 config->bus_speed = 266;
798 break;
799 case PCI_MODE_PCIX_M2_66:
800 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
801 config->bus_speed = 133;
802 break;
803 case PCI_MODE_PCIX_M2_100:
804 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
805 config->bus_speed = 200;
806 break;
807 case PCI_MODE_PCIX_M2_133:
808 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
809 config->bus_speed = 266;
810 break;
811 default:
812 return -1; /* Unsupported bus speed */
813 }
814
815 return mode;
816}
817
20346722
K
818/**
819 * init_nic - Initialization of hardware
1da177e4 820 * @nic: device peivate variable
20346722
K
821 * Description: The function sequentially configures every block
822 * of the H/W from their reset values.
823 * Return Value: SUCCESS on success and
1da177e4
LT
824 * '-1' on failure (endian settings incorrect).
825 */
826
827static int init_nic(struct s2io_nic *nic)
828{
829 XENA_dev_config_t __iomem *bar0 = nic->bar0;
830 struct net_device *dev = nic->dev;
831 register u64 val64 = 0;
832 void __iomem *add;
833 u32 time;
834 int i, j;
835 mac_info_t *mac_control;
836 struct config_param *config;
837 int mdio_cnt = 0, dtx_cnt = 0;
838 unsigned long long mem_share;
20346722 839 int mem_size;
1da177e4
LT
840
841 mac_control = &nic->mac_control;
842 config = &nic->config;
843
5e25b9dd 844 /* to set the swapper controle on the card */
20346722 845 if(s2io_set_swapper(nic)) {
1da177e4
LT
846 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
847 return -1;
848 }
849
541ae68f
K
850 /*
851 * Herc requires EOI to be removed from reset before XGXS, so..
852 */
853 if (nic->device_type & XFRAME_II_DEVICE) {
854 val64 = 0xA500000000ULL;
855 writeq(val64, &bar0->sw_reset);
856 msleep(500);
857 val64 = readq(&bar0->sw_reset);
858 }
859
1da177e4
LT
860 /* Remove XGXS from reset state */
861 val64 = 0;
862 writeq(val64, &bar0->sw_reset);
1da177e4 863 msleep(500);
20346722 864 val64 = readq(&bar0->sw_reset);
1da177e4
LT
865
866 /* Enable Receiving broadcasts */
867 add = &bar0->mac_cfg;
868 val64 = readq(&bar0->mac_cfg);
869 val64 |= MAC_RMAC_BCAST_ENABLE;
870 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
871 writel((u32) val64, add);
872 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
873 writel((u32) (val64 >> 32), (add + 4));
874
875 /* Read registers in all blocks */
876 val64 = readq(&bar0->mac_int_mask);
877 val64 = readq(&bar0->mc_int_mask);
878 val64 = readq(&bar0->xgxs_int_mask);
879
880 /* Set MTU */
881 val64 = dev->mtu;
882 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
883
20346722
K
884 /*
885 * Configuring the XAUI Interface of Xena.
1da177e4 886 * ***************************************
20346722
K
887 * To Configure the Xena's XAUI, one has to write a series
888 * of 64 bit values into two registers in a particular
889 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
890 * which will be defined in the array of configuration values
541ae68f 891 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
20346722 892 * to switch writing from one regsiter to another. We continue
1da177e4 893 * writing these values until we encounter the 'END_SIGN' macro.
20346722
K
894 * For example, After making a series of 21 writes into
895 * dtx_control register the 'SWITCH_SIGN' appears and hence we
1da177e4
LT
896 * start writing into mdio_control until we encounter END_SIGN.
897 */
541ae68f
K
898 if (nic->device_type & XFRAME_II_DEVICE) {
899 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 900 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 901 &bar0->dtx_control, UF);
541ae68f
K
902 if (dtx_cnt & 0x1)
903 msleep(1); /* Necessary!! */
1da177e4
LT
904 dtx_cnt++;
905 }
541ae68f
K
906 } else {
907 while (1) {
908 dtx_cfg:
909 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
910 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
911 dtx_cnt++;
912 goto mdio_cfg;
913 }
914 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
915 &bar0->dtx_control, UF);
916 val64 = readq(&bar0->dtx_control);
917 dtx_cnt++;
918 }
919 mdio_cfg:
920 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
921 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
922 mdio_cnt++;
923 goto dtx_cfg;
924 }
925 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
926 &bar0->mdio_control, UF);
927 val64 = readq(&bar0->mdio_control);
1da177e4 928 mdio_cnt++;
541ae68f
K
929 }
930 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
931 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
932 break;
933 } else {
1da177e4
LT
934 goto dtx_cfg;
935 }
1da177e4
LT
936 }
937 }
938
939 /* Tx DMA Initialization */
940 val64 = 0;
941 writeq(val64, &bar0->tx_fifo_partition_0);
942 writeq(val64, &bar0->tx_fifo_partition_1);
943 writeq(val64, &bar0->tx_fifo_partition_2);
944 writeq(val64, &bar0->tx_fifo_partition_3);
945
946
947 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
948 val64 |=
949 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
950 13) | vBIT(config->tx_cfg[i].fifo_priority,
951 ((i * 32) + 5), 3);
952
953 if (i == (config->tx_fifo_num - 1)) {
954 if (i % 2 == 0)
955 i++;
956 }
957
958 switch (i) {
959 case 1:
960 writeq(val64, &bar0->tx_fifo_partition_0);
961 val64 = 0;
962 break;
963 case 3:
964 writeq(val64, &bar0->tx_fifo_partition_1);
965 val64 = 0;
966 break;
967 case 5:
968 writeq(val64, &bar0->tx_fifo_partition_2);
969 val64 = 0;
970 break;
971 case 7:
972 writeq(val64, &bar0->tx_fifo_partition_3);
973 break;
974 }
975 }
976
977 /* Enable Tx FIFO partition 0. */
978 val64 = readq(&bar0->tx_fifo_partition_0);
979 val64 |= BIT(0); /* To enable the FIFO partition. */
980 writeq(val64, &bar0->tx_fifo_partition_0);
981
5e25b9dd
K
982 /*
983 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
984 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
985 */
541ae68f
K
986 if ((nic->device_type == XFRAME_I_DEVICE) &&
987 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
988 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
989
1da177e4
LT
990 val64 = readq(&bar0->tx_fifo_partition_0);
991 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
992 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
993
20346722
K
994 /*
995 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
996 * integrity checking.
997 */
998 val64 = readq(&bar0->tx_pa_cfg);
999 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1000 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1001 writeq(val64, &bar0->tx_pa_cfg);
1002
1003 /* Rx DMA intialization. */
1004 val64 = 0;
1005 for (i = 0; i < config->rx_ring_num; i++) {
1006 val64 |=
1007 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1008 3);
1009 }
1010 writeq(val64, &bar0->rx_queue_priority);
1011
20346722
K
1012 /*
1013 * Allocating equal share of memory to all the
1da177e4
LT
1014 * configured Rings.
1015 */
1016 val64 = 0;
541ae68f
K
1017 if (nic->device_type & XFRAME_II_DEVICE)
1018 mem_size = 32;
1019 else
1020 mem_size = 64;
1021
1da177e4
LT
1022 for (i = 0; i < config->rx_ring_num; i++) {
1023 switch (i) {
1024 case 0:
20346722
K
1025 mem_share = (mem_size / config->rx_ring_num +
1026 mem_size % config->rx_ring_num);
1da177e4
LT
1027 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1028 continue;
1029 case 1:
20346722 1030 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1031 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1032 continue;
1033 case 2:
20346722 1034 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1035 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1036 continue;
1037 case 3:
20346722 1038 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1039 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1040 continue;
1041 case 4:
20346722 1042 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1043 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1044 continue;
1045 case 5:
20346722 1046 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1047 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1048 continue;
1049 case 6:
20346722 1050 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1051 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1052 continue;
1053 case 7:
20346722 1054 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1055 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1056 continue;
1057 }
1058 }
1059 writeq(val64, &bar0->rx_queue_cfg);
1060
20346722 1061 /*
5e25b9dd
K
1062 * Filling Tx round robin registers
1063 * as per the number of FIFOs
1da177e4 1064 */
5e25b9dd
K
1065 switch (config->tx_fifo_num) {
1066 case 1:
1067 val64 = 0x0000000000000000ULL;
1068 writeq(val64, &bar0->tx_w_round_robin_0);
1069 writeq(val64, &bar0->tx_w_round_robin_1);
1070 writeq(val64, &bar0->tx_w_round_robin_2);
1071 writeq(val64, &bar0->tx_w_round_robin_3);
1072 writeq(val64, &bar0->tx_w_round_robin_4);
1073 break;
1074 case 2:
1075 val64 = 0x0000010000010000ULL;
1076 writeq(val64, &bar0->tx_w_round_robin_0);
1077 val64 = 0x0100000100000100ULL;
1078 writeq(val64, &bar0->tx_w_round_robin_1);
1079 val64 = 0x0001000001000001ULL;
1080 writeq(val64, &bar0->tx_w_round_robin_2);
1081 val64 = 0x0000010000010000ULL;
1082 writeq(val64, &bar0->tx_w_round_robin_3);
1083 val64 = 0x0100000000000000ULL;
1084 writeq(val64, &bar0->tx_w_round_robin_4);
1085 break;
1086 case 3:
1087 val64 = 0x0001000102000001ULL;
1088 writeq(val64, &bar0->tx_w_round_robin_0);
1089 val64 = 0x0001020000010001ULL;
1090 writeq(val64, &bar0->tx_w_round_robin_1);
1091 val64 = 0x0200000100010200ULL;
1092 writeq(val64, &bar0->tx_w_round_robin_2);
1093 val64 = 0x0001000102000001ULL;
1094 writeq(val64, &bar0->tx_w_round_robin_3);
1095 val64 = 0x0001020000000000ULL;
1096 writeq(val64, &bar0->tx_w_round_robin_4);
1097 break;
1098 case 4:
1099 val64 = 0x0001020300010200ULL;
1100 writeq(val64, &bar0->tx_w_round_robin_0);
1101 val64 = 0x0100000102030001ULL;
1102 writeq(val64, &bar0->tx_w_round_robin_1);
1103 val64 = 0x0200010000010203ULL;
1104 writeq(val64, &bar0->tx_w_round_robin_2);
1105 val64 = 0x0001020001000001ULL;
1106 writeq(val64, &bar0->tx_w_round_robin_3);
1107 val64 = 0x0203000100000000ULL;
1108 writeq(val64, &bar0->tx_w_round_robin_4);
1109 break;
1110 case 5:
1111 val64 = 0x0001000203000102ULL;
1112 writeq(val64, &bar0->tx_w_round_robin_0);
1113 val64 = 0x0001020001030004ULL;
1114 writeq(val64, &bar0->tx_w_round_robin_1);
1115 val64 = 0x0001000203000102ULL;
1116 writeq(val64, &bar0->tx_w_round_robin_2);
1117 val64 = 0x0001020001030004ULL;
1118 writeq(val64, &bar0->tx_w_round_robin_3);
1119 val64 = 0x0001000000000000ULL;
1120 writeq(val64, &bar0->tx_w_round_robin_4);
1121 break;
1122 case 6:
1123 val64 = 0x0001020304000102ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 val64 = 0x0304050001020001ULL;
1126 writeq(val64, &bar0->tx_w_round_robin_1);
1127 val64 = 0x0203000100000102ULL;
1128 writeq(val64, &bar0->tx_w_round_robin_2);
1129 val64 = 0x0304000102030405ULL;
1130 writeq(val64, &bar0->tx_w_round_robin_3);
1131 val64 = 0x0001000200000000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_4);
1133 break;
1134 case 7:
1135 val64 = 0x0001020001020300ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_0);
1137 val64 = 0x0102030400010203ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_1);
1139 val64 = 0x0405060001020001ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 val64 = 0x0304050000010200ULL;
1142 writeq(val64, &bar0->tx_w_round_robin_3);
1143 val64 = 0x0102030000000000ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_4);
1145 break;
1146 case 8:
1147 val64 = 0x0001020300040105ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_0);
1149 val64 = 0x0200030106000204ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_1);
1151 val64 = 0x0103000502010007ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_2);
1153 val64 = 0x0304010002060500ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_3);
1155 val64 = 0x0103020400000000ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_4);
1157 break;
1158 }
1159
1160 /* Filling the Rx round robin registers as per the
1161 * number of Rings and steering based on QoS.
1162 */
1163 switch (config->rx_ring_num) {
1164 case 1:
1165 val64 = 0x8080808080808080ULL;
1166 writeq(val64, &bar0->rts_qos_steering);
1167 break;
1168 case 2:
1169 val64 = 0x0000010000010000ULL;
1170 writeq(val64, &bar0->rx_w_round_robin_0);
1171 val64 = 0x0100000100000100ULL;
1172 writeq(val64, &bar0->rx_w_round_robin_1);
1173 val64 = 0x0001000001000001ULL;
1174 writeq(val64, &bar0->rx_w_round_robin_2);
1175 val64 = 0x0000010000010000ULL;
1176 writeq(val64, &bar0->rx_w_round_robin_3);
1177 val64 = 0x0100000000000000ULL;
1178 writeq(val64, &bar0->rx_w_round_robin_4);
1179
1180 val64 = 0x8080808040404040ULL;
1181 writeq(val64, &bar0->rts_qos_steering);
1182 break;
1183 case 3:
1184 val64 = 0x0001000102000001ULL;
1185 writeq(val64, &bar0->rx_w_round_robin_0);
1186 val64 = 0x0001020000010001ULL;
1187 writeq(val64, &bar0->rx_w_round_robin_1);
1188 val64 = 0x0200000100010200ULL;
1189 writeq(val64, &bar0->rx_w_round_robin_2);
1190 val64 = 0x0001000102000001ULL;
1191 writeq(val64, &bar0->rx_w_round_robin_3);
1192 val64 = 0x0001020000000000ULL;
1193 writeq(val64, &bar0->rx_w_round_robin_4);
1194
1195 val64 = 0x8080804040402020ULL;
1196 writeq(val64, &bar0->rts_qos_steering);
1197 break;
1198 case 4:
1199 val64 = 0x0001020300010200ULL;
1200 writeq(val64, &bar0->rx_w_round_robin_0);
1201 val64 = 0x0100000102030001ULL;
1202 writeq(val64, &bar0->rx_w_round_robin_1);
1203 val64 = 0x0200010000010203ULL;
1204 writeq(val64, &bar0->rx_w_round_robin_2);
1205 val64 = 0x0001020001000001ULL;
1206 writeq(val64, &bar0->rx_w_round_robin_3);
1207 val64 = 0x0203000100000000ULL;
1208 writeq(val64, &bar0->rx_w_round_robin_4);
1209
1210 val64 = 0x8080404020201010ULL;
1211 writeq(val64, &bar0->rts_qos_steering);
1212 break;
1213 case 5:
1214 val64 = 0x0001000203000102ULL;
1215 writeq(val64, &bar0->rx_w_round_robin_0);
1216 val64 = 0x0001020001030004ULL;
1217 writeq(val64, &bar0->rx_w_round_robin_1);
1218 val64 = 0x0001000203000102ULL;
1219 writeq(val64, &bar0->rx_w_round_robin_2);
1220 val64 = 0x0001020001030004ULL;
1221 writeq(val64, &bar0->rx_w_round_robin_3);
1222 val64 = 0x0001000000000000ULL;
1223 writeq(val64, &bar0->rx_w_round_robin_4);
1224
1225 val64 = 0x8080404020201008ULL;
1226 writeq(val64, &bar0->rts_qos_steering);
1227 break;
1228 case 6:
1229 val64 = 0x0001020304000102ULL;
1230 writeq(val64, &bar0->rx_w_round_robin_0);
1231 val64 = 0x0304050001020001ULL;
1232 writeq(val64, &bar0->rx_w_round_robin_1);
1233 val64 = 0x0203000100000102ULL;
1234 writeq(val64, &bar0->rx_w_round_robin_2);
1235 val64 = 0x0304000102030405ULL;
1236 writeq(val64, &bar0->rx_w_round_robin_3);
1237 val64 = 0x0001000200000000ULL;
1238 writeq(val64, &bar0->rx_w_round_robin_4);
1239
1240 val64 = 0x8080404020100804ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1242 break;
1243 case 7:
1244 val64 = 0x0001020001020300ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0102030400010203ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0405060001020001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0304050000010200ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0102030000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255 val64 = 0x8080402010080402ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1257 break;
1258 case 8:
1259 val64 = 0x0001020300040105ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0200030106000204ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0103000502010007ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0304010002060500ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0103020400000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270 val64 = 0x8040201008040201ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1272 break;
1273 }
1da177e4
LT
1274
1275 /* UDP Fix */
1276 val64 = 0;
20346722 1277 for (i = 0; i < 8; i++)
1da177e4
LT
1278 writeq(val64, &bar0->rts_frm_len_n[i]);
1279
5e25b9dd
K
1280 /* Set the default rts frame length for the rings configured */
1281 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1282 for (i = 0 ; i < config->rx_ring_num ; i++)
1283 writeq(val64, &bar0->rts_frm_len_n[i]);
1284
1285 /* Set the frame length for the configured rings
1286 * desired by the user
1287 */
1288 for (i = 0; i < config->rx_ring_num; i++) {
1289 /* If rts_frm_len[i] == 0 then it is assumed that user not
1290 * specified frame length steering.
1291 * If the user provides the frame length then program
1292 * the rts_frm_len register for those values or else
1293 * leave it as it is.
1294 */
1295 if (rts_frm_len[i] != 0) {
1296 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1297 &bar0->rts_frm_len_n[i]);
1298 }
1299 }
1da177e4 1300
20346722 1301 /* Program statistics memory */
1da177e4 1302 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1303
541ae68f
K
1304 if (nic->device_type == XFRAME_II_DEVICE) {
1305 val64 = STAT_BC(0x320);
1306 writeq(val64, &bar0->stat_byte_cnt);
1307 }
1308
20346722 1309 /*
1da177e4
LT
1310 * Initializing the sampling rate for the device to calculate the
1311 * bandwidth utilization.
1312 */
1313 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1314 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1315 writeq(val64, &bar0->mac_link_util);
1316
1317
20346722
K
1318 /*
1319 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1320 * Scheme.
1321 */
20346722
K
1322 /*
1323 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1324 * 250 interrupts per sec. Continuous interrupts are enabled
1325 * by default.
1326 */
541ae68f
K
1327 if (nic->device_type == XFRAME_II_DEVICE) {
1328 int count = (nic->config.bus_speed * 125)/2;
1329 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1330 } else {
1331
1332 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1333 }
1334 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1335 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1336 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1337 if (use_continuous_tx_intrs)
1338 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1339 writeq(val64, &bar0->tti_data1_mem);
1340
1341 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1342 TTI_DATA2_MEM_TX_UFC_B(0x20) |
5e25b9dd 1343 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1344 writeq(val64, &bar0->tti_data2_mem);
1345
1346 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1347 writeq(val64, &bar0->tti_command_mem);
1348
20346722 1349 /*
1da177e4
LT
1350 * Once the operation completes, the Strobe bit of the command
1351 * register will be reset. We poll for this particular condition
1352 * We wait for a maximum of 500ms for the operation to complete,
1353 * if it's not complete by then we return error.
1354 */
1355 time = 0;
1356 while (TRUE) {
1357 val64 = readq(&bar0->tti_command_mem);
1358 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1359 break;
1360 }
1361 if (time > 10) {
1362 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1363 dev->name);
1364 return -1;
1365 }
1366 msleep(50);
1367 time++;
1368 }
1369
b6e3f982
K
1370 if (nic->config.bimodal) {
1371 int k = 0;
1372 for (k = 0; k < config->rx_ring_num; k++) {
1373 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1374 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1375 writeq(val64, &bar0->tti_command_mem);
541ae68f 1376
541ae68f 1377 /*
b6e3f982
K
1378 * Once the operation completes, the Strobe bit of the command
1379 * register will be reset. We poll for this particular condition
1380 * We wait for a maximum of 500ms for the operation to complete,
1381 * if it's not complete by then we return error.
1382 */
1383 time = 0;
1384 while (TRUE) {
1385 val64 = readq(&bar0->tti_command_mem);
1386 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1387 break;
1388 }
1389 if (time > 10) {
1390 DBG_PRINT(ERR_DBG,
1391 "%s: TTI init Failed\n",
1392 dev->name);
1393 return -1;
1394 }
1395 time++;
1396 msleep(50);
1397 }
1398 }
541ae68f 1399 } else {
1da177e4 1400
b6e3f982
K
1401 /* RTI Initialization */
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 /*
1404 * Programmed to generate Apprx 500 Intrs per
1405 * second
1406 */
1407 int count = (nic->config.bus_speed * 125)/4;
1408 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1409 } else {
1410 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1411 }
1412 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1413 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1414 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1415
b6e3f982 1416 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1417
b6e3f982 1418 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1419 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1420 if (nic->intr_type == MSI_X)
1421 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1422 RTI_DATA2_MEM_RX_UFC_D(0x40));
1423 else
1424 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1425 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1426 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1427
b6e3f982
K
1428 for (i = 0; i < config->rx_ring_num; i++) {
1429 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1430 | RTI_CMD_MEM_OFFSET(i);
1431 writeq(val64, &bar0->rti_command_mem);
1432
1433 /*
1434 * Once the operation completes, the Strobe bit of the
1435 * command register will be reset. We poll for this
1436 * particular condition. We wait for a maximum of 500ms
1437 * for the operation to complete, if it's not complete
1438 * by then we return error.
1439 */
1440 time = 0;
1441 while (TRUE) {
1442 val64 = readq(&bar0->rti_command_mem);
1443 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1444 break;
1445 }
1446 if (time > 10) {
1447 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1448 dev->name);
1449 return -1;
1450 }
1451 time++;
1452 msleep(50);
1453 }
1da177e4 1454 }
1da177e4
LT
1455 }
1456
20346722
K
1457 /*
1458 * Initializing proper values as Pause threshold into all
1da177e4
LT
1459 * the 8 Queues on Rx side.
1460 */
1461 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1462 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1463
1464 /* Disable RMAC PAD STRIPPING */
509a2671 1465 add = &bar0->mac_cfg;
1da177e4
LT
1466 val64 = readq(&bar0->mac_cfg);
1467 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1468 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1469 writel((u32) (val64), add);
1470 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1471 writel((u32) (val64 >> 32), (add + 4));
1472 val64 = readq(&bar0->mac_cfg);
1473
20346722
K
1474 /*
1475 * Set the time value to be inserted in the pause frame
1da177e4
LT
1476 * generated by xena.
1477 */
1478 val64 = readq(&bar0->rmac_pause_cfg);
1479 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1480 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1481 writeq(val64, &bar0->rmac_pause_cfg);
1482
20346722 1483 /*
1da177e4
LT
1484 * Set the Threshold Limit for Generating the pause frame
1485 * If the amount of data in any Queue exceeds ratio of
1486 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1487 * pause frame is generated
1488 */
1489 val64 = 0;
1490 for (i = 0; i < 4; i++) {
1491 val64 |=
1492 (((u64) 0xFF00 | nic->mac_control.
