]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
atl1: fix frame length bug
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
7962024e 87#define DRV_VERSION "2.0.26.10"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
6d517a27
VP
93static int rxd_size[2] = {32,48};
94static int rxd_count[2] = {127,85};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
92b84437
SS
133static inline int is_s2io_card_up(const struct s2io_nic * sp)
134{
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136}
137
1da177e4
LT
138/* Ethtool related variables and Macros. */
139static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
145};
146
fa1f0cb3 147static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
1da177e4 157 {"tmac_any_err_frms"},
bd1034f0 158 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
bd1034f0 173 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
1da177e4 180 {"rmac_discarded_frms"},
bd1034f0
AR
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
1da177e4
LT
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
bd1034f0
AR
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
bd1034f0
AR
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
1da177e4 219 {"rmac_pause_cnt"},
bd1034f0
AR
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
bd1034f0
AR
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
fa1f0cb3
SS
241 {"rxf_wr_cnt"}
242};
243
244static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
260 {"link_fault_cnt"}
261};
262
263static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
bd1034f0
AR
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
8116f3cf
SS
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
43b7c451
SH
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
1da177e4
LT
336};
337
fa1f0cb3
SS
338#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
348
349#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351
25fff88e
K
352#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
357
2fd37688
SS
358/* copy mac addr to def_mac_addr array */
359static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360{
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367}
be3a6b02
K
368/* Add the vlan */
369static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
371{
1ee6dd77 372 struct s2io_nic *nic = dev->priv;
be3a6b02
K
373 unsigned long flags;
374
375 spin_lock_irqsave(&nic->tx_lock, flags);
376 nic->vlgrp = grp;
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
378}
379
926930b2 380/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 381static int vlan_strip_flag;
926930b2 382
20346722 383/*
1da177e4
LT
384 * Constants to be programmed into the Xena's registers, to configure
385 * the XAUI.
386 */
387
1da177e4 388#define END_SIGN 0x0
f71e1309 389static const u64 herc_act_dtx_cfg[] = {
541ae68f 390 /* Set address */
e960fc5c 391 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 392 /* Write data */
e960fc5c 393 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
394 /* Set address */
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396 /* Write data */
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398 /* Set address */
e960fc5c 399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
400 /* Write data */
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
402 /* Set address */
541ae68f
K
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404 /* Write data */
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406 /* Done */
407 END_SIGN
408};
409
f71e1309 410static const u64 xena_dtx_cfg[] = {
c92ca04b 411 /* Set address */
1da177e4 412 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
413 /* Write data */
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415 /* Set address */
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
417 /* Write data */
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419 /* Set address */
1da177e4 420 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
421 /* Write data */
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
423 END_SIGN
424};
425
20346722 426/*
1da177e4
LT
427 * Constants for Fixing the MacAddress problem seen mostly on
428 * Alpha machines.
429 */
f71e1309 430static const u64 fix_mac[] = {
1da177e4
LT
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
445 END_SIGN
446};
447
b41477f3
AR
448MODULE_LICENSE("GPL");
449MODULE_VERSION(DRV_VERSION);
450
451
1da177e4 452/* Module Loadable parameters. */
b41477f3
AR
453S2IO_PARM_INT(tx_fifo_num, 1);
454S2IO_PARM_INT(rx_ring_num, 1);
455
456
457S2IO_PARM_INT(rx_ring_mode, 1);
458S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459S2IO_PARM_INT(rmac_pause_time, 0x100);
460S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462S2IO_PARM_INT(shared_splits, 0);
463S2IO_PARM_INT(tmac_util_period, 5);
464S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 465S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 466/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 467S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 468/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 469S2IO_PARM_INT(intr_type, 2);
7d3d0439 470/* Large receive offload feature */
43b7c451
SH
471static unsigned int lro_enable;
472module_param_named(lro, lro_enable, uint, 0);
473
7d3d0439
RA
474/* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
476 */
b41477f3 477S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 478S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
479
480S2IO_PARM_INT(napi, 1);
481S2IO_PARM_INT(ufo, 0);
926930b2 482S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
483
484static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490
491module_param_array(tx_fifo_len, uint, NULL, 0);
492module_param_array(rx_ring_sz, uint, NULL, 0);
493module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 494
20346722 495/*
1da177e4 496 * S2IO device table.
20346722 497 * This table lists all the devices that this driver supports.
1da177e4
LT
498 */
499static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
508 {0,}
509};
510
511MODULE_DEVICE_TABLE(pci, s2io_tbl);
512
d796fdb7
LV
513static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
517};
518
1da177e4
LT
519static struct pci_driver s2io_driver = {
520 .name = "S2IO",
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 524 .err_handler = &s2io_err_handler,
1da177e4
LT
525};
526
527/* A simplifier macro used both by init and free shared_mem Fns(). */
528#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
529
530/**
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
20346722
K
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
535 * Rx descriptors and the statistics block.
536 */
537
538static int init_shared_mem(struct s2io_nic *nic)
539{
540 u32 size;
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 543 struct RxD_block *pre_rxd_blk = NULL;
372cc597 544 int i, j, blk_cnt;
1da177e4
LT
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
8ae418cf 547 unsigned long tmp;
1ee6dd77 548 struct buffAdd *ba;
1da177e4 549
1ee6dd77 550 struct mac_info *mac_control;
1da177e4 551 struct config_param *config;
491976b2 552 unsigned long long mem_allocated = 0;
1da177e4
LT
553
554 mac_control = &nic->mac_control;
555 config = &nic->config;
556
557
558 /* Allocation and initialization of TXDLs in FIOFs */
559 size = 0;
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
562 }
563 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 566 return -EINVAL;
1da177e4
LT
567 }
568
1ee6dd77 569 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
570 lst_per_page = PAGE_SIZE / lst_size;
571
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722
K
576 GFP_KERNEL);
577 if (!mac_control->fifos[i].list_info) {
0c61ed5f 578 DBG_PRINT(INFO_DBG,
1da177e4
LT
579 "Malloc failed for list_info\n");
580 return -ENOMEM;
581 }
491976b2 582 mem_allocated += list_holder_size;
1da177e4
LT
583 }
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586 lst_per_page);
20346722
K
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 589 config->tx_cfg[i].fifo_len - 1;
20346722
K
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 592 config->tx_cfg[i].fifo_len - 1;
20346722
K
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
fed5eccd 595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 596
1da177e4
LT
597 for (j = 0; j < page_num; j++) {
598 int k = 0;
599 dma_addr_t tmp_p;
600 void *tmp_v;
601 tmp_v = pci_alloc_consistent(nic->pdev,
602 PAGE_SIZE, &tmp_p);
603 if (!tmp_v) {
0c61ed5f 604 DBG_PRINT(INFO_DBG,
1da177e4 605 "pci_alloc_consistent ");
0c61ed5f 606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
607 return -ENOMEM;
608 }
776bd20f 609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
612 * to be freed later.
613 */
614 if (!tmp_p) {
615 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 616 DBG_PRINT(INIT_DBG,
776bd20f 617 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 618 DBG_PRINT(INIT_DBG,
6b4d617d 619 "Virtual address %p\n", tmp_v);
776bd20f 620 tmp_v = pci_alloc_consistent(nic->pdev,
621 PAGE_SIZE, &tmp_p);
622 if (!tmp_v) {
0c61ed5f 623 DBG_PRINT(INFO_DBG,
776bd20f 624 "pci_alloc_consistent ");
0c61ed5f 625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 626 return -ENOMEM;
627 }
491976b2 628 mem_allocated += PAGE_SIZE;
776bd20f 629 }
1da177e4
LT
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
20346722
K
633 break;
634 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 635 tmp_v + (k * lst_size);
20346722 636 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
637 tmp_p + (k * lst_size);
638 k++;
639 }
640 }
641 }
1da177e4 642
4384247b 643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
644 if (!nic->ufo_in_band_v)
645 return -ENOMEM;
491976b2 646 mem_allocated += (size * sizeof(u64));
fed5eccd 647
1da177e4
LT
648 /* Allocation and initialization of RXDs in Rings */
649 size = 0;
650 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655 i);
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
657 return FAILURE;
658 }
659 size += config->rx_cfg[i].num_rxd;
20346722 660 mac_control->rings[i].block_count =
da6971d8
AR
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
1da177e4 665 }
da6971d8 666 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 667 size = (size * (sizeof(struct RxD1)));
da6971d8 668 else
1ee6dd77 669 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
670
671 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 675 config->rx_cfg[i].num_rxd - 1;
20346722
K
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 679 config->rx_cfg[i].num_rxd - 1;
20346722
K
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
682
da6971d8
AR
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 687 struct rx_block_info *rx_blocks;
da6971d8
AR
688 int l;
689
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693 &tmp_p_addr);
694 if (tmp_v_addr == NULL) {
695 /*
20346722
K
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
1da177e4
LT
699 * failure happened.
700 */
da6971d8 701 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
702 return -ENOMEM;
703 }
491976b2 704 mem_allocated += size;
1da177e4 705 memset(tmp_v_addr, 0, size);
da6971d8
AR
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
709 rxd_count[nic->rxd_mode],
710 GFP_KERNEL);
372cc597
SS
711 if (!rx_blocks->rxds)
712 return -ENOMEM;
8a4bdbaa 713 mem_allocated +=
491976b2 714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
722 }
1da177e4
LT
723 }
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
20346722
K
726 tmp_v_addr =
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 728 tmp_v_addr_next =
20346722 729 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 730 blk_cnt].block_virt_addr;
20346722
K
731 tmp_p_addr =
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 733 tmp_p_addr_next =
20346722 734 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
735 blk_cnt].block_dma_addr;
736
1ee6dd77 737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
1da177e4
LT
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
742 }
743 }
6d517a27 744 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
745 /*
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
748 */
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
1ee6dd77 753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 754 GFP_KERNEL);
da6971d8 755 if (!mac_control->rings[i].ba)
1da177e4 756 return -ENOMEM;
491976b2 757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
758 for (j = 0; j < blk_cnt; j++) {
759 int k = 0;
760 mac_control->rings[i].ba[j] =
1ee6dd77 761 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
762 (rxd_count[nic->rxd_mode] + 1)),
763 GFP_KERNEL);
764 if (!mac_control->rings[i].ba[j])
1da177e4 765 return -ENOMEM;
491976b2
SH
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
770
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773 if (!ba->ba_0_org)
774 return -ENOMEM;
8a4bdbaa 775 mem_allocated +=
491976b2 776 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
777 tmp = (unsigned long)ba->ba_0_org;
778 tmp += ALIGN_SIZE;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
781
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784 if (!ba->ba_1_org)
785 return -ENOMEM;
8a4bdbaa 786 mem_allocated
491976b2 787 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
788 tmp = (unsigned long) ba->ba_1_org;
789 tmp += ALIGN_SIZE;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
792 k++;
793 }
1da177e4
LT
794 }
795 }
796 }
1da177e4
LT
797
798 /* Allocation and initialization of Statistics block */
1ee6dd77 799 size = sizeof(struct stat_block);
1da177e4
LT
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
802
803 if (!mac_control->stats_mem) {
20346722
K
804 /*
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
1da177e4
LT
807 * failure happened.
808 */
809 return -ENOMEM;
810 }
491976b2 811 mem_allocated += size;
1da177e4
LT
812 mac_control->stats_mem_sz = size;
813
814 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 816 memset(tmp_v_addr, 0, size);
1da177e4
LT
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
491976b2 819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
820 return SUCCESS;
821}
822
20346722
K
823/**
824 * free_shared_mem - Free the allocated Memory
1da177e4
LT
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
828 */
829
830static void free_shared_mem(struct s2io_nic *nic)
831{
832 int i, j, blk_cnt, size;
491976b2 833 u32 ufo_size = 0;
1da177e4
LT
834 void *tmp_v_addr;
835 dma_addr_t tmp_p_addr;
1ee6dd77 836 struct mac_info *mac_control;
1da177e4
LT
837 struct config_param *config;
838 int lst_size, lst_per_page;
8910b49f 839 struct net_device *dev;
491976b2 840 int page_num = 0;
1da177e4
LT
841
842 if (!nic)
843 return;
844
8910b49f
MG
845 dev = nic->dev;
846
1da177e4
LT
847 mac_control = &nic->mac_control;
848 config = &nic->config;
849
1ee6dd77 850 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
851 lst_per_page = PAGE_SIZE / lst_size;
852
853 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856 lst_per_page);
1da177e4
LT
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
776bd20f 859 if (!mac_control->fifos[i].list_info)
6aa20a22 860 return;
776bd20f 861 if (!mac_control->fifos[i].list_info[mem_blks].
862 list_virt_addr)
1da177e4
LT
863 break;
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
865 mac_control->fifos[i].
866 list_info[mem_blks].
1da177e4 867 list_virt_addr,
20346722
K
868 mac_control->fifos[i].
869 list_info[mem_blks].
1da177e4 870 list_phy_addr);
8a4bdbaa 871 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 872 += PAGE_SIZE;
1da177e4 873 }
776bd20f 874 /* If we got a zero DMA address during allocation,
875 * free the page now
876 */
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
880 (dma_addr_t)0);
6aa20a22 881 DBG_PRINT(INIT_DBG,
6b4d617d
AM
882 "%s: Freeing TxDL with zero DMA addr. ",
883 dev->name);
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
8a4bdbaa 886 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 887 += PAGE_SIZE;
776bd20f 888 }
20346722 889 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 890 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
892 }
893
1da177e4 894 size = SIZE_OF_BLOCK;
1da177e4 895 for (i = 0; i < config->rx_ring_num; i++) {
20346722 896 blk_cnt = mac_control->rings[i].block_count;
1da177e4 897 for (j = 0; j < blk_cnt; j++) {
20346722
K
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899 block_virt_addr;
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901 block_dma_addr;
1da177e4
LT
902 if (tmp_v_addr == NULL)
903 break;
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
491976b2 906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 908 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
910 }
911 }
912
6d517a27 913 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
919 int k = 0;
920 if (!mac_control->rings[i].ba[j])
921 continue;
922 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 923 struct buffAdd *ba =
da6971d8
AR
924 &mac_control->rings[i].ba[j][k];
925 kfree(ba->ba_0_org);
491976b2
SH
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 928 kfree(ba->ba_1_org);
491976b2
SH
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
931 k++;
932 }
933 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
1da177e4 937 }
da6971d8 938 kfree(mac_control->rings[i].ba);
8a4bdbaa 939 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 940 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 941 }
1da177e4 942 }
1da177e4
LT
943
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
8a4bdbaa 949 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 950 mac_control->stats_mem_sz;
1da177e4 951 }
491976b2 952 if (nic->ufo_in_band_v) {
fed5eccd 953 kfree(nic->ufo_in_band_v);
8a4bdbaa 954 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
955 += (ufo_size * sizeof(u64));
956 }
1da177e4
LT
957}
958
541ae68f
K
959/**
960 * s2io_verify_pci_mode -
961 */
962
1ee6dd77 963static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 964{
1ee6dd77 965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
966 register u64 val64 = 0;
967 int mode;
968
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
971
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
974 return mode;
975}
976
c92ca04b
AR
977#define NEC_VENID 0x1033
978#define NEC_DEVID 0x0125
979static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980{
981 struct pci_dev *tdev = NULL;
26d36b64
AC
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 984 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 985 pci_dev_put(tdev);
c92ca04b
AR
986 return 1;
987 }
988 }
989 return 0;
990}
541ae68f 991
7b32a312 992static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
993/**
994 * s2io_print_pci_mode -
995 */
1ee6dd77 996static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 997{
1ee6dd77 998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
999 register u64 val64 = 0;
1000 int mode;
1001 struct config_param *config = &nic->config;
1002
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1005
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1008
c92ca04b
AR
1009 config->bus_speed = bus_speed[mode];
1010
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013 nic->dev->name);
1014 return mode;
1015 }
1016
541ae68f
K
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019 } else {
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1021 }
1022
1023 switch(mode) {
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
1026 break;
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
1029 break;
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
1032 break;
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
1035 break;
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
1038 break;
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1041 break;
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1044 break;
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1047 break;
1048 default:
1049 return -1; /* Unsupported bus speed */
1050 }
1051
1052 return mode;
1053}
1054
20346722
K
1055/**
1056 * init_nic - Initialization of hardware
1da177e4 1057 * @nic: device peivate variable
20346722
K
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1da177e4
LT
1061 * '-1' on failure (endian settings incorrect).
1062 */
1063
1064static int init_nic(struct s2io_nic *nic)
1065{
1ee6dd77 1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1069 void __iomem *add;
1070 u32 time;
1071 int i, j;
1ee6dd77 1072 struct mac_info *mac_control;
1da177e4 1073 struct config_param *config;
c92ca04b 1074 int dtx_cnt = 0;
1da177e4 1075 unsigned long long mem_share;
20346722 1076 int mem_size;
1da177e4
LT
1077
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1080
5e25b9dd 1081 /* to set the swapper controle on the card */
20346722 1082 if(s2io_set_swapper(nic)) {
1da177e4 1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1084 return -EIO;
1da177e4
LT
1085 }
1086
541ae68f
K
1087 /*
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1089 */
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1093 msleep(500);
1094 val64 = readq(&bar0->sw_reset);
1095 }
1096
1da177e4
LT
1097 /* Remove XGXS from reset state */
1098 val64 = 0;
1099 writeq(val64, &bar0->sw_reset);
1da177e4 1100 msleep(500);
20346722 1101 val64 = readq(&bar0->sw_reset);
1da177e4 1102
7962024e
SH
1103 /* Ensure that it's safe to access registers by checking
1104 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1105 */
1106 if (nic->device_type == XFRAME_II_DEVICE) {
1107 for (i = 0; i < 50; i++) {
1108 val64 = readq(&bar0->adapter_status);
1109 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1110 break;
1111 msleep(10);
1112 }
1113 if (i == 50)
1114 return -ENODEV;
1115 }
1116
1da177e4
LT
1117 /* Enable Receiving broadcasts */
1118 add = &bar0->mac_cfg;
1119 val64 = readq(&bar0->mac_cfg);
1120 val64 |= MAC_RMAC_BCAST_ENABLE;
1121 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1122 writel((u32) val64, add);
1123 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1124 writel((u32) (val64 >> 32), (add + 4));
1125
1126 /* Read registers in all blocks */
1127 val64 = readq(&bar0->mac_int_mask);
1128 val64 = readq(&bar0->mc_int_mask);
1129 val64 = readq(&bar0->xgxs_int_mask);
1130
1131 /* Set MTU */
1132 val64 = dev->mtu;
1133 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1134
541ae68f
K
1135 if (nic->device_type & XFRAME_II_DEVICE) {
1136 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1137 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1138 &bar0->dtx_control, UF);
541ae68f
K
1139 if (dtx_cnt & 0x1)
1140 msleep(1); /* Necessary!! */
1da177e4
LT
1141 dtx_cnt++;
1142 }
541ae68f 1143 } else {
c92ca04b
AR
1144 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1145 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1146 &bar0->dtx_control, UF);
1147 val64 = readq(&bar0->dtx_control);
1148 dtx_cnt++;
1da177e4
LT
1149 }
1150 }
1151
1152 /* Tx DMA Initialization */
1153 val64 = 0;
1154 writeq(val64, &bar0->tx_fifo_partition_0);
1155 writeq(val64, &bar0->tx_fifo_partition_1);
1156 writeq(val64, &bar0->tx_fifo_partition_2);
1157 writeq(val64, &bar0->tx_fifo_partition_3);
1158
1159
1160 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1161 val64 |=
1162 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1163 13) | vBIT(config->tx_cfg[i].fifo_priority,
1164 ((i * 32) + 5), 3);
1165
1166 if (i == (config->tx_fifo_num - 1)) {
1167 if (i % 2 == 0)
1168 i++;
1169 }
1170
1171 switch (i) {
1172 case 1:
1173 writeq(val64, &bar0->tx_fifo_partition_0);
1174 val64 = 0;
1175 break;
1176 case 3:
1177 writeq(val64, &bar0->tx_fifo_partition_1);
1178 val64 = 0;
1179 break;
1180 case 5:
1181 writeq(val64, &bar0->tx_fifo_partition_2);
1182 val64 = 0;
1183 break;
1184 case 7:
1185 writeq(val64, &bar0->tx_fifo_partition_3);
1186 break;
1187 }
1188 }
1189
5e25b9dd
K
1190 /*
1191 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1192 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1193 */
541ae68f 1194 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1195 (nic->pdev->revision < 4))
5e25b9dd
K
1196 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1197
1da177e4
LT
1198 val64 = readq(&bar0->tx_fifo_partition_0);
1199 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1200 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1201
20346722
K
1202 /*
1203 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1204 * integrity checking.
1205 */
1206 val64 = readq(&bar0->tx_pa_cfg);
1207 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1208 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1209 writeq(val64, &bar0->tx_pa_cfg);
1210
1211 /* Rx DMA intialization. */
1212 val64 = 0;
1213 for (i = 0; i < config->rx_ring_num; i++) {
1214 val64 |=
1215 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1216 3);
1217 }
1218 writeq(val64, &bar0->rx_queue_priority);
1219
20346722
K
1220 /*
1221 * Allocating equal share of memory to all the
1da177e4
LT
1222 * configured Rings.
1223 */
1224 val64 = 0;
541ae68f
K
1225 if (nic->device_type & XFRAME_II_DEVICE)
1226 mem_size = 32;
1227 else
1228 mem_size = 64;
1229
1da177e4
LT
1230 for (i = 0; i < config->rx_ring_num; i++) {
1231 switch (i) {
1232 case 0:
20346722
K
1233 mem_share = (mem_size / config->rx_ring_num +
1234 mem_size % config->rx_ring_num);
1da177e4
LT
1235 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1236 continue;
1237 case 1:
20346722 1238 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1239 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1240 continue;
1241 case 2:
20346722 1242 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1243 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1244 continue;
1245 case 3:
20346722 1246 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1247 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1248 continue;
1249 case 4:
20346722 1250 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1251 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1252 continue;
1253 case 5:
20346722 1254 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1255 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1256 continue;
1257 case 6:
20346722 1258 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1259 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1260 continue;
1261 case 7:
20346722 1262 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1263 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1264 continue;
1265 }
1266 }
1267 writeq(val64, &bar0->rx_queue_cfg);
1268
20346722 1269 /*
5e25b9dd
K
1270 * Filling Tx round robin registers
1271 * as per the number of FIFOs
1da177e4 1272 */
5e25b9dd
K
1273 switch (config->tx_fifo_num) {
1274 case 1:
1275 val64 = 0x0000000000000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_0);
1277 writeq(val64, &bar0->tx_w_round_robin_1);
1278 writeq(val64, &bar0->tx_w_round_robin_2);
1279 writeq(val64, &bar0->tx_w_round_robin_3);
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1281 break;
1282 case 2:
1283 val64 = 0x0000010000010000ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000100000100ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0001000001000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0000010000010000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0100000000000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1293 break;
1294 case 3:
1295 val64 = 0x0001000102000001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020000010001ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0200000100010200ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001000102000001ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001020000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1305 break;
1306 case 4:
1307 val64 = 0x0001020300010200ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0100000102030001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0200010000010203ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0001020001000001ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0203000100000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1317 break;
1318 case 5:
1319 val64 = 0x0001000203000102ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0001020001030004ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0001000203000102ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0001020001030004ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0001000000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1329 break;
1330 case 6:
1331 val64 = 0x0001020304000102ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0304050001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0203000100000102ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304000102030405ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0001000200000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1341 break;
1342 case 7:
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->tx_w_round_robin_4);
1353 break;
1354 case 8:
1355 val64 = 0x0001020300040105ULL;
1356 writeq(val64, &bar0->tx_w_round_robin_0);
1357 val64 = 0x0200030106000204ULL;
1358 writeq(val64, &bar0->tx_w_round_robin_1);
1359 val64 = 0x0103000502010007ULL;
1360 writeq(val64, &bar0->tx_w_round_robin_2);
1361 val64 = 0x0304010002060500ULL;
1362 writeq(val64, &bar0->tx_w_round_robin_3);
1363 val64 = 0x0103020400000000ULL;
1364 writeq(val64, &bar0->tx_w_round_robin_4);
1365 break;
1366 }
1367
b41477f3 1368 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1369 val64 = readq(&bar0->tx_fifo_partition_0);
1370 val64 |= (TX_FIFO_PARTITION_EN);
1371 writeq(val64, &bar0->tx_fifo_partition_0);
1372
5e25b9dd
K
1373 /* Filling the Rx round robin registers as per the
1374 * number of Rings and steering based on QoS.
1375 */
1376 switch (config->rx_ring_num) {
1377 case 1:
1378 val64 = 0x8080808080808080ULL;
1379 writeq(val64, &bar0->rts_qos_steering);
1380 break;
1381 case 2:
1382 val64 = 0x0000010000010000ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_0);
1384 val64 = 0x0100000100000100ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_1);
1386 val64 = 0x0001000001000001ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_2);
1388 val64 = 0x0000010000010000ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_3);
1390 val64 = 0x0100000000000000ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_4);
1392
1393 val64 = 0x8080808040404040ULL;
1394 writeq(val64, &bar0->rts_qos_steering);
1395 break;
1396 case 3:
1397 val64 = 0x0001000102000001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_0);
1399 val64 = 0x0001020000010001ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_1);
1401 val64 = 0x0200000100010200ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_2);
1403 val64 = 0x0001000102000001ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_3);
1405 val64 = 0x0001020000000000ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_4);
1407
1408 val64 = 0x8080804040402020ULL;
1409 writeq(val64, &bar0->rts_qos_steering);
1410 break;
1411 case 4:
1412 val64 = 0x0001020300010200ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_0);
1414 val64 = 0x0100000102030001ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_1);
1416 val64 = 0x0200010000010203ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1418 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1419 writeq(val64, &bar0->rx_w_round_robin_3);
1420 val64 = 0x0203000100000000ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_4);
1422
1423 val64 = 0x8080404020201010ULL;
1424 writeq(val64, &bar0->rts_qos_steering);
1425 break;
1426 case 5:
1427 val64 = 0x0001000203000102ULL;
1428 writeq(val64, &bar0->rx_w_round_robin_0);
1429 val64 = 0x0001020001030004ULL;
1430 writeq(val64, &bar0->rx_w_round_robin_1);
1431 val64 = 0x0001000203000102ULL;
1432 writeq(val64, &bar0->rx_w_round_robin_2);
1433 val64 = 0x0001020001030004ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_3);
1435 val64 = 0x0001000000000000ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_4);
1437
1438 val64 = 0x8080404020201008ULL;
1439 writeq(val64, &bar0->rts_qos_steering);
1440 break;
1441 case 6:
1442 val64 = 0x0001020304000102ULL;
1443 writeq(val64, &bar0->rx_w_round_robin_0);
1444 val64 = 0x0304050001020001ULL;
1445 writeq(val64, &bar0->rx_w_round_robin_1);
1446 val64 = 0x0203000100000102ULL;
1447 writeq(val64, &bar0->rx_w_round_robin_2);
1448 val64 = 0x0304000102030405ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_3);
1450 val64 = 0x0001000200000000ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_4);
1452
1453 val64 = 0x8080404020100804ULL;
1454 writeq(val64, &bar0->rts_qos_steering);
1455 break;
1456 case 7:
1457 val64 = 0x0001020001020300ULL;
1458 writeq(val64, &bar0->rx_w_round_robin_0);
1459 val64 = 0x0102030400010203ULL;
1460 writeq(val64, &bar0->rx_w_round_robin_1);
1461 val64 = 0x0405060001020001ULL;
1462 writeq(val64, &bar0->rx_w_round_robin_2);
1463 val64 = 0x0304050000010200ULL;
1464 writeq(val64, &bar0->rx_w_round_robin_3);
1465 val64 = 0x0102030000000000ULL;
1466 writeq(val64, &bar0->rx_w_round_robin_4);
1467
1468 val64 = 0x8080402010080402ULL;
1469 writeq(val64, &bar0->rts_qos_steering);
1470 break;
1471 case 8:
1472 val64 = 0x0001020300040105ULL;
1473 writeq(val64, &bar0->rx_w_round_robin_0);
1474 val64 = 0x0200030106000204ULL;
1475 writeq(val64, &bar0->rx_w_round_robin_1);
1476 val64 = 0x0103000502010007ULL;
1477 writeq(val64, &bar0->rx_w_round_robin_2);
1478 val64 = 0x0304010002060500ULL;
1479 writeq(val64, &bar0->rx_w_round_robin_3);
1480 val64 = 0x0103020400000000ULL;
1481 writeq(val64, &bar0->rx_w_round_robin_4);
1482
1483 val64 = 0x8040201008040201ULL;
1484 writeq(val64, &bar0->rts_qos_steering);
1485 break;
1486 }
1da177e4
LT
1487
1488 /* UDP Fix */
1489 val64 = 0;
20346722 1490 for (i = 0; i < 8; i++)
1da177e4
LT
1491 writeq(val64, &bar0->rts_frm_len_n[i]);
1492
5e25b9dd
K
1493 /* Set the default rts frame length for the rings configured */
1494 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1495 for (i = 0 ; i < config->rx_ring_num ; i++)
1496 writeq(val64, &bar0->rts_frm_len_n[i]);
1497
1498 /* Set the frame length for the configured rings
1499 * desired by the user
1500 */
1501 for (i = 0; i < config->rx_ring_num; i++) {
1502 /* If rts_frm_len[i] == 0 then it is assumed that user not
1503 * specified frame length steering.
