]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/s2io.c
[8139too]: tab-align enums and structs; remove dead code
[net-next-2.6.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
eccb8628 40 * 2(MSI_X). Default value is '0(INTA)'
9dc737a7
AR
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
573608e4 87#define DRV_VERSION "2.0.25.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
6d517a27
VP
93static int rxd_size[2] = {32,48};
94static int rxd_count[2] = {127,85};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
133/* Ethtool related variables and Macros. */
134static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140};
141
fa1f0cb3 142static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
1da177e4 152 {"tmac_any_err_frms"},
bd1034f0 153 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
bd1034f0 168 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
1da177e4 175 {"rmac_discarded_frms"},
bd1034f0
AR
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
1da177e4
LT
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
bd1034f0
AR
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
bd1034f0
AR
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
1da177e4 214 {"rmac_pause_cnt"},
bd1034f0
AR
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
bd1034f0
AR
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
fa1f0cb3
SS
236 {"rxf_wr_cnt"}
237};
238
239static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
255 {"link_fault_cnt"}
256};
257
258static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
bd1034f0
AR
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
7d3d0439
RA
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
c53d4945 284 ("mem_alloc_fail_cnt"),
491abf25 285 ("pci_map_fail_cnt"),
491976b2
SH
286 ("watchdog_timer_cnt"),
287 ("mem_allocated"),
288 ("mem_freed"),
289 ("link_up_cnt"),
290 ("link_down_cnt"),
291 ("link_up_time"),
292 ("link_down_time"),
293 ("tx_tcode_buf_abort_cnt"),
294 ("tx_tcode_desc_abort_cnt"),
295 ("tx_tcode_parity_err_cnt"),
296 ("tx_tcode_link_loss_cnt"),
297 ("tx_tcode_list_proc_err_cnt"),
298 ("rx_tcode_parity_err_cnt"),
299 ("rx_tcode_abort_cnt"),
300 ("rx_tcode_parity_abort_cnt"),
301 ("rx_tcode_rda_fail_cnt"),
302 ("rx_tcode_unkn_prot_cnt"),
303 ("rx_tcode_fcs_err_cnt"),
304 ("rx_tcode_buf_size_err_cnt"),
305 ("rx_tcode_rxd_corrupt_cnt"),
306 ("rx_tcode_unkn_err_cnt")
1da177e4
LT
307};
308
fa1f0cb3
SS
309#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 ETH_GSTRING_LEN
312#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313
314#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316
317#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
319
320#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322
25fff88e
K
323#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
324 init_timer(&timer); \
325 timer.function = handle; \
326 timer.data = (unsigned long) arg; \
327 mod_timer(&timer, (jiffies + exp)) \
328
be3a6b02
K
329/* Add the vlan */
330static void s2io_vlan_rx_register(struct net_device *dev,
331 struct vlan_group *grp)
332{
1ee6dd77 333 struct s2io_nic *nic = dev->priv;
be3a6b02
K
334 unsigned long flags;
335
336 spin_lock_irqsave(&nic->tx_lock, flags);
337 nic->vlgrp = grp;
338 spin_unlock_irqrestore(&nic->tx_lock, flags);
339}
340
926930b2 341/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 342static int vlan_strip_flag;
926930b2 343
20346722 344/*
1da177e4
LT
345 * Constants to be programmed into the Xena's registers, to configure
346 * the XAUI.
347 */
348
1da177e4 349#define END_SIGN 0x0
f71e1309 350static const u64 herc_act_dtx_cfg[] = {
541ae68f 351 /* Set address */
e960fc5c 352 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 353 /* Write data */
e960fc5c 354 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
355 /* Set address */
356 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357 /* Write data */
358 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359 /* Set address */
e960fc5c 360 0x801205150D440000ULL, 0x801205150D4400E0ULL,
361 /* Write data */
362 0x801205150D440004ULL, 0x801205150D4400E4ULL,
363 /* Set address */
541ae68f
K
364 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365 /* Write data */
366 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
367 /* Done */
368 END_SIGN
369};
370
f71e1309 371static const u64 xena_dtx_cfg[] = {
c92ca04b 372 /* Set address */
1da177e4 373 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
374 /* Write data */
375 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376 /* Set address */
377 0x8001051500000000ULL, 0x80010515000000E0ULL,
378 /* Write data */
379 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380 /* Set address */
1da177e4 381 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
382 /* Write data */
383 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
384 END_SIGN
385};
386
20346722 387/*
1da177e4
LT
388 * Constants for Fixing the MacAddress problem seen mostly on
389 * Alpha machines.
390 */
f71e1309 391static const u64 fix_mac[] = {
1da177e4
LT
392 0x0060000000000000ULL, 0x0060600000000000ULL,
393 0x0040600000000000ULL, 0x0000600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0060600000000000ULL,
404 0x0020600000000000ULL, 0x0000600000000000ULL,
405 0x0040600000000000ULL, 0x0060600000000000ULL,
406 END_SIGN
407};
408
b41477f3
AR
409MODULE_LICENSE("GPL");
410MODULE_VERSION(DRV_VERSION);
411
412
1da177e4 413/* Module Loadable parameters. */
b41477f3
AR
414S2IO_PARM_INT(tx_fifo_num, 1);
415S2IO_PARM_INT(rx_ring_num, 1);
416
417
418S2IO_PARM_INT(rx_ring_mode, 1);
419S2IO_PARM_INT(use_continuous_tx_intrs, 1);
420S2IO_PARM_INT(rmac_pause_time, 0x100);
421S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
422S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
423S2IO_PARM_INT(shared_splits, 0);
424S2IO_PARM_INT(tmac_util_period, 5);
425S2IO_PARM_INT(rmac_util_period, 5);
426S2IO_PARM_INT(bimodal, 0);
427S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 428/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 429S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 430/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
b41477f3 431S2IO_PARM_INT(intr_type, 0);
7d3d0439 432/* Large receive offload feature */
b41477f3 433S2IO_PARM_INT(lro, 0);
7d3d0439
RA
434/* Max pkts to be aggregated by LRO at one time. If not specified,
435 * aggregation happens until we hit max IP pkt size(64K)
436 */
b41477f3 437S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 438S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
439
440S2IO_PARM_INT(napi, 1);
441S2IO_PARM_INT(ufo, 0);
926930b2 442S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
443
444static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
445 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
446static unsigned int rx_ring_sz[MAX_RX_RINGS] =
447 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
448static unsigned int rts_frm_len[MAX_RX_RINGS] =
449 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
450
451module_param_array(tx_fifo_len, uint, NULL, 0);
452module_param_array(rx_ring_sz, uint, NULL, 0);
453module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 454
20346722 455/*
1da177e4 456 * S2IO device table.
20346722 457 * This table lists all the devices that this driver supports.
1da177e4
LT
458 */
459static struct pci_device_id s2io_tbl[] __devinitdata = {
460 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
461 PCI_ANY_ID, PCI_ANY_ID},
462 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
463 PCI_ANY_ID, PCI_ANY_ID},
464 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
465 PCI_ANY_ID, PCI_ANY_ID},
466 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
467 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
468 {0,}
469};
470
471MODULE_DEVICE_TABLE(pci, s2io_tbl);
472
d796fdb7
LV
473static struct pci_error_handlers s2io_err_handler = {
474 .error_detected = s2io_io_error_detected,
475 .slot_reset = s2io_io_slot_reset,
476 .resume = s2io_io_resume,
477};
478
1da177e4
LT
479static struct pci_driver s2io_driver = {
480 .name = "S2IO",
481 .id_table = s2io_tbl,
482 .probe = s2io_init_nic,
483 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 484 .err_handler = &s2io_err_handler,
1da177e4
LT
485};
486
487/* A simplifier macro used both by init and free shared_mem Fns(). */
488#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
489
490/**
491 * init_shared_mem - Allocation and Initialization of Memory
492 * @nic: Device private variable.
20346722
K
493 * Description: The function allocates all the memory areas shared
494 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
495 * Rx descriptors and the statistics block.
496 */
497
498static int init_shared_mem(struct s2io_nic *nic)
499{
500 u32 size;
501 void *tmp_v_addr, *tmp_v_addr_next;
502 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 503 struct RxD_block *pre_rxd_blk = NULL;
372cc597 504 int i, j, blk_cnt;
1da177e4
LT
505 int lst_size, lst_per_page;
506 struct net_device *dev = nic->dev;
8ae418cf 507 unsigned long tmp;
1ee6dd77 508 struct buffAdd *ba;
1da177e4 509
1ee6dd77 510 struct mac_info *mac_control;
1da177e4 511 struct config_param *config;
491976b2 512 unsigned long long mem_allocated = 0;
1da177e4
LT
513
514 mac_control = &nic->mac_control;
515 config = &nic->config;
516
517
518 /* Allocation and initialization of TXDLs in FIOFs */
519 size = 0;
520 for (i = 0; i < config->tx_fifo_num; i++) {
521 size += config->tx_cfg[i].fifo_len;
522 }
523 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 524 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 525 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 526 return -EINVAL;
1da177e4
LT
527 }
528
1ee6dd77 529 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
530 lst_per_page = PAGE_SIZE / lst_size;
531
532 for (i = 0; i < config->tx_fifo_num; i++) {
533 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 534 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
535 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
536 GFP_KERNEL);
537 if (!mac_control->fifos[i].list_info) {
0c61ed5f 538 DBG_PRINT(INFO_DBG,
1da177e4
LT
539 "Malloc failed for list_info\n");
540 return -ENOMEM;
541 }
491976b2 542 mem_allocated += list_holder_size;
20346722 543 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
544 }
545 for (i = 0; i < config->tx_fifo_num; i++) {
546 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
547 lst_per_page);
20346722
K
548 mac_control->fifos[i].tx_curr_put_info.offset = 0;
549 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 550 config->tx_cfg[i].fifo_len - 1;
20346722
K
551 mac_control->fifos[i].tx_curr_get_info.offset = 0;
552 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 553 config->tx_cfg[i].fifo_len - 1;
20346722
K
554 mac_control->fifos[i].fifo_no = i;
555 mac_control->fifos[i].nic = nic;
fed5eccd 556 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 557
1da177e4
LT
558 for (j = 0; j < page_num; j++) {
559 int k = 0;
560 dma_addr_t tmp_p;
561 void *tmp_v;
562 tmp_v = pci_alloc_consistent(nic->pdev,
563 PAGE_SIZE, &tmp_p);
564 if (!tmp_v) {
0c61ed5f 565 DBG_PRINT(INFO_DBG,
1da177e4 566 "pci_alloc_consistent ");
0c61ed5f 567 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
568 return -ENOMEM;
569 }
776bd20f 570 /* If we got a zero DMA address(can happen on
571 * certain platforms like PPC), reallocate.
572 * Store virtual address of page we don't want,
573 * to be freed later.
574 */
575 if (!tmp_p) {
576 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 577 DBG_PRINT(INIT_DBG,
776bd20f 578 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 579 DBG_PRINT(INIT_DBG,
6b4d617d 580 "Virtual address %p\n", tmp_v);
776bd20f 581 tmp_v = pci_alloc_consistent(nic->pdev,
582 PAGE_SIZE, &tmp_p);
583 if (!tmp_v) {
0c61ed5f 584 DBG_PRINT(INFO_DBG,
776bd20f 585 "pci_alloc_consistent ");
0c61ed5f 586 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 587 return -ENOMEM;
588 }
491976b2 589 mem_allocated += PAGE_SIZE;
776bd20f 590 }
1da177e4
LT
591 while (k < lst_per_page) {
592 int l = (j * lst_per_page) + k;
593 if (l == config->tx_cfg[i].fifo_len)
20346722
K
594 break;
595 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 596 tmp_v + (k * lst_size);
20346722 597 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
598 tmp_p + (k * lst_size);
599 k++;
600 }
601 }
602 }
1da177e4 603
4384247b 604 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
605 if (!nic->ufo_in_band_v)
606 return -ENOMEM;
491976b2 607 mem_allocated += (size * sizeof(u64));
fed5eccd 608
1da177e4
LT
609 /* Allocation and initialization of RXDs in Rings */
610 size = 0;
611 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
612 if (config->rx_cfg[i].num_rxd %
613 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
614 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
615 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
616 i);
617 DBG_PRINT(ERR_DBG, "RxDs per Block");
618 return FAILURE;
619 }
620 size += config->rx_cfg[i].num_rxd;
20346722 621 mac_control->rings[i].block_count =
da6971d8
AR
622 config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1 );
624 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
625 mac_control->rings[i].block_count;
1da177e4 626 }
da6971d8 627 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 628 size = (size * (sizeof(struct RxD1)));
da6971d8 629 else
1ee6dd77 630 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
631
632 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
633 mac_control->rings[i].rx_curr_get_info.block_index = 0;
634 mac_control->rings[i].rx_curr_get_info.offset = 0;
635 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 636 config->rx_cfg[i].num_rxd - 1;
20346722
K
637 mac_control->rings[i].rx_curr_put_info.block_index = 0;
638 mac_control->rings[i].rx_curr_put_info.offset = 0;
639 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 640 config->rx_cfg[i].num_rxd - 1;
20346722
K
641 mac_control->rings[i].nic = nic;
642 mac_control->rings[i].ring_no = i;
643
da6971d8
AR
644 blk_cnt = config->rx_cfg[i].num_rxd /
645 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
646 /* Allocating all the Rx blocks */
647 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 648 struct rx_block_info *rx_blocks;
da6971d8
AR
649 int l;
650
651 rx_blocks = &mac_control->rings[i].rx_blocks[j];
652 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
653 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
654 &tmp_p_addr);
655 if (tmp_v_addr == NULL) {
656 /*
20346722
K
657 * In case of failure, free_shared_mem()
658 * is called, which should free any
659 * memory that was alloced till the
1da177e4
LT
660 * failure happened.
