]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
1da177e4
LT
45 ************************************************************************/
46
1da177e4
LT
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/errno.h>
50#include <linux/ioport.h>
51#include <linux/pci.h>
1e7f0bd8 52#include <linux/dma-mapping.h>
1da177e4
LT
53#include <linux/kernel.h>
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/skbuff.h>
57#include <linux/init.h>
58#include <linux/delay.h>
59#include <linux/stddef.h>
60#include <linux/ioctl.h>
61#include <linux/timex.h>
62#include <linux/sched.h>
63#include <linux/ethtool.h>
1da177e4 64#include <linux/workqueue.h>
be3a6b02 65#include <linux/if_vlan.h>
7d3d0439
RA
66#include <linux/ip.h>
67#include <linux/tcp.h>
68#include <net/tcp.h>
1da177e4 69
1da177e4
LT
70#include <asm/system.h>
71#include <asm/uaccess.h>
20346722 72#include <asm/io.h>
fe931395 73#include <asm/div64.h>
1da177e4
LT
74
75/* local include */
76#include "s2io.h"
77#include "s2io-regs.h"
78
5d3213cc 79#define DRV_VERSION "2.0.14.2"
6c1792f4 80
1da177e4 81/* S2io Driver name & version. */
20346722 82static char s2io_driver_name[] = "Neterion";
6c1792f4 83static char s2io_driver_version[] = DRV_VERSION;
1da177e4 84
26df54bf
AB
85static int rxd_size[4] = {32,48,48,64};
86static int rxd_count[4] = {127,85,85,63};
da6971d8 87
5e25b9dd
K
88static inline int RXD_IS_UP2DT(RxD_t *rxdp)
89{
90 int ret;
91
92 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
93 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
94
95 return ret;
96}
97
20346722 98/*
1da177e4
LT
99 * Cards with following subsystem_id have a link state indication
100 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
101 * macro below identifies these cards given the subsystem_id.
102 */
541ae68f
K
103#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
104 (dev_type == XFRAME_I_DEVICE) ? \
105 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
106 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
107
108#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
109 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
110#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
111#define PANIC 1
112#define LOW 2
113static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
114{
20346722
K
115 mac_info_t *mac_control;
116
117 mac_control = &sp->mac_control;
863c11a9
AR
118 if (rxb_size <= rxd_count[sp->rxd_mode])
119 return PANIC;
120 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
121 return LOW;
122 return 0;
1da177e4
LT
123}
124
125/* Ethtool related variables and Macros. */
126static char s2io_gstrings[][ETH_GSTRING_LEN] = {
127 "Register test\t(offline)",
128 "Eeprom test\t(offline)",
129 "Link test\t(online)",
130 "RLDRAM test\t(offline)",
131 "BIST Test\t(offline)"
132};
133
134static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
135 {"tmac_frms"},
136 {"tmac_data_octets"},
137 {"tmac_drop_frms"},
138 {"tmac_mcst_frms"},
139 {"tmac_bcst_frms"},
140 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
141 {"tmac_ttl_octets"},
142 {"tmac_ucst_frms"},
143 {"tmac_nucst_frms"},
1da177e4 144 {"tmac_any_err_frms"},
bd1034f0 145 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
146 {"tmac_vld_ip_octets"},
147 {"tmac_vld_ip"},
148 {"tmac_drop_ip"},
149 {"tmac_icmp"},
150 {"tmac_rst_tcp"},
151 {"tmac_tcp"},
152 {"tmac_udp"},
153 {"rmac_vld_frms"},
154 {"rmac_data_octets"},
155 {"rmac_fcs_err_frms"},
156 {"rmac_drop_frms"},
157 {"rmac_vld_mcst_frms"},
158 {"rmac_vld_bcst_frms"},
159 {"rmac_in_rng_len_err_frms"},
bd1034f0 160 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
161 {"rmac_long_frms"},
162 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
163 {"rmac_unsup_ctrl_frms"},
164 {"rmac_ttl_octets"},
165 {"rmac_accepted_ucst_frms"},
166 {"rmac_accepted_nucst_frms"},
1da177e4 167 {"rmac_discarded_frms"},
bd1034f0
AR
168 {"rmac_drop_events"},
169 {"rmac_ttl_less_fb_octets"},
170 {"rmac_ttl_frms"},
1da177e4
LT
171 {"rmac_usized_frms"},
172 {"rmac_osized_frms"},
173 {"rmac_frag_frms"},
174 {"rmac_jabber_frms"},
bd1034f0
AR
175 {"rmac_ttl_64_frms"},
176 {"rmac_ttl_65_127_frms"},
177 {"rmac_ttl_128_255_frms"},
178 {"rmac_ttl_256_511_frms"},
179 {"rmac_ttl_512_1023_frms"},
180 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
181 {"rmac_ip"},
182 {"rmac_ip_octets"},
183 {"rmac_hdr_err_ip"},
184 {"rmac_drop_ip"},
185 {"rmac_icmp"},
186 {"rmac_tcp"},
187 {"rmac_udp"},
188 {"rmac_err_drp_udp"},
bd1034f0
AR
189 {"rmac_xgmii_err_sym"},
190 {"rmac_frms_q0"},
191 {"rmac_frms_q1"},
192 {"rmac_frms_q2"},
193 {"rmac_frms_q3"},
194 {"rmac_frms_q4"},
195 {"rmac_frms_q5"},
196 {"rmac_frms_q6"},
197 {"rmac_frms_q7"},
198 {"rmac_full_q0"},
199 {"rmac_full_q1"},
200 {"rmac_full_q2"},
201 {"rmac_full_q3"},
202 {"rmac_full_q4"},
203 {"rmac_full_q5"},
204 {"rmac_full_q6"},
205 {"rmac_full_q7"},
1da177e4 206 {"rmac_pause_cnt"},
bd1034f0
AR
207 {"rmac_xgmii_data_err_cnt"},
208 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
209 {"rmac_accepted_ip"},
210 {"rmac_err_tcp"},
bd1034f0
AR
211 {"rd_req_cnt"},
212 {"new_rd_req_cnt"},
213 {"new_rd_req_rtry_cnt"},
214 {"rd_rtry_cnt"},
215 {"wr_rtry_rd_ack_cnt"},
216 {"wr_req_cnt"},
217 {"new_wr_req_cnt"},
218 {"new_wr_req_rtry_cnt"},
219 {"wr_rtry_cnt"},
220 {"wr_disc_cnt"},
221 {"rd_rtry_wr_ack_cnt"},
222 {"txp_wr_cnt"},
223 {"txd_rd_cnt"},
224 {"txd_wr_cnt"},
225 {"rxd_rd_cnt"},
226 {"rxd_wr_cnt"},
227 {"txf_rd_cnt"},
228 {"rxf_wr_cnt"},
229 {"rmac_ttl_1519_4095_frms"},
230 {"rmac_ttl_4096_8191_frms"},
231 {"rmac_ttl_8192_max_frms"},
232 {"rmac_ttl_gt_max_frms"},
233 {"rmac_osized_alt_frms"},
234 {"rmac_jabber_alt_frms"},
235 {"rmac_gt_max_alt_frms"},
236 {"rmac_vlan_frms"},
237 {"rmac_len_discard"},
238 {"rmac_fcs_discard"},
239 {"rmac_pf_discard"},
240 {"rmac_da_discard"},
241 {"rmac_red_discard"},
242 {"rmac_rts_discard"},
243 {"rmac_ingm_full_discard"},
244 {"link_fault_cnt"},
7ba013ac
K
245 {"\n DRIVER STATISTICS"},
246 {"single_bit_ecc_errs"},
247 {"double_bit_ecc_errs"},
bd1034f0
AR
248 {"parity_err_cnt"},
249 {"serious_err_cnt"},
250 {"soft_reset_cnt"},
251 {"fifo_full_cnt"},
252 {"ring_full_cnt"},
253 ("alarm_transceiver_temp_high"),
254 ("alarm_transceiver_temp_low"),
255 ("alarm_laser_bias_current_high"),
256 ("alarm_laser_bias_current_low"),
257 ("alarm_laser_output_power_high"),
258 ("alarm_laser_output_power_low"),
259 ("warn_transceiver_temp_high"),
260 ("warn_transceiver_temp_low"),
261 ("warn_laser_bias_current_high"),
262 ("warn_laser_bias_current_low"),
263 ("warn_laser_output_power_high"),
264 ("warn_laser_output_power_low"),
7d3d0439
RA
265 ("lro_aggregated_pkts"),
266 ("lro_flush_both_count"),
267 ("lro_out_of_sequence_pkts"),
268 ("lro_flush_due_to_max_pkts"),
269 ("lro_avg_aggr_pkts"),
1da177e4
LT
270};
271
272#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
273#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
274
275#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
276#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
277
25fff88e
K
278#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
279 init_timer(&timer); \
280 timer.function = handle; \
281 timer.data = (unsigned long) arg; \
282 mod_timer(&timer, (jiffies + exp)) \
283
be3a6b02
K
284/* Add the vlan */
285static void s2io_vlan_rx_register(struct net_device *dev,
286 struct vlan_group *grp)
287{
288 nic_t *nic = dev->priv;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nic->tx_lock, flags);
292 nic->vlgrp = grp;
293 spin_unlock_irqrestore(&nic->tx_lock, flags);
294}
295
296/* Unregister the vlan */
297static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
298{
299 nic_t *nic = dev->priv;
300 unsigned long flags;
301
302 spin_lock_irqsave(&nic->tx_lock, flags);
303 if (nic->vlgrp)
304 nic->vlgrp->vlan_devices[vid] = NULL;
305 spin_unlock_irqrestore(&nic->tx_lock, flags);
306}
307
20346722 308/*
1da177e4
LT
309 * Constants to be programmed into the Xena's registers, to configure
310 * the XAUI.
311 */
312
1da177e4 313#define END_SIGN 0x0
f71e1309 314static const u64 herc_act_dtx_cfg[] = {
541ae68f 315 /* Set address */
e960fc5c 316 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 317 /* Write data */
e960fc5c 318 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
319 /* Set address */
320 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
321 /* Write data */
322 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
323 /* Set address */
e960fc5c 324 0x801205150D440000ULL, 0x801205150D4400E0ULL,
325 /* Write data */
326 0x801205150D440004ULL, 0x801205150D4400E4ULL,
327 /* Set address */
541ae68f
K
328 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
329 /* Write data */
330 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
331 /* Done */
332 END_SIGN
333};
334
f71e1309 335static const u64 xena_dtx_cfg[] = {
c92ca04b 336 /* Set address */
1da177e4 337 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
338 /* Write data */
339 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
340 /* Set address */
341 0x8001051500000000ULL, 0x80010515000000E0ULL,
342 /* Write data */
343 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
344 /* Set address */
1da177e4 345 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
346 /* Write data */
347 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
348 END_SIGN
349};
350
20346722 351/*
1da177e4
LT
352 * Constants for Fixing the MacAddress problem seen mostly on
353 * Alpha machines.
354 */
f71e1309 355static const u64 fix_mac[] = {
1da177e4
LT
356 0x0060000000000000ULL, 0x0060600000000000ULL,
357 0x0040600000000000ULL, 0x0000600000000000ULL,
358 0x0020600000000000ULL, 0x0060600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0000600000000000ULL,
369 0x0040600000000000ULL, 0x0060600000000000ULL,
370 END_SIGN
371};
372
373/* Module Loadable parameters. */
374static unsigned int tx_fifo_num = 1;
375static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
9dc737a7 376 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
1da177e4
LT
377static unsigned int rx_ring_num = 1;
378static unsigned int rx_ring_sz[MAX_RX_RINGS] =
9dc737a7 379 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
20346722
K
380static unsigned int rts_frm_len[MAX_RX_RINGS] =
381 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
da6971d8 382static unsigned int rx_ring_mode = 1;
5e25b9dd 383static unsigned int use_continuous_tx_intrs = 1;
863c11a9 384static unsigned int rmac_pause_time = 0x100;
1da177e4
LT
385static unsigned int mc_pause_threshold_q0q3 = 187;
386static unsigned int mc_pause_threshold_q4q7 = 187;
387static unsigned int shared_splits;
388static unsigned int tmac_util_period = 5;
389static unsigned int rmac_util_period = 5;
b6e3f982 390static unsigned int bimodal = 0;
da6971d8 391static unsigned int l3l4hdr_size = 128;
1da177e4
LT
392#ifndef CONFIG_S2IO_NAPI
393static unsigned int indicate_max_pkts;
394#endif
303bcb4b
K
395/* Frequency of Rx desc syncs expressed as power of 2 */
396static unsigned int rxsync_frequency = 3;
cc6e7c44
RA
397/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
398static unsigned int intr_type = 0;
7d3d0439
RA
399/* Large receive offload feature */
400static unsigned int lro = 0;
401/* Max pkts to be aggregated by LRO at one time. If not specified,
402 * aggregation happens until we hit max IP pkt size(64K)
403 */
404static unsigned int lro_max_pkts = 0xFFFF;
1da177e4 405
20346722 406/*
1da177e4 407 * S2IO device table.
20346722 408 * This table lists all the devices that this driver supports.
1da177e4
LT
409 */
410static struct pci_device_id s2io_tbl[] __devinitdata = {
411 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
412 PCI_ANY_ID, PCI_ANY_ID},
413 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
414 PCI_ANY_ID, PCI_ANY_ID},
415 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
416 PCI_ANY_ID, PCI_ANY_ID},
417 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
418 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
419 {0,}
420};
421
422MODULE_DEVICE_TABLE(pci, s2io_tbl);
423
424static struct pci_driver s2io_driver = {
425 .name = "S2IO",
426 .id_table = s2io_tbl,
427 .probe = s2io_init_nic,
428 .remove = __devexit_p(s2io_rem_nic),
429};
430
431/* A simplifier macro used both by init and free shared_mem Fns(). */
432#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
433
434/**
435 * init_shared_mem - Allocation and Initialization of Memory
436 * @nic: Device private variable.
20346722
K
437 * Description: The function allocates all the memory areas shared
438 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
439 * Rx descriptors and the statistics block.
440 */
441
442static int init_shared_mem(struct s2io_nic *nic)
443{
444 u32 size;
445 void *tmp_v_addr, *tmp_v_addr_next;
446 dma_addr_t tmp_p_addr, tmp_p_addr_next;
447 RxD_block_t *pre_rxd_blk = NULL;
20346722 448 int i, j, blk_cnt, rx_sz, tx_sz;
1da177e4
LT
449 int lst_size, lst_per_page;
450 struct net_device *dev = nic->dev;
8ae418cf 451 unsigned long tmp;
1da177e4 452 buffAdd_t *ba;
1da177e4
LT
453
454 mac_info_t *mac_control;
455 struct config_param *config;
456
457 mac_control = &nic->mac_control;
458 config = &nic->config;
459
460
461 /* Allocation and initialization of TXDLs in FIOFs */
462 size = 0;
463 for (i = 0; i < config->tx_fifo_num; i++) {
464 size += config->tx_cfg[i].fifo_len;
465 }
466 if (size > MAX_AVAILABLE_TXDS) {
0b1f7ebe
K
467 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
468 __FUNCTION__);
469 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
1da177e4
LT
470 return FAILURE;
471 }
472
473 lst_size = (sizeof(TxD_t) * config->max_txds);
20346722 474 tx_sz = lst_size * size;
1da177e4
LT
475 lst_per_page = PAGE_SIZE / lst_size;
476
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 int fifo_len = config->tx_cfg[i].fifo_len;
479 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
20346722
K
480 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
481 GFP_KERNEL);
482 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
483 DBG_PRINT(ERR_DBG,
484 "Malloc failed for list_info\n");
485 return -ENOMEM;
486 }
20346722 487 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
488 }
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
491 lst_per_page);
20346722
K
492 mac_control->fifos[i].tx_curr_put_info.offset = 0;
493 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 494 config->tx_cfg[i].fifo_len - 1;
20346722
K
495 mac_control->fifos[i].tx_curr_get_info.offset = 0;
496 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 497 config->tx_cfg[i].fifo_len - 1;
20346722
K
498 mac_control->fifos[i].fifo_no = i;
499 mac_control->fifos[i].nic = nic;
fed5eccd 500 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 501
1da177e4
LT
502 for (j = 0; j < page_num; j++) {
503 int k = 0;
504 dma_addr_t tmp_p;
505 void *tmp_v;
506 tmp_v = pci_alloc_consistent(nic->pdev,
507 PAGE_SIZE, &tmp_p);
508 if (!tmp_v) {
509 DBG_PRINT(ERR_DBG,
510 "pci_alloc_consistent ");
511 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
512 return -ENOMEM;
513 }
776bd20f 514 /* If we got a zero DMA address(can happen on
515 * certain platforms like PPC), reallocate.
516 * Store virtual address of page we don't want,
517 * to be freed later.
518 */
519 if (!tmp_p) {
520 mac_control->zerodma_virt_addr = tmp_v;
521 DBG_PRINT(INIT_DBG,
522 "%s: Zero DMA address for TxDL. ", dev->name);
523 DBG_PRINT(INIT_DBG,
6b4d617d 524 "Virtual address %p\n", tmp_v);
776bd20f 525 tmp_v = pci_alloc_consistent(nic->pdev,
526 PAGE_SIZE, &tmp_p);
527 if (!tmp_v) {
528 DBG_PRINT(ERR_DBG,
529 "pci_alloc_consistent ");
530 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
531 return -ENOMEM;
532 }
533 }
1da177e4
LT
534 while (k < lst_per_page) {
535 int l = (j * lst_per_page) + k;
536 if (l == config->tx_cfg[i].fifo_len)
20346722
K
537 break;
538 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 539 tmp_v + (k * lst_size);
20346722 540 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
541 tmp_p + (k * lst_size);
542 k++;
543 }
544 }
545 }
1da177e4 546
fed5eccd
AR
547 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
548 if (!nic->ufo_in_band_v)
549 return -ENOMEM;
550
1da177e4
LT
551 /* Allocation and initialization of RXDs in Rings */
552 size = 0;
553 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
554 if (config->rx_cfg[i].num_rxd %
555 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
556 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
557 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
558 i);
559 DBG_PRINT(ERR_DBG, "RxDs per Block");
560 return FAILURE;
561 }
562 size += config->rx_cfg[i].num_rxd;
20346722 563 mac_control->rings[i].block_count =
da6971d8
AR
564 config->rx_cfg[i].num_rxd /
565 (rxd_count[nic->rxd_mode] + 1 );
566 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
567 mac_control->rings[i].block_count;
1da177e4 568 }
da6971d8
AR
569 if (nic->rxd_mode == RXD_MODE_1)
570 size = (size * (sizeof(RxD1_t)));
571 else
572 size = (size * (sizeof(RxD3_t)));
20346722 573 rx_sz = size;
1da177e4
LT
574
575 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
576 mac_control->rings[i].rx_curr_get_info.block_index = 0;
577 mac_control->rings[i].rx_curr_get_info.offset = 0;
578 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 579 config->rx_cfg[i].num_rxd - 1;
20346722
K
580 mac_control->rings[i].rx_curr_put_info.block_index = 0;
581 mac_control->rings[i].rx_curr_put_info.offset = 0;
582 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 583 config->rx_cfg[i].num_rxd - 1;
20346722
K
584 mac_control->rings[i].nic = nic;
585 mac_control->rings[i].ring_no = i;
586
da6971d8
AR
587 blk_cnt = config->rx_cfg[i].num_rxd /
588 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
589 /* Allocating all the Rx blocks */
590 for (j = 0; j < blk_cnt; j++) {
da6971d8
AR
591 rx_block_info_t *rx_blocks;
592 int l;
593
594 rx_blocks = &mac_control->rings[i].rx_blocks[j];
595 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
596 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
597 &tmp_p_addr);
598 if (tmp_v_addr == NULL) {
599 /*
20346722
K
600 * In case of failure, free_shared_mem()
601 * is called, which should free any
602 * memory that was alloced till the
1da177e4
LT
603 * failure happened.
604 */
da6971d8 605 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
606 return -ENOMEM;
607 }
608 memset(tmp_v_addr, 0, size);
da6971d8
AR
609 rx_blocks->block_virt_addr = tmp_v_addr;
610 rx_blocks->block_dma_addr = tmp_p_addr;
611 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
612 rxd_count[nic->rxd_mode],
613 GFP_KERNEL);
614 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
615 rx_blocks->rxds[l].virt_addr =
616 rx_blocks->block_virt_addr +
617 (rxd_size[nic->rxd_mode] * l);
618 rx_blocks->rxds[l].dma_addr =
619 rx_blocks->block_dma_addr +
620 (rxd_size[nic->rxd_mode] * l);
621 }
1da177e4
LT
622 }
623 /* Interlinking all Rx Blocks */
624 for (j = 0; j < blk_cnt; j++) {
20346722
K
625 tmp_v_addr =
626 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 627 tmp_v_addr_next =
20346722 628 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 629 blk_cnt].block_virt_addr;
20346722
K
630 tmp_p_addr =
631 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 632 tmp_p_addr_next =
20346722 633 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
634 blk_cnt].block_dma_addr;
635
636 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
1da177e4
LT
637 pre_rxd_blk->reserved_2_pNext_RxD_block =
638 (unsigned long) tmp_v_addr_next;
1da177e4
LT
639 pre_rxd_blk->pNext_RxD_Blk_physical =
640 (u64) tmp_p_addr_next;
641 }
642 }
da6971d8
AR
643 if (nic->rxd_mode >= RXD_MODE_3A) {
644 /*
645 * Allocation of Storages for buffer addresses in 2BUFF mode
646 * and the buffers as well.
647 */
648 for (i = 0; i < config->rx_ring_num; i++) {
649 blk_cnt = config->rx_cfg[i].num_rxd /
650 (rxd_count[nic->rxd_mode]+ 1);
651 mac_control->rings[i].ba =
652 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
1da177e4 653 GFP_KERNEL);
da6971d8 654 if (!mac_control->rings[i].ba)
1da177e4 655 return -ENOMEM;
da6971d8
AR
656 for (j = 0; j < blk_cnt; j++) {
657 int k = 0;
658 mac_control->rings[i].ba[j] =
659 kmalloc((sizeof(buffAdd_t) *
660 (rxd_count[nic->rxd_mode] + 1)),
661 GFP_KERNEL);
662 if (!mac_control->rings[i].ba[j])
1da177e4 663 return -ENOMEM;
da6971d8
AR
664 while (k != rxd_count[nic->rxd_mode]) {
665 ba = &mac_control->rings[i].ba[j][k];
666
667 ba->ba_0_org = (void *) kmalloc
668 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
669 if (!ba->ba_0_org)
670 return -ENOMEM;
671 tmp = (unsigned long)ba->ba_0_org;
672 tmp += ALIGN_SIZE;
673 tmp &= ~((unsigned long) ALIGN_SIZE);
674 ba->ba_0 = (void *) tmp;
675
676 ba->ba_1_org = (void *) kmalloc
677 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
678 if (!ba->ba_1_org)
679 return -ENOMEM;
680 tmp = (unsigned long) ba->ba_1_org;
681 tmp += ALIGN_SIZE;
682 tmp &= ~((unsigned long) ALIGN_SIZE);
683 ba->ba_1 = (void *) tmp;
684 k++;
685 }
1da177e4
LT
686 }
687 }
688 }
1da177e4
LT
689
690 /* Allocation and initialization of Statistics block */
691 size = sizeof(StatInfo_t);
692 mac_control->stats_mem = pci_alloc_consistent
693 (nic->pdev, size, &mac_control->stats_mem_phy);
694
695 if (!mac_control->stats_mem) {
20346722
K
696 /*
697 * In case of failure, free_shared_mem() is called, which
698 * should free any memory that was alloced till the
1da177e4
LT
699 * failure happened.
700 */
701 return -ENOMEM;
702 }
703 mac_control->stats_mem_sz = size;
704
705 tmp_v_addr = mac_control->stats_mem;
706 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
707 memset(tmp_v_addr, 0, size);
1da177e4
LT
708 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
709 (unsigned long long) tmp_p_addr);
710
711 return SUCCESS;
712}
713
20346722
K
714/**
715 * free_shared_mem - Free the allocated Memory
1da177e4
LT
716 * @nic: Device private variable.
717 * Description: This function is to free all memory locations allocated by
718 * the init_shared_mem() function and return it to the kernel.
719 */
720
721static void free_shared_mem(struct s2io_nic *nic)
722{
723 int i, j, blk_cnt, size;
724 void *tmp_v_addr;
725 dma_addr_t tmp_p_addr;
726 mac_info_t *mac_control;
727 struct config_param *config;
728 int lst_size, lst_per_page;
776bd20f 729 struct net_device *dev = nic->dev;
1da177e4
LT
730
731 if (!nic)
732 return;
733
734 mac_control = &nic->mac_control;
735 config = &nic->config;
736
737 lst_size = (sizeof(TxD_t) * config->max_txds);
738 lst_per_page = PAGE_SIZE / lst_size;
739
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
742 lst_per_page);
743 for (j = 0; j < page_num; j++) {
744 int mem_blks = (j * lst_per_page);
776bd20f 745 if (!mac_control->fifos[i].list_info)
746 return;
747 if (!mac_control->fifos[i].list_info[mem_blks].
748 list_virt_addr)
1da177e4
LT
749 break;
750 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
751 mac_control->fifos[i].
752 list_info[mem_blks].
1da177e4 753 list_virt_addr,
20346722
K
754 mac_control->fifos[i].
755 list_info[mem_blks].
1da177e4
LT
756 list_phy_addr);
757 }
776bd20f 758 /* If we got a zero DMA address during allocation,
759 * free the page now
760 */
761 if (mac_control->zerodma_virt_addr) {
762 pci_free_consistent(nic->pdev, PAGE_SIZE,
763 mac_control->zerodma_virt_addr,
764 (dma_addr_t)0);
765 DBG_PRINT(INIT_DBG,
6b4d617d
AM
766 "%s: Freeing TxDL with zero DMA addr. ",
767 dev->name);
768 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
769 mac_control->zerodma_virt_addr);
776bd20f 770 }
20346722 771 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
772 }
773
1da177e4 774 size = SIZE_OF_BLOCK;
1da177e4 775 for (i = 0; i < config->rx_ring_num; i++) {
20346722 776 blk_cnt = mac_control->rings[i].block_count;
1da177e4 777 for (j = 0; j < blk_cnt; j++) {
20346722
K
778 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
779 block_virt_addr;
780 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
781 block_dma_addr;
1da177e4
LT
782 if (tmp_v_addr == NULL)
783 break;
784 pci_free_consistent(nic->pdev, size,
785 tmp_v_addr, tmp_p_addr);
da6971d8 786 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
787 }
788 }
789
da6971d8
AR
790 if (nic->rxd_mode >= RXD_MODE_3A) {
791 /* Freeing buffer storage addresses in 2BUFF mode. */
792 for (i = 0; i < config->rx_ring_num; i++) {
793 blk_cnt = config->rx_cfg[i].num_rxd /
794 (rxd_count[nic->rxd_mode] + 1);
795 for (j = 0; j < blk_cnt; j++) {
796 int k = 0;
797 if (!mac_control->rings[i].ba[j])
798 continue;
799 while (k != rxd_count[nic->rxd_mode]) {
800 buffAdd_t *ba =
801 &mac_control->rings[i].ba[j][k];
802 kfree(ba->ba_0_org);
803 kfree(ba->ba_1_org);
804 k++;
805 }
806 kfree(mac_control->rings[i].ba[j]);
1da177e4 807 }
da6971d8 808 kfree(mac_control->rings[i].ba);
1da177e4 809 }
1da177e4 810 }
1da177e4
LT
811
812 if (mac_control->stats_mem) {
813 pci_free_consistent(nic->pdev,
814 mac_control->stats_mem_sz,
815 mac_control->stats_mem,
816 mac_control->stats_mem_phy);
817 }
fed5eccd
AR
818 if (nic->ufo_in_band_v)
819 kfree(nic->ufo_in_band_v);
1da177e4
LT
820}
821
541ae68f
K
822/**
823 * s2io_verify_pci_mode -
824 */
825
826static int s2io_verify_pci_mode(nic_t *nic)
827{
509a2671 828 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
829 register u64 val64 = 0;
830 int mode;
831
832 val64 = readq(&bar0->pci_mode);
833 mode = (u8)GET_PCI_MODE(val64);
834
835 if ( val64 & PCI_MODE_UNKNOWN_MODE)
836 return -1; /* Unknown PCI mode */
837 return mode;
838}
839
c92ca04b
AR
840#define NEC_VENID 0x1033
841#define NEC_DEVID 0x0125
842static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
843{
844 struct pci_dev *tdev = NULL;
845 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
846 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
847 if (tdev->bus == s2io_pdev->bus->parent)
848 return 1;
849 }
850 }
851 return 0;
852}
541ae68f 853
7b32a312 854static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
855/**
856 * s2io_print_pci_mode -
857 */
858static int s2io_print_pci_mode(nic_t *nic)
859{
509a2671 860 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
861 register u64 val64 = 0;
862 int mode;
863 struct config_param *config = &nic->config;
864
865 val64 = readq(&bar0->pci_mode);
866 mode = (u8)GET_PCI_MODE(val64);
867
868 if ( val64 & PCI_MODE_UNKNOWN_MODE)
869 return -1; /* Unknown PCI mode */
870
c92ca04b
AR
871 config->bus_speed = bus_speed[mode];
872
873 if (s2io_on_nec_bridge(nic->pdev)) {
874 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
875 nic->dev->name);
876 return mode;
877 }
878
541ae68f
K
879 if (val64 & PCI_MODE_32_BITS) {
880 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
881 } else {
882 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
883 }
884
885 switch(mode) {
886 case PCI_MODE_PCI_33:
887 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
888 break;
889 case PCI_MODE_PCI_66:
890 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
891 break;
892 case PCI_MODE_PCIX_M1_66:
893 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
894 break;
895 case PCI_MODE_PCIX_M1_100:
896 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
897 break;
898 case PCI_MODE_PCIX_M1_133:
899 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
900 break;
901 case PCI_MODE_PCIX_M2_66:
902 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
903 break;
904 case PCI_MODE_PCIX_M2_100:
905 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
906 break;
907 case PCI_MODE_PCIX_M2_133:
908 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
909 break;
910 default:
911 return -1; /* Unsupported bus speed */
912 }
913
914 return mode;
915}
916
20346722
K
917/**
918 * init_nic - Initialization of hardware
1da177e4 919 * @nic: device peivate variable
20346722
K
920 * Description: The function sequentially configures every block
921 * of the H/W from their reset values.