1504 * If the user provides the frame length then program
1505 * the rts_frm_len register for those values or else
1506 * leave it as it is.
1507 */
1508 if (rts_frm_len[i] != 0) {
1509 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1510 &bar0->rts_frm_len_n[i]);
1511 }
1512 }
8a4bdbaa 1513
9fc93a41
SS
1514 /* Disable differentiated services steering logic */
1515 for (i = 0; i < 64; i++) {
1516 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1517 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1518 dev->name);
1519 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1520 return -ENODEV;
9fc93a41
SS
1521 }
1522 }
1523
20346722 1524 /* Program statistics memory */
1da177e4 1525 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1526
541ae68f
K
1527 if (nic->device_type == XFRAME_II_DEVICE) {
1528 val64 = STAT_BC(0x320);
1529 writeq(val64, &bar0->stat_byte_cnt);
1530 }
1531
20346722 1532 /*
1da177e4
LT
1533 * Initializing the sampling rate for the device to calculate the
1534 * bandwidth utilization.
1535 */
1536 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1537 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1538 writeq(val64, &bar0->mac_link_util);
1539
1540
20346722
K
1541 /*
1542 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1543 * Scheme.
1544 */
20346722
K
1545 /*
1546 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1547 * 250 interrupts per sec. Continuous interrupts are enabled
1548 * by default.
1549 */
541ae68f
K
1550 if (nic->device_type == XFRAME_II_DEVICE) {
1551 int count = (nic->config.bus_speed * 125)/2;
1552 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1553 } else {
1554
1555 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1556 }
1557 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1558 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1559 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1560 if (use_continuous_tx_intrs)
1561 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1562 writeq(val64, &bar0->tti_data1_mem);
1563
1564 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1565 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1566 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1567 writeq(val64, &bar0->tti_data2_mem);
1568
1569 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1570 writeq(val64, &bar0->tti_command_mem);
1571
20346722 1572 /*
1da177e4
LT
1573 * Once the operation completes, the Strobe bit of the command
1574 * register will be reset. We poll for this particular condition
1575 * We wait for a maximum of 500ms for the operation to complete,
1576 * if it's not complete by then we return error.
1577 */
1578 time = 0;
1579 while (TRUE) {
1580 val64 = readq(&bar0->tti_command_mem);
1581 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1582 break;
1583 }
1584 if (time > 10) {
1585 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1586 dev->name);
9f74ffde 1587 return -ENODEV;
1da177e4
LT
1588 }
1589 msleep(50);
1590 time++;
1591 }
1592
8a4bdbaa
SS
1593 /* RTI Initialization */
1594 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1595 /*
8a4bdbaa
SS
1596 * Programmed to generate Apprx 500 Intrs per
1597 * second
1598 */
1599 int count = (nic->config.bus_speed * 125)/4;
1600 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1601 } else
1602 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1603 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1604 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1605 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1606
1607 writeq(val64, &bar0->rti_data1_mem);
1608
1609 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1610 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1611 if (nic->config.intr_type == MSI_X)
1612 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1613 RTI_DATA2_MEM_RX_UFC_D(0x40));
1614 else
1615 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1616 RTI_DATA2_MEM_RX_UFC_D(0x80));
1617 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1618
8a4bdbaa
SS
1619 for (i = 0; i < config->rx_ring_num; i++) {
1620 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1621 | RTI_CMD_MEM_OFFSET(i);
1622 writeq(val64, &bar0->rti_command_mem);
1da177e4 1623
8a4bdbaa
SS
1624 /*
1625 * Once the operation completes, the Strobe bit of the
1626 * command register will be reset. We poll for this
1627 * particular condition. We wait for a maximum of 500ms
1628 * for the operation to complete, if it's not complete
1629 * by then we return error.
1630 */
1631 time = 0;
1632 while (TRUE) {
1633 val64 = readq(&bar0->rti_command_mem);
1634 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1635 break;
b6e3f982 1636
8a4bdbaa
SS
1637 if (time > 10) {
1638 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1639 dev->name);
9f74ffde 1640 return -ENODEV;
b6e3f982 1641 }
8a4bdbaa
SS
1642 time++;
1643 msleep(50);
1da177e4 1644 }
1da177e4
LT
1645 }
1646
20346722
K
1647 /*
1648 * Initializing proper values as Pause threshold into all
1da177e4
LT
1649 * the 8 Queues on Rx side.
1650 */
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1652 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1653
1654 /* Disable RMAC PAD STRIPPING */
509a2671 1655 add = &bar0->mac_cfg;
1da177e4
LT
1656 val64 = readq(&bar0->mac_cfg);
1657 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1658 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1659 writel((u32) (val64), add);
1660 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1661 writel((u32) (val64 >> 32), (add + 4));
1662 val64 = readq(&bar0->mac_cfg);
1663
7d3d0439
RA
1664 /* Enable FCS stripping by adapter */
1665 add = &bar0->mac_cfg;
1666 val64 = readq(&bar0->mac_cfg);
1667 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1668 if (nic->device_type == XFRAME_II_DEVICE)
1669 writeq(val64, &bar0->mac_cfg);
1670 else {
1671 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1672 writel((u32) (val64), add);
1673 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1674 writel((u32) (val64 >> 32), (add + 4));
1675 }
1676
20346722
K
1677 /*
1678 * Set the time value to be inserted in the pause frame
1da177e4
LT
1679 * generated by xena.
1680 */
1681 val64 = readq(&bar0->rmac_pause_cfg);
1682 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1683 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1684 writeq(val64, &bar0->rmac_pause_cfg);
1685
20346722 1686 /*
1da177e4
LT
1687 * Set the Threshold Limit for Generating the pause frame
1688 * If the amount of data in any Queue exceeds ratio of
1689 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1690 * pause frame is generated
1691 */
1692 val64 = 0;
1693 for (i = 0; i < 4; i++) {
1694 val64 |=
1695 (((u64) 0xFF00 | nic->mac_control.
1696 mc_pause_threshold_q0q3)
1697 << (i * 2 * 8));
1698 }
1699 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1700
1701 val64 = 0;
1702 for (i = 0; i < 4; i++) {
1703 val64 |=
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q4q7)
1706 << (i * 2 * 8));
1707 }
1708 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1709
20346722
K
1710 /*
1711 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1712 * exceeded the limit pointed by shared_splits
1713 */
1714 val64 = readq(&bar0->pic_control);
1715 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1716 writeq(val64, &bar0->pic_control);
1717
863c11a9
AR
1718 if (nic->config.bus_speed == 266) {
1719 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1720 writeq(0x0, &bar0->read_retry_delay);
1721 writeq(0x0, &bar0->write_retry_delay);
1722 }
1723
541ae68f
K
1724 /*
1725 * Programming the Herc to split every write transaction
1726 * that does not start on an ADB to reduce disconnects.
1727 */
1728 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1729 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1730 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1731 writeq(val64, &bar0->misc_control);
1732 val64 = readq(&bar0->pic_control2);
b7b5a128 1733 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1734 writeq(val64, &bar0->pic_control2);
541ae68f 1735 }
c92ca04b
AR
1736 if (strstr(nic->product_name, "CX4")) {
1737 val64 = TMAC_AVG_IPG(0x17);
1738 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1739 }
1740
1da177e4
LT
1741 return SUCCESS;
1742}
a371a07d
K
1743#define LINK_UP_DOWN_INTERRUPT 1
1744#define MAC_RMAC_ERR_TIMER 2
1745
1ee6dd77 1746static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1747{
eaae7f72 1748 if (nic->config.intr_type != INTA)
cc6e7c44 1749 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1750 if (nic->device_type == XFRAME_II_DEVICE)
1751 return LINK_UP_DOWN_INTERRUPT;
1752 else
1753 return MAC_RMAC_ERR_TIMER;
1754}
8116f3cf 1755
9caab458
SS
1756/**
1757 * do_s2io_write_bits - update alarm bits in alarm register
1758 * @value: alarm bits
1759 * @flag: interrupt status
1760 * @addr: address value
1761 * Description: update alarm bits in alarm register
1762 * Return Value:
1763 * NONE.
1764 */
1765static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1766{
1767 u64 temp64;
1768
1769 temp64 = readq(addr);
1770
1771 if(flag == ENABLE_INTRS)
1772 temp64 &= ~((u64) value);
1773 else
1774 temp64 |= ((u64) value);
1775 writeq(temp64, addr);
1776}
1da177e4 1777
43b7c451 1778static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1779{
1780 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1781 register u64 gen_int_mask = 0;
1782
1783 if (mask & TX_DMA_INTR) {
1784
1785 gen_int_mask |= TXDMA_INT_M;
1786
1787 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1788 TXDMA_PCC_INT | TXDMA_TTI_INT |
1789 TXDMA_LSO_INT | TXDMA_TPA_INT |
1790 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1791
1792 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1793 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1794 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1795 &bar0->pfc_err_mask);
1796
1797 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1798 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1799 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1800
1801 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1802 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1803 PCC_N_SERR | PCC_6_COF_OV_ERR |
1804 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1805 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1806 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1807
1808 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1809 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1810
1811 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1812 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1813 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1814 flag, &bar0->lso_err_mask);
1815
1816 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1817 flag, &bar0->tpa_err_mask);
1818
1819 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1820
1821 }
1822
1823 if (mask & TX_MAC_INTR) {
1824 gen_int_mask |= TXMAC_INT_M;
1825 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1826 &bar0->mac_int_mask);
1827 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1828 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1829 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1830 flag, &bar0->mac_tmac_err_mask);
1831 }
1832
1833 if (mask & TX_XGXS_INTR) {
1834 gen_int_mask |= TXXGXS_INT_M;
1835 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1836 &bar0->xgxs_int_mask);
1837 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1838 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1839 flag, &bar0->xgxs_txgxs_err_mask);
1840 }
1841
1842 if (mask & RX_DMA_INTR) {
1843 gen_int_mask |= RXDMA_INT_M;
1844 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1845 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1846 flag, &bar0->rxdma_int_mask);
1847 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1848 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1849 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1850 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1851 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1852 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1853 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1854 &bar0->prc_pcix_err_mask);
1855 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1856 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1857 &bar0->rpa_err_mask);
1858 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1859 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1860 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1861 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1862 flag, &bar0->rda_err_mask);
1863 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1864 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1865 flag, &bar0->rti_err_mask);
1866 }
1867
1868 if (mask & RX_MAC_INTR) {
1869 gen_int_mask |= RXMAC_INT_M;
1870 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1871 &bar0->mac_int_mask);
1872 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1873 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1874 RMAC_DOUBLE_ECC_ERR |
1875 RMAC_LINK_STATE_CHANGE_INT,
1876 flag, &bar0->mac_rmac_err_mask);
1877 }
1878
1879 if (mask & RX_XGXS_INTR)
1880 {
1881 gen_int_mask |= RXXGXS_INT_M;
1882 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1883 &bar0->xgxs_int_mask);
1884 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1885 &bar0->xgxs_rxgxs_err_mask);
1886 }
1887
1888 if (mask & MC_INTR) {
1889 gen_int_mask |= MC_INT_M;
1890 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1891 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1892 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1893 &bar0->mc_err_mask);
1894 }
1895 nic->general_int_mask = gen_int_mask;
1896
1897 /* Remove this line when alarm interrupts are enabled */
1898 nic->general_int_mask = 0;
1899}
20346722
K
1900/**
1901 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1902 * @nic: device private variable,
1903 * @mask: A mask indicating which Intr block must be modified and,
1904 * @flag: A flag indicating whether to enable or disable the Intrs.
1905 * Description: This function will either disable or enable the interrupts
20346722
K
1906 * depending on the flag argument. The mask argument can be used to
1907 * enable/disable any Intr block.
1da177e4
LT
1908 * Return Value: NONE.
1909 */
1910
1911static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1912{
1ee6dd77 1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
1914 register u64 temp64 = 0, intr_mask = 0;
1915
1916 intr_mask = nic->general_int_mask;
1da177e4
LT
1917
1918 /* Top level interrupt classification */
1919 /* PIC Interrupts */
9caab458 1920 if (mask & TX_PIC_INTR) {
1da177e4 1921 /* Enable PIC Intrs in the general intr mask register */
9caab458 1922 intr_mask |= TXPIC_INT_M;
1da177e4 1923 if (flag == ENABLE_INTRS) {
20346722 1924 /*
a371a07d 1925 * If Hercules adapter enable GPIO otherwise
b41477f3 1926 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1927 * interrupts for now.
1928 * TODO
1da177e4 1929 */
a371a07d
K
1930 if (s2io_link_fault_indication(nic) ==
1931 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
1932 do_s2io_write_bits(PIC_INT_GPIO, flag,
1933 &bar0->pic_int_mask);
1934 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1935 &bar0->gpio_int_mask);
1936 } else
a371a07d 1937 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 1938 } else if (flag == DISABLE_INTRS) {
20346722
K
1939 /*
1940 * Disable PIC Intrs in the general
1941 * intr mask register
1da177e4
LT
1942 */
1943 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
1944 }
1945 }
1946
1da177e4
LT
1947 /* Tx traffic interrupts */
1948 if (mask & TX_TRAFFIC_INTR) {
9caab458 1949 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 1950 if (flag == ENABLE_INTRS) {
20346722 1951 /*
1da177e4 1952 * Enable all the Tx side interrupts
20346722 1953 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1954 */
1955 writeq(0x0, &bar0->tx_traffic_mask);
1956 } else if (flag == DISABLE_INTRS) {
20346722
K
1957 /*
1958 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1959 * register.
1960 */
1961 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
1962 }
1963 }
1964
1965 /* Rx traffic interrupts */
1966 if (mask & RX_TRAFFIC_INTR) {
9caab458 1967 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 1968 if (flag == ENABLE_INTRS) {
1da177e4
LT
1969 /* writing 0 Enables all 8 RX interrupt levels */
1970 writeq(0x0, &bar0->rx_traffic_mask);
1971 } else if (flag == DISABLE_INTRS) {
20346722
K
1972 /*
1973 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1974 * register.
1975 */
1976 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
1977 }
1978 }
9caab458
SS
1979
1980 temp64 = readq(&bar0->general_int_mask);
1981 if (flag == ENABLE_INTRS)
1982 temp64 &= ~((u64) intr_mask);
1983 else
1984 temp64 = DISABLE_ALL_INTRS;
1985 writeq(temp64, &bar0->general_int_mask);
1986
1987 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
1988}
1989
19a60522
SS
1990/**
1991 * verify_pcc_quiescent- Checks for PCC quiescent state
1992 * Return: 1 If PCC is quiescence
1993 * 0 If PCC is not quiescence
1994 */
1ee6dd77 1995static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1996{
19a60522 1997 int ret = 0, herc;
1ee6dd77 1998 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 1999 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2000
19a60522 2001 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
2002
2003 if (flag == FALSE) {
44c10138 2004 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2005 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2006 ret = 1;
19a60522
SS
2007 } else {
2008 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2009 ret = 1;
20346722
K
2010 }
2011 } else {
44c10138 2012 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2013 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2014 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2015 ret = 1;
5e25b9dd
K
2016 } else {
2017 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2018 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2019 ret = 1;
20346722
K
2020 }
2021 }
2022
2023 return ret;
2024}
2025/**
2026 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2027 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2028 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2029 * differs and the calling function passes the input argument flag to
2030 * indicate this.
20346722 2031 * Return: 1 If xena is quiescence
1da177e4
LT
2032 * 0 If Xena is not quiescence
2033 */
2034
1ee6dd77 2035static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2036{
19a60522 2037 int mode;
1ee6dd77 2038 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2039 u64 val64 = readq(&bar0->adapter_status);
2040 mode = s2io_verify_pci_mode(sp);
1da177e4 2041
19a60522
SS
2042 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2043 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2044 return 0;
2045 }
2046 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2047 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2048 return 0;
2049 }
2050 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2051 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2052 return 0;
2053 }
2054 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2055 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2056 return 0;
2057 }
2058 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2059 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2060 return 0;
2061 }
2062 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2063 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2064 return 0;
2065 }
2066 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2067 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2068 return 0;
2069 }
2070 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2071 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2072 return 0;
1da177e4
LT
2073 }
2074
19a60522
SS
2075 /*
2076 * In PCI 33 mode, the P_PLL is not used, and therefore,
2077 * the the P_PLL_LOCK bit in the adapter_status register will
2078 * not be asserted.
2079 */
2080 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2081 sp->device_type == XFRAME_II_DEVICE && mode !=
2082 PCI_MODE_PCI_33) {
2083 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2084 return 0;
2085 }
2086 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2087 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2088 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2089 return 0;
2090 }
2091 return 1;
1da177e4
LT
2092}
2093
2094/**
2095 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2096 * @sp: Pointer to device specifc structure
20346722 2097 * Description :
1da177e4
LT
2098 * New procedure to clear mac address reading problems on Alpha platforms
2099 *
2100 */
2101
1ee6dd77 2102static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2103{
1ee6dd77 2104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2105 u64 val64;
2106 int i = 0;
2107
2108 while (fix_mac[i] != END_SIGN) {
2109 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2110 udelay(10);
1da177e4
LT
2111 val64 = readq(&bar0->gpio_control);
2112 }
2113}
2114
2115/**
20346722 2116 * start_nic - Turns the device on
1da177e4 2117 * @nic : device private variable.
20346722
K
2118 * Description:
2119 * This function actually turns the device on. Before this function is
2120 * called,all Registers are configured from their reset states
2121 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2122 * calling this function, the device interrupts are cleared and the NIC is
2123 * literally switched on by writing into the adapter control register.
20346722 2124 * Return Value:
1da177e4
LT
2125 * SUCCESS on success and -1 on failure.
2126 */
2127
2128static int start_nic(struct s2io_nic *nic)
2129{
1ee6dd77 2130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2131 struct net_device *dev = nic->dev;
2132 register u64 val64 = 0;
20346722 2133 u16 subid, i;
1ee6dd77 2134 struct mac_info *mac_control;
1da177e4
LT
2135 struct config_param *config;
2136
2137 mac_control = &nic->mac_control;
2138 config = &nic->config;
2139
2140 /* PRC Initialization and configuration */
2141 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2142 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2143 &bar0->prc_rxd0_n[i]);
2144
2145 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2146 if (nic->rxd_mode == RXD_MODE_1)
2147 val64 |= PRC_CTRL_RC_ENABLED;
2148 else
2149 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2150 if (nic->device_type == XFRAME_II_DEVICE)
2151 val64 |= PRC_CTRL_GROUP_READS;
2152 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2153 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2154 writeq(val64, &bar0->prc_ctrl_n[i]);
2155 }
2156
da6971d8
AR
2157 if (nic->rxd_mode == RXD_MODE_3B) {
2158 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2159 val64 = readq(&bar0->rx_pa_cfg);
2160 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2161 writeq(val64, &bar0->rx_pa_cfg);
2162 }
1da177e4 2163
926930b2
SS
2164 if (vlan_tag_strip == 0) {
2165 val64 = readq(&bar0->rx_pa_cfg);
2166 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2167 writeq(val64, &bar0->rx_pa_cfg);
2168 vlan_strip_flag = 0;
2169 }
2170
20346722 2171 /*
1da177e4
LT
2172 * Enabling MC-RLDRAM. After enabling the device, we timeout
2173 * for around 100ms, which is approximately the time required
2174 * for the device to be ready for operation.
2175 */
2176 val64 = readq(&bar0->mc_rldram_mrs);
2177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2179 val64 = readq(&bar0->mc_rldram_mrs);
2180
20346722 2181 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2182
2183 /* Enabling ECC Protection. */
2184 val64 = readq(&bar0->adapter_control);
2185 val64 &= ~ADAPTER_ECC_EN;
2186 writeq(val64, &bar0->adapter_control);
2187
20346722
K
2188 /*
2189 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2190 * it.
2191 */
2192 val64 = readq(&bar0->adapter_status);
19a60522 2193 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2194 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2195 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2196 (unsigned long long) val64);
2197 return FAILURE;
2198 }
2199
20346722 2200 /*
1da177e4 2201 * With some switches, link might be already up at this point.
20346722
K
2202 * Because of this weird behavior, when we enable laser,
2203 * we may not get link. We need to handle this. We cannot
2204 * figure out which switch is misbehaving. So we are forced to
2205 * make a global change.
1da177e4
LT
2206 */
2207
2208 /* Enabling Laser. */
2209 val64 = readq(&bar0->adapter_control);
2210 val64 |= ADAPTER_EOI_TX_ON;
2211 writeq(val64, &bar0->adapter_control);
2212
c92ca04b
AR
2213 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2214 /*
2215 * Dont see link state interrupts initally on some switches,
2216 * so directly scheduling the link state task here.
2217 */
2218 schedule_work(&nic->set_link_task);
2219 }
1da177e4
LT
2220 /* SXE-002: Initialize link and activity LED */
2221 subid = nic->pdev->subsystem_device;
541ae68f
K
2222 if (((subid & 0xFF) >= 0x07) &&
2223 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2224 val64 = readq(&bar0->gpio_control);
2225 val64 |= 0x0000800000000000ULL;
2226 writeq(val64, &bar0->gpio_control);
2227 val64 = 0x0411040400000000ULL;
509a2671 2228 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2229 }
2230
1da177e4
LT
2231 return SUCCESS;
2232}
fed5eccd
AR
2233/**
2234 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2235 */
1ee6dd77
RB
2236static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2237 TxD *txdlp, int get_off)
fed5eccd 2238{
1ee6dd77 2239 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2240 struct sk_buff *skb;
1ee6dd77 2241 struct TxD *txds;
fed5eccd
AR
2242 u16 j, frg_cnt;
2243
2244 txds = txdlp;
26b7625c 2245 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2246 pci_unmap_single(nic->pdev, (dma_addr_t)
2247 txds->Buffer_Pointer, sizeof(u64),
2248 PCI_DMA_TODEVICE);
2249 txds++;
2250 }
2251
2252 skb = (struct sk_buff *) ((unsigned long)
2253 txds->Host_Control);
2254 if (!skb) {
1ee6dd77 2255 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2256 return NULL;
2257 }
2258 pci_unmap_single(nic->pdev, (dma_addr_t)
2259 txds->Buffer_Pointer,
2260 skb->len - skb->data_len,
2261 PCI_DMA_TODEVICE);
2262 frg_cnt = skb_shinfo(skb)->nr_frags;
2263 if (frg_cnt) {
2264 txds++;
2265 for (j = 0; j < frg_cnt; j++, txds++) {
2266 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2267 if (!txds->Buffer_Pointer)
2268 break;
6aa20a22 2269 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2270 txds->Buffer_Pointer,
2271 frag->size, PCI_DMA_TODEVICE);
2272 }
2273 }
1ee6dd77 2274 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2275 return(skb);
2276}
1da177e4 2277
20346722
K
2278/**
2279 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2280 * @nic : device private variable.
20346722 2281 * Description:
1da177e4 2282 * Free all queued Tx buffers.
20346722 2283 * Return Value: void
1da177e4
LT
2284*/
2285
2286static void free_tx_buffers(struct s2io_nic *nic)
2287{
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
1ee6dd77 2290 struct TxD *txdp;
1da177e4 2291 int i, j;
1ee6dd77 2292 struct mac_info *mac_control;
1da177e4 2293 struct config_param *config;
fed5eccd 2294 int cnt = 0;
1da177e4
LT
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 for (i = 0; i < config->tx_fifo_num; i++) {
2300 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2301 txdp = (struct TxD *) \
2302 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2303 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2304 if (skb) {
8a4bdbaa 2305 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2306 += skb->truesize;
fed5eccd
AR
2307 dev_kfree_skb(skb);
2308 cnt++;
1da177e4 2309 }
1da177e4
LT
2310 }
2311 DBG_PRINT(INTR_DBG,
2312 "%s:forcibly freeing %d skbs on FIFO%d\n",
2313 dev->name, cnt, i);
20346722
K
2314 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2315 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2316 }
2317}
2318
20346722
K
2319/**
2320 * stop_nic - To stop the nic
1da177e4 2321 * @nic ; device private variable.
20346722
K
2322 * Description:
2323 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2324 * function does. This function is called to stop the device.
2325 * Return Value:
2326 * void.
2327 */
2328
2329static void stop_nic(struct s2io_nic *nic)
2330{
1ee6dd77 2331 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2332 register u64 val64 = 0;
5d3213cc 2333 u16 interruptible;
1ee6dd77 2334 struct mac_info *mac_control;
1da177e4
LT
2335 struct config_param *config;
2336
2337 mac_control = &nic->mac_control;
2338 config = &nic->config;
2339
2340 /* Disable all interrupts */
9caab458 2341 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2342 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2343 interruptible |= TX_PIC_INTR;
1da177e4
LT
2344 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2345
5d3213cc
AR
2346 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 &= ~(ADAPTER_CNTL_EN);
2349 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2350}
2351
20346722
K
2352/**
2353 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2354 * @nic: device private variable
20346722
K
2355 * @ring_no: ring number
2356 * Description:
1da177e4
LT
2357 * The function allocates Rx side skbs and puts the physical
2358 * address of these buffers into the RxD buffer pointers, so that the NIC
2359 * can DMA the received frame into these locations.
2360 * The NIC supports 3 receive modes, viz
2361 * 1. single buffer,
2362 * 2. three buffer and
2363 * 3. Five buffer modes.
20346722
K
2364 * Each mode defines how many fragments the received frame will be split
2365 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2366 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2367 * is split into 3 fragments. As of now only single buffer mode is
2368 * supported.
2369 * Return Value:
2370 * SUCCESS on success or an appropriate -ve value on failure.
2371 */
2372
ac1f60db 2373static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2374{
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
1ee6dd77 2377 struct RxD_t *rxdp;
1da177e4 2378 int off, off1, size, block_no, block_no1;
1da177e4 2379 u32 alloc_tab = 0;
20346722 2380 u32 alloc_cnt;
1ee6dd77 2381 struct mac_info *mac_control;
1da177e4 2382 struct config_param *config;
20346722 2383 u64 tmp;
1ee6dd77 2384 struct buffAdd *ba;
1da177e4 2385 unsigned long flags;
1ee6dd77 2386 struct RxD_t *first_rxdp = NULL;
363dc367 2387 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
6d517a27
VP
2388 struct RxD1 *rxdp1;
2389 struct RxD3 *rxdp3;
491abf25 2390 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
1da177e4
LT
2391
2392 mac_control = &nic->mac_control;
2393 config = &nic->config;
20346722
K
2394 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2395 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2396
5d3213cc 2397 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2398 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2399 while (alloc_tab < alloc_cnt) {
20346722 2400 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2401 block_index;
20346722 2402 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2403
da6971d8
AR
2404 rxdp = mac_control->rings[ring_no].
2405 rx_blocks[block_no].rxds[off].virt_addr;
2406
2407 if ((block_no == block_no1) && (off == off1) &&
2408 (rxdp->Host_Control)) {
2409 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2410 dev->name);
1da177e4
LT
2411 DBG_PRINT(INTR_DBG, " info equated\n");
2412 goto end;
2413 }
da6971d8 2414 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2415 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2416 block_index++;
da6971d8
AR
2417 if (mac_control->rings[ring_no].rx_curr_put_info.
2418 block_index == mac_control->rings[ring_no].
2419 block_count)
2420 mac_control->rings[ring_no].rx_curr_put_info.
2421 block_index = 0;
2422 block_no = mac_control->rings[ring_no].
2423 rx_curr_put_info.block_index;
2424 if (off == rxd_count[nic->rxd_mode])
2425 off = 0;
20346722 2426 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2427 offset = off;
2428 rxdp = mac_control->rings[ring_no].