661 */
da6971d8 662 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
663 return -ENOMEM;
664 }
491976b2 665 mem_allocated += size;
1da177e4 666 memset(tmp_v_addr, 0, size);
da6971d8
AR
667 rx_blocks->block_virt_addr = tmp_v_addr;
668 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 669 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
670 rxd_count[nic->rxd_mode],
671 GFP_KERNEL);
372cc597
SS
672 if (!rx_blocks->rxds)
673 return -ENOMEM;
491976b2
SH
674 mem_allocated +=
675 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
676 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
677 rx_blocks->rxds[l].virt_addr =
678 rx_blocks->block_virt_addr +
679 (rxd_size[nic->rxd_mode] * l);
680 rx_blocks->rxds[l].dma_addr =
681 rx_blocks->block_dma_addr +
682 (rxd_size[nic->rxd_mode] * l);
683 }
1da177e4
LT
684 }
685 /* Interlinking all Rx Blocks */
686 for (j = 0; j < blk_cnt; j++) {
20346722
K
687 tmp_v_addr =
688 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 689 tmp_v_addr_next =
20346722 690 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 691 blk_cnt].block_virt_addr;
20346722
K
692 tmp_p_addr =
693 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 694 tmp_p_addr_next =
20346722 695 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
696 blk_cnt].block_dma_addr;
697
1ee6dd77 698 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
699 pre_rxd_blk->reserved_2_pNext_RxD_block =
700 (unsigned long) tmp_v_addr_next;
1da177e4
LT
701 pre_rxd_blk->pNext_RxD_Blk_physical =
702 (u64) tmp_p_addr_next;
703 }
704 }
6d517a27 705 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
706 /*
707 * Allocation of Storages for buffer addresses in 2BUFF mode
708 * and the buffers as well.
709 */
710 for (i = 0; i < config->rx_ring_num; i++) {
711 blk_cnt = config->rx_cfg[i].num_rxd /
712 (rxd_count[nic->rxd_mode]+ 1);
713 mac_control->rings[i].ba =
1ee6dd77 714 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 715 GFP_KERNEL);
da6971d8 716 if (!mac_control->rings[i].ba)
1da177e4 717 return -ENOMEM;
491976b2 718 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
719 for (j = 0; j < blk_cnt; j++) {
720 int k = 0;
721 mac_control->rings[i].ba[j] =
1ee6dd77 722 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
723 (rxd_count[nic->rxd_mode] + 1)),
724 GFP_KERNEL);
725 if (!mac_control->rings[i].ba[j])
1da177e4 726 return -ENOMEM;
491976b2
SH
727 mem_allocated += (sizeof(struct buffAdd) * \
728 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
729 while (k != rxd_count[nic->rxd_mode]) {
730 ba = &mac_control->rings[i].ba[j][k];
731
732 ba->ba_0_org = (void *) kmalloc
733 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
734 if (!ba->ba_0_org)
735 return -ENOMEM;
491976b2
SH
736 mem_allocated +=
737 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
738 tmp = (unsigned long)ba->ba_0_org;
739 tmp += ALIGN_SIZE;
740 tmp &= ~((unsigned long) ALIGN_SIZE);
741 ba->ba_0 = (void *) tmp;
742
743 ba->ba_1_org = (void *) kmalloc
744 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
745 if (!ba->ba_1_org)
746 return -ENOMEM;
491976b2
SH
747 mem_allocated
748 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
749 tmp = (unsigned long) ba->ba_1_org;
750 tmp += ALIGN_SIZE;
751 tmp &= ~((unsigned long) ALIGN_SIZE);
752 ba->ba_1 = (void *) tmp;
753 k++;
754 }
1da177e4
LT
755 }
756 }
757 }
1da177e4
LT
758
759 /* Allocation and initialization of Statistics block */
1ee6dd77 760 size = sizeof(struct stat_block);
1da177e4
LT
761 mac_control->stats_mem = pci_alloc_consistent
762 (nic->pdev, size, &mac_control->stats_mem_phy);
763
764 if (!mac_control->stats_mem) {
20346722
K
765 /*
766 * In case of failure, free_shared_mem() is called, which
767 * should free any memory that was alloced till the
1da177e4
LT
768 * failure happened.
769 */
770 return -ENOMEM;
771 }
491976b2 772 mem_allocated += size;
1da177e4
LT
773 mac_control->stats_mem_sz = size;
774
775 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 776 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 777 memset(tmp_v_addr, 0, size);
1da177e4
LT
778 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
779 (unsigned long long) tmp_p_addr);
491976b2 780 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
781 return SUCCESS;
782}
783
20346722
K
784/**
785 * free_shared_mem - Free the allocated Memory
1da177e4
LT
786 * @nic: Device private variable.
787 * Description: This function is to free all memory locations allocated by
788 * the init_shared_mem() function and return it to the kernel.
789 */
790
791static void free_shared_mem(struct s2io_nic *nic)
792{
793 int i, j, blk_cnt, size;
491976b2 794 u32 ufo_size = 0;
1da177e4
LT
795 void *tmp_v_addr;
796 dma_addr_t tmp_p_addr;
1ee6dd77 797 struct mac_info *mac_control;
1da177e4
LT
798 struct config_param *config;
799 int lst_size, lst_per_page;
8910b49f 800 struct net_device *dev;
491976b2 801 int page_num = 0;
1da177e4
LT
802
803 if (!nic)
804 return;
805
8910b49f
MG
806 dev = nic->dev;
807
1da177e4
LT
808 mac_control = &nic->mac_control;
809 config = &nic->config;
810
1ee6dd77 811 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
812 lst_per_page = PAGE_SIZE / lst_size;
813
814 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
815 ufo_size += config->tx_cfg[i].fifo_len;
816 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
817 lst_per_page);
1da177e4
LT
818 for (j = 0; j < page_num; j++) {
819 int mem_blks = (j * lst_per_page);
776bd20f 820 if (!mac_control->fifos[i].list_info)
6aa20a22 821 return;
776bd20f 822 if (!mac_control->fifos[i].list_info[mem_blks].
823 list_virt_addr)
1da177e4
LT
824 break;
825 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
826 mac_control->fifos[i].
827 list_info[mem_blks].
1da177e4 828 list_virt_addr,
20346722
K
829 mac_control->fifos[i].
830 list_info[mem_blks].
1da177e4 831 list_phy_addr);
491976b2
SH
832 nic->mac_control.stats_info->sw_stat.mem_freed
833 += PAGE_SIZE;
1da177e4 834 }
776bd20f 835 /* If we got a zero DMA address during allocation,
836 * free the page now
837 */
838 if (mac_control->zerodma_virt_addr) {
839 pci_free_consistent(nic->pdev, PAGE_SIZE,
840 mac_control->zerodma_virt_addr,
841 (dma_addr_t)0);
6aa20a22 842 DBG_PRINT(INIT_DBG,
6b4d617d
AM
843 "%s: Freeing TxDL with zero DMA addr. ",
844 dev->name);
845 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
846 mac_control->zerodma_virt_addr);
491976b2
SH
847 nic->mac_control.stats_info->sw_stat.mem_freed
848 += PAGE_SIZE;
776bd20f 849 }
20346722 850 kfree(mac_control->fifos[i].list_info);
491976b2
SH
851 nic->mac_control.stats_info->sw_stat.mem_freed +=
852 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
853 }
854
1da177e4 855 size = SIZE_OF_BLOCK;
1da177e4 856 for (i = 0; i < config->rx_ring_num; i++) {
20346722 857 blk_cnt = mac_control->rings[i].block_count;
1da177e4 858 for (j = 0; j < blk_cnt; j++) {
20346722
K
859 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
860 block_virt_addr;
861 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
862 block_dma_addr;
1da177e4
LT
863 if (tmp_v_addr == NULL)
864 break;
865 pci_free_consistent(nic->pdev, size,
866 tmp_v_addr, tmp_p_addr);
491976b2 867 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 868 kfree(mac_control->rings[i].rx_blocks[j].rxds);
491976b2
SH
869 nic->mac_control.stats_info->sw_stat.mem_freed +=
870 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
871 }
872 }
873
6d517a27 874 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
875 /* Freeing buffer storage addresses in 2BUFF mode. */
876 for (i = 0; i < config->rx_ring_num; i++) {
877 blk_cnt = config->rx_cfg[i].num_rxd /
878 (rxd_count[nic->rxd_mode] + 1);
879 for (j = 0; j < blk_cnt; j++) {
880 int k = 0;
881 if (!mac_control->rings[i].ba[j])
882 continue;
883 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 884 struct buffAdd *ba =
da6971d8
AR
885 &mac_control->rings[i].ba[j][k];
886 kfree(ba->ba_0_org);
491976b2
SH
887 nic->mac_control.stats_info->sw_stat.\
888 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 889 kfree(ba->ba_1_org);
491976b2
SH
890 nic->mac_control.stats_info->sw_stat.\
891 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
892 k++;
893 }
894 kfree(mac_control->rings[i].ba[j]);
491976b2
SH
895 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
896 (rxd_count[nic->rxd_mode] + 1));
1da177e4 897 }
da6971d8 898 kfree(mac_control->rings[i].ba);
491976b2
SH
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 901 }
1da177e4 902 }
1da177e4
LT
903
904 if (mac_control->stats_mem) {
905 pci_free_consistent(nic->pdev,
906 mac_control->stats_mem_sz,
907 mac_control->stats_mem,
908 mac_control->stats_mem_phy);
491976b2
SH
909 nic->mac_control.stats_info->sw_stat.mem_freed +=
910 mac_control->stats_mem_sz;
1da177e4 911 }
491976b2 912 if (nic->ufo_in_band_v) {
fed5eccd 913 kfree(nic->ufo_in_band_v);
491976b2
SH
914 nic->mac_control.stats_info->sw_stat.mem_freed
915 += (ufo_size * sizeof(u64));
916 }
1da177e4
LT
917}
918
541ae68f
K
919/**
920 * s2io_verify_pci_mode -
921 */
922
1ee6dd77 923static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 924{
1ee6dd77 925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
926 register u64 val64 = 0;
927 int mode;
928
929 val64 = readq(&bar0->pci_mode);
930 mode = (u8)GET_PCI_MODE(val64);
931
932 if ( val64 & PCI_MODE_UNKNOWN_MODE)
933 return -1; /* Unknown PCI mode */
934 return mode;
935}
936
c92ca04b
AR
937#define NEC_VENID 0x1033
938#define NEC_DEVID 0x0125
939static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
940{
941 struct pci_dev *tdev = NULL;
26d36b64
AC
942 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
943 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 944 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 945 pci_dev_put(tdev);
c92ca04b
AR
946 return 1;
947 }
948 }
949 return 0;
950}
541ae68f 951
7b32a312 952static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
953/**
954 * s2io_print_pci_mode -
955 */
1ee6dd77 956static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 957{
1ee6dd77 958 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
959 register u64 val64 = 0;
960 int mode;
961 struct config_param *config = &nic->config;
962
963 val64 = readq(&bar0->pci_mode);
964 mode = (u8)GET_PCI_MODE(val64);
965
966 if ( val64 & PCI_MODE_UNKNOWN_MODE)
967 return -1; /* Unknown PCI mode */
968
c92ca04b
AR
969 config->bus_speed = bus_speed[mode];
970
971 if (s2io_on_nec_bridge(nic->pdev)) {
972 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
973 nic->dev->name);
974 return mode;
975 }
976
541ae68f
K
977 if (val64 & PCI_MODE_32_BITS) {
978 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
979 } else {
980 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
981 }
982
983 switch(mode) {
984 case PCI_MODE_PCI_33:
985 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
986 break;
987 case PCI_MODE_PCI_66:
988 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
989 break;
990 case PCI_MODE_PCIX_M1_66:
991 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
992 break;
993 case PCI_MODE_PCIX_M1_100:
994 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
995 break;
996 case PCI_MODE_PCIX_M1_133:
997 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
998 break;
999 case PCI_MODE_PCIX_M2_66:
1000 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
1001 break;
1002 case PCI_MODE_PCIX_M2_100:
1003 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
1004 break;
1005 case PCI_MODE_PCIX_M2_133:
1006 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
1007 break;
1008 default:
1009 return -1; /* Unsupported bus speed */
1010 }
1011
1012 return mode;
1013}
1014
20346722
K
1015/**
1016 * init_nic - Initialization of hardware
1da177e4 1017 * @nic: device peivate variable
20346722
K
1018 * Description: The function sequentially configures every block
1019 * of the H/W from their reset values.
1020 * Return Value: SUCCESS on success and
1da177e4
LT
1021 * '-1' on failure (endian settings incorrect).
1022 */
1023
1024static int init_nic(struct s2io_nic *nic)
1025{
1ee6dd77 1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1027 struct net_device *dev = nic->dev;
1028 register u64 val64 = 0;
1029 void __iomem *add;
1030 u32 time;
1031 int i, j;
1ee6dd77 1032 struct mac_info *mac_control;
1da177e4 1033 struct config_param *config;
c92ca04b 1034 int dtx_cnt = 0;
1da177e4 1035 unsigned long long mem_share;
20346722 1036 int mem_size;
1da177e4
LT
1037
1038 mac_control = &nic->mac_control;
1039 config = &nic->config;
1040
5e25b9dd 1041 /* to set the swapper controle on the card */
20346722 1042 if(s2io_set_swapper(nic)) {
1da177e4
LT
1043 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1044 return -1;
1045 }
1046
541ae68f
K
1047 /*
1048 * Herc requires EOI to be removed from reset before XGXS, so..