922 * Return Value: SUCCESS on success and
1da177e4
LT
923 * '-1' on failure (endian settings incorrect).
924 */
925
926static int init_nic(struct s2io_nic *nic)
927{
928 XENA_dev_config_t __iomem *bar0 = nic->bar0;
929 struct net_device *dev = nic->dev;
930 register u64 val64 = 0;
931 void __iomem *add;
932 u32 time;
933 int i, j;
934 mac_info_t *mac_control;
935 struct config_param *config;
c92ca04b 936 int dtx_cnt = 0;
1da177e4 937 unsigned long long mem_share;
20346722 938 int mem_size;
1da177e4
LT
939
940 mac_control = &nic->mac_control;
941 config = &nic->config;
942
5e25b9dd 943 /* to set the swapper controle on the card */
20346722 944 if(s2io_set_swapper(nic)) {
1da177e4
LT
945 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
946 return -1;
947 }
948
541ae68f
K
949 /*
950 * Herc requires EOI to be removed from reset before XGXS, so..
951 */
952 if (nic->device_type & XFRAME_II_DEVICE) {
953 val64 = 0xA500000000ULL;
954 writeq(val64, &bar0->sw_reset);
955 msleep(500);
956 val64 = readq(&bar0->sw_reset);
957 }
958
1da177e4
LT
959 /* Remove XGXS from reset state */
960 val64 = 0;
961 writeq(val64, &bar0->sw_reset);
1da177e4 962 msleep(500);
20346722 963 val64 = readq(&bar0->sw_reset);
1da177e4
LT
964
965 /* Enable Receiving broadcasts */
966 add = &bar0->mac_cfg;
967 val64 = readq(&bar0->mac_cfg);
968 val64 |= MAC_RMAC_BCAST_ENABLE;
969 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
970 writel((u32) val64, add);
971 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
972 writel((u32) (val64 >> 32), (add + 4));
973
974 /* Read registers in all blocks */
975 val64 = readq(&bar0->mac_int_mask);
976 val64 = readq(&bar0->mc_int_mask);
977 val64 = readq(&bar0->xgxs_int_mask);
978
979 /* Set MTU */
980 val64 = dev->mtu;
981 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
982
541ae68f
K
983 if (nic->device_type & XFRAME_II_DEVICE) {
984 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 985 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 986 &bar0->dtx_control, UF);
541ae68f
K
987 if (dtx_cnt & 0x1)
988 msleep(1); /* Necessary!! */
1da177e4
LT
989 dtx_cnt++;
990 }
541ae68f 991 } else {
c92ca04b
AR
992 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
993 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
994 &bar0->dtx_control, UF);
995 val64 = readq(&bar0->dtx_control);
996 dtx_cnt++;
1da177e4
LT
997 }
998 }
999
1000 /* Tx DMA Initialization */
1001 val64 = 0;
1002 writeq(val64, &bar0->tx_fifo_partition_0);
1003 writeq(val64, &bar0->tx_fifo_partition_1);
1004 writeq(val64, &bar0->tx_fifo_partition_2);
1005 writeq(val64, &bar0->tx_fifo_partition_3);
1006
1007
1008 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1009 val64 |=
1010 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1011 13) | vBIT(config->tx_cfg[i].fifo_priority,
1012 ((i * 32) + 5), 3);
1013
1014 if (i == (config->tx_fifo_num - 1)) {
1015 if (i % 2 == 0)
1016 i++;
1017 }
1018
1019 switch (i) {
1020 case 1:
1021 writeq(val64, &bar0->tx_fifo_partition_0);
1022 val64 = 0;
1023 break;
1024 case 3:
1025 writeq(val64, &bar0->tx_fifo_partition_1);
1026 val64 = 0;
1027 break;
1028 case 5:
1029 writeq(val64, &bar0->tx_fifo_partition_2);
1030 val64 = 0;
1031 break;
1032 case 7:
1033 writeq(val64, &bar0->tx_fifo_partition_3);
1034 break;
1035 }
1036 }
1037
5e25b9dd
K
1038 /*
1039 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1040 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1041 */
541ae68f
K
1042 if ((nic->device_type == XFRAME_I_DEVICE) &&
1043 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
1044 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1045
1da177e4
LT
1046 val64 = readq(&bar0->tx_fifo_partition_0);
1047 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1048 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1049
20346722
K
1050 /*
1051 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1052 * integrity checking.
1053 */
1054 val64 = readq(&bar0->tx_pa_cfg);
1055 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1056 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1057 writeq(val64, &bar0->tx_pa_cfg);
1058
1059 /* Rx DMA intialization. */
1060 val64 = 0;
1061 for (i = 0; i < config->rx_ring_num; i++) {
1062 val64 |=
1063 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1064 3);
1065 }
1066 writeq(val64, &bar0->rx_queue_priority);
1067
20346722
K
1068 /*
1069 * Allocating equal share of memory to all the
1da177e4
LT
1070 * configured Rings.
1071 */
1072 val64 = 0;
541ae68f
K
1073 if (nic->device_type & XFRAME_II_DEVICE)
1074 mem_size = 32;
1075 else
1076 mem_size = 64;
1077
1da177e4
LT
1078 for (i = 0; i < config->rx_ring_num; i++) {
1079 switch (i) {
1080 case 0:
20346722
K
1081 mem_share = (mem_size / config->rx_ring_num +
1082 mem_size % config->rx_ring_num);
1da177e4
LT
1083 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1084 continue;
1085 case 1:
20346722 1086 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1087 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1088 continue;
1089 case 2:
20346722 1090 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1091 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1092 continue;
1093 case 3:
20346722 1094 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1095 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1096 continue;
1097 case 4:
20346722 1098 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1099 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1100 continue;
1101 case 5:
20346722 1102 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1103 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1104 continue;
1105 case 6:
20346722 1106 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1107 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1108 continue;
1109 case 7:
20346722 1110 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1111 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1112 continue;
1113 }
1114 }
1115 writeq(val64, &bar0->rx_queue_cfg);
1116
20346722 1117 /*
5e25b9dd
K
1118 * Filling Tx round robin registers
1119 * as per the number of FIFOs
1da177e4 1120 */
5e25b9dd
K
1121 switch (config->tx_fifo_num) {
1122 case 1:
1123 val64 = 0x0000000000000000ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 writeq(val64, &bar0->tx_w_round_robin_1);
1126 writeq(val64, &bar0->tx_w_round_robin_2);
1127 writeq(val64, &bar0->tx_w_round_robin_3);
1128 writeq(val64, &bar0->tx_w_round_robin_4);
1129 break;
1130 case 2:
1131 val64 = 0x0000010000010000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_0);
1133 val64 = 0x0100000100000100ULL;
1134 writeq(val64, &bar0->tx_w_round_robin_1);
1135 val64 = 0x0001000001000001ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_2);
1137 val64 = 0x0000010000010000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_3);
1139 val64 = 0x0100000000000000ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_4);
1141 break;
1142 case 3:
1143 val64 = 0x0001000102000001ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_0);
1145 val64 = 0x0001020000010001ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_1);
1147 val64 = 0x0200000100010200ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_2);
1149 val64 = 0x0001000102000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_3);
1151 val64 = 0x0001020000000000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_4);
1153 break;
1154 case 4:
1155 val64 = 0x0001020300010200ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_0);
1157 val64 = 0x0100000102030001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_1);
1159 val64 = 0x0200010000010203ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_2);
1161 val64 = 0x0001020001000001ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_3);
1163 val64 = 0x0203000100000000ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_4);
1165 break;
1166 case 5:
1167 val64 = 0x0001000203000102ULL;
1168 writeq(val64, &bar0->tx_w_round_robin_0);
1169 val64 = 0x0001020001030004ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_1);
1171 val64 = 0x0001000203000102ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_2);
1173 val64 = 0x0001020001030004ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_3);
1175 val64 = 0x0001000000000000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_4);
1177 break;
1178 case 6:
1179 val64 = 0x0001020304000102ULL;
1180 writeq(val64, &bar0->tx_w_round_robin_0);
1181 val64 = 0x0304050001020001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_1);
1183 val64 = 0x0203000100000102ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_2);
1185 val64 = 0x0304000102030405ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_3);
1187 val64 = 0x0001000200000000ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_4);
1189 break;
1190 case 7:
1191 val64 = 0x0001020001020300ULL;
1192 writeq(val64, &bar0->tx_w_round_robin_0);
1193 val64 = 0x0102030400010203ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_1);
1195 val64 = 0x0405060001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_2);
1197 val64 = 0x0304050000010200ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_3);
1199 val64 = 0x0102030000000000ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_4);
1201 break;
1202 case 8:
1203 val64 = 0x0001020300040105ULL;
1204 writeq(val64, &bar0->tx_w_round_robin_0);
1205 val64 = 0x0200030106000204ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_1);
1207 val64 = 0x0103000502010007ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_2);
1209 val64 = 0x0304010002060500ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_3);
1211 val64 = 0x0103020400000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_4);
1213 break;
1214 }
1215
5d3213cc
AR
1216 /* Enable Tx FIFO partition 0. */
1217 val64 = readq(&bar0->tx_fifo_partition_0);
1218 val64 |= (TX_FIFO_PARTITION_EN);
1219 writeq(val64, &bar0->tx_fifo_partition_0);
1220
5e25b9dd
K
1221 /* Filling the Rx round robin registers as per the
1222 * number of Rings and steering based on QoS.
1223 */
1224 switch (config->rx_ring_num) {
1225 case 1:
1226 val64 = 0x8080808080808080ULL;
1227 writeq(val64, &bar0->rts_qos_steering);
1228 break;
1229 case 2:
1230 val64 = 0x0000010000010000ULL;
1231 writeq(val64, &bar0->rx_w_round_robin_0);
1232 val64 = 0x0100000100000100ULL;
1233 writeq(val64, &bar0->rx_w_round_robin_1);
1234 val64 = 0x0001000001000001ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_2);
1236 val64 = 0x0000010000010000ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_3);
1238 val64 = 0x0100000000000000ULL;
1239 writeq(val64, &bar0->rx_w_round_robin_4);
1240
1241 val64 = 0x8080808040404040ULL;
1242 writeq(val64, &bar0->rts_qos_steering);
1243 break;
1244 case 3:
1245 val64 = 0x0001000102000001ULL;
1246 writeq(val64, &bar0->rx_w_round_robin_0);
1247 val64 = 0x0001020000010001ULL;
1248 writeq(val64, &bar0->rx_w_round_robin_1);
1249 val64 = 0x0200000100010200ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_2);
1251 val64 = 0x0001000102000001ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_3);
1253 val64 = 0x0001020000000000ULL;
1254 writeq(val64, &bar0->rx_w_round_robin_4);
1255
1256 val64 = 0x8080804040402020ULL;
1257 writeq(val64, &bar0->rts_qos_steering);
1258 break;
1259 case 4:
1260 val64 = 0x0001020300010200ULL;
1261 writeq(val64, &bar0->rx_w_round_robin_0);
1262 val64 = 0x0100000102030001ULL;
1263 writeq(val64, &bar0->rx_w_round_robin_1);
1264 val64 = 0x0200010000010203ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_2);
1266 val64 = 0x0001020001000001ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_3);
1268 val64 = 0x0203000100000000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_4);
1270
1271 val64 = 0x8080404020201010ULL;
1272 writeq(val64, &bar0->rts_qos_steering);
1273 break;
1274 case 5:
1275 val64 = 0x0001000203000102ULL;
1276 writeq(val64, &bar0->rx_w_round_robin_0);
1277 val64 = 0x0001020001030004ULL;
1278 writeq(val64, &bar0->rx_w_round_robin_1);
1279 val64 = 0x0001000203000102ULL;
1280 writeq(val64, &bar0->rx_w_round_robin_2);
1281 val64 = 0x0001020001030004ULL;
1282 writeq(val64, &bar0->rx_w_round_robin_3);
1283 val64 = 0x0001000000000000ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_4);
1285
1286 val64 = 0x8080404020201008ULL;
1287 writeq(val64, &bar0->rts_qos_steering);
1288 break;
1289 case 6:
1290 val64 = 0x0001020304000102ULL;
1291 writeq(val64, &bar0->rx_w_round_robin_0);
1292 val64 = 0x0304050001020001ULL;
1293 writeq(val64, &bar0->rx_w_round_robin_1);
1294 val64 = 0x0203000100000102ULL;
1295 writeq(val64, &bar0->rx_w_round_robin_2);
1296 val64 = 0x0304000102030405ULL;
1297 writeq(val64, &bar0->rx_w_round_robin_3);
1298 val64 = 0x0001000200000000ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_4);
1300
1301 val64 = 0x8080404020100804ULL;
1302 writeq(val64, &bar0->rts_qos_steering);
1303 break;
1304 case 7:
1305 val64 = 0x0001020001020300ULL;
1306 writeq(val64, &bar0->rx_w_round_robin_0);
1307 val64 = 0x0102030400010203ULL;
1308 writeq(val64, &bar0->rx_w_round_robin_1);
1309 val64 = 0x0405060001020001ULL;
1310 writeq(val64, &bar0->rx_w_round_robin_2);
1311 val64 = 0x0304050000010200ULL;
1312 writeq(val64, &bar0->rx_w_round_robin_3);
1313 val64 = 0x0102030000000000ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_4);
1315
1316 val64 = 0x8080402010080402ULL;
1317 writeq(val64, &bar0->rts_qos_steering);
1318 break;
1319 case 8:
1320 val64 = 0x0001020300040105ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_0);
1322 val64 = 0x0200030106000204ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_1);
1324 val64 = 0x0103000502010007ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_2);
1326 val64 = 0x0304010002060500ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_3);
1328 val64 = 0x0103020400000000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_4);
1330
1331 val64 = 0x8040201008040201ULL;
1332 writeq(val64, &bar0->rts_qos_steering);
1333 break;
1334 }
1da177e4
LT
1335
1336 /* UDP Fix */
1337 val64 = 0;
20346722 1338 for (i = 0; i < 8; i++)
1da177e4
LT
1339 writeq(val64, &bar0->rts_frm_len_n[i]);
1340
5e25b9dd
K
1341 /* Set the default rts frame length for the rings configured */
1342 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1343 for (i = 0 ; i < config->rx_ring_num ; i++)
1344 writeq(val64, &bar0->rts_frm_len_n[i]);
1345
1346 /* Set the frame length for the configured rings
1347 * desired by the user
1348 */
1349 for (i = 0; i < config->rx_ring_num; i++) {
1350 /* If rts_frm_len[i] == 0 then it is assumed that user not
1351 * specified frame length steering.
1352 * If the user provides the frame length then program
1353 * the rts_frm_len register for those values or else
1354 * leave it as it is.
1355 */
1356 if (rts_frm_len[i] != 0) {
1357 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1358 &bar0->rts_frm_len_n[i]);
1359 }
1360 }
1da177e4 1361
20346722 1362 /* Program statistics memory */
1da177e4 1363 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1364
541ae68f
K
1365 if (nic->device_type == XFRAME_II_DEVICE) {
1366 val64 = STAT_BC(0x320);
1367 writeq(val64, &bar0->stat_byte_cnt);
1368 }
1369
20346722 1370 /*
1da177e4
LT
1371 * Initializing the sampling rate for the device to calculate the
1372 * bandwidth utilization.
1373 */
1374 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1375 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1376 writeq(val64, &bar0->mac_link_util);
1377
1378
20346722
K
1379 /*
1380 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1381 * Scheme.
1382 */
20346722
K
1383 /*
1384 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1385 * 250 interrupts per sec. Continuous interrupts are enabled
1386 * by default.
1387 */
541ae68f
K
1388 if (nic->device_type == XFRAME_II_DEVICE) {
1389 int count = (nic->config.bus_speed * 125)/2;
1390 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1391 } else {
1392
1393 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1394 }
1395 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1396 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1397 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1398 if (use_continuous_tx_intrs)
1399 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1400 writeq(val64, &bar0->tti_data1_mem);
1401
1402 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1403 TTI_DATA2_MEM_TX_UFC_B(0x20) |
5e25b9dd 1404 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1405 writeq(val64, &bar0->tti_data2_mem);
1406
1407 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1408 writeq(val64, &bar0->tti_command_mem);
1409
20346722 1410 /*
1da177e4
LT
1411 * Once the operation completes, the Strobe bit of the command
1412 * register will be reset. We poll for this particular condition
1413 * We wait for a maximum of 500ms for the operation to complete,
1414 * if it's not complete by then we return error.
1415 */
1416 time = 0;
1417 while (TRUE) {
1418 val64 = readq(&bar0->tti_command_mem);
1419 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1420 break;
1421 }
1422 if (time > 10) {
1423 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1424 dev->name);
1425 return -1;
1426 }
1427 msleep(50);
1428 time++;
1429 }
1430
b6e3f982
K
1431 if (nic->config.bimodal) {
1432 int k = 0;
1433 for (k = 0; k < config->rx_ring_num; k++) {
1434 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1435 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1436 writeq(val64, &bar0->tti_command_mem);
541ae68f 1437
541ae68f 1438 /*
b6e3f982
K
1439 * Once the operation completes, the Strobe bit of the command
1440 * register will be reset. We poll for this particular condition
1441 * We wait for a maximum of 500ms for the operation to complete,
1442 * if it's not complete by then we return error.
1443 */
1444 time = 0;
1445 while (TRUE) {
1446 val64 = readq(&bar0->tti_command_mem);
1447 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1448 break;
1449 }
1450 if (time > 10) {
1451 DBG_PRINT(ERR_DBG,
1452 "%s: TTI init Failed\n",
1453 dev->name);
1454 return -1;
1455 }
1456 time++;
1457 msleep(50);
1458 }
1459 }
541ae68f 1460 } else {
1da177e4 1461
b6e3f982
K
1462 /* RTI Initialization */
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1464 /*
1465 * Programmed to generate Apprx 500 Intrs per
1466 * second
1467 */
1468 int count = (nic->config.bus_speed * 125)/4;
1469 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1470 } else {
1471 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1472 }
1473 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1474 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1475 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1476
b6e3f982 1477 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1478
b6e3f982 1479 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1480 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1481 if (nic->intr_type == MSI_X)
1482 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1483 RTI_DATA2_MEM_RX_UFC_D(0x40));
1484 else
1485 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1486 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1487 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1488
b6e3f982
K
1489 for (i = 0; i < config->rx_ring_num; i++) {
1490 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1491 | RTI_CMD_MEM_OFFSET(i);
1492 writeq(val64, &bar0->rti_command_mem);
1493
1494 /*
1495 * Once the operation completes, the Strobe bit of the
1496 * command register will be reset. We poll for this
1497 * particular condition. We wait for a maximum of 500ms
1498 * for the operation to complete, if it's not complete
1499 * by then we return error.
1500 */
1501 time = 0;
1502 while (TRUE) {
1503 val64 = readq(&bar0->rti_command_mem);
1504 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1505 break;
1506 }
1507 if (time > 10) {
1508 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1509 dev->name);
1510 return -1;
1511 }
1512 time++;
1513 msleep(50);
1514 }
1da177e4 1515 }
1da177e4
LT
1516 }
1517
20346722
K
1518 /*
1519 * Initializing proper values as Pause threshold into all
1da177e4
LT
1520 * the 8 Queues on Rx side.
1521 */
1522 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1524
1525 /* Disable RMAC PAD STRIPPING */
509a2671 1526 add = &bar0->mac_cfg;
1da177e4
LT
1527 val64 = readq(&bar0->mac_cfg);
1528 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1529 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1530 writel((u32) (val64), add);
1531 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1532 writel((u32) (val64 >> 32), (add + 4));
1533 val64 = readq(&bar0->mac_cfg);
1534
7d3d0439
RA
1535 /* Enable FCS stripping by adapter */
1536 add = &bar0->mac_cfg;
1537 val64 = readq(&bar0->mac_cfg);
1538 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 writeq(val64, &bar0->mac_cfg);
1541 else {
1542 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543 writel((u32) (val64), add);
1544 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545 writel((u32) (val64 >> 32), (add + 4));
1546 }
1547
20346722
K
1548 /*
1549 * Set the time value to be inserted in the pause frame
1da177e4
LT
1550 * generated by xena.
1551 */
1552 val64 = readq(&bar0->rmac_pause_cfg);
1553 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1554 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1555 writeq(val64, &bar0->rmac_pause_cfg);
1556
20346722 1557 /*
1da177e4
LT
1558 * Set the Threshold Limit for Generating the pause frame
1559 * If the amount of data in any Queue exceeds ratio of
1560 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1561 * pause frame is generated
1562 */
1563 val64 = 0;
1564 for (i = 0; i < 4; i++) {
1565 val64 |=
1566 (((u64) 0xFF00 | nic->mac_control.
1567 mc_pause_threshold_q0q3)
1568 << (i * 2 * 8));
1569 }
1570 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1571
1572 val64 = 0;
1573 for (i = 0; i < 4; i++) {
1574 val64 |=
1575 (((u64) 0xFF00 | nic->mac_control.
1576 mc_pause_threshold_q4q7)
1577 << (i * 2 * 8));
1578 }
1579 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1580
20346722
K
1581 /*
1582 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1583 * exceeded the limit pointed by shared_splits
1584 */
1585 val64 = readq(&bar0->pic_control);
1586 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1587 writeq(val64, &bar0->pic_control);
1588
863c11a9
AR
1589 if (nic->config.bus_speed == 266) {
1590 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1591 writeq(0x0, &bar0->read_retry_delay);
1592 writeq(0x0, &bar0->write_retry_delay);
1593 }
1594
541ae68f
K
1595 /*
1596 * Programming the Herc to split every write transaction
1597 * that does not start on an ADB to reduce disconnects.
1598 */
1599 if (nic->device_type == XFRAME_II_DEVICE) {
863c11a9
AR
1600 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1601 writeq(val64, &bar0->misc_control);
1602 val64 = readq(&bar0->pic_control2);
1603 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1604 writeq(val64, &bar0->pic_control2);
541ae68f 1605 }
c92ca04b
AR
1606 if (strstr(nic->product_name, "CX4")) {
1607 val64 = TMAC_AVG_IPG(0x17);
1608 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1609 }
1610
1da177e4
LT
1611 return SUCCESS;
1612}
a371a07d
K
1613#define LINK_UP_DOWN_INTERRUPT 1
1614#define MAC_RMAC_ERR_TIMER 2
1615
ac1f60db 1616static int s2io_link_fault_indication(nic_t *nic)
a371a07d 1617{
cc6e7c44
RA
1618 if (nic->intr_type != INTA)
1619 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1620 if (nic->device_type == XFRAME_II_DEVICE)
1621 return LINK_UP_DOWN_INTERRUPT;
1622 else
1623 return MAC_RMAC_ERR_TIMER;
1624}
1da177e4 1625
20346722
K
1626/**
1627 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1628 * @nic: device private variable,
1629 * @mask: A mask indicating which Intr block must be modified and,
1630 * @flag: A flag indicating whether to enable or disable the Intrs.
1631 * Description: This function will either disable or enable the interrupts
20346722
K
1632 * depending on the flag argument. The mask argument can be used to
1633 * enable/disable any Intr block.
1da177e4
LT
1634 * Return Value: NONE.
1635 */
1636
1637static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1638{
1639 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1640 register u64 val64 = 0, temp64 = 0;
1641
1642 /* Top level interrupt classification */
1643 /* PIC Interrupts */
1644 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1645 /* Enable PIC Intrs in the general intr mask register */
1646 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1647 if (flag == ENABLE_INTRS) {
1648 temp64 = readq(&bar0->general_int_mask);
1649 temp64 &= ~((u64) val64);
1650 writeq(temp64, &bar0->general_int_mask);
20346722 1651 /*
a371a07d
K
1652 * If Hercules adapter enable GPIO otherwise
1653 * disabled all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1654 * interrupts for now.
1655 * TODO
1da177e4 1656 */
a371a07d
K
1657 if (s2io_link_fault_indication(nic) ==
1658 LINK_UP_DOWN_INTERRUPT ) {
1659 temp64 = readq(&bar0->pic_int_mask);
1660 temp64 &= ~((u64) PIC_INT_GPIO);
1661 writeq(temp64, &bar0->pic_int_mask);
1662 temp64 = readq(&bar0->gpio_int_mask);
1663 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1664 writeq(temp64, &bar0->gpio_int_mask);
1665 } else {
1666 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1667 }
20346722 1668 /*
1da177e4
LT
1669 * No MSI Support is available presently, so TTI and
1670 * RTI interrupts are also disabled.
1671 */
1672 } else if (flag == DISABLE_INTRS) {
20346722
K
1673 /*
1674 * Disable PIC Intrs in the general
1675 * intr mask register
1da177e4
LT
1676 */
1677 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1678 temp64 = readq(&bar0->general_int_mask);
1679 val64 |= temp64;
1680 writeq(val64, &bar0->general_int_mask);
1681 }
1682 }
1683
1684 /* DMA Interrupts */
1685 /* Enabling/Disabling Tx DMA interrupts */
1686 if (mask & TX_DMA_INTR) {
1687 /* Enable TxDMA Intrs in the general intr mask register */
1688 val64 = TXDMA_INT_M;
1689 if (flag == ENABLE_INTRS) {
1690 temp64 = readq(&bar0->general_int_mask);
1691 temp64 &= ~((u64) val64);
1692 writeq(temp64, &bar0->general_int_mask);
20346722
K
1693 /*
1694 * Keep all interrupts other than PFC interrupt
1da177e4
LT
1695 * and PCC interrupt disabled in DMA level.
1696 */
1697 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1698 TXDMA_PCC_INT_M);
1699 writeq(val64, &bar0->txdma_int_mask);
20346722
K
1700 /*
1701 * Enable only the MISC error 1 interrupt in PFC block
1da177e4
LT
1702 */
1703 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1704 writeq(val64, &bar0->pfc_err_mask);
20346722
K
1705 /*
1706 * Enable only the FB_ECC error interrupt in PCC block
1da177e4
LT
1707 */
1708 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1709 writeq(val64, &bar0->pcc_err_mask);
1710 } else if (flag == DISABLE_INTRS) {
20346722
K
1711 /*
1712 * Disable TxDMA Intrs in the general intr mask
1713 * register
1da177e4
LT
1714 */
1715 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1716 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1717 temp64 = readq(&bar0->general_int_mask);
1718 val64 |= temp64;
1719 writeq(val64, &bar0->general_int_mask);
1720 }
1721 }
1722
1723 /* Enabling/Disabling Rx DMA interrupts */
1724 if (mask & RX_DMA_INTR) {
1725 /* Enable RxDMA Intrs in the general intr mask register */
1726 val64 = RXDMA_INT_M;
1727 if (flag == ENABLE_INTRS) {
1728 temp64 = readq(&bar0->general_int_mask);
1729 temp64 &= ~((u64) val64);
1730 writeq(temp64, &bar0->general_int_mask);
20346722
K
1731 /*
1732 * All RxDMA block interrupts are disabled for now
1733 * TODO
1da177e4
LT
1734 */
1735 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1736 } else if (flag == DISABLE_INTRS) {
20346722
K
1737 /*
1738 * Disable RxDMA Intrs in the general intr mask
1739 * register
1da177e4
LT
1740 */
1741 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1742 temp64 = readq(&bar0->general_int_mask);
1743 val64 |= temp64;
1744 writeq(val64, &bar0->general_int_mask);
1745 }
1746 }
1747
1748 /* MAC Interrupts */
1749 /* Enabling/Disabling MAC interrupts */
1750 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1751 val64 = TXMAC_INT_M | RXMAC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
20346722
K
1756 /*
1757 * All MAC block error interrupts are disabled for now
1da177e4
LT
1758 * TODO
1759 */
1da177e4 1760 } else if (flag == DISABLE_INTRS) {
20346722
K
1761 /*
1762 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1763 */
1764 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1765 writeq(DISABLE_ALL_INTRS,
1766 &bar0->mac_rmac_err_mask);
1767
1768 temp64 = readq(&bar0->general_int_mask);
1769 val64 |= temp64;
1770 writeq(val64, &bar0->general_int_mask);
1771 }
1772 }
1773
1774 /* XGXS Interrupts */
1775 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1776 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1777 if (flag == ENABLE_INTRS) {
1778 temp64 = readq(&bar0->general_int_mask);
1779 temp64 &= ~((u64) val64);
1780 writeq(temp64, &bar0->general_int_mask);
20346722 1781 /*
1da177e4 1782 * All XGXS block error interrupts are disabled for now
20346722 1783 * TODO
1da177e4
LT
1784 */
1785 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1786 } else if (flag == DISABLE_INTRS) {
20346722
K
1787 /*
1788 * Disable MC Intrs in the general intr mask register
1da177e4
LT
1789 */
1790 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1791 temp64 = readq(&bar0->general_int_mask);
1792 val64 |= temp64;
1793 writeq(val64, &bar0->general_int_mask);
1794 }
1795 }
1796
1797 /* Memory Controller(MC) interrupts */
1798 if (mask & MC_INTR) {
1799 val64 = MC_INT_M;
1800 if (flag == ENABLE_INTRS) {
1801 temp64 = readq(&bar0->general_int_mask);
1802 temp64 &= ~((u64) val64);
1803 writeq(temp64, &bar0->general_int_mask);
20346722 1804 /*
5e25b9dd 1805 * Enable all MC Intrs.
1da177e4 1806 */
5e25b9dd
K
1807 writeq(0x0, &bar0->mc_int_mask);
1808 writeq(0x0, &bar0->mc_err_mask);
1da177e4
LT
1809 } else if (flag == DISABLE_INTRS) {
1810 /*
1811 * Disable MC Intrs in the general intr mask register
1812 */
1813 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1814 temp64 = readq(&bar0->general_int_mask);
1815 val64 |= temp64;
1816 writeq(val64, &bar0->general_int_mask);
1817 }
1818 }
1819
1820
1821 /* Tx traffic interrupts */
1822 if (mask & TX_TRAFFIC_INTR) {
1823 val64 = TXTRAFFIC_INT_M;
1824 if (flag == ENABLE_INTRS) {
1825 temp64 = readq(&bar0->general_int_mask);
1826 temp64 &= ~((u64) val64);
1827 writeq(temp64, &bar0->general_int_mask);
20346722 1828 /*
1da177e4 1829 * Enable all the Tx side interrupts
20346722 1830 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1831 */
1832 writeq(0x0, &bar0->tx_traffic_mask);
1833 } else if (flag == DISABLE_INTRS) {
20346722
K
1834 /*
1835 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1836 * register.