2429 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2430 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2431 dev->name, rxdp);
2432 }
db874e65
SS
2433 if(!napi) {
2434 spin_lock_irqsave(&nic->put_lock, flags);
2435 mac_control->rings[ring_no].put_pos =
2436 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2437 spin_unlock_irqrestore(&nic->put_lock, flags);
2438 } else {
2439 mac_control->rings[ring_no].put_pos =
2440 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2441 }
da6971d8 2442 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
6d517a27 2443 ((nic->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2444 (rxdp->Control_2 & s2BIT(0)))) {
20346722 2445 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2446 offset = off;
1da177e4
LT
2447 goto end;
2448 }
da6971d8
AR
2449 /* calculate size of skb based on ring mode */
2450 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2451 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2452 if (nic->rxd_mode == RXD_MODE_1)
2453 size += NET_IP_ALIGN;
da6971d8 2454 else
6d517a27 2455 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2456
da6971d8
AR
2457 /* allocate skb */
2458 skb = dev_alloc_skb(size);
2459 if(!skb) {
0c61ed5f
RV
2460 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2461 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2462 if (first_rxdp) {
2463 wmb();
2464 first_rxdp->Control_1 |= RXD_OWN_XENA;
2465 }
c53d4945
SH
2466 nic->mac_control.stats_info->sw_stat. \
2467 mem_alloc_fail_cnt++;
da6971d8
AR
2468 return -ENOMEM ;
2469 }
8a4bdbaa 2470 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 2471 += skb->truesize;
da6971d8
AR
2472 if (nic->rxd_mode == RXD_MODE_1) {
2473 /* 1 buffer mode - normal operation mode */
6d517a27 2474 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2475 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2476 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2477 rxdp1->Buffer0_ptr = pci_map_single
863c11a9
AR
2478 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2479 PCI_DMA_FROMDEVICE);
491abf25
VP
2480 if( (rxdp1->Buffer0_ptr == 0) ||
2481 (rxdp1->Buffer0_ptr ==
2482 DMA_ERROR_CODE))
2483 goto pci_map_failed;
2484
8a4bdbaa 2485 rxdp->Control_2 =
491976b2 2486 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8 2487
6d517a27 2488 } else if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8 2489 /*
6d517a27
VP
2490 * 2 buffer mode -
2491 * 2 buffer mode provides 128
da6971d8 2492 * byte aligned receive buffers.
da6971d8
AR
2493 */
2494
6d517a27 2495 rxdp3 = (struct RxD3*)rxdp;
491976b2 2496 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2497 Buffer0_ptr = rxdp3->Buffer0_ptr;
2498 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2499 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2500 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2501 rxdp3->Buffer0_ptr = Buffer0_ptr;
2502 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2503
da6971d8
AR
2504 ba = &mac_control->rings[ring_no].ba[block_no][off];
2505 skb_reserve(skb, BUF0_LEN);
2506 tmp = (u64)(unsigned long) skb->data;
2507 tmp += ALIGN_SIZE;
2508 tmp &= ~ALIGN_SIZE;
2509 skb->data = (void *) (unsigned long)tmp;
27a884dc 2510 skb_reset_tail_pointer(skb);
da6971d8 2511
6d517a27
VP
2512 if (!(rxdp3->Buffer0_ptr))
2513 rxdp3->Buffer0_ptr =
75c30b13 2514 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2515 PCI_DMA_FROMDEVICE);
75c30b13
AR
2516 else
2517 pci_dma_sync_single_for_device(nic->pdev,
6d517a27 2518 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2519 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2520 if( (rxdp3->Buffer0_ptr == 0) ||
2521 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2522 goto pci_map_failed;
2523
da6971d8
AR
2524 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2525 if (nic->rxd_mode == RXD_MODE_3B) {
2526 /* Two buffer mode */
2527
2528 /*
6aa20a22 2529 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2530 * L4 payload
2531 */
6d517a27 2532 rxdp3->Buffer2_ptr = pci_map_single
da6971d8
AR
2533 (nic->pdev, skb->data, dev->mtu + 4,
2534 PCI_DMA_FROMDEVICE);
2535
491abf25
VP
2536 if( (rxdp3->Buffer2_ptr == 0) ||
2537 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2538 goto pci_map_failed;
2539
2540 rxdp3->Buffer1_ptr =
6aa20a22 2541 pci_map_single(nic->pdev,
75c30b13
AR
2542 ba->ba_1, BUF1_LEN,
2543 PCI_DMA_FROMDEVICE);
491abf25
VP
2544 if( (rxdp3->Buffer1_ptr == 0) ||
2545 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2546 pci_unmap_single
2547 (nic->pdev,
3e847423 2548 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
2549 dev->mtu + 4,
2550 PCI_DMA_FROMDEVICE);
2551 goto pci_map_failed;
75c30b13 2552 }
da6971d8
AR
2553 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2554 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2555 (dev->mtu + 4);
da6971d8 2556 }
b7b5a128 2557 rxdp->Control_2 |= s2BIT(0);
1da177e4 2558 }
1da177e4 2559 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2560 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2561 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2562 off++;
da6971d8
AR
2563 if (off == (rxd_count[nic->rxd_mode] + 1))
2564 off = 0;
20346722 2565 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2566
da6971d8 2567 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2568 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2569 if (first_rxdp) {
2570 wmb();
2571 first_rxdp->Control_1 |= RXD_OWN_XENA;
2572 }
2573 first_rxdp = rxdp;
2574 }
1da177e4
LT
2575 atomic_inc(&nic->rx_bufs_left[ring_no]);
2576 alloc_tab++;
2577 }
2578
2579 end:
303bcb4b
K
2580 /* Transfer ownership of first descriptor to adapter just before
2581 * exiting. Before that, use memory barrier so that ownership
2582 * and other fields are seen by adapter correctly.
2583 */
2584 if (first_rxdp) {
2585 wmb();
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2587 }
2588
1da177e4 2589 return SUCCESS;
491abf25
VP
2590pci_map_failed:
2591 stats->pci_map_fail_cnt++;
2592 stats->mem_freed += skb->truesize;
2593 dev_kfree_skb_irq(skb);
2594 return -ENOMEM;
1da177e4
LT
2595}
2596
da6971d8
AR
2597static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2598{
2599 struct net_device *dev = sp->dev;
2600 int j;
2601 struct sk_buff *skb;
1ee6dd77
RB
2602 struct RxD_t *rxdp;
2603 struct mac_info *mac_control;
2604 struct buffAdd *ba;
6d517a27
VP
2605 struct RxD1 *rxdp1;
2606 struct RxD3 *rxdp3;
da6971d8
AR
2607
2608 mac_control = &sp->mac_control;
2609 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2610 rxdp = mac_control->rings[ring_no].
2611 rx_blocks[blk].rxds[j].virt_addr;
2612 skb = (struct sk_buff *)
2613 ((unsigned long) rxdp->Host_Control);
2614 if (!skb) {
2615 continue;
2616 }
2617 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2618 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2619 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2620 rxdp1->Buffer0_ptr,
2621 dev->mtu +
2622 HEADER_ETHERNET_II_802_3_SIZE
2623 + HEADER_802_2_SIZE +
2624 HEADER_SNAP_SIZE,
2625 PCI_DMA_FROMDEVICE);
1ee6dd77 2626 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2627 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2628 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2629 ba = &mac_control->rings[ring_no].
2630 ba[blk][j];
2631 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2632 rxdp3->Buffer0_ptr,
2633 BUF0_LEN,
da6971d8
AR
2634 PCI_DMA_FROMDEVICE);
2635 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2636 rxdp3->Buffer1_ptr,
2637 BUF1_LEN,
da6971d8
AR
2638 PCI_DMA_FROMDEVICE);
2639 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2640 rxdp3->Buffer2_ptr,
2641 dev->mtu + 4,
da6971d8 2642 PCI_DMA_FROMDEVICE);
1ee6dd77 2643 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2644 }
491976b2 2645 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2646 dev_kfree_skb(skb);
2647 atomic_dec(&sp->rx_bufs_left[ring_no]);
2648 }
2649}
2650
1da177e4 2651/**
20346722 2652 * free_rx_buffers - Frees all Rx buffers
1da177e4 2653 * @sp: device private variable.
20346722 2654 * Description:
1da177e4
LT
2655 * This function will free all Rx buffers allocated by host.
2656 * Return Value:
2657 * NONE.
2658 */
2659
2660static void free_rx_buffers(struct s2io_nic *sp)
2661{
2662 struct net_device *dev = sp->dev;
da6971d8 2663 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2664 struct mac_info *mac_control;
1da177e4 2665 struct config_param *config;
1da177e4
LT
2666
2667 mac_control = &sp->mac_control;
2668 config = &sp->config;
2669
2670 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2671 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2672 free_rxd_blk(sp,i,blk);
1da177e4 2673
20346722
K
2674 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2676 mac_control->rings[i].rx_curr_put_info.offset = 0;
2677 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2678 atomic_set(&sp->rx_bufs_left[i], 0);
2679 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2680 dev->name, buf_cnt, i);
2681 }
2682}
2683
2684/**
2685 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2686 * @napi : pointer to the napi structure.
20346722 2687 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2688 * during one pass through the 'Poll" function.
2689 * Description:
2690 * Comes into picture only if NAPI support has been incorporated. It does
2691 * the same thing that rx_intr_handler does, but not in a interrupt context
2692 * also It will process only a given number of packets.
2693 * Return value:
2694 * 0 on success and 1 if there are No Rx packets to be processed.
2695 */
2696
bea3348e 2697static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2698{
bea3348e
SH
2699 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2700 struct net_device *dev = nic->dev;
20346722 2701 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2702 struct mac_info *mac_control;
1da177e4 2703 struct config_param *config;
1ee6dd77 2704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2705 int i;
1da177e4
LT
2706
2707 mac_control = &nic->mac_control;
2708 config = &nic->config;
2709
bea3348e 2710 nic->pkts_to_process = budget;
20346722 2711 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2712
19a60522
SS
2713 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2714 readl(&bar0->rx_traffic_int);
1da177e4
LT
2715
2716 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2717 rx_intr_handler(&mac_control->rings[i]);
2718 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2719 if (!nic->pkts_to_process) {
2720 /* Quota for the current iteration has been met */
2721 goto no_rx;
1da177e4 2722 }
1da177e4 2723 }
1da177e4 2724
bea3348e 2725 netif_rx_complete(dev, napi);
1da177e4
LT
2726
2727 for (i = 0; i < config->rx_ring_num; i++) {
2728 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2729 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2730 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2731 break;
2732 }
2733 }
2734 /* Re enable the Rx interrupts. */
c92ca04b 2735 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2736 readl(&bar0->rx_traffic_mask);
bea3348e 2737 return pkt_cnt;
1da177e4 2738
20346722 2739no_rx:
1da177e4
LT
2740 for (i = 0; i < config->rx_ring_num; i++) {
2741 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2742 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2743 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2744 break;
2745 }
2746 }
bea3348e 2747 return pkt_cnt;
1da177e4 2748}
20346722 2749
b41477f3 2750#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2751/**
b41477f3 2752 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2753 * @dev : pointer to the device structure.
2754 * Description:
b41477f3
AR
2755 * This function will be called by upper layer to check for events on the
2756 * interface in situations where interrupts are disabled. It is used for
2757 * specific in-kernel networking tasks, such as remote consoles and kernel
2758 * debugging over the network (example netdump in RedHat).
612eff0e 2759 */
612eff0e
BH
2760static void s2io_netpoll(struct net_device *dev)
2761{
1ee6dd77
RB
2762 struct s2io_nic *nic = dev->priv;
2763 struct mac_info *mac_control;
612eff0e 2764 struct config_param *config;
1ee6dd77 2765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2766 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2767 int i;
2768
d796fdb7
LV
2769 if (pci_channel_offline(nic->pdev))
2770 return;
2771
612eff0e
BH
2772 disable_irq(dev->irq);
2773
612eff0e
BH
2774 mac_control = &nic->mac_control;
2775 config = &nic->config;
2776
612eff0e 2777 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2778 writeq(val64, &bar0->tx_traffic_int);
2779
6aa20a22 2780 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2781 * run out of skbs and will fail and eventually netpoll application such
2782 * as netdump will fail.
2783 */
2784 for (i = 0; i < config->tx_fifo_num; i++)
2785 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2786
b41477f3 2787 /* check for received packet and indicate up to network */
612eff0e
BH
2788 for (i = 0; i < config->rx_ring_num; i++)
2789 rx_intr_handler(&mac_control->rings[i]);
2790
2791 for (i = 0; i < config->rx_ring_num; i++) {
2792 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2793 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2794 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2795 break;
2796 }
2797 }
612eff0e
BH
2798 enable_irq(dev->irq);
2799 return;
2800}
2801#endif
2802
20346722 2803/**
1da177e4
LT
2804 * rx_intr_handler - Rx interrupt handler
2805 * @nic: device private variable.
20346722
K
2806 * Description:
2807 * If the interrupt is because of a received frame or if the
1da177e4 2808 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2809 * called. It picks out the RxD at which place the last Rx processing had
2810 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2811 * the offset.
2812 * Return Value:
2813 * NONE.
2814 */
1ee6dd77 2815static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2816{
1ee6dd77 2817 struct s2io_nic *nic = ring_data->nic;
1da177e4 2818 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2819 int get_block, put_block, put_offset;
1ee6dd77
RB
2820 struct rx_curr_get_info get_info, put_info;
2821 struct RxD_t *rxdp;
1da177e4 2822 struct sk_buff *skb;
20346722 2823 int pkt_cnt = 0;
7d3d0439 2824 int i;
6d517a27
VP
2825 struct RxD1* rxdp1;
2826 struct RxD3* rxdp3;
7d3d0439 2827
7ba013ac 2828 spin_lock(&nic->rx_lock);
7ba013ac 2829
20346722
K
2830 get_info = ring_data->rx_curr_get_info;
2831 get_block = get_info.block_index;
1ee6dd77 2832 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2833 put_block = put_info.block_index;
da6971d8 2834 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2835 if (!napi) {
2836 spin_lock(&nic->put_lock);
2837 put_offset = ring_data->put_pos;
2838 spin_unlock(&nic->put_lock);
2839 } else
2840 put_offset = ring_data->put_pos;
2841
da6971d8 2842 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2843 /*
2844 * If your are next to put index then it's
2845 * FIFO full condition
2846 */
da6971d8
AR
2847 if ((get_block == put_block) &&
2848 (get_info.offset + 1) == put_info.offset) {
75c30b13 2849 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2850 break;
2851 }
20346722
K
2852 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2853 if (skb == NULL) {
2854 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2855 dev->name);
2856 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2857 spin_unlock(&nic->rx_lock);
20346722 2858 return;
1da177e4 2859 }
da6971d8 2860 if (nic->rxd_mode == RXD_MODE_1) {
6d517a27 2861 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2862 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2863 rxdp1->Buffer0_ptr,
2864 dev->mtu +
2865 HEADER_ETHERNET_II_802_3_SIZE +
2866 HEADER_802_2_SIZE +
2867 HEADER_SNAP_SIZE,
2868 PCI_DMA_FROMDEVICE);
da6971d8 2869 } else if (nic->rxd_mode == RXD_MODE_3B) {
6d517a27 2870 rxdp3 = (struct RxD3*)rxdp;
75c30b13 2871 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
6d517a27
VP
2872 rxdp3->Buffer0_ptr,
2873 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2874 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2875 rxdp3->Buffer2_ptr,
2876 dev->mtu + 4,
2877 PCI_DMA_FROMDEVICE);
da6971d8 2878 }
863c11a9 2879 prefetch(skb->data);
20346722
K
2880 rx_osm_handler(ring_data, rxdp);
2881 get_info.offset++;
da6971d8
AR
2882 ring_data->rx_curr_get_info.offset = get_info.offset;
2883 rxdp = ring_data->rx_blocks[get_block].
2884 rxds[get_info.offset].virt_addr;
2885 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2886 get_info.offset = 0;
da6971d8 2887 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2888 get_block++;
da6971d8
AR
2889 if (get_block == ring_data->block_count)
2890 get_block = 0;
2891 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2892 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2893 }
1da177e4 2894
20346722 2895 nic->pkts_to_process -= 1;
db874e65 2896 if ((napi) && (!nic->pkts_to_process))
20346722 2897 break;
20346722 2898 pkt_cnt++;
1da177e4
LT
2899 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2900 break;
2901 }
7d3d0439
RA
2902 if (nic->lro) {
2903 /* Clear all LRO sessions before exiting */
2904 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2905 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2906 if (lro->in_use) {
2907 update_L3L4_header(nic, lro);
2908 queue_rx_frame(lro->parent);
2909 clear_lro_session(lro);
2910 }
2911 }
2912 }
2913
7ba013ac 2914 spin_unlock(&nic->rx_lock);
1da177e4 2915}
20346722
K
2916
2917/**
1da177e4
LT
2918 * tx_intr_handler - Transmit interrupt handler
2919 * @nic : device private variable
20346722
K
2920 * Description:
2921 * If an interrupt was raised to indicate DMA complete of the
2922 * Tx packet, this function is called. It identifies the last TxD
2923 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2924 * DMA'ed into the NICs internal memory.
2925 * Return Value:
2926 * NONE
2927 */
2928
1ee6dd77 2929static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2930{
1ee6dd77 2931 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2932 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2933 struct tx_curr_get_info get_info, put_info;
1da177e4 2934 struct sk_buff *skb;
1ee6dd77 2935 struct TxD *txdlp;
f9046eb3 2936 u8 err_mask;
1da177e4 2937
20346722 2938 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2939 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2940 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2941 list_virt_addr;
2942 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2943 (get_info.offset != put_info.offset) &&
2944 (txdlp->Host_Control)) {
2945 /* Check for TxD errors */
2946 if (txdlp->Control_1 & TXD_T_CODE) {
2947 unsigned long long err;
2948 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2949 if (err & 0x1) {
2950 nic->mac_control.stats_info->sw_stat.
2951 parity_err_cnt++;
2952 }
491976b2
SH
2953
2954 /* update t_code statistics */
f9046eb3
OH
2955 err_mask = err >> 48;
2956 switch(err_mask) {
491976b2
SH
2957 case 2:
2958 nic->mac_control.stats_info->sw_stat.
2959 tx_buf_abort_cnt++;
2960 break;
2961
2962 case 3:
2963 nic->mac_control.stats_info->sw_stat.
2964 tx_desc_abort_cnt++;
2965 break;
2966
2967 case 7:
2968 nic->mac_control.stats_info->sw_stat.
2969 tx_parity_err_cnt++;
2970 break;
2971
2972 case 10:
2973 nic->mac_control.stats_info->sw_stat.
2974 tx_link_loss_cnt++;
2975 break;
2976
2977 case 15:
2978 nic->mac_control.stats_info->sw_stat.
2979 tx_list_proc_err_cnt++;
2980 break;
2981 }
20346722 2982 }
1da177e4 2983
fed5eccd 2984 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2985 if (skb == NULL) {
2986 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2987 __FUNCTION__);
2988 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2989 return;
2990 }
2991
20346722 2992 /* Updating the statistics block */
20346722 2993 nic->stats.tx_bytes += skb->len;
491976b2 2994 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
2995 dev_kfree_skb_irq(skb);
2996
2997 get_info.offset++;
863c11a9
AR
2998 if (get_info.offset == get_info.fifo_len + 1)
2999 get_info.offset = 0;
1ee6dd77 3000 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
3001 [get_info.offset].list_virt_addr;
3002 fifo_data->tx_curr_get_info.offset =
3003 get_info.offset;
1da177e4
LT
3004 }
3005
3006 spin_lock(&nic->tx_lock);
3007 if (netif_queue_stopped(dev))
3008 netif_wake_queue(dev);
3009 spin_unlock(&nic->tx_lock);
3010}
3011
bd1034f0
AR
3012/**
3013 * s2io_mdio_write - Function to write in to MDIO registers
3014 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3015 * @addr : address value
3016 * @value : data value
3017 * @dev : pointer to net_device structure
3018 * Description:
3019 * This function is used to write values to the MDIO registers
3020 * NONE
3021 */
3022static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3023{
3024 u64 val64 = 0x0;
1ee6dd77
RB
3025 struct s2io_nic *sp = dev->priv;
3026 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3027
3028 //address transaction
3029 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3030 | MDIO_MMD_DEV_ADDR(mmd_type)
3031 | MDIO_MMS_PRT_ADDR(0x0);
3032 writeq(val64, &bar0->mdio_control);
3033 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3034 writeq(val64, &bar0->mdio_control);
3035 udelay(100);
3036
3037 //Data transaction
3038 val64 = 0x0;
3039 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040 | MDIO_MMD_DEV_ADDR(mmd_type)
3041 | MDIO_MMS_PRT_ADDR(0x0)
3042 | MDIO_MDIO_DATA(value)
3043 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3044 writeq(val64, &bar0->mdio_control);
3045 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3046 writeq(val64, &bar0->mdio_control);
3047 udelay(100);
3048
3049 val64 = 0x0;
3050 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3051 | MDIO_MMD_DEV_ADDR(mmd_type)
3052 | MDIO_MMS_PRT_ADDR(0x0)
3053 | MDIO_OP(MDIO_OP_READ_TRANS);
3054 writeq(val64, &bar0->mdio_control);
3055 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3056 writeq(val64, &bar0->mdio_control);
3057 udelay(100);
3058
3059}
3060
3061/**
3062 * s2io_mdio_read - Function to write in to MDIO registers
3063 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3064 * @addr : address value
3065 * @dev : pointer to net_device structure
3066 * Description:
3067 * This function is used to read values to the MDIO registers
3068 * NONE
3069 */
3070static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3071{
3072 u64 val64 = 0x0;
3073 u64 rval64 = 0x0;
1ee6dd77
RB
3074 struct s2io_nic *sp = dev->priv;
3075 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3076
3077 /* address transaction */
3078 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3079 | MDIO_MMD_DEV_ADDR(mmd_type)
3080 | MDIO_MMS_PRT_ADDR(0x0);
3081 writeq(val64, &bar0->mdio_control);
3082 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083 writeq(val64, &bar0->mdio_control);
3084 udelay(100);
3085
3086 /* Data transaction */
3087 val64 = 0x0;
3088 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3089 | MDIO_MMD_DEV_ADDR(mmd_type)
3090 | MDIO_MMS_PRT_ADDR(0x0)
3091 | MDIO_OP(MDIO_OP_READ_TRANS);
3092 writeq(val64, &bar0->mdio_control);
3093 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64, &bar0->mdio_control);
3095 udelay(100);
3096
3097 /* Read the value from regs */
3098 rval64 = readq(&bar0->mdio_control);
3099 rval64 = rval64 & 0xFFFF0000;
3100 rval64 = rval64 >> 16;
3101 return rval64;
3102}
3103/**
3104 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3105 * @counter : couter value to be updated
3106 * @flag : flag to indicate the status
3107 * @type : counter type
3108 * Description:
3109 * This function is to check the status of the xpak counters value
3110 * NONE
3111 */
3112
3113static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3114{
3115 u64 mask = 0x3;
3116 u64 val64;
3117 int i;
3118 for(i = 0; i <index; i++)
3119 mask = mask << 0x2;
3120
3121 if(flag > 0)
3122 {
3123 *counter = *counter + 1;
3124 val64 = *regs_stat & mask;
3125 val64 = val64 >> (index * 0x2);
3126 val64 = val64 + 1;
3127 if(val64 == 3)
3128 {
3129 switch(type)
3130 {
3131 case 1:
3132 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3133 "service. Excessive temperatures may "
3134 "result in premature transceiver "
3135 "failure \n");
3136 break;
3137 case 2:
3138 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3139 "service Excessive bias currents may "
3140 "indicate imminent laser diode "
3141 "failure \n");
3142 break;
3143 case 3:
3144 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3145 "service Excessive laser output "
3146 "power may saturate far-end "
3147 "receiver\n");
3148 break;
3149 default:
3150 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3151 "type \n");
3152 }
3153 val64 = 0x0;
3154 }
3155 val64 = val64 << (index * 0x2);
3156 *regs_stat = (*regs_stat & (~mask)) | (val64);
3157
3158 } else {
3159 *regs_stat = *regs_stat & (~mask);
3160 }
3161}
3162
3163/**
3164 * s2io_updt_xpak_counter - Function to update the xpak counters
3165 * @dev : pointer to net_device struct
3166 * Description:
3167 * This function is to upate the status of the xpak counters value
3168 * NONE
3169 */
3170static void s2io_updt_xpak_counter(struct net_device *dev)
3171{
3172 u16 flag = 0x0;
3173 u16 type = 0x0;
3174 u16 val16 = 0x0;
3175 u64 val64 = 0x0;
3176 u64 addr = 0x0;
3177
1ee6dd77
RB
3178 struct s2io_nic *sp = dev->priv;
3179 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3180
3181 /* Check the communication with the MDIO slave */
3182 addr = 0x0000;
3183 val64 = 0x0;
3184 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3185 if((val64 == 0xFFFF) || (val64 == 0x0000))
3186 {
3187 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3188 "Returned %llx\n", (unsigned long long)val64);
3189 return;
3190 }
3191
3192 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3193 if(val64 != 0x2040)
3194 {
3195 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3196 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3197 (unsigned long long)val64);
3198 return;
3199 }
3200
3201 /* Loading the DOM register to MDIO register */
3202 addr = 0xA100;
3203 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3204 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3205
3206 /* Reading the Alarm flags */
3207 addr = 0xA070;
3208 val64 = 0x0;
3209 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3210
3211 flag = CHECKBIT(val64, 0x7);
3212 type = 1;
3213 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3214 &stat_info->xpak_stat.xpak_regs_stat,
3215 0x0, flag, type);
3216
3217 if(CHECKBIT(val64, 0x6))
3218 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3219
3220 flag = CHECKBIT(val64, 0x3);
3221 type = 2;
3222 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3223 &stat_info->xpak_stat.xpak_regs_stat,
3224 0x2, flag, type);
3225
3226 if(CHECKBIT(val64, 0x2))
3227 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3228
3229 flag = CHECKBIT(val64, 0x1);
3230 type = 3;
3231 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3232 &stat_info->xpak_stat.xpak_regs_stat,
3233 0x4, flag, type);
3234
3235 if(CHECKBIT(val64, 0x0))
3236 stat_info->xpak_stat.alarm_laser_output_power_low++;
3237
3238 /* Reading the Warning flags */
3239 addr = 0xA074;
3240 val64 = 0x0;
3241 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3242
3243 if(CHECKBIT(val64, 0x7))
3244 stat_info->xpak_stat.warn_transceiver_temp_high++;
3245
3246 if(CHECKBIT(val64, 0x6))
3247 stat_info->xpak_stat.warn_transceiver_temp_low++;
3248
3249 if(CHECKBIT(val64, 0x3))
3250 stat_info->xpak_stat.warn_laser_bias_current_high++;
3251
3252 if(CHECKBIT(val64, 0x2))
3253 stat_info->xpak_stat.warn_laser_bias_current_low++;
3254
3255 if(CHECKBIT(val64, 0x1))
3256 stat_info->xpak_stat.warn_laser_output_power_high++;
3257
3258 if(CHECKBIT(val64, 0x0))
3259 stat_info->xpak_stat.warn_laser_output_power_low++;
3260}
3261
20346722 3262/**
1da177e4 3263 * wait_for_cmd_complete - waits for a command to complete.
20346722 3264 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3265 * s2io_nic structure.
20346722
K
3266 * Description: Function that waits for a command to Write into RMAC
3267 * ADDR DATA registers to be completed and returns either success or
3268 * error depending on whether the command was complete or not.
1da177e4
LT
3269 * Return value:
3270 * SUCCESS on success and FAILURE on failure.
3271 */
3272
9fc93a41
SS
3273static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3274 int bit_state)
1da177e4 3275{
9fc93a41 3276 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3277 u64 val64;
3278
9fc93a41
SS
3279 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3280 return FAILURE;
3281
3282 do {
c92ca04b 3283 val64 = readq(addr);
9fc93a41
SS
3284 if (bit_state == S2IO_BIT_RESET) {
3285 if (!(val64 & busy_bit)) {
3286 ret = SUCCESS;
3287 break;
3288 }
3289 } else {
3290 if (!(val64 & busy_bit)) {
3291 ret = SUCCESS;
3292 break;
3293 }
1da177e4 3294 }
c92ca04b
AR
3295
3296 if(in_interrupt())
9fc93a41 3297 mdelay(delay);
c92ca04b 3298 else
9fc93a41 3299 msleep(delay);
c92ca04b 3300
9fc93a41
SS
3301 if (++cnt >= 10)
3302 delay = 50;
3303 } while (cnt < 20);
1da177e4
LT
3304 return ret;
3305}
19a60522
SS
3306/*
3307 * check_pci_device_id - Checks if the device id is supported
3308 * @id : device id
3309 * Description: Function to check if the pci device id is supported by driver.
3310 * Return value: Actual device id if supported else PCI_ANY_ID
3311 */
3312static u16 check_pci_device_id(u16 id)
3313{
3314 switch (id) {
3315 case PCI_DEVICE_ID_HERC_WIN:
3316 case PCI_DEVICE_ID_HERC_UNI:
3317 return XFRAME_II_DEVICE;
3318 case PCI_DEVICE_ID_S2IO_UNI:
3319 case PCI_DEVICE_ID_S2IO_WIN:
3320 return XFRAME_I_DEVICE;
3321 default:
3322 return PCI_ANY_ID;
3323 }
3324}
1da177e4 3325
20346722
K
3326/**
3327 * s2io_reset - Resets the card.
1da177e4
LT
3328 * @sp : private member of the device structure.
3329 * Description: Function to Reset the card. This function then also
20346722 3330 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3331 * the card reset also resets the configuration space.
3332 * Return value:
3333 * void.
3334 */
3335
1ee6dd77 3336static void s2io_reset(struct s2io_nic * sp)
1da177e4 3337{
1ee6dd77 3338 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3339 u64 val64;
5e25b9dd 3340 u16 subid, pci_cmd;
19a60522
SS
3341 int i;
3342 u16 val16;
491976b2
SH
3343 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3344 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3345
19a60522
SS
3346 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3347 __FUNCTION__, sp->dev->name);
1da177e4 3348
0b1f7ebe 3349 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3350 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3351
1da177e4
LT
3352 val64 = SW_RESET_ALL;
3353 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3354 if (strstr(sp->product_name, "CX4")) {
3355 msleep(750);
3356 }
19a60522
SS
3357 msleep(250);
3358 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3359
19a60522
SS
3360 /* Restore the PCI state saved during initialization. */
3361 pci_restore_state(sp->pdev);
3362 pci_read_config_word(sp->pdev, 0x2, &val16);
3363 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3364 break;
3365 msleep(200);
3366 }
1da177e4 3367
19a60522
SS
3368 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3369 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3370 }
3371
3372 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3373
3374 s2io_init_pci(sp);
1da177e4 3375
20346722
K
3376 /* Set swapper to enable I/O register access */
3377 s2io_set_swapper(sp);
3378
cc6e7c44
RA
3379 /* Restore the MSIX table entries from local variables */
3380 restore_xmsi_data(sp);
3381
5e25b9dd 3382 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3383 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3384 /* Clear "detected parity error" bit */
303bcb4b 3385 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3386
303bcb4b
K
3387 /* Clearing PCIX Ecc status register */
3388 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3389
303bcb4b 3390 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3391 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3392 }
5e25b9dd 3393
20346722
K
3394 /* Reset device statistics maintained by OS */
3395 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3396
491976b2
SH
3397 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3398 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3399 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3400 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3401 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3402 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3403 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3404 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3405 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3406 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3407 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3408 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3409 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3410 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3411 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3412 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3413 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3414 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3415 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3416
1da177e4
LT
3417 /* SXE-002: Configure link and activity LED to turn it off */
3418 subid = sp->pdev->subsystem_device;
541ae68f
K
3419 if (((subid & 0xFF) >= 0x07) &&
3420 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3421 val64 = readq(&bar0->gpio_control);
3422 val64 |= 0x0000800000000000ULL;
3423 writeq(val64, &bar0->gpio_control);
3424 val64 = 0x0411040400000000ULL;
509a2671 3425 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3426 }
3427
541ae68f
K
3428 /*
3429 * Clear spurious ECC interrupts that would have occured on
3430 * XFRAME II cards after reset.