1493 mc_pause_threshold_q0q3)
1494 << (i * 2 * 8));
1495 }
1496 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1497
1498 val64 = 0;
1499 for (i = 0; i < 4; i++) {
1500 val64 |=
1501 (((u64) 0xFF00 | nic->mac_control.
1502 mc_pause_threshold_q4q7)
1503 << (i * 2 * 8));
1504 }
1505 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1506
20346722
K
1507 /*
1508 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1509 * exceeded the limit pointed by shared_splits
1510 */
1511 val64 = readq(&bar0->pic_control);
1512 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1513 writeq(val64, &bar0->pic_control);
1514
541ae68f
K
1515 /*
1516 * Programming the Herc to split every write transaction
1517 * that does not start on an ADB to reduce disconnects.
1518 */
1519 if (nic->device_type == XFRAME_II_DEVICE) {
1520 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1521 writeq(val64, &bar0->wreq_split_mask);
1522 }
1523
a371a07d
K
1524 /* Setting Link stability period to 64 ms */
1525 if (nic->device_type == XFRAME_II_DEVICE) {
1526 val64 = MISC_LINK_STABILITY_PRD(3);
1527 writeq(val64, &bar0->misc_control);
1528 }
1529
1da177e4
LT
1530 return SUCCESS;
1531}
a371a07d
K
1532#define LINK_UP_DOWN_INTERRUPT 1
1533#define MAC_RMAC_ERR_TIMER 2
1534
a371a07d
K
1535int s2io_link_fault_indication(nic_t *nic)
1536{
cc6e7c44
RA
1537 if (nic->intr_type != INTA)
1538 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 return LINK_UP_DOWN_INTERRUPT;
1541 else
1542 return MAC_RMAC_ERR_TIMER;
1543}
1da177e4 1544
20346722
K
1545/**
1546 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1547 * @nic: device private variable,
1548 * @mask: A mask indicating which Intr block must be modified and,
1549 * @flag: A flag indicating whether to enable or disable the Intrs.
1550 * Description: This function will either disable or enable the interrupts
20346722
K
1551 * depending on the flag argument. The mask argument can be used to
1552 * enable/disable any Intr block.
1da177e4
LT
1553 * Return Value: NONE.
1554 */
1555
1556static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1557{
1558 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1559 register u64 val64 = 0, temp64 = 0;
1560
1561 /* Top level interrupt classification */
1562 /* PIC Interrupts */
1563 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1564 /* Enable PIC Intrs in the general intr mask register */
1565 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1566 if (flag == ENABLE_INTRS) {
1567 temp64 = readq(&bar0->general_int_mask);
1568 temp64 &= ~((u64) val64);
1569 writeq(temp64, &bar0->general_int_mask);
20346722 1570 /*
a371a07d
K
1571 * If Hercules adapter enable GPIO otherwise
1572 * disabled all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1573 * interrupts for now.
1574 * TODO
1da177e4 1575 */
a371a07d
K
1576 if (s2io_link_fault_indication(nic) ==
1577 LINK_UP_DOWN_INTERRUPT ) {
1578 temp64 = readq(&bar0->pic_int_mask);
1579 temp64 &= ~((u64) PIC_INT_GPIO);
1580 writeq(temp64, &bar0->pic_int_mask);
1581 temp64 = readq(&bar0->gpio_int_mask);
1582 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1583 writeq(temp64, &bar0->gpio_int_mask);
1584 } else {
1585 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1586 }
20346722 1587 /*
1da177e4
LT
1588 * No MSI Support is available presently, so TTI and
1589 * RTI interrupts are also disabled.
1590 */
1591 } else if (flag == DISABLE_INTRS) {
20346722
K
1592 /*
1593 * Disable PIC Intrs in the general
1594 * intr mask register
1da177e4
LT
1595 */
1596 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1597 temp64 = readq(&bar0->general_int_mask);
1598 val64 |= temp64;
1599 writeq(val64, &bar0->general_int_mask);
1600 }
1601 }
1602
1603 /* DMA Interrupts */
1604 /* Enabling/Disabling Tx DMA interrupts */
1605 if (mask & TX_DMA_INTR) {
1606 /* Enable TxDMA Intrs in the general intr mask register */
1607 val64 = TXDMA_INT_M;
1608 if (flag == ENABLE_INTRS) {
1609 temp64 = readq(&bar0->general_int_mask);
1610 temp64 &= ~((u64) val64);
1611 writeq(temp64, &bar0->general_int_mask);
20346722
K
1612 /*
1613 * Keep all interrupts other than PFC interrupt
1da177e4
LT
1614 * and PCC interrupt disabled in DMA level.
1615 */
1616 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1617 TXDMA_PCC_INT_M);
1618 writeq(val64, &bar0->txdma_int_mask);
20346722
K
1619 /*
1620 * Enable only the MISC error 1 interrupt in PFC block
1da177e4
LT
1621 */
1622 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1623 writeq(val64, &bar0->pfc_err_mask);
20346722
K
1624 /*
1625 * Enable only the FB_ECC error interrupt in PCC block
1da177e4
LT
1626 */
1627 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1628 writeq(val64, &bar0->pcc_err_mask);
1629 } else if (flag == DISABLE_INTRS) {
20346722
K
1630 /*
1631 * Disable TxDMA Intrs in the general intr mask
1632 * register
1da177e4
LT
1633 */
1634 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1635 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1636 temp64 = readq(&bar0->general_int_mask);
1637 val64 |= temp64;
1638 writeq(val64, &bar0->general_int_mask);
1639 }
1640 }
1641
1642 /* Enabling/Disabling Rx DMA interrupts */
1643 if (mask & RX_DMA_INTR) {
1644 /* Enable RxDMA Intrs in the general intr mask register */
1645 val64 = RXDMA_INT_M;
1646 if (flag == ENABLE_INTRS) {
1647 temp64 = readq(&bar0->general_int_mask);
1648 temp64 &= ~((u64) val64);
1649 writeq(temp64, &bar0->general_int_mask);
20346722
K
1650 /*
1651 * All RxDMA block interrupts are disabled for now
1652 * TODO
1da177e4
LT
1653 */
1654 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1655 } else if (flag == DISABLE_INTRS) {
20346722
K
1656 /*
1657 * Disable RxDMA Intrs in the general intr mask
1658 * register
1da177e4
LT
1659 */
1660 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1661 temp64 = readq(&bar0->general_int_mask);
1662 val64 |= temp64;
1663 writeq(val64, &bar0->general_int_mask);
1664 }
1665 }
1666
1667 /* MAC Interrupts */
1668 /* Enabling/Disabling MAC interrupts */
1669 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1670 val64 = TXMAC_INT_M | RXMAC_INT_M;
1671 if (flag == ENABLE_INTRS) {
1672 temp64 = readq(&bar0->general_int_mask);
1673 temp64 &= ~((u64) val64);
1674 writeq(temp64, &bar0->general_int_mask);
20346722
K
1675 /*
1676 * All MAC block error interrupts are disabled for now
1da177e4
LT
1677 * TODO
1678 */
1da177e4 1679 } else if (flag == DISABLE_INTRS) {
20346722
K
1680 /*
1681 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1682 */
1683 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1684 writeq(DISABLE_ALL_INTRS,
1685 &bar0->mac_rmac_err_mask);
1686
1687 temp64 = readq(&bar0->general_int_mask);
1688 val64 |= temp64;
1689 writeq(val64, &bar0->general_int_mask);
1690 }
1691 }
1692
1693 /* XGXS Interrupts */
1694 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1695 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1696 if (flag == ENABLE_INTRS) {
1697 temp64 = readq(&bar0->general_int_mask);
1698 temp64 &= ~((u64) val64);
1699 writeq(temp64, &bar0->general_int_mask);
20346722 1700 /*
1da177e4 1701 * All XGXS block error interrupts are disabled for now
20346722 1702 * TODO
1da177e4
LT
1703 */
1704 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1705 } else if (flag == DISABLE_INTRS) {
20346722
K
1706 /*
1707 * Disable MC Intrs in the general intr mask register
1da177e4
LT
1708 */
1709 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1710 temp64 = readq(&bar0->general_int_mask);
1711 val64 |= temp64;
1712 writeq(val64, &bar0->general_int_mask);
1713 }
1714 }
1715
1716 /* Memory Controller(MC) interrupts */
1717 if (mask & MC_INTR) {
1718 val64 = MC_INT_M;
1719 if (flag == ENABLE_INTRS) {
1720 temp64 = readq(&bar0->general_int_mask);
1721 temp64 &= ~((u64) val64);
1722 writeq(temp64, &bar0->general_int_mask);
20346722 1723 /*
5e25b9dd 1724 * Enable all MC Intrs.
1da177e4 1725 */
5e25b9dd
K
1726 writeq(0x0, &bar0->mc_int_mask);
1727 writeq(0x0, &bar0->mc_err_mask);
1da177e4
LT
1728 } else if (flag == DISABLE_INTRS) {
1729 /*
1730 * Disable MC Intrs in the general intr mask register
1731 */
1732 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1733 temp64 = readq(&bar0->general_int_mask);
1734 val64 |= temp64;
1735 writeq(val64, &bar0->general_int_mask);
1736 }
1737 }
1738
1739
1740 /* Tx traffic interrupts */
1741 if (mask & TX_TRAFFIC_INTR) {
1742 val64 = TXTRAFFIC_INT_M;
1743 if (flag == ENABLE_INTRS) {
1744 temp64 = readq(&bar0->general_int_mask);
1745 temp64 &= ~((u64) val64);
1746 writeq(temp64, &bar0->general_int_mask);
20346722 1747 /*
1da177e4 1748 * Enable all the Tx side interrupts
20346722 1749 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1750 */
1751 writeq(0x0, &bar0->tx_traffic_mask);
1752 } else if (flag == DISABLE_INTRS) {
20346722
K
1753 /*
1754 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1755 * register.
1756 */
1757 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1758 temp64 = readq(&bar0->general_int_mask);
1759 val64 |= temp64;
1760 writeq(val64, &bar0->general_int_mask);
1761 }
1762 }
1763
1764 /* Rx traffic interrupts */
1765 if (mask & RX_TRAFFIC_INTR) {
1766 val64 = RXTRAFFIC_INT_M;
1767 if (flag == ENABLE_INTRS) {
1768 temp64 = readq(&bar0->general_int_mask);
1769 temp64 &= ~((u64) val64);
1770 writeq(temp64, &bar0->general_int_mask);
1771 /* writing 0 Enables all 8 RX interrupt levels */
1772 writeq(0x0, &bar0->rx_traffic_mask);
1773 } else if (flag == DISABLE_INTRS) {
20346722
K
1774 /*
1775 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1776 * register.
1777 */
1778 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1779 temp64 = readq(&bar0->general_int_mask);
1780 val64 |= temp64;
1781 writeq(val64, &bar0->general_int_mask);
1782 }
1783 }
1784}
1785
541ae68f 1786static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
20346722
K
1787{
1788 int ret = 0;
1789
1790 if (flag == FALSE) {
541ae68f 1791 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1792 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1793 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1794 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1795 ret = 1;
1796 }
541ae68f 1797 }else {
5e25b9dd
K
1798 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1799 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1800 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1801 ret = 1;
1802 }
20346722
K
1803 }
1804 } else {
541ae68f 1805 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1806 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1807 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1808 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1809 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1810 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1811 ret = 1;
1812 }
1813 } else {
1814 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1815 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1816 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1817 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1818 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1819 ret = 1;
1820 }
20346722
K
1821 }
1822 }
1823
1824 return ret;
1825}
1826/**
1827 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4
LT
1828 * @val64 : Value read from adapter status register.
1829 * @flag : indicates if the adapter enable bit was ever written once
1830 * before.
1831 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1832 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1833 * differs and the calling function passes the input argument flag to
1834 * indicate this.
20346722 1835 * Return: 1 If xena is quiescence
1da177e4
LT
1836 * 0 If Xena is not quiescence
1837 */
1838
20346722 1839static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1da177e4 1840{
541ae68f 1841 int ret = 0, herc;
1da177e4 1842 u64 tmp64 = ~((u64) val64);
5e25b9dd 1843 int rev_id = get_xena_rev_id(sp->pdev);
1da177e4 1844
541ae68f 1845 herc = (sp->device_type == XFRAME_II_DEVICE);
1da177e4
LT
1846 if (!
1847 (tmp64 &
1848 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1849 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1850 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1851 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1852 ADAPTER_STATUS_P_PLL_LOCK))) {
541ae68f 1853 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1da177e4
LT
1854 }
1855
1856 return ret;
1857}
1858
1859/**
1860 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1861 * @sp: Pointer to device specifc structure
20346722 1862 * Description :
1da177e4
LT
1863 * New procedure to clear mac address reading problems on Alpha platforms
1864 *
1865 */
1866
20346722 1867void fix_mac_address(nic_t * sp)
1da177e4
LT
1868{
1869 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1870 u64 val64;
1871 int i = 0;
1872
1873 while (fix_mac[i] != END_SIGN) {
1874 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1875 udelay(10);
1da177e4
LT
1876 val64 = readq(&bar0->gpio_control);
1877 }
1878}
1879
1880/**
20346722 1881 * start_nic - Turns the device on
1da177e4 1882 * @nic : device private variable.
20346722
K
1883 * Description:
1884 * This function actually turns the device on. Before this function is
1885 * called,all Registers are configured from their reset states
1886 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1887 * calling this function, the device interrupts are cleared and the NIC is
1888 * literally switched on by writing into the adapter control register.
20346722 1889 * Return Value:
1da177e4
LT
1890 * SUCCESS on success and -1 on failure.
1891 */
1892
1893static int start_nic(struct s2io_nic *nic)
1894{
1895 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1896 struct net_device *dev = nic->dev;
1897 register u64 val64 = 0;
20346722
K
1898 u16 interruptible;
1899 u16 subid, i;
1da177e4
LT
1900 mac_info_t *mac_control;
1901 struct config_param *config;
1902
1903 mac_control = &nic->mac_control;
1904 config = &nic->config;
1905
1906 /* PRC Initialization and configuration */
1907 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1908 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1909 &bar0->prc_rxd0_n[i]);
1910
1911 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1912 if (nic->config.bimodal)
1913 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1914 if (nic->rxd_mode == RXD_MODE_1)
1915 val64 |= PRC_CTRL_RC_ENABLED;
1916 else
1917 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1da177e4
LT
1918 writeq(val64, &bar0->prc_ctrl_n[i]);
1919 }
1920
da6971d8
AR
1921 if (nic->rxd_mode == RXD_MODE_3B) {
1922 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1923 val64 = readq(&bar0->rx_pa_cfg);
1924 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1925 writeq(val64, &bar0->rx_pa_cfg);
1926 }
1da177e4 1927
20346722 1928 /*
1da177e4
LT
1929 * Enabling MC-RLDRAM. After enabling the device, we timeout
1930 * for around 100ms, which is approximately the time required
1931 * for the device to be ready for operation.
1932 */
1933 val64 = readq(&bar0->mc_rldram_mrs);
1934 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1935 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1936 val64 = readq(&bar0->mc_rldram_mrs);
1937
20346722 1938 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1939
1940 /* Enabling ECC Protection. */
1941 val64 = readq(&bar0->adapter_control);
1942 val64 &= ~ADAPTER_ECC_EN;
1943 writeq(val64, &bar0->adapter_control);
1944
20346722
K
1945 /*
1946 * Clearing any possible Link state change interrupts that
1da177e4
LT
1947 * could have popped up just before Enabling the card.
1948 */
1949 val64 = readq(&bar0->mac_rmac_err_reg);
1950 if (val64)
1951 writeq(val64, &bar0->mac_rmac_err_reg);
1952
20346722
K
1953 /*
1954 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
1955 * it.
1956 */
1957 val64 = readq(&bar0->adapter_status);
20346722 1958 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
1959 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1960 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1961 (unsigned long long) val64);
1962 return FAILURE;
1963 }
1964
1965 /* Enable select interrupts */
cc6e7c44
RA
1966 if (nic->intr_type != INTA)
1967 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1968 else {
1969 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1970 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1971 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1972 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1973 }
1da177e4 1974
20346722 1975 /*
1da177e4 1976 * With some switches, link might be already up at this point.
20346722
K
1977 * Because of this weird behavior, when we enable laser,
1978 * we may not get link. We need to handle this. We cannot
1979 * figure out which switch is misbehaving. So we are forced to
1980 * make a global change.
1da177e4
LT
1981 */
1982
1983 /* Enabling Laser. */
1984 val64 = readq(&bar0->adapter_control);
1985 val64 |= ADAPTER_EOI_TX_ON;
1986 writeq(val64, &bar0->adapter_control);
1987
1988 /* SXE-002: Initialize link and activity LED */
1989 subid = nic->pdev->subsystem_device;
541ae68f
K
1990 if (((subid & 0xFF) >= 0x07) &&
1991 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
1992 val64 = readq(&bar0->gpio_control);
1993 val64 |= 0x0000800000000000ULL;
1994 writeq(val64, &bar0->gpio_control);
1995 val64 = 0x0411040400000000ULL;
509a2671 1996 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
1997 }
1998
20346722
K
1999 /*
2000 * Don't see link state interrupts on certain switches, so
1da177e4
LT
2001 * directly scheduling a link state task from here.
2002 */
2003 schedule_work(&nic->set_link_task);
2004
1da177e4
LT
2005 return SUCCESS;
2006}
2007
20346722
K
2008/**
2009 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2010 * @nic : device private variable.
20346722 2011 * Description:
1da177e4 2012 * Free all queued Tx buffers.
20346722 2013 * Return Value: void
1da177e4
LT
2014*/
2015
2016static void free_tx_buffers(struct s2io_nic *nic)
2017{
2018 struct net_device *dev = nic->dev;
2019 struct sk_buff *skb;
2020 TxD_t *txdp;
2021 int i, j;
2022 mac_info_t *mac_control;
2023 struct config_param *config;
1ddc50d4 2024 int cnt = 0, frg_cnt;
1da177e4
LT
2025
2026 mac_control = &nic->mac_control;
2027 config = &nic->config;
2028
2029 for (i = 0; i < config->tx_fifo_num; i++) {
2030 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
20346722 2031 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1da177e4
LT
2032 list_virt_addr;
2033 skb =
2034 (struct sk_buff *) ((unsigned long) txdp->
2035 Host_Control);
2036 if (skb == NULL) {
1ddc50d4
K
2037 memset(txdp, 0, sizeof(TxD_t) *
2038 config->max_txds);
1da177e4
LT
2039 continue;
2040 }
1ddc50d4
K
2041 frg_cnt = skb_shinfo(skb)->nr_frags;
2042 pci_unmap_single(nic->pdev, (dma_addr_t)
2043 txdp->Buffer_Pointer,
2044 skb->len - skb->data_len,
2045 PCI_DMA_TODEVICE);
2046 if (frg_cnt) {
2047 TxD_t *temp;
2048 temp = txdp;
2049 txdp++;
2050 for (j = 0; j < frg_cnt; j++, txdp++) {
2051 skb_frag_t *frag =
2052 &skb_shinfo(skb)->frags[j];
2053 pci_unmap_page(nic->pdev,
2054 (dma_addr_t)
2055 txdp->
2056 Buffer_Pointer,
2057 frag->size,
2058 PCI_DMA_TODEVICE);
2059 }
2060 txdp = temp;
2061 }
1da177e4 2062 dev_kfree_skb(skb);
1ddc50d4 2063 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
1da177e4
LT
2064 cnt++;
2065 }
2066 DBG_PRINT(INTR_DBG,
2067 "%s:forcibly freeing %d skbs on FIFO%d\n",
2068 dev->name, cnt, i);
20346722
K
2069 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2070 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2071 }
2072}
2073
20346722
K
2074/**
2075 * stop_nic - To stop the nic
1da177e4 2076 * @nic ; device private variable.
20346722
K
2077 * Description:
2078 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2079 * function does. This function is called to stop the device.
2080 * Return Value:
2081 * void.
2082 */
2083
2084static void stop_nic(struct s2io_nic *nic)
2085{
2086 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2087 register u64 val64 = 0;
2088 u16 interruptible, i;
2089 mac_info_t *mac_control;
2090 struct config_param *config;
2091
2092 mac_control = &nic->mac_control;
2093 config = &nic->config;
2094
2095 /* Disable all interrupts */
e960fc5c 2096 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2097 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2098 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2099 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2100
2101 /* Disable PRCs */
2102 for (i = 0; i < config->rx_ring_num; i++) {
2103 val64 = readq(&bar0->prc_ctrl_n[i]);
2104 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2105 writeq(val64, &bar0->prc_ctrl_n[i]);
2106 }
2107}
2108
da6971d8
AR
2109int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2110{
2111 struct net_device *dev = nic->dev;
2112 struct sk_buff *frag_list;
2113 u64 tmp;
2114
2115 /* Buffer-1 receives L3/L4 headers */
2116 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2117 (nic->pdev, skb->data, l3l4hdr_size + 4,
2118 PCI_DMA_FROMDEVICE);
2119
2120 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2121 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2122 if (skb_shinfo(skb)->frag_list == NULL) {
2123 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2124 return -ENOMEM ;
2125 }
2126 frag_list = skb_shinfo(skb)->frag_list;
2127 frag_list->next = NULL;
2128 tmp = (u64) frag_list->data;
2129 tmp += ALIGN_SIZE;
2130 tmp &= ~ALIGN_SIZE;
2131 frag_list->data = (void *) tmp;
2132 frag_list->tail = (void *) tmp;
2133
2134 /* Buffer-2 receives L4 data payload */
2135 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2136 frag_list->data, dev->mtu,
2137 PCI_DMA_FROMDEVICE);
2138 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2139 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2140
2141 return SUCCESS;
2142}
2143
20346722
K
2144/**
2145 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2146 * @nic: device private variable
20346722
K
2147 * @ring_no: ring number
2148 * Description:
1da177e4
LT
2149 * The function allocates Rx side skbs and puts the physical
2150 * address of these buffers into the RxD buffer pointers, so that the NIC
2151 * can DMA the received frame into these locations.
2152 * The NIC supports 3 receive modes, viz
2153 * 1. single buffer,
2154 * 2. three buffer and
2155 * 3. Five buffer modes.
20346722
K
2156 * Each mode defines how many fragments the received frame will be split
2157 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2158 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2159 * is split into 3 fragments. As of now only single buffer mode is
2160 * supported.
2161 * Return Value:
2162 * SUCCESS on success or an appropriate -ve value on failure.