1837 */
1838 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1839 temp64 = readq(&bar0->general_int_mask);
1840 val64 |= temp64;
1841 writeq(val64, &bar0->general_int_mask);
1842 }
1843 }
1844
1845 /* Rx traffic interrupts */
1846 if (mask & RX_TRAFFIC_INTR) {
1847 val64 = RXTRAFFIC_INT_M;
1848 if (flag == ENABLE_INTRS) {
1849 temp64 = readq(&bar0->general_int_mask);
1850 temp64 &= ~((u64) val64);
1851 writeq(temp64, &bar0->general_int_mask);
1852 /* writing 0 Enables all 8 RX interrupt levels */
1853 writeq(0x0, &bar0->rx_traffic_mask);
1854 } else if (flag == DISABLE_INTRS) {
20346722
K
1855 /*
1856 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1857 * register.
1858 */
1859 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1860 temp64 = readq(&bar0->general_int_mask);
1861 val64 |= temp64;
1862 writeq(val64, &bar0->general_int_mask);
1863 }
1864 }
1865}
1866
541ae68f 1867static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
20346722
K
1868{
1869 int ret = 0;
1870
1871 if (flag == FALSE) {
541ae68f 1872 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1874 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1875 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1876 ret = 1;
1877 }
541ae68f 1878 }else {
5e25b9dd
K
1879 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1880 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1881 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1882 ret = 1;
1883 }
20346722
K
1884 }
1885 } else {
541ae68f 1886 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1887 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1889 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1890 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1891 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1892 ret = 1;
1893 }
1894 } else {
1895 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1896 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1897 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1898 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1899 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1900 ret = 1;
1901 }
20346722
K
1902 }
1903 }
1904
1905 return ret;
1906}
1907/**
1908 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4
LT
1909 * @val64 : Value read from adapter status register.
1910 * @flag : indicates if the adapter enable bit was ever written once
1911 * before.
1912 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1913 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1914 * differs and the calling function passes the input argument flag to
1915 * indicate this.
20346722 1916 * Return: 1 If xena is quiescence
1da177e4
LT
1917 * 0 If Xena is not quiescence
1918 */
1919
20346722 1920static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1da177e4 1921{
541ae68f 1922 int ret = 0, herc;
1da177e4 1923 u64 tmp64 = ~((u64) val64);
5e25b9dd 1924 int rev_id = get_xena_rev_id(sp->pdev);
1da177e4 1925
541ae68f 1926 herc = (sp->device_type == XFRAME_II_DEVICE);
1da177e4
LT
1927 if (!
1928 (tmp64 &
1929 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1930 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1931 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1932 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1933 ADAPTER_STATUS_P_PLL_LOCK))) {
541ae68f 1934 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1da177e4
LT
1935 }
1936
1937 return ret;
1938}
1939
1940/**
1941 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1942 * @sp: Pointer to device specifc structure
20346722 1943 * Description :
1da177e4
LT
1944 * New procedure to clear mac address reading problems on Alpha platforms
1945 *
1946 */
1947
ac1f60db 1948static void fix_mac_address(nic_t * sp)
1da177e4
LT
1949{
1950 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1951 u64 val64;
1952 int i = 0;
1953
1954 while (fix_mac[i] != END_SIGN) {
1955 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1956 udelay(10);
1da177e4
LT
1957 val64 = readq(&bar0->gpio_control);
1958 }
1959}
1960
1961/**
20346722 1962 * start_nic - Turns the device on
1da177e4 1963 * @nic : device private variable.
20346722
K
1964 * Description:
1965 * This function actually turns the device on. Before this function is
1966 * called,all Registers are configured from their reset states
1967 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1968 * calling this function, the device interrupts are cleared and the NIC is
1969 * literally switched on by writing into the adapter control register.
20346722 1970 * Return Value:
1da177e4
LT
1971 * SUCCESS on success and -1 on failure.
1972 */
1973
1974static int start_nic(struct s2io_nic *nic)
1975{
1976 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1977 struct net_device *dev = nic->dev;
1978 register u64 val64 = 0;
20346722 1979 u16 subid, i;
1da177e4
LT
1980 mac_info_t *mac_control;
1981 struct config_param *config;
1982
1983 mac_control = &nic->mac_control;
1984 config = &nic->config;
1985
1986 /* PRC Initialization and configuration */
1987 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1988 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1989 &bar0->prc_rxd0_n[i]);
1990
1991 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1992 if (nic->config.bimodal)
1993 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1994 if (nic->rxd_mode == RXD_MODE_1)
1995 val64 |= PRC_CTRL_RC_ENABLED;
1996 else
1997 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
1998 if (nic->device_type == XFRAME_II_DEVICE)
1999 val64 |= PRC_CTRL_GROUP_READS;
2000 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2001 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2002 writeq(val64, &bar0->prc_ctrl_n[i]);
2003 }
2004
da6971d8
AR
2005 if (nic->rxd_mode == RXD_MODE_3B) {
2006 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2007 val64 = readq(&bar0->rx_pa_cfg);
2008 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2009 writeq(val64, &bar0->rx_pa_cfg);
2010 }
1da177e4 2011
20346722 2012 /*
1da177e4
LT
2013 * Enabling MC-RLDRAM. After enabling the device, we timeout
2014 * for around 100ms, which is approximately the time required
2015 * for the device to be ready for operation.
2016 */
2017 val64 = readq(&bar0->mc_rldram_mrs);
2018 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2019 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2020 val64 = readq(&bar0->mc_rldram_mrs);
2021
20346722 2022 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2023
2024 /* Enabling ECC Protection. */
2025 val64 = readq(&bar0->adapter_control);
2026 val64 &= ~ADAPTER_ECC_EN;
2027 writeq(val64, &bar0->adapter_control);
2028
20346722
K
2029 /*
2030 * Clearing any possible Link state change interrupts that
1da177e4
LT
2031 * could have popped up just before Enabling the card.
2032 */
2033 val64 = readq(&bar0->mac_rmac_err_reg);
2034 if (val64)
2035 writeq(val64, &bar0->mac_rmac_err_reg);
2036
20346722
K
2037 /*
2038 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2039 * it.
2040 */
2041 val64 = readq(&bar0->adapter_status);
20346722 2042 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
2043 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2044 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2045 (unsigned long long) val64);
2046 return FAILURE;
2047 }
2048
20346722 2049 /*
1da177e4 2050 * With some switches, link might be already up at this point.
20346722
K
2051 * Because of this weird behavior, when we enable laser,
2052 * we may not get link. We need to handle this. We cannot
2053 * figure out which switch is misbehaving. So we are forced to
2054 * make a global change.
1da177e4
LT
2055 */
2056
2057 /* Enabling Laser. */
2058 val64 = readq(&bar0->adapter_control);
2059 val64 |= ADAPTER_EOI_TX_ON;
2060 writeq(val64, &bar0->adapter_control);
2061
c92ca04b
AR
2062 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2063 /*
2064 * Dont see link state interrupts initally on some switches,
2065 * so directly scheduling the link state task here.
2066 */
2067 schedule_work(&nic->set_link_task);
2068 }
1da177e4
LT
2069 /* SXE-002: Initialize link and activity LED */
2070 subid = nic->pdev->subsystem_device;
541ae68f
K
2071 if (((subid & 0xFF) >= 0x07) &&
2072 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2073 val64 = readq(&bar0->gpio_control);
2074 val64 |= 0x0000800000000000ULL;
2075 writeq(val64, &bar0->gpio_control);
2076 val64 = 0x0411040400000000ULL;
509a2671 2077 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2078 }
2079
1da177e4
LT
2080 return SUCCESS;
2081}
fed5eccd
AR
2082/**
2083 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2084 */
2085static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2086{
2087 nic_t *nic = fifo_data->nic;
2088 struct sk_buff *skb;
2089 TxD_t *txds;
2090 u16 j, frg_cnt;
2091
2092 txds = txdlp;
26b7625c 2093 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2094 pci_unmap_single(nic->pdev, (dma_addr_t)
2095 txds->Buffer_Pointer, sizeof(u64),
2096 PCI_DMA_TODEVICE);
2097 txds++;
2098 }
2099
2100 skb = (struct sk_buff *) ((unsigned long)
2101 txds->Host_Control);
2102 if (!skb) {
2103 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2104 return NULL;
2105 }
2106 pci_unmap_single(nic->pdev, (dma_addr_t)
2107 txds->Buffer_Pointer,
2108 skb->len - skb->data_len,
2109 PCI_DMA_TODEVICE);
2110 frg_cnt = skb_shinfo(skb)->nr_frags;
2111 if (frg_cnt) {
2112 txds++;
2113 for (j = 0; j < frg_cnt; j++, txds++) {
2114 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2115 if (!txds->Buffer_Pointer)
2116 break;
2117 pci_unmap_page(nic->pdev, (dma_addr_t)
2118 txds->Buffer_Pointer,
2119 frag->size, PCI_DMA_TODEVICE);
2120 }
2121 }
2122 txdlp->Host_Control = 0;
2123 return(skb);
2124}
1da177e4 2125
20346722
K
2126/**
2127 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2128 * @nic : device private variable.
20346722 2129 * Description:
1da177e4 2130 * Free all queued Tx buffers.
20346722 2131 * Return Value: void
1da177e4
LT
2132*/
2133
2134static void free_tx_buffers(struct s2io_nic *nic)
2135{
2136 struct net_device *dev = nic->dev;
2137 struct sk_buff *skb;
2138 TxD_t *txdp;
2139 int i, j;
2140 mac_info_t *mac_control;
2141 struct config_param *config;
fed5eccd 2142 int cnt = 0;
1da177e4
LT
2143
2144 mac_control = &nic->mac_control;
2145 config = &nic->config;
2146
2147 for (i = 0; i < config->tx_fifo_num; i++) {
2148 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
20346722 2149 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1da177e4 2150 list_virt_addr;
fed5eccd
AR
2151 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2152 if (skb) {
2153 dev_kfree_skb(skb);
2154 cnt++;
1da177e4 2155 }
1da177e4
LT
2156 }
2157 DBG_PRINT(INTR_DBG,
2158 "%s:forcibly freeing %d skbs on FIFO%d\n",
2159 dev->name, cnt, i);
20346722
K
2160 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2161 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2162 }
2163}
2164
20346722
K
2165/**
2166 * stop_nic - To stop the nic
1da177e4 2167 * @nic ; device private variable.
20346722
K
2168 * Description:
2169 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2170 * function does. This function is called to stop the device.
2171 * Return Value:
2172 * void.
2173 */
2174
2175static void stop_nic(struct s2io_nic *nic)
2176{
2177 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2178 register u64 val64 = 0;
5d3213cc 2179 u16 interruptible;
1da177e4
LT
2180 mac_info_t *mac_control;
2181 struct config_param *config;
2182
2183 mac_control = &nic->mac_control;
2184 config = &nic->config;
2185
2186 /* Disable all interrupts */
e960fc5c 2187 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2188 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2189 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2190 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2191
5d3213cc
AR
2192 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2193 val64 = readq(&bar0->adapter_control);
2194 val64 &= ~(ADAPTER_CNTL_EN);
2195 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2196}
2197
26df54bf 2198static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
da6971d8
AR
2199{
2200 struct net_device *dev = nic->dev;
2201 struct sk_buff *frag_list;
50eb8006 2202 void *tmp;
da6971d8
AR
2203
2204 /* Buffer-1 receives L3/L4 headers */
2205 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2206 (nic->pdev, skb->data, l3l4hdr_size + 4,
2207 PCI_DMA_FROMDEVICE);
2208
2209 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2210 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2211 if (skb_shinfo(skb)->frag_list == NULL) {
2212 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2213 return -ENOMEM ;
2214 }
2215 frag_list = skb_shinfo(skb)->frag_list;
2216 frag_list->next = NULL;
50eb8006
JG
2217 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2218 frag_list->data = tmp;
2219 frag_list->tail = tmp;
da6971d8
AR
2220
2221 /* Buffer-2 receives L4 data payload */
2222 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2223 frag_list->data, dev->mtu,
2224 PCI_DMA_FROMDEVICE);
2225 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2226 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2227
2228 return SUCCESS;
2229}
2230
20346722
K
2231/**
2232 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2233 * @nic: device private variable
20346722
K
2234 * @ring_no: ring number
2235 * Description:
1da177e4
LT
2236 * The function allocates Rx side skbs and puts the physical
2237 * address of these buffers into the RxD buffer pointers, so that the NIC
2238 * can DMA the received frame into these locations.
2239 * The NIC supports 3 receive modes, viz
2240 * 1. single buffer,
2241 * 2. three buffer and
2242 * 3. Five buffer modes.
20346722
K
2243 * Each mode defines how many fragments the received frame will be split
2244 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2245 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2246 * is split into 3 fragments. As of now only single buffer mode is
2247 * supported.
2248 * Return Value:
2249 * SUCCESS on success or an appropriate -ve value on failure.
2250 */
2251
ac1f60db 2252static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2253{
2254 struct net_device *dev = nic->dev;
2255 struct sk_buff *skb;
2256 RxD_t *rxdp;
2257 int off, off1, size, block_no, block_no1;
1da177e4 2258 u32 alloc_tab = 0;
20346722 2259 u32 alloc_cnt;
1da177e4
LT
2260 mac_info_t *mac_control;
2261 struct config_param *config;
20346722 2262 u64 tmp;
1da177e4 2263 buffAdd_t *ba;
1da177e4
LT
2264#ifndef CONFIG_S2IO_NAPI
2265 unsigned long flags;
2266#endif
303bcb4b 2267 RxD_t *first_rxdp = NULL;
1da177e4
LT
2268
2269 mac_control = &nic->mac_control;
2270 config = &nic->config;
20346722
K
2271 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2272 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2273
5d3213cc 2274 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2275 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2276 while (alloc_tab < alloc_cnt) {
20346722 2277 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2278 block_index;
20346722 2279 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2280
da6971d8
AR
2281 rxdp = mac_control->rings[ring_no].
2282 rx_blocks[block_no].rxds[off].virt_addr;
2283
2284 if ((block_no == block_no1) && (off == off1) &&
2285 (rxdp->Host_Control)) {
2286 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2287 dev->name);
1da177e4
LT
2288 DBG_PRINT(INTR_DBG, " info equated\n");
2289 goto end;
2290 }
da6971d8 2291 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2292 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2293 block_index++;
da6971d8
AR
2294 if (mac_control->rings[ring_no].rx_curr_put_info.
2295 block_index == mac_control->rings[ring_no].
2296 block_count)
2297 mac_control->rings[ring_no].rx_curr_put_info.
2298 block_index = 0;
2299 block_no = mac_control->rings[ring_no].
2300 rx_curr_put_info.block_index;
2301 if (off == rxd_count[nic->rxd_mode])
2302 off = 0;
20346722 2303 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2304 offset = off;
2305 rxdp = mac_control->rings[ring_no].
2306 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2307 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2308 dev->name, rxdp);
2309 }
2310#ifndef CONFIG_S2IO_NAPI
2311 spin_lock_irqsave(&nic->put_lock, flags);
20346722 2312 mac_control->rings[ring_no].put_pos =
da6971d8 2313 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
1da177e4
LT
2314 spin_unlock_irqrestore(&nic->put_lock, flags);
2315#endif
da6971d8
AR
2316 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2317 ((nic->rxd_mode >= RXD_MODE_3A) &&
2318 (rxdp->Control_2 & BIT(0)))) {
20346722 2319 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2320 offset = off;
1da177e4
LT
2321 goto end;
2322 }
da6971d8
AR
2323 /* calculate size of skb based on ring mode */
2324 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2325 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2326 if (nic->rxd_mode == RXD_MODE_1)
2327 size += NET_IP_ALIGN;
2328 else if (nic->rxd_mode == RXD_MODE_3B)
2329 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2330 else
2331 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2332
da6971d8
AR
2333 /* allocate skb */
2334 skb = dev_alloc_skb(size);
2335 if(!skb) {
1da177e4
LT
2336 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2337 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2338 if (first_rxdp) {
2339 wmb();
2340 first_rxdp->Control_1 |= RXD_OWN_XENA;
2341 }
da6971d8
AR
2342 return -ENOMEM ;
2343 }
2344 if (nic->rxd_mode == RXD_MODE_1) {
2345 /* 1 buffer mode - normal operation mode */
2346 memset(rxdp, 0, sizeof(RxD1_t));
2347 skb_reserve(skb, NET_IP_ALIGN);
2348 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2349 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2350 PCI_DMA_FROMDEVICE);
2351 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2352
2353 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2354 /*
2355 * 2 or 3 buffer mode -
2356 * Both 2 buffer mode and 3 buffer mode provides 128
2357 * byte aligned receive buffers.
2358 *
2359 * 3 buffer mode provides header separation where in
2360 * skb->data will have L3/L4 headers where as
2361 * skb_shinfo(skb)->frag_list will have the L4 data
2362 * payload
2363 */
2364
2365 memset(rxdp, 0, sizeof(RxD3_t));
2366 ba = &mac_control->rings[ring_no].ba[block_no][off];
2367 skb_reserve(skb, BUF0_LEN);
2368 tmp = (u64)(unsigned long) skb->data;
2369 tmp += ALIGN_SIZE;
2370 tmp &= ~ALIGN_SIZE;
2371 skb->data = (void *) (unsigned long)tmp;
2372 skb->tail = (void *) (unsigned long)tmp;
2373
2374 ((RxD3_t*)rxdp)->Buffer0_ptr =
2375 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2376 PCI_DMA_FROMDEVICE);
2377 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2378 if (nic->rxd_mode == RXD_MODE_3B) {
2379 /* Two buffer mode */
2380
2381 /*
2382 * Buffer2 will have L3/L4 header plus
2383 * L4 payload
2384 */
2385 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2386 (nic->pdev, skb->data, dev->mtu + 4,
2387 PCI_DMA_FROMDEVICE);
2388
2389 /* Buffer-1 will be dummy buffer not used */
2390 ((RxD3_t*)rxdp)->Buffer1_ptr =
2391 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2392 PCI_DMA_FROMDEVICE);
2393 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2394 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2395 (dev->mtu + 4);
2396 } else {
2397 /* 3 buffer mode */
2398 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2399 dev_kfree_skb_irq(skb);
2400 if (first_rxdp) {
2401 wmb();
2402 first_rxdp->Control_1 |=
2403 RXD_OWN_XENA;
2404 }
2405 return -ENOMEM ;
2406 }
2407 }
2408 rxdp->Control_2 |= BIT(0);
1da177e4 2409 }
1da177e4 2410 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2411 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2412 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2413 off++;
da6971d8
AR
2414 if (off == (rxd_count[nic->rxd_mode] + 1))
2415 off = 0;
20346722 2416 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2417
da6971d8 2418 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2419 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2420 if (first_rxdp) {
2421 wmb();
2422 first_rxdp->Control_1 |= RXD_OWN_XENA;
2423 }
2424 first_rxdp = rxdp;
2425 }
1da177e4
LT
2426 atomic_inc(&nic->rx_bufs_left[ring_no]);
2427 alloc_tab++;
2428 }
2429
2430 end:
303bcb4b
K
2431 /* Transfer ownership of first descriptor to adapter just before
2432 * exiting. Before that, use memory barrier so that ownership
2433 * and other fields are seen by adapter correctly.
2434 */
2435 if (first_rxdp) {
2436 wmb();
2437 first_rxdp->Control_1 |= RXD_OWN_XENA;
2438 }
2439
1da177e4
LT
2440 return SUCCESS;
2441}
2442
da6971d8
AR
2443static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2444{
2445 struct net_device *dev = sp->dev;
2446 int j;
2447 struct sk_buff *skb;
2448 RxD_t *rxdp;
2449 mac_info_t *mac_control;
2450 buffAdd_t *ba;
2451
2452 mac_control = &sp->mac_control;
2453 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2454 rxdp = mac_control->rings[ring_no].
2455 rx_blocks[blk].rxds[j].virt_addr;
2456 skb = (struct sk_buff *)
2457 ((unsigned long) rxdp->Host_Control);
2458 if (!skb) {
2459 continue;
2460 }
2461 if (sp->rxd_mode == RXD_MODE_1) {
2462 pci_unmap_single(sp->pdev, (dma_addr_t)
2463 ((RxD1_t*)rxdp)->Buffer0_ptr,
2464 dev->mtu +
2465 HEADER_ETHERNET_II_802_3_SIZE
2466 + HEADER_802_2_SIZE +
2467 HEADER_SNAP_SIZE,
2468 PCI_DMA_FROMDEVICE);
2469 memset(rxdp, 0, sizeof(RxD1_t));
2470 } else if(sp->rxd_mode == RXD_MODE_3B) {
2471 ba = &mac_control->rings[ring_no].
2472 ba[blk][j];
2473 pci_unmap_single(sp->pdev, (dma_addr_t)
2474 ((RxD3_t*)rxdp)->Buffer0_ptr,
2475 BUF0_LEN,
2476 PCI_DMA_FROMDEVICE);
2477 pci_unmap_single(sp->pdev, (dma_addr_t)
2478 ((RxD3_t*)rxdp)->Buffer1_ptr,
2479 BUF1_LEN,
2480 PCI_DMA_FROMDEVICE);
2481 pci_unmap_single(sp->pdev, (dma_addr_t)
2482 ((RxD3_t*)rxdp)->Buffer2_ptr,
2483 dev->mtu + 4,
2484 PCI_DMA_FROMDEVICE);
2485 memset(rxdp, 0, sizeof(RxD3_t));
2486 } else {
2487 pci_unmap_single(sp->pdev, (dma_addr_t)
2488 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2489 PCI_DMA_FROMDEVICE);
2490 pci_unmap_single(sp->pdev, (dma_addr_t)
2491 ((RxD3_t*)rxdp)->Buffer1_ptr,
2492 l3l4hdr_size + 4,
2493 PCI_DMA_FROMDEVICE);
2494 pci_unmap_single(sp->pdev, (dma_addr_t)
2495 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2496 PCI_DMA_FROMDEVICE);
2497 memset(rxdp, 0, sizeof(RxD3_t));
2498 }
2499 dev_kfree_skb(skb);
2500 atomic_dec(&sp->rx_bufs_left[ring_no]);
2501 }
2502}
2503
1da177e4 2504/**
20346722 2505 * free_rx_buffers - Frees all Rx buffers
1da177e4 2506 * @sp: device private variable.
20346722 2507 * Description:
1da177e4
LT
2508 * This function will free all Rx buffers allocated by host.
2509 * Return Value:
2510 * NONE.
2511 */
2512
2513static void free_rx_buffers(struct s2io_nic *sp)
2514{
2515 struct net_device *dev = sp->dev;
da6971d8 2516 int i, blk = 0, buf_cnt = 0;
1da177e4
LT
2517 mac_info_t *mac_control;
2518 struct config_param *config;
1da177e4
LT
2519
2520 mac_control = &sp->mac_control;
2521 config = &sp->config;
2522
2523 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2524 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2525 free_rxd_blk(sp,i,blk);
1da177e4 2526
20346722
K
2527 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2528 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2529 mac_control->rings[i].rx_curr_put_info.offset = 0;
2530 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2531 atomic_set(&sp->rx_bufs_left[i], 0);
2532 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2533 dev->name, buf_cnt, i);
2534 }
2535}
2536
2537/**
2538 * s2io_poll - Rx interrupt handler for NAPI support
2539 * @dev : pointer to the device structure.
20346722 2540 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2541 * during one pass through the 'Poll" function.
2542 * Description:
2543 * Comes into picture only if NAPI support has been incorporated. It does
2544 * the same thing that rx_intr_handler does, but not in a interrupt context
2545 * also It will process only a given number of packets.
2546 * Return value:
2547 * 0 on success and 1 if there are No Rx packets to be processed.
2548 */
2549
20346722 2550#if defined(CONFIG_S2IO_NAPI)
1da177e4
LT
2551static int s2io_poll(struct net_device *dev, int *budget)
2552{
2553 nic_t *nic = dev->priv;
20346722 2554 int pkt_cnt = 0, org_pkts_to_process;
1da177e4
LT
2555 mac_info_t *mac_control;
2556 struct config_param *config;
509a2671 2557 XENA_dev_config_t __iomem *bar0 = nic->bar0;
863c11a9 2558 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
20346722 2559 int i;
1da177e4 2560
7ba013ac 2561 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2562 mac_control = &nic->mac_control;
2563 config = &nic->config;
2564
20346722
K
2565 nic->pkts_to_process = *budget;
2566 if (nic->pkts_to_process > dev->quota)
2567 nic->pkts_to_process = dev->quota;
2568 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2569
1da177e4 2570 writeq(val64, &bar0->rx_traffic_int);
863c11a9 2571 val64 = readl(&bar0->rx_traffic_int);
1da177e4
LT
2572
2573 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2574 rx_intr_handler(&mac_control->rings[i]);
2575 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2576 if (!nic->pkts_to_process) {
2577 /* Quota for the current iteration has been met */
2578 goto no_rx;
1da177e4 2579 }
1da177e4
LT
2580 }
2581 if (!pkt_cnt)
2582 pkt_cnt = 1;
2583
2584 dev->quota -= pkt_cnt;
2585 *budget -= pkt_cnt;
2586 netif_rx_complete(dev);
2587
2588 for (i = 0; i < config->rx_ring_num; i++) {
2589 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2590 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2591 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2592 break;
2593 }
2594 }
2595 /* Re enable the Rx interrupts. */
c92ca04b
AR
2596 writeq(0x0, &bar0->rx_traffic_mask);
2597 val64 = readl(&bar0->rx_traffic_mask);
7ba013ac 2598 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2599 return 0;
2600
20346722 2601no_rx:
1da177e4
LT
2602 dev->quota -= pkt_cnt;
2603 *budget -= pkt_cnt;
2604
2605 for (i = 0; i < config->rx_ring_num; i++) {
2606 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2607 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2608 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2609 break;
2610 }
2611 }
7ba013ac 2612 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2613 return 1;
2614}
20346722
K
2615#endif
2616
612eff0e
BH
2617/**
2618 * s2io_netpoll - Rx interrupt service handler for netpoll support
2619 * @dev : pointer to the device structure.
2620 * Description:
2621 * Polling 'interrupt' - used by things like netconsole to send skbs
2622 * without having to re-enable interrupts. It's not called while
2623 * the interrupt routine is executing.
2624 */
2625
2626#ifdef CONFIG_NET_POLL_CONTROLLER
2627static void s2io_netpoll(struct net_device *dev)
2628{
2629 nic_t *nic = dev->priv;
2630 mac_info_t *mac_control;
2631 struct config_param *config;
2632 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2633 u64 val64;
2634 int i;
2635
2636 disable_irq(dev->irq);
2637
2638 atomic_inc(&nic->isr_cnt);
2639 mac_control = &nic->mac_control;
2640 config = &nic->config;
2641
2642 val64 = readq(&bar0->rx_traffic_int);
2643 writeq(val64, &bar0->rx_traffic_int);
2644
2645 for (i = 0; i < config->rx_ring_num; i++)
2646 rx_intr_handler(&mac_control->rings[i]);
2647
2648 for (i = 0; i < config->rx_ring_num; i++) {
2649 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2650 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2651 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2652 break;
2653 }
2654 }
2655 atomic_dec(&nic->isr_cnt);
2656 enable_irq(dev->irq);
2657 return;
2658}
2659#endif
2660
20346722 2661/**
1da177e4
LT
2662 * rx_intr_handler - Rx interrupt handler
2663 * @nic: device private variable.
20346722
K
2664 * Description:
2665 * If the interrupt is because of a received frame or if the
1da177e4 2666 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2667 * called. It picks out the RxD at which place the last Rx processing had
2668 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2669 * the offset.
2670 * Return Value:
2671 * NONE.
2672 */
20346722 2673static void rx_intr_handler(ring_info_t *ring_data)
1da177e4 2674{
20346722 2675 nic_t *nic = ring_data->nic;
1da177e4 2676 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2677 int get_block, put_block, put_offset;
1da177e4
LT
2678 rx_curr_get_info_t get_info, put_info;
2679 RxD_t *rxdp;
2680 struct sk_buff *skb;
20346722
K
2681#ifndef CONFIG_S2IO_NAPI
2682 int pkt_cnt = 0;
1da177e4 2683#endif
7d3d0439
RA
2684 int i;
2685
7ba013ac
K
2686 spin_lock(&nic->rx_lock);
2687 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2688 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2689 __FUNCTION__, dev->name);
2690 spin_unlock(&nic->rx_lock);
776bd20f 2691 return;
7ba013ac
K
2692 }
2693
20346722
K
2694 get_info = ring_data->rx_curr_get_info;
2695 get_block = get_info.block_index;
2696 put_info = ring_data->rx_curr_put_info;
2697 put_block = put_info.block_index;
da6971d8 2698 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
20346722
K
2699#ifndef CONFIG_S2IO_NAPI
2700 spin_lock(&nic->put_lock);
2701 put_offset = ring_data->put_pos;
2702 spin_unlock(&nic->put_lock);
2703#else
da6971d8 2704 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
20346722
K
2705 put_info.offset;
2706#endif
da6971d8
AR
2707 while (RXD_IS_UP2DT(rxdp)) {
2708 /* If your are next to put index then it's FIFO full condition */
2709 if ((get_block == put_block) &&
2710 (get_info.offset + 1) == put_info.offset) {
2711 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2712 break;
2713 }
20346722
K
2714 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2715 if (skb == NULL) {
2716 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2717 dev->name);
2718 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2719 spin_unlock(&nic->rx_lock);
20346722 2720 return;
1da177e4 2721 }
da6971d8
AR
2722 if (nic->rxd_mode == RXD_MODE_1) {
2723 pci_unmap_single(nic->pdev, (dma_addr_t)
2724 ((RxD1_t*)rxdp)->Buffer0_ptr,
20346722
K
2725 dev->mtu +
2726 HEADER_ETHERNET_II_802_3_SIZE +
2727 HEADER_802_2_SIZE +
2728 HEADER_SNAP_SIZE,
2729 PCI_DMA_FROMDEVICE);
da6971d8
AR
2730 } else if (nic->rxd_mode == RXD_MODE_3B) {
2731 pci_unmap_single(nic->pdev, (dma_addr_t)
2732 ((RxD3_t*)rxdp)->Buffer0_ptr,
20346722 2733 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2734 pci_unmap_single(nic->pdev, (dma_addr_t)
2735 ((RxD3_t*)rxdp)->Buffer1_ptr,
20346722 2736 BUF1_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2737 pci_unmap_single(nic->pdev, (dma_addr_t)
2738 ((RxD3_t*)rxdp)->Buffer2_ptr,
2739 dev->mtu + 4,
20346722 2740 PCI_DMA_FROMDEVICE);
da6971d8
AR
2741 } else {
2742 pci_unmap_single(nic->pdev, (dma_addr_t)
2743 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2744 PCI_DMA_FROMDEVICE);
2745 pci_unmap_single(nic->pdev, (dma_addr_t)
2746 ((RxD3_t*)rxdp)->Buffer1_ptr,
2747 l3l4hdr_size + 4,
2748 PCI_DMA_FROMDEVICE);
2749 pci_unmap_single(nic->pdev, (dma_addr_t)
2750 ((RxD3_t*)rxdp)->Buffer2_ptr,
2751 dev->mtu, PCI_DMA_FROMDEVICE);
2752 }
863c11a9 2753 prefetch(skb->data);
20346722
K
2754 rx_osm_handler(ring_data, rxdp);
2755 get_info.offset++;
da6971d8
AR
2756 ring_data->rx_curr_get_info.offset = get_info.offset;
2757 rxdp = ring_data->rx_blocks[get_block].