3431 */
3432 if (sp->device_type == XFRAME_II_DEVICE) {
3433 val64 = readq(&bar0->pcc_err_reg);
3434 writeq(val64, &bar0->pcc_err_reg);
3435 }
3436
d8d70caf 3437 /* restore the previously assigned mac address */
2fd37688 3438 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
d8d70caf 3439
1da177e4
LT
3440 sp->device_enabled_once = FALSE;
3441}
3442
3443/**
20346722
K
3444 * s2io_set_swapper - to set the swapper controle on the card
3445 * @sp : private member of the device structure,
1da177e4 3446 * pointer to the s2io_nic structure.
20346722 3447 * Description: Function to set the swapper control on the card
1da177e4
LT
3448 * correctly depending on the 'endianness' of the system.
3449 * Return value:
3450 * SUCCESS on success and FAILURE on failure.
3451 */
3452
1ee6dd77 3453static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3454{
3455 struct net_device *dev = sp->dev;
1ee6dd77 3456 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3457 u64 val64, valt, valr;
3458
20346722 3459 /*
1da177e4
LT
3460 * Set proper endian settings and verify the same by reading
3461 * the PIF Feed-back register.
3462 */
3463
3464 val64 = readq(&bar0->pif_rd_swapper_fb);
3465 if (val64 != 0x0123456789ABCDEFULL) {
3466 int i = 0;
3467 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3468 0x8100008181000081ULL, /* FE=1, SE=0 */
3469 0x4200004242000042ULL, /* FE=0, SE=1 */
3470 0}; /* FE=0, SE=0 */
3471
3472 while(i<4) {
3473 writeq(value[i], &bar0->swapper_ctrl);
3474 val64 = readq(&bar0->pif_rd_swapper_fb);
3475 if (val64 == 0x0123456789ABCDEFULL)
3476 break;
3477 i++;
3478 }
3479 if (i == 4) {
3480 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3481 dev->name);
3482 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3483 (unsigned long long) val64);
3484 return FAILURE;
3485 }
3486 valr = value[i];
3487 } else {
3488 valr = readq(&bar0->swapper_ctrl);
3489 }
3490
3491 valt = 0x0123456789ABCDEFULL;
3492 writeq(valt, &bar0->xmsi_address);
3493 val64 = readq(&bar0->xmsi_address);
3494
3495 if(val64 != valt) {
3496 int i = 0;
3497 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3498 0x0081810000818100ULL, /* FE=1, SE=0 */
3499 0x0042420000424200ULL, /* FE=0, SE=1 */
3500 0}; /* FE=0, SE=0 */
3501
3502 while(i<4) {
3503 writeq((value[i] | valr), &bar0->swapper_ctrl);
3504 writeq(valt, &bar0->xmsi_address);
3505 val64 = readq(&bar0->xmsi_address);
3506 if(val64 == valt)
3507 break;
3508 i++;
3509 }
3510 if(i == 4) {
20346722 3511 unsigned long long x = val64;
1da177e4 3512 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3513 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3514 return FAILURE;
3515 }
3516 }
3517 val64 = readq(&bar0->swapper_ctrl);
3518 val64 &= 0xFFFF000000000000ULL;
3519
3520#ifdef __BIG_ENDIAN
20346722
K
3521 /*
3522 * The device by default set to a big endian format, so a
1da177e4
LT
3523 * big endian driver need not set anything.
3524 */
3525 val64 |= (SWAPPER_CTRL_TXP_FE |
3526 SWAPPER_CTRL_TXP_SE |
3527 SWAPPER_CTRL_TXD_R_FE |
3528 SWAPPER_CTRL_TXD_W_FE |
3529 SWAPPER_CTRL_TXF_R_FE |
3530 SWAPPER_CTRL_RXD_R_FE |
3531 SWAPPER_CTRL_RXD_W_FE |
3532 SWAPPER_CTRL_RXF_W_FE |
3533 SWAPPER_CTRL_XMSI_FE |
1da177e4 3534 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3535 if (sp->config.intr_type == INTA)
cc6e7c44 3536 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3537 writeq(val64, &bar0->swapper_ctrl);
3538#else
20346722 3539 /*
1da177e4 3540 * Initially we enable all bits to make it accessible by the
20346722 3541 * driver, then we selectively enable only those bits that
1da177e4
LT
3542 * we want to set.
3543 */
3544 val64 |= (SWAPPER_CTRL_TXP_FE |
3545 SWAPPER_CTRL_TXP_SE |
3546 SWAPPER_CTRL_TXD_R_FE |
3547 SWAPPER_CTRL_TXD_R_SE |
3548 SWAPPER_CTRL_TXD_W_FE |
3549 SWAPPER_CTRL_TXD_W_SE |
3550 SWAPPER_CTRL_TXF_R_FE |
3551 SWAPPER_CTRL_RXD_R_FE |
3552 SWAPPER_CTRL_RXD_R_SE |
3553 SWAPPER_CTRL_RXD_W_FE |
3554 SWAPPER_CTRL_RXD_W_SE |
3555 SWAPPER_CTRL_RXF_W_FE |
3556 SWAPPER_CTRL_XMSI_FE |
1da177e4 3557 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3558 if (sp->config.intr_type == INTA)
cc6e7c44 3559 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3560 writeq(val64, &bar0->swapper_ctrl);
3561#endif
3562 val64 = readq(&bar0->swapper_ctrl);
3563
20346722
K
3564 /*
3565 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3566 * feedback register.
3567 */
3568 val64 = readq(&bar0->pif_rd_swapper_fb);
3569 if (val64 != 0x0123456789ABCDEFULL) {
3570 /* Endian settings are incorrect, calls for another dekko. */
3571 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3572 dev->name);
3573 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3574 (unsigned long long) val64);
3575 return FAILURE;
3576 }
3577
3578 return SUCCESS;
3579}
3580
1ee6dd77 3581static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3582{
1ee6dd77 3583 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3584 u64 val64;
3585 int ret = 0, cnt = 0;
3586
3587 do {
3588 val64 = readq(&bar0->xmsi_access);
b7b5a128 3589 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3590 break;
3591 mdelay(1);
3592 cnt++;
3593 } while(cnt < 5);
3594 if (cnt == 5) {
3595 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3596 ret = 1;
3597 }
3598
3599 return ret;
3600}
3601
1ee6dd77 3602static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3603{
1ee6dd77 3604 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3605 u64 val64;
3606 int i;
3607
75c30b13 3608 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3609 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3610 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
b7b5a128 3611 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3612 writeq(val64, &bar0->xmsi_access);
3613 if (wait_for_msix_trans(nic, i)) {
3614 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3615 continue;
3616 }
3617 }
3618}
3619
1ee6dd77 3620static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3621{
1ee6dd77 3622 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3623 u64 val64, addr, data;
3624 int i;
3625
3626 /* Store and display */
75c30b13 3627 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
b7b5a128 3628 val64 = (s2BIT(15) | vBIT(i, 26, 6));
cc6e7c44
RA
3629 writeq(val64, &bar0->xmsi_access);
3630 if (wait_for_msix_trans(nic, i)) {
3631 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3632 continue;
3633 }
3634 addr = readq(&bar0->xmsi_address);
3635 data = readq(&bar0->xmsi_data);
3636 if (addr && data) {
3637 nic->msix_info[i].addr = addr;
3638 nic->msix_info[i].data = data;
3639 }
3640 }
3641}
3642
1ee6dd77 3643static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3644{
1ee6dd77 3645 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3646 u64 tx_mat, rx_mat;
3647 u16 msi_control; /* Temp variable */
3648 int ret, i, j, msix_indx = 1;
3649
bd684e43 3650 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
cc6e7c44 3651 GFP_KERNEL);
bd684e43 3652 if (!nic->entries) {
491976b2
SH
3653 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3654 __FUNCTION__);
c53d4945 3655 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3656 return -ENOMEM;
3657 }
8a4bdbaa 3658 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3659 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3660
3661 nic->s2io_entries =
bd684e43 3662 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
cc6e7c44 3663 GFP_KERNEL);
bd684e43 3664 if (!nic->s2io_entries) {
8a4bdbaa 3665 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
491976b2 3666 __FUNCTION__);
c53d4945 3667 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3668 kfree(nic->entries);
8a4bdbaa 3669 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3670 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3671 return -ENOMEM;
3672 }
8a4bdbaa 3673 nic->mac_control.stats_info->sw_stat.mem_allocated
491976b2 3674 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3675
3676 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3677 nic->entries[i].entry = i;
3678 nic->s2io_entries[i].entry = i;
3679 nic->s2io_entries[i].arg = NULL;
3680 nic->s2io_entries[i].in_use = 0;
3681 }
3682
3683 tx_mat = readq(&bar0->tx_mat0_n[0]);
3684 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3685 tx_mat |= TX_MAT_SET(i, msix_indx);
3686 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3687 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3688 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3689 }
3690 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3691
8a4bdbaa
SS
3692 rx_mat = readq(&bar0->rx_mat);
3693 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3694 rx_mat |= RX_MAT_SET(j, msix_indx);
3695 nic->s2io_entries[msix_indx].arg
3696 = &nic->mac_control.rings[j];
3697 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3698 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
cc6e7c44 3699 }
8a4bdbaa 3700 writeq(rx_mat, &bar0->rx_mat);
cc6e7c44 3701
c92ca04b 3702 nic->avail_msix_vectors = 0;
cc6e7c44 3703 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3704 /* We fail init if error or we get less vectors than min required */
3705 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3706 nic->avail_msix_vectors = ret;
3707 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3708 }
cc6e7c44
RA
3709 if (ret) {
3710 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3711 kfree(nic->entries);
8a4bdbaa 3712 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3713 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3714 kfree(nic->s2io_entries);
8a4bdbaa 3715 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 3716 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3717 nic->entries = NULL;
3718 nic->s2io_entries = NULL;
c92ca04b 3719 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3720 return -ENOMEM;
3721 }
c92ca04b
AR
3722 if (!nic->avail_msix_vectors)
3723 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3724
3725 /*
3726 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3727 * in the herc NIC. (Temp change, needs to be removed later)
3728 */
3729 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3730 msi_control |= 0x1; /* Enable MSI */
3731 pci_write_config_word(nic->pdev, 0x42, msi_control);
3732
3733 return 0;
3734}
3735
8abc4d5b 3736/* Handle software interrupt used during MSI(X) test */
33390a70 3737static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3738{
3739 struct s2io_nic *sp = dev_id;
3740
3741 sp->msi_detected = 1;
3742 wake_up(&sp->msi_wait);
3743
3744 return IRQ_HANDLED;
3745}
3746
3747/* Test interrupt path by forcing a a software IRQ */
33390a70 3748static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3749{
3750 struct pci_dev *pdev = sp->pdev;
3751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3752 int err;
3753 u64 val64, saved64;
3754
3755 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3756 sp->name, sp);
3757 if (err) {
3758 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3759 sp->dev->name, pci_name(pdev), pdev->irq);
3760 return err;
3761 }
3762
3763 init_waitqueue_head (&sp->msi_wait);
3764 sp->msi_detected = 0;
3765
3766 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3767 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3768 val64 |= SCHED_INT_CTRL_TIMER_EN;
3769 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3770 writeq(val64, &bar0->scheduled_int_ctrl);
3771
3772 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3773
3774 if (!sp->msi_detected) {
3775 /* MSI(X) test failed, go back to INTx mode */
3776 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3777 "using MSI(X) during test\n", sp->dev->name,
3778 pci_name(pdev));
3779
3780 err = -EOPNOTSUPP;
3781 }
3782
3783 free_irq(sp->entries[1].vector, sp);
3784
3785 writeq(saved64, &bar0->scheduled_int_ctrl);
3786
3787 return err;
3788}
18b2b7bd
SH
3789
3790static void remove_msix_isr(struct s2io_nic *sp)
3791{
3792 int i;
3793 u16 msi_control;
3794
3795 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3796 if (sp->s2io_entries[i].in_use ==
3797 MSIX_REGISTERED_SUCCESS) {
3798 int vector = sp->entries[i].vector;
3799 void *arg = sp->s2io_entries[i].arg;
3800 free_irq(vector, arg);
3801 }
3802 }
3803
3804 kfree(sp->entries);
3805 kfree(sp->s2io_entries);
3806 sp->entries = NULL;
3807 sp->s2io_entries = NULL;
3808
3809 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3810 msi_control &= 0xFFFE; /* Disable MSI */
3811 pci_write_config_word(sp->pdev, 0x42, msi_control);
3812
3813 pci_disable_msix(sp->pdev);
3814}
3815
3816static void remove_inta_isr(struct s2io_nic *sp)
3817{
3818 struct net_device *dev = sp->dev;
3819
3820 free_irq(sp->pdev->irq, dev);
3821}
3822
1da177e4
LT
3823/* ********************************************************* *
3824 * Functions defined below concern the OS part of the driver *
3825 * ********************************************************* */
3826
20346722 3827/**
1da177e4
LT
3828 * s2io_open - open entry point of the driver
3829 * @dev : pointer to the device structure.
3830 * Description:
3831 * This function is the open entry point of the driver. It mainly calls a
3832 * function to allocate Rx buffers and inserts them into the buffer
20346722 3833 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3834 * Return value:
3835 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3836 * file on failure.
3837 */
3838
ac1f60db 3839static int s2io_open(struct net_device *dev)
1da177e4 3840{
1ee6dd77 3841 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3842 int err = 0;
3843
20346722
K
3844 /*
3845 * Make sure you have link off by default every time
1da177e4
LT
3846 * Nic is initialized
3847 */
3848 netif_carrier_off(dev);
0b1f7ebe 3849 sp->last_link_state = 0;
1da177e4 3850
bea3348e
SH
3851 napi_enable(&sp->napi);
3852
eaae7f72 3853 if (sp->config.intr_type == MSI_X) {
8abc4d5b
SS
3854 int ret = s2io_enable_msi_x(sp);
3855
3856 if (!ret) {
8abc4d5b 3857 ret = s2io_test_msi(sp);
8abc4d5b 3858 /* rollback MSI-X, will re-enable during add_isr() */
18b2b7bd 3859 remove_msix_isr(sp);
8abc4d5b
SS
3860 }
3861 if (ret) {
3862
3863 DBG_PRINT(ERR_DBG,
3864 "%s: MSI-X requested but failed to enable\n",
3865 dev->name);
eaae7f72 3866 sp->config.intr_type = INTA;
8abc4d5b
SS
3867 }
3868 }
3869
c77dd43e 3870 /* NAPI doesn't work well with MSI(X) */
eaae7f72 3871 if (sp->config.intr_type != INTA) {
c77dd43e
SS
3872 if(sp->config.napi)
3873 sp->config.napi = 0;
3874 }
3875
1da177e4 3876 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3877 err = s2io_card_up(sp);
3878 if (err) {
1da177e4
LT
3879 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3880 dev->name);
e6a8fee2 3881 goto hw_init_failed;
1da177e4
LT
3882 }
3883
2fd37688 3884 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3885 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3886 s2io_card_down(sp);
20346722 3887 err = -ENODEV;
e6a8fee2 3888 goto hw_init_failed;
1da177e4
LT
3889 }
3890
3891 netif_start_queue(dev);
3892 return 0;
20346722 3893
20346722 3894hw_init_failed:
bea3348e 3895 napi_disable(&sp->napi);
eaae7f72 3896 if (sp->config.intr_type == MSI_X) {
491976b2 3897 if (sp->entries) {
cc6e7c44 3898 kfree(sp->entries);
8a4bdbaa 3899 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
3900 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3901 }
3902 if (sp->s2io_entries) {
cc6e7c44 3903 kfree(sp->s2io_entries);
8a4bdbaa 3904 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2
SH
3905 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3906 }
cc6e7c44 3907 }
20346722 3908 return err;
1da177e4
LT
3909}
3910
3911/**
3912 * s2io_close -close entry point of the driver
3913 * @dev : device pointer.
3914 * Description:
3915 * This is the stop entry point of the driver. It needs to undo exactly
3916 * whatever was done by the open entry point,thus it's usually referred to
3917 * as the close function.Among other things this function mainly stops the
3918 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3919 * Return value:
3920 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3921 * file on failure.
3922 */
3923
ac1f60db 3924static int s2io_close(struct net_device *dev)
1da177e4 3925{
1ee6dd77 3926 struct s2io_nic *sp = dev->priv;
cc6e7c44 3927
9f74ffde
SH
3928 /* Return if the device is already closed *
3929 * Can happen when s2io_card_up failed in change_mtu *
3930 */
3931 if (!is_s2io_card_up(sp))
3932 return 0;
3933
1da177e4 3934 netif_stop_queue(dev);
bea3348e 3935 napi_disable(&sp->napi);
1da177e4 3936 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3937 s2io_card_down(sp);
cc6e7c44 3938
1da177e4
LT
3939 return 0;
3940}
3941
3942/**
3943 * s2io_xmit - Tx entry point of te driver
3944 * @skb : the socket buffer containing the Tx data.
3945 * @dev : device pointer.
3946 * Description :
3947 * This function is the Tx entry point of the driver. S2IO NIC supports
3948 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3949 * NOTE: when device cant queue the pkt,just the trans_start variable will
3950 * not be upadted.
3951 * Return value:
3952 * 0 on success & 1 on failure.
3953 */
3954
ac1f60db 3955static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3956{
1ee6dd77 3957 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3958 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3959 register u64 val64;
1ee6dd77
RB
3960 struct TxD *txdp;
3961 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3962 unsigned long flags;
be3a6b02
K
3963 u16 vlan_tag = 0;
3964 int vlan_priority = 0;
1ee6dd77 3965 struct mac_info *mac_control;
1da177e4 3966 struct config_param *config;
75c30b13 3967 int offload_type;
491abf25 3968 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3969
3970 mac_control = &sp->mac_control;
3971 config = &sp->config;
3972
20346722 3973 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
3974
3975 if (unlikely(skb->len <= 0)) {
3976 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3977 dev_kfree_skb_any(skb);
3978 return 0;
3979}
3980
1da177e4 3981 spin_lock_irqsave(&sp->tx_lock, flags);
92b84437 3982 if (!is_s2io_card_up(sp)) {
20346722 3983 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3984 dev->name);
3985 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3986 dev_kfree_skb(skb);
3987 return 0;
1da177e4
LT
3988 }
3989
3990 queue = 0;
be3a6b02
K
3991 /* Get Fifo number to Transmit based on vlan priority */
3992 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3993 vlan_tag = vlan_tx_tag_get(skb);
3994 vlan_priority = vlan_tag >> 13;
3995 queue = config->fifo_mapping[vlan_priority];
3996 }
3997
20346722
K
3998 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3999 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 4000 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
4001 list_virt_addr;
4002
4003 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 4004 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4005 if (txdp->Host_Control ||
4006 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4007 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
4008 netif_stop_queue(dev);
4009 dev_kfree_skb(skb);
4010 spin_unlock_irqrestore(&sp->tx_lock, flags);
4011 return 0;
4012 }
0b1f7ebe 4013
75c30b13 4014 offload_type = s2io_offload_type(skb);
75c30b13 4015 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4016 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4017 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4018 }
84fa7933 4019 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4020 txdp->Control_2 |=
4021 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4022 TXD_TX_CKO_UDP_EN);
4023 }
fed5eccd
AR
4024 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4025 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 4026 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 4027
be3a6b02
K
4028 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4029 txdp->Control_2 |= TXD_VLAN_ENABLE;
4030 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4031 }
4032
fed5eccd 4033 frg_len = skb->len - skb->data_len;
75c30b13 4034 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4035 int ufo_size;
4036
75c30b13 4037 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4038 ufo_size &= ~7;
4039 txdp->Control_1 |= TXD_UFO_EN;
4040 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4041 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4042#ifdef __BIG_ENDIAN
4043 sp->ufo_in_band_v[put_off] =
4044 (u64)skb_shinfo(skb)->ip6_frag_id;
4045#else
4046 sp->ufo_in_band_v[put_off] =
4047 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4048#endif
4049 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4050 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4051 sp->ufo_in_band_v,
4052 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
4053 if((txdp->Buffer_Pointer == 0) ||
4054 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4055 goto pci_map_failed;
fed5eccd 4056 txdp++;
fed5eccd 4057 }
1da177e4 4058
fed5eccd
AR
4059 txdp->Buffer_Pointer = pci_map_single
4060 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
4061 if((txdp->Buffer_Pointer == 0) ||
4062 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4063 goto pci_map_failed;
4064
fed5eccd
AR
4065 txdp->Host_Control = (unsigned long) skb;
4066 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4067 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4068 txdp->Control_1 |= TXD_UFO_EN;
4069
4070 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4071 /* For fragmented SKB. */
4072 for (i = 0; i < frg_cnt; i++) {
4073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4074 /* A '0' length fragment will be ignored */
4075 if (!frag->size)
4076 continue;
1da177e4
LT
4077 txdp++;
4078 txdp->Buffer_Pointer = (u64) pci_map_page
4079 (sp->pdev, frag->page, frag->page_offset,
4080 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4081 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4082 if (offload_type == SKB_GSO_UDP)
fed5eccd 4083 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4084 }
4085 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4086
75c30b13 4087 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4088 frg_cnt++; /* as Txd0 was used for inband header */
4089
1da177e4 4090 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 4091 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
4092 writeq(val64, &tx_fifo->TxDL_Pointer);
4093
4094 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4095 TX_FIFO_LAST_LIST);
75c30b13 4096 if (offload_type)
fed5eccd 4097 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4098
1da177e4
LT
4099 writeq(val64, &tx_fifo->List_Control);
4100
303bcb4b
K
4101 mmiowb();
4102
1da177e4 4103 put_off++;
863c11a9
AR
4104 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4105 put_off = 0;
20346722 4106 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4107
4108 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4109 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4110 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4111 DBG_PRINT(TX_DBG,
4112 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4113 put_off, get_off);
4114 netif_stop_queue(dev);
4115 }
491976b2 4116 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4
LT
4117 dev->trans_start = jiffies;
4118 spin_unlock_irqrestore(&sp->tx_lock, flags);
4119
491abf25
VP
4120 return 0;
4121pci_map_failed:
4122 stats->pci_map_fail_cnt++;
4123 netif_stop_queue(dev);
4124 stats->mem_freed += skb->truesize;
4125 dev_kfree_skb(skb);
4126 spin_unlock_irqrestore(&sp->tx_lock, flags);
1da177e4
LT
4127 return 0;
4128}
4129
25fff88e
K
4130static void
4131s2io_alarm_handle(unsigned long data)
4132{
1ee6dd77 4133 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4134 struct net_device *dev = sp->dev;
25fff88e 4135
8116f3cf 4136 s2io_handle_errors(dev);
25fff88e
K
4137 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4138}
4139
1ee6dd77 4140static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4141{
4142 int rxb_size, level;
4143
4144 if (!sp->lro) {
4145 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4146 level = rx_buffer_level(sp, rxb_size, rng_n);
4147
4148 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4149 int ret;
4150 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4151 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4152 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4153 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4154 __FUNCTION__);
4155 clear_bit(0, (&sp->tasklet_status));
4156 return -1;
4157 }
4158 clear_bit(0, (&sp->tasklet_status));
4159 } else if (level == LOW)
4160 tasklet_schedule(&sp->task);
4161
4162 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4163 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4164 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4165 }
4166 return 0;
4167}
4168
7d12e780 4169static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4170{
1ee6dd77
RB
4171 struct ring_info *ring = (struct ring_info *)dev_id;
4172 struct s2io_nic *sp = ring->nic;
cc6e7c44 4173
596c5c97 4174 if (!is_s2io_card_up(sp))
92b84437 4175 return IRQ_HANDLED;
92b84437 4176
75c30b13
AR
4177 rx_intr_handler(ring);
4178 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4179
cc6e7c44
RA
4180 return IRQ_HANDLED;
4181}
4182
7d12e780 4183static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4184{
1ee6dd77
RB
4185 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4186 struct s2io_nic *sp = fifo->nic;
cc6e7c44 4187
596c5c97 4188 if (!is_s2io_card_up(sp))
92b84437 4189 return IRQ_HANDLED;
92b84437 4190
cc6e7c44 4191 tx_intr_handler(fifo);
cc6e7c44
RA
4192 return IRQ_HANDLED;
4193}
1ee6dd77 4194static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4195{
1ee6dd77 4196 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4197 u64 val64;
4198
4199 val64 = readq(&bar0->pic_int_status);
4200 if (val64 & PIC_INT_GPIO) {
4201 val64 = readq(&bar0->gpio_int_reg);
4202 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4203 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4204 /*
4205 * This is unstable state so clear both up/down
4206 * interrupt and adapter to re-evaluate the link state.
4207 */
a371a07d
K
4208 val64 |= GPIO_INT_REG_LINK_DOWN;
4209 val64 |= GPIO_INT_REG_LINK_UP;
4210 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4211 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4212 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4213 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4214 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4215 }
c92ca04b
AR
4216 else if (val64 & GPIO_INT_REG_LINK_UP) {
4217 val64 = readq(&bar0->adapter_status);
c92ca04b 4218 /* Enable Adapter */
19a60522
SS
4219 val64 = readq(&bar0->adapter_control);
4220 val64 |= ADAPTER_CNTL_EN;
4221 writeq(val64, &bar0->adapter_control);
4222 val64 |= ADAPTER_LED_ON;
4223 writeq(val64, &bar0->adapter_control);
4224 if (!sp->device_enabled_once)
4225 sp->device_enabled_once = 1;
c92ca04b 4226
19a60522
SS
4227 s2io_link(sp, LINK_UP);
4228 /*
4229 * unmask link down interrupt and mask link-up
4230 * intr
4231 */
4232 val64 = readq(&bar0->gpio_int_mask);
4233 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4234 val64 |= GPIO_INT_MASK_LINK_UP;
4235 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4236
c92ca04b
AR
4237 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4238 val64 = readq(&bar0->adapter_status);
19a60522
SS
4239 s2io_link(sp, LINK_DOWN);
4240 /* Link is down so unmaks link up interrupt */
4241 val64 = readq(&bar0->gpio_int_mask);
4242 val64 &= ~GPIO_INT_MASK_LINK_UP;
4243 val64 |= GPIO_INT_MASK_LINK_DOWN;
4244 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4245
4246 /* turn off LED */
4247 val64 = readq(&bar0->adapter_control);
4248 val64 = val64 &(~ADAPTER_LED_ON);
4249 writeq(val64, &bar0->adapter_control);
a371a07d
K
4250 }
4251 }
c92ca04b 4252 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4253}
4254
8116f3cf
SS
4255/**
4256 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4257 * @value: alarm bits
4258 * @addr: address value
4259 * @cnt: counter variable
4260 * Description: Check for alarm and increment the counter
4261 * Return Value:
4262 * 1 - if alarm bit set
4263 * 0 - if alarm bit is not set
4264 */
43b7c451 4265static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4266 unsigned long long *cnt)
4267{
4268 u64 val64;
4269 val64 = readq(addr);
4270 if ( val64 & value ) {
4271 writeq(val64, addr);
4272 (*cnt)++;
4273 return 1;
4274 }
4275 return 0;
4276
4277}
4278
4279/**
4280 * s2io_handle_errors - Xframe error indication handler
4281 * @nic: device private variable
4282 * Description: Handle alarms such as loss of link, single or
4283 * double ECC errors, critical and serious errors.