1049 */
1050 if (nic->device_type & XFRAME_II_DEVICE) {
1051 val64 = 0xA500000000ULL;
1052 writeq(val64, &bar0->sw_reset);
1053 msleep(500);
1054 val64 = readq(&bar0->sw_reset);
1055 }
1056
1da177e4
LT
1057 /* Remove XGXS from reset state */
1058 val64 = 0;
1059 writeq(val64, &bar0->sw_reset);
1da177e4 1060 msleep(500);
20346722 1061 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1062
1063 /* Enable Receiving broadcasts */
1064 add = &bar0->mac_cfg;
1065 val64 = readq(&bar0->mac_cfg);
1066 val64 |= MAC_RMAC_BCAST_ENABLE;
1067 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1068 writel((u32) val64, add);
1069 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1070 writel((u32) (val64 >> 32), (add + 4));
1071
1072 /* Read registers in all blocks */
1073 val64 = readq(&bar0->mac_int_mask);
1074 val64 = readq(&bar0->mc_int_mask);
1075 val64 = readq(&bar0->xgxs_int_mask);
1076
1077 /* Set MTU */
1078 val64 = dev->mtu;
1079 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1080
541ae68f
K
1081 if (nic->device_type & XFRAME_II_DEVICE) {
1082 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1083 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1084 &bar0->dtx_control, UF);
541ae68f
K
1085 if (dtx_cnt & 0x1)
1086 msleep(1); /* Necessary!! */
1da177e4
LT
1087 dtx_cnt++;
1088 }
541ae68f 1089 } else {
c92ca04b
AR
1090 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1091 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1092 &bar0->dtx_control, UF);
1093 val64 = readq(&bar0->dtx_control);
1094 dtx_cnt++;
1da177e4
LT
1095 }
1096 }
1097
1098 /* Tx DMA Initialization */
1099 val64 = 0;
1100 writeq(val64, &bar0->tx_fifo_partition_0);
1101 writeq(val64, &bar0->tx_fifo_partition_1);
1102 writeq(val64, &bar0->tx_fifo_partition_2);
1103 writeq(val64, &bar0->tx_fifo_partition_3);
1104
1105
1106 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1107 val64 |=
1108 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1109 13) | vBIT(config->tx_cfg[i].fifo_priority,
1110 ((i * 32) + 5), 3);
1111
1112 if (i == (config->tx_fifo_num - 1)) {
1113 if (i % 2 == 0)
1114 i++;
1115 }
1116
1117 switch (i) {
1118 case 1:
1119 writeq(val64, &bar0->tx_fifo_partition_0);
1120 val64 = 0;
1121 break;
1122 case 3:
1123 writeq(val64, &bar0->tx_fifo_partition_1);
1124 val64 = 0;
1125 break;
1126 case 5:
1127 writeq(val64, &bar0->tx_fifo_partition_2);
1128 val64 = 0;
1129 break;
1130 case 7:
1131 writeq(val64, &bar0->tx_fifo_partition_3);
1132 break;
1133 }
1134 }
1135
5e25b9dd
K
1136 /*
1137 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1139 */
541ae68f 1140 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1141 (nic->pdev->revision < 4))
5e25b9dd
K
1142 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1143
1da177e4
LT
1144 val64 = readq(&bar0->tx_fifo_partition_0);
1145 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1146 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1147
20346722
K
1148 /*
1149 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1150 * integrity checking.
1151 */
1152 val64 = readq(&bar0->tx_pa_cfg);
1153 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1154 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1155 writeq(val64, &bar0->tx_pa_cfg);
1156
1157 /* Rx DMA intialization. */
1158 val64 = 0;
1159 for (i = 0; i < config->rx_ring_num; i++) {
1160 val64 |=
1161 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1162 3);
1163 }
1164 writeq(val64, &bar0->rx_queue_priority);
1165
20346722
K
1166 /*
1167 * Allocating equal share of memory to all the
1da177e4
LT
1168 * configured Rings.
1169 */
1170 val64 = 0;
541ae68f
K
1171 if (nic->device_type & XFRAME_II_DEVICE)
1172 mem_size = 32;
1173 else
1174 mem_size = 64;
1175
1da177e4
LT
1176 for (i = 0; i < config->rx_ring_num; i++) {
1177 switch (i) {
1178 case 0:
20346722
K
1179 mem_share = (mem_size / config->rx_ring_num +
1180 mem_size % config->rx_ring_num);
1da177e4
LT
1181 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1182 continue;
1183 case 1:
20346722 1184 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1185 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1186 continue;
1187 case 2:
20346722 1188 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1189 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1190 continue;
1191 case 3:
20346722 1192 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1193 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1194 continue;
1195 case 4:
20346722 1196 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1197 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1198 continue;
1199 case 5:
20346722 1200 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1201 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1202 continue;
1203 case 6:
20346722 1204 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1205 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1206 continue;
1207 case 7:
20346722 1208 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1209 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1210 continue;
1211 }
1212 }
1213 writeq(val64, &bar0->rx_queue_cfg);
1214
20346722 1215 /*
5e25b9dd
K
1216 * Filling Tx round robin registers
1217 * as per the number of FIFOs
1da177e4 1218 */
5e25b9dd
K
1219 switch (config->tx_fifo_num) {
1220 case 1:
1221 val64 = 0x0000000000000000ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_0);
1223 writeq(val64, &bar0->tx_w_round_robin_1);
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 writeq(val64, &bar0->tx_w_round_robin_3);
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 2:
1229 val64 = 0x0000010000010000ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0100000100000100ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0001000001000001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0000010000010000ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0100000000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 3:
1241 val64 = 0x0001000102000001ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0001020000010001ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0200000100010200ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0001000102000001ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0001020000000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 case 4:
1253 val64 = 0x0001020300010200ULL;
1254 writeq(val64, &bar0->tx_w_round_robin_0);
1255 val64 = 0x0100000102030001ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_1);
1257 val64 = 0x0200010000010203ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_2);
1259 val64 = 0x0001020001000001ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_3);
1261 val64 = 0x0203000100000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_4);
1263 break;
1264 case 5:
1265 val64 = 0x0001000203000102ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_0);
1267 val64 = 0x0001020001030004ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_1);
1269 val64 = 0x0001000203000102ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_2);
1271 val64 = 0x0001020001030004ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_3);
1273 val64 = 0x0001000000000000ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_4);
1275 break;
1276 case 6:
1277 val64 = 0x0001020304000102ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_0);
1279 val64 = 0x0304050001020001ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_1);
1281 val64 = 0x0203000100000102ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_2);
1283 val64 = 0x0304000102030405ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_3);
1285 val64 = 0x0001000200000000ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_4);
1287 break;
1288 case 7:
1289 val64 = 0x0001020001020300ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_0);
1291 val64 = 0x0102030400010203ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_1);
1293 val64 = 0x0405060001020001ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_2);
1295 val64 = 0x0304050000010200ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_3);
1297 val64 = 0x0102030000000000ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_4);
1299 break;
1300 case 8:
1301 val64 = 0x0001020300040105ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_0);
1303 val64 = 0x0200030106000204ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_1);
1305 val64 = 0x0103000502010007ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_2);
1307 val64 = 0x0304010002060500ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_3);
1309 val64 = 0x0103020400000000ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_4);
1311 break;
1312 }
1313
b41477f3 1314 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1315 val64 = readq(&bar0->tx_fifo_partition_0);
1316 val64 |= (TX_FIFO_PARTITION_EN);
1317 writeq(val64, &bar0->tx_fifo_partition_0);
1318
5e25b9dd
K
1319 /* Filling the Rx round robin registers as per the
1320 * number of Rings and steering based on QoS.
1321 */
1322 switch (config->rx_ring_num) {
1323 case 1:
1324 val64 = 0x8080808080808080ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 2:
1328 val64 = 0x0000010000010000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0100000100000100ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0001000001000001ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0000010000010000ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0100000000000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339 val64 = 0x8080808040404040ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 3:
1343 val64 = 0x0001000102000001ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0001020000010001ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0200000100010200ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0001000102000001ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0001020000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354 val64 = 0x8080804040402020ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 4:
1358 val64 = 0x0001020300010200ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000102030001ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0200010000010203ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1364 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0203000100000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8080404020201010ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 5:
1373 val64 = 0x0001000203000102ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020001030004ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0001000203000102ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001020001030004ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001000000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384 val64 = 0x8080404020201008ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 6:
1388 val64 = 0x0001020304000102ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0304050001020001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0203000100000102ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
1394 val64 = 0x0304000102030405ULL;
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0001000200000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399 val64 = 0x8080404020100804ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 7:
1403 val64 = 0x0001020001020300ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0102030400010203ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0405060001020001ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0304050000010200ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0102030000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414 val64 = 0x8080402010080402ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 8:
1418 val64 = 0x0001020300040105ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0200030106000204ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0103000502010007ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304010002060500ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0103020400000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429 val64 = 0x8040201008040201ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1432 }
1da177e4
LT
1433
1434 /* UDP Fix */
1435 val64 = 0;
20346722 1436 for (i = 0; i < 8; i++)
1da177e4
LT
1437 writeq(val64, &bar0->rts_frm_len_n[i]);
1438
5e25b9dd
K
1439 /* Set the default rts frame length for the rings configured */
1440 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1441 for (i = 0 ; i < config->rx_ring_num ; i++)
1442 writeq(val64, &bar0->rts_frm_len_n[i]);
1443
1444 /* Set the frame length for the configured rings
1445 * desired by the user
1446 */
1447 for (i = 0; i < config->rx_ring_num; i++) {
1448 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449 * specified frame length steering.
1450 * If the user provides the frame length then program
1451 * the rts_frm_len register for those values or else
1452 * leave it as it is.
1453 */
1454 if (rts_frm_len[i] != 0) {
1455 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1456 &bar0->rts_frm_len_n[i]);
1457 }
1458 }
926930b2 1459
9fc93a41
SS
1460 /* Disable differentiated services steering logic */
1461 for (i = 0; i < 64; i++) {
1462 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1463 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1464 dev->name);
1465 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1466 return FAILURE;
1467 }
1468 }
1469
20346722 1470 /* Program statistics memory */
1da177e4 1471 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1472
541ae68f
K
1473 if (nic->device_type == XFRAME_II_DEVICE) {
1474 val64 = STAT_BC(0x320);
1475 writeq(val64, &bar0->stat_byte_cnt);
1476 }
1477
20346722 1478 /*
1da177e4
LT
1479 * Initializing the sampling rate for the device to calculate the
1480 * bandwidth utilization.
1481 */
1482 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1483 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1484 writeq(val64, &bar0->mac_link_util);
1485
1486
20346722
K
1487 /*
1488 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1489 * Scheme.
1490 */
20346722
K
1491 /*
1492 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1493 * 250 interrupts per sec. Continuous interrupts are enabled
1494 * by default.
1495 */
541ae68f
K
1496 if (nic->device_type == XFRAME_II_DEVICE) {
1497 int count = (nic->config.bus_speed * 125)/2;
1498 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1499 } else {
1500
1501 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1502 }
1503 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1504 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1505 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1506 if (use_continuous_tx_intrs)
1507 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1508 writeq(val64, &bar0->tti_data1_mem);
1509
1510 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1512 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1513 writeq(val64, &bar0->tti_data2_mem);
1514
1515 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1516 writeq(val64, &bar0->tti_command_mem);
1517
20346722 1518 /*
1da177e4
LT
1519 * Once the operation completes, the Strobe bit of the command
1520 * register will be reset. We poll for this particular condition
1521 * We wait for a maximum of 500ms for the operation to complete,
1522 * if it's not complete by then we return error.
1523 */
1524 time = 0;
1525 while (TRUE) {
1526 val64 = readq(&bar0->tti_command_mem);
1527 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1528 break;
1529 }
1530 if (time > 10) {
1531 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1532 dev->name);
1533 return -1;
1534 }
1535 msleep(50);
1536 time++;
1537 }
1538
b6e3f982
K
1539 if (nic->config.bimodal) {
1540 int k = 0;
1541 for (k = 0; k < config->rx_ring_num; k++) {
1542 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1543 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1544 writeq(val64, &bar0->tti_command_mem);
541ae68f 1545
541ae68f 1546 /*
b6e3f982
K
1547 * Once the operation completes, the Strobe bit of the command
1548 * register will be reset. We poll for this particular condition
1549 * We wait for a maximum of 500ms for the operation to complete,
1550 * if it's not complete by then we return error.
1551 */
1552 time = 0;
1553 while (TRUE) {
1554 val64 = readq(&bar0->tti_command_mem);
1555 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1556 break;
1557 }
1558 if (time > 10) {
1559 DBG_PRINT(ERR_DBG,
1560 "%s: TTI init Failed\n",
1561 dev->name);
1562 return -1;
1563 }
1564 time++;
1565 msleep(50);
1566 }
1567 }
541ae68f 1568 } else {
1da177e4 1569
b6e3f982
K
1570 /* RTI Initialization */
1571 if (nic->device_type == XFRAME_II_DEVICE) {
1572 /*
1573 * Programmed to generate Apprx 500 Intrs per
1574 * second
1575 */
1576 int count = (nic->config.bus_speed * 125)/4;
1577 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1578 } else {
1579 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1580 }
1581 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1584
b6e3f982 1585 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1586
b6e3f982 1587 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1588 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589 if (nic->intr_type == MSI_X)
1590 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x40));
1592 else
1593 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1595 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1596
b6e3f982
K
1597 for (i = 0; i < config->rx_ring_num; i++) {
1598 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1599 | RTI_CMD_MEM_OFFSET(i);
1600 writeq(val64, &bar0->rti_command_mem);
1601
1602 /*
1603 * Once the operation completes, the Strobe bit of the
1604 * command register will be reset. We poll for this
1605 * particular condition. We wait for a maximum of 500ms
1606 * for the operation to complete, if it's not complete
1607 * by then we return error.
1608 */
1609 time = 0;
1610 while (TRUE) {
1611 val64 = readq(&bar0->rti_command_mem);
1612 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1613 break;
1614 }
1615 if (time > 10) {
1616 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617 dev->name);
1618 return -1;
1619 }
1620 time++;
1621 msleep(50);
1622 }
1da177e4 1623 }
1da177e4
LT
1624 }
1625
20346722
K
1626 /*
1627 * Initializing proper values as Pause threshold into all
1da177e4
LT
1628 * the 8 Queues on Rx side.
1629 */
1630 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1631 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1632
1633 /* Disable RMAC PAD STRIPPING */
509a2671 1634 add = &bar0->mac_cfg;
1da177e4
LT
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1637 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1638 writel((u32) (val64), add);
1639 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1640 writel((u32) (val64 >> 32), (add + 4));
1641 val64 = readq(&bar0->mac_cfg);
1642
7d3d0439
RA
1643 /* Enable FCS stripping by adapter */
1644 add = &bar0->mac_cfg;
1645 val64 = readq(&bar0->mac_cfg);
1646 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1647 if (nic->device_type == XFRAME_II_DEVICE)
1648 writeq(val64, &bar0->mac_cfg);
1649 else {
1650 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1651 writel((u32) (val64), add);
1652 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1653 writel((u32) (val64 >> 32), (add + 4));
1654 }
1655
20346722
K
1656 /*
1657 * Set the time value to be inserted in the pause frame
1da177e4
LT
1658 * generated by xena.