2758 rxds[get_info.offset].virt_addr;
2759 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2760 get_info.offset = 0;
da6971d8 2761 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2762 get_block++;
da6971d8
AR
2763 if (get_block == ring_data->block_count)
2764 get_block = 0;
2765 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2766 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2767 }
1da177e4 2768
20346722
K
2769#ifdef CONFIG_S2IO_NAPI
2770 nic->pkts_to_process -= 1;
2771 if (!nic->pkts_to_process)
2772 break;
2773#else
2774 pkt_cnt++;
1da177e4
LT
2775 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2776 break;
20346722 2777#endif
1da177e4 2778 }
7d3d0439
RA
2779 if (nic->lro) {
2780 /* Clear all LRO sessions before exiting */
2781 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2782 lro_t *lro = &nic->lro0_n[i];
2783 if (lro->in_use) {
2784 update_L3L4_header(nic, lro);
2785 queue_rx_frame(lro->parent);
2786 clear_lro_session(lro);
2787 }
2788 }
2789 }
2790
7ba013ac 2791 spin_unlock(&nic->rx_lock);
1da177e4 2792}
20346722
K
2793
2794/**
1da177e4
LT
2795 * tx_intr_handler - Transmit interrupt handler
2796 * @nic : device private variable
20346722
K
2797 * Description:
2798 * If an interrupt was raised to indicate DMA complete of the
2799 * Tx packet, this function is called. It identifies the last TxD
2800 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2801 * DMA'ed into the NICs internal memory.
2802 * Return Value:
2803 * NONE
2804 */
2805
20346722 2806static void tx_intr_handler(fifo_info_t *fifo_data)
1da177e4 2807{
20346722 2808 nic_t *nic = fifo_data->nic;
1da177e4
LT
2809 struct net_device *dev = (struct net_device *) nic->dev;
2810 tx_curr_get_info_t get_info, put_info;
2811 struct sk_buff *skb;
2812 TxD_t *txdlp;
1da177e4 2813
20346722
K
2814 get_info = fifo_data->tx_curr_get_info;
2815 put_info = fifo_data->tx_curr_put_info;
2816 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2817 list_virt_addr;
2818 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2819 (get_info.offset != put_info.offset) &&
2820 (txdlp->Host_Control)) {
2821 /* Check for TxD errors */
2822 if (txdlp->Control_1 & TXD_T_CODE) {
2823 unsigned long long err;
2824 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2825 if (err & 0x1) {
2826 nic->mac_control.stats_info->sw_stat.
2827 parity_err_cnt++;
2828 }
776bd20f 2829 if ((err >> 48) == 0xA) {
2830 DBG_PRINT(TX_DBG, "TxD returned due \
cc6e7c44 2831to loss of link\n");
776bd20f 2832 }
2833 else {
2834 DBG_PRINT(ERR_DBG, "***TxD error \
cc6e7c44 2835%llx\n", err);
776bd20f 2836 }
20346722 2837 }
1da177e4 2838
fed5eccd 2839 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2840 if (skb == NULL) {
2841 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2842 __FUNCTION__);
2843 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2844 return;
2845 }
2846
20346722 2847 /* Updating the statistics block */
20346722
K
2848 nic->stats.tx_bytes += skb->len;
2849 dev_kfree_skb_irq(skb);
2850
2851 get_info.offset++;
863c11a9
AR
2852 if (get_info.offset == get_info.fifo_len + 1)
2853 get_info.offset = 0;
20346722
K
2854 txdlp = (TxD_t *) fifo_data->list_info
2855 [get_info.offset].list_virt_addr;
2856 fifo_data->tx_curr_get_info.offset =
2857 get_info.offset;
1da177e4
LT
2858 }
2859
2860 spin_lock(&nic->tx_lock);
2861 if (netif_queue_stopped(dev))
2862 netif_wake_queue(dev);
2863 spin_unlock(&nic->tx_lock);
2864}
2865
bd1034f0
AR
2866/**
2867 * s2io_mdio_write - Function to write in to MDIO registers
2868 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2869 * @addr : address value
2870 * @value : data value
2871 * @dev : pointer to net_device structure
2872 * Description:
2873 * This function is used to write values to the MDIO registers
2874 * NONE
2875 */
2876static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2877{
2878 u64 val64 = 0x0;
2879 nic_t *sp = dev->priv;
2880 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2881
2882 //address transaction
2883 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2884 | MDIO_MMD_DEV_ADDR(mmd_type)
2885 | MDIO_MMS_PRT_ADDR(0x0);
2886 writeq(val64, &bar0->mdio_control);
2887 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2888 writeq(val64, &bar0->mdio_control);
2889 udelay(100);
2890
2891 //Data transaction
2892 val64 = 0x0;
2893 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2894 | MDIO_MMD_DEV_ADDR(mmd_type)
2895 | MDIO_MMS_PRT_ADDR(0x0)
2896 | MDIO_MDIO_DATA(value)
2897 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2898 writeq(val64, &bar0->mdio_control);
2899 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2900 writeq(val64, &bar0->mdio_control);
2901 udelay(100);
2902
2903 val64 = 0x0;
2904 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2905 | MDIO_MMD_DEV_ADDR(mmd_type)
2906 | MDIO_MMS_PRT_ADDR(0x0)
2907 | MDIO_OP(MDIO_OP_READ_TRANS);
2908 writeq(val64, &bar0->mdio_control);
2909 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2910 writeq(val64, &bar0->mdio_control);
2911 udelay(100);
2912
2913}
2914
2915/**
2916 * s2io_mdio_read - Function to write in to MDIO registers
2917 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2918 * @addr : address value
2919 * @dev : pointer to net_device structure
2920 * Description:
2921 * This function is used to read values to the MDIO registers
2922 * NONE
2923 */
2924static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2925{
2926 u64 val64 = 0x0;
2927 u64 rval64 = 0x0;
2928 nic_t *sp = dev->priv;
2929 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2930
2931 /* address transaction */
2932 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2933 | MDIO_MMD_DEV_ADDR(mmd_type)
2934 | MDIO_MMS_PRT_ADDR(0x0);
2935 writeq(val64, &bar0->mdio_control);
2936 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2937 writeq(val64, &bar0->mdio_control);
2938 udelay(100);
2939
2940 /* Data transaction */
2941 val64 = 0x0;
2942 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2943 | MDIO_MMD_DEV_ADDR(mmd_type)
2944 | MDIO_MMS_PRT_ADDR(0x0)
2945 | MDIO_OP(MDIO_OP_READ_TRANS);
2946 writeq(val64, &bar0->mdio_control);
2947 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2948 writeq(val64, &bar0->mdio_control);
2949 udelay(100);
2950
2951 /* Read the value from regs */
2952 rval64 = readq(&bar0->mdio_control);
2953 rval64 = rval64 & 0xFFFF0000;
2954 rval64 = rval64 >> 16;
2955 return rval64;
2956}
2957/**
2958 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2959 * @counter : couter value to be updated
2960 * @flag : flag to indicate the status
2961 * @type : counter type
2962 * Description:
2963 * This function is to check the status of the xpak counters value
2964 * NONE
2965 */
2966
2967static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2968{
2969 u64 mask = 0x3;
2970 u64 val64;
2971 int i;
2972 for(i = 0; i <index; i++)
2973 mask = mask << 0x2;
2974
2975 if(flag > 0)
2976 {
2977 *counter = *counter + 1;
2978 val64 = *regs_stat & mask;
2979 val64 = val64 >> (index * 0x2);
2980 val64 = val64 + 1;
2981 if(val64 == 3)
2982 {
2983 switch(type)
2984 {
2985 case 1:
2986 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2987 "service. Excessive temperatures may "
2988 "result in premature transceiver "
2989 "failure \n");
2990 break;
2991 case 2:
2992 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2993 "service Excessive bias currents may "
2994 "indicate imminent laser diode "
2995 "failure \n");
2996 break;
2997 case 3:
2998 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2999 "service Excessive laser output "
3000 "power may saturate far-end "
3001 "receiver\n");
3002 break;
3003 default:
3004 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3005 "type \n");
3006 }
3007 val64 = 0x0;
3008 }
3009 val64 = val64 << (index * 0x2);
3010 *regs_stat = (*regs_stat & (~mask)) | (val64);
3011
3012 } else {
3013 *regs_stat = *regs_stat & (~mask);
3014 }
3015}
3016
3017/**
3018 * s2io_updt_xpak_counter - Function to update the xpak counters
3019 * @dev : pointer to net_device struct
3020 * Description:
3021 * This function is to upate the status of the xpak counters value
3022 * NONE
3023 */
3024static void s2io_updt_xpak_counter(struct net_device *dev)
3025{
3026 u16 flag = 0x0;
3027 u16 type = 0x0;
3028 u16 val16 = 0x0;
3029 u64 val64 = 0x0;
3030 u64 addr = 0x0;
3031
3032 nic_t *sp = dev->priv;
3033 StatInfo_t *stat_info = sp->mac_control.stats_info;
3034
3035 /* Check the communication with the MDIO slave */
3036 addr = 0x0000;
3037 val64 = 0x0;
3038 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3039 if((val64 == 0xFFFF) || (val64 == 0x0000))
3040 {
3041 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3042 "Returned %llx\n", (unsigned long long)val64);
3043 return;
3044 }
3045
3046 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3047 if(val64 != 0x2040)
3048 {
3049 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3050 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3051 (unsigned long long)val64);
3052 return;
3053 }
3054
3055 /* Loading the DOM register to MDIO register */
3056 addr = 0xA100;
3057 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3058 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3059
3060 /* Reading the Alarm flags */
3061 addr = 0xA070;
3062 val64 = 0x0;
3063 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3064
3065 flag = CHECKBIT(val64, 0x7);
3066 type = 1;
3067 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3068 &stat_info->xpak_stat.xpak_regs_stat,
3069 0x0, flag, type);
3070
3071 if(CHECKBIT(val64, 0x6))
3072 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3073
3074 flag = CHECKBIT(val64, 0x3);
3075 type = 2;
3076 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3077 &stat_info->xpak_stat.xpak_regs_stat,
3078 0x2, flag, type);
3079
3080 if(CHECKBIT(val64, 0x2))
3081 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3082
3083 flag = CHECKBIT(val64, 0x1);
3084 type = 3;
3085 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3086 &stat_info->xpak_stat.xpak_regs_stat,
3087 0x4, flag, type);
3088
3089 if(CHECKBIT(val64, 0x0))
3090 stat_info->xpak_stat.alarm_laser_output_power_low++;
3091
3092 /* Reading the Warning flags */
3093 addr = 0xA074;
3094 val64 = 0x0;
3095 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3096
3097 if(CHECKBIT(val64, 0x7))
3098 stat_info->xpak_stat.warn_transceiver_temp_high++;
3099
3100 if(CHECKBIT(val64, 0x6))
3101 stat_info->xpak_stat.warn_transceiver_temp_low++;
3102
3103 if(CHECKBIT(val64, 0x3))
3104 stat_info->xpak_stat.warn_laser_bias_current_high++;
3105
3106 if(CHECKBIT(val64, 0x2))
3107 stat_info->xpak_stat.warn_laser_bias_current_low++;
3108
3109 if(CHECKBIT(val64, 0x1))
3110 stat_info->xpak_stat.warn_laser_output_power_high++;
3111
3112 if(CHECKBIT(val64, 0x0))
3113 stat_info->xpak_stat.warn_laser_output_power_low++;
3114}
3115
20346722 3116/**
1da177e4
LT
3117 * alarm_intr_handler - Alarm Interrrupt handler
3118 * @nic: device private variable
20346722 3119 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3120 * complete, this function is called. If the interrupt was to indicate
20346722
K
3121 * a loss of link, the OSM link status handler is invoked for any other
3122 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3123 * and a H/W reset is issued.
3124 * Return Value:
3125 * NONE
3126*/
3127
3128static void alarm_intr_handler(struct s2io_nic *nic)
3129{
3130 struct net_device *dev = (struct net_device *) nic->dev;
3131 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3132 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3133 u64 cnt;
3134 int i;
3135 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3136 /* Handling the XPAK counters update */
3137 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3138 /* waiting for an hour */
3139 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3140 } else {
3141 s2io_updt_xpak_counter(dev);
3142 /* reset the count to zero */
3143 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3144 }
1da177e4
LT
3145
3146 /* Handling link status change error Intr */
a371a07d
K
3147 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3148 err_reg = readq(&bar0->mac_rmac_err_reg);
3149 writeq(err_reg, &bar0->mac_rmac_err_reg);
3150 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3151 schedule_work(&nic->set_link_task);
3152 }
1da177e4
LT
3153 }
3154
5e25b9dd
K
3155 /* Handling Ecc errors */
3156 val64 = readq(&bar0->mc_err_reg);
3157 writeq(val64, &bar0->mc_err_reg);
3158 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3159 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3160 nic->mac_control.stats_info->sw_stat.
3161 double_ecc_errs++;
776bd20f 3162 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3163 dev->name);
776bd20f 3164 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3165 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3166 /* Reset XframeI only if critical error */
3167 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3168 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3169 netif_stop_queue(dev);
3170 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3171 nic->mac_control.stats_info->sw_stat.
3172 soft_reset_cnt++;
776bd20f 3173 }
e960fc5c 3174 }
5e25b9dd 3175 } else {
7ba013ac
K
3176 nic->mac_control.stats_info->sw_stat.
3177 single_ecc_errs++;
5e25b9dd
K
3178 }
3179 }
3180
1da177e4
LT
3181 /* In case of a serious error, the device will be Reset. */
3182 val64 = readq(&bar0->serr_source);
3183 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3184 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3185 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
776bd20f 3186 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3187 (unsigned long long)val64);
1da177e4
LT
3188 netif_stop_queue(dev);
3189 schedule_work(&nic->rst_timer_task);
bd1034f0 3190 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3191 }
3192
3193 /*
3194 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3195 * Error occurs, the adapter will be recycled by disabling the
20346722 3196 * adapter enable bit and enabling it again after the device
1da177e4
LT
3197 * becomes Quiescent.
3198 */
3199 val64 = readq(&bar0->pcc_err_reg);
3200 writeq(val64, &bar0->pcc_err_reg);
3201 if (val64 & PCC_FB_ECC_DB_ERR) {
3202 u64 ac = readq(&bar0->adapter_control);
3203 ac &= ~(ADAPTER_CNTL_EN);
3204 writeq(ac, &bar0->adapter_control);
3205 ac = readq(&bar0->adapter_control);
3206 schedule_work(&nic->set_link_task);
3207 }
bd1034f0
AR
3208 /* Check for data parity error */
3209 val64 = readq(&bar0->pic_int_status);
3210 if (val64 & PIC_INT_GPIO) {
3211 val64 = readq(&bar0->gpio_int_reg);
3212 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3213 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3214 schedule_work(&nic->rst_timer_task);
3215 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3216 }
3217 }
3218
3219 /* Check for ring full counter */
3220 if (nic->device_type & XFRAME_II_DEVICE) {
3221 val64 = readq(&bar0->ring_bump_counter1);
3222 for (i=0; i<4; i++) {
3223 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3224 cnt >>= 64 - ((i+1)*16);
3225 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3226 += cnt;
3227 }
3228
3229 val64 = readq(&bar0->ring_bump_counter2);
3230 for (i=0; i<4; i++) {
3231 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3232 cnt >>= 64 - ((i+1)*16);
3233 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3234 += cnt;
3235 }
3236 }
1da177e4
LT
3237
3238 /* Other type of interrupts are not being handled now, TODO */
3239}
3240
20346722 3241/**
1da177e4 3242 * wait_for_cmd_complete - waits for a command to complete.
20346722 3243 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3244 * s2io_nic structure.
20346722
K
3245 * Description: Function that waits for a command to Write into RMAC
3246 * ADDR DATA registers to be completed and returns either success or
3247 * error depending on whether the command was complete or not.
1da177e4
LT
3248 * Return value:
3249 * SUCCESS on success and FAILURE on failure.
3250 */
3251
c92ca04b 3252static int wait_for_cmd_complete(void *addr, u64 busy_bit)
1da177e4 3253{
1da177e4
LT
3254 int ret = FAILURE, cnt = 0;
3255 u64 val64;
3256
3257 while (TRUE) {
c92ca04b
AR
3258 val64 = readq(addr);
3259 if (!(val64 & busy_bit)) {
1da177e4
LT
3260 ret = SUCCESS;
3261 break;
3262 }
c92ca04b
AR
3263
3264 if(in_interrupt())
3265 mdelay(50);
3266 else
3267 msleep(50);
3268
1da177e4
LT
3269 if (cnt++ > 10)
3270 break;
3271 }
1da177e4
LT
3272 return ret;
3273}
3274
20346722
K
3275/**
3276 * s2io_reset - Resets the card.
1da177e4
LT
3277 * @sp : private member of the device structure.
3278 * Description: Function to Reset the card. This function then also
20346722 3279 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3280 * the card reset also resets the configuration space.
3281 * Return value:
3282 * void.
3283 */
3284
26df54bf 3285static void s2io_reset(nic_t * sp)
1da177e4
LT
3286{
3287 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3288 u64 val64;
5e25b9dd 3289 u16 subid, pci_cmd;
1da177e4 3290
0b1f7ebe 3291 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3292 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3293
1da177e4
LT
3294 val64 = SW_RESET_ALL;
3295 writeq(val64, &bar0->sw_reset);
3296
20346722
K
3297 /*
3298 * At this stage, if the PCI write is indeed completed, the
3299 * card is reset and so is the PCI Config space of the device.
3300 * So a read cannot be issued at this stage on any of the
1da177e4
LT
3301 * registers to ensure the write into "sw_reset" register
3302 * has gone through.
3303 * Question: Is there any system call that will explicitly force
3304 * all the write commands still pending on the bus to be pushed
3305 * through?
3306 * As of now I'am just giving a 250ms delay and hoping that the
3307 * PCI write to sw_reset register is done by this time.
3308 */
3309 msleep(250);
c92ca04b
AR
3310 if (strstr(sp->product_name, "CX4")) {
3311 msleep(750);
3312 }
1da177e4 3313
e960fc5c 3314 /* Restore the PCI state saved during initialization. */
3315 pci_restore_state(sp->pdev);
3316 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
0b1f7ebe 3317 pci_cmd);
1da177e4
LT
3318 s2io_init_pci(sp);
3319
3320 msleep(250);
3321
20346722
K
3322 /* Set swapper to enable I/O register access */
3323 s2io_set_swapper(sp);
3324
cc6e7c44
RA
3325 /* Restore the MSIX table entries from local variables */
3326 restore_xmsi_data(sp);
3327
5e25b9dd 3328 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b
K
3329 if (sp->device_type == XFRAME_II_DEVICE) {
3330 /* Clear parity err detect bit */
3331 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3332
303bcb4b
K
3333 /* Clearing PCIX Ecc status register */
3334 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3335
303bcb4b
K
3336 /* Clearing PCI_STATUS error reflected here */
3337 writeq(BIT(62), &bar0->txpic_int_reg);
3338 }
5e25b9dd 3339
20346722
K
3340 /* Reset device statistics maintained by OS */
3341 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3342
1da177e4
LT
3343 /* SXE-002: Configure link and activity LED to turn it off */
3344 subid = sp->pdev->subsystem_device;
541ae68f
K
3345 if (((subid & 0xFF) >= 0x07) &&
3346 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3347 val64 = readq(&bar0->gpio_control);
3348 val64 |= 0x0000800000000000ULL;
3349 writeq(val64, &bar0->gpio_control);
3350 val64 = 0x0411040400000000ULL;
509a2671 3351 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3352 }
3353
541ae68f
K
3354 /*
3355 * Clear spurious ECC interrupts that would have occured on
3356 * XFRAME II cards after reset.
3357 */
3358 if (sp->device_type == XFRAME_II_DEVICE) {
3359 val64 = readq(&bar0->pcc_err_reg);
3360 writeq(val64, &bar0->pcc_err_reg);
3361 }
3362
1da177e4
LT
3363 sp->device_enabled_once = FALSE;
3364}
3365
3366/**
20346722
K
3367 * s2io_set_swapper - to set the swapper controle on the card
3368 * @sp : private member of the device structure,
1da177e4 3369 * pointer to the s2io_nic structure.
20346722 3370 * Description: Function to set the swapper control on the card
1da177e4
LT
3371 * correctly depending on the 'endianness' of the system.
3372 * Return value:
3373 * SUCCESS on success and FAILURE on failure.
3374 */
3375
26df54bf 3376static int s2io_set_swapper(nic_t * sp)
1da177e4
LT
3377{
3378 struct net_device *dev = sp->dev;
3379 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3380 u64 val64, valt, valr;
3381
20346722 3382 /*
1da177e4
LT
3383 * Set proper endian settings and verify the same by reading
3384 * the PIF Feed-back register.
3385 */
3386
3387 val64 = readq(&bar0->pif_rd_swapper_fb);
3388 if (val64 != 0x0123456789ABCDEFULL) {
3389 int i = 0;
3390 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3391 0x8100008181000081ULL, /* FE=1, SE=0 */
3392 0x4200004242000042ULL, /* FE=0, SE=1 */
3393 0}; /* FE=0, SE=0 */
3394
3395 while(i<4) {
3396 writeq(value[i], &bar0->swapper_ctrl);
3397 val64 = readq(&bar0->pif_rd_swapper_fb);
3398 if (val64 == 0x0123456789ABCDEFULL)
3399 break;
3400 i++;
3401 }
3402 if (i == 4) {
3403 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3404 dev->name);
3405 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3406 (unsigned long long) val64);
3407 return FAILURE;
3408 }
3409 valr = value[i];
3410 } else {
3411 valr = readq(&bar0->swapper_ctrl);
3412 }
3413
3414 valt = 0x0123456789ABCDEFULL;
3415 writeq(valt, &bar0->xmsi_address);
3416 val64 = readq(&bar0->xmsi_address);
3417
3418 if(val64 != valt) {
3419 int i = 0;
3420 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3421 0x0081810000818100ULL, /* FE=1, SE=0 */
3422 0x0042420000424200ULL, /* FE=0, SE=1 */
3423 0}; /* FE=0, SE=0 */
3424
3425 while(i<4) {
3426 writeq((value[i] | valr), &bar0->swapper_ctrl);
3427 writeq(valt, &bar0->xmsi_address);
3428 val64 = readq(&bar0->xmsi_address);
3429 if(val64 == valt)
3430 break;
3431 i++;
3432 }
3433 if(i == 4) {
20346722 3434 unsigned long long x = val64;
1da177e4 3435 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3436 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3437 return FAILURE;
3438 }
3439 }
3440 val64 = readq(&bar0->swapper_ctrl);
3441 val64 &= 0xFFFF000000000000ULL;
3442
3443#ifdef __BIG_ENDIAN
20346722
K
3444 /*
3445 * The device by default set to a big endian format, so a
1da177e4
LT
3446 * big endian driver need not set anything.
3447 */
3448 val64 |= (SWAPPER_CTRL_TXP_FE |
3449 SWAPPER_CTRL_TXP_SE |
3450 SWAPPER_CTRL_TXD_R_FE |
3451 SWAPPER_CTRL_TXD_W_FE |
3452 SWAPPER_CTRL_TXF_R_FE |
3453 SWAPPER_CTRL_RXD_R_FE |
3454 SWAPPER_CTRL_RXD_W_FE |
3455 SWAPPER_CTRL_RXF_W_FE |
3456 SWAPPER_CTRL_XMSI_FE |
1da177e4 3457 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3458 if (sp->intr_type == INTA)
cc6e7c44 3459 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3460 writeq(val64, &bar0->swapper_ctrl);
3461#else
20346722 3462 /*
1da177e4 3463 * Initially we enable all bits to make it accessible by the
20346722 3464 * driver, then we selectively enable only those bits that
1da177e4
LT
3465 * we want to set.
3466 */
3467 val64 |= (SWAPPER_CTRL_TXP_FE |
3468 SWAPPER_CTRL_TXP_SE |
3469 SWAPPER_CTRL_TXD_R_FE |
3470 SWAPPER_CTRL_TXD_R_SE |
3471 SWAPPER_CTRL_TXD_W_FE |
3472 SWAPPER_CTRL_TXD_W_SE |
3473 SWAPPER_CTRL_TXF_R_FE |
3474 SWAPPER_CTRL_RXD_R_FE |
3475 SWAPPER_CTRL_RXD_R_SE |
3476 SWAPPER_CTRL_RXD_W_FE |
3477 SWAPPER_CTRL_RXD_W_SE |
3478 SWAPPER_CTRL_RXF_W_FE |
3479 SWAPPER_CTRL_XMSI_FE |
1da177e4 3480 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3481 if (sp->intr_type == INTA)
3482 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3483 writeq(val64, &bar0->swapper_ctrl);
3484#endif
3485 val64 = readq(&bar0->swapper_ctrl);
3486
20346722
K
3487 /*
3488 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3489 * feedback register.
3490 */
3491 val64 = readq(&bar0->pif_rd_swapper_fb);
3492 if (val64 != 0x0123456789ABCDEFULL) {
3493 /* Endian settings are incorrect, calls for another dekko. */
3494 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3495 dev->name);
3496 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3497 (unsigned long long) val64);
3498 return FAILURE;
3499 }
3500
3501 return SUCCESS;
3502}
3503
ac1f60db 3504static int wait_for_msix_trans(nic_t *nic, int i)
cc6e7c44 3505{
37eb47ed 3506 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3507 u64 val64;
3508 int ret = 0, cnt = 0;
3509
3510 do {
3511 val64 = readq(&bar0->xmsi_access);
3512 if (!(val64 & BIT(15)))
3513 break;
3514 mdelay(1);
3515 cnt++;
3516 } while(cnt < 5);
3517 if (cnt == 5) {
3518 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3519 ret = 1;
3520 }
3521
3522 return ret;
3523}
3524
26df54bf 3525static void restore_xmsi_data(nic_t *nic)
cc6e7c44 3526{
37eb47ed 3527 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3528 u64 val64;
3529 int i;
3530
c92ca04b 3531 for (i=0; i< nic->avail_msix_vectors; i++) {
cc6e7c44
RA
3532 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3533 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3534 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3535 writeq(val64, &bar0->xmsi_access);
3536 if (wait_for_msix_trans(nic, i)) {
3537 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3538 continue;
3539 }
3540 }
3541}
3542
ac1f60db 3543static void store_xmsi_data(nic_t *nic)
cc6e7c44 3544{
37eb47ed 3545 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3546 u64 val64, addr, data;
3547 int i;
3548
3549 /* Store and display */
c92ca04b 3550 for (i=0; i< nic->avail_msix_vectors; i++) {
cc6e7c44
RA
3551 val64 = (BIT(15) | vBIT(i, 26, 6));
3552 writeq(val64, &bar0->xmsi_access);
3553 if (wait_for_msix_trans(nic, i)) {
3554 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3555 continue;
3556 }
3557 addr = readq(&bar0->xmsi_address);
3558 data = readq(&bar0->xmsi_data);
3559 if (addr && data) {
3560 nic->msix_info[i].addr = addr;
3561 nic->msix_info[i].data = data;
3562 }
3563 }
3564}
3565
3566int s2io_enable_msi(nic_t *nic)
3567{
37eb47ed 3568 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3569 u16 msi_ctrl, msg_val;
3570 struct config_param *config = &nic->config;
3571 struct net_device *dev = nic->dev;
3572 u64 val64, tx_mat, rx_mat;
3573 int i, err;
3574
3575 val64 = readq(&bar0->pic_control);
3576 val64 &= ~BIT(1);
3577 writeq(val64, &bar0->pic_control);
3578
3579 err = pci_enable_msi(nic->pdev);
3580 if (err) {
3581 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3582 nic->dev->name);
3583 return err;
3584 }
3585
3586 /*
3587 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3588 * for interrupt handling.