4284 * Return Value:
4285 * NONE
4286 */
4287static void s2io_handle_errors(void * dev_id)
4288{
4289 struct net_device *dev = (struct net_device *) dev_id;
4290 struct s2io_nic *sp = dev->priv;
4291 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4292 u64 temp64 = 0,val64=0;
4293 int i = 0;
4294
4295 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4296 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4297
92b84437 4298 if (!is_s2io_card_up(sp))
8116f3cf
SS
4299 return;
4300
4301 if (pci_channel_offline(sp->pdev))
4302 return;
4303
4304 memset(&sw_stat->ring_full_cnt, 0,
4305 sizeof(sw_stat->ring_full_cnt));
4306
4307 /* Handling the XPAK counters update */
4308 if(stats->xpak_timer_count < 72000) {
4309 /* waiting for an hour */
4310 stats->xpak_timer_count++;
4311 } else {
4312 s2io_updt_xpak_counter(dev);
4313 /* reset the count to zero */
4314 stats->xpak_timer_count = 0;
4315 }
4316
4317 /* Handling link status change error Intr */
4318 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4319 val64 = readq(&bar0->mac_rmac_err_reg);
4320 writeq(val64, &bar0->mac_rmac_err_reg);
4321 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4322 schedule_work(&sp->set_link_task);
4323 }
4324
4325 /* In case of a serious error, the device will be Reset. */
4326 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4327 &sw_stat->serious_err_cnt))
4328 goto reset;
4329
4330 /* Check for data parity error */
4331 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4332 &sw_stat->parity_err_cnt))
4333 goto reset;
4334
4335 /* Check for ring full counter */
4336 if (sp->device_type == XFRAME_II_DEVICE) {
4337 val64 = readq(&bar0->ring_bump_counter1);
4338 for (i=0; i<4; i++) {
4339 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4340 temp64 >>= 64 - ((i+1)*16);
4341 sw_stat->ring_full_cnt[i] += temp64;
4342 }
4343
4344 val64 = readq(&bar0->ring_bump_counter2);
4345 for (i=0; i<4; i++) {
4346 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4347 temp64 >>= 64 - ((i+1)*16);
4348 sw_stat->ring_full_cnt[i+4] += temp64;
4349 }
4350 }
4351
4352 val64 = readq(&bar0->txdma_int_status);
4353 /*check for pfc_err*/
4354 if (val64 & TXDMA_PFC_INT) {
4355 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4356 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4357 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4358 &sw_stat->pfc_err_cnt))
4359 goto reset;
4360 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4361 &sw_stat->pfc_err_cnt);
4362 }
4363
4364 /*check for tda_err*/
4365 if (val64 & TXDMA_TDA_INT) {
4366 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4367 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4368 &sw_stat->tda_err_cnt))
4369 goto reset;
4370 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4371 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4372 }
4373 /*check for pcc_err*/
4374 if (val64 & TXDMA_PCC_INT) {
4375 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4376 | PCC_N_SERR | PCC_6_COF_OV_ERR
4377 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4378 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4379 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4380 &sw_stat->pcc_err_cnt))
4381 goto reset;
4382 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4383 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4384 }
4385
4386 /*check for tti_err*/
4387 if (val64 & TXDMA_TTI_INT) {
4388 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4389 &sw_stat->tti_err_cnt))
4390 goto reset;
4391 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4392 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4393 }
4394
4395 /*check for lso_err*/
4396 if (val64 & TXDMA_LSO_INT) {
4397 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4398 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4399 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4400 goto reset;
4401 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4402 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4403 }
4404
4405 /*check for tpa_err*/
4406 if (val64 & TXDMA_TPA_INT) {
4407 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4408 &sw_stat->tpa_err_cnt))
4409 goto reset;
4410 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4411 &sw_stat->tpa_err_cnt);
4412 }
4413
4414 /*check for sm_err*/
4415 if (val64 & TXDMA_SM_INT) {
4416 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4417 &sw_stat->sm_err_cnt))
4418 goto reset;
4419 }
4420
4421 val64 = readq(&bar0->mac_int_status);
4422 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4423 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4424 &bar0->mac_tmac_err_reg,
4425 &sw_stat->mac_tmac_err_cnt))
4426 goto reset;
4427 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4428 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4429 &bar0->mac_tmac_err_reg,
4430 &sw_stat->mac_tmac_err_cnt);
4431 }
4432
4433 val64 = readq(&bar0->xgxs_int_status);
4434 if (val64 & XGXS_INT_STATUS_TXGXS) {
4435 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4436 &bar0->xgxs_txgxs_err_reg,
4437 &sw_stat->xgxs_txgxs_err_cnt))
4438 goto reset;
4439 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4440 &bar0->xgxs_txgxs_err_reg,
4441 &sw_stat->xgxs_txgxs_err_cnt);
4442 }
4443
4444 val64 = readq(&bar0->rxdma_int_status);
4445 if (val64 & RXDMA_INT_RC_INT_M) {
4446 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4447 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4448 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4449 goto reset;
4450 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4451 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4452 &sw_stat->rc_err_cnt);
4453 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4454 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4455 &sw_stat->prc_pcix_err_cnt))
4456 goto reset;
4457 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4458 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4459 &sw_stat->prc_pcix_err_cnt);
4460 }
4461
4462 if (val64 & RXDMA_INT_RPA_INT_M) {
4463 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4464 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4465 goto reset;
4466 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4467 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4468 }
4469
4470 if (val64 & RXDMA_INT_RDA_INT_M) {
4471 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4472 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4473 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4474 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4475 goto reset;
4476 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4477 | RDA_MISC_ERR | RDA_PCIX_ERR,
4478 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4479 }
4480
4481 if (val64 & RXDMA_INT_RTI_INT_M) {
4482 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4483 &sw_stat->rti_err_cnt))
4484 goto reset;
4485 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4486 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4487 }
4488
4489 val64 = readq(&bar0->mac_int_status);
4490 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4491 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4492 &bar0->mac_rmac_err_reg,
4493 &sw_stat->mac_rmac_err_cnt))
4494 goto reset;
4495 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4496 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4497 &sw_stat->mac_rmac_err_cnt);
4498 }
4499
4500 val64 = readq(&bar0->xgxs_int_status);
4501 if (val64 & XGXS_INT_STATUS_RXGXS) {
4502 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4503 &bar0->xgxs_rxgxs_err_reg,
4504 &sw_stat->xgxs_rxgxs_err_cnt))
4505 goto reset;
4506 }
4507
4508 val64 = readq(&bar0->mc_int_status);
4509 if(val64 & MC_INT_STATUS_MC_INT) {
4510 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4511 &sw_stat->mc_err_cnt))
4512 goto reset;
4513
4514 /* Handling Ecc errors */
4515 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4516 writeq(val64, &bar0->mc_err_reg);
4517 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4518 sw_stat->double_ecc_errs++;
4519 if (sp->device_type != XFRAME_II_DEVICE) {
4520 /*
4521 * Reset XframeI only if critical error
4522 */
4523 if (val64 &
4524 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4525 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4526 goto reset;
4527 }
4528 } else
4529 sw_stat->single_ecc_errs++;
4530 }
4531 }
4532 return;
4533
4534reset:
4535 netif_stop_queue(dev);
4536 schedule_work(&sp->rst_timer_task);
4537 sw_stat->soft_reset_cnt++;
4538 return;
4539}
4540
1da177e4
LT
4541/**
4542 * s2io_isr - ISR handler of the device .
4543 * @irq: the irq of the device.
4544 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4545 * Description: This function is the ISR handler of the device. It
4546 * identifies the reason for the interrupt and calls the relevant
4547 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4548 * recv buffers, if their numbers are below the panic value which is
4549 * presently set to 25% of the original number of rcv buffers allocated.
4550 * Return value:
20346722 4551 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4552 * IRQ_NONE: will be returned if interrupt is not from our device
4553 */
7d12e780 4554static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4555{
4556 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4557 struct s2io_nic *sp = dev->priv;
4558 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4559 int i;
19a60522 4560 u64 reason = 0;
1ee6dd77 4561 struct mac_info *mac_control;
1da177e4
LT
4562 struct config_param *config;
4563
d796fdb7
LV
4564 /* Pretend we handled any irq's from a disconnected card */
4565 if (pci_channel_offline(sp->pdev))
4566 return IRQ_NONE;
4567
596c5c97 4568 if (!is_s2io_card_up(sp))
92b84437 4569 return IRQ_NONE;
92b84437 4570
1da177e4
LT
4571 mac_control = &sp->mac_control;
4572 config = &sp->config;
4573
20346722 4574 /*
1da177e4
LT
4575 * Identify the cause for interrupt and call the appropriate
4576 * interrupt handler. Causes for the interrupt could be;
4577 * 1. Rx of packet.
4578 * 2. Tx complete.
4579 * 3. Link down.
1da177e4
LT
4580 */
4581 reason = readq(&bar0->general_int_status);
4582
596c5c97
SS
4583 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4584 /* Nothing much can be done. Get out */
4585 return IRQ_HANDLED;
1da177e4 4586 }
5d3213cc 4587
596c5c97
SS
4588 if (reason & (GEN_INTR_RXTRAFFIC |
4589 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4590 {
4591 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4592
4593 if (config->napi) {
4594 if (reason & GEN_INTR_RXTRAFFIC) {
4595 if (likely(netif_rx_schedule_prep(dev,
4596 &sp->napi))) {
4597 __netif_rx_schedule(dev, &sp->napi);
4598 writeq(S2IO_MINUS_ONE,
4599 &bar0->rx_traffic_mask);
4600 } else
4601 writeq(S2IO_MINUS_ONE,
4602 &bar0->rx_traffic_int);
db874e65 4603 }
596c5c97
SS
4604 } else {
4605 /*
4606 * rx_traffic_int reg is an R1 register, writing all 1's
4607 * will ensure that the actual interrupt causing bit
4608 * get's cleared and hence a read can be avoided.
4609 */
4610 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4611 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4612
4613 for (i = 0; i < config->rx_ring_num; i++)
4614 rx_intr_handler(&mac_control->rings[i]);
db874e65 4615 }
596c5c97 4616
db874e65 4617 /*
596c5c97 4618 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4619 * will ensure that the actual interrupt causing bit get's
4620 * cleared and hence a read can be avoided.
4621 */
596c5c97
SS
4622 if (reason & GEN_INTR_TXTRAFFIC)
4623 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4624
596c5c97
SS
4625 for (i = 0; i < config->tx_fifo_num; i++)
4626 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4627
596c5c97
SS
4628 if (reason & GEN_INTR_TXPIC)
4629 s2io_txpic_intr_handle(sp);
fe113638 4630
596c5c97
SS
4631 /*
4632 * Reallocate the buffers from the interrupt handler itself.
4633 */
4634 if (!config->napi) {
4635 for (i = 0; i < config->rx_ring_num; i++)
4636 s2io_chk_rx_buffers(sp, i);
4637 }
4638 writeq(sp->general_int_mask, &bar0->general_int_mask);
4639 readl(&bar0->general_int_status);
20346722 4640
596c5c97 4641 return IRQ_HANDLED;
db874e65 4642
596c5c97
SS
4643 }
4644 else if (!reason) {
4645 /* The interrupt was not raised by us */
4646 return IRQ_NONE;
4647 }
db874e65 4648
1da177e4
LT
4649 return IRQ_HANDLED;
4650}
4651
7ba013ac
K
4652/**
4653 * s2io_updt_stats -
4654 */
1ee6dd77 4655static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4656{
1ee6dd77 4657 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4658 u64 val64;
4659 int cnt = 0;
4660
92b84437 4661 if (is_s2io_card_up(sp)) {
7ba013ac
K
4662 /* Apprx 30us on a 133 MHz bus */
4663 val64 = SET_UPDT_CLICKS(10) |
4664 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4665 writeq(val64, &bar0->stat_cfg);
4666 do {
4667 udelay(100);
4668 val64 = readq(&bar0->stat_cfg);
b7b5a128 4669 if (!(val64 & s2BIT(0)))
7ba013ac
K
4670 break;
4671 cnt++;
4672 if (cnt == 5)
4673 break; /* Updt failed */
4674 } while(1);
8a4bdbaa 4675 }
7ba013ac
K
4676}
4677
1da177e4 4678/**
20346722 4679 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4680 * @dev : pointer to the device structure.
4681 * Description:
20346722 4682 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4683 * structure and returns a pointer to the same.
4684 * Return value:
4685 * pointer to the updated net_device_stats structure.
4686 */
4687
ac1f60db 4688static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4689{
1ee6dd77
RB
4690 struct s2io_nic *sp = dev->priv;
4691 struct mac_info *mac_control;
1da177e4
LT
4692 struct config_param *config;
4693
20346722 4694
1da177e4
LT
4695 mac_control = &sp->mac_control;
4696 config = &sp->config;
4697
7ba013ac
K
4698 /* Configure Stats for immediate updt */
4699 s2io_updt_stats(sp);
4700
4701 sp->stats.tx_packets =
4702 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4703 sp->stats.tx_errors =
4704 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4705 sp->stats.rx_errors =
ee705dba 4706 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4707 sp->stats.multicast =
4708 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4709 sp->stats.rx_length_errors =
ee705dba 4710 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4711
4712 return (&sp->stats);
4713}
4714
4715/**
4716 * s2io_set_multicast - entry point for multicast address enable/disable.
4717 * @dev : pointer to the device structure
4718 * Description:
20346722
K
4719 * This function is a driver entry point which gets called by the kernel
4720 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4721 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4722 * determine, if multicast address must be enabled or if promiscuous mode
4723 * is to be disabled etc.
4724 * Return value:
4725 * void.
4726 */
4727
4728static void s2io_set_multicast(struct net_device *dev)
4729{
4730 int i, j, prev_cnt;
4731 struct dev_mc_list *mclist;
1ee6dd77
RB
4732 struct s2io_nic *sp = dev->priv;
4733 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4734 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4735 0xfeffffffffffULL;
4736 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4737 void __iomem *add;
4738
4739 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4740 /* Enable all Multicast addresses */
4741 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4742 &bar0->rmac_addr_data0_mem);
4743 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4744 &bar0->rmac_addr_data1_mem);
4745 val64 = RMAC_ADDR_CMD_MEM_WE |
4746 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4747 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4748 writeq(val64, &bar0->rmac_addr_cmd_mem);
4749 /* Wait till command completes */
c92ca04b 4750 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4751 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4752 S2IO_BIT_RESET);
1da177e4
LT
4753
4754 sp->m_cast_flg = 1;
4755 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4756 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4757 /* Disable all Multicast addresses */
4758 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4759 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4760 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4761 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4762 val64 = RMAC_ADDR_CMD_MEM_WE |
4763 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4764 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4765 writeq(val64, &bar0->rmac_addr_cmd_mem);
4766 /* Wait till command completes */
c92ca04b 4767 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4768 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4769 S2IO_BIT_RESET);
1da177e4
LT
4770
4771 sp->m_cast_flg = 0;
4772 sp->all_multi_pos = 0;
4773 }
4774
4775 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4776 /* Put the NIC into promiscuous mode */
4777 add = &bar0->mac_cfg;
4778 val64 = readq(&bar0->mac_cfg);
4779 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4780
4781 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4782 writel((u32) val64, add);
4783 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4784 writel((u32) (val64 >> 32), (add + 4));
4785
926930b2
SS
4786 if (vlan_tag_strip != 1) {
4787 val64 = readq(&bar0->rx_pa_cfg);
4788 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4789 writeq(val64, &bar0->rx_pa_cfg);
4790 vlan_strip_flag = 0;
4791 }
4792
1da177e4
LT
4793 val64 = readq(&bar0->mac_cfg);
4794 sp->promisc_flg = 1;
776bd20f 4795 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4796 dev->name);
4797 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4798 /* Remove the NIC from promiscuous mode */
4799 add = &bar0->mac_cfg;
4800 val64 = readq(&bar0->mac_cfg);
4801 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4802
4803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4804 writel((u32) val64, add);
4805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4806 writel((u32) (val64 >> 32), (add + 4));
4807
926930b2
SS
4808 if (vlan_tag_strip != 0) {
4809 val64 = readq(&bar0->rx_pa_cfg);
4810 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4811 writeq(val64, &bar0->rx_pa_cfg);
4812 vlan_strip_flag = 1;
4813 }
4814
1da177e4
LT
4815 val64 = readq(&bar0->mac_cfg);
4816 sp->promisc_flg = 0;
776bd20f 4817 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4818 dev->name);
4819 }
4820
4821 /* Update individual M_CAST address list */
4822 if ((!sp->m_cast_flg) && dev->mc_count) {
4823 if (dev->mc_count >
4824 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4825 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4826 dev->name);
4827 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4828 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4829 return;
4830 }
4831
4832 prev_cnt = sp->mc_addr_count;
4833 sp->mc_addr_count = dev->mc_count;
4834
4835 /* Clear out the previous list of Mc in the H/W. */
4836 for (i = 0; i < prev_cnt; i++) {
4837 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4838 &bar0->rmac_addr_data0_mem);
4839 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4840 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4841 val64 = RMAC_ADDR_CMD_MEM_WE |
4842 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4843 RMAC_ADDR_CMD_MEM_OFFSET
4844 (MAC_MC_ADDR_START_OFFSET + i);
4845 writeq(val64, &bar0->rmac_addr_cmd_mem);
4846
4847 /* Wait for command completes */
c92ca04b 4848 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4849 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4850 S2IO_BIT_RESET)) {
1da177e4
LT
4851 DBG_PRINT(ERR_DBG, "%s: Adding ",
4852 dev->name);
4853 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4854 return;
4855 }
4856 }
4857
4858 /* Create the new Rx filter list and update the same in H/W. */
4859 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4860 i++, mclist = mclist->next) {
4861 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4862 ETH_ALEN);
a7a80d5a 4863 mac_addr = 0;
1da177e4
LT
4864 for (j = 0; j < ETH_ALEN; j++) {
4865 mac_addr |= mclist->dmi_addr[j];
4866 mac_addr <<= 8;
4867 }
4868 mac_addr >>= 8;
4869 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4870 &bar0->rmac_addr_data0_mem);
4871 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4872 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4873 val64 = RMAC_ADDR_CMD_MEM_WE |
4874 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4875 RMAC_ADDR_CMD_MEM_OFFSET
4876 (i + MAC_MC_ADDR_START_OFFSET);
4877 writeq(val64, &bar0->rmac_addr_cmd_mem);
4878
4879 /* Wait for command completes */
c92ca04b 4880 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4881 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4882 S2IO_BIT_RESET)) {
1da177e4
LT
4883 DBG_PRINT(ERR_DBG, "%s: Adding ",
4884 dev->name);
4885 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4886 return;
4887 }
4888 }
4889 }
4890}
4891
2fd37688
SS
4892/* add unicast MAC address to CAM */
4893static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4894{
4895 u64 val64;
4896 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4897
4898 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4899 &bar0->rmac_addr_data0_mem);
4900
4901 val64 =
4902 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4903 RMAC_ADDR_CMD_MEM_OFFSET(off);
4904 writeq(val64, &bar0->rmac_addr_cmd_mem);
4905
4906 /* Wait till command completes */
4907 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4908 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4909 S2IO_BIT_RESET)) {
4910 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4911 return FAILURE;
4912 }
4913 return SUCCESS;
4914}
4915
4916/**
4917 * s2io_set_mac_addr driver entry point
4918 */
4919static int s2io_set_mac_addr(struct net_device *dev, void *p)
4920{
4921 struct sockaddr *addr = p;
4922
4923 if (!is_valid_ether_addr(addr->sa_data))
4924 return -EINVAL;
4925
4926 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4927
4928 /* store the MAC address in CAM */
4929 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4930}
4931
1da177e4 4932/**
2fd37688 4933 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
4934 * @dev : pointer to the device structure.
4935 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4936 * Description : This procedure will program the Xframe to receive
1da177e4 4937 * frames with new Mac Address
20346722 4938 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4939 * as defined in errno.h file on failure.
4940 */
2fd37688 4941static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 4942{
1ee6dd77 4943 struct s2io_nic *sp = dev->priv;
2fd37688 4944 register u64 mac_addr = 0, perm_addr = 0;
1da177e4
LT
4945 int i;
4946
20346722 4947 /*
2fd37688
SS
4948 * Set the new MAC address as the new unicast filter and reflect this
4949 * change on the device address registered with the OS. It will be
4950 * at offset 0.
4951 */
1da177e4
LT
4952 for (i = 0; i < ETH_ALEN; i++) {
4953 mac_addr <<= 8;
4954 mac_addr |= addr[i];
2fd37688
SS
4955 perm_addr <<= 8;
4956 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
4957 }
4958
2fd37688
SS
4959 /* check if the dev_addr is different than perm_addr */
4960 if (mac_addr == perm_addr)
d8d70caf
SS
4961 return SUCCESS;
4962
4963 /* Update the internal structure with this new mac address */
2fd37688
SS
4964 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4965 return (do_s2io_add_unicast(sp, mac_addr, 0));
1da177e4
LT
4966}
4967
4968/**
20346722 4969 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4970 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4971 * @info: pointer to the structure with parameters given by ethtool to set
4972 * link information.
4973 * Description:
20346722 4974 * The function sets different link parameters provided by the user onto
1da177e4
LT
4975 * the NIC.
4976 * Return value:
4977 * 0 on success.
4978*/
4979
4980static int s2io_ethtool_sset(struct net_device *dev,
4981 struct ethtool_cmd *info)
4982{
1ee6dd77 4983 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4984 if ((info->autoneg == AUTONEG_ENABLE) ||
4985 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4986 return -EINVAL;
4987 else {
4988 s2io_close(sp->dev);
4989 s2io_open(sp->dev);
4990 }
4991
4992 return 0;
4993}
4994
4995/**
20346722 4996 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4997 * @sp : private member of the device structure, pointer to the
4998 * s2io_nic structure.
4999 * @info : pointer to the structure with parameters given by ethtool
5000 * to return link information.
5001 * Description:
5002 * Returns link specific information like speed, duplex etc.. to ethtool.
5003 * Return value :
5004 * return 0 on success.
5005 */
5006
5007static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5008{
1ee6dd77 5009 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5010 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5011 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5012 info->port = PORT_FIBRE;
1a7eb72b
SS
5013
5014 /* info->transceiver */
5015 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5016
5017 if (netif_carrier_ok(sp->dev)) {
5018 info->speed = 10000;
5019 info->duplex = DUPLEX_FULL;
5020 } else {
5021 info->speed = -1;
5022 info->duplex = -1;
5023 }
5024
5025 info->autoneg = AUTONEG_DISABLE;
5026 return 0;
5027}
5028
5029/**
20346722
K
5030 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5031 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5032 * s2io_nic structure.
5033 * @info : pointer to the structure with parameters given by ethtool to
5034 * return driver information.
5035 * Description:
5036 * Returns driver specefic information like name, version etc.. to ethtool.
5037 * Return value:
5038 * void
5039 */
5040
5041static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5042 struct ethtool_drvinfo *info)
5043{
1ee6dd77 5044 struct s2io_nic *sp = dev->priv;
1da177e4 5045
dbc2309d
JL
5046 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5047 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5048 strncpy(info->fw_version, "", sizeof(info->fw_version));
5049 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5050 info->regdump_len = XENA_REG_SPACE;
5051 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5052}
5053
5054/**
5055 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5056 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5057 * s2io_nic structure.
20346722 5058 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5059 * dumping the registers.
5060 * @reg_space: The input argumnet into which all the registers are dumped.
5061 * Description:
5062 * Dumps the entire register space of xFrame NIC into the user given
5063 * buffer area.
5064 * Return value :
5065 * void .
5066*/
5067
5068static void s2io_ethtool_gregs(struct net_device *dev,
5069 struct ethtool_regs *regs, void *space)
5070{
5071 int i;
5072 u64 reg;
5073 u8 *reg_space = (u8 *) space;
1ee6dd77 5074 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5075
5076 regs->len = XENA_REG_SPACE;
5077 regs->version = sp->pdev->subsystem_device;
5078
5079 for (i = 0; i < regs->len; i += 8) {
5080 reg = readq(sp->bar0 + i);
5081 memcpy((reg_space + i), &reg, 8);
5082 }
5083}
5084
5085/**
5086 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5087 * @data : address of the private member of the device structure, which
1da177e4 5088 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5089 * Description: This is actually the timer function that alternates the
5090 * adapter LED bit of the adapter control bit to set/reset every time on
5091 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5092 * once every second.
5093*/
5094static void s2io_phy_id(unsigned long data)
5095{
1ee6dd77
RB
5096 struct s2io_nic *sp = (struct s2io_nic *) data;
5097 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5098 u64 val64 = 0;
5099 u16 subid;
5100
5101 subid = sp->pdev->subsystem_device;
541ae68f
K
5102 if ((sp->device_type == XFRAME_II_DEVICE) ||
5103 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5104 val64 = readq(&bar0->gpio_control);
5105 val64 ^= GPIO_CTRL_GPIO_0;
5106 writeq(val64, &bar0->gpio_control);
5107 } else {
5108 val64 = readq(&bar0->adapter_control);
5109 val64 ^= ADAPTER_LED_ON;
5110 writeq(val64, &bar0->adapter_control);
5111 }
5112
5113 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5114}
5115
5116/**
5117 * s2io_ethtool_idnic - To physically identify the nic on the system.
5118 * @sp : private member of the device structure, which is a pointer to the
5119 * s2io_nic structure.
20346722 5120 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5121 * ethtool.
5122 * Description: Used to physically identify the NIC on the system.
20346722 5123 * The Link LED will blink for a time specified by the user for
1da177e4 5124 * identification.
20346722 5125 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5126 * identification is possible only if it's link is up.
5127 * Return value:
5128 * int , returns 0 on success
5129 */
5130
5131static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5132{
5133 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5134 struct s2io_nic *sp = dev->priv;
5135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5136 u16 subid;
5137
5138 subid = sp->pdev->subsystem_device;
5139 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
5140 if ((sp->device_type == XFRAME_I_DEVICE) &&
5141 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5142 val64 = readq(&bar0->adapter_control);
5143 if (!(val64 & ADAPTER_CNTL_EN)) {
5144 printk(KERN_ERR
5145 "Adapter Link down, cannot blink LED\n");
5146 return -EFAULT;
5147 }
5148 }
5149 if (sp->id_timer.function == NULL) {
5150 init_timer(&sp->id_timer);
5151 sp->id_timer.function = s2io_phy_id;
5152 sp->id_timer.data = (unsigned long) sp;
5153 }
5154 mod_timer(&sp->id_timer, jiffies);
5155 if (data)
20346722 5156 msleep_interruptible(data * HZ);
1da177e4 5157 else
20346722 5158 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5159 del_timer_sync(&sp->id_timer);
5160
541ae68f 5161 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5162 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5163 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5164 }
5165
5166 return 0;
5167}
5168
0cec35eb
SH
5169static void s2io_ethtool_gringparam(struct net_device *dev,
5170 struct ethtool_ringparam *ering)
5171{
5172 struct s2io_nic *sp = dev->priv;
5173 int i,tx_desc_count=0,rx_desc_count=0;
5174
5175 if (sp->rxd_mode == RXD_MODE_1)
5176 ering->rx_max_pending = MAX_RX_DESC_1;
5177 else if (sp->rxd_mode == RXD_MODE_3B)
5178 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5179
5180 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5181 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5182 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5183
0cec35eb
SH
5184 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5185 ering->tx_pending = tx_desc_count;
5186 rx_desc_count = 0;
8a4bdbaa 5187 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5188 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5189
0cec35eb
SH
5190 ering->rx_pending = rx_desc_count;
5191
5192 ering->rx_mini_max_pending = 0;
5193 ering->rx_mini_pending = 0;
5194 if(sp->rxd_mode == RXD_MODE_1)
5195 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5196 else if (sp->rxd_mode == RXD_MODE_3B)
5197 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5198 ering->rx_jumbo_pending = rx_desc_count;
5199}
5200
1da177e4
LT
5201/**
5202 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5203 * @sp : private member of the device structure, which is a pointer to the
5204 * s2io_nic structure.
1da177e4
LT
5205 * @ep : pointer to the structure with pause parameters given by ethtool.
5206 * Description:
5207 * Returns the Pause frame generation and reception capability of the NIC.
5208 * Return value:
5209 * void
5210 */
5211static void s2io_ethtool_getpause_data(struct net_device *dev,
5212 struct ethtool_pauseparam *ep)
5213{
5214 u64 val64;
1ee6dd77
RB
5215 struct s2io_nic *sp = dev->priv;
5216 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5217
5218 val64 = readq(&bar0->rmac_pause_cfg);
5219 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5220 ep->tx_pause = TRUE;
5221 if (val64 & RMAC_PAUSE_RX_ENABLE)
5222 ep->rx_pause = TRUE;
5223 ep->autoneg = FALSE;
5224}
5225
5226/**
5227 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5228 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5229 * s2io_nic structure.
5230 * @ep : pointer to the structure with pause parameters given by ethtool.
5231 * Description:
5232 * It can be used to set or reset Pause frame generation or reception
5233 * support of the NIC.
5234 * Return value:
5235 * int, returns 0 on Success
5236 */
5237
5238static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5239 struct ethtool_pauseparam *ep)
1da177e4
LT
5240{
5241 u64 val64;
1ee6dd77
RB
5242 struct s2io_nic *sp = dev->priv;
5243 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5244
5245 val64 = readq(&bar0->rmac_pause_cfg);
5246 if (ep->tx_pause)
5247 val64 |= RMAC_PAUSE_GEN_ENABLE;
5248 else
5249 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5250 if (ep->rx_pause)
5251 val64 |= RMAC_PAUSE_RX_ENABLE;
5252 else
5253 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5254 writeq(val64, &bar0->rmac_pause_cfg);
5255 return 0;
5256}
5257
5258/**
5259 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5260 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5261 * s2io_nic structure.
5262 * @off : offset at which the data must be written
5263 * @data : Its an output parameter where the data read at the given
20346722 5264 * offset is stored.
1da177e4 5265 * Description:
20346722 5266 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5267 * read data.