1659 */
1660 val64 = readq(&bar0->rmac_pause_cfg);
1661 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1663 writeq(val64, &bar0->rmac_pause_cfg);
1664
20346722 1665 /*
1da177e4
LT
1666 * Set the Threshold Limit for Generating the pause frame
1667 * If the amount of data in any Queue exceeds ratio of
1668 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669 * pause frame is generated
1670 */
1671 val64 = 0;
1672 for (i = 0; i < 4; i++) {
1673 val64 |=
1674 (((u64) 0xFF00 | nic->mac_control.
1675 mc_pause_threshold_q0q3)
1676 << (i * 2 * 8));
1677 }
1678 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1679
1680 val64 = 0;
1681 for (i = 0; i < 4; i++) {
1682 val64 |=
1683 (((u64) 0xFF00 | nic->mac_control.
1684 mc_pause_threshold_q4q7)
1685 << (i * 2 * 8));
1686 }
1687 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1688
20346722
K
1689 /*
1690 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1691 * exceeded the limit pointed by shared_splits
1692 */
1693 val64 = readq(&bar0->pic_control);
1694 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1695 writeq(val64, &bar0->pic_control);
1696
863c11a9
AR
1697 if (nic->config.bus_speed == 266) {
1698 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1699 writeq(0x0, &bar0->read_retry_delay);
1700 writeq(0x0, &bar0->write_retry_delay);
1701 }
1702
541ae68f
K
1703 /*
1704 * Programming the Herc to split every write transaction
1705 * that does not start on an ADB to reduce disconnects.
1706 */
1707 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1708 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1709 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1710 writeq(val64, &bar0->misc_control);
1711 val64 = readq(&bar0->pic_control2);
1712 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1713 writeq(val64, &bar0->pic_control2);
541ae68f 1714 }
c92ca04b
AR
1715 if (strstr(nic->product_name, "CX4")) {
1716 val64 = TMAC_AVG_IPG(0x17);
1717 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1718 }
1719
1da177e4
LT
1720 return SUCCESS;
1721}
a371a07d
K
1722#define LINK_UP_DOWN_INTERRUPT 1
1723#define MAC_RMAC_ERR_TIMER 2
1724
1ee6dd77 1725static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1726{
cc6e7c44
RA
1727 if (nic->intr_type != INTA)
1728 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1729 if (nic->device_type == XFRAME_II_DEVICE)
1730 return LINK_UP_DOWN_INTERRUPT;
1731 else
1732 return MAC_RMAC_ERR_TIMER;
1733}
1da177e4 1734
20346722
K
1735/**
1736 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1737 * @nic: device private variable,
1738 * @mask: A mask indicating which Intr block must be modified and,
1739 * @flag: A flag indicating whether to enable or disable the Intrs.
1740 * Description: This function will either disable or enable the interrupts
20346722
K
1741 * depending on the flag argument. The mask argument can be used to
1742 * enable/disable any Intr block.
1da177e4
LT
1743 * Return Value: NONE.
1744 */
1745
1746static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1747{
1ee6dd77 1748 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1749 register u64 val64 = 0, temp64 = 0;
1750
1751 /* Top level interrupt classification */
1752 /* PIC Interrupts */
1753 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1754 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1755 val64 = TXPIC_INT_M;
1da177e4
LT
1756 if (flag == ENABLE_INTRS) {
1757 temp64 = readq(&bar0->general_int_mask);
1758 temp64 &= ~((u64) val64);
1759 writeq(temp64, &bar0->general_int_mask);
20346722 1760 /*
a371a07d 1761 * If Hercules adapter enable GPIO otherwise
b41477f3 1762 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1763 * interrupts for now.
1764 * TODO
1da177e4 1765 */
a371a07d
K
1766 if (s2io_link_fault_indication(nic) ==
1767 LINK_UP_DOWN_INTERRUPT ) {
1768 temp64 = readq(&bar0->pic_int_mask);
1769 temp64 &= ~((u64) PIC_INT_GPIO);
1770 writeq(temp64, &bar0->pic_int_mask);
1771 temp64 = readq(&bar0->gpio_int_mask);
1772 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1773 writeq(temp64, &bar0->gpio_int_mask);
1774 } else {
1775 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1776 }
20346722 1777 /*
1da177e4
LT
1778 * No MSI Support is available presently, so TTI and
1779 * RTI interrupts are also disabled.
1780 */
1781 } else if (flag == DISABLE_INTRS) {
20346722
K
1782 /*
1783 * Disable PIC Intrs in the general
1784 * intr mask register
1da177e4
LT
1785 */
1786 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1787 temp64 = readq(&bar0->general_int_mask);
1788 val64 |= temp64;
1789 writeq(val64, &bar0->general_int_mask);
1790 }
1791 }
1792
1da177e4
LT
1793 /* MAC Interrupts */
1794 /* Enabling/Disabling MAC interrupts */
1795 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1796 val64 = TXMAC_INT_M | RXMAC_INT_M;
1797 if (flag == ENABLE_INTRS) {
1798 temp64 = readq(&bar0->general_int_mask);
1799 temp64 &= ~((u64) val64);
1800 writeq(temp64, &bar0->general_int_mask);
20346722
K
1801 /*
1802 * All MAC block error interrupts are disabled for now
1da177e4
LT
1803 * TODO
1804 */
1da177e4 1805 } else if (flag == DISABLE_INTRS) {
20346722
K
1806 /*
1807 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1808 */
1809 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1810 writeq(DISABLE_ALL_INTRS,
1811 &bar0->mac_rmac_err_mask);
1812
1813 temp64 = readq(&bar0->general_int_mask);
1814 val64 |= temp64;
1815 writeq(val64, &bar0->general_int_mask);
1816 }
1817 }
1818
1da177e4
LT
1819 /* Tx traffic interrupts */
1820 if (mask & TX_TRAFFIC_INTR) {
1821 val64 = TXTRAFFIC_INT_M;
1822 if (flag == ENABLE_INTRS) {
1823 temp64 = readq(&bar0->general_int_mask);
1824 temp64 &= ~((u64) val64);
1825 writeq(temp64, &bar0->general_int_mask);
20346722 1826 /*
1da177e4 1827 * Enable all the Tx side interrupts
20346722 1828 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1829 */
1830 writeq(0x0, &bar0->tx_traffic_mask);
1831 } else if (flag == DISABLE_INTRS) {
20346722
K
1832 /*
1833 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1834 * register.
1835 */
1836 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1837 temp64 = readq(&bar0->general_int_mask);
1838 val64 |= temp64;
1839 writeq(val64, &bar0->general_int_mask);
1840 }
1841 }
1842
1843 /* Rx traffic interrupts */
1844 if (mask & RX_TRAFFIC_INTR) {
1845 val64 = RXTRAFFIC_INT_M;
1846 if (flag == ENABLE_INTRS) {
1847 temp64 = readq(&bar0->general_int_mask);
1848 temp64 &= ~((u64) val64);
1849 writeq(temp64, &bar0->general_int_mask);
1850 /* writing 0 Enables all 8 RX interrupt levels */
1851 writeq(0x0, &bar0->rx_traffic_mask);
1852 } else if (flag == DISABLE_INTRS) {
20346722
K
1853 /*
1854 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1855 * register.
1856 */
1857 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1858 temp64 = readq(&bar0->general_int_mask);
1859 val64 |= temp64;
1860 writeq(val64, &bar0->general_int_mask);
1861 }
1862 }
1863}
1864
19a60522
SS
1865/**
1866 * verify_pcc_quiescent- Checks for PCC quiescent state
1867 * Return: 1 If PCC is quiescence
1868 * 0 If PCC is not quiescence
1869 */
1ee6dd77 1870static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1871{
19a60522 1872 int ret = 0, herc;
1ee6dd77 1873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1874 u64 val64 = readq(&bar0->adapter_status);
1875
1876 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
1877
1878 if (flag == FALSE) {
44c10138 1879 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1881 ret = 1;
19a60522
SS
1882 } else {
1883 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1884 ret = 1;
20346722
K
1885 }
1886 } else {
44c10138 1887 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1889 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1890 ret = 1;
5e25b9dd
K
1891 } else {
1892 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1893 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1894 ret = 1;
20346722
K
1895 }
1896 }
1897
1898 return ret;
1899}
1900/**
1901 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1902 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1903 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1904 * differs and the calling function passes the input argument flag to
1905 * indicate this.
20346722 1906 * Return: 1 If xena is quiescence
1da177e4
LT
1907 * 0 If Xena is not quiescence
1908 */
1909
1ee6dd77 1910static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1911{
19a60522 1912 int mode;
1ee6dd77 1913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1914 u64 val64 = readq(&bar0->adapter_status);
1915 mode = s2io_verify_pci_mode(sp);
1da177e4 1916
19a60522
SS
1917 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1918 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1919 return 0;
1920 }
1921 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1922 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1923 return 0;
1924 }
1925 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1926 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1927 return 0;
1928 }
1929 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1930 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1931 return 0;
1932 }
1933 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1934 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1935 return 0;
1936 }
1937 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1938 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1939 return 0;
1940 }
1941 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1942 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1943 return 0;
1944 }
1945 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1946 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1947 return 0;
1da177e4
LT
1948 }
1949
19a60522
SS
1950 /*
1951 * In PCI 33 mode, the P_PLL is not used, and therefore,
1952 * the the P_PLL_LOCK bit in the adapter_status register will
1953 * not be asserted.
1954 */
1955 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1956 sp->device_type == XFRAME_II_DEVICE && mode !=
1957 PCI_MODE_PCI_33) {
1958 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1959 return 0;
1960 }
1961 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1962 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1963 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1964 return 0;
1965 }
1966 return 1;
1da177e4
LT
1967}
1968
1969/**
1970 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1971 * @sp: Pointer to device specifc structure
20346722 1972 * Description :
1da177e4
LT
1973 * New procedure to clear mac address reading problems on Alpha platforms
1974 *
1975 */
1976
1ee6dd77 1977static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1978{
1ee6dd77 1979 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1980 u64 val64;
1981 int i = 0;
1982
1983 while (fix_mac[i] != END_SIGN) {
1984 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1985 udelay(10);
1da177e4
LT
1986 val64 = readq(&bar0->gpio_control);
1987 }
1988}
1989
1990/**
20346722 1991 * start_nic - Turns the device on
1da177e4 1992 * @nic : device private variable.
20346722
K
1993 * Description:
1994 * This function actually turns the device on. Before this function is
1995 * called,all Registers are configured from their reset states
1996 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1997 * calling this function, the device interrupts are cleared and the NIC is
1998 * literally switched on by writing into the adapter control register.
20346722 1999 * Return Value:
1da177e4
LT
2000 * SUCCESS on success and -1 on failure.
2001 */
2002
2003static int start_nic(struct s2io_nic *nic)
2004{
1ee6dd77 2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2006 struct net_device *dev = nic->dev;
2007 register u64 val64 = 0;
20346722 2008 u16 subid, i;
1ee6dd77 2009 struct mac_info *mac_control;
1da177e4
LT
2010 struct config_param *config;
2011
2012 mac_control = &nic->mac_control;
2013 config = &nic->config;
2014
2015 /* PRC Initialization and configuration */
2016 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2017 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2018 &bar0->prc_rxd0_n[i]);
2019
2020 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
2021 if (nic->config.bimodal)
2022 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
2023 if (nic->rxd_mode == RXD_MODE_1)
2024 val64 |= PRC_CTRL_RC_ENABLED;
2025 else
2026 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2027 if (nic->device_type == XFRAME_II_DEVICE)
2028 val64 |= PRC_CTRL_GROUP_READS;
2029 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2031 writeq(val64, &bar0->prc_ctrl_n[i]);
2032 }
2033
da6971d8
AR
2034 if (nic->rxd_mode == RXD_MODE_3B) {
2035 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036 val64 = readq(&bar0->rx_pa_cfg);
2037 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2038 writeq(val64, &bar0->rx_pa_cfg);
2039 }
1da177e4 2040
926930b2
SS
2041 if (vlan_tag_strip == 0) {
2042 val64 = readq(&bar0->rx_pa_cfg);
2043 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2044 writeq(val64, &bar0->rx_pa_cfg);
2045 vlan_strip_flag = 0;
2046 }
2047
20346722 2048 /*
1da177e4
LT
2049 * Enabling MC-RLDRAM. After enabling the device, we timeout
2050 * for around 100ms, which is approximately the time required
2051 * for the device to be ready for operation.
2052 */
2053 val64 = readq(&bar0->mc_rldram_mrs);
2054 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2055 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2056 val64 = readq(&bar0->mc_rldram_mrs);
2057
20346722 2058 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2059
2060 /* Enabling ECC Protection. */
2061 val64 = readq(&bar0->adapter_control);
2062 val64 &= ~ADAPTER_ECC_EN;
2063 writeq(val64, &bar0->adapter_control);
2064
20346722
K
2065 /*
2066 * Clearing any possible Link state change interrupts that
1da177e4
LT
2067 * could have popped up just before Enabling the card.
2068 */
2069 val64 = readq(&bar0->mac_rmac_err_reg);
2070 if (val64)
2071 writeq(val64, &bar0->mac_rmac_err_reg);
2072
20346722
K
2073 /*
2074 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2075 * it.
2076 */
2077 val64 = readq(&bar0->adapter_status);
19a60522 2078 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2079 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2080 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2081 (unsigned long long) val64);
2082 return FAILURE;
2083 }
2084
20346722 2085 /*
1da177e4 2086 * With some switches, link might be already up at this point.
20346722
K
2087 * Because of this weird behavior, when we enable laser,
2088 * we may not get link. We need to handle this. We cannot
2089 * figure out which switch is misbehaving. So we are forced to
2090 * make a global change.
1da177e4
LT
2091 */
2092
2093 /* Enabling Laser. */
2094 val64 = readq(&bar0->adapter_control);
2095 val64 |= ADAPTER_EOI_TX_ON;
2096 writeq(val64, &bar0->adapter_control);
2097
c92ca04b
AR
2098 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2099 /*
2100 * Dont see link state interrupts initally on some switches,
2101 * so directly scheduling the link state task here.