2163 */
2164
20346722 2165int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2166{
2167 struct net_device *dev = nic->dev;
2168 struct sk_buff *skb;
2169 RxD_t *rxdp;
2170 int off, off1, size, block_no, block_no1;
1da177e4 2171 u32 alloc_tab = 0;
20346722 2172 u32 alloc_cnt;
1da177e4
LT
2173 mac_info_t *mac_control;
2174 struct config_param *config;
20346722 2175 u64 tmp;
1da177e4 2176 buffAdd_t *ba;
1da177e4
LT
2177#ifndef CONFIG_S2IO_NAPI
2178 unsigned long flags;
2179#endif
303bcb4b 2180 RxD_t *first_rxdp = NULL;
1da177e4
LT
2181
2182 mac_control = &nic->mac_control;
2183 config = &nic->config;
20346722
K
2184 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2185 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4
LT
2186
2187 while (alloc_tab < alloc_cnt) {
20346722 2188 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2189 block_index;
20346722 2190 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
1da177e4 2191 block_index;
20346722
K
2192 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2193 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2194
da6971d8
AR
2195 rxdp = mac_control->rings[ring_no].
2196 rx_blocks[block_no].rxds[off].virt_addr;
2197
2198 if ((block_no == block_no1) && (off == off1) &&
2199 (rxdp->Host_Control)) {
2200 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2201 dev->name);
1da177e4
LT
2202 DBG_PRINT(INTR_DBG, " info equated\n");
2203 goto end;
2204 }
da6971d8 2205 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2206 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2207 block_index++;
da6971d8
AR
2208 if (mac_control->rings[ring_no].rx_curr_put_info.
2209 block_index == mac_control->rings[ring_no].
2210 block_count)
2211 mac_control->rings[ring_no].rx_curr_put_info.
2212 block_index = 0;
2213 block_no = mac_control->rings[ring_no].
2214 rx_curr_put_info.block_index;
2215 if (off == rxd_count[nic->rxd_mode])
2216 off = 0;
20346722 2217 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2218 offset = off;
2219 rxdp = mac_control->rings[ring_no].
2220 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2221 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2222 dev->name, rxdp);
2223 }
2224#ifndef CONFIG_S2IO_NAPI
2225 spin_lock_irqsave(&nic->put_lock, flags);
20346722 2226 mac_control->rings[ring_no].put_pos =
da6971d8 2227 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
1da177e4
LT
2228 spin_unlock_irqrestore(&nic->put_lock, flags);
2229#endif
da6971d8
AR
2230 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2231 ((nic->rxd_mode >= RXD_MODE_3A) &&
2232 (rxdp->Control_2 & BIT(0)))) {
20346722 2233 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2234 offset = off;
1da177e4
LT
2235 goto end;
2236 }
da6971d8
AR
2237 /* calculate size of skb based on ring mode */
2238 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2239 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2240 if (nic->rxd_mode == RXD_MODE_1)
2241 size += NET_IP_ALIGN;
2242 else if (nic->rxd_mode == RXD_MODE_3B)
2243 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2244 else
2245 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2246
da6971d8
AR
2247 /* allocate skb */
2248 skb = dev_alloc_skb(size);
2249 if(!skb) {
1da177e4
LT
2250 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2251 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2252 if (first_rxdp) {
2253 wmb();
2254 first_rxdp->Control_1 |= RXD_OWN_XENA;
2255 }
da6971d8
AR
2256 return -ENOMEM ;
2257 }
2258 if (nic->rxd_mode == RXD_MODE_1) {
2259 /* 1 buffer mode - normal operation mode */
2260 memset(rxdp, 0, sizeof(RxD1_t));
2261 skb_reserve(skb, NET_IP_ALIGN);
2262 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2263 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2264 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2265 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2266
2267 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2268 /*
2269 * 2 or 3 buffer mode -
2270 * Both 2 buffer mode and 3 buffer mode provides 128
2271 * byte aligned receive buffers.
2272 *
2273 * 3 buffer mode provides header separation where in
2274 * skb->data will have L3/L4 headers where as
2275 * skb_shinfo(skb)->frag_list will have the L4 data
2276 * payload
2277 */
2278
2279 memset(rxdp, 0, sizeof(RxD3_t));
2280 ba = &mac_control->rings[ring_no].ba[block_no][off];
2281 skb_reserve(skb, BUF0_LEN);
2282 tmp = (u64)(unsigned long) skb->data;
2283 tmp += ALIGN_SIZE;
2284 tmp &= ~ALIGN_SIZE;
2285 skb->data = (void *) (unsigned long)tmp;
2286 skb->tail = (void *) (unsigned long)tmp;
2287
2288 ((RxD3_t*)rxdp)->Buffer0_ptr =
2289 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2290 PCI_DMA_FROMDEVICE);
2291 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2292 if (nic->rxd_mode == RXD_MODE_3B) {
2293 /* Two buffer mode */
2294
2295 /*
2296 * Buffer2 will have L3/L4 header plus
2297 * L4 payload
2298 */
2299 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2300 (nic->pdev, skb->data, dev->mtu + 4,
2301 PCI_DMA_FROMDEVICE);
2302
2303 /* Buffer-1 will be dummy buffer not used */
2304 ((RxD3_t*)rxdp)->Buffer1_ptr =
2305 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2306 PCI_DMA_FROMDEVICE);
2307 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2308 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2309 (dev->mtu + 4);
2310 } else {
2311 /* 3 buffer mode */
2312 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2313 dev_kfree_skb_irq(skb);
2314 if (first_rxdp) {
2315 wmb();
2316 first_rxdp->Control_1 |=
2317 RXD_OWN_XENA;
2318 }
2319 return -ENOMEM ;
2320 }
2321 }
2322 rxdp->Control_2 |= BIT(0);
1da177e4 2323 }
1da177e4 2324 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2325 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2326 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2327 off++;
da6971d8
AR
2328 if (off == (rxd_count[nic->rxd_mode] + 1))
2329 off = 0;
20346722 2330 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2331
da6971d8 2332 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2333 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2334 if (first_rxdp) {
2335 wmb();
2336 first_rxdp->Control_1 |= RXD_OWN_XENA;
2337 }
2338 first_rxdp = rxdp;
2339 }
1da177e4
LT
2340 atomic_inc(&nic->rx_bufs_left[ring_no]);
2341 alloc_tab++;
2342 }
2343
2344 end:
303bcb4b
K
2345 /* Transfer ownership of first descriptor to adapter just before
2346 * exiting. Before that, use memory barrier so that ownership
2347 * and other fields are seen by adapter correctly.
2348 */
2349 if (first_rxdp) {
2350 wmb();
2351 first_rxdp->Control_1 |= RXD_OWN_XENA;
2352 }
2353
1da177e4
LT
2354 return SUCCESS;
2355}
2356
da6971d8
AR
2357static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2358{
2359 struct net_device *dev = sp->dev;
2360 int j;
2361 struct sk_buff *skb;
2362 RxD_t *rxdp;
2363 mac_info_t *mac_control;
2364 buffAdd_t *ba;
2365
2366 mac_control = &sp->mac_control;
2367 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2368 rxdp = mac_control->rings[ring_no].
2369 rx_blocks[blk].rxds[j].virt_addr;
2370 skb = (struct sk_buff *)
2371 ((unsigned long) rxdp->Host_Control);
2372 if (!skb) {
2373 continue;
2374 }
2375 if (sp->rxd_mode == RXD_MODE_1) {
2376 pci_unmap_single(sp->pdev, (dma_addr_t)
2377 ((RxD1_t*)rxdp)->Buffer0_ptr,
2378 dev->mtu +
2379 HEADER_ETHERNET_II_802_3_SIZE
2380 + HEADER_802_2_SIZE +
2381 HEADER_SNAP_SIZE,
2382 PCI_DMA_FROMDEVICE);
2383 memset(rxdp, 0, sizeof(RxD1_t));
2384 } else if(sp->rxd_mode == RXD_MODE_3B) {
2385 ba = &mac_control->rings[ring_no].
2386 ba[blk][j];
2387 pci_unmap_single(sp->pdev, (dma_addr_t)
2388 ((RxD3_t*)rxdp)->Buffer0_ptr,
2389 BUF0_LEN,
2390 PCI_DMA_FROMDEVICE);
2391 pci_unmap_single(sp->pdev, (dma_addr_t)
2392 ((RxD3_t*)rxdp)->Buffer1_ptr,
2393 BUF1_LEN,
2394 PCI_DMA_FROMDEVICE);
2395 pci_unmap_single(sp->pdev, (dma_addr_t)
2396 ((RxD3_t*)rxdp)->Buffer2_ptr,
2397 dev->mtu + 4,
2398 PCI_DMA_FROMDEVICE);
2399 memset(rxdp, 0, sizeof(RxD3_t));
2400 } else {
2401 pci_unmap_single(sp->pdev, (dma_addr_t)
2402 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2403 PCI_DMA_FROMDEVICE);
2404 pci_unmap_single(sp->pdev, (dma_addr_t)
2405 ((RxD3_t*)rxdp)->Buffer1_ptr,
2406 l3l4hdr_size + 4,
2407 PCI_DMA_FROMDEVICE);
2408 pci_unmap_single(sp->pdev, (dma_addr_t)
2409 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2410 PCI_DMA_FROMDEVICE);
2411 memset(rxdp, 0, sizeof(RxD3_t));
2412 }
2413 dev_kfree_skb(skb);
2414 atomic_dec(&sp->rx_bufs_left[ring_no]);
2415 }
2416}
2417
1da177e4 2418/**
20346722 2419 * free_rx_buffers - Frees all Rx buffers
1da177e4 2420 * @sp: device private variable.
20346722 2421 * Description:
1da177e4
LT
2422 * This function will free all Rx buffers allocated by host.
2423 * Return Value:
2424 * NONE.
2425 */
2426
2427static void free_rx_buffers(struct s2io_nic *sp)
2428{
2429 struct net_device *dev = sp->dev;
da6971d8 2430 int i, blk = 0, buf_cnt = 0;
1da177e4
LT
2431 mac_info_t *mac_control;
2432 struct config_param *config;
1da177e4
LT
2433
2434 mac_control = &sp->mac_control;
2435 config = &sp->config;
2436
2437 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2438 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2439 free_rxd_blk(sp,i,blk);
1da177e4 2440
20346722
K
2441 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2442 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2443 mac_control->rings[i].rx_curr_put_info.offset = 0;
2444 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2445 atomic_set(&sp->rx_bufs_left[i], 0);
2446 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2447 dev->name, buf_cnt, i);
2448 }
2449}
2450
2451/**
2452 * s2io_poll - Rx interrupt handler for NAPI support
2453 * @dev : pointer to the device structure.
20346722 2454 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2455 * during one pass through the 'Poll" function.
2456 * Description:
2457 * Comes into picture only if NAPI support has been incorporated. It does
2458 * the same thing that rx_intr_handler does, but not in a interrupt context
2459 * also It will process only a given number of packets.
2460 * Return value:
2461 * 0 on success and 1 if there are No Rx packets to be processed.
2462 */
2463
20346722 2464#if defined(CONFIG_S2IO_NAPI)
1da177e4
LT
2465static int s2io_poll(struct net_device *dev, int *budget)
2466{
2467 nic_t *nic = dev->priv;
20346722 2468 int pkt_cnt = 0, org_pkts_to_process;
1da177e4
LT
2469 mac_info_t *mac_control;
2470 struct config_param *config;
509a2671 2471 XENA_dev_config_t __iomem *bar0 = nic->bar0;
20346722
K
2472 u64 val64;
2473 int i;
1da177e4 2474
7ba013ac 2475 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2476 mac_control = &nic->mac_control;
2477 config = &nic->config;
2478
20346722
K
2479 nic->pkts_to_process = *budget;
2480 if (nic->pkts_to_process > dev->quota)
2481 nic->pkts_to_process = dev->quota;
2482 org_pkts_to_process = nic->pkts_to_process;
1da177e4
LT
2483
2484 val64 = readq(&bar0->rx_traffic_int);
2485 writeq(val64, &bar0->rx_traffic_int);
2486
2487 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2488 rx_intr_handler(&mac_control->rings[i]);
2489 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2490 if (!nic->pkts_to_process) {
2491 /* Quota for the current iteration has been met */
2492 goto no_rx;
1da177e4 2493 }
1da177e4
LT
2494 }
2495 if (!pkt_cnt)
2496 pkt_cnt = 1;
2497
2498 dev->quota -= pkt_cnt;
2499 *budget -= pkt_cnt;
2500 netif_rx_complete(dev);
2501
2502 for (i = 0; i < config->rx_ring_num; i++) {
2503 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2504 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2505 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2506 break;
2507 }
2508 }
2509 /* Re enable the Rx interrupts. */
2510 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
7ba013ac 2511 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2512 return 0;
2513
20346722 2514no_rx:
1da177e4
LT
2515 dev->quota -= pkt_cnt;
2516 *budget -= pkt_cnt;
2517
2518 for (i = 0; i < config->rx_ring_num; i++) {
2519 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2520 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2521 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2522 break;
2523 }
2524 }
7ba013ac 2525 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2526 return 1;
2527}
20346722
K
2528#endif
2529
2530/**
1da177e4
LT
2531 * rx_intr_handler - Rx interrupt handler
2532 * @nic: device private variable.
20346722
K
2533 * Description:
2534 * If the interrupt is because of a received frame or if the
1da177e4 2535 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2536 * called. It picks out the RxD at which place the last Rx processing had
2537 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2538 * the offset.
2539 * Return Value:
2540 * NONE.
2541 */
20346722 2542static void rx_intr_handler(ring_info_t *ring_data)
1da177e4 2543{
20346722 2544 nic_t *nic = ring_data->nic;
1da177e4 2545 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2546 int get_block, put_block, put_offset;
1da177e4
LT
2547 rx_curr_get_info_t get_info, put_info;
2548 RxD_t *rxdp;
2549 struct sk_buff *skb;
20346722
K
2550#ifndef CONFIG_S2IO_NAPI
2551 int pkt_cnt = 0;
1da177e4 2552#endif
7ba013ac
K
2553 spin_lock(&nic->rx_lock);
2554 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2555 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2556 __FUNCTION__, dev->name);
2557 spin_unlock(&nic->rx_lock);
776bd20f 2558 return;
7ba013ac
K
2559 }
2560
20346722
K
2561 get_info = ring_data->rx_curr_get_info;
2562 get_block = get_info.block_index;
2563 put_info = ring_data->rx_curr_put_info;
2564 put_block = put_info.block_index;
da6971d8 2565 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
20346722
K
2566#ifndef CONFIG_S2IO_NAPI
2567 spin_lock(&nic->put_lock);
2568 put_offset = ring_data->put_pos;
2569 spin_unlock(&nic->put_lock);
2570#else
da6971d8 2571 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
20346722
K
2572 put_info.offset;
2573#endif
da6971d8
AR
2574 while (RXD_IS_UP2DT(rxdp)) {
2575 /* If your are next to put index then it's FIFO full condition */
2576 if ((get_block == put_block) &&
2577 (get_info.offset + 1) == put_info.offset) {
2578 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2579 break;
2580 }
20346722
K
2581 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2582 if (skb == NULL) {
2583 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2584 dev->name);
2585 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2586 spin_unlock(&nic->rx_lock);
20346722 2587 return;
1da177e4 2588 }
da6971d8
AR
2589 if (nic->rxd_mode == RXD_MODE_1) {
2590 pci_unmap_single(nic->pdev, (dma_addr_t)
2591 ((RxD1_t*)rxdp)->Buffer0_ptr,
20346722
K
2592 dev->mtu +
2593 HEADER_ETHERNET_II_802_3_SIZE +
2594 HEADER_802_2_SIZE +
2595 HEADER_SNAP_SIZE,
2596 PCI_DMA_FROMDEVICE);
da6971d8
AR
2597 } else if (nic->rxd_mode == RXD_MODE_3B) {
2598 pci_unmap_single(nic->pdev, (dma_addr_t)
2599 ((RxD3_t*)rxdp)->Buffer0_ptr,
20346722 2600 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2601 pci_unmap_single(nic->pdev, (dma_addr_t)
2602 ((RxD3_t*)rxdp)->Buffer1_ptr,
20346722 2603 BUF1_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2604 pci_unmap_single(nic->pdev, (dma_addr_t)
2605 ((RxD3_t*)rxdp)->Buffer2_ptr,
2606 dev->mtu + 4,
20346722 2607 PCI_DMA_FROMDEVICE);
da6971d8
AR
2608 } else {
2609 pci_unmap_single(nic->pdev, (dma_addr_t)
2610 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2611 PCI_DMA_FROMDEVICE);
2612 pci_unmap_single(nic->pdev, (dma_addr_t)
2613 ((RxD3_t*)rxdp)->Buffer1_ptr,
2614 l3l4hdr_size + 4,
2615 PCI_DMA_FROMDEVICE);
2616 pci_unmap_single(nic->pdev, (dma_addr_t)
2617 ((RxD3_t*)rxdp)->Buffer2_ptr,
2618 dev->mtu, PCI_DMA_FROMDEVICE);
2619 }
20346722
K
2620 rx_osm_handler(ring_data, rxdp);
2621 get_info.offset++;
da6971d8
AR
2622 ring_data->rx_curr_get_info.offset = get_info.offset;
2623 rxdp = ring_data->rx_blocks[get_block].
2624 rxds[get_info.offset].virt_addr;
2625 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2626 get_info.offset = 0;
da6971d8 2627 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2628 get_block++;
da6971d8
AR
2629 if (get_block == ring_data->block_count)
2630 get_block = 0;
2631 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2632 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2633 }
1da177e4 2634
20346722
K
2635#ifdef CONFIG_S2IO_NAPI
2636 nic->pkts_to_process -= 1;
2637 if (!nic->pkts_to_process)
2638 break;
2639#else
2640 pkt_cnt++;
1da177e4
LT
2641 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2642 break;
20346722 2643#endif
1da177e4 2644 }
7ba013ac 2645 spin_unlock(&nic->rx_lock);
1da177e4 2646}
20346722
K
2647
2648/**
1da177e4
LT
2649 * tx_intr_handler - Transmit interrupt handler
2650 * @nic : device private variable
20346722
K
2651 * Description:
2652 * If an interrupt was raised to indicate DMA complete of the
2653 * Tx packet, this function is called. It identifies the last TxD
2654 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2655 * DMA'ed into the NICs internal memory.
2656 * Return Value:
2657 * NONE
2658 */
2659
20346722 2660static void tx_intr_handler(fifo_info_t *fifo_data)
1da177e4 2661{
20346722 2662 nic_t *nic = fifo_data->nic;
1da177e4
LT
2663 struct net_device *dev = (struct net_device *) nic->dev;
2664 tx_curr_get_info_t get_info, put_info;
2665 struct sk_buff *skb;
2666 TxD_t *txdlp;
1da177e4 2667 u16 j, frg_cnt;
1da177e4 2668
20346722
K
2669 get_info = fifo_data->tx_curr_get_info;
2670 put_info = fifo_data->tx_curr_put_info;
2671 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2672 list_virt_addr;
2673 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2674 (get_info.offset != put_info.offset) &&
2675 (txdlp->Host_Control)) {
2676 /* Check for TxD errors */
2677 if (txdlp->Control_1 & TXD_T_CODE) {
2678 unsigned long long err;
2679 err = txdlp->Control_1 & TXD_T_CODE;
776bd20f 2680 if ((err >> 48) == 0xA) {
2681 DBG_PRINT(TX_DBG, "TxD returned due \
cc6e7c44 2682to loss of link\n");
776bd20f 2683 }
2684 else {
2685 DBG_PRINT(ERR_DBG, "***TxD error \
cc6e7c44 2686%llx\n", err);
776bd20f 2687 }
20346722 2688 }
1da177e4 2689
20346722
K
2690 skb = (struct sk_buff *) ((unsigned long)
2691 txdlp->Host_Control);
2692 if (skb == NULL) {
2693 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2694 __FUNCTION__);
2695 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2696 return;
2697 }
2698
2699 frg_cnt = skb_shinfo(skb)->nr_frags;
2700 nic->tx_pkt_count++;
2701
2702 pci_unmap_single(nic->pdev, (dma_addr_t)
2703 txdlp->Buffer_Pointer,
2704 skb->len - skb->data_len,
2705 PCI_DMA_TODEVICE);
2706 if (frg_cnt) {
2707 TxD_t *temp;
2708 temp = txdlp;
2709 txdlp++;
2710 for (j = 0; j < frg_cnt; j++, txdlp++) {
2711 skb_frag_t *frag =
2712 &skb_shinfo(skb)->frags[j];
0b1f7ebe
K
2713 if (!txdlp->Buffer_Pointer)
2714 break;
20346722
K
2715 pci_unmap_page(nic->pdev,
2716 (dma_addr_t)
2717 txdlp->
2718 Buffer_Pointer,
2719 frag->size,
2720 PCI_DMA_TODEVICE);
1da177e4 2721 }
20346722 2722 txdlp = temp;
1da177e4 2723 }
20346722
K
2724 memset(txdlp, 0,
2725 (sizeof(TxD_t) * fifo_data->max_txds));
2726
2727 /* Updating the statistics block */
20346722
K
2728 nic->stats.tx_bytes += skb->len;
2729 dev_kfree_skb_irq(skb);
2730
2731 get_info.offset++;
2732 get_info.offset %= get_info.fifo_len + 1;
2733 txdlp = (TxD_t *) fifo_data->list_info
2734 [get_info.offset].list_virt_addr;
2735 fifo_data->tx_curr_get_info.offset =
2736 get_info.offset;
1da177e4
LT
2737 }
2738
2739 spin_lock(&nic->tx_lock);
2740 if (netif_queue_stopped(dev))
2741 netif_wake_queue(dev);
2742 spin_unlock(&nic->tx_lock);
2743}
2744
20346722 2745/**
1da177e4
LT
2746 * alarm_intr_handler - Alarm Interrrupt handler
2747 * @nic: device private variable
20346722 2748 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 2749 * complete, this function is called. If the interrupt was to indicate
20346722
K
2750 * a loss of link, the OSM link status handler is invoked for any other
2751 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
2752 * and a H/W reset is issued.
2753 * Return Value:
2754 * NONE
2755*/
2756
2757static void alarm_intr_handler(struct s2io_nic *nic)
2758{
2759 struct net_device *dev = (struct net_device *) nic->dev;
2760 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2761 register u64 val64 = 0, err_reg = 0;
2762
2763 /* Handling link status change error Intr */
a371a07d
K
2764 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2765 err_reg = readq(&bar0->mac_rmac_err_reg);
2766 writeq(err_reg, &bar0->mac_rmac_err_reg);
2767 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2768 schedule_work(&nic->set_link_task);
2769 }
1da177e4
LT
2770 }
2771
5e25b9dd
K
2772 /* Handling Ecc errors */
2773 val64 = readq(&bar0->mc_err_reg);
2774 writeq(val64, &bar0->mc_err_reg);
2775 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2776 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
2777 nic->mac_control.stats_info->sw_stat.
2778 double_ecc_errs++;
776bd20f 2779 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 2780 dev->name);
776bd20f 2781 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 2782 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 2783 /* Reset XframeI only if critical error */
2784 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2785 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2786 netif_stop_queue(dev);
2787 schedule_work(&nic->rst_timer_task);
2788 }
e960fc5c 2789 }
5e25b9dd 2790 } else {
7ba013ac
K
2791 nic->mac_control.stats_info->sw_stat.