3589 */
3590 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3591 msg_val ^= 0x1;
3592 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3593 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3594
3595 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3596 msi_ctrl |= 0x10;
3597 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3598
3599 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3600 tx_mat = readq(&bar0->tx_mat0_n[0]);
3601 for (i=0; i<config->tx_fifo_num; i++) {
3602 tx_mat |= TX_MAT_SET(i, 1);
3603 }
3604 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3605
3606 rx_mat = readq(&bar0->rx_mat);
3607 for (i=0; i<config->rx_ring_num; i++) {
3608 rx_mat |= RX_MAT_SET(i, 1);
3609 }
3610 writeq(rx_mat, &bar0->rx_mat);
3611
3612 dev->irq = nic->pdev->irq;
3613 return 0;
3614}
3615
26df54bf 3616static int s2io_enable_msi_x(nic_t *nic)
cc6e7c44 3617{
37eb47ed 3618 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3619 u64 tx_mat, rx_mat;
3620 u16 msi_control; /* Temp variable */
3621 int ret, i, j, msix_indx = 1;
3622
3623 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3624 GFP_KERNEL);
3625 if (nic->entries == NULL) {
3626 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3627 return -ENOMEM;
3628 }
3629 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3630
3631 nic->s2io_entries =
3632 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3633 GFP_KERNEL);
3634 if (nic->s2io_entries == NULL) {
3635 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3636 kfree(nic->entries);
3637 return -ENOMEM;
3638 }
3639 memset(nic->s2io_entries, 0,
3640 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3641
3642 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3643 nic->entries[i].entry = i;
3644 nic->s2io_entries[i].entry = i;
3645 nic->s2io_entries[i].arg = NULL;
3646 nic->s2io_entries[i].in_use = 0;
3647 }
3648
3649 tx_mat = readq(&bar0->tx_mat0_n[0]);
3650 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3651 tx_mat |= TX_MAT_SET(i, msix_indx);
3652 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3653 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3654 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3655 }
3656 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3657
3658 if (!nic->config.bimodal) {
3659 rx_mat = readq(&bar0->rx_mat);
3660 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3661 rx_mat |= RX_MAT_SET(j, msix_indx);
3662 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3663 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3664 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3665 }
3666 writeq(rx_mat, &bar0->rx_mat);
3667 } else {
3668 tx_mat = readq(&bar0->tx_mat0_n[7]);
3669 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3670 tx_mat |= TX_MAT_SET(i, msix_indx);
3671 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3672 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3673 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3674 }
3675 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3676 }
3677
c92ca04b 3678 nic->avail_msix_vectors = 0;
cc6e7c44 3679 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3680 /* We fail init if error or we get less vectors than min required */
3681 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3682 nic->avail_msix_vectors = ret;
3683 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3684 }
cc6e7c44
RA
3685 if (ret) {
3686 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3687 kfree(nic->entries);
3688 kfree(nic->s2io_entries);
3689 nic->entries = NULL;
3690 nic->s2io_entries = NULL;
c92ca04b 3691 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3692 return -ENOMEM;
3693 }
c92ca04b
AR
3694 if (!nic->avail_msix_vectors)
3695 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3696
3697 /*
3698 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3699 * in the herc NIC. (Temp change, needs to be removed later)
3700 */
3701 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3702 msi_control |= 0x1; /* Enable MSI */
3703 pci_write_config_word(nic->pdev, 0x42, msi_control);
3704
3705 return 0;
3706}
3707
1da177e4
LT
3708/* ********************************************************* *
3709 * Functions defined below concern the OS part of the driver *
3710 * ********************************************************* */
3711
20346722 3712/**
1da177e4
LT
3713 * s2io_open - open entry point of the driver
3714 * @dev : pointer to the device structure.
3715 * Description:
3716 * This function is the open entry point of the driver. It mainly calls a
3717 * function to allocate Rx buffers and inserts them into the buffer
20346722 3718 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3719 * Return value:
3720 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3721 * file on failure.
3722 */
3723
ac1f60db 3724static int s2io_open(struct net_device *dev)
1da177e4
LT
3725{
3726 nic_t *sp = dev->priv;
3727 int err = 0;
3728
20346722
K
3729 /*
3730 * Make sure you have link off by default every time
1da177e4
LT
3731 * Nic is initialized
3732 */
3733 netif_carrier_off(dev);
0b1f7ebe 3734 sp->last_link_state = 0;
1da177e4
LT
3735
3736 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3737 err = s2io_card_up(sp);
3738 if (err) {
1da177e4
LT
3739 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3740 dev->name);
e6a8fee2 3741 goto hw_init_failed;
1da177e4
LT
3742 }
3743
3744 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3745 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3746 s2io_card_down(sp);
20346722 3747 err = -ENODEV;
e6a8fee2 3748 goto hw_init_failed;
1da177e4
LT
3749 }
3750
3751 netif_start_queue(dev);
3752 return 0;
20346722 3753
20346722 3754hw_init_failed:
cc6e7c44
RA
3755 if (sp->intr_type == MSI_X) {
3756 if (sp->entries)
3757 kfree(sp->entries);
3758 if (sp->s2io_entries)
3759 kfree(sp->s2io_entries);
3760 }
20346722 3761 return err;
1da177e4
LT
3762}
3763
3764/**
3765 * s2io_close -close entry point of the driver
3766 * @dev : device pointer.
3767 * Description:
3768 * This is the stop entry point of the driver. It needs to undo exactly
3769 * whatever was done by the open entry point,thus it's usually referred to
3770 * as the close function.Among other things this function mainly stops the
3771 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3772 * Return value:
3773 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3774 * file on failure.
3775 */
3776
ac1f60db 3777static int s2io_close(struct net_device *dev)
1da177e4
LT
3778{
3779 nic_t *sp = dev->priv;
cc6e7c44 3780
1da177e4
LT
3781 flush_scheduled_work();
3782 netif_stop_queue(dev);
3783 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3784 s2io_card_down(sp);
cc6e7c44 3785
1da177e4
LT
3786 sp->device_close_flag = TRUE; /* Device is shut down. */
3787 return 0;
3788}
3789
3790/**
3791 * s2io_xmit - Tx entry point of te driver
3792 * @skb : the socket buffer containing the Tx data.
3793 * @dev : device pointer.
3794 * Description :
3795 * This function is the Tx entry point of the driver. S2IO NIC supports
3796 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3797 * NOTE: when device cant queue the pkt,just the trans_start variable will
3798 * not be upadted.
3799 * Return value:
3800 * 0 on success & 1 on failure.
3801 */
3802
ac1f60db 3803static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
3804{
3805 nic_t *sp = dev->priv;
3806 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3807 register u64 val64;
3808 TxD_t *txdp;
3809 TxFIFO_element_t __iomem *tx_fifo;
3810 unsigned long flags;
3811#ifdef NETIF_F_TSO
3812 int mss;
3813#endif
be3a6b02
K
3814 u16 vlan_tag = 0;
3815 int vlan_priority = 0;
1da177e4
LT
3816 mac_info_t *mac_control;
3817 struct config_param *config;
1da177e4
LT
3818
3819 mac_control = &sp->mac_control;
3820 config = &sp->config;
3821
20346722 3822 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3823 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3824 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3825 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3826 dev->name);
3827 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3828 dev_kfree_skb(skb);
3829 return 0;
1da177e4
LT
3830 }
3831
3832 queue = 0;
1da177e4 3833
be3a6b02
K
3834 /* Get Fifo number to Transmit based on vlan priority */
3835 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3836 vlan_tag = vlan_tx_tag_get(skb);
3837 vlan_priority = vlan_tag >> 13;
3838 queue = config->fifo_mapping[vlan_priority];
3839 }
3840
20346722
K
3841 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3842 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3843 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3844 list_virt_addr;
3845
3846 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3847 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3848 if (txdp->Host_Control ||
3849 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3850 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3851 netif_stop_queue(dev);
3852 dev_kfree_skb(skb);
3853 spin_unlock_irqrestore(&sp->tx_lock, flags);
3854 return 0;
3855 }
0b1f7ebe
K
3856
3857 /* A buffer with no data will be dropped */
3858 if (!skb->len) {
3859 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3860 dev_kfree_skb(skb);
3861 spin_unlock_irqrestore(&sp->tx_lock, flags);
3862 return 0;
3863 }
3864
fed5eccd
AR
3865 txdp->Control_1 = 0;
3866 txdp->Control_2 = 0;
1da177e4 3867#ifdef NETIF_F_TSO
7967168c 3868 mss = skb_shinfo(skb)->gso_size;
f83ef8c0 3869 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4
LT
3870 txdp->Control_1 |= TXD_TCP_LSO_EN;
3871 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3872 }
3873#endif
1da177e4
LT
3874 if (skb->ip_summed == CHECKSUM_HW) {
3875 txdp->Control_2 |=
3876 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3877 TXD_TX_CKO_UDP_EN);
3878 }
fed5eccd
AR
3879 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3880 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3881 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3882
be3a6b02
K
3883 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3884 txdp->Control_2 |= TXD_VLAN_ENABLE;
3885 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3886 }
3887
fed5eccd 3888 frg_len = skb->len - skb->data_len;
f83ef8c0 3889 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP) {
fed5eccd
AR
3890 int ufo_size;
3891
7967168c 3892 ufo_size = skb_shinfo(skb)->gso_size;
fed5eccd
AR
3893 ufo_size &= ~7;
3894 txdp->Control_1 |= TXD_UFO_EN;
3895 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3896 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3897#ifdef __BIG_ENDIAN
3898 sp->ufo_in_band_v[put_off] =
3899 (u64)skb_shinfo(skb)->ip6_frag_id;
3900#else
3901 sp->ufo_in_band_v[put_off] =
3902 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3903#endif
3904 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3905 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3906 sp->ufo_in_band_v,
3907 sizeof(u64), PCI_DMA_TODEVICE);
3908 txdp++;
3909 txdp->Control_1 = 0;
3910 txdp->Control_2 = 0;
3911 }
1da177e4 3912
fed5eccd
AR
3913 txdp->Buffer_Pointer = pci_map_single
3914 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3915 txdp->Host_Control = (unsigned long) skb;
3916 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3917
f83ef8c0 3918 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
fed5eccd
AR
3919 txdp->Control_1 |= TXD_UFO_EN;
3920
3921 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3922 /* For fragmented SKB. */
3923 for (i = 0; i < frg_cnt; i++) {
3924 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3925 /* A '0' length fragment will be ignored */
3926 if (!frag->size)
3927 continue;
1da177e4
LT
3928 txdp++;
3929 txdp->Buffer_Pointer = (u64) pci_map_page
3930 (sp->pdev, frag->page, frag->page_offset,
3931 frag->size, PCI_DMA_TODEVICE);
efd51b5c 3932 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
f83ef8c0 3933 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
fed5eccd 3934 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
3935 }
3936 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3937
f83ef8c0 3938 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
fed5eccd
AR
3939 frg_cnt++; /* as Txd0 was used for inband header */
3940
1da177e4 3941 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3942 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3943 writeq(val64, &tx_fifo->TxDL_Pointer);
3944
3945 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3946 TX_FIFO_LAST_LIST);
20346722 3947
1da177e4
LT
3948#ifdef NETIF_F_TSO
3949 if (mss)
3950 val64 |= TX_FIFO_SPECIAL_FUNC;
3951#endif
f83ef8c0 3952 if (skb_shinfo(skb)->gso_type == SKB_GSO_UDP)
fed5eccd 3953 val64 |= TX_FIFO_SPECIAL_FUNC;
1da177e4
LT
3954 writeq(val64, &tx_fifo->List_Control);
3955
303bcb4b
K
3956 mmiowb();
3957
1da177e4 3958 put_off++;
863c11a9
AR
3959 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3960 put_off = 0;
20346722 3961 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3962
3963 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 3964 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 3965 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
3966 DBG_PRINT(TX_DBG,
3967 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3968 put_off, get_off);
3969 netif_stop_queue(dev);
3970 }
3971
3972 dev->trans_start = jiffies;
3973 spin_unlock_irqrestore(&sp->tx_lock, flags);
3974
3975 return 0;
3976}
3977
25fff88e
K
3978static void
3979s2io_alarm_handle(unsigned long data)
3980{
3981 nic_t *sp = (nic_t *)data;
3982
3983 alarm_intr_handler(sp);
3984 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3985}
3986
cc6e7c44
RA
3987static irqreturn_t
3988s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3989{
3990 struct net_device *dev = (struct net_device *) dev_id;
3991 nic_t *sp = dev->priv;
3992 int i;
3993 int ret;
3994 mac_info_t *mac_control;
3995 struct config_param *config;
3996
3997 atomic_inc(&sp->isr_cnt);
3998 mac_control = &sp->mac_control;
3999 config = &sp->config;
4000 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4001
4002 /* If Intr is because of Rx Traffic */
4003 for (i = 0; i < config->rx_ring_num; i++)
4004 rx_intr_handler(&mac_control->rings[i]);
4005
4006 /* If Intr is because of Tx Traffic */
4007 for (i = 0; i < config->tx_fifo_num; i++)
4008 tx_intr_handler(&mac_control->fifos[i]);
4009
4010 /*
4011 * If the Rx buffer count is below the panic threshold then
4012 * reallocate the buffers from the interrupt handler itself,
4013 * else schedule a tasklet to reallocate the buffers.
4014 */
4015 for (i = 0; i < config->rx_ring_num; i++) {
7d3d0439
RA
4016 if (!sp->lro) {
4017 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4018 int level = rx_buffer_level(sp, rxb_size, i);
4019
4020 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4021 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4022 dev->name);
4023 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4024 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4025 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4026 dev->name);
4027 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4028 clear_bit(0, (&sp->tasklet_status));
4029 atomic_dec(&sp->isr_cnt);
4030 return IRQ_HANDLED;
4031 }
cc6e7c44 4032 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4033 } else if (level == LOW) {
4034 tasklet_schedule(&sp->task);
cc6e7c44 4035 }
7d3d0439
RA
4036 }
4037 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4038 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4039 dev->name);
4040 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4041 break;
cc6e7c44
RA
4042 }
4043 }
4044
4045 atomic_dec(&sp->isr_cnt);
4046 return IRQ_HANDLED;
4047}
4048
4049static irqreturn_t
4050s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4051{
4052 ring_info_t *ring = (ring_info_t *)dev_id;
4053 nic_t *sp = ring->nic;
7d3d0439 4054 struct net_device *dev = (struct net_device *) dev_id;
cc6e7c44
RA
4055 int rxb_size, level, rng_n;
4056
4057 atomic_inc(&sp->isr_cnt);
4058 rx_intr_handler(ring);
4059
4060 rng_n = ring->ring_no;
7d3d0439
RA
4061 if (!sp->lro) {
4062 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4063 level = rx_buffer_level(sp, rxb_size, rng_n);
4064
4065 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4066 int ret;
4067 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4068 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4069 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4070 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4071 __FUNCTION__);
4072 clear_bit(0, (&sp->tasklet_status));
4073 return IRQ_HANDLED;
4074 }
cc6e7c44 4075 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4076 } else if (level == LOW) {
4077 tasklet_schedule(&sp->task);
cc6e7c44 4078 }
cc6e7c44 4079 }
7d3d0439
RA
4080 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4081 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4082 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4083 }
4084
cc6e7c44
RA
4085 atomic_dec(&sp->isr_cnt);
4086
4087 return IRQ_HANDLED;
4088}
4089
4090static irqreturn_t
4091s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4092{
4093 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4094 nic_t *sp = fifo->nic;
4095
4096 atomic_inc(&sp->isr_cnt);
4097 tx_intr_handler(fifo);
4098 atomic_dec(&sp->isr_cnt);
4099 return IRQ_HANDLED;
4100}
a371a07d
K
4101static void s2io_txpic_intr_handle(nic_t *sp)
4102{
509a2671 4103 XENA_dev_config_t __iomem *bar0 = sp->bar0;
a371a07d
K
4104 u64 val64;
4105
4106 val64 = readq(&bar0->pic_int_status);
4107 if (val64 & PIC_INT_GPIO) {
4108 val64 = readq(&bar0->gpio_int_reg);
4109 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4110 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4111 /*
4112 * This is unstable state so clear both up/down
4113 * interrupt and adapter to re-evaluate the link state.
4114 */
a371a07d
K
4115 val64 |= GPIO_INT_REG_LINK_DOWN;
4116 val64 |= GPIO_INT_REG_LINK_UP;
4117 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4118 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4119 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4120 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4121 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4122 }
c92ca04b
AR
4123 else if (val64 & GPIO_INT_REG_LINK_UP) {
4124 val64 = readq(&bar0->adapter_status);
4125 if (verify_xena_quiescence(sp, val64,
4126 sp->device_enabled_once)) {
4127 /* Enable Adapter */
4128 val64 = readq(&bar0->adapter_control);
4129 val64 |= ADAPTER_CNTL_EN;
4130 writeq(val64, &bar0->adapter_control);
4131 val64 |= ADAPTER_LED_ON;
4132 writeq(val64, &bar0->adapter_control);
4133 if (!sp->device_enabled_once)
4134 sp->device_enabled_once = 1;
4135
4136 s2io_link(sp, LINK_UP);
4137 /*
4138 * unmask link down interrupt and mask link-up
4139 * intr
4140 */
4141 val64 = readq(&bar0->gpio_int_mask);
4142 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4143 val64 |= GPIO_INT_MASK_LINK_UP;
4144 writeq(val64, &bar0->gpio_int_mask);
4145
4146 }
4147 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4148 val64 = readq(&bar0->adapter_status);
4149 if (verify_xena_quiescence(sp, val64,
4150 sp->device_enabled_once)) {
4151 s2io_link(sp, LINK_DOWN);
4152 /* Link is down so unmaks link up interrupt */
4153 val64 = readq(&bar0->gpio_int_mask);
4154 val64 &= ~GPIO_INT_MASK_LINK_UP;
4155 val64 |= GPIO_INT_MASK_LINK_DOWN;
4156 writeq(val64, &bar0->gpio_int_mask);
4157 }
a371a07d
K
4158 }
4159 }
c92ca04b 4160 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4161}
4162
1da177e4
LT
4163/**
4164 * s2io_isr - ISR handler of the device .
4165 * @irq: the irq of the device.
4166 * @dev_id: a void pointer to the dev structure of the NIC.
4167 * @pt_regs: pointer to the registers pushed on the stack.
20346722
K
4168 * Description: This function is the ISR handler of the device. It
4169 * identifies the reason for the interrupt and calls the relevant
4170 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4171 * recv buffers, if their numbers are below the panic value which is
4172 * presently set to 25% of the original number of rcv buffers allocated.
4173 * Return value:
20346722 4174 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4175 * IRQ_NONE: will be returned if interrupt is not from our device
4176 */
4177static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4178{
4179 struct net_device *dev = (struct net_device *) dev_id;
4180 nic_t *sp = dev->priv;
4181 XENA_dev_config_t __iomem *bar0 = sp->bar0;
20346722 4182 int i;
5d3213cc 4183 u64 reason = 0, val64, org_mask;
1da177e4
LT
4184 mac_info_t *mac_control;
4185 struct config_param *config;
4186
7ba013ac 4187 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4188 mac_control = &sp->mac_control;
4189 config = &sp->config;
4190
20346722 4191 /*
1da177e4
LT
4192 * Identify the cause for interrupt and call the appropriate
4193 * interrupt handler. Causes for the interrupt could be;
4194 * 1. Rx of packet.
4195 * 2. Tx complete.
4196 * 3. Link down.
20346722 4197 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4198 */
4199 reason = readq(&bar0->general_int_status);
4200
4201 if (!reason) {
4202 /* The interrupt was not raised by Xena. */
7ba013ac 4203 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4204 return IRQ_NONE;
4205 }
4206
863c11a9 4207 val64 = 0xFFFFFFFFFFFFFFFFULL;
5d3213cc
AR
4208 /* Store current mask before masking all interrupts */
4209 org_mask = readq(&bar0->general_int_mask);
4210 writeq(val64, &bar0->general_int_mask);
4211
1da177e4
LT
4212#ifdef CONFIG_S2IO_NAPI
4213 if (reason & GEN_INTR_RXTRAFFIC) {
4214 if (netif_rx_schedule_prep(dev)) {
863c11a9 4215 writeq(val64, &bar0->rx_traffic_mask);
1da177e4
LT
4216 __netif_rx_schedule(dev);
4217 }
4218 }
4219#else
863c11a9
AR
4220 /*
4221 * Rx handler is called by default, without checking for the
4222 * cause of interrupt.
4223 * rx_traffic_int reg is an R1 register, writing all 1's
4224 * will ensure that the actual interrupt causing bit get's
4225 * cleared and hence a read can be avoided.
4226 */
4227 writeq(val64, &bar0->rx_traffic_int);
4228 for (i = 0; i < config->rx_ring_num; i++) {
4229 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4230 }
4231#endif
4232
863c11a9
AR
4233 /*
4234 * tx_traffic_int reg is an R1 register, writing all 1's
4235 * will ensure that the actual interrupt causing bit get's
4236 * cleared and hence a read can be avoided.
4237 */
4238 writeq(val64, &bar0->tx_traffic_int);
fe113638 4239
863c11a9
AR
4240 for (i = 0; i < config->tx_fifo_num; i++)
4241 tx_intr_handler(&mac_control->fifos[i]);
20346722 4242
a371a07d
K
4243 if (reason & GEN_INTR_TXPIC)
4244 s2io_txpic_intr_handle(sp);
20346722
K
4245 /*
4246 * If the Rx buffer count is below the panic threshold then
4247 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4248 * else schedule a tasklet to reallocate the buffers.
4249 */
4250#ifndef CONFIG_S2IO_NAPI
4251 for (i = 0; i < config->rx_ring_num; i++) {
7d3d0439
RA
4252 if (!sp->lro) {
4253 int ret;
4254 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4255 int level = rx_buffer_level(sp, rxb_size, i);
4256
4257 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4258 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4259 dev->name);
4260 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4261 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4262 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4263 dev->name);
4264 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4265 clear_bit(0, (&sp->tasklet_status));
4266 atomic_dec(&sp->isr_cnt);
5d3213cc 4267 writeq(org_mask, &bar0->general_int_mask);
7d3d0439
RA
4268 return IRQ_HANDLED;
4269 }
1da177e4 4270 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4271 } else if (level == LOW) {
4272 tasklet_schedule(&sp->task);
1da177e4 4273 }
7d3d0439
RA
4274 }
4275 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4276 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4277 dev->name);
4278 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4279 break;
1da177e4
LT
4280 }
4281 }
4282#endif
5d3213cc 4283 writeq(org_mask, &bar0->general_int_mask);
7ba013ac 4284 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4285 return IRQ_HANDLED;
4286}
4287
7ba013ac
K
4288/**
4289 * s2io_updt_stats -
4290 */
4291static void s2io_updt_stats(nic_t *sp)
4292{
4293 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4294 u64 val64;
4295 int cnt = 0;
4296
4297 if (atomic_read(&sp->card_state) == CARD_UP) {
4298 /* Apprx 30us on a 133 MHz bus */
4299 val64 = SET_UPDT_CLICKS(10) |
4300 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4301 writeq(val64, &bar0->stat_cfg);
4302 do {
4303 udelay(100);
4304 val64 = readq(&bar0->stat_cfg);
4305 if (!(val64 & BIT(0)))
4306 break;
4307 cnt++;
4308 if (cnt == 5)
4309 break; /* Updt failed */
4310 } while(1);
4311 }
4312}
4313
1da177e4 4314/**
20346722 4315 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4316 * @dev : pointer to the device structure.
4317 * Description:
20346722 4318 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4319 * structure and returns a pointer to the same.
4320 * Return value:
4321 * pointer to the updated net_device_stats structure.
4322 */
4323
ac1f60db 4324static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4
LT
4325{
4326 nic_t *sp = dev->priv;
4327 mac_info_t *mac_control;
4328 struct config_param *config;
4329
20346722 4330
1da177e4
LT
4331 mac_control = &sp->mac_control;
4332 config = &sp->config;
4333
7ba013ac
K
4334 /* Configure Stats for immediate updt */
4335 s2io_updt_stats(sp);
4336
4337 sp->stats.tx_packets =
4338 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4339 sp->stats.tx_errors =
4340 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4341 sp->stats.rx_errors =
4342 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4343 sp->stats.multicast =
4344 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4345 sp->stats.rx_length_errors =
20346722 4346 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4347
4348 return (&sp->stats);
4349}
4350
4351/**
4352 * s2io_set_multicast - entry point for multicast address enable/disable.
4353 * @dev : pointer to the device structure
4354 * Description:
20346722
K
4355 * This function is a driver entry point which gets called by the kernel
4356 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4357 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4358 * determine, if multicast address must be enabled or if promiscuous mode
4359 * is to be disabled etc.
4360 * Return value:
4361 * void.
4362 */
4363
4364static void s2io_set_multicast(struct net_device *dev)
4365{
4366 int i, j, prev_cnt;
4367 struct dev_mc_list *mclist;
4368 nic_t *sp = dev->priv;
4369 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4370 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4371 0xfeffffffffffULL;
4372 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4373 void __iomem *add;
4374
4375 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4376 /* Enable all Multicast addresses */
4377 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4378 &bar0->rmac_addr_data0_mem);
4379 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4380 &bar0->rmac_addr_data1_mem);
4381 val64 = RMAC_ADDR_CMD_MEM_WE |
4382 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4383 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4384 writeq(val64, &bar0->rmac_addr_cmd_mem);
4385 /* Wait till command completes */
c92ca04b
AR
4386 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4387 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4388
4389 sp->m_cast_flg = 1;
4390 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4391 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4392 /* Disable all Multicast addresses */
4393 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4394 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4395 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4396 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4397 val64 = RMAC_ADDR_CMD_MEM_WE |
4398 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4399 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4400 writeq(val64, &bar0->rmac_addr_cmd_mem);
4401 /* Wait till command completes */
c92ca04b
AR
4402 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4403 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4404
4405 sp->m_cast_flg = 0;
4406 sp->all_multi_pos = 0;
4407 }
4408
4409 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4410 /* Put the NIC into promiscuous mode */
4411 add = &bar0->mac_cfg;
4412 val64 = readq(&bar0->mac_cfg);
4413 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4414
4415 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4416 writel((u32) val64, add);
4417 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4418 writel((u32) (val64 >> 32), (add + 4));
4419
4420 val64 = readq(&bar0->mac_cfg);
4421 sp->promisc_flg = 1;
776bd20f 4422 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4423 dev->name);
4424 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4425 /* Remove the NIC from promiscuous mode */
4426 add = &bar0->mac_cfg;
4427 val64 = readq(&bar0->mac_cfg);
4428 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4429
4430 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4431 writel((u32) val64, add);
4432 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4433 writel((u32) (val64 >> 32), (add + 4));
4434
4435 val64 = readq(&bar0->mac_cfg);
4436 sp->promisc_flg = 0;
776bd20f 4437 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4438 dev->name);
4439 }
4440
4441 /* Update individual M_CAST address list */
4442 if ((!sp->m_cast_flg) && dev->mc_count) {
4443 if (dev->mc_count >
4444 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4445 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4446 dev->name);
4447 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4448 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4449 return;
4450 }
4451
4452 prev_cnt = sp->mc_addr_count;
4453 sp->mc_addr_count = dev->mc_count;
4454
4455 /* Clear out the previous list of Mc in the H/W. */
4456 for (i = 0; i < prev_cnt; i++) {
4457 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4458 &bar0->rmac_addr_data0_mem);
4459 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4460 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4461 val64 = RMAC_ADDR_CMD_MEM_WE |
4462 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4463 RMAC_ADDR_CMD_MEM_OFFSET
4464 (MAC_MC_ADDR_START_OFFSET + i);
4465 writeq(val64, &bar0->rmac_addr_cmd_mem);
4466
4467 /* Wait for command completes */
c92ca04b
AR
4468 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4469 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4470 DBG_PRINT(ERR_DBG, "%s: Adding ",
4471 dev->name);
4472 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4473 return;
4474 }
4475 }
4476
4477 /* Create the new Rx filter list and update the same in H/W. */
4478 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4479 i++, mclist = mclist->next) {
4480 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4481 ETH_ALEN);
a7a80d5a 4482 mac_addr = 0;
1da177e4
LT
4483 for (j = 0; j < ETH_ALEN; j++) {
4484 mac_addr |= mclist->dmi_addr[j];
4485 mac_addr <<= 8;
4486 }
4487 mac_addr >>= 8;
4488 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4489 &bar0->rmac_addr_data0_mem);
4490 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4491 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4492 val64 = RMAC_ADDR_CMD_MEM_WE |
4493 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4494 RMAC_ADDR_CMD_MEM_OFFSET
4495 (i + MAC_MC_ADDR_START_OFFSET);
4496 writeq(val64, &bar0->rmac_addr_cmd_mem);
4497
4498 /* Wait for command completes */
c92ca04b
AR
4499 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4500 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4501 DBG_PRINT(ERR_DBG, "%s: Adding ",
4502 dev->name);
4503 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4504 return;
4505 }
4506 }
4507 }
4508}
4509
4510/**
20346722 4511 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4512 * @dev : pointer to the device structure.
4513 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4514 * Description : This procedure will program the Xframe to receive
1da177e4 4515 * frames with new Mac Address
20346722 4516 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4517 * as defined in errno.h file on failure.
4518 */
4519
26df54bf 4520static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4
LT
4521{
4522 nic_t *sp = dev->priv;
4523 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4524 register u64 val64, mac_addr = 0;
4525 int i;
4526
20346722 4527 /*
1da177e4
LT
4528 * Set the new MAC address as the new unicast filter and reflect this
4529 * change on the device address registered with the OS. It will be
20346722 4530 * at offset 0.
1da177e4
LT
4531 */
4532 for (i = 0; i < ETH_ALEN; i++) {
4533 mac_addr <<= 8;
4534 mac_addr |= addr[i];
4535 }
4536
4537 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4538 &bar0->rmac_addr_data0_mem);
4539
4540 val64 =
4541 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4542 RMAC_ADDR_CMD_MEM_OFFSET(0);
4543 writeq(val64, &bar0->rmac_addr_cmd_mem);
4544 /* Wait till command completes */
c92ca04b
AR
4545 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4546 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4547 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4548 return FAILURE;
4549 }
4550
4551 return SUCCESS;
4552}
4553
4554/**
20346722 4555 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4556 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4557 * @info: pointer to the structure with parameters given by ethtool to set
4558 * link information.
4559 * Description:
20346722 4560 * The function sets different link parameters provided by the user onto
1da177e4
LT
4561 * the NIC.
4562 * Return value:
4563 * 0 on success.
4564*/
4565
4566static int s2io_ethtool_sset(struct net_device *dev,
4567 struct ethtool_cmd *info)
4568{
4569 nic_t *sp = dev->priv;
4570 if ((info->autoneg == AUTONEG_ENABLE) ||
4571 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4572 return -EINVAL;
4573 else {
4574 s2io_close(sp->dev);
4575 s2io_open(sp->dev);
4576 }
4577
4578 return 0;
4579}
4580
4581/**
20346722 4582 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4583 * @sp : private member of the device structure, pointer to the
4584 * s2io_nic structure.
4585 * @info : pointer to the structure with parameters given by ethtool
4586 * to return link information.
4587 * Description:
4588 * Returns link specific information like speed, duplex etc.. to ethtool.
4589 * Return value :
4590 * return 0 on success.
4591 */
4592
4593static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4594{
4595 nic_t *sp = dev->priv;
4596 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4597 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4598 info->port = PORT_FIBRE;
4599 /* info->transceiver?? TODO */
4600
4601 if (netif_carrier_ok(sp->dev)) {
4602 info->speed = 10000;
4603 info->duplex = DUPLEX_FULL;
4604 } else {
4605 info->speed = -1;
4606 info->duplex = -1;
4607 }
4608
4609 info->autoneg = AUTONEG_DISABLE;
4610 return 0;
4611}
4612
4613/**
20346722
K
4614 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4615 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4616 * s2io_nic structure.
4617 * @info : pointer to the structure with parameters given by ethtool to
4618 * return driver information.
4619 * Description:
4620 * Returns driver specefic information like name, version etc.. to ethtool.