5268 * NOTE: Will allow to read only part of the EEPROM visible through the
5269 * I2C bus.
5270 * Return value:
5271 * -1 on failure and 0 on success.
5272 */
5273
5274#define S2IO_DEV_ID 5
1ee6dd77 5275static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5276{
5277 int ret = -1;
5278 u32 exit_cnt = 0;
5279 u64 val64;
1ee6dd77 5280 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5281
ad4ebed0 5282 if (sp->device_type == XFRAME_I_DEVICE) {
5283 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5284 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5285 I2C_CONTROL_CNTL_START;
5286 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5287
ad4ebed0 5288 while (exit_cnt < 5) {
5289 val64 = readq(&bar0->i2c_control);
5290 if (I2C_CONTROL_CNTL_END(val64)) {
5291 *data = I2C_CONTROL_GET_DATA(val64);
5292 ret = 0;
5293 break;
5294 }
5295 msleep(50);
5296 exit_cnt++;
1da177e4 5297 }
1da177e4
LT
5298 }
5299
ad4ebed0 5300 if (sp->device_type == XFRAME_II_DEVICE) {
5301 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5302 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5303 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5304 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5305 val64 |= SPI_CONTROL_REQ;
5306 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5307 while (exit_cnt < 5) {
5308 val64 = readq(&bar0->spi_control);
5309 if (val64 & SPI_CONTROL_NACK) {
5310 ret = 1;
5311 break;
5312 } else if (val64 & SPI_CONTROL_DONE) {
5313 *data = readq(&bar0->spi_data);
5314 *data &= 0xffffff;
5315 ret = 0;
5316 break;
5317 }
5318 msleep(50);
5319 exit_cnt++;
5320 }
5321 }
1da177e4
LT
5322 return ret;
5323}
5324
5325/**
5326 * write_eeprom - actually writes the relevant part of the data value.
5327 * @sp : private member of the device structure, which is a pointer to the
5328 * s2io_nic structure.
5329 * @off : offset at which the data must be written
5330 * @data : The data that is to be written
20346722 5331 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5332 * the Eeprom. (max of 3)
5333 * Description:
5334 * Actually writes the relevant part of the data value into the Eeprom
5335 * through the I2C bus.
5336 * Return value:
5337 * 0 on success, -1 on failure.
5338 */
5339
1ee6dd77 5340static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5341{
5342 int exit_cnt = 0, ret = -1;
5343 u64 val64;
1ee6dd77 5344 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5345
ad4ebed0 5346 if (sp->device_type == XFRAME_I_DEVICE) {
5347 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5348 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5349 I2C_CONTROL_CNTL_START;
5350 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5351
5352 while (exit_cnt < 5) {
5353 val64 = readq(&bar0->i2c_control);
5354 if (I2C_CONTROL_CNTL_END(val64)) {
5355 if (!(val64 & I2C_CONTROL_NACK))
5356 ret = 0;
5357 break;
5358 }
5359 msleep(50);
5360 exit_cnt++;
5361 }
5362 }
1da177e4 5363
ad4ebed0 5364 if (sp->device_type == XFRAME_II_DEVICE) {
5365 int write_cnt = (cnt == 8) ? 0 : cnt;
5366 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5367
5368 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5369 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5370 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5371 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5372 val64 |= SPI_CONTROL_REQ;
5373 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5374 while (exit_cnt < 5) {
5375 val64 = readq(&bar0->spi_control);
5376 if (val64 & SPI_CONTROL_NACK) {
5377 ret = 1;
5378 break;
5379 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5380 ret = 0;
ad4ebed0 5381 break;
5382 }
5383 msleep(50);
5384 exit_cnt++;
1da177e4 5385 }
1da177e4 5386 }
1da177e4
LT
5387 return ret;
5388}
1ee6dd77 5389static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5390{
b41477f3
AR
5391 u8 *vpd_data;
5392 u8 data;
9dc737a7
AR
5393 int i=0, cnt, fail = 0;
5394 int vpd_addr = 0x80;
5395
5396 if (nic->device_type == XFRAME_II_DEVICE) {
5397 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5398 vpd_addr = 0x80;
5399 }
5400 else {
5401 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5402 vpd_addr = 0x50;
5403 }
19a60522 5404 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5405
b41477f3 5406 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5407 if (!vpd_data) {
5408 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5409 return;
c53d4945 5410 }
491976b2 5411 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5412
9dc737a7
AR
5413 for (i = 0; i < 256; i +=4 ) {
5414 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5415 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5416 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5417 for (cnt = 0; cnt <5; cnt++) {
5418 msleep(2);
5419 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5420 if (data == 0x80)
5421 break;
5422 }
5423 if (cnt >= 5) {
5424 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5425 fail = 1;
5426 break;
5427 }
5428 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5429 (u32 *)&vpd_data[i]);
5430 }
19a60522
SS
5431
5432 if(!fail) {
5433 /* read serial number of adapter */
5434 for (cnt = 0; cnt < 256; cnt++) {
5435 if ((vpd_data[cnt] == 'S') &&
5436 (vpd_data[cnt+1] == 'N') &&
5437 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5438 memset(nic->serial_num, 0, VPD_STRING_LEN);
5439 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5440 vpd_data[cnt+2]);
5441 break;
5442 }
5443 }
5444 }
5445
5446 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5447 memset(nic->product_name, 0, vpd_data[1]);
5448 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5449 }
b41477f3 5450 kfree(vpd_data);
491976b2 5451 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5452}
5453
1da177e4
LT
5454/**
5455 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5456 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5457 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5458 * containing all relevant information.
5459 * @data_buf : user defined value to be written into Eeprom.
5460 * Description: Reads the values stored in the Eeprom at given offset
5461 * for a given length. Stores these values int the input argument data
5462 * buffer 'data_buf' and returns these to the caller (ethtool.)
5463 * Return value:
5464 * int 0 on success
5465 */
5466
5467static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5468 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5469{
ad4ebed0 5470 u32 i, valid;
5471 u64 data;
1ee6dd77 5472 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5473
5474 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5475
5476 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5477 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5478
5479 for (i = 0; i < eeprom->len; i += 4) {
5480 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5481 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5482 return -EFAULT;
5483 }
5484 valid = INV(data);
5485 memcpy((data_buf + i), &valid, 4);
5486 }
5487 return 0;
5488}
5489
5490/**
5491 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5492 * @sp : private member of the device structure, which is a pointer to the
5493 * s2io_nic structure.
20346722 5494 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5495 * containing all relevant information.
5496 * @data_buf ; user defined value to be written into Eeprom.
5497 * Description:
5498 * Tries to write the user provided value in the Eeprom, at the offset
5499 * given by the user.
5500 * Return value:
5501 * 0 on success, -EFAULT on failure.
5502 */
5503
5504static int s2io_ethtool_seeprom(struct net_device *dev,
5505 struct ethtool_eeprom *eeprom,
5506 u8 * data_buf)
5507{
5508 int len = eeprom->len, cnt = 0;
ad4ebed0 5509 u64 valid = 0, data;
1ee6dd77 5510 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5511
5512 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5513 DBG_PRINT(ERR_DBG,
5514 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5515 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5516 eeprom->magic);
5517 return -EFAULT;
5518 }
5519
5520 while (len) {
5521 data = (u32) data_buf[cnt] & 0x000000FF;
5522 if (data) {
5523 valid = (u32) (data << 24);
5524 } else
5525 valid = data;
5526
5527 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5528 DBG_PRINT(ERR_DBG,
5529 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5530 DBG_PRINT(ERR_DBG,
5531 "write into the specified offset\n");
5532 return -EFAULT;
5533 }
5534 cnt++;
5535 len--;
5536 }
5537
5538 return 0;
5539}
5540
5541/**
20346722
K
5542 * s2io_register_test - reads and writes into all clock domains.
5543 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5544 * s2io_nic structure.
5545 * @data : variable that returns the result of each of the test conducted b
5546 * by the driver.
5547 * Description:
5548 * Read and write into all clock domains. The NIC has 3 clock domains,
5549 * see that registers in all the three regions are accessible.
5550 * Return value:
5551 * 0 on success.
5552 */
5553
1ee6dd77 5554static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5555{
1ee6dd77 5556 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5557 u64 val64 = 0, exp_val;
1da177e4
LT
5558 int fail = 0;
5559
20346722
K
5560 val64 = readq(&bar0->pif_rd_swapper_fb);
5561 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5562 fail = 1;
5563 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5564 }
5565
5566 val64 = readq(&bar0->rmac_pause_cfg);
5567 if (val64 != 0xc000ffff00000000ULL) {
5568 fail = 1;
5569 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5570 }
5571
5572 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5573 if (sp->device_type == XFRAME_II_DEVICE)
5574 exp_val = 0x0404040404040404ULL;
5575 else
5576 exp_val = 0x0808080808080808ULL;
5577 if (val64 != exp_val) {
1da177e4
LT
5578 fail = 1;
5579 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5580 }
5581
5582 val64 = readq(&bar0->xgxs_efifo_cfg);
5583 if (val64 != 0x000000001923141EULL) {
5584 fail = 1;
5585 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5586 }
5587
5588 val64 = 0x5A5A5A5A5A5A5A5AULL;
5589 writeq(val64, &bar0->xmsi_data);
5590 val64 = readq(&bar0->xmsi_data);
5591 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5592 fail = 1;
5593 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5594 }
5595
5596 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5597 writeq(val64, &bar0->xmsi_data);
5598 val64 = readq(&bar0->xmsi_data);
5599 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5600 fail = 1;
5601 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5602 }
5603
5604 *data = fail;
ad4ebed0 5605 return fail;
1da177e4
LT
5606}
5607
5608/**
20346722 5609 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5610 * @sp : private member of the device structure, which is a pointer to the
5611 * s2io_nic structure.
5612 * @data:variable that returns the result of each of the test conducted by
5613 * the driver.
5614 * Description:
20346722 5615 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5616 * register.
5617 * Return value:
5618 * 0 on success.
5619 */
5620
1ee6dd77 5621static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5622{
5623 int fail = 0;
ad4ebed0 5624 u64 ret_data, org_4F0, org_7F0;
5625 u8 saved_4F0 = 0, saved_7F0 = 0;
5626 struct net_device *dev = sp->dev;
1da177e4
LT
5627
5628 /* Test Write Error at offset 0 */
ad4ebed0 5629 /* Note that SPI interface allows write access to all areas
5630 * of EEPROM. Hence doing all negative testing only for Xframe I.
5631 */
5632 if (sp->device_type == XFRAME_I_DEVICE)
5633 if (!write_eeprom(sp, 0, 0, 3))
5634 fail = 1;
5635
5636 /* Save current values at offsets 0x4F0 and 0x7F0 */
5637 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5638 saved_4F0 = 1;
5639 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5640 saved_7F0 = 1;
1da177e4
LT
5641
5642 /* Test Write at offset 4f0 */
ad4ebed0 5643 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5644 fail = 1;
5645 if (read_eeprom(sp, 0x4F0, &ret_data))
5646 fail = 1;
5647
ad4ebed0 5648 if (ret_data != 0x012345) {
26b7625c
AM
5649 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5650 "Data written %llx Data read %llx\n",
5651 dev->name, (unsigned long long)0x12345,
5652 (unsigned long long)ret_data);
1da177e4 5653 fail = 1;
ad4ebed0 5654 }
1da177e4
LT
5655
5656 /* Reset the EEPROM data go FFFF */
ad4ebed0 5657 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5658
5659 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5660 if (sp->device_type == XFRAME_I_DEVICE)
5661 if (!write_eeprom(sp, 0x07C, 0, 3))
5662 fail = 1;
1da177e4 5663
ad4ebed0 5664 /* Test Write Request at offset 0x7f0 */
5665 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5666 fail = 1;
ad4ebed0 5667 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5668 fail = 1;
5669
ad4ebed0 5670 if (ret_data != 0x012345) {
26b7625c
AM
5671 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5672 "Data written %llx Data read %llx\n",
5673 dev->name, (unsigned long long)0x12345,
5674 (unsigned long long)ret_data);
1da177e4 5675 fail = 1;
ad4ebed0 5676 }
1da177e4
LT
5677
5678 /* Reset the EEPROM data go FFFF */
ad4ebed0 5679 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5680
ad4ebed0 5681 if (sp->device_type == XFRAME_I_DEVICE) {
5682 /* Test Write Error at offset 0x80 */
5683 if (!write_eeprom(sp, 0x080, 0, 3))
5684 fail = 1;
1da177e4 5685
ad4ebed0 5686 /* Test Write Error at offset 0xfc */
5687 if (!write_eeprom(sp, 0x0FC, 0, 3))
5688 fail = 1;
1da177e4 5689
ad4ebed0 5690 /* Test Write Error at offset 0x100 */
5691 if (!write_eeprom(sp, 0x100, 0, 3))
5692 fail = 1;
1da177e4 5693
ad4ebed0 5694 /* Test Write Error at offset 4ec */
5695 if (!write_eeprom(sp, 0x4EC, 0, 3))
5696 fail = 1;
5697 }
5698
5699 /* Restore values at offsets 0x4F0 and 0x7F0 */
5700 if (saved_4F0)
5701 write_eeprom(sp, 0x4F0, org_4F0, 3);
5702 if (saved_7F0)
5703 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5704
5705 *data = fail;
ad4ebed0 5706 return fail;
1da177e4
LT
5707}
5708
5709/**
5710 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5711 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5712 * s2io_nic structure.
20346722 5713 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5714 * the driver.
5715 * Description:
5716 * This invokes the MemBist test of the card. We give around
5717 * 2 secs time for the Test to complete. If it's still not complete
20346722 5718 * within this peiod, we consider that the test failed.
1da177e4
LT
5719 * Return value:
5720 * 0 on success and -1 on failure.
5721 */
5722
1ee6dd77 5723static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5724{
5725 u8 bist = 0;
5726 int cnt = 0, ret = -1;
5727
5728 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5729 bist |= PCI_BIST_START;
5730 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5731
5732 while (cnt < 20) {
5733 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5734 if (!(bist & PCI_BIST_START)) {
5735 *data = (bist & PCI_BIST_CODE_MASK);
5736 ret = 0;
5737 break;
5738 }
5739 msleep(100);
5740 cnt++;
5741 }
5742
5743 return ret;
5744}
5745
5746/**
20346722
K
5747 * s2io-link_test - verifies the link state of the nic
5748 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5749 * s2io_nic structure.
5750 * @data: variable that returns the result of each of the test conducted by
5751 * the driver.
5752 * Description:
20346722 5753 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5754 * argument 'data' appropriately.
5755 * Return value:
5756 * 0 on success.
5757 */
5758
1ee6dd77 5759static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5760{
1ee6dd77 5761 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5762 u64 val64;
5763
5764 val64 = readq(&bar0->adapter_status);
c92ca04b 5765 if(!(LINK_IS_UP(val64)))
1da177e4 5766 *data = 1;
c92ca04b
AR
5767 else
5768 *data = 0;
1da177e4 5769
b41477f3 5770 return *data;
1da177e4
LT
5771}
5772
5773/**
20346722
K
5774 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5775 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5776 * s2io_nic structure.
20346722 5777 * @data - variable that returns the result of each of the test
1da177e4
LT
5778 * conducted by the driver.
5779 * Description:
20346722 5780 * This is one of the offline test that tests the read and write
1da177e4
LT
5781 * access to the RldRam chip on the NIC.
5782 * Return value:
5783 * 0 on success.
5784 */
5785
1ee6dd77 5786static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5787{
1ee6dd77 5788 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5789 u64 val64;
ad4ebed0 5790 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5791
5792 val64 = readq(&bar0->adapter_control);
5793 val64 &= ~ADAPTER_ECC_EN;
5794 writeq(val64, &bar0->adapter_control);
5795
5796 val64 = readq(&bar0->mc_rldram_test_ctrl);
5797 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5798 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5799
5800 val64 = readq(&bar0->mc_rldram_mrs);
5801 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5802 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5803
5804 val64 |= MC_RLDRAM_MRS_ENABLE;
5805 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5806
5807 while (iteration < 2) {
5808 val64 = 0x55555555aaaa0000ULL;
5809 if (iteration == 1) {
5810 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5811 }
5812 writeq(val64, &bar0->mc_rldram_test_d0);
5813
5814 val64 = 0xaaaa5a5555550000ULL;
5815 if (iteration == 1) {
5816 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5817 }
5818 writeq(val64, &bar0->mc_rldram_test_d1);
5819
5820 val64 = 0x55aaaaaaaa5a0000ULL;
5821 if (iteration == 1) {
5822 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5823 }
5824 writeq(val64, &bar0->mc_rldram_test_d2);
5825
ad4ebed0 5826 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5827 writeq(val64, &bar0->mc_rldram_test_add);
5828
ad4ebed0 5829 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5830 MC_RLDRAM_TEST_GO;
5831 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5832
5833 for (cnt = 0; cnt < 5; cnt++) {
5834 val64 = readq(&bar0->mc_rldram_test_ctrl);
5835 if (val64 & MC_RLDRAM_TEST_DONE)
5836 break;
5837 msleep(200);
5838 }
5839
5840 if (cnt == 5)
5841 break;
5842
ad4ebed0 5843 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5844 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5845
5846 for (cnt = 0; cnt < 5; cnt++) {
5847 val64 = readq(&bar0->mc_rldram_test_ctrl);
5848 if (val64 & MC_RLDRAM_TEST_DONE)
5849 break;
5850 msleep(500);
5851 }
5852
5853 if (cnt == 5)
5854 break;
5855
5856 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5857 if (!(val64 & MC_RLDRAM_TEST_PASS))
5858 test_fail = 1;
1da177e4
LT
5859
5860 iteration++;
5861 }
5862
ad4ebed0 5863 *data = test_fail;
1da177e4 5864
ad4ebed0 5865 /* Bring the adapter out of test mode */
5866 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5867
5868 return test_fail;
1da177e4
LT
5869}
5870
5871/**
5872 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5873 * @sp : private member of the device structure, which is a pointer to the
5874 * s2io_nic structure.
5875 * @ethtest : pointer to a ethtool command specific structure that will be
5876 * returned to the user.
20346722 5877 * @data : variable that returns the result of each of the test
1da177e4
LT
5878 * conducted by the driver.
5879 * Description:
5880 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5881 * the health of the card.
5882 * Return value:
5883 * void
5884 */
5885
5886static void s2io_ethtool_test(struct net_device *dev,
5887 struct ethtool_test *ethtest,
5888 uint64_t * data)
5889{
1ee6dd77 5890 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5891 int orig_state = netif_running(sp->dev);
5892
5893 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5894 /* Offline Tests. */
20346722 5895 if (orig_state)
1da177e4 5896 s2io_close(sp->dev);
1da177e4
LT
5897
5898 if (s2io_register_test(sp, &data[0]))
5899 ethtest->flags |= ETH_TEST_FL_FAILED;
5900
5901 s2io_reset(sp);
1da177e4
LT
5902
5903 if (s2io_rldram_test(sp, &data[3]))
5904 ethtest->flags |= ETH_TEST_FL_FAILED;
5905
5906 s2io_reset(sp);
1da177e4
LT
5907
5908 if (s2io_eeprom_test(sp, &data[1]))
5909 ethtest->flags |= ETH_TEST_FL_FAILED;
5910
5911 if (s2io_bist_test(sp, &data[4]))
5912 ethtest->flags |= ETH_TEST_FL_FAILED;
5913
5914 if (orig_state)
5915 s2io_open(sp->dev);
5916
5917 data[2] = 0;
5918 } else {
5919 /* Online Tests. */
5920 if (!orig_state) {
5921 DBG_PRINT(ERR_DBG,
5922 "%s: is not up, cannot run test\n",
5923 dev->name);
5924 data[0] = -1;
5925 data[1] = -1;
5926 data[2] = -1;
5927 data[3] = -1;
5928 data[4] = -1;
5929 }
5930
5931 if (s2io_link_test(sp, &data[2]))
5932 ethtest->flags |= ETH_TEST_FL_FAILED;
5933
5934 data[0] = 0;
5935 data[1] = 0;
5936 data[3] = 0;
5937 data[4] = 0;
5938 }
5939}
5940
5941static void s2io_get_ethtool_stats(struct net_device *dev,
5942 struct ethtool_stats *estats,
5943 u64 * tmp_stats)
5944{
8116f3cf 5945 int i = 0, k;
1ee6dd77
RB
5946 struct s2io_nic *sp = dev->priv;
5947 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5948
7ba013ac 5949 s2io_updt_stats(sp);
541ae68f
K
5950 tmp_stats[i++] =
5951 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5952 le32_to_cpu(stat_info->tmac_frms);
5953 tmp_stats[i++] =
5954 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5955 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5956 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5957 tmp_stats[i++] =
5958 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5959 le32_to_cpu(stat_info->tmac_mcst_frms);
5960 tmp_stats[i++] =
5961 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5962 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5963 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5964 tmp_stats[i++] =
5965 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5966 le32_to_cpu(stat_info->tmac_ttl_octets);
5967 tmp_stats[i++] =
5968 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_ucst_frms);
5970 tmp_stats[i++] =
5971 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5973 tmp_stats[i++] =
5974 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5975 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5976 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5977 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5978 tmp_stats[i++] =
5979 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5980 le32_to_cpu(stat_info->tmac_vld_ip);
5981 tmp_stats[i++] =
5982 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5983 le32_to_cpu(stat_info->tmac_drop_ip);
5984 tmp_stats[i++] =
5985 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5986 le32_to_cpu(stat_info->tmac_icmp);
5987 tmp_stats[i++] =
5988 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5989 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5990 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5991 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5992 le32_to_cpu(stat_info->tmac_udp);
5993 tmp_stats[i++] =
5994 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5995 le32_to_cpu(stat_info->rmac_vld_frms);
5996 tmp_stats[i++] =
5997 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5998 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5999 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6000 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6001 tmp_stats[i++] =
6002 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6003 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6004 tmp_stats[i++] =
6005 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6006 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6007 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6008 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6009 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6010 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6011 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6012 tmp_stats[i++] =
6013 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6014 le32_to_cpu(stat_info->rmac_ttl_octets);
6015 tmp_stats[i++] =
6016 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6017 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6018 tmp_stats[i++] =
6019 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6020 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6021 tmp_stats[i++] =
6022 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6023 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6024 tmp_stats[i++] =
6025 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6026 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6027 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6028 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6029 tmp_stats[i++] =
6030 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6031 le32_to_cpu(stat_info->rmac_usized_frms);
6032 tmp_stats[i++] =
6033 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6034 le32_to_cpu(stat_info->rmac_osized_frms);
6035 tmp_stats[i++] =
6036 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6037 le32_to_cpu(stat_info->rmac_frag_frms);
6038 tmp_stats[i++] =
6039 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6040 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6041 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6042 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6043 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6044 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6045 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6046 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6047 tmp_stats[i++] =
6048 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6049 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6050 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6051 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6052 tmp_stats[i++] =
6053 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6054 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6055 tmp_stats[i++] =
6056 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6057 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6058 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6059 tmp_stats[i++] =
6060 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6061 le32_to_cpu(stat_info->rmac_udp);
6062 tmp_stats[i++] =
6063 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6064 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6070 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6071 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6072 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6073 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6074 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6075 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6076 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6077 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6078 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6079 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6080 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6081 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6082 tmp_stats[i++] =
6083 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6084 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6085 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6086 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6087 tmp_stats[i++] =
6088 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6089 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6090 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6091 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6092 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6104 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6105 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6106 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6107 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6108 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6109
6110 /* Enhanced statistics exist only for Hercules */
6111 if(sp->device_type == XFRAME_II_DEVICE) {
6112 tmp_stats[i++] =
6113 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6114 tmp_stats[i++] =
6115 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6116 tmp_stats[i++] =
6117 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6118 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6119 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6120 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6121 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6122 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6123 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6124 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6125 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6126 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6127 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6128 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6129 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6130 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6131 }
6132
7ba013ac
K
6133 tmp_stats[i++] = 0;
6134 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6135 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6136 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6137 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6138 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6139 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6140 for (k = 0; k < MAX_RX_RINGS; k++)
6141 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6142 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6143 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6144 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6145 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6146 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6147 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6148 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6149 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6150 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6151 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6152 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6153 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6154 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6155 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6156 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6157 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6158 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6159 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6160 int count = 0;
6aa20a22 6161 /*
bd1034f0
AR
6162 * Since 64-bit divide does not work on all platforms,
6163 * do repeated subtraction.
6164 */
6165 while (tmp >= stat_info->sw_stat.num_aggregations) {
6166 tmp -= stat_info->sw_stat.num_aggregations;
6167 count++;
6168 }
6169 tmp_stats[i++] = count;
fe931395 6170 }
bd1034f0
AR
6171 else
6172 tmp_stats[i++] = 0;
c53d4945 6173 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6174 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6175 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6176 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6177 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6178 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6179 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6180 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6181 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6182
6183 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6184 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6185 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6186 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6188
6189 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6191 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6198 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6211 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6212 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6213 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6214 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6215}
6216
ac1f60db 6217static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6218{
6219 return (XENA_REG_SPACE);
6220}
6221
6222
ac1f60db 6223static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6224{
1ee6dd77 6225 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6226
6227 return (sp->rx_csum);
6228}
ac1f60db
AB
6229
6230static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6231{
1ee6dd77 6232 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6233
6234 if (data)
6235 sp->rx_csum = 1;
6236 else
6237 sp->rx_csum = 0;
6238
6239 return 0;
6240}
ac1f60db
AB
6241
6242static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6243{
6244 return (XENA_EEPROM_SPACE);
6245}
6246
b9f2c044 6247static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6248{
b9f2c044
JG
6249 struct s2io_nic *sp = dev->priv;
6250
6251 switch (sset) {
6252 case ETH_SS_TEST:
6253 return S2IO_TEST_LEN;
6254 case ETH_SS_STATS:
6255 switch(sp->device_type) {
6256 case XFRAME_I_DEVICE:
6257 return XFRAME_I_STAT_LEN;
6258 case XFRAME_II_DEVICE:
6259 return XFRAME_II_STAT_LEN;
6260 default:
6261 return 0;
6262 }
6263 default:
6264 return -EOPNOTSUPP;
6265 }
1da177e4 6266}
ac1f60db
AB
6267
6268static void s2io_ethtool_get_strings(struct net_device *dev,
6269 u32 stringset, u8 * data)
1da177e4 6270{
fa1f0cb3
SS
6271 int stat_size = 0;
6272 struct s2io_nic *sp = dev->priv;
6273
1da177e4
LT
6274 switch (stringset) {
6275 case ETH_SS_TEST:
6276 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6277 break;
6278 case ETH_SS_STATS:
fa1f0cb3
SS
6279 stat_size = sizeof(ethtool_xena_stats_keys);
6280 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6281 if(sp->device_type == XFRAME_II_DEVICE) {
6282 memcpy(data + stat_size,
6283 &ethtool_enhanced_stats_keys,
6284 sizeof(ethtool_enhanced_stats_keys));
6285 stat_size += sizeof(ethtool_enhanced_stats_keys);
6286 }
6287
6288 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6289 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6290 }
6291}
1da177e4 6292
ac1f60db 6293static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6294{
6295 if (data)
6296 dev->features |= NETIF_F_IP_CSUM;
6297 else
6298 dev->features &= ~NETIF_F_IP_CSUM;
6299
6300 return 0;
6301}
6302
75c30b13
AR
6303static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6304{
6305 return (dev->features & NETIF_F_TSO) != 0;
6306}
6307static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6308{
6309 if (data)
6310 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6311 else
6312 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6313
6314 return 0;
6315}
1da177e4 6316
7282d491 6317static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6318 .get_settings = s2io_ethtool_gset,
6319 .set_settings = s2io_ethtool_sset,
6320 .get_drvinfo = s2io_ethtool_gdrvinfo,
6321 .get_regs_len = s2io_ethtool_get_regs_len,
6322 .get_regs = s2io_ethtool_gregs,
6323 .get_link = ethtool_op_get_link,
6324 .get_eeprom_len = s2io_get_eeprom_len,
6325 .get_eeprom = s2io_ethtool_geeprom,
6326 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6327 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6328 .get_pauseparam = s2io_ethtool_getpause_data,
6329 .set_pauseparam = s2io_ethtool_setpause_data,
6330 .get_rx_csum = s2io_ethtool_get_rx_csum,
6331 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6332 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6333 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6334 .get_tso = s2io_ethtool_op_get_tso,
6335 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6336 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6337 .self_test = s2io_ethtool_test,
6338 .get_strings = s2io_ethtool_get_strings,
6339 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6340 .get_ethtool_stats = s2io_get_ethtool_stats,
6341 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6342};
6343
6344/**
20346722 6345 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6346 * @dev : Device pointer.
6347 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6348 * a proprietary structure used to pass information to the driver.
6349 * @cmd : This is used to distinguish between the different commands that
6350 * can be passed to the IOCTL functions.
6351 * Description:
20346722
K
6352 * Currently there are no special functionality supported in IOCTL, hence
6353 * function always return EOPNOTSUPPORTED
1da177e4
LT
6354 */
6355
ac1f60db 6356static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6357{
6358 return -EOPNOTSUPP;
6359}
6360
6361/**
6362 * s2io_change_mtu - entry point to change MTU size for the device.
6363 * @dev : device pointer.
6364 * @new_mtu : the new MTU size for the device.
6365 * Description: A driver entry point to change MTU size for the device.