2792 single_ecc_errs++;
5e25b9dd
K
2793 }
2794 }
2795
1da177e4
LT
2796 /* In case of a serious error, the device will be Reset. */
2797 val64 = readq(&bar0->serr_source);
2798 if (val64 & SERR_SOURCE_ANY) {
2799 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
776bd20f 2800 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2801 (unsigned long long)val64);
1da177e4
LT
2802 netif_stop_queue(dev);
2803 schedule_work(&nic->rst_timer_task);
2804 }
2805
2806 /*
2807 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2808 * Error occurs, the adapter will be recycled by disabling the
20346722 2809 * adapter enable bit and enabling it again after the device
1da177e4
LT
2810 * becomes Quiescent.
2811 */
2812 val64 = readq(&bar0->pcc_err_reg);
2813 writeq(val64, &bar0->pcc_err_reg);
2814 if (val64 & PCC_FB_ECC_DB_ERR) {
2815 u64 ac = readq(&bar0->adapter_control);
2816 ac &= ~(ADAPTER_CNTL_EN);
2817 writeq(ac, &bar0->adapter_control);
2818 ac = readq(&bar0->adapter_control);
2819 schedule_work(&nic->set_link_task);
2820 }
2821
2822 /* Other type of interrupts are not being handled now, TODO */
2823}
2824
20346722 2825/**
1da177e4 2826 * wait_for_cmd_complete - waits for a command to complete.
20346722 2827 * @sp : private member of the device structure, which is a pointer to the
1da177e4 2828 * s2io_nic structure.
20346722
K
2829 * Description: Function that waits for a command to Write into RMAC
2830 * ADDR DATA registers to be completed and returns either success or
2831 * error depending on whether the command was complete or not.
1da177e4
LT
2832 * Return value:
2833 * SUCCESS on success and FAILURE on failure.
2834 */
2835
20346722 2836int wait_for_cmd_complete(nic_t * sp)
1da177e4
LT
2837{
2838 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2839 int ret = FAILURE, cnt = 0;
2840 u64 val64;
2841
2842 while (TRUE) {
2843 val64 = readq(&bar0->rmac_addr_cmd_mem);
2844 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2845 ret = SUCCESS;
2846 break;
2847 }
2848 msleep(50);
2849 if (cnt++ > 10)
2850 break;
2851 }
2852
2853 return ret;
2854}
2855
20346722
K
2856/**
2857 * s2io_reset - Resets the card.
1da177e4
LT
2858 * @sp : private member of the device structure.
2859 * Description: Function to Reset the card. This function then also
20346722 2860 * restores the previously saved PCI configuration space registers as
1da177e4
LT
2861 * the card reset also resets the configuration space.
2862 * Return value:
2863 * void.
2864 */
2865
20346722 2866void s2io_reset(nic_t * sp)
1da177e4
LT
2867{
2868 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2869 u64 val64;
5e25b9dd 2870 u16 subid, pci_cmd;
1da177e4 2871
0b1f7ebe 2872 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 2873 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 2874
1da177e4
LT
2875 val64 = SW_RESET_ALL;
2876 writeq(val64, &bar0->sw_reset);
2877
20346722
K
2878 /*
2879 * At this stage, if the PCI write is indeed completed, the
2880 * card is reset and so is the PCI Config space of the device.
2881 * So a read cannot be issued at this stage on any of the
1da177e4
LT
2882 * registers to ensure the write into "sw_reset" register
2883 * has gone through.
2884 * Question: Is there any system call that will explicitly force
2885 * all the write commands still pending on the bus to be pushed
2886 * through?
2887 * As of now I'am just giving a 250ms delay and hoping that the
2888 * PCI write to sw_reset register is done by this time.
2889 */
2890 msleep(250);
2891
e960fc5c 2892 /* Restore the PCI state saved during initialization. */
2893 pci_restore_state(sp->pdev);
2894 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
0b1f7ebe 2895 pci_cmd);
1da177e4
LT
2896 s2io_init_pci(sp);
2897
2898 msleep(250);
2899
20346722
K
2900 /* Set swapper to enable I/O register access */
2901 s2io_set_swapper(sp);
2902
cc6e7c44
RA
2903 /* Restore the MSIX table entries from local variables */
2904 restore_xmsi_data(sp);
2905
5e25b9dd 2906 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b
K
2907 if (sp->device_type == XFRAME_II_DEVICE) {
2908 /* Clear parity err detect bit */
2909 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 2910
303bcb4b
K
2911 /* Clearing PCIX Ecc status register */
2912 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 2913
303bcb4b
K
2914 /* Clearing PCI_STATUS error reflected here */
2915 writeq(BIT(62), &bar0->txpic_int_reg);
2916 }
5e25b9dd 2917
20346722
K
2918 /* Reset device statistics maintained by OS */
2919 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2920
1da177e4
LT
2921 /* SXE-002: Configure link and activity LED to turn it off */
2922 subid = sp->pdev->subsystem_device;
541ae68f
K
2923 if (((subid & 0xFF) >= 0x07) &&
2924 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2925 val64 = readq(&bar0->gpio_control);
2926 val64 |= 0x0000800000000000ULL;
2927 writeq(val64, &bar0->gpio_control);
2928 val64 = 0x0411040400000000ULL;
509a2671 2929 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2930 }
2931
541ae68f
K
2932 /*
2933 * Clear spurious ECC interrupts that would have occured on
2934 * XFRAME II cards after reset.
2935 */
2936 if (sp->device_type == XFRAME_II_DEVICE) {
2937 val64 = readq(&bar0->pcc_err_reg);
2938 writeq(val64, &bar0->pcc_err_reg);
2939 }
2940
1da177e4
LT
2941 sp->device_enabled_once = FALSE;
2942}
2943
2944/**
20346722
K
2945 * s2io_set_swapper - to set the swapper controle on the card
2946 * @sp : private member of the device structure,
1da177e4 2947 * pointer to the s2io_nic structure.
20346722 2948 * Description: Function to set the swapper control on the card
1da177e4
LT
2949 * correctly depending on the 'endianness' of the system.
2950 * Return value:
2951 * SUCCESS on success and FAILURE on failure.
2952 */
2953
20346722 2954int s2io_set_swapper(nic_t * sp)
1da177e4
LT
2955{
2956 struct net_device *dev = sp->dev;
2957 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2958 u64 val64, valt, valr;
2959
20346722 2960 /*
1da177e4
LT
2961 * Set proper endian settings and verify the same by reading
2962 * the PIF Feed-back register.
2963 */
2964
2965 val64 = readq(&bar0->pif_rd_swapper_fb);
2966 if (val64 != 0x0123456789ABCDEFULL) {
2967 int i = 0;
2968 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2969 0x8100008181000081ULL, /* FE=1, SE=0 */
2970 0x4200004242000042ULL, /* FE=0, SE=1 */
2971 0}; /* FE=0, SE=0 */
2972
2973 while(i<4) {
2974 writeq(value[i], &bar0->swapper_ctrl);
2975 val64 = readq(&bar0->pif_rd_swapper_fb);
2976 if (val64 == 0x0123456789ABCDEFULL)
2977 break;
2978 i++;
2979 }
2980 if (i == 4) {
2981 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2982 dev->name);
2983 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2984 (unsigned long long) val64);
2985 return FAILURE;
2986 }
2987 valr = value[i];
2988 } else {
2989 valr = readq(&bar0->swapper_ctrl);
2990 }
2991
2992 valt = 0x0123456789ABCDEFULL;
2993 writeq(valt, &bar0->xmsi_address);
2994 val64 = readq(&bar0->xmsi_address);
2995
2996 if(val64 != valt) {
2997 int i = 0;
2998 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2999 0x0081810000818100ULL, /* FE=1, SE=0 */
3000 0x0042420000424200ULL, /* FE=0, SE=1 */
3001 0}; /* FE=0, SE=0 */
3002
3003 while(i<4) {
3004 writeq((value[i] | valr), &bar0->swapper_ctrl);
3005 writeq(valt, &bar0->xmsi_address);
3006 val64 = readq(&bar0->xmsi_address);
3007 if(val64 == valt)
3008 break;
3009 i++;
3010 }
3011 if(i == 4) {
20346722 3012 unsigned long long x = val64;
1da177e4 3013 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3014 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3015 return FAILURE;
3016 }
3017 }
3018 val64 = readq(&bar0->swapper_ctrl);
3019 val64 &= 0xFFFF000000000000ULL;
3020
3021#ifdef __BIG_ENDIAN
20346722
K
3022 /*
3023 * The device by default set to a big endian format, so a
1da177e4
LT
3024 * big endian driver need not set anything.
3025 */
3026 val64 |= (SWAPPER_CTRL_TXP_FE |
3027 SWAPPER_CTRL_TXP_SE |
3028 SWAPPER_CTRL_TXD_R_FE |
3029 SWAPPER_CTRL_TXD_W_FE |
3030 SWAPPER_CTRL_TXF_R_FE |
3031 SWAPPER_CTRL_RXD_R_FE |
3032 SWAPPER_CTRL_RXD_W_FE |
3033 SWAPPER_CTRL_RXF_W_FE |
3034 SWAPPER_CTRL_XMSI_FE |
1da177e4 3035 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3036 if (sp->intr_type == INTA)
cc6e7c44 3037 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3038 writeq(val64, &bar0->swapper_ctrl);
3039#else
20346722 3040 /*
1da177e4 3041 * Initially we enable all bits to make it accessible by the
20346722 3042 * driver, then we selectively enable only those bits that
1da177e4
LT
3043 * we want to set.
3044 */
3045 val64 |= (SWAPPER_CTRL_TXP_FE |
3046 SWAPPER_CTRL_TXP_SE |
3047 SWAPPER_CTRL_TXD_R_FE |
3048 SWAPPER_CTRL_TXD_R_SE |
3049 SWAPPER_CTRL_TXD_W_FE |
3050 SWAPPER_CTRL_TXD_W_SE |
3051 SWAPPER_CTRL_TXF_R_FE |
3052 SWAPPER_CTRL_RXD_R_FE |
3053 SWAPPER_CTRL_RXD_R_SE |
3054 SWAPPER_CTRL_RXD_W_FE |
3055 SWAPPER_CTRL_RXD_W_SE |
3056 SWAPPER_CTRL_RXF_W_FE |
3057 SWAPPER_CTRL_XMSI_FE |
1da177e4 3058 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3059 if (sp->intr_type == INTA)
3060 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3061 writeq(val64, &bar0->swapper_ctrl);
3062#endif
3063 val64 = readq(&bar0->swapper_ctrl);
3064
20346722
K
3065 /*
3066 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3067 * feedback register.
3068 */
3069 val64 = readq(&bar0->pif_rd_swapper_fb);
3070 if (val64 != 0x0123456789ABCDEFULL) {
3071 /* Endian settings are incorrect, calls for another dekko. */
3072 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3073 dev->name);
3074 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3075 (unsigned long long) val64);
3076 return FAILURE;
3077 }
3078
3079 return SUCCESS;
3080}
3081
cc6e7c44
RA
3082int wait_for_msix_trans(nic_t *nic, int i)
3083{
da6971d8 3084 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3085 u64 val64;
3086 int ret = 0, cnt = 0;
3087
3088 do {
3089 val64 = readq(&bar0->xmsi_access);
3090 if (!(val64 & BIT(15)))
3091 break;
3092 mdelay(1);
3093 cnt++;
3094 } while(cnt < 5);
3095 if (cnt == 5) {
3096 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3097 ret = 1;
3098 }
3099
3100 return ret;
3101}
3102
3103void restore_xmsi_data(nic_t *nic)
3104{
da6971d8 3105 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3106 u64 val64;
3107 int i;
3108
3109 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3110 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3111 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3112 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3113 writeq(val64, &bar0->xmsi_access);
3114 if (wait_for_msix_trans(nic, i)) {
3115 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3116 continue;
3117 }
3118 }
3119}
3120
3121void store_xmsi_data(nic_t *nic)
3122{
da6971d8 3123 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3124 u64 val64, addr, data;
3125 int i;
3126
3127 /* Store and display */
3128 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3129 val64 = (BIT(15) | vBIT(i, 26, 6));
3130 writeq(val64, &bar0->xmsi_access);
3131 if (wait_for_msix_trans(nic, i)) {
3132 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3133 continue;
3134 }
3135 addr = readq(&bar0->xmsi_address);
3136 data = readq(&bar0->xmsi_data);
3137 if (addr && data) {
3138 nic->msix_info[i].addr = addr;
3139 nic->msix_info[i].data = data;
3140 }
3141 }
3142}
3143
3144int s2io_enable_msi(nic_t *nic)
3145{
da6971d8 3146 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3147 u16 msi_ctrl, msg_val;
3148 struct config_param *config = &nic->config;
3149 struct net_device *dev = nic->dev;
3150 u64 val64, tx_mat, rx_mat;
3151 int i, err;
3152
3153 val64 = readq(&bar0->pic_control);
3154 val64 &= ~BIT(1);
3155 writeq(val64, &bar0->pic_control);
3156
3157 err = pci_enable_msi(nic->pdev);
3158 if (err) {
3159 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3160 nic->dev->name);
3161 return err;
3162 }
3163
3164 /*
3165 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3166 * for interrupt handling.
3167 */
3168 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3169 msg_val ^= 0x1;
3170 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3171 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3172
3173 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3174 msi_ctrl |= 0x10;
3175 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3176
3177 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3178 tx_mat = readq(&bar0->tx_mat0_n[0]);
3179 for (i=0; i<config->tx_fifo_num; i++) {
3180 tx_mat |= TX_MAT_SET(i, 1);
3181 }
3182 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3183
3184 rx_mat = readq(&bar0->rx_mat);
3185 for (i=0; i<config->rx_ring_num; i++) {
3186 rx_mat |= RX_MAT_SET(i, 1);
3187 }
3188 writeq(rx_mat, &bar0->rx_mat);
3189
3190 dev->irq = nic->pdev->irq;
3191 return 0;
3192}
3193
3194int s2io_enable_msi_x(nic_t *nic)
3195{
da6971d8 3196 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
cc6e7c44
RA
3197 u64 tx_mat, rx_mat;
3198 u16 msi_control; /* Temp variable */
3199 int ret, i, j, msix_indx = 1;
3200
3201 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3202 GFP_KERNEL);
3203 if (nic->entries == NULL) {
3204 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3205 return -ENOMEM;
3206 }
3207 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3208
3209 nic->s2io_entries =
3210 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3211 GFP_KERNEL);
3212 if (nic->s2io_entries == NULL) {
3213 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3214 kfree(nic->entries);
3215 return -ENOMEM;
3216 }
3217 memset(nic->s2io_entries, 0,
3218 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3219
3220 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3221 nic->entries[i].entry = i;
3222 nic->s2io_entries[i].entry = i;
3223 nic->s2io_entries[i].arg = NULL;
3224 nic->s2io_entries[i].in_use = 0;
3225 }
3226
3227 tx_mat = readq(&bar0->tx_mat0_n[0]);
3228 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3229 tx_mat |= TX_MAT_SET(i, msix_indx);
3230 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3231 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3232 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3233 }
3234 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3235
3236 if (!nic->config.bimodal) {
3237 rx_mat = readq(&bar0->rx_mat);
3238 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3239 rx_mat |= RX_MAT_SET(j, msix_indx);
3240 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3241 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3242 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3243 }
3244 writeq(rx_mat, &bar0->rx_mat);
3245 } else {
3246 tx_mat = readq(&bar0->tx_mat0_n[7]);
3247 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3248 tx_mat |= TX_MAT_SET(i, msix_indx);
3249 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3250 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3251 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3252 }
3253 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3254 }
3255
3256 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3257 if (ret) {
3258 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3259 kfree(nic->entries);
3260 kfree(nic->s2io_entries);
3261 nic->entries = NULL;
3262 nic->s2io_entries = NULL;
3263 return -ENOMEM;
3264 }
3265
3266 /*
3267 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3268 * in the herc NIC. (Temp change, needs to be removed later)
3269 */
3270 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3271 msi_control |= 0x1; /* Enable MSI */
3272 pci_write_config_word(nic->pdev, 0x42, msi_control);
3273
3274 return 0;
3275}
3276
1da177e4
LT
3277/* ********************************************************* *
3278 * Functions defined below concern the OS part of the driver *
3279 * ********************************************************* */
3280
20346722 3281/**
1da177e4
LT
3282 * s2io_open - open entry point of the driver
3283 * @dev : pointer to the device structure.
3284 * Description:
3285 * This function is the open entry point of the driver. It mainly calls a
3286 * function to allocate Rx buffers and inserts them into the buffer
20346722 3287 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3288 * Return value:
3289 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3290 * file on failure.
3291 */
3292
20346722 3293int s2io_open(struct net_device *dev)
1da177e4
LT
3294{
3295 nic_t *sp = dev->priv;
3296 int err = 0;
cc6e7c44
RA
3297 int i;
3298 u16 msi_control; /* Temp variable */
1da177e4 3299
20346722
K
3300 /*
3301 * Make sure you have link off by default every time
1da177e4
LT
3302 * Nic is initialized
3303 */
3304 netif_carrier_off(dev);
0b1f7ebe 3305 sp->last_link_state = 0;
1da177e4
LT
3306
3307 /* Initialize H/W and enable interrupts */
3308 if (s2io_card_up(sp)) {
3309 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3310 dev->name);
20346722
K
3311 err = -ENODEV;
3312 goto hw_init_failed;
1da177e4
LT
3313 }
3314
cc6e7c44
RA
3315 /* Store the values of the MSIX table in the nic_t structure */
3316 store_xmsi_data(sp);
3317
1da177e4 3318 /* After proper initialization of H/W, register ISR */
cc6e7c44
RA
3319 if (sp->intr_type == MSI) {
3320 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3321 SA_SHIRQ, sp->name, dev);
3322 if (err) {
3323 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3324failed\n", dev->name);
3325 goto isr_registration_failed;
3326 }
3327 }
3328 if (sp->intr_type == MSI_X) {
3329 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3330 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3331 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3332 dev->name, i);
3333 err = request_irq(sp->entries[i].vector,
3334 s2io_msix_fifo_handle, 0, sp->desc1,
3335 sp->s2io_entries[i].arg);
3336 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3337 sp->msix_info[i].addr);
3338 } else {
3339 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3340 dev->name, i);
3341 err = request_irq(sp->entries[i].vector,
3342 s2io_msix_ring_handle, 0, sp->desc2,
3343 sp->s2io_entries[i].arg);
3344 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3345 sp->msix_info[i].addr);
3346 }
3347 if (err) {
3348 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3349failed\n", dev->name, i);
3350 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3351 goto isr_registration_failed;
3352 }
3353 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3354 }
3355 }
3356 if (sp->intr_type == INTA) {
3357 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3358 sp->name, dev);
3359 if (err) {
3360 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3361 dev->name);
3362 goto isr_registration_failed;
3363 }
1da177e4
LT
3364 }
3365
3366 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3367 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
20346722
K
3368 err = -ENODEV;
3369 goto setting_mac_address_failed;
1da177e4
LT
3370 }
3371
3372 netif_start_queue(dev);
3373 return 0;
20346722
K
3374
3375setting_mac_address_failed:
cc6e7c44
RA
3376 if (sp->intr_type != MSI_X)
3377 free_irq(sp->pdev->irq, dev);
20346722 3378isr_registration_failed:
25fff88e 3379 del_timer_sync(&sp->alarm_timer);
cc6e7c44
RA
3380 if (sp->intr_type == MSI_X) {
3381 if (sp->device_type == XFRAME_II_DEVICE) {
3382 for (i=1; (sp->s2io_entries[i].in_use ==
3383 MSIX_REGISTERED_SUCCESS); i++) {
3384 int vector = sp->entries[i].vector;
3385 void *arg = sp->s2io_entries[i].arg;
3386
3387 free_irq(vector, arg);
3388 }
3389 pci_disable_msix(sp->pdev);
3390
3391 /* Temp */
3392 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3393 msi_control &= 0xFFFE; /* Disable MSI */
3394 pci_write_config_word(sp->pdev, 0x42, msi_control);
3395 }
3396 }
3397 else if (sp->intr_type == MSI)
3398 pci_disable_msi(sp->pdev);
20346722
K
3399 s2io_reset(sp);
3400hw_init_failed:
cc6e7c44
RA
3401 if (sp->intr_type == MSI_X) {
3402 if (sp->entries)
3403 kfree(sp->entries);
3404 if (sp->s2io_entries)
3405 kfree(sp->s2io_entries);
3406 }
20346722 3407 return err;
1da177e4
LT
3408}
3409
3410/**
3411 * s2io_close -close entry point of the driver
3412 * @dev : device pointer.
3413 * Description:
3414 * This is the stop entry point of the driver. It needs to undo exactly
3415 * whatever was done by the open entry point,thus it's usually referred to
3416 * as the close function.Among other things this function mainly stops the
3417 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3418 * Return value:
3419 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3420 * file on failure.
3421 */
3422
20346722 3423int s2io_close(struct net_device *dev)
1da177e4
LT
3424{
3425 nic_t *sp = dev->priv;
cc6e7c44
RA
3426 int i;
3427 u16 msi_control;
3428
1da177e4
LT
3429 flush_scheduled_work();
3430 netif_stop_queue(dev);
3431 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3432 s2io_card_down(sp);
3433
cc6e7c44
RA
3434 if (sp->intr_type == MSI_X) {
3435 if (sp->device_type == XFRAME_II_DEVICE) {
3436 for (i=1; (sp->s2io_entries[i].in_use ==
3437 MSIX_REGISTERED_SUCCESS); i++) {
3438 int vector = sp->entries[i].vector;
3439 void *arg = sp->s2io_entries[i].arg;
3440
3441 free_irq(vector, arg);
3442 }
3443 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3444 msi_control &= 0xFFFE; /* Disable MSI */
3445 pci_write_config_word(sp->pdev, 0x42, msi_control);
3446
3447 pci_disable_msix(sp->pdev);
3448 }
3449 }
3450 else {
3451 free_irq(sp->pdev->irq, dev);
3452 if (sp->intr_type == MSI)
3453 pci_disable_msi(sp->pdev);
3454 }
1da177e4
LT
3455 sp->device_close_flag = TRUE; /* Device is shut down. */
3456 return 0;
3457}
3458
3459/**
3460 * s2io_xmit - Tx entry point of te driver
3461 * @skb : the socket buffer containing the Tx data.
3462 * @dev : device pointer.
3463 * Description :
3464 * This function is the Tx entry point of the driver. S2IO NIC supports
3465 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3466 * NOTE: when device cant queue the pkt,just the trans_start variable will
3467 * not be upadted.
3468 * Return value:
3469 * 0 on success & 1 on failure.