4621 * Return value:
4622 * void
4623 */
4624
4625static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4626 struct ethtool_drvinfo *info)
4627{
4628 nic_t *sp = dev->priv;
4629
dbc2309d
JL
4630 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4631 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4632 strncpy(info->fw_version, "", sizeof(info->fw_version));
4633 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4634 info->regdump_len = XENA_REG_SPACE;
4635 info->eedump_len = XENA_EEPROM_SPACE;
4636 info->testinfo_len = S2IO_TEST_LEN;
4637 info->n_stats = S2IO_STAT_LEN;
4638}
4639
4640/**
4641 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4642 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4643 * s2io_nic structure.
20346722 4644 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4645 * dumping the registers.
4646 * @reg_space: The input argumnet into which all the registers are dumped.
4647 * Description:
4648 * Dumps the entire register space of xFrame NIC into the user given
4649 * buffer area.
4650 * Return value :
4651 * void .
4652*/
4653
4654static void s2io_ethtool_gregs(struct net_device *dev,
4655 struct ethtool_regs *regs, void *space)
4656{
4657 int i;
4658 u64 reg;
4659 u8 *reg_space = (u8 *) space;
4660 nic_t *sp = dev->priv;
4661
4662 regs->len = XENA_REG_SPACE;
4663 regs->version = sp->pdev->subsystem_device;
4664
4665 for (i = 0; i < regs->len; i += 8) {
4666 reg = readq(sp->bar0 + i);
4667 memcpy((reg_space + i), &reg, 8);
4668 }
4669}
4670
4671/**
4672 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4673 * @data : address of the private member of the device structure, which
1da177e4 4674 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4675 * Description: This is actually the timer function that alternates the
4676 * adapter LED bit of the adapter control bit to set/reset every time on
4677 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4678 * once every second.
4679*/
4680static void s2io_phy_id(unsigned long data)
4681{
4682 nic_t *sp = (nic_t *) data;
4683 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4684 u64 val64 = 0;
4685 u16 subid;
4686
4687 subid = sp->pdev->subsystem_device;
541ae68f
K
4688 if ((sp->device_type == XFRAME_II_DEVICE) ||
4689 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4690 val64 = readq(&bar0->gpio_control);
4691 val64 ^= GPIO_CTRL_GPIO_0;
4692 writeq(val64, &bar0->gpio_control);
4693 } else {
4694 val64 = readq(&bar0->adapter_control);
4695 val64 ^= ADAPTER_LED_ON;
4696 writeq(val64, &bar0->adapter_control);
4697 }
4698
4699 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4700}
4701
4702/**
4703 * s2io_ethtool_idnic - To physically identify the nic on the system.
4704 * @sp : private member of the device structure, which is a pointer to the
4705 * s2io_nic structure.
20346722 4706 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4707 * ethtool.
4708 * Description: Used to physically identify the NIC on the system.
20346722 4709 * The Link LED will blink for a time specified by the user for
1da177e4 4710 * identification.
20346722 4711 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4712 * identification is possible only if it's link is up.
4713 * Return value:
4714 * int , returns 0 on success
4715 */
4716
4717static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4718{
4719 u64 val64 = 0, last_gpio_ctrl_val;
4720 nic_t *sp = dev->priv;
4721 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4722 u16 subid;
4723
4724 subid = sp->pdev->subsystem_device;
4725 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4726 if ((sp->device_type == XFRAME_I_DEVICE) &&
4727 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4728 val64 = readq(&bar0->adapter_control);
4729 if (!(val64 & ADAPTER_CNTL_EN)) {
4730 printk(KERN_ERR
4731 "Adapter Link down, cannot blink LED\n");
4732 return -EFAULT;
4733 }
4734 }
4735 if (sp->id_timer.function == NULL) {
4736 init_timer(&sp->id_timer);
4737 sp->id_timer.function = s2io_phy_id;
4738 sp->id_timer.data = (unsigned long) sp;
4739 }
4740 mod_timer(&sp->id_timer, jiffies);
4741 if (data)
20346722 4742 msleep_interruptible(data * HZ);
1da177e4 4743 else
20346722 4744 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4745 del_timer_sync(&sp->id_timer);
4746
541ae68f 4747 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4748 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4749 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4750 }
4751
4752 return 0;
4753}
4754
4755/**
4756 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4757 * @sp : private member of the device structure, which is a pointer to the
4758 * s2io_nic structure.
1da177e4
LT
4759 * @ep : pointer to the structure with pause parameters given by ethtool.
4760 * Description:
4761 * Returns the Pause frame generation and reception capability of the NIC.
4762 * Return value:
4763 * void
4764 */
4765static void s2io_ethtool_getpause_data(struct net_device *dev,
4766 struct ethtool_pauseparam *ep)
4767{
4768 u64 val64;
4769 nic_t *sp = dev->priv;
4770 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4771
4772 val64 = readq(&bar0->rmac_pause_cfg);
4773 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4774 ep->tx_pause = TRUE;
4775 if (val64 & RMAC_PAUSE_RX_ENABLE)
4776 ep->rx_pause = TRUE;
4777 ep->autoneg = FALSE;
4778}
4779
4780/**
4781 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4782 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4783 * s2io_nic structure.
4784 * @ep : pointer to the structure with pause parameters given by ethtool.
4785 * Description:
4786 * It can be used to set or reset Pause frame generation or reception
4787 * support of the NIC.
4788 * Return value:
4789 * int, returns 0 on Success
4790 */
4791
4792static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4793 struct ethtool_pauseparam *ep)
1da177e4
LT
4794{
4795 u64 val64;
4796 nic_t *sp = dev->priv;
4797 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4798
4799 val64 = readq(&bar0->rmac_pause_cfg);
4800 if (ep->tx_pause)
4801 val64 |= RMAC_PAUSE_GEN_ENABLE;
4802 else
4803 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4804 if (ep->rx_pause)
4805 val64 |= RMAC_PAUSE_RX_ENABLE;
4806 else
4807 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4808 writeq(val64, &bar0->rmac_pause_cfg);
4809 return 0;
4810}
4811
4812/**
4813 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4814 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4815 * s2io_nic structure.
4816 * @off : offset at which the data must be written
4817 * @data : Its an output parameter where the data read at the given
20346722 4818 * offset is stored.
1da177e4 4819 * Description:
20346722 4820 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4821 * read data.
4822 * NOTE: Will allow to read only part of the EEPROM visible through the
4823 * I2C bus.
4824 * Return value:
4825 * -1 on failure and 0 on success.
4826 */
4827
4828#define S2IO_DEV_ID 5
ad4ebed0 4829static int read_eeprom(nic_t * sp, int off, u64 * data)
1da177e4
LT
4830{
4831 int ret = -1;
4832 u32 exit_cnt = 0;
4833 u64 val64;
4834 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4835
ad4ebed0 4836 if (sp->device_type == XFRAME_I_DEVICE) {
4837 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4838 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4839 I2C_CONTROL_CNTL_START;
4840 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4841
ad4ebed0 4842 while (exit_cnt < 5) {
4843 val64 = readq(&bar0->i2c_control);
4844 if (I2C_CONTROL_CNTL_END(val64)) {
4845 *data = I2C_CONTROL_GET_DATA(val64);
4846 ret = 0;
4847 break;
4848 }
4849 msleep(50);
4850 exit_cnt++;
1da177e4 4851 }
1da177e4
LT
4852 }
4853
ad4ebed0 4854 if (sp->device_type == XFRAME_II_DEVICE) {
4855 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4856 SPI_CONTROL_BYTECNT(0x3) |
4857 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4858 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4859 val64 |= SPI_CONTROL_REQ;
4860 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4861 while (exit_cnt < 5) {
4862 val64 = readq(&bar0->spi_control);
4863 if (val64 & SPI_CONTROL_NACK) {
4864 ret = 1;
4865 break;
4866 } else if (val64 & SPI_CONTROL_DONE) {
4867 *data = readq(&bar0->spi_data);
4868 *data &= 0xffffff;
4869 ret = 0;
4870 break;
4871 }
4872 msleep(50);
4873 exit_cnt++;
4874 }
4875 }
1da177e4
LT
4876 return ret;
4877}
4878
4879/**
4880 * write_eeprom - actually writes the relevant part of the data value.
4881 * @sp : private member of the device structure, which is a pointer to the
4882 * s2io_nic structure.
4883 * @off : offset at which the data must be written
4884 * @data : The data that is to be written
20346722 4885 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4886 * the Eeprom. (max of 3)
4887 * Description:
4888 * Actually writes the relevant part of the data value into the Eeprom
4889 * through the I2C bus.
4890 * Return value:
4891 * 0 on success, -1 on failure.
4892 */
4893
ad4ebed0 4894static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
1da177e4
LT
4895{
4896 int exit_cnt = 0, ret = -1;
4897 u64 val64;
4898 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4899
ad4ebed0 4900 if (sp->device_type == XFRAME_I_DEVICE) {
4901 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4902 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4903 I2C_CONTROL_CNTL_START;
4904 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4905
4906 while (exit_cnt < 5) {
4907 val64 = readq(&bar0->i2c_control);
4908 if (I2C_CONTROL_CNTL_END(val64)) {
4909 if (!(val64 & I2C_CONTROL_NACK))
4910 ret = 0;
4911 break;
4912 }
4913 msleep(50);
4914 exit_cnt++;
4915 }
4916 }
1da177e4 4917
ad4ebed0 4918 if (sp->device_type == XFRAME_II_DEVICE) {
4919 int write_cnt = (cnt == 8) ? 0 : cnt;
4920 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4921
4922 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4923 SPI_CONTROL_BYTECNT(write_cnt) |
4924 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4925 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4926 val64 |= SPI_CONTROL_REQ;
4927 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4928 while (exit_cnt < 5) {
4929 val64 = readq(&bar0->spi_control);
4930 if (val64 & SPI_CONTROL_NACK) {
4931 ret = 1;
4932 break;
4933 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4934 ret = 0;
ad4ebed0 4935 break;
4936 }
4937 msleep(50);
4938 exit_cnt++;
1da177e4 4939 }
1da177e4 4940 }
1da177e4
LT
4941 return ret;
4942}
9dc737a7
AR
4943static void s2io_vpd_read(nic_t *nic)
4944{
4945 u8 vpd_data[256],data;
4946 int i=0, cnt, fail = 0;
4947 int vpd_addr = 0x80;
4948
4949 if (nic->device_type == XFRAME_II_DEVICE) {
4950 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4951 vpd_addr = 0x80;
4952 }
4953 else {
4954 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4955 vpd_addr = 0x50;
4956 }
4957
4958 for (i = 0; i < 256; i +=4 ) {
4959 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4960 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4961 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4962 for (cnt = 0; cnt <5; cnt++) {
4963 msleep(2);
4964 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4965 if (data == 0x80)
4966 break;
4967 }
4968 if (cnt >= 5) {
4969 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4970 fail = 1;
4971 break;
4972 }
4973 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4974 (u32 *)&vpd_data[i]);
4975 }
4976 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4977 memset(nic->product_name, 0, vpd_data[1]);
4978 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4979 }
4980}
4981
1da177e4
LT
4982/**
4983 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4984 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 4985 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4986 * containing all relevant information.
4987 * @data_buf : user defined value to be written into Eeprom.
4988 * Description: Reads the values stored in the Eeprom at given offset
4989 * for a given length. Stores these values int the input argument data
4990 * buffer 'data_buf' and returns these to the caller (ethtool.)
4991 * Return value:
4992 * int 0 on success
4993 */
4994
4995static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 4996 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 4997{
ad4ebed0 4998 u32 i, valid;
4999 u64 data;
1da177e4
LT
5000 nic_t *sp = dev->priv;
5001
5002 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5003
5004 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5005 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5006
5007 for (i = 0; i < eeprom->len; i += 4) {
5008 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5009 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5010 return -EFAULT;
5011 }
5012 valid = INV(data);
5013 memcpy((data_buf + i), &valid, 4);
5014 }
5015 return 0;
5016}
5017
5018/**
5019 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5020 * @sp : private member of the device structure, which is a pointer to the
5021 * s2io_nic structure.
20346722 5022 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5023 * containing all relevant information.
5024 * @data_buf ; user defined value to be written into Eeprom.
5025 * Description:
5026 * Tries to write the user provided value in the Eeprom, at the offset
5027 * given by the user.
5028 * Return value:
5029 * 0 on success, -EFAULT on failure.
5030 */
5031
5032static int s2io_ethtool_seeprom(struct net_device *dev,
5033 struct ethtool_eeprom *eeprom,
5034 u8 * data_buf)
5035{
5036 int len = eeprom->len, cnt = 0;
ad4ebed0 5037 u64 valid = 0, data;
1da177e4
LT
5038 nic_t *sp = dev->priv;
5039
5040 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5041 DBG_PRINT(ERR_DBG,
5042 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5043 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5044 eeprom->magic);
5045 return -EFAULT;
5046 }
5047
5048 while (len) {
5049 data = (u32) data_buf[cnt] & 0x000000FF;
5050 if (data) {
5051 valid = (u32) (data << 24);
5052 } else
5053 valid = data;
5054
5055 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5056 DBG_PRINT(ERR_DBG,
5057 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5058 DBG_PRINT(ERR_DBG,
5059 "write into the specified offset\n");
5060 return -EFAULT;
5061 }
5062 cnt++;
5063 len--;
5064 }
5065
5066 return 0;
5067}
5068
5069/**
20346722
K
5070 * s2io_register_test - reads and writes into all clock domains.
5071 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5072 * s2io_nic structure.
5073 * @data : variable that returns the result of each of the test conducted b
5074 * by the driver.
5075 * Description:
5076 * Read and write into all clock domains. The NIC has 3 clock domains,
5077 * see that registers in all the three regions are accessible.
5078 * Return value:
5079 * 0 on success.
5080 */
5081
5082static int s2io_register_test(nic_t * sp, uint64_t * data)
5083{
5084 XENA_dev_config_t __iomem *bar0 = sp->bar0;
ad4ebed0 5085 u64 val64 = 0, exp_val;
1da177e4
LT
5086 int fail = 0;
5087
20346722
K
5088 val64 = readq(&bar0->pif_rd_swapper_fb);
5089 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5090 fail = 1;
5091 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5092 }
5093
5094 val64 = readq(&bar0->rmac_pause_cfg);
5095 if (val64 != 0xc000ffff00000000ULL) {
5096 fail = 1;
5097 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5098 }
5099
5100 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5101 if (sp->device_type == XFRAME_II_DEVICE)
5102 exp_val = 0x0404040404040404ULL;
5103 else
5104 exp_val = 0x0808080808080808ULL;
5105 if (val64 != exp_val) {
1da177e4
LT
5106 fail = 1;
5107 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5108 }
5109
5110 val64 = readq(&bar0->xgxs_efifo_cfg);
5111 if (val64 != 0x000000001923141EULL) {
5112 fail = 1;
5113 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5114 }
5115
5116 val64 = 0x5A5A5A5A5A5A5A5AULL;
5117 writeq(val64, &bar0->xmsi_data);
5118 val64 = readq(&bar0->xmsi_data);
5119 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5120 fail = 1;
5121 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5122 }
5123
5124 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5125 writeq(val64, &bar0->xmsi_data);
5126 val64 = readq(&bar0->xmsi_data);
5127 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5128 fail = 1;
5129 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5130 }
5131
5132 *data = fail;
ad4ebed0 5133 return fail;
1da177e4
LT
5134}
5135
5136/**
20346722 5137 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5138 * @sp : private member of the device structure, which is a pointer to the
5139 * s2io_nic structure.
5140 * @data:variable that returns the result of each of the test conducted by
5141 * the driver.
5142 * Description:
20346722 5143 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5144 * register.
5145 * Return value:
5146 * 0 on success.
5147 */
5148
5149static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5150{
5151 int fail = 0;
ad4ebed0 5152 u64 ret_data, org_4F0, org_7F0;
5153 u8 saved_4F0 = 0, saved_7F0 = 0;
5154 struct net_device *dev = sp->dev;
1da177e4
LT
5155
5156 /* Test Write Error at offset 0 */
ad4ebed0 5157 /* Note that SPI interface allows write access to all areas
5158 * of EEPROM. Hence doing all negative testing only for Xframe I.
5159 */
5160 if (sp->device_type == XFRAME_I_DEVICE)
5161 if (!write_eeprom(sp, 0, 0, 3))
5162 fail = 1;
5163
5164 /* Save current values at offsets 0x4F0 and 0x7F0 */
5165 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5166 saved_4F0 = 1;
5167 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5168 saved_7F0 = 1;
1da177e4
LT
5169
5170 /* Test Write at offset 4f0 */
ad4ebed0 5171 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5172 fail = 1;
5173 if (read_eeprom(sp, 0x4F0, &ret_data))
5174 fail = 1;
5175
ad4ebed0 5176 if (ret_data != 0x012345) {
26b7625c
AM
5177 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5178 "Data written %llx Data read %llx\n",
5179 dev->name, (unsigned long long)0x12345,
5180 (unsigned long long)ret_data);
1da177e4 5181 fail = 1;
ad4ebed0 5182 }
1da177e4
LT
5183
5184 /* Reset the EEPROM data go FFFF */
ad4ebed0 5185 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5186
5187 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5188 if (sp->device_type == XFRAME_I_DEVICE)
5189 if (!write_eeprom(sp, 0x07C, 0, 3))
5190 fail = 1;
1da177e4 5191
ad4ebed0 5192 /* Test Write Request at offset 0x7f0 */
5193 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5194 fail = 1;
ad4ebed0 5195 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5196 fail = 1;
5197
ad4ebed0 5198 if (ret_data != 0x012345) {
26b7625c
AM
5199 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5200 "Data written %llx Data read %llx\n",
5201 dev->name, (unsigned long long)0x12345,
5202 (unsigned long long)ret_data);
1da177e4 5203 fail = 1;
ad4ebed0 5204 }
1da177e4
LT
5205
5206 /* Reset the EEPROM data go FFFF */
ad4ebed0 5207 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5208
ad4ebed0 5209 if (sp->device_type == XFRAME_I_DEVICE) {
5210 /* Test Write Error at offset 0x80 */
5211 if (!write_eeprom(sp, 0x080, 0, 3))
5212 fail = 1;
1da177e4 5213
ad4ebed0 5214 /* Test Write Error at offset 0xfc */
5215 if (!write_eeprom(sp, 0x0FC, 0, 3))
5216 fail = 1;
1da177e4 5217
ad4ebed0 5218 /* Test Write Error at offset 0x100 */
5219 if (!write_eeprom(sp, 0x100, 0, 3))
5220 fail = 1;
1da177e4 5221
ad4ebed0 5222 /* Test Write Error at offset 4ec */
5223 if (!write_eeprom(sp, 0x4EC, 0, 3))
5224 fail = 1;
5225 }
5226
5227 /* Restore values at offsets 0x4F0 and 0x7F0 */
5228 if (saved_4F0)
5229 write_eeprom(sp, 0x4F0, org_4F0, 3);
5230 if (saved_7F0)
5231 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5232
5233 *data = fail;
ad4ebed0 5234 return fail;
1da177e4
LT
5235}
5236
5237/**
5238 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5239 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5240 * s2io_nic structure.
20346722 5241 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5242 * the driver.
5243 * Description:
5244 * This invokes the MemBist test of the card. We give around
5245 * 2 secs time for the Test to complete. If it's still not complete
20346722 5246 * within this peiod, we consider that the test failed.
1da177e4
LT
5247 * Return value:
5248 * 0 on success and -1 on failure.
5249 */
5250
5251static int s2io_bist_test(nic_t * sp, uint64_t * data)
5252{
5253 u8 bist = 0;
5254 int cnt = 0, ret = -1;
5255
5256 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5257 bist |= PCI_BIST_START;
5258 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5259
5260 while (cnt < 20) {
5261 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5262 if (!(bist & PCI_BIST_START)) {
5263 *data = (bist & PCI_BIST_CODE_MASK);
5264 ret = 0;
5265 break;
5266 }
5267 msleep(100);
5268 cnt++;
5269 }
5270
5271 return ret;
5272}
5273
5274/**
20346722
K
5275 * s2io-link_test - verifies the link state of the nic
5276 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5277 * s2io_nic structure.
5278 * @data: variable that returns the result of each of the test conducted by
5279 * the driver.
5280 * Description:
20346722 5281 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5282 * argument 'data' appropriately.
5283 * Return value:
5284 * 0 on success.
5285 */
5286
5287static int s2io_link_test(nic_t * sp, uint64_t * data)
5288{
5289 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5290 u64 val64;
5291
5292 val64 = readq(&bar0->adapter_status);
c92ca04b 5293 if(!(LINK_IS_UP(val64)))
1da177e4 5294 *data = 1;
c92ca04b
AR
5295 else
5296 *data = 0;
1da177e4
LT
5297
5298 return 0;
5299}
5300
5301/**
20346722
K
5302 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5303 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5304 * s2io_nic structure.
20346722 5305 * @data - variable that returns the result of each of the test
1da177e4
LT
5306 * conducted by the driver.
5307 * Description:
20346722 5308 * This is one of the offline test that tests the read and write
1da177e4
LT
5309 * access to the RldRam chip on the NIC.
5310 * Return value:
5311 * 0 on success.
5312 */
5313
5314static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5315{
5316 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5317 u64 val64;
ad4ebed0 5318 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5319
5320 val64 = readq(&bar0->adapter_control);
5321 val64 &= ~ADAPTER_ECC_EN;
5322 writeq(val64, &bar0->adapter_control);
5323
5324 val64 = readq(&bar0->mc_rldram_test_ctrl);
5325 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5326 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5327
5328 val64 = readq(&bar0->mc_rldram_mrs);
5329 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5330 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5331
5332 val64 |= MC_RLDRAM_MRS_ENABLE;
5333 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5334
5335 while (iteration < 2) {
5336 val64 = 0x55555555aaaa0000ULL;
5337 if (iteration == 1) {
5338 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5339 }
5340 writeq(val64, &bar0->mc_rldram_test_d0);
5341
5342 val64 = 0xaaaa5a5555550000ULL;
5343 if (iteration == 1) {
5344 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5345 }
5346 writeq(val64, &bar0->mc_rldram_test_d1);
5347
5348 val64 = 0x55aaaaaaaa5a0000ULL;
5349 if (iteration == 1) {
5350 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5351 }
5352 writeq(val64, &bar0->mc_rldram_test_d2);
5353
ad4ebed0 5354 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5355 writeq(val64, &bar0->mc_rldram_test_add);
5356
ad4ebed0 5357 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5358 MC_RLDRAM_TEST_GO;
5359 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5360
5361 for (cnt = 0; cnt < 5; cnt++) {
5362 val64 = readq(&bar0->mc_rldram_test_ctrl);
5363 if (val64 & MC_RLDRAM_TEST_DONE)
5364 break;
5365 msleep(200);
5366 }
5367
5368 if (cnt == 5)
5369 break;
5370
ad4ebed0 5371 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5372 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5373
5374 for (cnt = 0; cnt < 5; cnt++) {
5375 val64 = readq(&bar0->mc_rldram_test_ctrl);
5376 if (val64 & MC_RLDRAM_TEST_DONE)
5377 break;
5378 msleep(500);
5379 }
5380
5381 if (cnt == 5)
5382 break;
5383
5384 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5385 if (!(val64 & MC_RLDRAM_TEST_PASS))
5386 test_fail = 1;
1da177e4
LT
5387
5388 iteration++;
5389 }
5390
ad4ebed0 5391 *data = test_fail;
1da177e4 5392
ad4ebed0 5393 /* Bring the adapter out of test mode */
5394 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5395
5396 return test_fail;
1da177e4
LT
5397}
5398
5399/**
5400 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5401 * @sp : private member of the device structure, which is a pointer to the
5402 * s2io_nic structure.
5403 * @ethtest : pointer to a ethtool command specific structure that will be
5404 * returned to the user.
20346722 5405 * @data : variable that returns the result of each of the test
1da177e4
LT
5406 * conducted by the driver.
5407 * Description:
5408 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5409 * the health of the card.
5410 * Return value:
5411 * void
5412 */
5413
5414static void s2io_ethtool_test(struct net_device *dev,
5415 struct ethtool_test *ethtest,
5416 uint64_t * data)
5417{
5418 nic_t *sp = dev->priv;
5419 int orig_state = netif_running(sp->dev);
5420
5421 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5422 /* Offline Tests. */
20346722 5423 if (orig_state)
1da177e4 5424 s2io_close(sp->dev);
1da177e4
LT
5425
5426 if (s2io_register_test(sp, &data[0]))
5427 ethtest->flags |= ETH_TEST_FL_FAILED;
5428
5429 s2io_reset(sp);
1da177e4
LT
5430
5431 if (s2io_rldram_test(sp, &data[3]))
5432 ethtest->flags |= ETH_TEST_FL_FAILED;
5433
5434 s2io_reset(sp);
1da177e4
LT
5435
5436 if (s2io_eeprom_test(sp, &data[1]))
5437 ethtest->flags |= ETH_TEST_FL_FAILED;
5438
5439 if (s2io_bist_test(sp, &data[4]))
5440 ethtest->flags |= ETH_TEST_FL_FAILED;
5441
5442 if (orig_state)
5443 s2io_open(sp->dev);
5444
5445 data[2] = 0;
5446 } else {
5447 /* Online Tests. */
5448 if (!orig_state) {
5449 DBG_PRINT(ERR_DBG,
5450 "%s: is not up, cannot run test\n",
5451 dev->name);
5452 data[0] = -1;
5453 data[1] = -1;
5454 data[2] = -1;
5455 data[3] = -1;
5456 data[4] = -1;
5457 }
5458
5459 if (s2io_link_test(sp, &data[2]))
5460 ethtest->flags |= ETH_TEST_FL_FAILED;
5461
5462 data[0] = 0;
5463 data[1] = 0;
5464 data[3] = 0;
5465 data[4] = 0;
5466 }
5467}
5468
5469static void s2io_get_ethtool_stats(struct net_device *dev,
5470 struct ethtool_stats *estats,
5471 u64 * tmp_stats)
5472{
5473 int i = 0;
5474 nic_t *sp = dev->priv;
5475 StatInfo_t *stat_info = sp->mac_control.stats_info;
5476
7ba013ac 5477 s2io_updt_stats(sp);
541ae68f
K
5478 tmp_stats[i++] =
5479 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5480 le32_to_cpu(stat_info->tmac_frms);
5481 tmp_stats[i++] =
5482 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5483 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5484 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5485 tmp_stats[i++] =
5486 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5487 le32_to_cpu(stat_info->tmac_mcst_frms);
5488 tmp_stats[i++] =
5489 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5490 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5491 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5492 tmp_stats[i++] =
5493 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5494 le32_to_cpu(stat_info->tmac_ttl_octets);
5495 tmp_stats[i++] =
5496 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5497 le32_to_cpu(stat_info->tmac_ucst_frms);
5498 tmp_stats[i++] =
5499 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5500 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5501 tmp_stats[i++] =
5502 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5503 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5504 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5505 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5506 tmp_stats[i++] =
5507 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5508 le32_to_cpu(stat_info->tmac_vld_ip);
5509 tmp_stats[i++] =
5510 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5511 le32_to_cpu(stat_info->tmac_drop_ip);
5512 tmp_stats[i++] =
5513 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5514 le32_to_cpu(stat_info->tmac_icmp);
5515 tmp_stats[i++] =
5516 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5517 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5518 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5519 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5520 le32_to_cpu(stat_info->tmac_udp);
5521 tmp_stats[i++] =
5522 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5523 le32_to_cpu(stat_info->rmac_vld_frms);
5524 tmp_stats[i++] =
5525 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5526 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5527 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5529 tmp_stats[i++] =
5530 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5531 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5532 tmp_stats[i++] =
5533 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5535 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5536 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5538 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5539 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5540 tmp_stats[i++] =
5541 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5542 le32_to_cpu(stat_info->rmac_ttl_octets);
5543 tmp_stats[i++] =
5544 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5545 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5548 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5549 tmp_stats[i++] =
5550 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5551 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5552 tmp_stats[i++] =
5553 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5554 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5555 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5556 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5557 tmp_stats[i++] =
5558 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5559 le32_to_cpu(stat_info->rmac_usized_frms);
5560 tmp_stats[i++] =
5561 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5562 le32_to_cpu(stat_info->rmac_osized_frms);
5563 tmp_stats[i++] =
5564 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5565 le32_to_cpu(stat_info->rmac_frag_frms);
5566 tmp_stats[i++] =
5567 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5568 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5569 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5570 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5571 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5572 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5575 tmp_stats[i++] =
5576 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5577 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5579 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5580 tmp_stats[i++] =
5581 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5582 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5583 tmp_stats[i++] =
5584 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5585 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5586 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5587 tmp_stats[i++] =
5588 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5589 le32_to_cpu(stat_info->rmac_udp);
5590 tmp_stats[i++] =
5591 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5592 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5593 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5594 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5595 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5596 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5597 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5598 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5599 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5600 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5601 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5602 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5603 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5604 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5605 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5606 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5607 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5608 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5609 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5610 tmp_stats[i++] =
5611 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5612 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5613 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5614 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5615 tmp_stats[i++] =
5616 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5617 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5618 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5619 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5620 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5621 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5622 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5623 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5624 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5625 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5626 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5627 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5628 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5629 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5630 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5631 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5632 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5633 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5634 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5635 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5636 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5637 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5638 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5639 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5640 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5641 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5642 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5645 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5646 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5647 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5648 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5649 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5650 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5651 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5652 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
7ba013ac
K
5653 tmp_stats[i++] = 0;
5654 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5655 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5656 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5657 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5658 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5659 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5660 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5661 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5662 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5663 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5664 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5665 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5666 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5667 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5668 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5669 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5670 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5671 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5672 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5673 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5674 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5675 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5676 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5677 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5678 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5679 int count = 0;
5680 /*
5681 * Since 64-bit divide does not work on all platforms,
5682 * do repeated subtraction.