6366 * Before changing the MTU the device must be stopped.
6367 * Return value:
6368 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6369 * file on failure.
6370 */
6371
ac1f60db 6372static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6373{
1ee6dd77 6374 struct s2io_nic *sp = dev->priv;
9f74ffde 6375 int ret = 0;
1da177e4
LT
6376
6377 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6378 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6379 dev->name);
6380 return -EPERM;
6381 }
6382
1da177e4 6383 dev->mtu = new_mtu;
d8892c6e 6384 if (netif_running(dev)) {
e6a8fee2 6385 s2io_card_down(sp);
d8892c6e 6386 netif_stop_queue(dev);
9f74ffde
SH
6387 ret = s2io_card_up(sp);
6388 if (ret) {
d8892c6e
K
6389 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6390 __FUNCTION__);
9f74ffde 6391 return ret;
d8892c6e
K
6392 }
6393 if (netif_queue_stopped(dev))
6394 netif_wake_queue(dev);
6395 } else { /* Device is down */
1ee6dd77 6396 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6397 u64 val64 = new_mtu;
6398
6399 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6400 }
1da177e4 6401
9f74ffde 6402 return ret;
1da177e4
LT
6403}
6404
6405/**
6406 * s2io_tasklet - Bottom half of the ISR.
6407 * @dev_adr : address of the device structure in dma_addr_t format.
6408 * Description:
6409 * This is the tasklet or the bottom half of the ISR. This is
20346722 6410 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6411 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6412 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6413 * replenish the Rx buffers in the Rx buffer descriptors.
6414 * Return value:
6415 * void.
6416 */
6417
6418static void s2io_tasklet(unsigned long dev_addr)
6419{
6420 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6421 struct s2io_nic *sp = dev->priv;
1da177e4 6422 int i, ret;
1ee6dd77 6423 struct mac_info *mac_control;
1da177e4
LT
6424 struct config_param *config;
6425
6426 mac_control = &sp->mac_control;
6427 config = &sp->config;
6428
6429 if (!TASKLET_IN_USE) {
6430 for (i = 0; i < config->rx_ring_num; i++) {
6431 ret = fill_rx_buffers(sp, i);
6432 if (ret == -ENOMEM) {
0c61ed5f 6433 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6434 dev->name);
491976b2 6435 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6436 break;
6437 } else if (ret == -EFILL) {
0c61ed5f 6438 DBG_PRINT(INFO_DBG,
1da177e4
LT
6439 "%s: Rx Ring %d is full\n",
6440 dev->name, i);
6441 break;
6442 }
6443 }
6444 clear_bit(0, (&sp->tasklet_status));
6445 }
6446}
6447
6448/**
6449 * s2io_set_link - Set the LInk status
6450 * @data: long pointer to device private structue
6451 * Description: Sets the link status for the adapter
6452 */
6453
c4028958 6454static void s2io_set_link(struct work_struct *work)
1da177e4 6455{
1ee6dd77 6456 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6457 struct net_device *dev = nic->dev;
1ee6dd77 6458 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6459 register u64 val64;
6460 u16 subid;
6461
22747d6b
FR
6462 rtnl_lock();
6463
6464 if (!netif_running(dev))
6465 goto out_unlock;
6466
92b84437 6467 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6468 /* The card is being reset, no point doing anything */
22747d6b 6469 goto out_unlock;
1da177e4
LT
6470 }
6471
6472 subid = nic->pdev->subsystem_device;
a371a07d
K
6473 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6474 /*
6475 * Allow a small delay for the NICs self initiated
6476 * cleanup to complete.
6477 */
6478 msleep(100);
6479 }
1da177e4
LT
6480
6481 val64 = readq(&bar0->adapter_status);
19a60522
SS
6482 if (LINK_IS_UP(val64)) {
6483 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6484 if (verify_xena_quiescence(nic)) {
6485 val64 = readq(&bar0->adapter_control);
6486 val64 |= ADAPTER_CNTL_EN;
1da177e4 6487 writeq(val64, &bar0->adapter_control);
19a60522
SS
6488 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6489 nic->device_type, subid)) {
6490 val64 = readq(&bar0->gpio_control);
6491 val64 |= GPIO_CTRL_GPIO_0;
6492 writeq(val64, &bar0->gpio_control);
6493 val64 = readq(&bar0->gpio_control);
6494 } else {
6495 val64 |= ADAPTER_LED_ON;
6496 writeq(val64, &bar0->adapter_control);
a371a07d 6497 }
1da177e4 6498 nic->device_enabled_once = TRUE;
19a60522
SS
6499 } else {
6500 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6501 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6502 netif_stop_queue(dev);
1da177e4 6503 }
19a60522 6504 }
92c48799
SS
6505 val64 = readq(&bar0->adapter_control);
6506 val64 |= ADAPTER_LED_ON;
6507 writeq(val64, &bar0->adapter_control);
6508 s2io_link(nic, LINK_UP);
19a60522
SS
6509 } else {
6510 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6511 subid)) {
6512 val64 = readq(&bar0->gpio_control);
6513 val64 &= ~GPIO_CTRL_GPIO_0;
6514 writeq(val64, &bar0->gpio_control);
6515 val64 = readq(&bar0->gpio_control);
1da177e4 6516 }
92c48799
SS
6517 /* turn off LED */
6518 val64 = readq(&bar0->adapter_control);
6519 val64 = val64 &(~ADAPTER_LED_ON);
6520 writeq(val64, &bar0->adapter_control);
19a60522 6521 s2io_link(nic, LINK_DOWN);
1da177e4 6522 }
92b84437 6523 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6524
6525out_unlock:
d8d70caf 6526 rtnl_unlock();
1da177e4
LT
6527}
6528
1ee6dd77
RB
6529static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6530 struct buffAdd *ba,
6531 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6532 u64 *temp2, int size)
5d3213cc
AR
6533{
6534 struct net_device *dev = sp->dev;
491abf25 6535 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6536
6537 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6538 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6539 /* allocate skb */
6540 if (*skb) {
6541 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6542 /*
6543 * As Rx frame are not going to be processed,
6544 * using same mapped address for the Rxd
6545 * buffer pointer
6546 */
6d517a27 6547 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6548 } else {
6549 *skb = dev_alloc_skb(size);
6550 if (!(*skb)) {
0c61ed5f 6551 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6552 DBG_PRINT(INFO_DBG, "memory to allocate ");
6553 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6554 sp->mac_control.stats_info->sw_stat. \
6555 mem_alloc_fail_cnt++;
5d3213cc
AR
6556 return -ENOMEM ;
6557 }
8a4bdbaa 6558 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6559 += (*skb)->truesize;
5d3213cc
AR
6560 /* storing the mapped addr in a temp variable
6561 * such it will be used for next rxd whose
6562 * Host Control is NULL
6563 */
6d517a27 6564 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6565 pci_map_single( sp->pdev, (*skb)->data,
6566 size - NET_IP_ALIGN,
6567 PCI_DMA_FROMDEVICE);
491abf25
VP
6568 if( (rxdp1->Buffer0_ptr == 0) ||
6569 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6570 goto memalloc_failed;
6571 }
5d3213cc
AR
6572 rxdp->Host_Control = (unsigned long) (*skb);
6573 }
6574 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6575 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6576 /* Two buffer Mode */
6577 if (*skb) {
6d517a27
VP
6578 rxdp3->Buffer2_ptr = *temp2;
6579 rxdp3->Buffer0_ptr = *temp0;
6580 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6581 } else {
6582 *skb = dev_alloc_skb(size);
2ceaac75 6583 if (!(*skb)) {
c53d4945
SH
6584 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6585 DBG_PRINT(INFO_DBG, "memory to allocate ");
6586 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6587 sp->mac_control.stats_info->sw_stat. \
6588 mem_alloc_fail_cnt++;
2ceaac75
DR
6589 return -ENOMEM;
6590 }
8a4bdbaa 6591 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6592 += (*skb)->truesize;
6d517a27 6593 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6594 pci_map_single(sp->pdev, (*skb)->data,
6595 dev->mtu + 4,
6596 PCI_DMA_FROMDEVICE);
491abf25
VP
6597 if( (rxdp3->Buffer2_ptr == 0) ||
6598 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6599 goto memalloc_failed;
6600 }
6d517a27 6601 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6602 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6603 PCI_DMA_FROMDEVICE);
491abf25
VP
6604 if( (rxdp3->Buffer0_ptr == 0) ||
6605 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6606 pci_unmap_single (sp->pdev,
3e847423 6607 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6608 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6609 goto memalloc_failed;
6610 }
5d3213cc
AR
6611 rxdp->Host_Control = (unsigned long) (*skb);
6612
6613 /* Buffer-1 will be dummy buffer not used */
6d517a27 6614 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6615 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6616 PCI_DMA_FROMDEVICE);
491abf25
VP
6617 if( (rxdp3->Buffer1_ptr == 0) ||
6618 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6619 pci_unmap_single (sp->pdev,
3e847423
AV
6620 (dma_addr_t)rxdp3->Buffer0_ptr,
6621 BUF0_LEN, PCI_DMA_FROMDEVICE);
6622 pci_unmap_single (sp->pdev,
6623 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6624 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6625 goto memalloc_failed;
6626 }
5d3213cc
AR
6627 }
6628 }
6629 return 0;
491abf25
VP
6630 memalloc_failed:
6631 stats->pci_map_fail_cnt++;
6632 stats->mem_freed += (*skb)->truesize;
6633 dev_kfree_skb(*skb);
6634 return -ENOMEM;
5d3213cc 6635}
491abf25 6636
1ee6dd77
RB
6637static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6638 int size)
5d3213cc
AR
6639{
6640 struct net_device *dev = sp->dev;
6641 if (sp->rxd_mode == RXD_MODE_1) {
6642 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6643 } else if (sp->rxd_mode == RXD_MODE_3B) {
6644 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6645 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6646 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6647 }
6648}
6649
1ee6dd77 6650static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6651{
6652 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6653 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6654 struct config_param *config = &sp->config;
6655 struct net_device *dev = sp->dev;
1ee6dd77 6656 struct RxD_t *rxdp = NULL;
5d3213cc 6657 struct sk_buff *skb = NULL;
1ee6dd77 6658 struct buffAdd *ba = NULL;
5d3213cc
AR
6659 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6660
6661 /* Calculate the size based on ring mode */
6662 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6663 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6664 if (sp->rxd_mode == RXD_MODE_1)
6665 size += NET_IP_ALIGN;
6666 else if (sp->rxd_mode == RXD_MODE_3B)
6667 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6668
6669 for (i = 0; i < config->rx_ring_num; i++) {
6670 blk_cnt = config->rx_cfg[i].num_rxd /
6671 (rxd_count[sp->rxd_mode] +1);
6672
6673 for (j = 0; j < blk_cnt; j++) {
6674 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6675 rxdp = mac_control->rings[i].
6676 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6677 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6678 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6679 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6680 &skb,(u64 *)&temp0_64,
6681 (u64 *)&temp1_64,
ac1f90d6
SS
6682 (u64 *)&temp2_64,
6683 size) == ENOMEM) {
6684 return 0;
6685 }
5d3213cc
AR
6686
6687 set_rxd_buffer_size(sp, rxdp, size);
6688 wmb();
6689 /* flip the Ownership bit to Hardware */
6690 rxdp->Control_1 |= RXD_OWN_XENA;
6691 }
6692 }
6693 }
6694 return 0;
6695
6696}
6697
1ee6dd77 6698static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6699{
e6a8fee2 6700 int ret = 0;
c92ca04b 6701 struct net_device *dev = sp->dev;
e6a8fee2 6702 int err = 0;
1da177e4 6703
eaae7f72 6704 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6705 ret = s2io_enable_msi_x(sp);
6706 if (ret) {
6707 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6708 sp->config.intr_type = INTA;
20346722 6709 }
1da177e4 6710
1ee6dd77 6711 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6712 store_xmsi_data(sp);
c92ca04b 6713
e6a8fee2 6714 /* After proper initialization of H/W, register ISR */
eaae7f72 6715 if (sp->config.intr_type == MSI_X) {
fb6a825b 6716 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6717
e6a8fee2
AR
6718 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6719 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6720 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6721 dev->name, i);
6722 err = request_irq(sp->entries[i].vector,
6723 s2io_msix_fifo_handle, 0, sp->desc[i],
6724 sp->s2io_entries[i].arg);
fb6a825b
SS
6725 /* If either data or addr is zero print it */
6726 if(!(sp->msix_info[i].addr &&
6727 sp->msix_info[i].data)) {
6728 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6729 "Data:0x%lx\n",sp->desc[i],
6730 (unsigned long long)
6731 sp->msix_info[i].addr,
6732 (unsigned long)
6733 ntohl(sp->msix_info[i].data));
6734 } else {
6735 msix_tx_cnt++;
6736 }
e6a8fee2
AR
6737 } else {
6738 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6739 dev->name, i);
6740 err = request_irq(sp->entries[i].vector,
6741 s2io_msix_ring_handle, 0, sp->desc[i],
6742 sp->s2io_entries[i].arg);
fb6a825b
SS
6743 /* If either data or addr is zero print it */
6744 if(!(sp->msix_info[i].addr &&
6745 sp->msix_info[i].data)) {
6746 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6747 "Data:0x%lx\n",sp->desc[i],
6748 (unsigned long long)
6749 sp->msix_info[i].addr,
6750 (unsigned long)
6751 ntohl(sp->msix_info[i].data));
6752 } else {
6753 msix_rx_cnt++;
6754 }
c92ca04b 6755 }
e6a8fee2 6756 if (err) {
18b2b7bd 6757 remove_msix_isr(sp);
e6a8fee2
AR
6758 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6759 "failed\n", dev->name, i);
18b2b7bd
SH
6760 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6761 dev->name);
6762 sp->config.intr_type = INTA;
6763 break;
e6a8fee2
AR
6764 }
6765 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6766 }
18b2b7bd
SH
6767 if (!err) {
6768 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6769 msix_tx_cnt);
6770 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6771 msix_rx_cnt);
6772 }
e6a8fee2 6773 }
eaae7f72 6774 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
6775 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6776 sp->name, dev);
6777 if (err) {
6778 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6779 dev->name);
6780 return -1;
6781 }
6782 }
6783 return 0;
6784}
1ee6dd77 6785static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 6786{
18b2b7bd
SH
6787 if (sp->config.intr_type == MSI_X)
6788 remove_msix_isr(sp);
6789 else
6790 remove_inta_isr(sp);
e6a8fee2
AR
6791}
6792
d796fdb7 6793static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
6794{
6795 int cnt = 0;
1ee6dd77 6796 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6797 unsigned long flags;
6798 register u64 val64 = 0;
6799
9f74ffde
SH
6800 if (!is_s2io_card_up(sp))
6801 return;
6802
e6a8fee2
AR
6803 del_timer_sync(&sp->alarm_timer);
6804 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 6805 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
6806 msleep(50);
6807 }
92b84437 6808 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2
AR
6809
6810 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
6811 if (do_io)
6812 stop_nic(sp);
e6a8fee2
AR
6813
6814 s2io_rem_isr(sp);
1da177e4
LT
6815
6816 /* Kill tasklet. */
6817 tasklet_kill(&sp->task);
6818
6819 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 6820 while(do_io) {
5d3213cc
AR
6821 /* As per the HW requirement we need to replenish the
6822 * receive buffer to avoid the ring bump. Since there is
6823 * no intention of processing the Rx frame at this pointwe are
6824 * just settting the ownership bit of rxd in Each Rx
6825 * ring to HW and set the appropriate buffer size
6826 * based on the ring mode
6827 */
6828 rxd_owner_bit_reset(sp);
6829
1da177e4 6830 val64 = readq(&bar0->adapter_status);
19a60522
SS
6831 if (verify_xena_quiescence(sp)) {
6832 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6833 break;
6834 }
6835
6836 msleep(50);
6837 cnt++;
6838 if (cnt == 10) {
6839 DBG_PRINT(ERR_DBG,
6840 "s2io_close:Device not Quiescent ");
6841 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6842 (unsigned long long) val64);
6843 break;
6844 }
d796fdb7
LV
6845 }
6846 if (do_io)
6847 s2io_reset(sp);
1da177e4 6848
7ba013ac
K
6849 spin_lock_irqsave(&sp->tx_lock, flags);
6850 /* Free all Tx buffers */
1da177e4 6851 free_tx_buffers(sp);
7ba013ac
K
6852 spin_unlock_irqrestore(&sp->tx_lock, flags);
6853
6854 /* Free all Rx buffers */
6855 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6856 free_rx_buffers(sp);
7ba013ac 6857 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6858
92b84437 6859 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
6860}
6861
d796fdb7
LV
6862static void s2io_card_down(struct s2io_nic * sp)
6863{
6864 do_s2io_card_down(sp, 1);
6865}
6866
1ee6dd77 6867static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6868{
cc6e7c44 6869 int i, ret = 0;
1ee6dd77 6870 struct mac_info *mac_control;
1da177e4
LT
6871 struct config_param *config;
6872 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6873 u16 interruptible;
1da177e4
LT
6874
6875 /* Initialize the H/W I/O registers */
9f74ffde
SH
6876 ret = init_nic(sp);
6877 if (ret != 0) {
1da177e4
LT
6878 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6879 dev->name);
9f74ffde
SH
6880 if (ret != -EIO)
6881 s2io_reset(sp);
6882 return ret;
1da177e4
LT
6883 }
6884
20346722
K
6885 /*
6886 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6887 * Rx ring and initializing buffers into 30 Rx blocks
6888 */
6889 mac_control = &sp->mac_control;
6890 config = &sp->config;
6891
6892 for (i = 0; i < config->rx_ring_num; i++) {
6893 if ((ret = fill_rx_buffers(sp, i))) {
6894 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6895 dev->name);
6896 s2io_reset(sp);
6897 free_rx_buffers(sp);
6898 return -ENOMEM;
6899 }
6900 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6901 atomic_read(&sp->rx_bufs_left[i]));
6902 }
19a60522
SS
6903 /* Maintain the state prior to the open */
6904 if (sp->promisc_flg)
6905 sp->promisc_flg = 0;
6906 if (sp->m_cast_flg) {
6907 sp->m_cast_flg = 0;
6908 sp->all_multi_pos= 0;
6909 }
1da177e4
LT
6910
6911 /* Setting its receive mode */
6912 s2io_set_multicast(dev);
6913
7d3d0439 6914 if (sp->lro) {
b41477f3 6915 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6916 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6917 /* Check if we can use(if specified) user provided value */
6918 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6919 sp->lro_max_aggr_per_sess = lro_max_pkts;
6920 }
6921
1da177e4
LT
6922 /* Enable Rx Traffic and interrupts on the NIC */
6923 if (start_nic(sp)) {
6924 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6925 s2io_reset(sp);
e6a8fee2
AR
6926 free_rx_buffers(sp);
6927 return -ENODEV;
6928 }
6929
6930 /* Add interrupt service routine */
6931 if (s2io_add_isr(sp) != 0) {
eaae7f72 6932 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6933 s2io_rem_isr(sp);
6934 s2io_reset(sp);
1da177e4
LT
6935 free_rx_buffers(sp);
6936 return -ENODEV;
6937 }
6938
25fff88e
K
6939 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6940
e6a8fee2
AR
6941 /* Enable tasklet for the device */
6942 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6943
6944 /* Enable select interrupts */
9caab458 6945 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
eaae7f72 6946 if (sp->config.intr_type != INTA)
e6a8fee2
AR
6947 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6948 else {
6949 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 6950 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
6951 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6952 }
6953
92b84437 6954 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
1da177e4
LT
6955 return 0;
6956}
6957
20346722 6958/**
1da177e4
LT
6959 * s2io_restart_nic - Resets the NIC.
6960 * @data : long pointer to the device private structure
6961 * Description:
6962 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6963 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6964 * the run time of the watch dog routine which is run holding a
6965 * spin lock.
6966 */
6967
c4028958 6968static void s2io_restart_nic(struct work_struct *work)
1da177e4 6969{
1ee6dd77 6970 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6971 struct net_device *dev = sp->dev;
1da177e4 6972
22747d6b
FR
6973 rtnl_lock();
6974
6975 if (!netif_running(dev))
6976 goto out_unlock;
6977
e6a8fee2 6978 s2io_card_down(sp);
1da177e4
LT
6979 if (s2io_card_up(sp)) {
6980 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6981 dev->name);
6982 }
6983 netif_wake_queue(dev);
6984 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6985 dev->name);
22747d6b
FR
6986out_unlock:
6987 rtnl_unlock();
1da177e4
LT
6988}
6989
20346722
K
6990/**
6991 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6992 * @dev : Pointer to net device structure
6993 * Description:
6994 * This function is triggered if the Tx Queue is stopped
6995 * for a pre-defined amount of time when the Interface is still up.
6996 * If the Interface is jammed in such a situation, the hardware is
6997 * reset (by s2io_close) and restarted again (by s2io_open) to
6998 * overcome any problem that might have been caused in the hardware.
6999 * Return value:
7000 * void
7001 */
7002
7003static void s2io_tx_watchdog(struct net_device *dev)
7004{
1ee6dd77 7005 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7006
7007 if (netif_carrier_ok(dev)) {
c53d4945 7008 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7009 schedule_work(&sp->rst_timer_task);
bd1034f0 7010 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7011 }
7012}
7013
7014/**
7015 * rx_osm_handler - To perform some OS related operations on SKB.
7016 * @sp: private member of the device structure,pointer to s2io_nic structure.
7017 * @skb : the socket buffer pointer.
7018 * @len : length of the packet
7019 * @cksum : FCS checksum of the frame.
7020 * @ring_no : the ring from which this RxD was extracted.
20346722 7021 * Description:
b41477f3 7022 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7023 * some OS related operations on the SKB before passing it to the upper
7024 * layers. It mainly checks if the checksum is OK, if so adds it to the
7025 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7026 * to the upper layer. If the checksum is wrong, it increments the Rx
7027 * packet error count, frees the SKB and returns error.
7028 * Return value:
7029 * SUCCESS on success and -1 on failure.
7030 */
1ee6dd77 7031static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7032{
1ee6dd77 7033 struct s2io_nic *sp = ring_data->nic;
1da177e4 7034 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
7035 struct sk_buff *skb = (struct sk_buff *)
7036 ((unsigned long) rxdp->Host_Control);
7037 int ring_no = ring_data->ring_no;
1da177e4 7038 u16 l3_csum, l4_csum;
863c11a9 7039 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7040 struct lro *lro;
f9046eb3 7041 u8 err_mask;
da6971d8 7042
20346722 7043 skb->dev = dev;
c92ca04b 7044
863c11a9 7045 if (err) {
bd1034f0
AR
7046 /* Check for parity error */
7047 if (err & 0x1) {
7048 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7049 }
f9046eb3
OH
7050 err_mask = err >> 48;
7051 switch(err_mask) {
491976b2
SH
7052 case 1:
7053 sp->mac_control.stats_info->sw_stat.
7054 rx_parity_err_cnt++;
7055 break;
7056
7057 case 2:
7058 sp->mac_control.stats_info->sw_stat.
7059 rx_abort_cnt++;
7060 break;
7061
7062 case 3:
7063 sp->mac_control.stats_info->sw_stat.
7064 rx_parity_abort_cnt++;
7065 break;
7066
7067 case 4:
7068 sp->mac_control.stats_info->sw_stat.
7069 rx_rda_fail_cnt++;
7070 break;
7071
7072 case 5:
7073 sp->mac_control.stats_info->sw_stat.
7074 rx_unkn_prot_cnt++;
7075 break;
7076
7077 case 6:
7078 sp->mac_control.stats_info->sw_stat.
7079 rx_fcs_err_cnt++;
7080 break;
bd1034f0 7081
491976b2
SH
7082 case 7:
7083 sp->mac_control.stats_info->sw_stat.
7084 rx_buf_size_err_cnt++;
7085 break;
7086
7087 case 8:
7088 sp->mac_control.stats_info->sw_stat.
7089 rx_rxd_corrupt_cnt++;
7090 break;
7091
7092 case 15:
7093 sp->mac_control.stats_info->sw_stat.
7094 rx_unkn_err_cnt++;
7095 break;
7096 }
863c11a9
AR
7097 /*
7098 * Drop the packet if bad transfer code. Exception being
7099 * 0x5, which could be due to unsupported IPv6 extension header.
7100 * In this case, we let stack handle the packet.
7101 * Note that in this case, since checksum will be incorrect,
7102 * stack will validate the same.
7103 */
f9046eb3
OH
7104 if (err_mask != 0x5) {
7105 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7106 dev->name, err_mask);
863c11a9 7107 sp->stats.rx_crc_errors++;
8a4bdbaa 7108 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7109 += skb->truesize;
863c11a9
AR
7110 dev_kfree_skb(skb);
7111 atomic_dec(&sp->rx_bufs_left[ring_no]);
7112 rxdp->Host_Control = 0;
7113 return 0;
7114 }
20346722 7115 }
1da177e4 7116
20346722 7117 /* Updating statistics */
573608e4 7118 sp->stats.rx_packets++;
20346722 7119 rxdp->Host_Control = 0;
da6971d8
AR
7120 if (sp->rxd_mode == RXD_MODE_1) {
7121 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7122
da6971d8
AR
7123 sp->stats.rx_bytes += len;
7124 skb_put(skb, len);
7125
6d517a27 7126 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7127 int get_block = ring_data->rx_curr_get_info.block_index;
7128 int get_off = ring_data->rx_curr_get_info.offset;
7129 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7130 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7131 unsigned char *buff = skb_push(skb, buf0_len);
7132
1ee6dd77 7133 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
7134 sp->stats.rx_bytes += buf0_len + buf2_len;
7135 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7136 skb_put(skb, buf2_len);
da6971d8 7137 }
20346722 7138
7d3d0439
RA
7139 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7140 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7141 (sp->rx_csum)) {
7142 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7143 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7144 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7145 /*
1da177e4
LT
7146 * NIC verifies if the Checksum of the received
7147 * frame is Ok or not and accordingly returns
7148 * a flag in the RxD.
7149 */
7150 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
7151 if (sp->lro) {
7152 u32 tcp_len;
7153 u8 *tcp;
7154 int ret = 0;
7155
7156 ret = s2io_club_tcp_session(skb->data, &tcp,
43b7c451
SH
7157 &tcp_len, &lro,
7158 rxdp, sp);
7d3d0439
RA
7159 switch (ret) {
7160 case 3: /* Begin anew */
7161 lro->parent = skb;
7162 goto aggregate;
7163 case 1: /* Aggregate */
7164 {
7165 lro_append_pkt(sp, lro,
7166 skb, tcp_len);
7167 goto aggregate;
7168 }
7169 case 4: /* Flush session */
7170 {
7171 lro_append_pkt(sp, lro,
7172 skb, tcp_len);
7173 queue_rx_frame(lro->parent);
7174 clear_lro_session(lro);
7175 sp->mac_control.stats_info->
7176 sw_stat.flush_max_pkts++;
7177 goto aggregate;
7178 }
7179 case 2: /* Flush both */
7180 lro->parent->data_len =
7181 lro->frags_len;
7182 sp->mac_control.stats_info->
7183 sw_stat.sending_both++;
7184 queue_rx_frame(lro->parent);
7185 clear_lro_session(lro);
7186 goto send_up;
7187 case 0: /* sessions exceeded */
c92ca04b
AR
7188 case -1: /* non-TCP or not
7189 * L2 aggregatable
7190 */
7d3d0439
RA
7191 case 5: /*
7192 * First pkt in session not
7193 * L3/L4 aggregatable
7194 */
7195 break;
7196 default:
7197 DBG_PRINT(ERR_DBG,
7198 "%s: Samadhana!!\n",
7199 __FUNCTION__);
7200 BUG();
7201 }
7202 }
1da177e4 7203 } else {
20346722
K
7204 /*
7205 * Packet with erroneous checksum, let the
1da177e4
LT
7206 * upper layers deal with it.
7207 */
7208 skb->ip_summed = CHECKSUM_NONE;
7209 }
7210 } else {
7211 skb->ip_summed = CHECKSUM_NONE;
7212 }
491976b2 7213 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439
RA
7214 if (!sp->lro) {
7215 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
7216 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7217 vlan_strip_flag)) {
7d3d0439 7218 /* Queueing the vlan frame to the upper layer */
db874e65
SS
7219 if (napi)
7220 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7221 RXD_GET_VLAN_TAG(rxdp->Control_2));
7222 else
7223 vlan_hwaccel_rx(skb, sp->vlgrp,
7224 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7225 } else {
db874e65
SS
7226 if (napi)
7227 netif_receive_skb(skb);
7228 else
7229 netif_rx(skb);
7d3d0439 7230 }
7d3d0439
RA
7231 } else {
7232send_up:
7233 queue_rx_frame(skb);
6aa20a22 7234 }
1da177e4 7235 dev->last_rx = jiffies;
7d3d0439 7236aggregate:
1da177e4 7237 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
7238 return SUCCESS;
7239}
7240
7241/**
7242 * s2io_link - stops/starts the Tx queue.
7243 * @sp : private member of the device structure, which is a pointer to the
7244 * s2io_nic structure.
7245 * @link : inidicates whether link is UP/DOWN.
7246 * Description:
7247 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7248 * status of the NIC is is down or up. This is called by the Alarm
7249 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7250 * Return value:
7251 * void.