3470 */
3471
20346722 3472int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
3473{
3474 nic_t *sp = dev->priv;
3475 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3476 register u64 val64;
3477 TxD_t *txdp;
3478 TxFIFO_element_t __iomem *tx_fifo;
3479 unsigned long flags;
3480#ifdef NETIF_F_TSO
3481 int mss;
3482#endif
be3a6b02
K
3483 u16 vlan_tag = 0;
3484 int vlan_priority = 0;
1da177e4
LT
3485 mac_info_t *mac_control;
3486 struct config_param *config;
1da177e4
LT
3487
3488 mac_control = &sp->mac_control;
3489 config = &sp->config;
3490
20346722 3491 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3492 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3493 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3494 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3495 dev->name);
3496 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3497 dev_kfree_skb(skb);
3498 return 0;
1da177e4
LT
3499 }
3500
3501 queue = 0;
1da177e4 3502
be3a6b02
K
3503 /* Get Fifo number to Transmit based on vlan priority */
3504 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3505 vlan_tag = vlan_tx_tag_get(skb);
3506 vlan_priority = vlan_tag >> 13;
3507 queue = config->fifo_mapping[vlan_priority];
3508 }
3509
20346722
K
3510 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3511 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3512 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3513 list_virt_addr;
3514
3515 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4
LT
3516 /* Avoid "put" pointer going beyond "get" pointer */
3517 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
776bd20f 3518 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3519 netif_stop_queue(dev);
3520 dev_kfree_skb(skb);
3521 spin_unlock_irqrestore(&sp->tx_lock, flags);
3522 return 0;
3523 }
0b1f7ebe
K
3524
3525 /* A buffer with no data will be dropped */
3526 if (!skb->len) {
3527 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3528 dev_kfree_skb(skb);
3529 spin_unlock_irqrestore(&sp->tx_lock, flags);
3530 return 0;
3531 }
3532
1da177e4
LT
3533#ifdef NETIF_F_TSO
3534 mss = skb_shinfo(skb)->tso_size;
3535 if (mss) {
3536 txdp->Control_1 |= TXD_TCP_LSO_EN;
3537 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3538 }
3539#endif
3540
3541 frg_cnt = skb_shinfo(skb)->nr_frags;
3542 frg_len = skb->len - skb->data_len;
3543
1da177e4
LT
3544 txdp->Buffer_Pointer = pci_map_single
3545 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
20346722 3546 txdp->Host_Control = (unsigned long) skb;
1da177e4
LT
3547 if (skb->ip_summed == CHECKSUM_HW) {
3548 txdp->Control_2 |=
3549 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3550 TXD_TX_CKO_UDP_EN);
3551 }
3552
3553 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3554
be3a6b02
K
3555 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3556 txdp->Control_2 |= TXD_VLAN_ENABLE;
3557 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3558 }
3559
1da177e4
LT
3560 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3561 TXD_GATHER_CODE_FIRST);
3562 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3563
3564 /* For fragmented SKB. */
3565 for (i = 0; i < frg_cnt; i++) {
3566 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3567 /* A '0' length fragment will be ignored */
3568 if (!frag->size)
3569 continue;
1da177e4
LT
3570 txdp++;
3571 txdp->Buffer_Pointer = (u64) pci_map_page
3572 (sp->pdev, frag->page, frag->page_offset,
3573 frag->size, PCI_DMA_TODEVICE);
3574 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3575 }
3576 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3577
3578 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3579 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3580 writeq(val64, &tx_fifo->TxDL_Pointer);
3581
3582 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3583 TX_FIFO_LAST_LIST);
20346722 3584
1da177e4
LT
3585#ifdef NETIF_F_TSO
3586 if (mss)
3587 val64 |= TX_FIFO_SPECIAL_FUNC;
3588#endif
3589 writeq(val64, &tx_fifo->List_Control);
3590
303bcb4b
K
3591 mmiowb();
3592
1da177e4 3593 put_off++;
20346722
K
3594 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3595 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3596
3597 /* Avoid "put" pointer going beyond "get" pointer */
3598 if (((put_off + 1) % queue_len) == get_off) {
3599 DBG_PRINT(TX_DBG,
3600 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3601 put_off, get_off);
3602 netif_stop_queue(dev);
3603 }
3604
3605 dev->trans_start = jiffies;
3606 spin_unlock_irqrestore(&sp->tx_lock, flags);
3607
3608 return 0;
3609}
3610
25fff88e
K
3611static void
3612s2io_alarm_handle(unsigned long data)
3613{
3614 nic_t *sp = (nic_t *)data;
3615
3616 alarm_intr_handler(sp);
3617 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3618}
3619
cc6e7c44
RA
3620static irqreturn_t
3621s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3622{
3623 struct net_device *dev = (struct net_device *) dev_id;
3624 nic_t *sp = dev->priv;
3625 int i;
3626 int ret;
3627 mac_info_t *mac_control;
3628 struct config_param *config;
3629
3630 atomic_inc(&sp->isr_cnt);
3631 mac_control = &sp->mac_control;
3632 config = &sp->config;
3633 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3634
3635 /* If Intr is because of Rx Traffic */
3636 for (i = 0; i < config->rx_ring_num; i++)
3637 rx_intr_handler(&mac_control->rings[i]);
3638
3639 /* If Intr is because of Tx Traffic */
3640 for (i = 0; i < config->tx_fifo_num; i++)
3641 tx_intr_handler(&mac_control->fifos[i]);
3642
3643 /*
3644 * If the Rx buffer count is below the panic threshold then
3645 * reallocate the buffers from the interrupt handler itself,
3646 * else schedule a tasklet to reallocate the buffers.
3647 */
3648 for (i = 0; i < config->rx_ring_num; i++) {
3649 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3650 int level = rx_buffer_level(sp, rxb_size, i);
3651
3652 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3653 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3654 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3655 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3656 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3657 dev->name);
3658 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3659 clear_bit(0, (&sp->tasklet_status));
3660 atomic_dec(&sp->isr_cnt);
3661 return IRQ_HANDLED;
3662 }
3663 clear_bit(0, (&sp->tasklet_status));
3664 } else if (level == LOW) {
3665 tasklet_schedule(&sp->task);
3666 }
3667 }
3668
3669 atomic_dec(&sp->isr_cnt);
3670 return IRQ_HANDLED;
3671}
3672
3673static irqreturn_t
3674s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3675{
3676 ring_info_t *ring = (ring_info_t *)dev_id;
3677 nic_t *sp = ring->nic;
3678 int rxb_size, level, rng_n;
3679
3680 atomic_inc(&sp->isr_cnt);
3681 rx_intr_handler(ring);
3682
3683 rng_n = ring->ring_no;
3684 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3685 level = rx_buffer_level(sp, rxb_size, rng_n);
3686
3687 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3688 int ret;
3689 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3690 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3691 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3692 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3693 __FUNCTION__);
3694 clear_bit(0, (&sp->tasklet_status));
3695 return IRQ_HANDLED;
3696 }
3697 clear_bit(0, (&sp->tasklet_status));
3698 } else if (level == LOW) {
3699 tasklet_schedule(&sp->task);
3700 }
3701 atomic_dec(&sp->isr_cnt);
3702
3703 return IRQ_HANDLED;
3704}
3705
3706static irqreturn_t
3707s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3708{
3709 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3710 nic_t *sp = fifo->nic;
3711
3712 atomic_inc(&sp->isr_cnt);
3713 tx_intr_handler(fifo);
3714 atomic_dec(&sp->isr_cnt);
3715 return IRQ_HANDLED;
3716}
3717
a371a07d
K
3718static void s2io_txpic_intr_handle(nic_t *sp)
3719{
509a2671 3720 XENA_dev_config_t __iomem *bar0 = sp->bar0;
a371a07d
K
3721 u64 val64;
3722
3723 val64 = readq(&bar0->pic_int_status);
3724 if (val64 & PIC_INT_GPIO) {
3725 val64 = readq(&bar0->gpio_int_reg);
3726 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3727 (val64 & GPIO_INT_REG_LINK_UP)) {
3728 val64 |= GPIO_INT_REG_LINK_DOWN;
3729 val64 |= GPIO_INT_REG_LINK_UP;
3730 writeq(val64, &bar0->gpio_int_reg);
3731 goto masking;
3732 }
3733
3734 if (((sp->last_link_state == LINK_UP) &&
3735 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3736 ((sp->last_link_state == LINK_DOWN) &&
3737 (val64 & GPIO_INT_REG_LINK_UP))) {
3738 val64 = readq(&bar0->gpio_int_mask);
3739 val64 |= GPIO_INT_MASK_LINK_DOWN;
3740 val64 |= GPIO_INT_MASK_LINK_UP;
3741 writeq(val64, &bar0->gpio_int_mask);
3742 s2io_set_link((unsigned long)sp);
3743 }
3744masking:
3745 if (sp->last_link_state == LINK_UP) {
3746 /*enable down interrupt */
3747 val64 = readq(&bar0->gpio_int_mask);
3748 /* unmasks link down intr */
3749 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3750 /* masks link up intr */
3751 val64 |= GPIO_INT_MASK_LINK_UP;
3752 writeq(val64, &bar0->gpio_int_mask);
3753 } else {
3754 /*enable UP Interrupt */
3755 val64 = readq(&bar0->gpio_int_mask);
3756 /* unmasks link up interrupt */
3757 val64 &= ~GPIO_INT_MASK_LINK_UP;
3758 /* masks link down interrupt */
3759 val64 |= GPIO_INT_MASK_LINK_DOWN;
3760 writeq(val64, &bar0->gpio_int_mask);
3761 }
3762 }
3763}
3764
1da177e4
LT
3765/**
3766 * s2io_isr - ISR handler of the device .
3767 * @irq: the irq of the device.
3768 * @dev_id: a void pointer to the dev structure of the NIC.
3769 * @pt_regs: pointer to the registers pushed on the stack.
20346722
K
3770 * Description: This function is the ISR handler of the device. It
3771 * identifies the reason for the interrupt and calls the relevant
3772 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
3773 * recv buffers, if their numbers are below the panic value which is
3774 * presently set to 25% of the original number of rcv buffers allocated.
3775 * Return value:
20346722 3776 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
3777 * IRQ_NONE: will be returned if interrupt is not from our device
3778 */
3779static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3780{
3781 struct net_device *dev = (struct net_device *) dev_id;
3782 nic_t *sp = dev->priv;
3783 XENA_dev_config_t __iomem *bar0 = sp->bar0;
20346722 3784 int i;
fe113638 3785 u64 reason = 0, val64;
1da177e4
LT
3786 mac_info_t *mac_control;
3787 struct config_param *config;
3788
7ba013ac 3789 atomic_inc(&sp->isr_cnt);
1da177e4
LT
3790 mac_control = &sp->mac_control;
3791 config = &sp->config;
3792
20346722 3793 /*
1da177e4
LT
3794 * Identify the cause for interrupt and call the appropriate
3795 * interrupt handler. Causes for the interrupt could be;
3796 * 1. Rx of packet.
3797 * 2. Tx complete.
3798 * 3. Link down.
20346722 3799 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
3800 */
3801 reason = readq(&bar0->general_int_status);
3802
3803 if (!reason) {
3804 /* The interrupt was not raised by Xena. */
7ba013ac 3805 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3806 return IRQ_NONE;
3807 }
3808
1da177e4
LT
3809#ifdef CONFIG_S2IO_NAPI
3810 if (reason & GEN_INTR_RXTRAFFIC) {
3811 if (netif_rx_schedule_prep(dev)) {
3812 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3813 DISABLE_INTRS);
3814 __netif_rx_schedule(dev);
3815 }
3816 }
3817#else
3818 /* If Intr is because of Rx Traffic */
3819 if (reason & GEN_INTR_RXTRAFFIC) {
fe113638
K
3820 /*
3821 * rx_traffic_int reg is an R1 register, writing all 1's
3822 * will ensure that the actual interrupt causing bit get's
3823 * cleared and hence a read can be avoided.
3824 */
3825 val64 = 0xFFFFFFFFFFFFFFFFULL;
3826 writeq(val64, &bar0->rx_traffic_int);
20346722
K
3827 for (i = 0; i < config->rx_ring_num; i++) {
3828 rx_intr_handler(&mac_control->rings[i]);
3829 }
1da177e4
LT
3830 }
3831#endif
3832
20346722
K
3833 /* If Intr is because of Tx Traffic */
3834 if (reason & GEN_INTR_TXTRAFFIC) {
fe113638
K
3835 /*
3836 * tx_traffic_int reg is an R1 register, writing all 1's
3837 * will ensure that the actual interrupt causing bit get's
3838 * cleared and hence a read can be avoided.
3839 */
3840 val64 = 0xFFFFFFFFFFFFFFFFULL;
3841 writeq(val64, &bar0->tx_traffic_int);
3842
20346722
K
3843 for (i = 0; i < config->tx_fifo_num; i++)
3844 tx_intr_handler(&mac_control->fifos[i]);
3845 }
3846
a371a07d
K
3847 if (reason & GEN_INTR_TXPIC)
3848 s2io_txpic_intr_handle(sp);
20346722
K
3849 /*
3850 * If the Rx buffer count is below the panic threshold then
3851 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
3852 * else schedule a tasklet to reallocate the buffers.
3853 */
3854#ifndef CONFIG_S2IO_NAPI
3855 for (i = 0; i < config->rx_ring_num; i++) {
20346722 3856 int ret;
1da177e4
LT
3857 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3858 int level = rx_buffer_level(sp, rxb_size, i);
3859
3860 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3861 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3862 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3863 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3864 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3865 dev->name);
3866 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3867 clear_bit(0, (&sp->tasklet_status));
7ba013ac 3868 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3869 return IRQ_HANDLED;
3870 }
3871 clear_bit(0, (&sp->tasklet_status));
3872 } else if (level == LOW) {
3873 tasklet_schedule(&sp->task);
3874 }
3875 }
3876#endif
3877
7ba013ac 3878 atomic_dec(&sp->isr_cnt);
1da177e4
LT
3879 return IRQ_HANDLED;
3880}
3881
7ba013ac
K
3882/**
3883 * s2io_updt_stats -
3884 */
3885static void s2io_updt_stats(nic_t *sp)
3886{
3887 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3888 u64 val64;
3889 int cnt = 0;
3890
3891 if (atomic_read(&sp->card_state) == CARD_UP) {
3892 /* Apprx 30us on a 133 MHz bus */
3893 val64 = SET_UPDT_CLICKS(10) |
3894 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3895 writeq(val64, &bar0->stat_cfg);
3896 do {
3897 udelay(100);
3898 val64 = readq(&bar0->stat_cfg);
3899 if (!(val64 & BIT(0)))
3900 break;
3901 cnt++;
3902 if (cnt == 5)
3903 break; /* Updt failed */
3904 } while(1);
3905 }
3906}
3907
1da177e4 3908/**
20346722 3909 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
3910 * @dev : pointer to the device structure.
3911 * Description:
20346722 3912 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
3913 * structure and returns a pointer to the same.
3914 * Return value:
3915 * pointer to the updated net_device_stats structure.
3916 */
3917
20346722 3918struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4
LT
3919{
3920 nic_t *sp = dev->priv;
3921 mac_info_t *mac_control;
3922 struct config_param *config;
3923
20346722 3924
1da177e4
LT
3925 mac_control = &sp->mac_control;
3926 config = &sp->config;
3927
7ba013ac
K
3928 /* Configure Stats for immediate updt */
3929 s2io_updt_stats(sp);
3930
3931 sp->stats.tx_packets =
3932 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
3933 sp->stats.tx_errors =
3934 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3935 sp->stats.rx_errors =
3936 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3937 sp->stats.multicast =
3938 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 3939 sp->stats.rx_length_errors =
20346722 3940 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
3941
3942 return (&sp->stats);
3943}
3944
3945/**
3946 * s2io_set_multicast - entry point for multicast address enable/disable.
3947 * @dev : pointer to the device structure
3948 * Description:
20346722
K
3949 * This function is a driver entry point which gets called by the kernel
3950 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
3951 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3952 * determine, if multicast address must be enabled or if promiscuous mode
3953 * is to be disabled etc.
3954 * Return value:
3955 * void.
3956 */
3957
3958static void s2io_set_multicast(struct net_device *dev)
3959{
3960 int i, j, prev_cnt;
3961 struct dev_mc_list *mclist;
3962 nic_t *sp = dev->priv;
3963 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3964 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3965 0xfeffffffffffULL;
3966 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3967 void __iomem *add;
3968
3969 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3970 /* Enable all Multicast addresses */
3971 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3972 &bar0->rmac_addr_data0_mem);
3973 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3974 &bar0->rmac_addr_data1_mem);
3975 val64 = RMAC_ADDR_CMD_MEM_WE |
3976 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3977 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3978 writeq(val64, &bar0->rmac_addr_cmd_mem);
3979 /* Wait till command completes */
3980 wait_for_cmd_complete(sp);
3981
3982 sp->m_cast_flg = 1;
3983 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3984 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3985 /* Disable all Multicast addresses */
3986 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3987 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
3988 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3989 &bar0->rmac_addr_data1_mem);
1da177e4
LT
3990 val64 = RMAC_ADDR_CMD_MEM_WE |
3991 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3992 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3993 writeq(val64, &bar0->rmac_addr_cmd_mem);
3994 /* Wait till command completes */
3995 wait_for_cmd_complete(sp);
3996
3997 sp->m_cast_flg = 0;
3998 sp->all_multi_pos = 0;
3999 }
4000
4001 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4002 /* Put the NIC into promiscuous mode */
4003 add = &bar0->mac_cfg;
4004 val64 = readq(&bar0->mac_cfg);
4005 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4006
4007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4008 writel((u32) val64, add);
4009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4010 writel((u32) (val64 >> 32), (add + 4));
4011
4012 val64 = readq(&bar0->mac_cfg);
4013 sp->promisc_flg = 1;
776bd20f 4014 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4015 dev->name);
4016 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4017 /* Remove the NIC from promiscuous mode */
4018 add = &bar0->mac_cfg;
4019 val64 = readq(&bar0->mac_cfg);
4020 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4021
4022 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4023 writel((u32) val64, add);
4024 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4025 writel((u32) (val64 >> 32), (add + 4));
4026
4027 val64 = readq(&bar0->mac_cfg);
4028 sp->promisc_flg = 0;
776bd20f 4029 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4030 dev->name);
4031 }
4032
4033 /* Update individual M_CAST address list */
4034 if ((!sp->m_cast_flg) && dev->mc_count) {
4035 if (dev->mc_count >
4036 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4037 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4038 dev->name);
4039 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4040 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4041 return;
4042 }
4043
4044 prev_cnt = sp->mc_addr_count;
4045 sp->mc_addr_count = dev->mc_count;
4046
4047 /* Clear out the previous list of Mc in the H/W. */
4048 for (i = 0; i < prev_cnt; i++) {
4049 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4050 &bar0->rmac_addr_data0_mem);
4051 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4052 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4053 val64 = RMAC_ADDR_CMD_MEM_WE |
4054 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4055 RMAC_ADDR_CMD_MEM_OFFSET
4056 (MAC_MC_ADDR_START_OFFSET + i);
4057 writeq(val64, &bar0->rmac_addr_cmd_mem);
4058
4059 /* Wait for command completes */
4060 if (wait_for_cmd_complete(sp)) {
4061 DBG_PRINT(ERR_DBG, "%s: Adding ",
4062 dev->name);
4063 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4064 return;
4065 }
4066 }
4067
4068 /* Create the new Rx filter list and update the same in H/W. */
4069 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4070 i++, mclist = mclist->next) {
4071 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4072 ETH_ALEN);
4073 for (j = 0; j < ETH_ALEN; j++) {
4074 mac_addr |= mclist->dmi_addr[j];
4075 mac_addr <<= 8;
4076 }
4077 mac_addr >>= 8;
4078 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4079 &bar0->rmac_addr_data0_mem);
4080 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4081 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4082 val64 = RMAC_ADDR_CMD_MEM_WE |
4083 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4084 RMAC_ADDR_CMD_MEM_OFFSET
4085 (i + MAC_MC_ADDR_START_OFFSET);
4086 writeq(val64, &bar0->rmac_addr_cmd_mem);
4087
4088 /* Wait for command completes */
4089 if (wait_for_cmd_complete(sp)) {
4090 DBG_PRINT(ERR_DBG, "%s: Adding ",
4091 dev->name);
4092 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4093 return;
4094 }
4095 }
4096 }
4097}
4098
4099/**
20346722 4100 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4101 * @dev : pointer to the device structure.
4102 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4103 * Description : This procedure will program the Xframe to receive
1da177e4 4104 * frames with new Mac Address
20346722 4105 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4106 * as defined in errno.h file on failure.
4107 */
4108
4109int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4110{
4111 nic_t *sp = dev->priv;
4112 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4113 register u64 val64, mac_addr = 0;
4114 int i;
4115
20346722 4116 /*
1da177e4
LT
4117 * Set the new MAC address as the new unicast filter and reflect this
4118 * change on the device address registered with the OS. It will be
20346722 4119 * at offset 0.
1da177e4
LT
4120 */
4121 for (i = 0; i < ETH_ALEN; i++) {
4122 mac_addr <<= 8;
4123 mac_addr |= addr[i];
4124 }
4125
4126 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4127 &bar0->rmac_addr_data0_mem);
4128
4129 val64 =
4130 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4131 RMAC_ADDR_CMD_MEM_OFFSET(0);
4132 writeq(val64, &bar0->rmac_addr_cmd_mem);
4133 /* Wait till command completes */
4134 if (wait_for_cmd_complete(sp)) {
4135 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4136 return FAILURE;
4137 }
4138
4139 return SUCCESS;
4140}
4141
4142/**
20346722 4143 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4144 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4145 * @info: pointer to the structure with parameters given by ethtool to set
4146 * link information.
4147 * Description:
20346722 4148 * The function sets different link parameters provided by the user onto
1da177e4
LT
4149 * the NIC.
4150 * Return value:
4151 * 0 on success.
4152*/
4153
4154static int s2io_ethtool_sset(struct net_device *dev,
4155 struct ethtool_cmd *info)
4156{
4157 nic_t *sp = dev->priv;
4158 if ((info->autoneg == AUTONEG_ENABLE) ||
4159 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4160 return -EINVAL;
4161 else {
4162 s2io_close(sp->dev);
4163 s2io_open(sp->dev);
4164 }
4165
4166 return 0;
4167}
4168
4169/**
20346722 4170 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4171 * @sp : private member of the device structure, pointer to the
4172 * s2io_nic structure.
4173 * @info : pointer to the structure with parameters given by ethtool
4174 * to return link information.
4175 * Description:
4176 * Returns link specific information like speed, duplex etc.. to ethtool.
4177 * Return value :
4178 * return 0 on success.
4179 */
4180
4181static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4182{
4183 nic_t *sp = dev->priv;
4184 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4185 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4186 info->port = PORT_FIBRE;
4187 /* info->transceiver?? TODO */
4188
4189 if (netif_carrier_ok(sp->dev)) {
4190 info->speed = 10000;
4191 info->duplex = DUPLEX_FULL;
4192 } else {
4193 info->speed = -1;
4194 info->duplex = -1;
4195 }
4196
4197 info->autoneg = AUTONEG_DISABLE;
4198 return 0;
4199}
4200
4201/**
20346722
K
4202 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4203 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4204 * s2io_nic structure.