2102 */
2103 schedule_work(&nic->set_link_task);
2104 }
1da177e4
LT
2105 /* SXE-002: Initialize link and activity LED */
2106 subid = nic->pdev->subsystem_device;
541ae68f
K
2107 if (((subid & 0xFF) >= 0x07) &&
2108 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2109 val64 = readq(&bar0->gpio_control);
2110 val64 |= 0x0000800000000000ULL;
2111 writeq(val64, &bar0->gpio_control);
2112 val64 = 0x0411040400000000ULL;
509a2671 2113 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2114 }
2115
1da177e4
LT
2116 return SUCCESS;
2117}
fed5eccd
AR
2118/**
2119 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2120 */
1ee6dd77
RB
2121static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2122 TxD *txdlp, int get_off)
fed5eccd 2123{
1ee6dd77 2124 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2125 struct sk_buff *skb;
1ee6dd77 2126 struct TxD *txds;
fed5eccd
AR
2127 u16 j, frg_cnt;
2128
2129 txds = txdlp;
26b7625c 2130 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2131 pci_unmap_single(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer, sizeof(u64),
2133 PCI_DMA_TODEVICE);
2134 txds++;
2135 }
2136
2137 skb = (struct sk_buff *) ((unsigned long)
2138 txds->Host_Control);
2139 if (!skb) {
1ee6dd77 2140 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2141 return NULL;
2142 }
2143 pci_unmap_single(nic->pdev, (dma_addr_t)
2144 txds->Buffer_Pointer,
2145 skb->len - skb->data_len,
2146 PCI_DMA_TODEVICE);
2147 frg_cnt = skb_shinfo(skb)->nr_frags;
2148 if (frg_cnt) {
2149 txds++;
2150 for (j = 0; j < frg_cnt; j++, txds++) {
2151 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2152 if (!txds->Buffer_Pointer)
2153 break;
6aa20a22 2154 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2155 txds->Buffer_Pointer,
2156 frag->size, PCI_DMA_TODEVICE);
2157 }
2158 }
1ee6dd77 2159 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2160 return(skb);
2161}
1da177e4 2162
20346722
K
2163/**
2164 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2165 * @nic : device private variable.
20346722 2166 * Description:
1da177e4 2167 * Free all queued Tx buffers.
20346722 2168 * Return Value: void
1da177e4
LT
2169*/
2170
2171static void free_tx_buffers(struct s2io_nic *nic)
2172{
2173 struct net_device *dev = nic->dev;
2174 struct sk_buff *skb;
1ee6dd77 2175 struct TxD *txdp;
1da177e4 2176 int i, j;
1ee6dd77 2177 struct mac_info *mac_control;
1da177e4 2178 struct config_param *config;
fed5eccd 2179 int cnt = 0;
1da177e4
LT
2180
2181 mac_control = &nic->mac_control;
2182 config = &nic->config;
2183
2184 for (i = 0; i < config->tx_fifo_num; i++) {
2185 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
491976b2
SH
2186 txdp = (struct TxD *) \
2187 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2188 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2189 if (skb) {
491976b2
SH
2190 nic->mac_control.stats_info->sw_stat.mem_freed
2191 += skb->truesize;
fed5eccd
AR
2192 dev_kfree_skb(skb);
2193 cnt++;
1da177e4 2194 }
1da177e4
LT
2195 }
2196 DBG_PRINT(INTR_DBG,
2197 "%s:forcibly freeing %d skbs on FIFO%d\n",
2198 dev->name, cnt, i);
20346722
K
2199 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2200 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2201 }
2202}
2203
20346722
K
2204/**
2205 * stop_nic - To stop the nic
1da177e4 2206 * @nic ; device private variable.
20346722
K
2207 * Description:
2208 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2209 * function does. This function is called to stop the device.
2210 * Return Value:
2211 * void.
2212 */
2213
2214static void stop_nic(struct s2io_nic *nic)
2215{
1ee6dd77 2216 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2217 register u64 val64 = 0;
5d3213cc 2218 u16 interruptible;
1ee6dd77 2219 struct mac_info *mac_control;
1da177e4
LT
2220 struct config_param *config;
2221
2222 mac_control = &nic->mac_control;
2223 config = &nic->config;
2224
2225 /* Disable all interrupts */
e960fc5c 2226 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2227 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2228 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2229 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2230
5d3213cc
AR
2231 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232 val64 = readq(&bar0->adapter_control);
2233 val64 &= ~(ADAPTER_CNTL_EN);
2234 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2235}
2236
20346722
K
2237/**
2238 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2239 * @nic: device private variable
20346722
K
2240 * @ring_no: ring number
2241 * Description:
1da177e4
LT
2242 * The function allocates Rx side skbs and puts the physical
2243 * address of these buffers into the RxD buffer pointers, so that the NIC
2244 * can DMA the received frame into these locations.
2245 * The NIC supports 3 receive modes, viz
2246 * 1. single buffer,
2247 * 2. three buffer and
2248 * 3. Five buffer modes.
20346722
K
2249 * Each mode defines how many fragments the received frame will be split
2250 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2251 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252 * is split into 3 fragments. As of now only single buffer mode is
2253 * supported.
2254 * Return Value:
2255 * SUCCESS on success or an appropriate -ve value on failure.
2256 */
2257
ac1f60db 2258static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2259{
2260 struct net_device *dev = nic->dev;
2261 struct sk_buff *skb;
1ee6dd77 2262 struct RxD_t *rxdp;
1da177e4 2263 int off, off1, size, block_no, block_no1;
1da177e4 2264 u32 alloc_tab = 0;
20346722 2265 u32 alloc_cnt;
1ee6dd77 2266 struct mac_info *mac_control;
1da177e4 2267 struct config_param *config;
20346722 2268 u64 tmp;
1ee6dd77 2269 struct buffAdd *ba;
1da177e4 2270 unsigned long flags;
1ee6dd77 2271 struct RxD_t *first_rxdp = NULL;
363dc367 2272 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
6d517a27
VP
2273 struct RxD1 *rxdp1;
2274 struct RxD3 *rxdp3;
491abf25 2275 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
1da177e4
LT
2276
2277 mac_control = &nic->mac_control;
2278 config = &nic->config;
20346722
K
2279 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2280 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2281
5d3213cc 2282 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2283 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2284 while (alloc_tab < alloc_cnt) {
20346722 2285 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2286 block_index;
20346722 2287 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2288
da6971d8
AR
2289 rxdp = mac_control->rings[ring_no].
2290 rx_blocks[block_no].rxds[off].virt_addr;
2291
2292 if ((block_no == block_no1) && (off == off1) &&
2293 (rxdp->Host_Control)) {
2294 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2295 dev->name);
1da177e4
LT
2296 DBG_PRINT(INTR_DBG, " info equated\n");
2297 goto end;
2298 }
da6971d8 2299 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2300 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2301 block_index++;
da6971d8
AR
2302 if (mac_control->rings[ring_no].rx_curr_put_info.
2303 block_index == mac_control->rings[ring_no].
2304 block_count)
2305 mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index = 0;
2307 block_no = mac_control->rings[ring_no].
2308 rx_curr_put_info.block_index;
2309 if (off == rxd_count[nic->rxd_mode])
2310 off = 0;
20346722 2311 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2312 offset = off;
2313 rxdp = mac_control->rings[ring_no].
2314 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2315 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2316 dev->name, rxdp);
2317 }
db874e65
SS
2318 if(!napi) {
2319 spin_lock_irqsave(&nic->put_lock, flags);
2320 mac_control->rings[ring_no].put_pos =
2321 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2322 spin_unlock_irqrestore(&nic->put_lock, flags);
2323 } else {
2324 mac_control->rings[ring_no].put_pos =
2325 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326 }
da6971d8 2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
6d517a27 2328 ((nic->rxd_mode == RXD_MODE_3B) &&
da6971d8 2329 (rxdp->Control_2 & BIT(0)))) {
20346722 2330 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2331 offset = off;
1da177e4
LT
2332 goto end;
2333 }
da6971d8
AR
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
da6971d8 2339 else
6d517a27 2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2341
da6971d8
AR
2342 /* allocate skb */
2343 skb = dev_alloc_skb(size);
2344 if(!skb) {
0c61ed5f
RV
2345 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2346 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |= RXD_OWN_XENA;
2350 }
c53d4945
SH
2351 nic->mac_control.stats_info->sw_stat. \
2352 mem_alloc_fail_cnt++;
da6971d8
AR
2353 return -ENOMEM ;
2354 }
491976b2
SH
2355 nic->mac_control.stats_info->sw_stat.mem_allocated
2356 += skb->truesize;
da6971d8
AR
2357 if (nic->rxd_mode == RXD_MODE_1) {
2358 /* 1 buffer mode - normal operation mode */
6d517a27 2359 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2360 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2361 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2362 rxdp1->Buffer0_ptr = pci_map_single
863c11a9
AR
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
491abf25
VP
2365 if( (rxdp1->Buffer0_ptr == 0) ||
2366 (rxdp1->Buffer0_ptr ==
2367 DMA_ERROR_CODE))
2368 goto pci_map_failed;
2369
491976b2
SH
2370 rxdp->Control_2 =
2371 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8 2372
6d517a27 2373 } else if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8 2374 /*
6d517a27
VP
2375 * 2 buffer mode -
2376 * 2 buffer mode provides 128
da6971d8 2377 * byte aligned receive buffers.
da6971d8
AR
2378 */
2379
6d517a27 2380 rxdp3 = (struct RxD3*)rxdp;
491976b2 2381 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2382 Buffer0_ptr = rxdp3->Buffer0_ptr;
2383 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2384 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2385 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2386 rxdp3->Buffer0_ptr = Buffer0_ptr;
2387 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2388
da6971d8
AR
2389 ba = &mac_control->rings[ring_no].ba[block_no][off];
2390 skb_reserve(skb, BUF0_LEN);
2391 tmp = (u64)(unsigned long) skb->data;
2392 tmp += ALIGN_SIZE;
2393 tmp &= ~ALIGN_SIZE;
2394 skb->data = (void *) (unsigned long)tmp;
27a884dc 2395 skb_reset_tail_pointer(skb);
da6971d8 2396
6d517a27
VP
2397 if (!(rxdp3->Buffer0_ptr))
2398 rxdp3->Buffer0_ptr =
75c30b13 2399 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2400 PCI_DMA_FROMDEVICE);
75c30b13
AR
2401 else
2402 pci_dma_sync_single_for_device(nic->pdev,
6d517a27 2403 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2404 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25
VP
2405 if( (rxdp3->Buffer0_ptr == 0) ||
2406 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2407 goto pci_map_failed;
2408
da6971d8
AR
2409 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2410 if (nic->rxd_mode == RXD_MODE_3B) {
2411 /* Two buffer mode */
2412
2413 /*
6aa20a22 2414 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2415 * L4 payload
2416 */
6d517a27 2417 rxdp3->Buffer2_ptr = pci_map_single
da6971d8
AR
2418 (nic->pdev, skb->data, dev->mtu + 4,
2419 PCI_DMA_FROMDEVICE);
2420
491abf25
VP
2421 if( (rxdp3->Buffer2_ptr == 0) ||
2422 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2423 goto pci_map_failed;
2424
2425 rxdp3->Buffer1_ptr =
6aa20a22 2426 pci_map_single(nic->pdev,
75c30b13
AR
2427 ba->ba_1, BUF1_LEN,
2428 PCI_DMA_FROMDEVICE);
491abf25
VP
2429 if( (rxdp3->Buffer1_ptr == 0) ||
2430 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2431 pci_unmap_single
2432 (nic->pdev,
3e847423 2433 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
2434 dev->mtu + 4,
2435 PCI_DMA_FROMDEVICE);
2436 goto pci_map_failed;
75c30b13 2437 }
da6971d8
AR
2438 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2439 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2440 (dev->mtu + 4);
da6971d8
AR
2441 }
2442 rxdp->Control_2 |= BIT(0);
1da177e4 2443 }
1da177e4 2444 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2445 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2446 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2447 off++;
da6971d8
AR
2448 if (off == (rxd_count[nic->rxd_mode] + 1))
2449 off = 0;
20346722 2450 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2451
da6971d8 2452 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2453 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2454 if (first_rxdp) {
2455 wmb();
2456 first_rxdp->Control_1 |= RXD_OWN_XENA;
2457 }
2458 first_rxdp = rxdp;
2459 }
1da177e4
LT
2460 atomic_inc(&nic->rx_bufs_left[ring_no]);
2461 alloc_tab++;
2462 }
2463
2464 end:
303bcb4b
K
2465 /* Transfer ownership of first descriptor to adapter just before
2466 * exiting. Before that, use memory barrier so that ownership
2467 * and other fields are seen by adapter correctly.
2468 */
2469 if (first_rxdp) {
2470 wmb();
2471 first_rxdp->Control_1 |= RXD_OWN_XENA;
2472 }
2473
1da177e4 2474 return SUCCESS;
491abf25
VP
2475pci_map_failed:
2476 stats->pci_map_fail_cnt++;
2477 stats->mem_freed += skb->truesize;
2478 dev_kfree_skb_irq(skb);
2479 return -ENOMEM;
1da177e4
LT
2480}
2481
da6971d8
AR
2482static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2483{
2484 struct net_device *dev = sp->dev;
2485 int j;
2486 struct sk_buff *skb;
1ee6dd77
RB
2487 struct RxD_t *rxdp;
2488 struct mac_info *mac_control;
2489 struct buffAdd *ba;
6d517a27
VP
2490 struct RxD1 *rxdp1;
2491 struct RxD3 *rxdp3;
da6971d8
AR
2492
2493 mac_control = &sp->mac_control;
2494 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2495 rxdp = mac_control->rings[ring_no].
2496 rx_blocks[blk].rxds[j].virt_addr;
2497 skb = (struct sk_buff *)
2498 ((unsigned long) rxdp->Host_Control);
2499 if (!skb) {
2500 continue;
2501 }
2502 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2503 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2504 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2505 rxdp1->Buffer0_ptr,
2506 dev->mtu +
2507 HEADER_ETHERNET_II_802_3_SIZE
2508 + HEADER_802_2_SIZE +
2509 HEADER_SNAP_SIZE,
2510 PCI_DMA_FROMDEVICE);
1ee6dd77 2511 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2512 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2513 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2514 ba = &mac_control->rings[ring_no].