7252 */
7253
1ee6dd77 7254static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7255{
7256 struct net_device *dev = (struct net_device *) sp->dev;
7257
7258 if (link != sp->last_link_state) {
7259 if (link == LINK_DOWN) {
7260 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7261 netif_carrier_off(dev);
491976b2 7262 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7263 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7264 jiffies - sp->start_time;
7265 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7266 } else {
7267 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7268 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7269 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7270 jiffies - sp->start_time;
7271 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4
LT
7272 netif_carrier_on(dev);
7273 }
7274 }
7275 sp->last_link_state = link;
491976b2 7276 sp->start_time = jiffies;
1da177e4
LT
7277}
7278
20346722
K
7279/**
7280 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7281 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7282 * s2io_nic structure.
7283 * Description:
7284 * This function initializes a few of the PCI and PCI-X configuration registers
7285 * with recommended values.
7286 * Return value:
7287 * void
7288 */
7289
1ee6dd77 7290static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7291{
20346722 7292 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7293
7294 /* Enable Data Parity Error Recovery in PCI-X command register. */
7295 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7296 &(pcix_cmd));
1da177e4 7297 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7298 (pcix_cmd | 1));
1da177e4 7299 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7300 &(pcix_cmd));
1da177e4
LT
7301
7302 /* Set the PErr Response bit in PCI command register. */
7303 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7304 pci_write_config_word(sp->pdev, PCI_COMMAND,
7305 (pci_cmd | PCI_COMMAND_PARITY));
7306 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7307}
7308
9dc737a7
AR
7309static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7310{
7311 if ( tx_fifo_num > 8) {
7312 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7313 "supported\n");
7314 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7315 tx_fifo_num = 8;
7316 }
7317 if ( rx_ring_num > 8) {
7318 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7319 "supported\n");
7320 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7321 rx_ring_num = 8;
7322 }
db874e65
SS
7323 if (*dev_intr_type != INTA)
7324 napi = 0;
7325
eccb8628 7326 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7327 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7328 "Defaulting to INTA\n");
7329 *dev_intr_type = INTA;
7330 }
596c5c97 7331
9dc737a7
AR
7332 if ((*dev_intr_type == MSI_X) &&
7333 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7334 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7335 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7336 "Defaulting to INTA\n");
7337 *dev_intr_type = INTA;
7338 }
fb6a825b 7339
6d517a27 7340 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7341 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7342 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7343 rx_ring_mode = 1;
9dc737a7
AR
7344 }
7345 return SUCCESS;
7346}
7347
9fc93a41
SS
7348/**
7349 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7350 * or Traffic class respectively.
7351 * @nic: device peivate variable
7352 * Description: The function configures the receive steering to
7353 * desired receive ring.
7354 * Return Value: SUCCESS on success and
7355 * '-1' on failure (endian settings incorrect).
7356 */
7357static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7358{
7359 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7360 register u64 val64 = 0;
7361
7362 if (ds_codepoint > 63)
7363 return FAILURE;
7364
7365 val64 = RTS_DS_MEM_DATA(ring);
7366 writeq(val64, &bar0->rts_ds_mem_data);
7367
7368 val64 = RTS_DS_MEM_CTRL_WE |
7369 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7370 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7371
7372 writeq(val64, &bar0->rts_ds_mem_ctrl);
7373
7374 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7375 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7376 S2IO_BIT_RESET);
7377}
7378
1da177e4 7379/**
20346722 7380 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7381 * @pdev : structure containing the PCI related information of the device.
7382 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7383 * Description:
7384 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7385 * All OS related initialization including memory and device structure and
7386 * initlaization of the device private variable is done. Also the swapper
7387 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7388 * registers of the device.
7389 * Return value:
7390 * returns 0 on success and negative on failure.
7391 */
7392
7393static int __devinit
7394s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7395{
1ee6dd77 7396 struct s2io_nic *sp;
1da177e4 7397 struct net_device *dev;
1da177e4
LT
7398 int i, j, ret;
7399 int dma_flag = FALSE;
7400 u32 mac_up, mac_down;
7401 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7402 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7403 u16 subid;
1ee6dd77 7404 struct mac_info *mac_control;
1da177e4 7405 struct config_param *config;
541ae68f 7406 int mode;
cc6e7c44 7407 u8 dev_intr_type = intr_type;
0795af57 7408 DECLARE_MAC_BUF(mac);
1da177e4 7409
9dc737a7
AR
7410 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7411 return ret;
1da177e4
LT
7412
7413 if ((ret = pci_enable_device(pdev))) {
7414 DBG_PRINT(ERR_DBG,
7415 "s2io_init_nic: pci_enable_device failed\n");
7416 return ret;
7417 }
7418
1e7f0bd8 7419 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7420 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7421 dma_flag = TRUE;
1da177e4 7422 if (pci_set_consistent_dma_mask
1e7f0bd8 7423 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7424 DBG_PRINT(ERR_DBG,
7425 "Unable to obtain 64bit DMA for \
7426 consistent allocations\n");
7427 pci_disable_device(pdev);
7428 return -ENOMEM;
7429 }
1e7f0bd8 7430 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7431 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7432 } else {
7433 pci_disable_device(pdev);
7434 return -ENOMEM;
7435 }
eccb8628
VP
7436 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7437 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7438 pci_disable_device(pdev);
7439 return -ENODEV;
1da177e4
LT
7440 }
7441
1ee6dd77 7442 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7443 if (dev == NULL) {
7444 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7445 pci_disable_device(pdev);
7446 pci_release_regions(pdev);
7447 return -ENODEV;
7448 }
7449
7450 pci_set_master(pdev);
7451 pci_set_drvdata(pdev, dev);
1da177e4
LT
7452 SET_NETDEV_DEV(dev, &pdev->dev);
7453
7454 /* Private member variable initialized to s2io NIC structure */
7455 sp = dev->priv;
1ee6dd77 7456 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7457 sp->dev = dev;
7458 sp->pdev = pdev;
1da177e4 7459 sp->high_dma_flag = dma_flag;
1da177e4 7460 sp->device_enabled_once = FALSE;
da6971d8
AR
7461 if (rx_ring_mode == 1)
7462 sp->rxd_mode = RXD_MODE_1;
7463 if (rx_ring_mode == 2)
7464 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7465
eaae7f72 7466 sp->config.intr_type = dev_intr_type;
1da177e4 7467
541ae68f
K
7468 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7469 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7470 sp->device_type = XFRAME_II_DEVICE;
7471 else
7472 sp->device_type = XFRAME_I_DEVICE;
7473
43b7c451 7474 sp->lro = lro_enable;
6aa20a22 7475
1da177e4
LT
7476 /* Initialize some PCI/PCI-X fields of the NIC. */
7477 s2io_init_pci(sp);
7478
20346722 7479 /*
1da177e4 7480 * Setting the device configuration parameters.
20346722
K
7481 * Most of these parameters can be specified by the user during
7482 * module insertion as they are module loadable parameters. If
7483 * these parameters are not not specified during load time, they
1da177e4
LT
7484 * are initialized with default values.
7485 */
7486 mac_control = &sp->mac_control;
7487 config = &sp->config;
7488
596c5c97
SS
7489 config->napi = napi;
7490
1da177e4 7491 /* Tx side parameters. */
1da177e4
LT
7492 config->tx_fifo_num = tx_fifo_num;
7493 for (i = 0; i < MAX_TX_FIFOS; i++) {
7494 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7495 config->tx_cfg[i].fifo_priority = i;
7496 }
7497
20346722
K
7498 /* mapping the QoS priority to the configured fifos */
7499 for (i = 0; i < MAX_TX_FIFOS; i++)
7500 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7501
1da177e4
LT
7502 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7503 for (i = 0; i < config->tx_fifo_num; i++) {
7504 config->tx_cfg[i].f_no_snoop =
7505 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7506 if (config->tx_cfg[i].fifo_len < 65) {
7507 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7508 break;
7509 }
7510 }
fed5eccd
AR
7511 /* + 2 because one Txd for skb->data and one Txd for UFO */
7512 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7513
7514 /* Rx side parameters. */
1da177e4
LT
7515 config->rx_ring_num = rx_ring_num;
7516 for (i = 0; i < MAX_RX_RINGS; i++) {
7517 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7518 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7519 config->rx_cfg[i].ring_priority = i;
7520 }
7521
7522 for (i = 0; i < rx_ring_num; i++) {
7523 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7524 config->rx_cfg[i].f_no_snoop =
7525 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7526 }
7527
7528 /* Setting Mac Control parameters */
7529 mac_control->rmac_pause_time = rmac_pause_time;
7530 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7531 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7532
7533
7534 /* Initialize Ring buffer parameters. */
7535 for (i = 0; i < config->rx_ring_num; i++)
7536 atomic_set(&sp->rx_bufs_left[i], 0);
7537
7538 /* initialize the shared memory used by the NIC and the host */
7539 if (init_shared_mem(sp)) {
7540 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7541 dev->name);
1da177e4
LT
7542 ret = -ENOMEM;
7543 goto mem_alloc_failed;
7544 }
7545
7546 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7547 pci_resource_len(pdev, 0));
7548 if (!sp->bar0) {
19a60522 7549 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7550 dev->name);
7551 ret = -ENOMEM;
7552 goto bar0_remap_failed;
7553 }
7554
7555 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7556 pci_resource_len(pdev, 2));
7557 if (!sp->bar1) {
19a60522 7558 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7559 dev->name);
7560 ret = -ENOMEM;
7561 goto bar1_remap_failed;
7562 }
7563
7564 dev->irq = pdev->irq;
7565 dev->base_addr = (unsigned long) sp->bar0;
7566
7567 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7568 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7569 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7570 (sp->bar1 + (j * 0x00020000));
7571 }
7572
7573 /* Driver entry points */
7574 dev->open = &s2io_open;
7575 dev->stop = &s2io_close;
7576 dev->hard_start_xmit = &s2io_xmit;
7577 dev->get_stats = &s2io_get_stats;
7578 dev->set_multicast_list = &s2io_set_multicast;
7579 dev->do_ioctl = &s2io_ioctl;
2fd37688 7580 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
7581 dev->change_mtu = &s2io_change_mtu;
7582 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7583 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7584 dev->vlan_rx_register = s2io_vlan_rx_register;
20346722 7585
1da177e4
LT
7586 /*
7587 * will use eth_mac_addr() for dev->set_mac_address
7588 * mac address will be set every time dev->open() is called
7589 */
bea3348e 7590 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 7591
612eff0e
BH
7592#ifdef CONFIG_NET_POLL_CONTROLLER
7593 dev->poll_controller = s2io_netpoll;
7594#endif
7595
1da177e4
LT
7596 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7597 if (sp->high_dma_flag == TRUE)
7598 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7599 dev->features |= NETIF_F_TSO;
f83ef8c0 7600 dev->features |= NETIF_F_TSO6;
db874e65 7601 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7602 dev->features |= NETIF_F_UFO;
7603 dev->features |= NETIF_F_HW_CSUM;
7604 }
1da177e4
LT
7605
7606 dev->tx_timeout = &s2io_tx_watchdog;
7607 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7608 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7609 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7610
e960fc5c 7611 pci_save_state(sp->pdev);
1da177e4
LT
7612
7613 /* Setting swapper control on the NIC, for proper reset operation */
7614 if (s2io_set_swapper(sp)) {
7615 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7616 dev->name);
7617 ret = -EAGAIN;
7618 goto set_swap_failed;
7619 }
7620
541ae68f
K
7621 /* Verify if the Herc works on the slot its placed into */
7622 if (sp->device_type & XFRAME_II_DEVICE) {
7623 mode = s2io_verify_pci_mode(sp);
7624 if (mode < 0) {
7625 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7626 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7627 ret = -EBADSLT;
7628 goto set_swap_failed;
7629 }
7630 }
7631
7632 /* Not needed for Herc */
7633 if (sp->device_type & XFRAME_I_DEVICE) {
7634 /*
7635 * Fix for all "FFs" MAC address problems observed on
7636 * Alpha platforms
7637 */
7638 fix_mac_address(sp);
7639 s2io_reset(sp);
7640 }
1da177e4
LT
7641
7642 /*
1da177e4
LT
7643 * MAC address initialization.
7644 * For now only one mac address will be read and used.
7645 */
7646 bar0 = sp->bar0;
7647 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7648 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7649 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7650 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7651 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7652 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7653 mac_down = (u32) tmp64;
7654 mac_up = (u32) (tmp64 >> 32);
7655
1da177e4
LT
7656 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7657 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7658 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7659 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7660 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7661 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7662
1da177e4
LT
7663 /* Set the factory defined MAC address initially */
7664 dev->addr_len = ETH_ALEN;
7665 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 7666 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 7667
c77dd43e
SS
7668 /* Store the values of the MSIX table in the s2io_nic structure */
7669 store_xmsi_data(sp);
b41477f3
AR
7670 /* reset Nic and bring it to known state */
7671 s2io_reset(sp);
7672
1da177e4 7673 /*
20346722 7674 * Initialize the tasklet status and link state flags
541ae68f 7675 * and the card state parameter
1da177e4 7676 */
1da177e4 7677 sp->tasklet_status = 0;
92b84437 7678 sp->state = 0;
1da177e4 7679
1da177e4
LT
7680 /* Initialize spinlocks */
7681 spin_lock_init(&sp->tx_lock);
db874e65
SS
7682
7683 if (!napi)
7684 spin_lock_init(&sp->put_lock);
7ba013ac 7685 spin_lock_init(&sp->rx_lock);
1da177e4 7686
20346722
K
7687 /*
7688 * SXE-002: Configure link and activity LED to init state
7689 * on driver load.
1da177e4
LT
7690 */
7691 subid = sp->pdev->subsystem_device;
7692 if ((subid & 0xFF) >= 0x07) {
7693 val64 = readq(&bar0->gpio_control);
7694 val64 |= 0x0000800000000000ULL;
7695 writeq(val64, &bar0->gpio_control);
7696 val64 = 0x0411040400000000ULL;
7697 writeq(val64, (void __iomem *) bar0 + 0x2700);
7698 val64 = readq(&bar0->gpio_control);
7699 }
7700
7701 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7702
7703 if (register_netdev(dev)) {
7704 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7705 ret = -ENODEV;
7706 goto register_failed;
7707 }
9dc737a7 7708 s2io_vpd_read(sp);
0c61ed5f 7709 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 7710 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 7711 sp->product_name, pdev->revision);
b41477f3
AR
7712 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7713 s2io_driver_version);
0795af57
JP
7714 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7715 dev->name, print_mac(mac, dev->dev_addr));
19a60522 7716 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7717 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7718 mode = s2io_print_pci_mode(sp);
541ae68f 7719 if (mode < 0) {
9dc737a7 7720 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7721 ret = -EBADSLT;
9dc737a7 7722 unregister_netdev(dev);
541ae68f
K
7723 goto set_swap_failed;
7724 }
541ae68f 7725 }
9dc737a7
AR
7726 switch(sp->rxd_mode) {
7727 case RXD_MODE_1:
7728 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7729 dev->name);
7730 break;
7731 case RXD_MODE_3B:
7732 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7733 dev->name);
7734 break;
9dc737a7 7735 }
db874e65
SS
7736
7737 if (napi)
7738 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
eaae7f72 7739 switch(sp->config.intr_type) {
9dc737a7
AR
7740 case INTA:
7741 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7742 break;
9dc737a7
AR
7743 case MSI_X:
7744 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7745 break;
7746 }
7d3d0439
RA
7747 if (sp->lro)
7748 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7749 dev->name);
db874e65
SS
7750 if (ufo)
7751 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7752 " enabled\n", dev->name);
7ba013ac 7753 /* Initialize device name */
9dc737a7 7754 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7755
20346722
K
7756 /*
7757 * Make Link state as off at this point, when the Link change
7758 * interrupt comes the state will be automatically changed to
1da177e4
LT
7759 * the right state.
7760 */
7761 netif_carrier_off(dev);
1da177e4
LT
7762
7763 return 0;
7764
7765 register_failed:
7766 set_swap_failed:
7767 iounmap(sp->bar1);
7768 bar1_remap_failed:
7769 iounmap(sp->bar0);
7770 bar0_remap_failed:
7771 mem_alloc_failed:
7772 free_shared_mem(sp);
7773 pci_disable_device(pdev);
eccb8628 7774 pci_release_regions(pdev);
1da177e4
LT
7775 pci_set_drvdata(pdev, NULL);
7776 free_netdev(dev);
7777
7778 return ret;
7779}
7780
7781/**
20346722 7782 * s2io_rem_nic - Free the PCI device
1da177e4 7783 * @pdev: structure containing the PCI related information of the device.
20346722 7784 * Description: This function is called by the Pci subsystem to release a
1da177e4 7785 * PCI device and free up all resource held up by the device. This could
20346722 7786 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7787 * from memory.
7788 */
7789
7790static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7791{
7792 struct net_device *dev =
7793 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7794 struct s2io_nic *sp;
1da177e4
LT
7795
7796 if (dev == NULL) {
7797 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7798 return;
7799 }
7800
22747d6b
FR
7801 flush_scheduled_work();
7802
1da177e4
LT
7803 sp = dev->priv;
7804 unregister_netdev(dev);
7805
7806 free_shared_mem(sp);
7807 iounmap(sp->bar0);
7808 iounmap(sp->bar1);
eccb8628 7809 pci_release_regions(pdev);
1da177e4 7810 pci_set_drvdata(pdev, NULL);
1da177e4 7811 free_netdev(dev);
19a60522 7812 pci_disable_device(pdev);
1da177e4
LT
7813}
7814
7815/**
7816 * s2io_starter - Entry point for the driver
7817 * Description: This function is the entry point for the driver. It verifies
7818 * the module loadable parameters and initializes PCI configuration space.
7819 */
7820
43b7c451 7821static int __init s2io_starter(void)
1da177e4 7822{
29917620 7823 return pci_register_driver(&s2io_driver);
1da177e4
LT
7824}
7825
7826/**
20346722 7827 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7828 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7829 */
7830
372cc597 7831static __exit void s2io_closer(void)
1da177e4
LT
7832{
7833 pci_unregister_driver(&s2io_driver);
7834 DBG_PRINT(INIT_DBG, "cleanup done\n");
7835}
7836
7837module_init(s2io_starter);
7838module_exit(s2io_closer);
7d3d0439 7839
6aa20a22 7840static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7841 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7842{
7843 int ip_off;
7844 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7845
7846 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7847 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7848 __FUNCTION__);
7849 return -1;
7850 }
7851
7852 /* TODO:
7853 * By default the VLAN field in the MAC is stripped by the card, if this
7854 * feature is turned off in rx_pa_cfg register, then the ip_off field
7855 * has to be shifted by a further 2 bytes
7856 */
7857 switch (l2_type) {
7858 case 0: /* DIX type */
7859 case 4: /* DIX type with VLAN */
7860 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7861 break;
7862 /* LLC, SNAP etc are considered non-mergeable */
7863 default:
7864 return -1;
7865 }
7866
7867 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7868 ip_len = (u8)((*ip)->ihl);
7869 ip_len <<= 2;
7870 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7871
7872 return 0;
7873}
7874
1ee6dd77 7875static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7876 struct tcphdr *tcp)
7877{
7878 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7879 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7880 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7881 return -1;
7882 return 0;
7883}
7884
7885static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7886{
7887 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7888}
7889
1ee6dd77 7890static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7891 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7892{
7893 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7894 lro->l2h = l2h;
7895 lro->iph = ip;
7896 lro->tcph = tcp;
7897 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7898 lro->tcp_ack = ntohl(tcp->ack_seq);
7899 lro->sg_num = 1;
7900 lro->total_len = ntohs(ip->tot_len);
7901 lro->frags_len = 0;
6aa20a22 7902 /*
7d3d0439
RA
7903 * check if we saw TCP timestamp. Other consistency checks have
7904 * already been done.
7905 */
7906 if (tcp->doff == 8) {
7907 u32 *ptr;
7908 ptr = (u32 *)(tcp+1);
7909 lro->saw_ts = 1;
7910 lro->cur_tsval = *(ptr+1);
7911 lro->cur_tsecr = *(ptr+2);
7912 }
7913 lro->in_use = 1;
7914}
7915
1ee6dd77 7916static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7917{
7918 struct iphdr *ip = lro->iph;
7919 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7920 __sum16 nchk;
1ee6dd77 7921 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7922 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7923
7924 /* Update L3 header */
7925 ip->tot_len = htons(lro->total_len);
7926 ip->check = 0;
7927 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7928 ip->check = nchk;
7929
7930 /* Update L4 header */
7931 tcp->ack_seq = lro->tcp_ack;
7932 tcp->window = lro->window;
7933
7934 /* Update tsecr field if this session has timestamps enabled */
7935 if (lro->saw_ts) {
7936 u32 *ptr = (u32 *)(tcp + 1);
7937 *(ptr+2) = lro->cur_tsecr;
7938 }
7939
7940 /* Update counters required for calculation of
7941 * average no. of packets aggregated.
7942 */
7943 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7944 statinfo->sw_stat.num_aggregations++;
7945}
7946
1ee6dd77 7947static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7948 struct tcphdr *tcp, u32 l4_pyld)
7949{
7950 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7951 lro->total_len += l4_pyld;
7952 lro->frags_len += l4_pyld;
7953 lro->tcp_next_seq += l4_pyld;
7954 lro->sg_num++;
7955
7956 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7957 lro->tcp_ack = tcp->ack_seq;
7958 lro->window = tcp->window;
6aa20a22 7959
7d3d0439
RA
7960 if (lro->saw_ts) {
7961 u32 *ptr;
7962 /* Update tsecr and tsval from this packet */
7963 ptr = (u32 *) (tcp + 1);
6aa20a22 7964 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7965 lro->cur_tsecr = *(ptr + 2);
7966 }
7967}
7968
1ee6dd77 7969static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7970 struct tcphdr *tcp, u32 tcp_pyld_len)
7971{
7d3d0439
RA
7972 u8 *ptr;
7973
79dc1901
AM
7974 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7975
7d3d0439
RA
7976 if (!tcp_pyld_len) {
7977 /* Runt frame or a pure ack */
7978 return -1;
7979 }
7980
7981 if (ip->ihl != 5) /* IP has options */
7982 return -1;
7983
75c30b13
AR
7984 /* If we see CE codepoint in IP header, packet is not mergeable */
7985 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7986 return -1;
7987
7988 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7989 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7990 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7991 /*
7992 * Currently recognize only the ack control word and
7993 * any other control field being set would result in
7994 * flushing the LRO session
7995 */
7996 return -1;
7997 }
7998
6aa20a22 7999 /*
7d3d0439
RA
8000 * Allow only one TCP timestamp option. Don't aggregate if
8001 * any other options are detected.
8002 */
8003 if (tcp->doff != 5 && tcp->doff != 8)
8004 return -1;
8005
8006 if (tcp->doff == 8) {
6aa20a22 8007 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8008 while (*ptr == TCPOPT_NOP)
8009 ptr++;
8010 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8011 return -1;
8012
8013 /* Ensure timestamp value increases monotonically */
8014 if (l_lro)
8015 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8016 return -1;
8017
8018 /* timestamp echo reply should be non-zero */
6aa20a22 8019 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
8020 return -1;
8021 }
8022
8023 return 0;
8024}
8025
8026static int
1ee6dd77
RB
8027s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8028 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8029{
8030 struct iphdr *ip;
8031 struct tcphdr *tcph;
8032 int ret = 0, i;
8033
8034 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8035 rxdp))) {
8036 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8037 ip->saddr, ip->daddr);
8038 } else {
8039 return ret;
8040 }
8041
8042 tcph = (struct tcphdr *)*tcp;
8043 *tcp_len = get_l4_pyld_length(ip, tcph);
8044 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8045 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8046 if (l_lro->in_use) {
8047 if (check_for_socket_match(l_lro, ip, tcph))
8048 continue;
8049 /* Sock pair matched */
8050 *lro = l_lro;
8051
8052 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8053 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8054 "0x%x, actual 0x%x\n", __FUNCTION__,
8055 (*lro)->tcp_next_seq,
8056 ntohl(tcph->seq));
8057
8058 sp->mac_control.stats_info->
8059 sw_stat.outof_sequence_pkts++;
8060 ret = 2;
8061 break;
8062 }
8063
8064 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8065 ret = 1; /* Aggregate */
8066 else
8067 ret = 2; /* Flush both */
8068 break;
8069 }
8070 }
8071
8072 if (ret == 0) {
8073 /* Before searching for available LRO objects,
8074 * check if the pkt is L3/L4 aggregatable. If not
8075 * don't create new LRO session. Just send this
8076 * packet up.
8077 */
8078 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8079 return 5;
8080 }
8081
8082 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 8083 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
8084 if (!(l_lro->in_use)) {
8085 *lro = l_lro;
8086 ret = 3; /* Begin anew */
8087 break;
8088 }
8089 }
8090 }
8091
8092 if (ret == 0) { /* sessions exceeded */
8093 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8094 __FUNCTION__);
8095 *lro = NULL;
8096 return ret;
8097 }
8098
8099 switch (ret) {
8100 case 3:
8101 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8102 break;
8103 case 2:
8104 update_L3L4_header(sp, *lro);
8105 break;
8106 case 1:
8107 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8108 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8109 update_L3L4_header(sp, *lro);
8110 ret = 4; /* Flush the LRO */
8111 }
8112 break;
8113 default:
8114 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8115 __FUNCTION__);
8116 break;
8117 }
8118
8119 return ret;
8120}
8121
1ee6dd77 8122static void clear_lro_session(struct lro *lro)
7d3d0439 8123{
1ee6dd77 8124 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8125
8126 memset(lro, 0, lro_struct_size);
8127}
8128
8129static void queue_rx_frame(struct sk_buff *skb)
8130{
8131 struct net_device *dev = skb->dev;
8132
8133 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
8134 if (napi)
8135 netif_receive_skb(skb);
8136 else
8137 netif_rx(skb);
7d3d0439
RA
8138}
8139
1ee6dd77
RB
8140static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8141 struct sk_buff *skb,
7d3d0439
RA
8142 u32 tcp_len)
8143{
75c30b13 8144 struct sk_buff *first = lro->parent;
7d3d0439
RA
8145
8146 first->len += tcp_len;
8147 first->data_len = lro->frags_len;
8148 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8149 if (skb_shinfo(first)->frag_list)
8150 lro->last_frag->next = skb;
7d3d0439
RA
8151 else
8152 skb_shinfo(first)->frag_list = skb;
372cc597 8153 first->truesize += skb->truesize;
75c30b13 8154 lro->last_frag = skb;
7d3d0439
RA
8155 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8156 return;
8157}
d796fdb7
LV
8158
8159/**
8160 * s2io_io_error_detected - called when PCI error is detected
8161 * @pdev: Pointer to PCI device
8453d43f 8162 * @state: The current pci connection state
d796fdb7
LV
8163 *
8164 * This function is called after a PCI bus error affecting
8165 * this device has been detected.
8166 */
8167static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8168 pci_channel_state_t state)
8169{
8170 struct net_device *netdev = pci_get_drvdata(pdev);
8171 struct s2io_nic *sp = netdev->priv;
8172
8173 netif_device_detach(netdev);
8174
8175 if (netif_running(netdev)) {
8176 /* Bring down the card, while avoiding PCI I/O */
8177 do_s2io_card_down(sp, 0);
d796fdb7
LV
8178 }
8179 pci_disable_device(pdev);
8180
8181 return PCI_ERS_RESULT_NEED_RESET;
8182}
8183
8184/**
8185 * s2io_io_slot_reset - called after the pci bus has been reset.
8186 * @pdev: Pointer to PCI device
8187 *
8188 * Restart the card from scratch, as if from a cold-boot.
8189 * At this point, the card has exprienced a hard reset,
8190 * followed by fixups by BIOS, and has its config space
8191 * set up identically to what it was at cold boot.
8192 */
8193static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8194{
8195 struct net_device *netdev = pci_get_drvdata(pdev);
8196 struct s2io_nic *sp = netdev->priv;
8197
8198 if (pci_enable_device(pdev)) {
8199 printk(KERN_ERR "s2io: "
8200 "Cannot re-enable PCI device after reset.\n");
8201 return PCI_ERS_RESULT_DISCONNECT;
8202 }
8203
8204 pci_set_master(pdev);
8205 s2io_reset(sp);
8206
8207 return PCI_ERS_RESULT_RECOVERED;
8208}
8209
8210/**
8211 * s2io_io_resume - called when traffic can start flowing again.
8212 * @pdev: Pointer to PCI device
8213 *
8214 * This callback is called when the error recovery driver tells
8215 * us that its OK to resume normal operation.
8216 */
8217static void s2io_io_resume(struct pci_dev *pdev)
8218{
8219 struct net_device *netdev = pci_get_drvdata(pdev);
8220 struct s2io_nic *sp = netdev->priv;
8221
8222 if (netif_running(netdev)) {
8223 if (s2io_card_up(sp)) {
8224 printk(KERN_ERR "s2io: "
8225 "Can't bring device back up after reset.\n");
8226 return;
8227 }
8228
8229 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8230 s2io_card_down(sp);
8231 printk(KERN_ERR "s2io: "
8232 "Can't resetore mac addr after reset.\n");
8233 return;
8234 }
8235 }
8236
8237 netif_device_attach(netdev);
8238 netif_wake_queue(netdev);
8239}