4205 * @info : pointer to the structure with parameters given by ethtool to
4206 * return driver information.
4207 * Description:
4208 * Returns driver specefic information like name, version etc.. to ethtool.
4209 * Return value:
4210 * void
4211 */
4212
4213static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4214 struct ethtool_drvinfo *info)
4215{
4216 nic_t *sp = dev->priv;
4217
dbc2309d
JL
4218 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4219 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4220 strncpy(info->fw_version, "", sizeof(info->fw_version));
4221 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4222 info->regdump_len = XENA_REG_SPACE;
4223 info->eedump_len = XENA_EEPROM_SPACE;
4224 info->testinfo_len = S2IO_TEST_LEN;
4225 info->n_stats = S2IO_STAT_LEN;
4226}
4227
4228/**
4229 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4230 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4231 * s2io_nic structure.
20346722 4232 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4233 * dumping the registers.
4234 * @reg_space: The input argumnet into which all the registers are dumped.
4235 * Description:
4236 * Dumps the entire register space of xFrame NIC into the user given
4237 * buffer area.
4238 * Return value :
4239 * void .
4240*/
4241
4242static void s2io_ethtool_gregs(struct net_device *dev,
4243 struct ethtool_regs *regs, void *space)
4244{
4245 int i;
4246 u64 reg;
4247 u8 *reg_space = (u8 *) space;
4248 nic_t *sp = dev->priv;
4249
4250 regs->len = XENA_REG_SPACE;
4251 regs->version = sp->pdev->subsystem_device;
4252
4253 for (i = 0; i < regs->len; i += 8) {
4254 reg = readq(sp->bar0 + i);
4255 memcpy((reg_space + i), &reg, 8);
4256 }
4257}
4258
4259/**
4260 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4261 * @data : address of the private member of the device structure, which
1da177e4 4262 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4263 * Description: This is actually the timer function that alternates the
4264 * adapter LED bit of the adapter control bit to set/reset every time on
4265 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4266 * once every second.
4267*/
4268static void s2io_phy_id(unsigned long data)
4269{
4270 nic_t *sp = (nic_t *) data;
4271 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4272 u64 val64 = 0;
4273 u16 subid;
4274
4275 subid = sp->pdev->subsystem_device;
541ae68f
K
4276 if ((sp->device_type == XFRAME_II_DEVICE) ||
4277 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4278 val64 = readq(&bar0->gpio_control);
4279 val64 ^= GPIO_CTRL_GPIO_0;
4280 writeq(val64, &bar0->gpio_control);
4281 } else {
4282 val64 = readq(&bar0->adapter_control);
4283 val64 ^= ADAPTER_LED_ON;
4284 writeq(val64, &bar0->adapter_control);
4285 }
4286
4287 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4288}
4289
4290/**
4291 * s2io_ethtool_idnic - To physically identify the nic on the system.
4292 * @sp : private member of the device structure, which is a pointer to the
4293 * s2io_nic structure.
20346722 4294 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4295 * ethtool.
4296 * Description: Used to physically identify the NIC on the system.
20346722 4297 * The Link LED will blink for a time specified by the user for
1da177e4 4298 * identification.
20346722 4299 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4300 * identification is possible only if it's link is up.
4301 * Return value:
4302 * int , returns 0 on success
4303 */
4304
4305static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4306{
4307 u64 val64 = 0, last_gpio_ctrl_val;
4308 nic_t *sp = dev->priv;
4309 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4310 u16 subid;
4311
4312 subid = sp->pdev->subsystem_device;
4313 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4314 if ((sp->device_type == XFRAME_I_DEVICE) &&
4315 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4316 val64 = readq(&bar0->adapter_control);
4317 if (!(val64 & ADAPTER_CNTL_EN)) {
4318 printk(KERN_ERR
4319 "Adapter Link down, cannot blink LED\n");
4320 return -EFAULT;
4321 }
4322 }
4323 if (sp->id_timer.function == NULL) {
4324 init_timer(&sp->id_timer);
4325 sp->id_timer.function = s2io_phy_id;
4326 sp->id_timer.data = (unsigned long) sp;
4327 }
4328 mod_timer(&sp->id_timer, jiffies);
4329 if (data)
20346722 4330 msleep_interruptible(data * HZ);
1da177e4 4331 else
20346722 4332 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4333 del_timer_sync(&sp->id_timer);
4334
541ae68f 4335 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4336 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4337 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4338 }
4339
4340 return 0;
4341}
4342
4343/**
4344 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4345 * @sp : private member of the device structure, which is a pointer to the
4346 * s2io_nic structure.
1da177e4
LT
4347 * @ep : pointer to the structure with pause parameters given by ethtool.
4348 * Description:
4349 * Returns the Pause frame generation and reception capability of the NIC.
4350 * Return value:
4351 * void
4352 */
4353static void s2io_ethtool_getpause_data(struct net_device *dev,
4354 struct ethtool_pauseparam *ep)
4355{
4356 u64 val64;
4357 nic_t *sp = dev->priv;
4358 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4359
4360 val64 = readq(&bar0->rmac_pause_cfg);
4361 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4362 ep->tx_pause = TRUE;
4363 if (val64 & RMAC_PAUSE_RX_ENABLE)
4364 ep->rx_pause = TRUE;
4365 ep->autoneg = FALSE;
4366}
4367
4368/**
4369 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4370 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4371 * s2io_nic structure.
4372 * @ep : pointer to the structure with pause parameters given by ethtool.
4373 * Description:
4374 * It can be used to set or reset Pause frame generation or reception
4375 * support of the NIC.
4376 * Return value:
4377 * int, returns 0 on Success
4378 */
4379
4380static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4381 struct ethtool_pauseparam *ep)
1da177e4
LT
4382{
4383 u64 val64;
4384 nic_t *sp = dev->priv;
4385 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4386
4387 val64 = readq(&bar0->rmac_pause_cfg);
4388 if (ep->tx_pause)
4389 val64 |= RMAC_PAUSE_GEN_ENABLE;
4390 else
4391 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4392 if (ep->rx_pause)
4393 val64 |= RMAC_PAUSE_RX_ENABLE;
4394 else
4395 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4396 writeq(val64, &bar0->rmac_pause_cfg);
4397 return 0;
4398}
4399
4400/**
4401 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4402 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4403 * s2io_nic structure.
4404 * @off : offset at which the data must be written
4405 * @data : Its an output parameter where the data read at the given
20346722 4406 * offset is stored.
1da177e4 4407 * Description:
20346722 4408 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4409 * read data.
4410 * NOTE: Will allow to read only part of the EEPROM visible through the
4411 * I2C bus.
4412 * Return value:
4413 * -1 on failure and 0 on success.
4414 */
4415
4416#define S2IO_DEV_ID 5
ad4ebed0 4417static int read_eeprom(nic_t * sp, int off, u64 * data)
1da177e4
LT
4418{
4419 int ret = -1;
4420 u32 exit_cnt = 0;
4421 u64 val64;
4422 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4423
ad4ebed0 4424 if (sp->device_type == XFRAME_I_DEVICE) {
4425 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4426 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4427 I2C_CONTROL_CNTL_START;
4428 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4429
ad4ebed0 4430 while (exit_cnt < 5) {
4431 val64 = readq(&bar0->i2c_control);
4432 if (I2C_CONTROL_CNTL_END(val64)) {
4433 *data = I2C_CONTROL_GET_DATA(val64);
4434 ret = 0;
4435 break;
4436 }
4437 msleep(50);
4438 exit_cnt++;
1da177e4 4439 }
1da177e4
LT
4440 }
4441
ad4ebed0 4442 if (sp->device_type == XFRAME_II_DEVICE) {
4443 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4444 SPI_CONTROL_BYTECNT(0x3) |
4445 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4446 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4447 val64 |= SPI_CONTROL_REQ;
4448 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4449 while (exit_cnt < 5) {
4450 val64 = readq(&bar0->spi_control);
4451 if (val64 & SPI_CONTROL_NACK) {
4452 ret = 1;
4453 break;
4454 } else if (val64 & SPI_CONTROL_DONE) {
4455 *data = readq(&bar0->spi_data);
4456 *data &= 0xffffff;
4457 ret = 0;
4458 break;
4459 }
4460 msleep(50);
4461 exit_cnt++;
4462 }
4463 }
1da177e4
LT
4464 return ret;
4465}
4466
4467/**
4468 * write_eeprom - actually writes the relevant part of the data value.
4469 * @sp : private member of the device structure, which is a pointer to the
4470 * s2io_nic structure.
4471 * @off : offset at which the data must be written
4472 * @data : The data that is to be written
20346722 4473 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4474 * the Eeprom. (max of 3)
4475 * Description:
4476 * Actually writes the relevant part of the data value into the Eeprom
4477 * through the I2C bus.
4478 * Return value:
4479 * 0 on success, -1 on failure.
4480 */
4481
ad4ebed0 4482static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
1da177e4
LT
4483{
4484 int exit_cnt = 0, ret = -1;
4485 u64 val64;
4486 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4487
ad4ebed0 4488 if (sp->device_type == XFRAME_I_DEVICE) {
4489 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4490 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4491 I2C_CONTROL_CNTL_START;
4492 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4493
4494 while (exit_cnt < 5) {
4495 val64 = readq(&bar0->i2c_control);
4496 if (I2C_CONTROL_CNTL_END(val64)) {
4497 if (!(val64 & I2C_CONTROL_NACK))
4498 ret = 0;
4499 break;
4500 }
4501 msleep(50);
4502 exit_cnt++;
4503 }
4504 }
1da177e4 4505
ad4ebed0 4506 if (sp->device_type == XFRAME_II_DEVICE) {
4507 int write_cnt = (cnt == 8) ? 0 : cnt;
4508 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4509
4510 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4511 SPI_CONTROL_BYTECNT(write_cnt) |
4512 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4513 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4514 val64 |= SPI_CONTROL_REQ;
4515 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4516 while (exit_cnt < 5) {
4517 val64 = readq(&bar0->spi_control);
4518 if (val64 & SPI_CONTROL_NACK) {
4519 ret = 1;
4520 break;
4521 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4522 ret = 0;
ad4ebed0 4523 break;
4524 }
4525 msleep(50);
4526 exit_cnt++;
1da177e4 4527 }
1da177e4 4528 }
1da177e4
LT
4529 return ret;
4530}
4531
4532/**
4533 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4534 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 4535 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4536 * containing all relevant information.
4537 * @data_buf : user defined value to be written into Eeprom.
4538 * Description: Reads the values stored in the Eeprom at given offset
4539 * for a given length. Stores these values int the input argument data
4540 * buffer 'data_buf' and returns these to the caller (ethtool.)
4541 * Return value:
4542 * int 0 on success
4543 */
4544
4545static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 4546 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 4547{
ad4ebed0 4548 u32 i, valid;
4549 u64 data;
1da177e4
LT
4550 nic_t *sp = dev->priv;
4551
4552 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4553
4554 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4555 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4556
4557 for (i = 0; i < eeprom->len; i += 4) {
4558 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4559 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4560 return -EFAULT;
4561 }
4562 valid = INV(data);
4563 memcpy((data_buf + i), &valid, 4);
4564 }
4565 return 0;
4566}
4567
4568/**
4569 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4570 * @sp : private member of the device structure, which is a pointer to the
4571 * s2io_nic structure.
20346722 4572 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4573 * containing all relevant information.
4574 * @data_buf ; user defined value to be written into Eeprom.
4575 * Description:
4576 * Tries to write the user provided value in the Eeprom, at the offset
4577 * given by the user.
4578 * Return value:
4579 * 0 on success, -EFAULT on failure.
4580 */
4581
4582static int s2io_ethtool_seeprom(struct net_device *dev,
4583 struct ethtool_eeprom *eeprom,
4584 u8 * data_buf)
4585{
4586 int len = eeprom->len, cnt = 0;
ad4ebed0 4587 u64 valid = 0, data;
1da177e4
LT
4588 nic_t *sp = dev->priv;
4589
4590 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4591 DBG_PRINT(ERR_DBG,
4592 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4593 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4594 eeprom->magic);
4595 return -EFAULT;
4596 }
4597
4598 while (len) {
4599 data = (u32) data_buf[cnt] & 0x000000FF;
4600 if (data) {
4601 valid = (u32) (data << 24);
4602 } else
4603 valid = data;
4604
4605 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4606 DBG_PRINT(ERR_DBG,
4607 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4608 DBG_PRINT(ERR_DBG,
4609 "write into the specified offset\n");
4610 return -EFAULT;
4611 }
4612 cnt++;
4613 len--;
4614 }
4615
4616 return 0;
4617}
4618
4619/**
20346722
K
4620 * s2io_register_test - reads and writes into all clock domains.
4621 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4622 * s2io_nic structure.
4623 * @data : variable that returns the result of each of the test conducted b
4624 * by the driver.
4625 * Description:
4626 * Read and write into all clock domains. The NIC has 3 clock domains,
4627 * see that registers in all the three regions are accessible.
4628 * Return value:
4629 * 0 on success.
4630 */
4631
4632static int s2io_register_test(nic_t * sp, uint64_t * data)
4633{
4634 XENA_dev_config_t __iomem *bar0 = sp->bar0;
ad4ebed0 4635 u64 val64 = 0, exp_val;
1da177e4
LT
4636 int fail = 0;
4637
20346722
K
4638 val64 = readq(&bar0->pif_rd_swapper_fb);
4639 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
4640 fail = 1;
4641 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4642 }
4643
4644 val64 = readq(&bar0->rmac_pause_cfg);
4645 if (val64 != 0xc000ffff00000000ULL) {
4646 fail = 1;
4647 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4648 }
4649
4650 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 4651 if (sp->device_type == XFRAME_II_DEVICE)
4652 exp_val = 0x0404040404040404ULL;
4653 else
4654 exp_val = 0x0808080808080808ULL;
4655 if (val64 != exp_val) {
1da177e4
LT
4656 fail = 1;
4657 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4658 }
4659
4660 val64 = readq(&bar0->xgxs_efifo_cfg);
4661 if (val64 != 0x000000001923141EULL) {
4662 fail = 1;
4663 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4664 }
4665
4666 val64 = 0x5A5A5A5A5A5A5A5AULL;
4667 writeq(val64, &bar0->xmsi_data);
4668 val64 = readq(&bar0->xmsi_data);
4669 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4670 fail = 1;
4671 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4672 }
4673
4674 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4675 writeq(val64, &bar0->xmsi_data);
4676 val64 = readq(&bar0->xmsi_data);
4677 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4678 fail = 1;
4679 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4680 }
4681
4682 *data = fail;
ad4ebed0 4683 return fail;
1da177e4
LT
4684}
4685
4686/**
20346722 4687 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
4688 * @sp : private member of the device structure, which is a pointer to the
4689 * s2io_nic structure.
4690 * @data:variable that returns the result of each of the test conducted by
4691 * the driver.
4692 * Description:
20346722 4693 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
4694 * register.
4695 * Return value:
4696 * 0 on success.
4697 */
4698
4699static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4700{
4701 int fail = 0;
ad4ebed0 4702 u64 ret_data, org_4F0, org_7F0;
4703 u8 saved_4F0 = 0, saved_7F0 = 0;
4704 struct net_device *dev = sp->dev;
1da177e4
LT
4705
4706 /* Test Write Error at offset 0 */
ad4ebed0 4707 /* Note that SPI interface allows write access to all areas
4708 * of EEPROM. Hence doing all negative testing only for Xframe I.
4709 */
4710 if (sp->device_type == XFRAME_I_DEVICE)
4711 if (!write_eeprom(sp, 0, 0, 3))
4712 fail = 1;
4713
4714 /* Save current values at offsets 0x4F0 and 0x7F0 */
4715 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4716 saved_4F0 = 1;
4717 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4718 saved_7F0 = 1;
1da177e4
LT
4719
4720 /* Test Write at offset 4f0 */
ad4ebed0 4721 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
4722 fail = 1;
4723 if (read_eeprom(sp, 0x4F0, &ret_data))
4724 fail = 1;
4725
ad4ebed0 4726 if (ret_data != 0x012345) {
4727 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
1da177e4 4728 fail = 1;
ad4ebed0 4729 }
1da177e4
LT
4730
4731 /* Reset the EEPROM data go FFFF */
ad4ebed0 4732 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
4733
4734 /* Test Write Request Error at offset 0x7c */
ad4ebed0 4735 if (sp->device_type == XFRAME_I_DEVICE)
4736 if (!write_eeprom(sp, 0x07C, 0, 3))
4737 fail = 1;
1da177e4 4738
ad4ebed0 4739 /* Test Write Request at offset 0x7f0 */
4740 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 4741 fail = 1;
ad4ebed0 4742 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
4743 fail = 1;
4744
ad4ebed0 4745 if (ret_data != 0x012345) {
4746 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
1da177e4 4747 fail = 1;
ad4ebed0 4748 }
1da177e4
LT
4749
4750 /* Reset the EEPROM data go FFFF */
ad4ebed0 4751 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 4752
ad4ebed0 4753 if (sp->device_type == XFRAME_I_DEVICE) {
4754 /* Test Write Error at offset 0x80 */
4755 if (!write_eeprom(sp, 0x080, 0, 3))
4756 fail = 1;
1da177e4 4757
ad4ebed0 4758 /* Test Write Error at offset 0xfc */
4759 if (!write_eeprom(sp, 0x0FC, 0, 3))
4760 fail = 1;
1da177e4 4761
ad4ebed0 4762 /* Test Write Error at offset 0x100 */
4763 if (!write_eeprom(sp, 0x100, 0, 3))
4764 fail = 1;
1da177e4 4765
ad4ebed0 4766 /* Test Write Error at offset 4ec */
4767 if (!write_eeprom(sp, 0x4EC, 0, 3))
4768 fail = 1;
4769 }
4770
4771 /* Restore values at offsets 0x4F0 and 0x7F0 */
4772 if (saved_4F0)
4773 write_eeprom(sp, 0x4F0, org_4F0, 3);
4774 if (saved_7F0)
4775 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
4776
4777 *data = fail;
ad4ebed0 4778 return fail;
1da177e4
LT
4779}
4780
4781/**
4782 * s2io_bist_test - invokes the MemBist test of the card .
20346722 4783 * @sp : private member of the device structure, which is a pointer to the
1da177e4 4784 * s2io_nic structure.
20346722 4785 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
4786 * the driver.
4787 * Description:
4788 * This invokes the MemBist test of the card. We give around
4789 * 2 secs time for the Test to complete. If it's still not complete
20346722 4790 * within this peiod, we consider that the test failed.
1da177e4
LT
4791 * Return value:
4792 * 0 on success and -1 on failure.
4793 */
4794
4795static int s2io_bist_test(nic_t * sp, uint64_t * data)
4796{
4797 u8 bist = 0;
4798 int cnt = 0, ret = -1;
4799
4800 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4801 bist |= PCI_BIST_START;
4802 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4803
4804 while (cnt < 20) {
4805 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4806 if (!(bist & PCI_BIST_START)) {
4807 *data = (bist & PCI_BIST_CODE_MASK);
4808 ret = 0;
4809 break;
4810 }
4811 msleep(100);
4812 cnt++;
4813 }
4814
4815 return ret;
4816}
4817
4818/**
20346722
K
4819 * s2io-link_test - verifies the link state of the nic
4820 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
4821 * s2io_nic structure.
4822 * @data: variable that returns the result of each of the test conducted by
4823 * the driver.
4824 * Description:
20346722 4825 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
4826 * argument 'data' appropriately.
4827 * Return value:
4828 * 0 on success.
4829 */
4830
4831static int s2io_link_test(nic_t * sp, uint64_t * data)
4832{
4833 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4834 u64 val64;
4835
4836 val64 = readq(&bar0->adapter_status);
4837 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4838 *data = 1;
4839
4840 return 0;
4841}
4842
4843/**
20346722
K
4844 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4845 * @sp - private member of the device structure, which is a pointer to the
1da177e4 4846 * s2io_nic structure.
20346722 4847 * @data - variable that returns the result of each of the test
1da177e4
LT
4848 * conducted by the driver.
4849 * Description:
20346722 4850 * This is one of the offline test that tests the read and write
1da177e4
LT
4851 * access to the RldRam chip on the NIC.
4852 * Return value:
4853 * 0 on success.
4854 */
4855
4856static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4857{
4858 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4859 u64 val64;
ad4ebed0 4860 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
4861
4862 val64 = readq(&bar0->adapter_control);
4863 val64 &= ~ADAPTER_ECC_EN;
4864 writeq(val64, &bar0->adapter_control);
4865
4866 val64 = readq(&bar0->mc_rldram_test_ctrl);
4867 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 4868 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4869
4870 val64 = readq(&bar0->mc_rldram_mrs);
4871 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4872 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4873
4874 val64 |= MC_RLDRAM_MRS_ENABLE;
4875 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4876
4877 while (iteration < 2) {
4878 val64 = 0x55555555aaaa0000ULL;
4879 if (iteration == 1) {
4880 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4881 }
4882 writeq(val64, &bar0->mc_rldram_test_d0);
4883
4884 val64 = 0xaaaa5a5555550000ULL;
4885 if (iteration == 1) {
4886 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4887 }
4888 writeq(val64, &bar0->mc_rldram_test_d1);
4889
4890 val64 = 0x55aaaaaaaa5a0000ULL;
4891 if (iteration == 1) {
4892 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4893 }
4894 writeq(val64, &bar0->mc_rldram_test_d2);
4895
ad4ebed0 4896 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
4897 writeq(val64, &bar0->mc_rldram_test_add);
4898
ad4ebed0 4899 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4900 MC_RLDRAM_TEST_GO;
4901 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4902
4903 for (cnt = 0; cnt < 5; cnt++) {
4904 val64 = readq(&bar0->mc_rldram_test_ctrl);
4905 if (val64 & MC_RLDRAM_TEST_DONE)
4906 break;
4907 msleep(200);
4908 }
4909
4910 if (cnt == 5)
4911 break;
4912
ad4ebed0 4913 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4914 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
4915
4916 for (cnt = 0; cnt < 5; cnt++) {
4917 val64 = readq(&bar0->mc_rldram_test_ctrl);
4918 if (val64 & MC_RLDRAM_TEST_DONE)
4919 break;
4920 msleep(500);
4921 }
4922
4923 if (cnt == 5)
4924 break;
4925
4926 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 4927 if (!(val64 & MC_RLDRAM_TEST_PASS))
4928 test_fail = 1;
1da177e4
LT
4929
4930 iteration++;
4931 }
4932
ad4ebed0 4933 *data = test_fail;
1da177e4 4934
ad4ebed0 4935 /* Bring the adapter out of test mode */
4936 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4937
4938 return test_fail;
1da177e4
LT
4939}
4940
4941/**
4942 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4943 * @sp : private member of the device structure, which is a pointer to the
4944 * s2io_nic structure.
4945 * @ethtest : pointer to a ethtool command specific structure that will be
4946 * returned to the user.
20346722 4947 * @data : variable that returns the result of each of the test
1da177e4
LT
4948 * conducted by the driver.