2515 ba[blk][j];
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2517 rxdp3->Buffer0_ptr,
2518 BUF0_LEN,
da6971d8
AR
2519 PCI_DMA_FROMDEVICE);
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2521 rxdp3->Buffer1_ptr,
2522 BUF1_LEN,
da6971d8
AR
2523 PCI_DMA_FROMDEVICE);
2524 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2525 rxdp3->Buffer2_ptr,
2526 dev->mtu + 4,
da6971d8 2527 PCI_DMA_FROMDEVICE);
1ee6dd77 2528 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2529 }
491976b2 2530 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8
AR
2531 dev_kfree_skb(skb);
2532 atomic_dec(&sp->rx_bufs_left[ring_no]);
2533 }
2534}
2535
1da177e4 2536/**
20346722 2537 * free_rx_buffers - Frees all Rx buffers
1da177e4 2538 * @sp: device private variable.
20346722 2539 * Description:
1da177e4
LT
2540 * This function will free all Rx buffers allocated by host.
2541 * Return Value:
2542 * NONE.
2543 */
2544
2545static void free_rx_buffers(struct s2io_nic *sp)
2546{
2547 struct net_device *dev = sp->dev;
da6971d8 2548 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2549 struct mac_info *mac_control;
1da177e4 2550 struct config_param *config;
1da177e4
LT
2551
2552 mac_control = &sp->mac_control;
2553 config = &sp->config;
2554
2555 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2556 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2557 free_rxd_blk(sp,i,blk);
1da177e4 2558
20346722
K
2559 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2560 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2561 mac_control->rings[i].rx_curr_put_info.offset = 0;
2562 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2563 atomic_set(&sp->rx_bufs_left[i], 0);
2564 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565 dev->name, buf_cnt, i);
2566 }
2567}
2568
2569/**
2570 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2571 * @napi : pointer to the napi structure.
20346722 2572 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2573 * during one pass through the 'Poll" function.
2574 * Description:
2575 * Comes into picture only if NAPI support has been incorporated. It does
2576 * the same thing that rx_intr_handler does, but not in a interrupt context
2577 * also It will process only a given number of packets.
2578 * Return value:
2579 * 0 on success and 1 if there are No Rx packets to be processed.
2580 */
2581
bea3348e 2582static int s2io_poll(struct napi_struct *napi, int budget)
1da177e4 2583{
bea3348e
SH
2584 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2585 struct net_device *dev = nic->dev;
20346722 2586 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2587 struct mac_info *mac_control;
1da177e4 2588 struct config_param *config;
1ee6dd77 2589 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2590 int i;
1da177e4 2591
7ba013ac 2592 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2593 mac_control = &nic->mac_control;
2594 config = &nic->config;
2595
bea3348e 2596 nic->pkts_to_process = budget;
20346722 2597 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2598
19a60522
SS
2599 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2600 readl(&bar0->rx_traffic_int);
1da177e4
LT
2601
2602 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2603 rx_intr_handler(&mac_control->rings[i]);
2604 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2605 if (!nic->pkts_to_process) {
2606 /* Quota for the current iteration has been met */
2607 goto no_rx;
1da177e4 2608 }
1da177e4 2609 }
1da177e4 2610
bea3348e 2611 netif_rx_complete(dev, napi);
1da177e4
LT
2612
2613 for (i = 0; i < config->rx_ring_num; i++) {
2614 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2615 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2616 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2617 break;
2618 }
2619 }
2620 /* Re enable the Rx interrupts. */
c92ca04b 2621 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2622 readl(&bar0->rx_traffic_mask);
7ba013ac 2623 atomic_dec(&nic->isr_cnt);
bea3348e 2624 return pkt_cnt;
1da177e4 2625
20346722 2626no_rx:
1da177e4
LT
2627 for (i = 0; i < config->rx_ring_num; i++) {
2628 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2629 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2630 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
1da177e4
LT
2631 break;
2632 }
2633 }
7ba013ac 2634 atomic_dec(&nic->isr_cnt);
bea3348e 2635 return pkt_cnt;
1da177e4 2636}
20346722 2637
b41477f3 2638#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2639/**
b41477f3 2640 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2641 * @dev : pointer to the device structure.
2642 * Description:
b41477f3
AR
2643 * This function will be called by upper layer to check for events on the
2644 * interface in situations where interrupts are disabled. It is used for
2645 * specific in-kernel networking tasks, such as remote consoles and kernel
2646 * debugging over the network (example netdump in RedHat).
612eff0e 2647 */
612eff0e
BH
2648static void s2io_netpoll(struct net_device *dev)
2649{
1ee6dd77
RB
2650 struct s2io_nic *nic = dev->priv;
2651 struct mac_info *mac_control;
612eff0e 2652 struct config_param *config;
1ee6dd77 2653 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2654 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2655 int i;
2656
d796fdb7
LV
2657 if (pci_channel_offline(nic->pdev))
2658 return;
2659
612eff0e
BH
2660 disable_irq(dev->irq);
2661
2662 atomic_inc(&nic->isr_cnt);
2663 mac_control = &nic->mac_control;
2664 config = &nic->config;
2665
612eff0e 2666 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2667 writeq(val64, &bar0->tx_traffic_int);
2668
6aa20a22 2669 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2670 * run out of skbs and will fail and eventually netpoll application such
2671 * as netdump will fail.
2672 */
2673 for (i = 0; i < config->tx_fifo_num; i++)
2674 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2675
b41477f3 2676 /* check for received packet and indicate up to network */
612eff0e
BH
2677 for (i = 0; i < config->rx_ring_num; i++)
2678 rx_intr_handler(&mac_control->rings[i]);
2679
2680 for (i = 0; i < config->rx_ring_num; i++) {
2681 if (fill_rx_buffers(nic, i) == -ENOMEM) {
0c61ed5f
RV
2682 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2683 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2684 break;
2685 }
2686 }
2687 atomic_dec(&nic->isr_cnt);
2688 enable_irq(dev->irq);
2689 return;
2690}
2691#endif
2692
20346722 2693/**
1da177e4
LT
2694 * rx_intr_handler - Rx interrupt handler
2695 * @nic: device private variable.
20346722
K
2696 * Description:
2697 * If the interrupt is because of a received frame or if the
1da177e4 2698 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2699 * called. It picks out the RxD at which place the last Rx processing had
2700 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2701 * the offset.
2702 * Return Value:
2703 * NONE.
2704 */
1ee6dd77 2705static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2706{
1ee6dd77 2707 struct s2io_nic *nic = ring_data->nic;
1da177e4 2708 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2709 int get_block, put_block, put_offset;
1ee6dd77
RB
2710 struct rx_curr_get_info get_info, put_info;
2711 struct RxD_t *rxdp;
1da177e4 2712 struct sk_buff *skb;
20346722 2713 int pkt_cnt = 0;
7d3d0439 2714 int i;
6d517a27
VP
2715 struct RxD1* rxdp1;
2716 struct RxD3* rxdp3;
7d3d0439 2717
7ba013ac
K
2718 spin_lock(&nic->rx_lock);
2719 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2720 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2721 __FUNCTION__, dev->name);
2722 spin_unlock(&nic->rx_lock);
776bd20f 2723 return;
7ba013ac
K
2724 }
2725
20346722
K
2726 get_info = ring_data->rx_curr_get_info;
2727 get_block = get_info.block_index;
1ee6dd77 2728 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2729 put_block = put_info.block_index;
da6971d8 2730 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2731 if (!napi) {
2732 spin_lock(&nic->put_lock);
2733 put_offset = ring_data->put_pos;
2734 spin_unlock(&nic->put_lock);
2735 } else
2736 put_offset = ring_data->put_pos;
2737
da6971d8 2738 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2739 /*
2740 * If your are next to put index then it's
2741 * FIFO full condition
2742 */
da6971d8
AR
2743 if ((get_block == put_block) &&
2744 (get_info.offset + 1) == put_info.offset) {
75c30b13 2745 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2746 break;
2747 }
20346722
K
2748 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2749 if (skb == NULL) {
2750 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2751 dev->name);
2752 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2753 spin_unlock(&nic->rx_lock);
20346722 2754 return;
1da177e4 2755 }
da6971d8 2756 if (nic->rxd_mode == RXD_MODE_1) {
6d517a27 2757 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2758 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2759 rxdp1->Buffer0_ptr,
2760 dev->mtu +
2761 HEADER_ETHERNET_II_802_3_SIZE +
2762 HEADER_802_2_SIZE +
2763 HEADER_SNAP_SIZE,
2764 PCI_DMA_FROMDEVICE);
da6971d8 2765 } else if (nic->rxd_mode == RXD_MODE_3B) {
6d517a27 2766 rxdp3 = (struct RxD3*)rxdp;
75c30b13 2767 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
6d517a27
VP
2768 rxdp3->Buffer0_ptr,
2769 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2770 pci_unmap_single(nic->pdev, (dma_addr_t)
6d517a27
VP
2771 rxdp3->Buffer2_ptr,
2772 dev->mtu + 4,
2773 PCI_DMA_FROMDEVICE);
da6971d8 2774 }
863c11a9 2775 prefetch(skb->data);
20346722
K
2776 rx_osm_handler(ring_data, rxdp);
2777 get_info.offset++;
da6971d8
AR
2778 ring_data->rx_curr_get_info.offset = get_info.offset;
2779 rxdp = ring_data->rx_blocks[get_block].
2780 rxds[get_info.offset].virt_addr;
2781 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2782 get_info.offset = 0;
da6971d8 2783 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2784 get_block++;
da6971d8
AR
2785 if (get_block == ring_data->block_count)
2786 get_block = 0;
2787 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2788 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2789 }
1da177e4 2790
20346722 2791 nic->pkts_to_process -= 1;
db874e65 2792 if ((napi) && (!nic->pkts_to_process))
20346722 2793 break;
20346722 2794 pkt_cnt++;
1da177e4
LT
2795 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2796 break;
2797 }
7d3d0439
RA
2798 if (nic->lro) {
2799 /* Clear all LRO sessions before exiting */
2800 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2801 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2802 if (lro->in_use) {
2803 update_L3L4_header(nic, lro);
2804 queue_rx_frame(lro->parent);
2805 clear_lro_session(lro);
2806 }
2807 }
2808 }
2809
7ba013ac 2810 spin_unlock(&nic->rx_lock);
1da177e4 2811}
20346722
K
2812
2813/**
1da177e4
LT
2814 * tx_intr_handler - Transmit interrupt handler
2815 * @nic : device private variable
20346722
K
2816 * Description:
2817 * If an interrupt was raised to indicate DMA complete of the
2818 * Tx packet, this function is called. It identifies the last TxD
2819 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2820 * DMA'ed into the NICs internal memory.
2821 * Return Value:
2822 * NONE
2823 */
2824
1ee6dd77 2825static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2826{
1ee6dd77 2827 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2828 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2829 struct tx_curr_get_info get_info, put_info;
1da177e4 2830 struct sk_buff *skb;
1ee6dd77 2831 struct TxD *txdlp;
f9046eb3 2832 u8 err_mask;
1da177e4 2833
20346722 2834 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2835 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2836 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2837 list_virt_addr;
2838 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2839 (get_info.offset != put_info.offset) &&
2840 (txdlp->Host_Control)) {
2841 /* Check for TxD errors */
2842 if (txdlp->Control_1 & TXD_T_CODE) {
2843 unsigned long long err;
2844 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2845 if (err & 0x1) {
2846 nic->mac_control.stats_info->sw_stat.
2847 parity_err_cnt++;
2848 }
491976b2
SH
2849
2850 /* update t_code statistics */
f9046eb3
OH
2851 err_mask = err >> 48;
2852 switch(err_mask) {
491976b2
SH
2853 case 2:
2854 nic->mac_control.stats_info->sw_stat.
2855 tx_buf_abort_cnt++;
2856 break;
2857
2858 case 3:
2859 nic->mac_control.stats_info->sw_stat.
2860 tx_desc_abort_cnt++;
2861 break;
2862
2863 case 7:
2864 nic->mac_control.stats_info->sw_stat.
2865 tx_parity_err_cnt++;
2866 break;
2867
2868 case 10:
2869 nic->mac_control.stats_info->sw_stat.
2870 tx_link_loss_cnt++;
2871 break;
2872
2873 case 15:
2874 nic->mac_control.stats_info->sw_stat.