5683 */
5684 while (tmp >= stat_info->sw_stat.num_aggregations) {
5685 tmp -= stat_info->sw_stat.num_aggregations;
5686 count++;
5687 }
5688 tmp_stats[i++] = count;
fe931395 5689 }
bd1034f0
AR
5690 else
5691 tmp_stats[i++] = 0;
1da177e4
LT
5692}
5693
ac1f60db 5694static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5695{
5696 return (XENA_REG_SPACE);
5697}
5698
5699
ac1f60db 5700static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4
LT
5701{
5702 nic_t *sp = dev->priv;
5703
5704 return (sp->rx_csum);
5705}
ac1f60db
AB
5706
5707static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5708{
5709 nic_t *sp = dev->priv;
5710
5711 if (data)
5712 sp->rx_csum = 1;
5713 else
5714 sp->rx_csum = 0;
5715
5716 return 0;
5717}
ac1f60db
AB
5718
5719static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5720{
5721 return (XENA_EEPROM_SPACE);
5722}
5723
ac1f60db 5724static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5725{
5726 return (S2IO_TEST_LEN);
5727}
ac1f60db
AB
5728
5729static void s2io_ethtool_get_strings(struct net_device *dev,
5730 u32 stringset, u8 * data)
1da177e4
LT
5731{
5732 switch (stringset) {
5733 case ETH_SS_TEST:
5734 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5735 break;
5736 case ETH_SS_STATS:
5737 memcpy(data, &ethtool_stats_keys,
5738 sizeof(ethtool_stats_keys));
5739 }
5740}
1da177e4
LT
5741static int s2io_ethtool_get_stats_count(struct net_device *dev)
5742{
5743 return (S2IO_STAT_LEN);
5744}
5745
ac1f60db 5746static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5747{
5748 if (data)
5749 dev->features |= NETIF_F_IP_CSUM;
5750 else
5751 dev->features &= ~NETIF_F_IP_CSUM;
5752
5753 return 0;
5754}
5755
5756
5757static struct ethtool_ops netdev_ethtool_ops = {
5758 .get_settings = s2io_ethtool_gset,
5759 .set_settings = s2io_ethtool_sset,
5760 .get_drvinfo = s2io_ethtool_gdrvinfo,
5761 .get_regs_len = s2io_ethtool_get_regs_len,
5762 .get_regs = s2io_ethtool_gregs,
5763 .get_link = ethtool_op_get_link,
5764 .get_eeprom_len = s2io_get_eeprom_len,
5765 .get_eeprom = s2io_ethtool_geeprom,
5766 .set_eeprom = s2io_ethtool_seeprom,
5767 .get_pauseparam = s2io_ethtool_getpause_data,
5768 .set_pauseparam = s2io_ethtool_setpause_data,
5769 .get_rx_csum = s2io_ethtool_get_rx_csum,
5770 .set_rx_csum = s2io_ethtool_set_rx_csum,
5771 .get_tx_csum = ethtool_op_get_tx_csum,
5772 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5773 .get_sg = ethtool_op_get_sg,
5774 .set_sg = ethtool_op_set_sg,
5775#ifdef NETIF_F_TSO
5776 .get_tso = ethtool_op_get_tso,
5777 .set_tso = ethtool_op_set_tso,
5778#endif
fed5eccd
AR
5779 .get_ufo = ethtool_op_get_ufo,
5780 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5781 .self_test_count = s2io_ethtool_self_test_count,
5782 .self_test = s2io_ethtool_test,
5783 .get_strings = s2io_ethtool_get_strings,
5784 .phys_id = s2io_ethtool_idnic,
5785 .get_stats_count = s2io_ethtool_get_stats_count,
5786 .get_ethtool_stats = s2io_get_ethtool_stats
5787};
5788
5789/**
20346722 5790 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5791 * @dev : Device pointer.
5792 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5793 * a proprietary structure used to pass information to the driver.
5794 * @cmd : This is used to distinguish between the different commands that
5795 * can be passed to the IOCTL functions.
5796 * Description:
20346722
K
5797 * Currently there are no special functionality supported in IOCTL, hence
5798 * function always return EOPNOTSUPPORTED
1da177e4
LT
5799 */
5800
ac1f60db 5801static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5802{
5803 return -EOPNOTSUPP;
5804}
5805
5806/**
5807 * s2io_change_mtu - entry point to change MTU size for the device.
5808 * @dev : device pointer.
5809 * @new_mtu : the new MTU size for the device.
5810 * Description: A driver entry point to change MTU size for the device.
5811 * Before changing the MTU the device must be stopped.
5812 * Return value:
5813 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5814 * file on failure.
5815 */
5816
ac1f60db 5817static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4
LT
5818{
5819 nic_t *sp = dev->priv;
1da177e4
LT
5820
5821 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5822 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5823 dev->name);
5824 return -EPERM;
5825 }
5826
1da177e4 5827 dev->mtu = new_mtu;
d8892c6e 5828 if (netif_running(dev)) {
e6a8fee2 5829 s2io_card_down(sp);
d8892c6e
K
5830 netif_stop_queue(dev);
5831 if (s2io_card_up(sp)) {
5832 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5833 __FUNCTION__);
5834 }
5835 if (netif_queue_stopped(dev))
5836 netif_wake_queue(dev);
5837 } else { /* Device is down */
5838 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5839 u64 val64 = new_mtu;
5840
5841 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5842 }
1da177e4
LT
5843
5844 return 0;
5845}
5846
5847/**
5848 * s2io_tasklet - Bottom half of the ISR.
5849 * @dev_adr : address of the device structure in dma_addr_t format.
5850 * Description:
5851 * This is the tasklet or the bottom half of the ISR. This is
20346722 5852 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5853 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5854 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5855 * replenish the Rx buffers in the Rx buffer descriptors.
5856 * Return value:
5857 * void.
5858 */
5859
5860static void s2io_tasklet(unsigned long dev_addr)
5861{
5862 struct net_device *dev = (struct net_device *) dev_addr;
5863 nic_t *sp = dev->priv;
5864 int i, ret;
5865 mac_info_t *mac_control;
5866 struct config_param *config;
5867
5868 mac_control = &sp->mac_control;
5869 config = &sp->config;
5870
5871 if (!TASKLET_IN_USE) {
5872 for (i = 0; i < config->rx_ring_num; i++) {
5873 ret = fill_rx_buffers(sp, i);
5874 if (ret == -ENOMEM) {
5875 DBG_PRINT(ERR_DBG, "%s: Out of ",
5876 dev->name);
5877 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5878 break;
5879 } else if (ret == -EFILL) {
5880 DBG_PRINT(ERR_DBG,
5881 "%s: Rx Ring %d is full\n",
5882 dev->name, i);
5883 break;
5884 }
5885 }
5886 clear_bit(0, (&sp->tasklet_status));
5887 }
5888}
5889
5890/**
5891 * s2io_set_link - Set the LInk status
5892 * @data: long pointer to device private structue
5893 * Description: Sets the link status for the adapter
5894 */
5895
5896static void s2io_set_link(unsigned long data)
5897{
5898 nic_t *nic = (nic_t *) data;
5899 struct net_device *dev = nic->dev;
5900 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5901 register u64 val64;
5902 u16 subid;
5903
5904 if (test_and_set_bit(0, &(nic->link_state))) {
5905 /* The card is being reset, no point doing anything */
5906 return;
5907 }
5908
5909 subid = nic->pdev->subsystem_device;
a371a07d
K
5910 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5911 /*
5912 * Allow a small delay for the NICs self initiated
5913 * cleanup to complete.
5914 */
5915 msleep(100);
5916 }
1da177e4
LT
5917
5918 val64 = readq(&bar0->adapter_status);
20346722 5919 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
5920 if (LINK_IS_UP(val64)) {
5921 val64 = readq(&bar0->adapter_control);
5922 val64 |= ADAPTER_CNTL_EN;
5923 writeq(val64, &bar0->adapter_control);
541ae68f
K
5924 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5925 subid)) {
1da177e4
LT
5926 val64 = readq(&bar0->gpio_control);
5927 val64 |= GPIO_CTRL_GPIO_0;
5928 writeq(val64, &bar0->gpio_control);
5929 val64 = readq(&bar0->gpio_control);
5930 } else {
5931 val64 |= ADAPTER_LED_ON;
5932 writeq(val64, &bar0->adapter_control);
5933 }
a371a07d
K
5934 if (s2io_link_fault_indication(nic) ==
5935 MAC_RMAC_ERR_TIMER) {
5936 val64 = readq(&bar0->adapter_status);
5937 if (!LINK_IS_UP(val64)) {
5938 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5939 DBG_PRINT(ERR_DBG, " Link down");
5940 DBG_PRINT(ERR_DBG, "after ");
5941 DBG_PRINT(ERR_DBG, "enabling ");
5942 DBG_PRINT(ERR_DBG, "device \n");
5943 }
1da177e4
LT
5944 }
5945 if (nic->device_enabled_once == FALSE) {
5946 nic->device_enabled_once = TRUE;
5947 }
5948 s2io_link(nic, LINK_UP);
5949 } else {
541ae68f
K
5950 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5951 subid)) {
1da177e4
LT
5952 val64 = readq(&bar0->gpio_control);
5953 val64 &= ~GPIO_CTRL_GPIO_0;
5954 writeq(val64, &bar0->gpio_control);
5955 val64 = readq(&bar0->gpio_control);
5956 }
5957 s2io_link(nic, LINK_DOWN);
5958 }
5959 } else { /* NIC is not Quiescent. */
5960 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5961 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5962 netif_stop_queue(dev);
5963 }
5964 clear_bit(0, &(nic->link_state));
5965}
5966
5d3213cc
AR
5967static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5968 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5969 u64 *temp2, int size)
5970{
5971 struct net_device *dev = sp->dev;
5972 struct sk_buff *frag_list;
5973
5974 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5975 /* allocate skb */
5976 if (*skb) {
5977 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5978 /*
5979 * As Rx frame are not going to be processed,
5980 * using same mapped address for the Rxd
5981 * buffer pointer
5982 */
5983 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5984 } else {
5985 *skb = dev_alloc_skb(size);
5986 if (!(*skb)) {
5987 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5988 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5989 return -ENOMEM ;
5990 }
5991 /* storing the mapped addr in a temp variable
5992 * such it will be used for next rxd whose
5993 * Host Control is NULL
5994 */
5995 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5996 pci_map_single( sp->pdev, (*skb)->data,
5997 size - NET_IP_ALIGN,
5998 PCI_DMA_FROMDEVICE);
5999 rxdp->Host_Control = (unsigned long) (*skb);
6000 }
6001 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6002 /* Two buffer Mode */
6003 if (*skb) {
6004 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6005 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6006 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6007 } else {
6008 *skb = dev_alloc_skb(size);
6009 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6010 pci_map_single(sp->pdev, (*skb)->data,
6011 dev->mtu + 4,
6012 PCI_DMA_FROMDEVICE);
6013 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6014 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6015 PCI_DMA_FROMDEVICE);
6016 rxdp->Host_Control = (unsigned long) (*skb);
6017
6018 /* Buffer-1 will be dummy buffer not used */
6019 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6020 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6021 PCI_DMA_FROMDEVICE);
6022 }
6023 } else if ((rxdp->Host_Control == 0)) {
6024 /* Three buffer mode */
6025 if (*skb) {
6026 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6027 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6028 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6029 } else {
6030 *skb = dev_alloc_skb(size);
6031
6032 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6033 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6034 PCI_DMA_FROMDEVICE);
6035 /* Buffer-1 receives L3/L4 headers */
6036 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6037 pci_map_single( sp->pdev, (*skb)->data,
6038 l3l4hdr_size + 4,
6039 PCI_DMA_FROMDEVICE);
6040 /*
6041 * skb_shinfo(skb)->frag_list will have L4
6042 * data payload
6043 */
6044 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6045 ALIGN_SIZE);
6046 if (skb_shinfo(*skb)->frag_list == NULL) {
6047 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6048 failed\n ", dev->name);
6049 return -ENOMEM ;
6050 }
6051 frag_list = skb_shinfo(*skb)->frag_list;
6052 frag_list->next = NULL;
6053 /*
6054 * Buffer-2 receives L4 data payload
6055 */
6056 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6057 pci_map_single( sp->pdev, frag_list->data,
6058 dev->mtu, PCI_DMA_FROMDEVICE);
6059 }
6060 }
6061 return 0;
6062}
6063static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6064{
6065 struct net_device *dev = sp->dev;
6066 if (sp->rxd_mode == RXD_MODE_1) {
6067 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6068 } else if (sp->rxd_mode == RXD_MODE_3B) {
6069 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6070 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6071 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6072 } else {
6073 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6074 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6075 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6076 }
6077}
6078
6079static int rxd_owner_bit_reset(nic_t *sp)
6080{
6081 int i, j, k, blk_cnt = 0, size;
6082 mac_info_t * mac_control = &sp->mac_control;
6083 struct config_param *config = &sp->config;
6084 struct net_device *dev = sp->dev;
6085 RxD_t *rxdp = NULL;
6086 struct sk_buff *skb = NULL;
6087 buffAdd_t *ba = NULL;
6088 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6089
6090 /* Calculate the size based on ring mode */
6091 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6092 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6093 if (sp->rxd_mode == RXD_MODE_1)
6094 size += NET_IP_ALIGN;
6095 else if (sp->rxd_mode == RXD_MODE_3B)
6096 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6097 else
6098 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6099
6100 for (i = 0; i < config->rx_ring_num; i++) {
6101 blk_cnt = config->rx_cfg[i].num_rxd /
6102 (rxd_count[sp->rxd_mode] +1);
6103
6104 for (j = 0; j < blk_cnt; j++) {
6105 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6106 rxdp = mac_control->rings[i].
6107 rx_blocks[j].rxds[k].virt_addr;
6108 if(sp->rxd_mode >= RXD_MODE_3A)
6109 ba = &mac_control->rings[i].ba[j][k];
6110 set_rxd_buffer_pointer(sp, rxdp, ba,
6111 &skb,(u64 *)&temp0_64,
6112 (u64 *)&temp1_64,
6113 (u64 *)&temp2_64, size);
6114
6115 set_rxd_buffer_size(sp, rxdp, size);
6116 wmb();
6117 /* flip the Ownership bit to Hardware */
6118 rxdp->Control_1 |= RXD_OWN_XENA;
6119 }
6120 }
6121 }
6122 return 0;
6123
6124}
6125
e6a8fee2 6126static int s2io_add_isr(nic_t * sp)
1da177e4 6127{
e6a8fee2 6128 int ret = 0;
c92ca04b 6129 struct net_device *dev = sp->dev;
e6a8fee2 6130 int err = 0;
1da177e4 6131
e6a8fee2
AR
6132 if (sp->intr_type == MSI)
6133 ret = s2io_enable_msi(sp);
6134 else if (sp->intr_type == MSI_X)
6135 ret = s2io_enable_msi_x(sp);
6136 if (ret) {
6137 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6138 sp->intr_type = INTA;
20346722 6139 }
1da177e4 6140
e6a8fee2
AR
6141 /* Store the values of the MSIX table in the nic_t structure */
6142 store_xmsi_data(sp);
c92ca04b 6143
e6a8fee2
AR
6144 /* After proper initialization of H/W, register ISR */
6145 if (sp->intr_type == MSI) {
6146 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6147 IRQF_SHARED, sp->name, dev);
6148 if (err) {
6149 pci_disable_msi(sp->pdev);
6150 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6151 dev->name);
6152 return -1;
6153 }
6154 }
6155 if (sp->intr_type == MSI_X) {
6156 int i;
c92ca04b 6157
e6a8fee2
AR
6158 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6159 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6160 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6161 dev->name, i);
6162 err = request_irq(sp->entries[i].vector,
6163 s2io_msix_fifo_handle, 0, sp->desc[i],
6164 sp->s2io_entries[i].arg);
6165 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6166 (unsigned long long)sp->msix_info[i].addr);
6167 } else {
6168 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6169 dev->name, i);
6170 err = request_irq(sp->entries[i].vector,
6171 s2io_msix_ring_handle, 0, sp->desc[i],
6172 sp->s2io_entries[i].arg);
6173 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6174 (unsigned long long)sp->msix_info[i].addr);
c92ca04b 6175 }
e6a8fee2
AR
6176 if (err) {
6177 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6178 "failed\n", dev->name, i);
6179 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6180 return -1;
6181 }
6182 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6183 }
6184 }
6185 if (sp->intr_type == INTA) {
6186 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6187 sp->name, dev);
6188 if (err) {
6189 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6190 dev->name);
6191 return -1;
6192 }
6193 }
6194 return 0;
6195}
6196static void s2io_rem_isr(nic_t * sp)
6197{
6198 int cnt = 0;
6199 struct net_device *dev = sp->dev;
6200
6201 if (sp->intr_type == MSI_X) {
6202 int i;
6203 u16 msi_control;
6204
6205 for (i=1; (sp->s2io_entries[i].in_use ==
6206 MSIX_REGISTERED_SUCCESS); i++) {
6207 int vector = sp->entries[i].vector;
6208 void *arg = sp->s2io_entries[i].arg;
6209
6210 free_irq(vector, arg);
6211 }
6212 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6213 msi_control &= 0xFFFE; /* Disable MSI */
6214 pci_write_config_word(sp->pdev, 0x42, msi_control);
6215
6216 pci_disable_msix(sp->pdev);
6217 } else {
6218 free_irq(sp->pdev->irq, dev);
6219 if (sp->intr_type == MSI) {
6220 u16 val;
6221
6222 pci_disable_msi(sp->pdev);
6223 pci_read_config_word(sp->pdev, 0x4c, &val);
6224 val ^= 0x1;
6225 pci_write_config_word(sp->pdev, 0x4c, val);
c92ca04b
AR
6226 }
6227 }
6228 /* Waiting till all Interrupt handlers are complete */
6229 cnt = 0;
6230 do {
6231 msleep(10);
6232 if (!atomic_read(&sp->isr_cnt))
6233 break;
6234 cnt++;
6235 } while(cnt < 5);
e6a8fee2
AR
6236}
6237
6238static void s2io_card_down(nic_t * sp)
6239{
6240 int cnt = 0;
6241 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6242 unsigned long flags;
6243 register u64 val64 = 0;
6244
6245 del_timer_sync(&sp->alarm_timer);
6246 /* If s2io_set_link task is executing, wait till it completes. */
6247 while (test_and_set_bit(0, &(sp->link_state))) {
6248 msleep(50);
6249 }
6250 atomic_set(&sp->card_state, CARD_DOWN);
6251
6252 /* disable Tx and Rx traffic on the NIC */
6253 stop_nic(sp);
6254
6255 s2io_rem_isr(sp);
1da177e4
LT
6256
6257 /* Kill tasklet. */
6258 tasklet_kill(&sp->task);
6259
6260 /* Check if the device is Quiescent and then Reset the NIC */
6261 do {
5d3213cc
AR
6262 /* As per the HW requirement we need to replenish the
6263 * receive buffer to avoid the ring bump. Since there is
6264 * no intention of processing the Rx frame at this pointwe are
6265 * just settting the ownership bit of rxd in Each Rx
6266 * ring to HW and set the appropriate buffer size
6267 * based on the ring mode
6268 */
6269 rxd_owner_bit_reset(sp);
6270
1da177e4 6271 val64 = readq(&bar0->adapter_status);
20346722 6272 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
1da177e4
LT
6273 break;
6274 }
6275
6276 msleep(50);
6277 cnt++;
6278 if (cnt == 10) {
6279 DBG_PRINT(ERR_DBG,
6280 "s2io_close:Device not Quiescent ");
6281 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6282 (unsigned long long) val64);
6283 break;
6284 }
6285 } while (1);
1da177e4
LT
6286 s2io_reset(sp);
6287
7ba013ac
K
6288 spin_lock_irqsave(&sp->tx_lock, flags);
6289 /* Free all Tx buffers */
1da177e4 6290 free_tx_buffers(sp);
7ba013ac
K
6291 spin_unlock_irqrestore(&sp->tx_lock, flags);
6292
6293 /* Free all Rx buffers */
6294 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6295 free_rx_buffers(sp);
7ba013ac 6296 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6297
1da177e4
LT
6298 clear_bit(0, &(sp->link_state));
6299}
6300
6301static int s2io_card_up(nic_t * sp)
6302{
cc6e7c44 6303 int i, ret = 0;
1da177e4
LT
6304 mac_info_t *mac_control;
6305 struct config_param *config;
6306 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6307 u16 interruptible;
1da177e4
LT
6308
6309 /* Initialize the H/W I/O registers */
6310 if (init_nic(sp) != 0) {
6311 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6312 dev->name);
e6a8fee2 6313 s2io_reset(sp);
1da177e4
LT
6314 return -ENODEV;
6315 }
6316
20346722
K
6317 /*
6318 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6319 * Rx ring and initializing buffers into 30 Rx blocks
6320 */
6321 mac_control = &sp->mac_control;
6322 config = &sp->config;
6323
6324 for (i = 0; i < config->rx_ring_num; i++) {
6325 if ((ret = fill_rx_buffers(sp, i))) {
6326 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6327 dev->name);
6328 s2io_reset(sp);
6329 free_rx_buffers(sp);
6330 return -ENOMEM;
6331 }
6332 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6333 atomic_read(&sp->rx_bufs_left[i]));
6334 }
6335
6336 /* Setting its receive mode */
6337 s2io_set_multicast(dev);
6338
7d3d0439
RA
6339 if (sp->lro) {
6340 /* Initialize max aggregatable pkts based on MTU */
6341 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6342 /* Check if we can use(if specified) user provided value */
6343 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6344 sp->lro_max_aggr_per_sess = lro_max_pkts;
6345 }
6346
1da177e4
LT
6347 /* Enable Rx Traffic and interrupts on the NIC */
6348 if (start_nic(sp)) {
6349 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6350 s2io_reset(sp);
e6a8fee2
AR
6351 free_rx_buffers(sp);
6352 return -ENODEV;
6353 }
6354
6355 /* Add interrupt service routine */
6356 if (s2io_add_isr(sp) != 0) {
6357 if (sp->intr_type == MSI_X)
6358 s2io_rem_isr(sp);
6359 s2io_reset(sp);
1da177e4
LT
6360 free_rx_buffers(sp);
6361 return -ENODEV;
6362 }
6363
25fff88e
K
6364 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6365
e6a8fee2
AR
6366 /* Enable tasklet for the device */
6367 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6368
6369 /* Enable select interrupts */
6370 if (sp->intr_type != INTA)
6371 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6372 else {
6373 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6374 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6375 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6376 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6377 }
6378
6379
1da177e4
LT
6380 atomic_set(&sp->card_state, CARD_UP);
6381 return 0;
6382}
6383
20346722 6384/**
1da177e4
LT
6385 * s2io_restart_nic - Resets the NIC.
6386 * @data : long pointer to the device private structure
6387 * Description:
6388 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6389 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6390 * the run time of the watch dog routine which is run holding a
6391 * spin lock.
6392 */
6393
6394static void s2io_restart_nic(unsigned long data)
6395{
6396 struct net_device *dev = (struct net_device *) data;
6397 nic_t *sp = dev->priv;
6398
e6a8fee2 6399 s2io_card_down(sp);
1da177e4
LT
6400 if (s2io_card_up(sp)) {
6401 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6402 dev->name);
6403 }
6404 netif_wake_queue(dev);
6405 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6406 dev->name);
20346722 6407
1da177e4
LT
6408}
6409
20346722
K
6410/**
6411 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6412 * @dev : Pointer to net device structure
6413 * Description:
6414 * This function is triggered if the Tx Queue is stopped
6415 * for a pre-defined amount of time when the Interface is still up.
6416 * If the Interface is jammed in such a situation, the hardware is
6417 * reset (by s2io_close) and restarted again (by s2io_open) to
6418 * overcome any problem that might have been caused in the hardware.
6419 * Return value:
6420 * void
6421 */
6422
6423static void s2io_tx_watchdog(struct net_device *dev)
6424{
6425 nic_t *sp = dev->priv;
6426
6427 if (netif_carrier_ok(dev)) {
6428 schedule_work(&sp->rst_timer_task);
bd1034f0 6429 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6430 }
6431}
6432
6433/**
6434 * rx_osm_handler - To perform some OS related operations on SKB.
6435 * @sp: private member of the device structure,pointer to s2io_nic structure.
6436 * @skb : the socket buffer pointer.
6437 * @len : length of the packet
6438 * @cksum : FCS checksum of the frame.
6439 * @ring_no : the ring from which this RxD was extracted.
20346722 6440 * Description:
1da177e4
LT
6441 * This function is called by the Tx interrupt serivce routine to perform
6442 * some OS related operations on the SKB before passing it to the upper
6443 * layers. It mainly checks if the checksum is OK, if so adds it to the
6444 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6445 * to the upper layer. If the checksum is wrong, it increments the Rx
6446 * packet error count, frees the SKB and returns error.
6447 * Return value:
6448 * SUCCESS on success and -1 on failure.
6449 */
20346722 6450static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
1da177e4 6451{
20346722 6452 nic_t *sp = ring_data->nic;
1da177e4 6453 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6454 struct sk_buff *skb = (struct sk_buff *)
6455 ((unsigned long) rxdp->Host_Control);
6456 int ring_no = ring_data->ring_no;
1da177e4 6457 u16 l3_csum, l4_csum;
863c11a9 6458 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7d3d0439 6459 lro_t *lro;
da6971d8 6460
20346722 6461 skb->dev = dev;
c92ca04b 6462
863c11a9 6463 if (err) {
bd1034f0
AR
6464 /* Check for parity error */
6465 if (err & 0x1) {
6466 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6467 }
6468
863c11a9
AR
6469 /*
6470 * Drop the packet if bad transfer code. Exception being
6471 * 0x5, which could be due to unsupported IPv6 extension header.
6472 * In this case, we let stack handle the packet.
6473 * Note that in this case, since checksum will be incorrect,
6474 * stack will validate the same.
6475 */
6476 if (err && ((err >> 48) != 0x5)) {
6477 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6478 dev->name, err);
6479 sp->stats.rx_crc_errors++;
6480 dev_kfree_skb(skb);
6481 atomic_dec(&sp->rx_bufs_left[ring_no]);
6482 rxdp->Host_Control = 0;
6483 return 0;
6484 }
20346722 6485 }
1da177e4 6486
20346722
K
6487 /* Updating statistics */
6488 rxdp->Host_Control = 0;
6489 sp->rx_pkt_count++;
6490 sp->stats.rx_packets++;
da6971d8
AR
6491 if (sp->rxd_mode == RXD_MODE_1) {
6492 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6493
da6971d8
AR
6494 sp->stats.rx_bytes += len;
6495 skb_put(skb, len);
6496
6497 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6498 int get_block = ring_data->rx_curr_get_info.block_index;
6499 int get_off = ring_data->rx_curr_get_info.offset;
6500 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6501 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6502 unsigned char *buff = skb_push(skb, buf0_len);
6503
6504 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6505 sp->stats.rx_bytes += buf0_len + buf2_len;
6506 memcpy(buff, ba->ba_0, buf0_len);
6507
6508 if (sp->rxd_mode == RXD_MODE_3A) {
6509 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6510
6511 skb_put(skb, buf1_len);
6512 skb->len += buf2_len;
6513 skb->data_len += buf2_len;
6514 skb->truesize += buf2_len;
6515 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6516 sp->stats.rx_bytes += buf1_len;
6517
6518 } else
6519 skb_put(skb, buf2_len);
6520 }
20346722 6521
7d3d0439
RA
6522 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6523 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6524 (sp->rx_csum)) {
6525 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6526 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6527 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6528 /*
1da177e4
LT
6529 * NIC verifies if the Checksum of the received
6530 * frame is Ok or not and accordingly returns
6531 * a flag in the RxD.
6532 */
6533 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6534 if (sp->lro) {
6535 u32 tcp_len;
6536 u8 *tcp;
6537 int ret = 0;
6538
6539 ret = s2io_club_tcp_session(skb->data, &tcp,
6540 &tcp_len, &lro, rxdp, sp);
6541 switch (ret) {
6542 case 3: /* Begin anew */
6543 lro->parent = skb;
6544 goto aggregate;
6545 case 1: /* Aggregate */
6546 {
6547 lro_append_pkt(sp, lro,
6548 skb, tcp_len);
6549 goto aggregate;
6550 }
6551 case 4: /* Flush session */
6552 {
6553 lro_append_pkt(sp, lro,
6554 skb, tcp_len);
6555 queue_rx_frame(lro->parent);
6556 clear_lro_session(lro);
6557 sp->mac_control.stats_info->
6558 sw_stat.flush_max_pkts++;
6559 goto aggregate;
6560 }
6561 case 2: /* Flush both */
6562 lro->parent->data_len =
6563 lro->frags_len;
6564 sp->mac_control.stats_info->
6565 sw_stat.sending_both++;
6566 queue_rx_frame(lro->parent);
6567 clear_lro_session(lro);
6568 goto send_up;
6569 case 0: /* sessions exceeded */
c92ca04b
AR
6570 case -1: /* non-TCP or not
6571 * L2 aggregatable
6572 */
7d3d0439
RA
6573 case 5: /*
6574 * First pkt in session not
6575 * L3/L4 aggregatable
6576 */
6577 break;
6578 default:
6579 DBG_PRINT(ERR_DBG,
6580 "%s: Samadhana!!\n",
6581 __FUNCTION__);
6582 BUG();
6583 }
6584 }
1da177e4 6585 } else {
20346722
K
6586 /*
6587 * Packet with erroneous checksum, let the
1da177e4
LT
6588 * upper layers deal with it.
6589 */
6590 skb->ip_summed = CHECKSUM_NONE;
6591 }
6592 } else {
6593 skb->ip_summed = CHECKSUM_NONE;
6594 }
6595
7d3d0439
RA
6596 if (!sp->lro) {
6597 skb->protocol = eth_type_trans(skb, dev);
1da177e4 6598#ifdef CONFIG_S2IO_NAPI
7d3d0439
RA
6599 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6600 /* Queueing the vlan frame to the upper layer */
6601 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6602 RXD_GET_VLAN_TAG(rxdp->Control_2));
6603 } else {
6604 netif_receive_skb(skb);
6605 }
1da177e4 6606#else
7d3d0439
RA
6607 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6608 /* Queueing the vlan frame to the upper layer */
6609 vlan_hwaccel_rx(skb, sp->vlgrp,
6610 RXD_GET_VLAN_TAG(rxdp->Control_2));
6611 } else {
6612 netif_rx(skb);
6613 }
1da177e4 6614#endif
7d3d0439
RA
6615 } else {
6616send_up:
6617 queue_rx_frame(skb);
6618 }
1da177e4 6619 dev->last_rx = jiffies;
7d3d0439 6620aggregate:
1da177e4 6621 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6622 return SUCCESS;
6623}
6624
6625/**
6626 * s2io_link - stops/starts the Tx queue.
6627 * @sp : private member of the device structure, which is a pointer to the
6628 * s2io_nic structure.
6629 * @link : inidicates whether link is UP/DOWN.
6630 * Description:
6631 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6632 * status of the NIC is is down or up. This is called by the Alarm
6633 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6634 * Return value:
6635 * void.