4949 * Description:
4950 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4951 * the health of the card.
4952 * Return value:
4953 * void
4954 */
4955
4956static void s2io_ethtool_test(struct net_device *dev,
4957 struct ethtool_test *ethtest,
4958 uint64_t * data)
4959{
4960 nic_t *sp = dev->priv;
4961 int orig_state = netif_running(sp->dev);
4962
4963 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4964 /* Offline Tests. */
20346722 4965 if (orig_state)
1da177e4 4966 s2io_close(sp->dev);
1da177e4
LT
4967
4968 if (s2io_register_test(sp, &data[0]))
4969 ethtest->flags |= ETH_TEST_FL_FAILED;
4970
4971 s2io_reset(sp);
1da177e4
LT
4972
4973 if (s2io_rldram_test(sp, &data[3]))
4974 ethtest->flags |= ETH_TEST_FL_FAILED;
4975
4976 s2io_reset(sp);
1da177e4
LT
4977
4978 if (s2io_eeprom_test(sp, &data[1]))
4979 ethtest->flags |= ETH_TEST_FL_FAILED;
4980
4981 if (s2io_bist_test(sp, &data[4]))
4982 ethtest->flags |= ETH_TEST_FL_FAILED;
4983
4984 if (orig_state)
4985 s2io_open(sp->dev);
4986
4987 data[2] = 0;
4988 } else {
4989 /* Online Tests. */
4990 if (!orig_state) {
4991 DBG_PRINT(ERR_DBG,
4992 "%s: is not up, cannot run test\n",
4993 dev->name);
4994 data[0] = -1;
4995 data[1] = -1;
4996 data[2] = -1;
4997 data[3] = -1;
4998 data[4] = -1;
4999 }
5000
5001 if (s2io_link_test(sp, &data[2]))
5002 ethtest->flags |= ETH_TEST_FL_FAILED;
5003
5004 data[0] = 0;
5005 data[1] = 0;
5006 data[3] = 0;
5007 data[4] = 0;
5008 }
5009}
5010
5011static void s2io_get_ethtool_stats(struct net_device *dev,
5012 struct ethtool_stats *estats,
5013 u64 * tmp_stats)
5014{
5015 int i = 0;
5016 nic_t *sp = dev->priv;
5017 StatInfo_t *stat_info = sp->mac_control.stats_info;
5018
7ba013ac 5019 s2io_updt_stats(sp);
541ae68f
K
5020 tmp_stats[i++] =
5021 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5022 le32_to_cpu(stat_info->tmac_frms);
5023 tmp_stats[i++] =
5024 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5025 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5026 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5027 tmp_stats[i++] =
5028 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5029 le32_to_cpu(stat_info->tmac_mcst_frms);
5030 tmp_stats[i++] =
5031 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5032 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5033 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
541ae68f
K
5034 tmp_stats[i++] =
5035 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5036 le32_to_cpu(stat_info->tmac_any_err_frms);
1da177e4 5037 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5038 tmp_stats[i++] =
5039 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5040 le32_to_cpu(stat_info->tmac_vld_ip);
5041 tmp_stats[i++] =
5042 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5043 le32_to_cpu(stat_info->tmac_drop_ip);
5044 tmp_stats[i++] =
5045 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5046 le32_to_cpu(stat_info->tmac_icmp);
5047 tmp_stats[i++] =
5048 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5049 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5050 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5051 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5052 le32_to_cpu(stat_info->tmac_udp);
5053 tmp_stats[i++] =
5054 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5055 le32_to_cpu(stat_info->rmac_vld_frms);
5056 tmp_stats[i++] =
5057 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5058 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5059 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5060 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5061 tmp_stats[i++] =
5062 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5063 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5064 tmp_stats[i++] =
5065 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5066 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4
LT
5067 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
541ae68f
K
5070 tmp_stats[i++] =
5071 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5072 le32_to_cpu(stat_info->rmac_discarded_frms);
5073 tmp_stats[i++] =
5074 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5075 le32_to_cpu(stat_info->rmac_usized_frms);
5076 tmp_stats[i++] =
5077 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5078 le32_to_cpu(stat_info->rmac_osized_frms);
5079 tmp_stats[i++] =
5080 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5081 le32_to_cpu(stat_info->rmac_frag_frms);
5082 tmp_stats[i++] =
5083 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5084 le32_to_cpu(stat_info->rmac_jabber_frms);
5085 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5086 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5087 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5088 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
541ae68f
K
5089 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5090 le32_to_cpu(stat_info->rmac_drop_ip);
5091 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5092 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5093 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
541ae68f
K
5094 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5095 le32_to_cpu(stat_info->rmac_udp);
5096 tmp_stats[i++] =
5097 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5098 le32_to_cpu(stat_info->rmac_err_drp_udp);
5099 tmp_stats[i++] =
5100 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5101 le32_to_cpu(stat_info->rmac_pause_cnt);
5102 tmp_stats[i++] =
5103 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5104 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5105 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
7ba013ac
K
5106 tmp_stats[i++] = 0;
5107 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5108 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
1da177e4
LT
5109}
5110
20346722 5111int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5112{
5113 return (XENA_REG_SPACE);
5114}
5115
5116
20346722 5117u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4
LT
5118{
5119 nic_t *sp = dev->priv;
5120
5121 return (sp->rx_csum);
5122}
20346722 5123int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5124{
5125 nic_t *sp = dev->priv;
5126
5127 if (data)
5128 sp->rx_csum = 1;
5129 else
5130 sp->rx_csum = 0;
5131
5132 return 0;
5133}
20346722 5134int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5135{
5136 return (XENA_EEPROM_SPACE);
5137}
5138
20346722 5139int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5140{
5141 return (S2IO_TEST_LEN);
5142}
20346722
K
5143void s2io_ethtool_get_strings(struct net_device *dev,
5144 u32 stringset, u8 * data)
1da177e4
LT
5145{
5146 switch (stringset) {
5147 case ETH_SS_TEST:
5148 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5149 break;
5150 case ETH_SS_STATS:
5151 memcpy(data, &ethtool_stats_keys,
5152 sizeof(ethtool_stats_keys));
5153 }
5154}
1da177e4
LT
5155static int s2io_ethtool_get_stats_count(struct net_device *dev)
5156{
5157 return (S2IO_STAT_LEN);
5158}
5159
20346722 5160int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5161{
5162 if (data)
5163 dev->features |= NETIF_F_IP_CSUM;
5164 else
5165 dev->features &= ~NETIF_F_IP_CSUM;
5166
5167 return 0;
5168}
5169
5170
5171static struct ethtool_ops netdev_ethtool_ops = {
5172 .get_settings = s2io_ethtool_gset,
5173 .set_settings = s2io_ethtool_sset,
5174 .get_drvinfo = s2io_ethtool_gdrvinfo,
5175 .get_regs_len = s2io_ethtool_get_regs_len,
5176 .get_regs = s2io_ethtool_gregs,
5177 .get_link = ethtool_op_get_link,
5178 .get_eeprom_len = s2io_get_eeprom_len,
5179 .get_eeprom = s2io_ethtool_geeprom,
5180 .set_eeprom = s2io_ethtool_seeprom,
5181 .get_pauseparam = s2io_ethtool_getpause_data,
5182 .set_pauseparam = s2io_ethtool_setpause_data,
5183 .get_rx_csum = s2io_ethtool_get_rx_csum,
5184 .set_rx_csum = s2io_ethtool_set_rx_csum,
5185 .get_tx_csum = ethtool_op_get_tx_csum,
5186 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5187 .get_sg = ethtool_op_get_sg,
5188 .set_sg = ethtool_op_set_sg,
5189#ifdef NETIF_F_TSO
5190 .get_tso = ethtool_op_get_tso,
5191 .set_tso = ethtool_op_set_tso,
5192#endif
5193 .self_test_count = s2io_ethtool_self_test_count,
5194 .self_test = s2io_ethtool_test,
5195 .get_strings = s2io_ethtool_get_strings,
5196 .phys_id = s2io_ethtool_idnic,
5197 .get_stats_count = s2io_ethtool_get_stats_count,
5198 .get_ethtool_stats = s2io_get_ethtool_stats
5199};
5200
5201/**
20346722 5202 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5203 * @dev : Device pointer.
5204 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5205 * a proprietary structure used to pass information to the driver.
5206 * @cmd : This is used to distinguish between the different commands that
5207 * can be passed to the IOCTL functions.
5208 * Description:
20346722
K
5209 * Currently there are no special functionality supported in IOCTL, hence
5210 * function always return EOPNOTSUPPORTED
1da177e4
LT
5211 */
5212
20346722 5213int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5214{
5215 return -EOPNOTSUPP;
5216}
5217
5218/**
5219 * s2io_change_mtu - entry point to change MTU size for the device.
5220 * @dev : device pointer.
5221 * @new_mtu : the new MTU size for the device.
5222 * Description: A driver entry point to change MTU size for the device.
5223 * Before changing the MTU the device must be stopped.
5224 * Return value:
5225 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5226 * file on failure.
5227 */
5228
20346722 5229int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4
LT
5230{
5231 nic_t *sp = dev->priv;
1da177e4
LT
5232
5233 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5234 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5235 dev->name);
5236 return -EPERM;
5237 }
5238
1da177e4 5239 dev->mtu = new_mtu;
d8892c6e
K
5240 if (netif_running(dev)) {
5241 s2io_card_down(sp);
5242 netif_stop_queue(dev);
5243 if (s2io_card_up(sp)) {
5244 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5245 __FUNCTION__);
5246 }
5247 if (netif_queue_stopped(dev))
5248 netif_wake_queue(dev);
5249 } else { /* Device is down */
5250 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5251 u64 val64 = new_mtu;
5252
5253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5254 }
1da177e4
LT
5255
5256 return 0;
5257}
5258
5259/**
5260 * s2io_tasklet - Bottom half of the ISR.
5261 * @dev_adr : address of the device structure in dma_addr_t format.
5262 * Description:
5263 * This is the tasklet or the bottom half of the ISR. This is
20346722 5264 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5265 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5266 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5267 * replenish the Rx buffers in the Rx buffer descriptors.
5268 * Return value:
5269 * void.
5270 */
5271
5272static void s2io_tasklet(unsigned long dev_addr)
5273{
5274 struct net_device *dev = (struct net_device *) dev_addr;
5275 nic_t *sp = dev->priv;
5276 int i, ret;
5277 mac_info_t *mac_control;
5278 struct config_param *config;
5279
5280 mac_control = &sp->mac_control;
5281 config = &sp->config;
5282
5283 if (!TASKLET_IN_USE) {
5284 for (i = 0; i < config->rx_ring_num; i++) {
5285 ret = fill_rx_buffers(sp, i);
5286 if (ret == -ENOMEM) {
5287 DBG_PRINT(ERR_DBG, "%s: Out of ",
5288 dev->name);
5289 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5290 break;
5291 } else if (ret == -EFILL) {
5292 DBG_PRINT(ERR_DBG,
5293 "%s: Rx Ring %d is full\n",
5294 dev->name, i);
5295 break;
5296 }
5297 }
5298 clear_bit(0, (&sp->tasklet_status));
5299 }
5300}
5301
5302/**
5303 * s2io_set_link - Set the LInk status
5304 * @data: long pointer to device private structue
5305 * Description: Sets the link status for the adapter
5306 */
5307
5308static void s2io_set_link(unsigned long data)
5309{
5310 nic_t *nic = (nic_t *) data;
5311 struct net_device *dev = nic->dev;
5312 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5313 register u64 val64;
5314 u16 subid;
5315
5316 if (test_and_set_bit(0, &(nic->link_state))) {
5317 /* The card is being reset, no point doing anything */
5318 return;
5319 }
5320
5321 subid = nic->pdev->subsystem_device;
a371a07d
K
5322 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5323 /*
5324 * Allow a small delay for the NICs self initiated
5325 * cleanup to complete.
5326 */
5327 msleep(100);
5328 }
1da177e4
LT
5329
5330 val64 = readq(&bar0->adapter_status);
20346722 5331 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
5332 if (LINK_IS_UP(val64)) {
5333 val64 = readq(&bar0->adapter_control);
5334 val64 |= ADAPTER_CNTL_EN;
5335 writeq(val64, &bar0->adapter_control);
541ae68f
K
5336 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5337 subid)) {
1da177e4
LT
5338 val64 = readq(&bar0->gpio_control);
5339 val64 |= GPIO_CTRL_GPIO_0;
5340 writeq(val64, &bar0->gpio_control);
5341 val64 = readq(&bar0->gpio_control);
5342 } else {
5343 val64 |= ADAPTER_LED_ON;
5344 writeq(val64, &bar0->adapter_control);
5345 }
a371a07d
K
5346 if (s2io_link_fault_indication(nic) ==
5347 MAC_RMAC_ERR_TIMER) {
5348 val64 = readq(&bar0->adapter_status);
5349 if (!LINK_IS_UP(val64)) {
5350 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5351 DBG_PRINT(ERR_DBG, " Link down");
5352 DBG_PRINT(ERR_DBG, "after ");
5353 DBG_PRINT(ERR_DBG, "enabling ");
5354 DBG_PRINT(ERR_DBG, "device \n");
5355 }
1da177e4
LT
5356 }
5357 if (nic->device_enabled_once == FALSE) {
5358 nic->device_enabled_once = TRUE;
5359 }
5360 s2io_link(nic, LINK_UP);
5361 } else {
541ae68f
K
5362 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5363 subid)) {
1da177e4
LT
5364 val64 = readq(&bar0->gpio_control);
5365 val64 &= ~GPIO_CTRL_GPIO_0;
5366 writeq(val64, &bar0->gpio_control);
5367 val64 = readq(&bar0->gpio_control);
5368 }
5369 s2io_link(nic, LINK_DOWN);
5370 }
5371 } else { /* NIC is not Quiescent. */
5372 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5373 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5374 netif_stop_queue(dev);
5375 }
5376 clear_bit(0, &(nic->link_state));
5377}
5378
5379static void s2io_card_down(nic_t * sp)
5380{
5381 int cnt = 0;
5382 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5383 unsigned long flags;
5384 register u64 val64 = 0;
5385
25fff88e 5386 del_timer_sync(&sp->alarm_timer);
1da177e4 5387 /* If s2io_set_link task is executing, wait till it completes. */
20346722 5388 while (test_and_set_bit(0, &(sp->link_state))) {
1da177e4 5389 msleep(50);
20346722 5390 }
1da177e4
LT
5391 atomic_set(&sp->card_state, CARD_DOWN);
5392
5393 /* disable Tx and Rx traffic on the NIC */
5394 stop_nic(sp);
5395
5396 /* Kill tasklet. */
5397 tasklet_kill(&sp->task);
5398
5399 /* Check if the device is Quiescent and then Reset the NIC */
5400 do {
5401 val64 = readq(&bar0->adapter_status);
20346722 5402 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
1da177e4
LT
5403 break;
5404 }
5405
5406 msleep(50);
5407 cnt++;
5408 if (cnt == 10) {
5409 DBG_PRINT(ERR_DBG,
5410 "s2io_close:Device not Quiescent ");
5411 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5412 (unsigned long long) val64);
5413 break;
5414 }
5415 } while (1);
1da177e4
LT
5416 s2io_reset(sp);
5417
7ba013ac
K
5418 /* Waiting till all Interrupt handlers are complete */
5419 cnt = 0;
5420 do {
5421 msleep(10);
5422 if (!atomic_read(&sp->isr_cnt))
5423 break;
5424 cnt++;
5425 } while(cnt < 5);
5426
5427 spin_lock_irqsave(&sp->tx_lock, flags);
5428 /* Free all Tx buffers */
1da177e4 5429 free_tx_buffers(sp);
7ba013ac
K
5430 spin_unlock_irqrestore(&sp->tx_lock, flags);
5431
5432 /* Free all Rx buffers */
5433 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 5434 free_rx_buffers(sp);
7ba013ac 5435 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 5436
1da177e4
LT
5437 clear_bit(0, &(sp->link_state));
5438}
5439
5440static int s2io_card_up(nic_t * sp)
5441{
cc6e7c44 5442 int i, ret = 0;
1da177e4
LT
5443 mac_info_t *mac_control;
5444 struct config_param *config;
5445 struct net_device *dev = (struct net_device *) sp->dev;
5446
5447 /* Initialize the H/W I/O registers */
5448 if (init_nic(sp) != 0) {
5449 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5450 dev->name);
5451 return -ENODEV;
5452 }
5453
cc6e7c44
RA
5454 if (sp->intr_type == MSI)
5455 ret = s2io_enable_msi(sp);
5456 else if (sp->intr_type == MSI_X)
5457 ret = s2io_enable_msi_x(sp);
5458 if (ret) {
5459 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5460 sp->intr_type = INTA;
5461 }
5462
20346722
K
5463 /*
5464 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
5465 * Rx ring and initializing buffers into 30 Rx blocks
5466 */
5467 mac_control = &sp->mac_control;
5468 config = &sp->config;
5469
5470 for (i = 0; i < config->rx_ring_num; i++) {
5471 if ((ret = fill_rx_buffers(sp, i))) {
5472 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5473 dev->name);
5474 s2io_reset(sp);
5475 free_rx_buffers(sp);
5476 return -ENOMEM;
5477 }
5478 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5479 atomic_read(&sp->rx_bufs_left[i]));
5480 }
5481
5482 /* Setting its receive mode */
5483 s2io_set_multicast(dev);
5484
5485 /* Enable tasklet for the device */
5486 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5487
5488 /* Enable Rx Traffic and interrupts on the NIC */
5489 if (start_nic(sp)) {
5490 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5491 tasklet_kill(&sp->task);
5492 s2io_reset(sp);
5493 free_irq(dev->irq, dev);
5494 free_rx_buffers(sp);
5495 return -ENODEV;
5496 }
5497
25fff88e
K
5498 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5499
1da177e4
LT
5500 atomic_set(&sp->card_state, CARD_UP);
5501 return 0;
5502}
5503
20346722 5504/**
1da177e4
LT
5505 * s2io_restart_nic - Resets the NIC.
5506 * @data : long pointer to the device private structure
5507 * Description:
5508 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 5509 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
5510 * the run time of the watch dog routine which is run holding a
5511 * spin lock.
5512 */
5513
5514static void s2io_restart_nic(unsigned long data)
5515{
5516 struct net_device *dev = (struct net_device *) data;
5517 nic_t *sp = dev->priv;
5518
5519 s2io_card_down(sp);
5520 if (s2io_card_up(sp)) {
5521 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5522 dev->name);
5523 }
5524 netif_wake_queue(dev);
5525 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5526 dev->name);
20346722 5527
1da177e4
LT
5528}
5529
20346722
K
5530/**
5531 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
5532 * @dev : Pointer to net device structure
5533 * Description:
5534 * This function is triggered if the Tx Queue is stopped
5535 * for a pre-defined amount of time when the Interface is still up.
5536 * If the Interface is jammed in such a situation, the hardware is
5537 * reset (by s2io_close) and restarted again (by s2io_open) to
5538 * overcome any problem that might have been caused in the hardware.
5539 * Return value:
5540 * void
5541 */
5542
5543static void s2io_tx_watchdog(struct net_device *dev)
5544{
5545 nic_t *sp = dev->priv;
5546
5547 if (netif_carrier_ok(dev)) {
5548 schedule_work(&sp->rst_timer_task);
5549 }
5550}
5551
5552/**
5553 * rx_osm_handler - To perform some OS related operations on SKB.
5554 * @sp: private member of the device structure,pointer to s2io_nic structure.
5555 * @skb : the socket buffer pointer.
5556 * @len : length of the packet
5557 * @cksum : FCS checksum of the frame.
5558 * @ring_no : the ring from which this RxD was extracted.
20346722 5559 * Description:
1da177e4
LT
5560 * This function is called by the Tx interrupt serivce routine to perform
5561 * some OS related operations on the SKB before passing it to the upper
5562 * layers. It mainly checks if the checksum is OK, if so adds it to the
5563 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5564 * to the upper layer. If the checksum is wrong, it increments the Rx
5565 * packet error count, frees the SKB and returns error.
5566 * Return value:
5567 * SUCCESS on success and -1 on failure.
5568 */
20346722 5569static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
1da177e4 5570{
20346722 5571 nic_t *sp = ring_data->nic;
1da177e4 5572 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
5573 struct sk_buff *skb = (struct sk_buff *)
5574 ((unsigned long) rxdp->Host_Control);
5575 int ring_no = ring_data->ring_no;
1da177e4 5576 u16 l3_csum, l4_csum;
da6971d8 5577
20346722
K
5578 skb->dev = dev;
5579 if (rxdp->Control_1 & RXD_T_CODE) {
5580 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5581 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5582 dev->name, err);
1ddc50d4
K
5583 dev_kfree_skb(skb);
5584 sp->stats.rx_crc_errors++;
5585 atomic_dec(&sp->rx_bufs_left[ring_no]);
5586 rxdp->Host_Control = 0;
5587 return 0;
20346722 5588 }
1da177e4 5589
20346722
K
5590 /* Updating statistics */
5591 rxdp->Host_Control = 0;
5592 sp->rx_pkt_count++;
5593 sp->stats.rx_packets++;
da6971d8
AR
5594 if (sp->rxd_mode == RXD_MODE_1) {
5595 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 5596
da6971d8
AR
5597 sp->stats.rx_bytes += len;
5598 skb_put(skb, len);
5599
5600 } else if (sp->rxd_mode >= RXD_MODE_3A) {
5601 int get_block = ring_data->rx_curr_get_info.block_index;
5602 int get_off = ring_data->rx_curr_get_info.offset;
5603 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5604 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5605 unsigned char *buff = skb_push(skb, buf0_len);
5606
5607 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5608 sp->stats.rx_bytes += buf0_len + buf2_len;
5609 memcpy(buff, ba->ba_0, buf0_len);
5610
5611 if (sp->rxd_mode == RXD_MODE_3A) {
5612 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5613
5614 skb_put(skb, buf1_len);
5615 skb->len += buf2_len;
5616 skb->data_len += buf2_len;
5617 skb->truesize += buf2_len;
5618 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5619 sp->stats.rx_bytes += buf1_len;
5620
5621 } else
5622 skb_put(skb, buf2_len);
5623 }
20346722
K
5624
5625 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5626 (sp->rx_csum)) {
5627 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
5628 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5629 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 5630 /*
1da177e4
LT
5631 * NIC verifies if the Checksum of the received
5632 * frame is Ok or not and accordingly returns
5633 * a flag in the RxD.
5634 */
5635 skb->ip_summed = CHECKSUM_UNNECESSARY;
5636 } else {
20346722
K
5637 /*
5638 * Packet with erroneous checksum, let the
1da177e4
LT
5639 * upper layers deal with it.