2875 tx_list_proc_err_cnt++;
2876 break;
2877 }
20346722 2878 }
1da177e4 2879
fed5eccd 2880 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2881 if (skb == NULL) {
2882 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2883 __FUNCTION__);
2884 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2885 return;
2886 }
2887
20346722 2888 /* Updating the statistics block */
20346722 2889 nic->stats.tx_bytes += skb->len;
491976b2 2890 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
2891 dev_kfree_skb_irq(skb);
2892
2893 get_info.offset++;
863c11a9
AR
2894 if (get_info.offset == get_info.fifo_len + 1)
2895 get_info.offset = 0;
1ee6dd77 2896 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
2897 [get_info.offset].list_virt_addr;
2898 fifo_data->tx_curr_get_info.offset =
2899 get_info.offset;
1da177e4
LT
2900 }
2901
2902 spin_lock(&nic->tx_lock);
2903 if (netif_queue_stopped(dev))
2904 netif_wake_queue(dev);
2905 spin_unlock(&nic->tx_lock);
2906}
2907
bd1034f0
AR
2908/**
2909 * s2io_mdio_write - Function to write in to MDIO registers
2910 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2911 * @addr : address value
2912 * @value : data value
2913 * @dev : pointer to net_device structure
2914 * Description:
2915 * This function is used to write values to the MDIO registers
2916 * NONE
2917 */
2918static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2919{
2920 u64 val64 = 0x0;
1ee6dd77
RB
2921 struct s2io_nic *sp = dev->priv;
2922 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2923
2924 //address transaction
2925 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2926 | MDIO_MMD_DEV_ADDR(mmd_type)
2927 | MDIO_MMS_PRT_ADDR(0x0);
2928 writeq(val64, &bar0->mdio_control);
2929 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2930 writeq(val64, &bar0->mdio_control);
2931 udelay(100);
2932
2933 //Data transaction
2934 val64 = 0x0;
2935 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2936 | MDIO_MMD_DEV_ADDR(mmd_type)
2937 | MDIO_MMS_PRT_ADDR(0x0)
2938 | MDIO_MDIO_DATA(value)
2939 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2940 writeq(val64, &bar0->mdio_control);
2941 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2942 writeq(val64, &bar0->mdio_control);
2943 udelay(100);
2944
2945 val64 = 0x0;
2946 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2947 | MDIO_MMD_DEV_ADDR(mmd_type)
2948 | MDIO_MMS_PRT_ADDR(0x0)
2949 | MDIO_OP(MDIO_OP_READ_TRANS);
2950 writeq(val64, &bar0->mdio_control);
2951 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2952 writeq(val64, &bar0->mdio_control);
2953 udelay(100);
2954
2955}
2956
2957/**
2958 * s2io_mdio_read - Function to write in to MDIO registers
2959 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960 * @addr : address value
2961 * @dev : pointer to net_device structure
2962 * Description:
2963 * This function is used to read values to the MDIO registers
2964 * NONE
2965 */
2966static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2967{
2968 u64 val64 = 0x0;
2969 u64 rval64 = 0x0;
1ee6dd77
RB
2970 struct s2io_nic *sp = dev->priv;
2971 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2972
2973 /* address transaction */
2974 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975 | MDIO_MMD_DEV_ADDR(mmd_type)
2976 | MDIO_MMS_PRT_ADDR(0x0);
2977 writeq(val64, &bar0->mdio_control);
2978 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979 writeq(val64, &bar0->mdio_control);
2980 udelay(100);
2981
2982 /* Data transaction */
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_OP(MDIO_OP_READ_TRANS);
2988 writeq(val64, &bar0->mdio_control);
2989 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990 writeq(val64, &bar0->mdio_control);
2991 udelay(100);
2992
2993 /* Read the value from regs */
2994 rval64 = readq(&bar0->mdio_control);
2995 rval64 = rval64 & 0xFFFF0000;
2996 rval64 = rval64 >> 16;
2997 return rval64;
2998}
2999/**
3000 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3001 * @counter : couter value to be updated
3002 * @flag : flag to indicate the status
3003 * @type : counter type
3004 * Description:
3005 * This function is to check the status of the xpak counters value
3006 * NONE
3007 */
3008
3009static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3010{
3011 u64 mask = 0x3;
3012 u64 val64;
3013 int i;
3014 for(i = 0; i <index; i++)
3015 mask = mask << 0x2;
3016
3017 if(flag > 0)
3018 {
3019 *counter = *counter + 1;
3020 val64 = *regs_stat & mask;
3021 val64 = val64 >> (index * 0x2);
3022 val64 = val64 + 1;
3023 if(val64 == 3)
3024 {
3025 switch(type)
3026 {
3027 case 1:
3028 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3029 "service. Excessive temperatures may "
3030 "result in premature transceiver "
3031 "failure \n");
3032 break;
3033 case 2:
3034 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3035 "service Excessive bias currents may "
3036 "indicate imminent laser diode "
3037 "failure \n");
3038 break;
3039 case 3:
3040 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3041 "service Excessive laser output "
3042 "power may saturate far-end "
3043 "receiver\n");
3044 break;
3045 default:
3046 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3047 "type \n");
3048 }
3049 val64 = 0x0;
3050 }
3051 val64 = val64 << (index * 0x2);
3052 *regs_stat = (*regs_stat & (~mask)) | (val64);
3053
3054 } else {
3055 *regs_stat = *regs_stat & (~mask);
3056 }
3057}
3058
3059/**
3060 * s2io_updt_xpak_counter - Function to update the xpak counters
3061 * @dev : pointer to net_device struct
3062 * Description:
3063 * This function is to upate the status of the xpak counters value
3064 * NONE
3065 */
3066static void s2io_updt_xpak_counter(struct net_device *dev)
3067{
3068 u16 flag = 0x0;
3069 u16 type = 0x0;
3070 u16 val16 = 0x0;
3071 u64 val64 = 0x0;
3072 u64 addr = 0x0;
3073
1ee6dd77
RB
3074 struct s2io_nic *sp = dev->priv;
3075 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3076
3077 /* Check the communication with the MDIO slave */
3078 addr = 0x0000;
3079 val64 = 0x0;
3080 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3081 if((val64 == 0xFFFF) || (val64 == 0x0000))
3082 {
3083 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3084 "Returned %llx\n", (unsigned long long)val64);
3085 return;
3086 }
3087
3088 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3089 if(val64 != 0x2040)
3090 {
3091 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3092 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3093 (unsigned long long)val64);
3094 return;
3095 }
3096
3097 /* Loading the DOM register to MDIO register */
3098 addr = 0xA100;
3099 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3100 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3101
3102 /* Reading the Alarm flags */
3103 addr = 0xA070;
3104 val64 = 0x0;
3105 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3106
3107 flag = CHECKBIT(val64, 0x7);
3108 type = 1;
3109 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3110 &stat_info->xpak_stat.xpak_regs_stat,
3111 0x0, flag, type);
3112
3113 if(CHECKBIT(val64, 0x6))
3114 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3115
3116 flag = CHECKBIT(val64, 0x3);
3117 type = 2;
3118 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3119 &stat_info->xpak_stat.xpak_regs_stat,
3120 0x2, flag, type);
3121
3122 if(CHECKBIT(val64, 0x2))
3123 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3124
3125 flag = CHECKBIT(val64, 0x1);
3126 type = 3;
3127 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3128 &stat_info->xpak_stat.xpak_regs_stat,
3129 0x4, flag, type);
3130
3131 if(CHECKBIT(val64, 0x0))
3132 stat_info->xpak_stat.alarm_laser_output_power_low++;
3133
3134 /* Reading the Warning flags */
3135 addr = 0xA074;
3136 val64 = 0x0;
3137 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3138
3139 if(CHECKBIT(val64, 0x7))
3140 stat_info->xpak_stat.warn_transceiver_temp_high++;
3141
3142 if(CHECKBIT(val64, 0x6))
3143 stat_info->xpak_stat.warn_transceiver_temp_low++;
3144
3145 if(CHECKBIT(val64, 0x3))
3146 stat_info->xpak_stat.warn_laser_bias_current_high++;
3147
3148 if(CHECKBIT(val64, 0x2))
3149 stat_info->xpak_stat.warn_laser_bias_current_low++;
3150
3151 if(CHECKBIT(val64, 0x1))
3152 stat_info->xpak_stat.warn_laser_output_power_high++;
3153
3154 if(CHECKBIT(val64, 0x0))
3155 stat_info->xpak_stat.warn_laser_output_power_low++;
3156}
3157
20346722 3158/**
1da177e4
LT
3159 * alarm_intr_handler - Alarm Interrrupt handler
3160 * @nic: device private variable
20346722 3161 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3162 * complete, this function is called. If the interrupt was to indicate
20346722
K
3163 * a loss of link, the OSM link status handler is invoked for any other
3164 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3165 * and a H/W reset is issued.
3166 * Return Value:
3167 * NONE
3168*/
3169
3170static void alarm_intr_handler(struct s2io_nic *nic)
3171{
3172 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3173 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3174 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3175 u64 cnt;
3176 int i;
372cc597
SS
3177 if (atomic_read(&nic->card_state) == CARD_DOWN)
3178 return;
d796fdb7
LV
3179 if (pci_channel_offline(nic->pdev))
3180 return;
bd1034f0
AR
3181 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3182 /* Handling the XPAK counters update */
3183 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3184 /* waiting for an hour */
3185 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3186 } else {
3187 s2io_updt_xpak_counter(dev);
3188 /* reset the count to zero */
3189 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3190 }
1da177e4
LT
3191
3192 /* Handling link status change error Intr */
a371a07d
K
3193 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3194 err_reg = readq(&bar0->mac_rmac_err_reg);
3195 writeq(err_reg, &bar0->mac_rmac_err_reg);
3196 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3197 schedule_work(&nic->set_link_task);
3198 }
1da177e4
LT
3199 }
3200
5e25b9dd
K
3201 /* Handling Ecc errors */
3202 val64 = readq(&bar0->mc_err_reg);
3203 writeq(val64, &bar0->mc_err_reg);
3204 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3205 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3206 nic->mac_control.stats_info->sw_stat.
3207 double_ecc_errs++;
776bd20f 3208 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3209 dev->name);
776bd20f 3210 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3211 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3212 /* Reset XframeI only if critical error */
3213 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3214 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3215 netif_stop_queue(dev);
3216 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3217 nic->mac_control.stats_info->sw_stat.
3218 soft_reset_cnt++;
776bd20f 3219 }
e960fc5c 3220 }
5e25b9dd 3221 } else {
7ba013ac
K
3222 nic->mac_control.stats_info->sw_stat.
3223 single_ecc_errs++;
5e25b9dd
K
3224 }
3225 }
3226
1da177e4
LT
3227 /* In case of a serious error, the device will be Reset. */
3228 val64 = readq(&bar0->serr_source);
3229 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3230 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3231 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3232 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3233 (unsigned long long)val64);
1da177e4
LT
3234 netif_stop_queue(dev);
3235 schedule_work(&nic->rst_timer_task);
bd1034f0 3236 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3237 }
3238
3239 /*
3240 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3241 * Error occurs, the adapter will be recycled by disabling the
20346722 3242 * adapter enable bit and enabling it again after the device
1da177e4
LT
3243 * becomes Quiescent.
3244 */
3245 val64 = readq(&bar0->pcc_err_reg);
3246 writeq(val64, &bar0->pcc_err_reg);
3247 if (val64 & PCC_FB_ECC_DB_ERR) {
3248 u64 ac = readq(&bar0->adapter_control);
3249 ac &= ~(ADAPTER_CNTL_EN);
3250 writeq(ac, &bar0->adapter_control);
3251 ac = readq(&bar0->adapter_control);
3252 schedule_work(&nic->set_link_task);
3253 }
bd1034f0
AR
3254 /* Check for data parity error */
3255 val64 = readq(&bar0->pic_int_status);
3256 if (val64 & PIC_INT_GPIO) {
3257 val64 = readq(&bar0->gpio_int_reg);
3258 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3259 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3260 schedule_work(&nic->rst_timer_task);
3261 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3262 }
3263 }
3264
3265 /* Check for ring full counter */
3266 if (nic->device_type & XFRAME_II_DEVICE) {
3267 val64 = readq(&bar0->ring_bump_counter1);
3268 for (i=0; i<4; i++) {
3269 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3270 cnt >>= 64 - ((i+1)*16);
3271 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3272 += cnt;
3273 }
3274
3275 val64 = readq(&bar0->ring_bump_counter2);
3276 for (i=0; i<4; i++) {
3277 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3278 cnt >>= 64 - ((i+1)*16);
3279 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3280 += cnt;
3281 }
3282 }
1da177e4
LT
3283
3284 /* Other type of interrupts are not being handled now, TODO */
3285}
3286
20346722 3287/**
1da177e4 3288 * wait_for_cmd_complete - waits for a command to complete.
20346722 3289 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3290 * s2io_nic structure.
20346722
K
3291 * Description: Function that waits for a command to Write into RMAC
3292 * ADDR DATA registers to be completed and returns either success or
3293 * error depending on whether the command was complete or not.
1da177e4
LT
3294 * Return value:
3295 * SUCCESS on success and FAILURE on failure.
3296 */
3297
9fc93a41
SS
3298static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3299 int bit_state)
1da177e4 3300{
9fc93a41 3301 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3302 u64 val64;
3303
9fc93a41
SS
3304 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3305 return FAILURE;
3306
3307 do {
c92ca04b 3308 val64 = readq(addr);
9fc93a41
SS
3309 if (bit_state == S2IO_BIT_RESET) {
3310 if (!(val64 & busy_bit)) {
3311 ret = SUCCESS;
3312 break;
3313 }
3314 } else {
3315 if (!(val64 & busy_bit)) {
3316 ret = SUCCESS;
3317 break;
3318 }
1da177e4 3319 }
c92ca04b
AR
3320
3321 if(in_interrupt())
9fc93a41 3322 mdelay(delay);
c92ca04b 3323 else
9fc93a41 3324 msleep(delay);
c92ca04b 3325
9fc93a41
SS
3326 if (++cnt >= 10)
3327 delay = 50;
3328 } while (cnt < 20);
1da177e4
LT
3329 return ret;
3330}
19a60522
SS
3331/*
3332 * check_pci_device_id - Checks if the device id is supported
3333 * @id : device id
3334 * Description: Function to check if the pci device id is supported by driver.
3335 * Return value: Actual device id if supported else PCI_ANY_ID
3336 */
3337static u16 check_pci_device_id(u16 id)
3338{
3339 switch (id) {
3340 case PCI_DEVICE_ID_HERC_WIN:
3341 case PCI_DEVICE_ID_HERC_UNI:
3342 return XFRAME_II_DEVICE;
3343 case PCI_DEVICE_ID_S2IO_UNI:
3344 case PCI_DEVICE_ID_S2IO_WIN:
3345 return XFRAME_I_DEVICE;
3346 default:
3347 return PCI_ANY_ID;
3348 }
3349}
1da177e4 3350
20346722
K
3351/**
3352 * s2io_reset - Resets the card.
1da177e4
LT
3353 * @sp : private member of the device structure.
3354 * Description: Function to Reset the card. This function then also
20346722 3355 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3356 * the card reset also resets the configuration space.
3357 * Return value:
3358 * void.