6636 */
6637
26df54bf 6638static void s2io_link(nic_t * sp, int link)
1da177e4
LT
6639{
6640 struct net_device *dev = (struct net_device *) sp->dev;
6641
6642 if (link != sp->last_link_state) {
6643 if (link == LINK_DOWN) {
6644 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6645 netif_carrier_off(dev);
6646 } else {
6647 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6648 netif_carrier_on(dev);
6649 }
6650 }
6651 sp->last_link_state = link;
6652}
6653
6654/**
20346722
K
6655 * get_xena_rev_id - to identify revision ID of xena.
6656 * @pdev : PCI Dev structure
6657 * Description:
6658 * Function to identify the Revision ID of xena.
6659 * Return value:
6660 * returns the revision ID of the device.
6661 */
6662
26df54bf 6663static int get_xena_rev_id(struct pci_dev *pdev)
20346722
K
6664{
6665 u8 id = 0;
6666 int ret;
6667 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6668 return id;
6669}
6670
6671/**
6672 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6673 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6674 * s2io_nic structure.
6675 * Description:
6676 * This function initializes a few of the PCI and PCI-X configuration registers
6677 * with recommended values.
6678 * Return value:
6679 * void
6680 */
6681
6682static void s2io_init_pci(nic_t * sp)
6683{
20346722 6684 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6685
6686 /* Enable Data Parity Error Recovery in PCI-X command register. */
6687 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6688 &(pcix_cmd));
1da177e4 6689 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6690 (pcix_cmd | 1));
1da177e4 6691 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6692 &(pcix_cmd));
1da177e4
LT
6693
6694 /* Set the PErr Response bit in PCI command register. */
6695 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6696 pci_write_config_word(sp->pdev, PCI_COMMAND,
6697 (pci_cmd | PCI_COMMAND_PARITY));
6698 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6699}
6700
6701MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6702MODULE_LICENSE("GPL");
6c1792f4
JL
6703MODULE_VERSION(DRV_VERSION);
6704
1da177e4 6705module_param(tx_fifo_num, int, 0);
1da177e4 6706module_param(rx_ring_num, int, 0);
da6971d8 6707module_param(rx_ring_mode, int, 0);
20346722
K
6708module_param_array(tx_fifo_len, uint, NULL, 0);
6709module_param_array(rx_ring_sz, uint, NULL, 0);
20346722 6710module_param_array(rts_frm_len, uint, NULL, 0);
5e25b9dd 6711module_param(use_continuous_tx_intrs, int, 1);
1da177e4
LT
6712module_param(rmac_pause_time, int, 0);
6713module_param(mc_pause_threshold_q0q3, int, 0);
6714module_param(mc_pause_threshold_q4q7, int, 0);
6715module_param(shared_splits, int, 0);
6716module_param(tmac_util_period, int, 0);
6717module_param(rmac_util_period, int, 0);
b6e3f982 6718module_param(bimodal, bool, 0);
da6971d8 6719module_param(l3l4hdr_size, int , 0);
1da177e4
LT
6720#ifndef CONFIG_S2IO_NAPI
6721module_param(indicate_max_pkts, int, 0);
6722#endif
303bcb4b 6723module_param(rxsync_frequency, int, 0);
cc6e7c44 6724module_param(intr_type, int, 0);
7d3d0439
RA
6725module_param(lro, int, 0);
6726module_param(lro_max_pkts, int, 0);
20346722 6727
9dc737a7
AR
6728static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6729{
6730 if ( tx_fifo_num > 8) {
6731 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6732 "supported\n");
6733 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6734 tx_fifo_num = 8;
6735 }
6736 if ( rx_ring_num > 8) {
6737 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6738 "supported\n");
6739 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6740 rx_ring_num = 8;
6741 }
6742#ifdef CONFIG_S2IO_NAPI
6743 if (*dev_intr_type != INTA) {
6744 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6745 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6746 *dev_intr_type = INTA;
6747 }
6748#endif
6749#ifndef CONFIG_PCI_MSI
6750 if (*dev_intr_type != INTA) {
6751 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6752 "MSI/MSI-X. Defaulting to INTA\n");
6753 *dev_intr_type = INTA;
6754 }
6755#else
6756 if (*dev_intr_type > MSI_X) {
6757 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6758 "Defaulting to INTA\n");
6759 *dev_intr_type = INTA;
6760 }
6761#endif
6762 if ((*dev_intr_type == MSI_X) &&
6763 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6764 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6765 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6766 "Defaulting to INTA\n");
6767 *dev_intr_type = INTA;
6768 }
6769 if (rx_ring_mode > 3) {
6770 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6771 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6772 rx_ring_mode = 3;
6773 }
6774 return SUCCESS;
6775}
6776
1da177e4 6777/**
20346722 6778 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
6779 * @pdev : structure containing the PCI related information of the device.
6780 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6781 * Description:
6782 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
6783 * All OS related initialization including memory and device structure and
6784 * initlaization of the device private variable is done. Also the swapper
6785 * control register is initialized to enable read and write into the I/O
1da177e4
LT
6786 * registers of the device.
6787 * Return value:
6788 * returns 0 on success and negative on failure.
6789 */
6790
6791static int __devinit
6792s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6793{
6794 nic_t *sp;
6795 struct net_device *dev;
1da177e4
LT
6796 int i, j, ret;
6797 int dma_flag = FALSE;
6798 u32 mac_up, mac_down;
6799 u64 val64 = 0, tmp64 = 0;
6800 XENA_dev_config_t __iomem *bar0 = NULL;
6801 u16 subid;
6802 mac_info_t *mac_control;
6803 struct config_param *config;
541ae68f 6804 int mode;
cc6e7c44 6805 u8 dev_intr_type = intr_type;
1da177e4 6806
9dc737a7
AR
6807 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6808 return ret;
1da177e4
LT
6809
6810 if ((ret = pci_enable_device(pdev))) {
6811 DBG_PRINT(ERR_DBG,
6812 "s2io_init_nic: pci_enable_device failed\n");
6813 return ret;
6814 }
6815
1e7f0bd8 6816 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6817 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6818 dma_flag = TRUE;
1da177e4 6819 if (pci_set_consistent_dma_mask
1e7f0bd8 6820 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6821 DBG_PRINT(ERR_DBG,
6822 "Unable to obtain 64bit DMA for \
6823 consistent allocations\n");
6824 pci_disable_device(pdev);
6825 return -ENOMEM;
6826 }
1e7f0bd8 6827 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
6828 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6829 } else {
6830 pci_disable_device(pdev);
6831 return -ENOMEM;
6832 }
cc6e7c44
RA
6833 if (dev_intr_type != MSI_X) {
6834 if (pci_request_regions(pdev, s2io_driver_name)) {
6835 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6836 pci_disable_device(pdev);
6837 return -ENODEV;
6838 }
6839 }
6840 else {
6841 if (!(request_mem_region(pci_resource_start(pdev, 0),
6842 pci_resource_len(pdev, 0), s2io_driver_name))) {
6843 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6844 pci_disable_device(pdev);
6845 return -ENODEV;
6846 }
6847 if (!(request_mem_region(pci_resource_start(pdev, 2),
6848 pci_resource_len(pdev, 2), s2io_driver_name))) {
6849 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6850 release_mem_region(pci_resource_start(pdev, 0),
6851 pci_resource_len(pdev, 0));
6852 pci_disable_device(pdev);
6853 return -ENODEV;
6854 }
1da177e4
LT
6855 }
6856
6857 dev = alloc_etherdev(sizeof(nic_t));
6858 if (dev == NULL) {
6859 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6860 pci_disable_device(pdev);
6861 pci_release_regions(pdev);
6862 return -ENODEV;
6863 }
6864
6865 pci_set_master(pdev);
6866 pci_set_drvdata(pdev, dev);
6867 SET_MODULE_OWNER(dev);
6868 SET_NETDEV_DEV(dev, &pdev->dev);
6869
6870 /* Private member variable initialized to s2io NIC structure */
6871 sp = dev->priv;
6872 memset(sp, 0, sizeof(nic_t));
6873 sp->dev = dev;
6874 sp->pdev = pdev;
1da177e4 6875 sp->high_dma_flag = dma_flag;
1da177e4 6876 sp->device_enabled_once = FALSE;
da6971d8
AR
6877 if (rx_ring_mode == 1)
6878 sp->rxd_mode = RXD_MODE_1;
6879 if (rx_ring_mode == 2)
6880 sp->rxd_mode = RXD_MODE_3B;
6881 if (rx_ring_mode == 3)
6882 sp->rxd_mode = RXD_MODE_3A;
6883
cc6e7c44 6884 sp->intr_type = dev_intr_type;
1da177e4 6885
541ae68f
K
6886 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6887 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6888 sp->device_type = XFRAME_II_DEVICE;
6889 else
6890 sp->device_type = XFRAME_I_DEVICE;
6891
7d3d0439 6892 sp->lro = lro;
cc6e7c44 6893
1da177e4
LT
6894 /* Initialize some PCI/PCI-X fields of the NIC. */
6895 s2io_init_pci(sp);
6896
20346722 6897 /*
1da177e4 6898 * Setting the device configuration parameters.
20346722
K
6899 * Most of these parameters can be specified by the user during
6900 * module insertion as they are module loadable parameters. If
6901 * these parameters are not not specified during load time, they
1da177e4
LT
6902 * are initialized with default values.
6903 */
6904 mac_control = &sp->mac_control;
6905 config = &sp->config;
6906
6907 /* Tx side parameters. */
1da177e4
LT
6908 config->tx_fifo_num = tx_fifo_num;
6909 for (i = 0; i < MAX_TX_FIFOS; i++) {
6910 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6911 config->tx_cfg[i].fifo_priority = i;
6912 }
6913
20346722
K
6914 /* mapping the QoS priority to the configured fifos */
6915 for (i = 0; i < MAX_TX_FIFOS; i++)
6916 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6917
1da177e4
LT
6918 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6919 for (i = 0; i < config->tx_fifo_num; i++) {
6920 config->tx_cfg[i].f_no_snoop =
6921 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6922 if (config->tx_cfg[i].fifo_len < 65) {
6923 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6924 break;
6925 }
6926 }
fed5eccd
AR
6927 /* + 2 because one Txd for skb->data and one Txd for UFO */
6928 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
6929
6930 /* Rx side parameters. */
1da177e4
LT
6931 config->rx_ring_num = rx_ring_num;
6932 for (i = 0; i < MAX_RX_RINGS; i++) {
6933 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 6934 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
6935 config->rx_cfg[i].ring_priority = i;
6936 }
6937
6938 for (i = 0; i < rx_ring_num; i++) {
6939 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6940 config->rx_cfg[i].f_no_snoop =
6941 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6942 }
6943
6944 /* Setting Mac Control parameters */
6945 mac_control->rmac_pause_time = rmac_pause_time;
6946 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6947 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6948
6949
6950 /* Initialize Ring buffer parameters. */
6951 for (i = 0; i < config->rx_ring_num; i++)
6952 atomic_set(&sp->rx_bufs_left[i], 0);
6953
7ba013ac
K
6954 /* Initialize the number of ISRs currently running */
6955 atomic_set(&sp->isr_cnt, 0);
6956
1da177e4
LT
6957 /* initialize the shared memory used by the NIC and the host */
6958 if (init_shared_mem(sp)) {
6959 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
0b1f7ebe 6960 __FUNCTION__);
1da177e4
LT
6961 ret = -ENOMEM;
6962 goto mem_alloc_failed;
6963 }
6964
6965 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6966 pci_resource_len(pdev, 0));
6967 if (!sp->bar0) {
6968 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6969 dev->name);
6970 ret = -ENOMEM;
6971 goto bar0_remap_failed;
6972 }
6973
6974 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6975 pci_resource_len(pdev, 2));
6976 if (!sp->bar1) {
6977 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6978 dev->name);
6979 ret = -ENOMEM;
6980 goto bar1_remap_failed;
6981 }
6982
6983 dev->irq = pdev->irq;
6984 dev->base_addr = (unsigned long) sp->bar0;
6985
6986 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6987 for (j = 0; j < MAX_TX_FIFOS; j++) {
6988 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6989 (sp->bar1 + (j * 0x00020000));
6990 }
6991
6992 /* Driver entry points */
6993 dev->open = &s2io_open;
6994 dev->stop = &s2io_close;
6995 dev->hard_start_xmit = &s2io_xmit;
6996 dev->get_stats = &s2io_get_stats;
6997 dev->set_multicast_list = &s2io_set_multicast;
6998 dev->do_ioctl = &s2io_ioctl;
6999 dev->change_mtu = &s2io_change_mtu;
7000 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7001 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7002 dev->vlan_rx_register = s2io_vlan_rx_register;
7003 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7004
1da177e4
LT
7005 /*
7006 * will use eth_mac_addr() for dev->set_mac_address
7007 * mac address will be set every time dev->open() is called
7008 */
20346722 7009#if defined(CONFIG_S2IO_NAPI)
1da177e4 7010 dev->poll = s2io_poll;
20346722 7011 dev->weight = 32;
1da177e4
LT
7012#endif
7013
612eff0e
BH
7014#ifdef CONFIG_NET_POLL_CONTROLLER
7015 dev->poll_controller = s2io_netpoll;
7016#endif
7017
1da177e4
LT
7018 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7019 if (sp->high_dma_flag == TRUE)
7020 dev->features |= NETIF_F_HIGHDMA;
7021#ifdef NETIF_F_TSO
7022 dev->features |= NETIF_F_TSO;
f83ef8c0
HX
7023#endif
7024#ifdef NETIF_F_TSO6
7025 dev->features |= NETIF_F_TSO6;
1da177e4 7026#endif
fed5eccd
AR
7027 if (sp->device_type & XFRAME_II_DEVICE) {
7028 dev->features |= NETIF_F_UFO;
7029 dev->features |= NETIF_F_HW_CSUM;
7030 }
1da177e4
LT
7031
7032 dev->tx_timeout = &s2io_tx_watchdog;
7033 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7034 INIT_WORK(&sp->rst_timer_task,
7035 (void (*)(void *)) s2io_restart_nic, dev);
7036 INIT_WORK(&sp->set_link_task,
7037 (void (*)(void *)) s2io_set_link, sp);
7038
e960fc5c 7039 pci_save_state(sp->pdev);
1da177e4
LT
7040
7041 /* Setting swapper control on the NIC, for proper reset operation */
7042 if (s2io_set_swapper(sp)) {
7043 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7044 dev->name);
7045 ret = -EAGAIN;
7046 goto set_swap_failed;
7047 }
7048
541ae68f
K
7049 /* Verify if the Herc works on the slot its placed into */
7050 if (sp->device_type & XFRAME_II_DEVICE) {
7051 mode = s2io_verify_pci_mode(sp);
7052 if (mode < 0) {
7053 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7054 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7055 ret = -EBADSLT;
7056 goto set_swap_failed;
7057 }
7058 }
7059
7060 /* Not needed for Herc */
7061 if (sp->device_type & XFRAME_I_DEVICE) {
7062 /*
7063 * Fix for all "FFs" MAC address problems observed on
7064 * Alpha platforms
7065 */
7066 fix_mac_address(sp);
7067 s2io_reset(sp);
7068 }
1da177e4
LT
7069
7070 /*
1da177e4
LT
7071 * MAC address initialization.
7072 * For now only one mac address will be read and used.
7073 */
7074 bar0 = sp->bar0;
7075 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7076 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7077 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b
AR
7078 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7079 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
7080 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7081 mac_down = (u32) tmp64;
7082 mac_up = (u32) (tmp64 >> 32);
7083
7084 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7085
7086 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7087 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7088 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7089 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7090 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7091 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7092
1da177e4
LT
7093 /* Set the factory defined MAC address initially */
7094 dev->addr_len = ETH_ALEN;
7095 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7096
7097 /*
20346722 7098 * Initialize the tasklet status and link state flags
541ae68f 7099 * and the card state parameter
1da177e4
LT
7100 */
7101 atomic_set(&(sp->card_state), 0);
7102 sp->tasklet_status = 0;
7103 sp->link_state = 0;
7104
1da177e4
LT
7105 /* Initialize spinlocks */
7106 spin_lock_init(&sp->tx_lock);
7107#ifndef CONFIG_S2IO_NAPI
7108 spin_lock_init(&sp->put_lock);
7109#endif
7ba013ac 7110 spin_lock_init(&sp->rx_lock);
1da177e4 7111
20346722
K
7112 /*
7113 * SXE-002: Configure link and activity LED to init state
7114 * on driver load.
1da177e4
LT
7115 */
7116 subid = sp->pdev->subsystem_device;
7117 if ((subid & 0xFF) >= 0x07) {
7118 val64 = readq(&bar0->gpio_control);
7119 val64 |= 0x0000800000000000ULL;
7120 writeq(val64, &bar0->gpio_control);
7121 val64 = 0x0411040400000000ULL;
7122 writeq(val64, (void __iomem *) bar0 + 0x2700);
7123 val64 = readq(&bar0->gpio_control);
7124 }
7125
7126 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7127
7128 if (register_netdev(dev)) {
7129 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7130 ret = -ENODEV;
7131 goto register_failed;
7132 }
9dc737a7
AR
7133 s2io_vpd_read(sp);
7134 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7135 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
541ae68f
K
7136 get_xena_rev_id(sp->pdev),
7137 s2io_driver_version);
9dc737a7
AR
7138 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7139 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7140 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
541ae68f
K
7141 sp->def_mac_addr[0].mac_addr[0],
7142 sp->def_mac_addr[0].mac_addr[1],
7143 sp->def_mac_addr[0].mac_addr[2],
7144 sp->def_mac_addr[0].mac_addr[3],
7145 sp->def_mac_addr[0].mac_addr[4],
7146 sp->def_mac_addr[0].mac_addr[5]);
9dc737a7 7147 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7148 mode = s2io_print_pci_mode(sp);
541ae68f 7149 if (mode < 0) {
9dc737a7 7150 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7151 ret = -EBADSLT;
9dc737a7 7152 unregister_netdev(dev);
541ae68f
K
7153 goto set_swap_failed;
7154 }
541ae68f 7155 }
9dc737a7
AR
7156 switch(sp->rxd_mode) {
7157 case RXD_MODE_1:
7158 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7159 dev->name);
7160 break;
7161 case RXD_MODE_3B:
7162 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7163 dev->name);
7164 break;
7165 case RXD_MODE_3A:
7166 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7167 dev->name);
7168 break;
7169 }
7170#ifdef CONFIG_S2IO_NAPI
7171 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7172#endif
7173 switch(sp->intr_type) {
7174 case INTA:
7175 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7176 break;
7177 case MSI:
7178 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7179 break;
7180 case MSI_X:
7181 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7182 break;
7183 }
7d3d0439
RA
7184 if (sp->lro)
7185 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7186 dev->name);
7d3d0439 7187
7ba013ac 7188 /* Initialize device name */
9dc737a7 7189 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7190
b6e3f982
K
7191 /* Initialize bimodal Interrupts */
7192 sp->config.bimodal = bimodal;
7193 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7194 sp->config.bimodal = 0;
7195 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7196 dev->name);
7197 }
7198
20346722
K
7199 /*
7200 * Make Link state as off at this point, when the Link change
7201 * interrupt comes the state will be automatically changed to
1da177e4
LT
7202 * the right state.
7203 */
7204 netif_carrier_off(dev);
1da177e4
LT
7205
7206 return 0;
7207
7208 register_failed:
7209 set_swap_failed:
7210 iounmap(sp->bar1);
7211 bar1_remap_failed:
7212 iounmap(sp->bar0);
7213 bar0_remap_failed:
7214 mem_alloc_failed:
7215 free_shared_mem(sp);
7216 pci_disable_device(pdev);
cc6e7c44
RA
7217 if (dev_intr_type != MSI_X)
7218 pci_release_regions(pdev);
7219 else {
7220 release_mem_region(pci_resource_start(pdev, 0),
7221 pci_resource_len(pdev, 0));
7222 release_mem_region(pci_resource_start(pdev, 2),
7223 pci_resource_len(pdev, 2));
7224 }
1da177e4
LT
7225 pci_set_drvdata(pdev, NULL);
7226 free_netdev(dev);
7227
7228 return ret;
7229}
7230
7231/**
20346722 7232 * s2io_rem_nic - Free the PCI device
1da177e4 7233 * @pdev: structure containing the PCI related information of the device.
20346722 7234 * Description: This function is called by the Pci subsystem to release a
1da177e4 7235 * PCI device and free up all resource held up by the device. This could
20346722 7236 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7237 * from memory.
7238 */
7239
7240static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7241{
7242 struct net_device *dev =
7243 (struct net_device *) pci_get_drvdata(pdev);
7244 nic_t *sp;
7245
7246 if (dev == NULL) {
7247 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7248 return;
7249 }
7250
7251 sp = dev->priv;
7252 unregister_netdev(dev);
7253
7254 free_shared_mem(sp);
7255 iounmap(sp->bar0);
7256 iounmap(sp->bar1);
7257 pci_disable_device(pdev);
cc6e7c44
RA
7258 if (sp->intr_type != MSI_X)
7259 pci_release_regions(pdev);
7260 else {
7261 release_mem_region(pci_resource_start(pdev, 0),
7262 pci_resource_len(pdev, 0));
7263 release_mem_region(pci_resource_start(pdev, 2),
7264 pci_resource_len(pdev, 2));
7265 }
1da177e4 7266 pci_set_drvdata(pdev, NULL);
1da177e4
LT
7267 free_netdev(dev);
7268}
7269
7270/**
7271 * s2io_starter - Entry point for the driver
7272 * Description: This function is the entry point for the driver. It verifies
7273 * the module loadable parameters and initializes PCI configuration space.
7274 */
7275
7276int __init s2io_starter(void)
7277{
7278 return pci_module_init(&s2io_driver);
7279}
7280
7281/**
20346722 7282 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7283 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7284 */
7285
26df54bf 7286static void s2io_closer(void)
1da177e4
LT
7287{
7288 pci_unregister_driver(&s2io_driver);
7289 DBG_PRINT(INIT_DBG, "cleanup done\n");
7290}
7291
7292module_init(s2io_starter);
7293module_exit(s2io_closer);
7d3d0439
RA
7294
7295static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7296 struct tcphdr **tcp, RxD_t *rxdp)
7297{
7298 int ip_off;
7299 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7300
7301 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7302 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7303 __FUNCTION__);
7304 return -1;
7305 }
7306
7307 /* TODO:
7308 * By default the VLAN field in the MAC is stripped by the card, if this
7309 * feature is turned off in rx_pa_cfg register, then the ip_off field
7310 * has to be shifted by a further 2 bytes
7311 */
7312 switch (l2_type) {
7313 case 0: /* DIX type */
7314 case 4: /* DIX type with VLAN */
7315 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7316 break;
7317 /* LLC, SNAP etc are considered non-mergeable */
7318 default:
7319 return -1;
7320 }
7321
7322 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7323 ip_len = (u8)((*ip)->ihl);
7324 ip_len <<= 2;
7325 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7326
7327 return 0;
7328}
7329
7330static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7331 struct tcphdr *tcp)
7332{
7333 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7334 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7335 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7336 return -1;
7337 return 0;
7338}
7339
7340static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7341{
7342 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7343}
7344
7345static void initiate_new_session(lro_t *lro, u8 *l2h,
7346 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7347{
7348 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7349 lro->l2h = l2h;
7350 lro->iph = ip;
7351 lro->tcph = tcp;
7352 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7353 lro->tcp_ack = ntohl(tcp->ack_seq);
7354 lro->sg_num = 1;
7355 lro->total_len = ntohs(ip->tot_len);
7356 lro->frags_len = 0;
7357 /*
7358 * check if we saw TCP timestamp. Other consistency checks have
7359 * already been done.
7360 */
7361 if (tcp->doff == 8) {
7362 u32 *ptr;
7363 ptr = (u32 *)(tcp+1);
7364 lro->saw_ts = 1;
7365 lro->cur_tsval = *(ptr+1);
7366 lro->cur_tsecr = *(ptr+2);
7367 }
7368 lro->in_use = 1;
7369}
7370
7371static void update_L3L4_header(nic_t *sp, lro_t *lro)
7372{
7373 struct iphdr *ip = lro->iph;
7374 struct tcphdr *tcp = lro->tcph;
7375 u16 nchk;
7376 StatInfo_t *statinfo = sp->mac_control.stats_info;
7377 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7378
7379 /* Update L3 header */
7380 ip->tot_len = htons(lro->total_len);
7381 ip->check = 0;
7382 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7383 ip->check = nchk;
7384
7385 /* Update L4 header */
7386 tcp->ack_seq = lro->tcp_ack;
7387 tcp->window = lro->window;
7388
7389 /* Update tsecr field if this session has timestamps enabled */
7390 if (lro->saw_ts) {
7391 u32 *ptr = (u32 *)(tcp + 1);
7392 *(ptr+2) = lro->cur_tsecr;
7393 }
7394
7395 /* Update counters required for calculation of
7396 * average no. of packets aggregated.
7397 */
7398 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7399 statinfo->sw_stat.num_aggregations++;
7400}
7401
7402static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7403 struct tcphdr *tcp, u32 l4_pyld)
7404{
7405 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7406 lro->total_len += l4_pyld;
7407 lro->frags_len += l4_pyld;
7408 lro->tcp_next_seq += l4_pyld;
7409 lro->sg_num++;
7410
7411 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7412 lro->tcp_ack = tcp->ack_seq;
7413 lro->window = tcp->window;
7414
7415 if (lro->saw_ts) {
7416 u32 *ptr;
7417 /* Update tsecr and tsval from this packet */
7418 ptr = (u32 *) (tcp + 1);
7419 lro->cur_tsval = *(ptr + 1);
7420 lro->cur_tsecr = *(ptr + 2);
7421 }
7422}
7423
7424static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7425 struct tcphdr *tcp, u32 tcp_pyld_len)
7426{
7d3d0439
RA
7427 u8 *ptr;
7428
79dc1901
AM
7429 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7430
7d3d0439
RA
7431 if (!tcp_pyld_len) {
7432 /* Runt frame or a pure ack */
7433 return -1;
7434 }
7435
7436 if (ip->ihl != 5) /* IP has options */
7437 return -1;
7438
7439 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7440 !tcp->ack) {
7441 /*
7442 * Currently recognize only the ack control word and
7443 * any other control field being set would result in
7444 * flushing the LRO session
7445 */
7446 return -1;
7447 }
7448
7449 /*
7450 * Allow only one TCP timestamp option. Don't aggregate if
7451 * any other options are detected.
7452 */
7453 if (tcp->doff != 5 && tcp->doff != 8)
7454 return -1;
7455
7456 if (tcp->doff == 8) {
7457 ptr = (u8 *)(tcp + 1);
7458 while (*ptr == TCPOPT_NOP)
7459 ptr++;
7460 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7461 return -1;
7462
7463 /* Ensure timestamp value increases monotonically */
7464 if (l_lro)
7465 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7466 return -1;
7467
7468 /* timestamp echo reply should be non-zero */
7469 if (*((u32 *)(ptr+6)) == 0)
7470 return -1;
7471 }
7472
7473 return 0;
7474}
7475
7476static int
7477s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7478 RxD_t *rxdp, nic_t *sp)
7479{
7480 struct iphdr *ip;
7481 struct tcphdr *tcph;
7482 int ret = 0, i;
7483
7484 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7485 rxdp))) {
7486 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7487 ip->saddr, ip->daddr);
7488 } else {
7489 return ret;
7490 }
7491
7492 tcph = (struct tcphdr *)*tcp;
7493 *tcp_len = get_l4_pyld_length(ip, tcph);
7494 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7495 lro_t *l_lro = &sp->lro0_n[i];
7496 if (l_lro->in_use) {
7497 if (check_for_socket_match(l_lro, ip, tcph))
7498 continue;
7499 /* Sock pair matched */
7500 *lro = l_lro;
7501
7502 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7503 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7504 "0x%x, actual 0x%x\n", __FUNCTION__,
7505 (*lro)->tcp_next_seq,
7506 ntohl(tcph->seq));
7507
7508 sp->mac_control.stats_info->
7509 sw_stat.outof_sequence_pkts++;
7510 ret = 2;
7511 break;
7512 }
7513
7514 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7515 ret = 1; /* Aggregate */
7516 else
7517 ret = 2; /* Flush both */
7518 break;
7519 }
7520 }
7521
7522 if (ret == 0) {
7523 /* Before searching for available LRO objects,
7524 * check if the pkt is L3/L4 aggregatable. If not
7525 * don't create new LRO session. Just send this
7526 * packet up.
7527 */
7528 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7529 return 5;
7530 }
7531
7532 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7533 lro_t *l_lro = &sp->lro0_n[i];
7534 if (!(l_lro->in_use)) {
7535 *lro = l_lro;
7536 ret = 3; /* Begin anew */
7537 break;
7538 }
7539 }
7540 }
7541
7542 if (ret == 0) { /* sessions exceeded */
7543 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7544 __FUNCTION__);
7545 *lro = NULL;
7546 return ret;
7547 }
7548
7549 switch (ret) {
7550 case 3:
7551 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7552 break;
7553 case 2:
7554 update_L3L4_header(sp, *lro);
7555 break;
7556 case 1:
7557 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7558 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7559 update_L3L4_header(sp, *lro);
7560 ret = 4; /* Flush the LRO */
7561 }
7562 break;
7563 default:
7564 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7565 __FUNCTION__);
7566 break;
7567 }
7568
7569 return ret;
7570}
7571
7572static void clear_lro_session(lro_t *lro)
7573{
7574 static u16 lro_struct_size = sizeof(lro_t);
7575
7576 memset(lro, 0, lro_struct_size);
7577}
7578
7579static void queue_rx_frame(struct sk_buff *skb)
7580{
7581 struct net_device *dev = skb->dev;
7582
7583 skb->protocol = eth_type_trans(skb, dev);
7584#ifdef CONFIG_S2IO_NAPI
7585 netif_receive_skb(skb);
7586#else
7587 netif_rx(skb);
7588#endif
7589}
7590
7591static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7592 u32 tcp_len)
7593{
7594 struct sk_buff *tmp, *first = lro->parent;
7595
7596 first->len += tcp_len;
7597 first->data_len = lro->frags_len;
7598 skb_pull(skb, (skb->len - tcp_len));
7599 if ((tmp = skb_shinfo(first)->frag_list)) {
7600 while (tmp->next)
7601 tmp = tmp->next;
7602 tmp->next = skb;
7603 }
7604 else
7605 skb_shinfo(first)->frag_list = skb;
7606 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7607 return;
7608}