5640 */
5641 skb->ip_summed = CHECKSUM_NONE;
5642 }
5643 } else {
5644 skb->ip_summed = CHECKSUM_NONE;
5645 }
5646
1da177e4 5647 skb->protocol = eth_type_trans(skb, dev);
1da177e4 5648#ifdef CONFIG_S2IO_NAPI
be3a6b02
K
5649 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5650 /* Queueing the vlan frame to the upper layer */
5651 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5652 RXD_GET_VLAN_TAG(rxdp->Control_2));
5653 } else {
5654 netif_receive_skb(skb);
5655 }
1da177e4 5656#else
be3a6b02
K
5657 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5658 /* Queueing the vlan frame to the upper layer */
5659 vlan_hwaccel_rx(skb, sp->vlgrp,
5660 RXD_GET_VLAN_TAG(rxdp->Control_2));
5661 } else {
5662 netif_rx(skb);
5663 }
1da177e4 5664#endif
1da177e4 5665 dev->last_rx = jiffies;
1da177e4 5666 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
5667 return SUCCESS;
5668}
5669
5670/**
5671 * s2io_link - stops/starts the Tx queue.
5672 * @sp : private member of the device structure, which is a pointer to the
5673 * s2io_nic structure.
5674 * @link : inidicates whether link is UP/DOWN.
5675 * Description:
5676 * This function stops/starts the Tx queue depending on whether the link
20346722
K
5677 * status of the NIC is is down or up. This is called by the Alarm
5678 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
5679 * Return value:
5680 * void.
5681 */
5682
20346722 5683void s2io_link(nic_t * sp, int link)
1da177e4
LT
5684{
5685 struct net_device *dev = (struct net_device *) sp->dev;
5686
5687 if (link != sp->last_link_state) {
5688 if (link == LINK_DOWN) {
5689 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5690 netif_carrier_off(dev);
5691 } else {
5692 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5693 netif_carrier_on(dev);
5694 }
5695 }
5696 sp->last_link_state = link;
5697}
5698
5699/**
20346722
K
5700 * get_xena_rev_id - to identify revision ID of xena.
5701 * @pdev : PCI Dev structure
5702 * Description:
5703 * Function to identify the Revision ID of xena.
5704 * Return value:
5705 * returns the revision ID of the device.
5706 */
5707
5708int get_xena_rev_id(struct pci_dev *pdev)
5709{
5710 u8 id = 0;
5711 int ret;
5712 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5713 return id;
5714}
5715
5716/**
5717 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5718 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5719 * s2io_nic structure.
5720 * Description:
5721 * This function initializes a few of the PCI and PCI-X configuration registers
5722 * with recommended values.
5723 * Return value:
5724 * void
5725 */
5726
5727static void s2io_init_pci(nic_t * sp)
5728{
20346722 5729 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
5730
5731 /* Enable Data Parity Error Recovery in PCI-X command register. */
5732 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5733 &(pcix_cmd));
1da177e4 5734 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5735 (pcix_cmd | 1));
1da177e4 5736 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5737 &(pcix_cmd));
1da177e4
LT
5738
5739 /* Set the PErr Response bit in PCI command register. */
5740 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5741 pci_write_config_word(sp->pdev, PCI_COMMAND,
5742 (pci_cmd | PCI_COMMAND_PARITY));
5743 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5744
1da177e4 5745 /* Forcibly disabling relaxed ordering capability of the card. */
20346722 5746 pcix_cmd &= 0xfffd;
1da177e4 5747 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5748 pcix_cmd);
1da177e4 5749 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 5750 &(pcix_cmd));
1da177e4
LT
5751}
5752
5753MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5754MODULE_LICENSE("GPL");
6c1792f4
JL
5755MODULE_VERSION(DRV_VERSION);
5756
1da177e4 5757module_param(tx_fifo_num, int, 0);
1da177e4 5758module_param(rx_ring_num, int, 0);
da6971d8 5759module_param(rx_ring_mode, int, 0);
20346722
K
5760module_param_array(tx_fifo_len, uint, NULL, 0);
5761module_param_array(rx_ring_sz, uint, NULL, 0);
20346722 5762module_param_array(rts_frm_len, uint, NULL, 0);
5e25b9dd 5763module_param(use_continuous_tx_intrs, int, 1);
1da177e4
LT
5764module_param(rmac_pause_time, int, 0);
5765module_param(mc_pause_threshold_q0q3, int, 0);
5766module_param(mc_pause_threshold_q4q7, int, 0);
5767module_param(shared_splits, int, 0);
5768module_param(tmac_util_period, int, 0);
5769module_param(rmac_util_period, int, 0);
b6e3f982 5770module_param(bimodal, bool, 0);
da6971d8 5771module_param(l3l4hdr_size, int , 0);
1da177e4
LT
5772#ifndef CONFIG_S2IO_NAPI
5773module_param(indicate_max_pkts, int, 0);
5774#endif
303bcb4b 5775module_param(rxsync_frequency, int, 0);
cc6e7c44 5776module_param(intr_type, int, 0);
20346722 5777
1da177e4 5778/**
20346722 5779 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
5780 * @pdev : structure containing the PCI related information of the device.
5781 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5782 * Description:
5783 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
5784 * All OS related initialization including memory and device structure and
5785 * initlaization of the device private variable is done. Also the swapper
5786 * control register is initialized to enable read and write into the I/O
1da177e4
LT
5787 * registers of the device.
5788 * Return value:
5789 * returns 0 on success and negative on failure.
5790 */
5791
5792static int __devinit
5793s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5794{
5795 nic_t *sp;
5796 struct net_device *dev;
1da177e4
LT
5797 int i, j, ret;
5798 int dma_flag = FALSE;
5799 u32 mac_up, mac_down;
5800 u64 val64 = 0, tmp64 = 0;
5801 XENA_dev_config_t __iomem *bar0 = NULL;
5802 u16 subid;
5803 mac_info_t *mac_control;
5804 struct config_param *config;
541ae68f 5805 int mode;
cc6e7c44 5806 u8 dev_intr_type = intr_type;
1da177e4 5807
20346722 5808#ifdef CONFIG_S2IO_NAPI
cc6e7c44
RA
5809 if (dev_intr_type != INTA) {
5810 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5811is enabled. Defaulting to INTA\n");
5812 dev_intr_type = INTA;
5813 }
5814 else
5815 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
20346722 5816#endif
1da177e4
LT
5817
5818 if ((ret = pci_enable_device(pdev))) {
5819 DBG_PRINT(ERR_DBG,
5820 "s2io_init_nic: pci_enable_device failed\n");
5821 return ret;
5822 }
5823
1e7f0bd8 5824 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
5825 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5826 dma_flag = TRUE;
1da177e4 5827 if (pci_set_consistent_dma_mask
1e7f0bd8 5828 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
5829 DBG_PRINT(ERR_DBG,
5830 "Unable to obtain 64bit DMA for \
5831 consistent allocations\n");
5832 pci_disable_device(pdev);
5833 return -ENOMEM;
5834 }
1e7f0bd8 5835 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
5836 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5837 } else {
5838 pci_disable_device(pdev);
5839 return -ENOMEM;
5840 }
5841
cc6e7c44
RA
5842 if ((dev_intr_type == MSI_X) &&
5843 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5844 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5845 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5846Defaulting to INTA\n");
5847 dev_intr_type = INTA;
5848 }
5849 if (dev_intr_type != MSI_X) {
5850 if (pci_request_regions(pdev, s2io_driver_name)) {
5851 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5852 pci_disable_device(pdev);
5853 return -ENODEV;
5854 }
5855 }
5856 else {
5857 if (!(request_mem_region(pci_resource_start(pdev, 0),
5858 pci_resource_len(pdev, 0), s2io_driver_name))) {
5859 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5860 pci_disable_device(pdev);
5861 return -ENODEV;
5862 }
5863 if (!(request_mem_region(pci_resource_start(pdev, 2),
5864 pci_resource_len(pdev, 2), s2io_driver_name))) {
5865 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5866 release_mem_region(pci_resource_start(pdev, 0),
5867 pci_resource_len(pdev, 0));
5868 pci_disable_device(pdev);
5869 return -ENODEV;
5870 }
1da177e4
LT
5871 }
5872
5873 dev = alloc_etherdev(sizeof(nic_t));
5874 if (dev == NULL) {
5875 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5876 pci_disable_device(pdev);
5877 pci_release_regions(pdev);
5878 return -ENODEV;
5879 }
5880
5881 pci_set_master(pdev);
5882 pci_set_drvdata(pdev, dev);
5883 SET_MODULE_OWNER(dev);
5884 SET_NETDEV_DEV(dev, &pdev->dev);
5885
5886 /* Private member variable initialized to s2io NIC structure */
5887 sp = dev->priv;
5888 memset(sp, 0, sizeof(nic_t));
5889 sp->dev = dev;
5890 sp->pdev = pdev;
1da177e4 5891 sp->high_dma_flag = dma_flag;
1da177e4 5892 sp->device_enabled_once = FALSE;
da6971d8
AR
5893 if (rx_ring_mode == 1)
5894 sp->rxd_mode = RXD_MODE_1;
5895 if (rx_ring_mode == 2)
5896 sp->rxd_mode = RXD_MODE_3B;
5897 if (rx_ring_mode == 3)
5898 sp->rxd_mode = RXD_MODE_3A;
5899
cc6e7c44 5900 sp->intr_type = dev_intr_type;
1da177e4 5901
541ae68f
K
5902 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5903 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5904 sp->device_type = XFRAME_II_DEVICE;
5905 else
5906 sp->device_type = XFRAME_I_DEVICE;
5907
cc6e7c44 5908
1da177e4
LT
5909 /* Initialize some PCI/PCI-X fields of the NIC. */
5910 s2io_init_pci(sp);
5911
20346722 5912 /*
1da177e4 5913 * Setting the device configuration parameters.
20346722
K
5914 * Most of these parameters can be specified by the user during
5915 * module insertion as they are module loadable parameters. If
5916 * these parameters are not not specified during load time, they
1da177e4
LT
5917 * are initialized with default values.
5918 */
5919 mac_control = &sp->mac_control;
5920 config = &sp->config;
5921
5922 /* Tx side parameters. */
0b1f7ebe
K
5923 if (tx_fifo_len[0] == 0)
5924 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
1da177e4
LT
5925 config->tx_fifo_num = tx_fifo_num;
5926 for (i = 0; i < MAX_TX_FIFOS; i++) {
5927 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5928 config->tx_cfg[i].fifo_priority = i;
5929 }
5930
20346722
K
5931 /* mapping the QoS priority to the configured fifos */
5932 for (i = 0; i < MAX_TX_FIFOS; i++)
5933 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5934
1da177e4
LT
5935 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5936 for (i = 0; i < config->tx_fifo_num; i++) {
5937 config->tx_cfg[i].f_no_snoop =
5938 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5939 if (config->tx_cfg[i].fifo_len < 65) {
5940 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5941 break;
5942 }
5943 }
776bd20f 5944 config->max_txds = MAX_SKB_FRAGS + 1;
1da177e4
LT
5945
5946 /* Rx side parameters. */
0b1f7ebe
K
5947 if (rx_ring_sz[0] == 0)
5948 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
1da177e4
LT
5949 config->rx_ring_num = rx_ring_num;
5950 for (i = 0; i < MAX_RX_RINGS; i++) {
5951 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 5952 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
5953 config->rx_cfg[i].ring_priority = i;
5954 }
5955
5956 for (i = 0; i < rx_ring_num; i++) {
5957 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5958 config->rx_cfg[i].f_no_snoop =
5959 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5960 }
5961
5962 /* Setting Mac Control parameters */
5963 mac_control->rmac_pause_time = rmac_pause_time;
5964 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5965 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5966
5967
5968 /* Initialize Ring buffer parameters. */
5969 for (i = 0; i < config->rx_ring_num; i++)
5970 atomic_set(&sp->rx_bufs_left[i], 0);
5971
7ba013ac
K
5972 /* Initialize the number of ISRs currently running */
5973 atomic_set(&sp->isr_cnt, 0);
5974
1da177e4
LT
5975 /* initialize the shared memory used by the NIC and the host */
5976 if (init_shared_mem(sp)) {
5977 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
0b1f7ebe 5978 __FUNCTION__);
1da177e4
LT
5979 ret = -ENOMEM;
5980 goto mem_alloc_failed;
5981 }
5982
5983 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5984 pci_resource_len(pdev, 0));
5985 if (!sp->bar0) {
5986 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5987 dev->name);
5988 ret = -ENOMEM;
5989 goto bar0_remap_failed;
5990 }
5991
5992 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5993 pci_resource_len(pdev, 2));
5994 if (!sp->bar1) {
5995 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5996 dev->name);
5997 ret = -ENOMEM;
5998 goto bar1_remap_failed;
5999 }
6000
6001 dev->irq = pdev->irq;
6002 dev->base_addr = (unsigned long) sp->bar0;
6003
6004 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6005 for (j = 0; j < MAX_TX_FIFOS; j++) {
6006 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6007 (sp->bar1 + (j * 0x00020000));
6008 }
6009
6010 /* Driver entry points */
6011 dev->open = &s2io_open;
6012 dev->stop = &s2io_close;
6013 dev->hard_start_xmit = &s2io_xmit;
6014 dev->get_stats = &s2io_get_stats;
6015 dev->set_multicast_list = &s2io_set_multicast;
6016 dev->do_ioctl = &s2io_ioctl;
6017 dev->change_mtu = &s2io_change_mtu;
6018 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
6019 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6020 dev->vlan_rx_register = s2io_vlan_rx_register;
6021 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 6022
1da177e4
LT
6023 /*
6024 * will use eth_mac_addr() for dev->set_mac_address
6025 * mac address will be set every time dev->open() is called
6026 */
20346722 6027#if defined(CONFIG_S2IO_NAPI)
1da177e4 6028 dev->poll = s2io_poll;
20346722 6029 dev->weight = 32;
1da177e4
LT
6030#endif
6031
6032 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6033 if (sp->high_dma_flag == TRUE)
6034 dev->features |= NETIF_F_HIGHDMA;
6035#ifdef NETIF_F_TSO
6036 dev->features |= NETIF_F_TSO;
6037#endif
6038
6039 dev->tx_timeout = &s2io_tx_watchdog;
6040 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6041 INIT_WORK(&sp->rst_timer_task,
6042 (void (*)(void *)) s2io_restart_nic, dev);
6043 INIT_WORK(&sp->set_link_task,
6044 (void (*)(void *)) s2io_set_link, sp);
6045
e960fc5c 6046 pci_save_state(sp->pdev);
1da177e4
LT
6047
6048 /* Setting swapper control on the NIC, for proper reset operation */
6049 if (s2io_set_swapper(sp)) {
6050 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6051 dev->name);
6052 ret = -EAGAIN;
6053 goto set_swap_failed;
6054 }
6055
541ae68f
K
6056 /* Verify if the Herc works on the slot its placed into */
6057 if (sp->device_type & XFRAME_II_DEVICE) {
6058 mode = s2io_verify_pci_mode(sp);
6059 if (mode < 0) {
6060 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6061 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6062 ret = -EBADSLT;
6063 goto set_swap_failed;
6064 }
6065 }
6066
6067 /* Not needed for Herc */
6068 if (sp->device_type & XFRAME_I_DEVICE) {
6069 /*
6070 * Fix for all "FFs" MAC address problems observed on
6071 * Alpha platforms
6072 */
6073 fix_mac_address(sp);
6074 s2io_reset(sp);
6075 }
1da177e4
LT
6076
6077 /*
1da177e4
LT
6078 * MAC address initialization.
6079 * For now only one mac address will be read and used.
6080 */
6081 bar0 = sp->bar0;
6082 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6083 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6084 writeq(val64, &bar0->rmac_addr_cmd_mem);
6085 wait_for_cmd_complete(sp);
6086
6087 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6088 mac_down = (u32) tmp64;
6089 mac_up = (u32) (tmp64 >> 32);
6090
6091 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6092
6093 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6094 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6095 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6096 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6097 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6098 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6099
1da177e4
LT
6100 /* Set the factory defined MAC address initially */
6101 dev->addr_len = ETH_ALEN;
6102 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6103
6104 /*
20346722 6105 * Initialize the tasklet status and link state flags
541ae68f 6106 * and the card state parameter
1da177e4
LT
6107 */
6108 atomic_set(&(sp->card_state), 0);
6109 sp->tasklet_status = 0;
6110 sp->link_state = 0;
6111
1da177e4
LT
6112 /* Initialize spinlocks */
6113 spin_lock_init(&sp->tx_lock);
6114#ifndef CONFIG_S2IO_NAPI
6115 spin_lock_init(&sp->put_lock);
6116#endif
7ba013ac 6117 spin_lock_init(&sp->rx_lock);
1da177e4 6118
20346722
K
6119 /*
6120 * SXE-002: Configure link and activity LED to init state
6121 * on driver load.
1da177e4
LT
6122 */
6123 subid = sp->pdev->subsystem_device;
6124 if ((subid & 0xFF) >= 0x07) {
6125 val64 = readq(&bar0->gpio_control);
6126 val64 |= 0x0000800000000000ULL;
6127 writeq(val64, &bar0->gpio_control);
6128 val64 = 0x0411040400000000ULL;
6129 writeq(val64, (void __iomem *) bar0 + 0x2700);
6130 val64 = readq(&bar0->gpio_control);
6131 }
6132
6133 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6134
6135 if (register_netdev(dev)) {
6136 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6137 ret = -ENODEV;
6138 goto register_failed;
6139 }
6140
541ae68f
K
6141 if (sp->device_type & XFRAME_II_DEVICE) {
6142 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6143 dev->name);
6c1792f4 6144 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
541ae68f
K
6145 get_xena_rev_id(sp->pdev),
6146 s2io_driver_version);
cc6e7c44
RA
6147 switch(sp->intr_type) {
6148 case INTA:
6149 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6150 break;
6151 case MSI:
6152 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6153 break;
6154 case MSI_X:
6155 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6156 break;
6157 }
776bd20f 6158
6159 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
541ae68f
K
6160 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6161 sp->def_mac_addr[0].mac_addr[0],
6162 sp->def_mac_addr[0].mac_addr[1],
6163 sp->def_mac_addr[0].mac_addr[2],
6164 sp->def_mac_addr[0].mac_addr[3],
6165 sp->def_mac_addr[0].mac_addr[4],
6166 sp->def_mac_addr[0].mac_addr[5]);
0b1f7ebe 6167 mode = s2io_print_pci_mode(sp);
541ae68f
K
6168 if (mode < 0) {
6169 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6170 ret = -EBADSLT;
6171 goto set_swap_failed;
6172 }
6173 } else {
6174 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6175 dev->name);
6c1792f4 6176 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
541ae68f
K
6177 get_xena_rev_id(sp->pdev),
6178 s2io_driver_version);
cc6e7c44
RA
6179 switch(sp->intr_type) {
6180 case INTA:
6181 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6182 break;
6183 case MSI:
6184 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6185 break;
6186 case MSI_X:
6187 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6188 break;
6189 }
776bd20f 6190 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
541ae68f
K
6191 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6192 sp->def_mac_addr[0].mac_addr[0],
6193 sp->def_mac_addr[0].mac_addr[1],
6194 sp->def_mac_addr[0].mac_addr[2],
6195 sp->def_mac_addr[0].mac_addr[3],
6196 sp->def_mac_addr[0].mac_addr[4],
6197 sp->def_mac_addr[0].mac_addr[5]);
6198 }
da6971d8
AR
6199 if (sp->rxd_mode == RXD_MODE_3B)
6200 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6201 "enabled\n",dev->name);
6202 if (sp->rxd_mode == RXD_MODE_3A)
6203 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6204 "enabled\n",dev->name);
541ae68f 6205
7ba013ac
K
6206 /* Initialize device name */
6207 strcpy(sp->name, dev->name);
541ae68f
K
6208 if (sp->device_type & XFRAME_II_DEVICE)
6209 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6210 else
6211 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
7ba013ac 6212
b6e3f982
K
6213 /* Initialize bimodal Interrupts */
6214 sp->config.bimodal = bimodal;
6215 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6216 sp->config.bimodal = 0;
6217 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6218 dev->name);
6219 }
6220
20346722
K
6221 /*
6222 * Make Link state as off at this point, when the Link change
6223 * interrupt comes the state will be automatically changed to
1da177e4
LT
6224 * the right state.
6225 */
6226 netif_carrier_off(dev);
1da177e4
LT
6227
6228 return 0;
6229
6230 register_failed:
6231 set_swap_failed:
6232 iounmap(sp->bar1);
6233 bar1_remap_failed:
6234 iounmap(sp->bar0);
6235 bar0_remap_failed:
6236 mem_alloc_failed:
6237 free_shared_mem(sp);
6238 pci_disable_device(pdev);
cc6e7c44
RA
6239 if (dev_intr_type != MSI_X)
6240 pci_release_regions(pdev);
6241 else {
6242 release_mem_region(pci_resource_start(pdev, 0),
6243 pci_resource_len(pdev, 0));
6244 release_mem_region(pci_resource_start(pdev, 2),
6245 pci_resource_len(pdev, 2));
6246 }
1da177e4
LT
6247 pci_set_drvdata(pdev, NULL);
6248 free_netdev(dev);
6249
6250 return ret;
6251}
6252
6253/**
20346722 6254 * s2io_rem_nic - Free the PCI device
1da177e4 6255 * @pdev: structure containing the PCI related information of the device.
20346722 6256 * Description: This function is called by the Pci subsystem to release a
1da177e4 6257 * PCI device and free up all resource held up by the device. This could
20346722 6258 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
6259 * from memory.
6260 */
6261
6262static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6263{
6264 struct net_device *dev =
6265 (struct net_device *) pci_get_drvdata(pdev);
6266 nic_t *sp;
6267
6268 if (dev == NULL) {
6269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6270 return;
6271 }
6272
6273 sp = dev->priv;
6274 unregister_netdev(dev);
6275
6276 free_shared_mem(sp);
6277 iounmap(sp->bar0);
6278 iounmap(sp->bar1);
6279 pci_disable_device(pdev);
cc6e7c44
RA
6280 if (sp->intr_type != MSI_X)
6281 pci_release_regions(pdev);
6282 else {
6283 release_mem_region(pci_resource_start(pdev, 0),
6284 pci_resource_len(pdev, 0));
6285 release_mem_region(pci_resource_start(pdev, 2),
6286 pci_resource_len(pdev, 2));
6287 }
1da177e4 6288 pci_set_drvdata(pdev, NULL);
1da177e4
LT
6289 free_netdev(dev);
6290}
6291
6292/**
6293 * s2io_starter - Entry point for the driver
6294 * Description: This function is the entry point for the driver. It verifies
6295 * the module loadable parameters and initializes PCI configuration space.
6296 */
6297
6298int __init s2io_starter(void)
6299{
6300 return pci_module_init(&s2io_driver);
6301}
6302
6303/**
20346722 6304 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
6305 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6306 */
6307
20346722 6308void s2io_closer(void)
1da177e4
LT
6309{
6310 pci_unregister_driver(&s2io_driver);
6311 DBG_PRINT(INIT_DBG, "cleanup done\n");
6312}
6313
6314module_init(s2io_starter);
6315module_exit(s2io_closer);