3359 */
3360
1ee6dd77 3361static void s2io_reset(struct s2io_nic * sp)
1da177e4 3362{
1ee6dd77 3363 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3364 u64 val64;
5e25b9dd 3365 u16 subid, pci_cmd;
19a60522
SS
3366 int i;
3367 u16 val16;
491976b2
SH
3368 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3369 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3370
19a60522
SS
3371 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3372 __FUNCTION__, sp->dev->name);
1da177e4 3373
0b1f7ebe 3374 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3375 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3376
1da177e4
LT
3377 val64 = SW_RESET_ALL;
3378 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3379 if (strstr(sp->product_name, "CX4")) {
3380 msleep(750);
3381 }
19a60522
SS
3382 msleep(250);
3383 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3384
19a60522
SS
3385 /* Restore the PCI state saved during initialization. */
3386 pci_restore_state(sp->pdev);
3387 pci_read_config_word(sp->pdev, 0x2, &val16);
3388 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3389 break;
3390 msleep(200);
3391 }
1da177e4 3392
19a60522
SS
3393 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3394 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3395 }
3396
3397 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3398
3399 s2io_init_pci(sp);
1da177e4 3400
20346722
K
3401 /* Set swapper to enable I/O register access */
3402 s2io_set_swapper(sp);
3403
cc6e7c44
RA
3404 /* Restore the MSIX table entries from local variables */
3405 restore_xmsi_data(sp);
3406
5e25b9dd 3407 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3408 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3409 /* Clear "detected parity error" bit */
303bcb4b 3410 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3411
303bcb4b
K
3412 /* Clearing PCIX Ecc status register */
3413 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3414
303bcb4b
K
3415 /* Clearing PCI_STATUS error reflected here */
3416 writeq(BIT(62), &bar0->txpic_int_reg);
3417 }
5e25b9dd 3418
20346722
K
3419 /* Reset device statistics maintained by OS */
3420 memset(&sp->stats, 0, sizeof (struct net_device_stats));
491976b2
SH
3421
3422 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3423 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3424 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3425 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3426 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3427 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3428 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3429 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3430 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3431 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3432 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3433 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3434 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3435 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3436 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3437 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3438 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3439 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3440 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3441
1da177e4
LT
3442 /* SXE-002: Configure link and activity LED to turn it off */
3443 subid = sp->pdev->subsystem_device;
541ae68f
K
3444 if (((subid & 0xFF) >= 0x07) &&
3445 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3446 val64 = readq(&bar0->gpio_control);
3447 val64 |= 0x0000800000000000ULL;
3448 writeq(val64, &bar0->gpio_control);
3449 val64 = 0x0411040400000000ULL;
509a2671 3450 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3451 }
3452
541ae68f
K
3453 /*
3454 * Clear spurious ECC interrupts that would have occured on
3455 * XFRAME II cards after reset.
3456 */
3457 if (sp->device_type == XFRAME_II_DEVICE) {
3458 val64 = readq(&bar0->pcc_err_reg);
3459 writeq(val64, &bar0->pcc_err_reg);
3460 }
3461
d8d70caf
SS
3462 /* restore the previously assigned mac address */
3463 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3464
1da177e4
LT
3465 sp->device_enabled_once = FALSE;
3466}
3467
3468/**
20346722
K
3469 * s2io_set_swapper - to set the swapper controle on the card
3470 * @sp : private member of the device structure,
1da177e4 3471 * pointer to the s2io_nic structure.
20346722 3472 * Description: Function to set the swapper control on the card
1da177e4
LT
3473 * correctly depending on the 'endianness' of the system.
3474 * Return value:
3475 * SUCCESS on success and FAILURE on failure.
3476 */
3477
1ee6dd77 3478static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3479{
3480 struct net_device *dev = sp->dev;
1ee6dd77 3481 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3482 u64 val64, valt, valr;
3483
20346722 3484 /*
1da177e4
LT
3485 * Set proper endian settings and verify the same by reading
3486 * the PIF Feed-back register.
3487 */
3488
3489 val64 = readq(&bar0->pif_rd_swapper_fb);
3490 if (val64 != 0x0123456789ABCDEFULL) {
3491 int i = 0;
3492 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3493 0x8100008181000081ULL, /* FE=1, SE=0 */
3494 0x4200004242000042ULL, /* FE=0, SE=1 */
3495 0}; /* FE=0, SE=0 */
3496
3497 while(i<4) {
3498 writeq(value[i], &bar0->swapper_ctrl);
3499 val64 = readq(&bar0->pif_rd_swapper_fb);
3500 if (val64 == 0x0123456789ABCDEFULL)
3501 break;
3502 i++;
3503 }
3504 if (i == 4) {
3505 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3506 dev->name);
3507 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3508 (unsigned long long) val64);
3509 return FAILURE;
3510 }
3511 valr = value[i];
3512 } else {
3513 valr = readq(&bar0->swapper_ctrl);
3514 }
3515
3516 valt = 0x0123456789ABCDEFULL;
3517 writeq(valt, &bar0->xmsi_address);
3518 val64 = readq(&bar0->xmsi_address);
3519
3520 if(val64 != valt) {
3521 int i = 0;
3522 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3523 0x0081810000818100ULL, /* FE=1, SE=0 */
3524 0x0042420000424200ULL, /* FE=0, SE=1 */
3525 0}; /* FE=0, SE=0 */
3526
3527 while(i<4) {
3528 writeq((value[i] | valr), &bar0->swapper_ctrl);
3529 writeq(valt, &bar0->xmsi_address);
3530 val64 = readq(&bar0->xmsi_address);
3531 if(val64 == valt)
3532 break;
3533 i++;
3534 }
3535 if(i == 4) {
20346722 3536 unsigned long long x = val64;
1da177e4 3537 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3538 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3539 return FAILURE;
3540 }
3541 }
3542 val64 = readq(&bar0->swapper_ctrl);
3543 val64 &= 0xFFFF000000000000ULL;
3544
3545#ifdef __BIG_ENDIAN
20346722
K
3546 /*
3547 * The device by default set to a big endian format, so a
1da177e4
LT
3548 * big endian driver need not set anything.
3549 */
3550 val64 |= (SWAPPER_CTRL_TXP_FE |
3551 SWAPPER_CTRL_TXP_SE |
3552 SWAPPER_CTRL_TXD_R_FE |
3553 SWAPPER_CTRL_TXD_W_FE |
3554 SWAPPER_CTRL_TXF_R_FE |
3555 SWAPPER_CTRL_RXD_R_FE |
3556 SWAPPER_CTRL_RXD_W_FE |
3557 SWAPPER_CTRL_RXF_W_FE |
3558 SWAPPER_CTRL_XMSI_FE |
1da177e4 3559 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3560 if (sp->intr_type == INTA)
cc6e7c44 3561 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3562 writeq(val64, &bar0->swapper_ctrl);
3563#else
20346722 3564 /*
1da177e4 3565 * Initially we enable all bits to make it accessible by the
20346722 3566 * driver, then we selectively enable only those bits that
1da177e4
LT
3567 * we want to set.
3568 */
3569 val64 |= (SWAPPER_CTRL_TXP_FE |
3570 SWAPPER_CTRL_TXP_SE |
3571 SWAPPER_CTRL_TXD_R_FE |
3572 SWAPPER_CTRL_TXD_R_SE |
3573 SWAPPER_CTRL_TXD_W_FE |
3574 SWAPPER_CTRL_TXD_W_SE |
3575 SWAPPER_CTRL_TXF_R_FE |
3576 SWAPPER_CTRL_RXD_R_FE |
3577 SWAPPER_CTRL_RXD_R_SE |
3578 SWAPPER_CTRL_RXD_W_FE |
3579 SWAPPER_CTRL_RXD_W_SE |
3580 SWAPPER_CTRL_RXF_W_FE |
3581 SWAPPER_CTRL_XMSI_FE |
1da177e4 3582 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3583 if (sp->intr_type == INTA)
3584 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3585 writeq(val64, &bar0->swapper_ctrl);
3586#endif
3587 val64 = readq(&bar0->swapper_ctrl);
3588
20346722
K
3589 /*
3590 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3591 * feedback register.
3592 */
3593 val64 = readq(&bar0->pif_rd_swapper_fb);
3594 if (val64 != 0x0123456789ABCDEFULL) {
3595 /* Endian settings are incorrect, calls for another dekko. */
3596 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3597 dev->name);
3598 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3599 (unsigned long long) val64);
3600 return FAILURE;
3601 }
3602
3603 return SUCCESS;
3604}
3605
1ee6dd77 3606static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3607{
1ee6dd77 3608 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3609 u64 val64;
3610 int ret = 0, cnt = 0;
3611
3612 do {
3613 val64 = readq(&bar0->xmsi_access);
3614 if (!(val64 & BIT(15)))
3615 break;
3616 mdelay(1);
3617 cnt++;
3618 } while(cnt < 5);
3619 if (cnt == 5) {
3620 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3621 ret = 1;
3622 }
3623
3624 return ret;
3625}
3626
1ee6dd77 3627static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3628{
1ee6dd77 3629 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3630 u64 val64;
3631 int i;
3632
75c30b13 3633 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3634 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3635 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3636 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3637 writeq(val64, &bar0->xmsi_access);
3638 if (wait_for_msix_trans(nic, i)) {
3639 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3640 continue;
3641 }
3642 }
3643}
3644
1ee6dd77 3645static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3646{
1ee6dd77 3647 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3648 u64 val64, addr, data;
3649 int i;
3650
3651 /* Store and display */
75c30b13 3652 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3653 val64 = (BIT(15) | vBIT(i, 26, 6));
3654 writeq(val64, &bar0->xmsi_access);
3655 if (wait_for_msix_trans(nic, i)) {
3656 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3657 continue;
3658 }
3659 addr = readq(&bar0->xmsi_address);
3660 data = readq(&bar0->xmsi_data);
3661 if (addr && data) {
3662 nic->msix_info[i].addr = addr;
3663 nic->msix_info[i].data = data;
3664 }
3665 }
3666}
3667
1ee6dd77 3668static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3669{
1ee6dd77 3670 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3671 u64 tx_mat, rx_mat;
3672 u16 msi_control; /* Temp variable */
3673 int ret, i, j, msix_indx = 1;
3674
3675 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3676 GFP_KERNEL);
3677 if (nic->entries == NULL) {
491976b2
SH
3678 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3679 __FUNCTION__);
c53d4945 3680 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3681 return -ENOMEM;
3682 }
491976b2
SH
3683 nic->mac_control.stats_info->sw_stat.mem_allocated
3684 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3685 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3686
3687 nic->s2io_entries =
3688 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3689 GFP_KERNEL);
3690 if (nic->s2io_entries == NULL) {
491976b2
SH
3691 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3692 __FUNCTION__);
c53d4945 3693 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3694 kfree(nic->entries);
491976b2
SH
3695 nic->mac_control.stats_info->sw_stat.mem_freed
3696 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44
RA
3697 return -ENOMEM;
3698 }
491976b2
SH
3699 nic->mac_control.stats_info->sw_stat.mem_allocated
3700 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3701 memset(nic->s2io_entries, 0,
3702 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3703
3704 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3705 nic->entries[i].entry = i;
3706 nic->s2io_entries[i].entry = i;
3707 nic->s2io_entries[i].arg = NULL;
3708 nic->s2io_entries[i].in_use = 0;
3709 }
3710
3711 tx_mat = readq(&bar0->tx_mat0_n[0]);
3712 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3713 tx_mat |= TX_MAT_SET(i, msix_indx);
3714 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3715 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3716 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3717 }
3718 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3719
3720 if (!nic->config.bimodal) {
3721 rx_mat = readq(&bar0->rx_mat);
3722 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3723 rx_mat |= RX_MAT_SET(j, msix_indx);
491976b2
SH
3724 nic->s2io_entries[msix_indx].arg
3725 = &nic->mac_control.rings[j];
cc6e7c44
RA
3726 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3727 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3728 }
3729 writeq(rx_mat, &bar0->rx_mat);
3730 } else {
3731 tx_mat = readq(&bar0->tx_mat0_n[7]);
3732 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3733 tx_mat |= TX_MAT_SET(i, msix_indx);
491976b2
SH
3734 nic->s2io_entries[msix_indx].arg
3735 = &nic->mac_control.rings[j];
cc6e7c44
RA
3736 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3737 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3738 }
3739 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3740 }
3741
c92ca04b 3742 nic->avail_msix_vectors = 0;
cc6e7c44 3743 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3744 /* We fail init if error or we get less vectors than min required */
3745 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3746 nic->avail_msix_vectors = ret;
3747 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3748 }
cc6e7c44
RA
3749 if (ret) {
3750 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3751 kfree(nic->entries);
491976b2
SH
3752 nic->mac_control.stats_info->sw_stat.mem_freed
3753 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
cc6e7c44 3754 kfree(nic->s2io_entries);
491976b2
SH
3755 nic->mac_control.stats_info->sw_stat.mem_freed
3756 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3757 nic->entries = NULL;
3758 nic->s2io_entries = NULL;
c92ca04b 3759 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3760 return -ENOMEM;
3761 }
c92ca04b
AR
3762 if (!nic->avail_msix_vectors)
3763 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3764
3765 /*
3766 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3767 * in the herc NIC. (Temp change, needs to be removed later)
3768 */
3769 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3770 msi_control |= 0x1; /* Enable MSI */
3771 pci_write_config_word(nic->pdev, 0x42, msi_control);
3772
3773 return 0;
3774}
3775
1da177e4
LT
3776/* ********************************************************* *
3777 * Functions defined below concern the OS part of the driver *
3778 * ********************************************************* */
3779
20346722 3780/**
1da177e4
LT
3781 * s2io_open - open entry point of the driver
3782 * @dev : pointer to the device structure.
3783 * Description:
3784 * This function is the open entry point of the driver. It mainly calls a
3785 * function to allocate Rx buffers and inserts them into the buffer
20346722 3786 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3787 * Return value:
3788 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3789 * file on failure.
3790 */
3791
ac1f60db 3792static int s2io_open(struct net_device *dev)
1da177e4 3793{
1ee6dd77 3794 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3795 int err = 0;
3796
20346722
K
3797 /*
3798 * Make sure you have link off by default every time
1da177e4
LT
3799 * Nic is initialized
3800 */
3801 netif_carrier_off(dev);
0b1f7ebe 3802 sp->last_link_state = 0;
1da177e4 3803
bea3348e
SH
3804 napi_enable(&sp->napi);
3805
1da177e4 3806 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3807 err = s2io_card_up(sp);
3808 if (err) {
1da177e4
LT
3809 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3810 dev->name);
e6a8fee2 3811 goto hw_init_failed;
1da177e4
LT
3812 }
3813
3814 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3815 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3816 s2io_card_down(sp);
20346722 3817 err = -ENODEV;
e6a8fee2 3818 goto hw_init_failed;
1da177e4
LT
3819 }
3820
3821 netif_start_queue(dev);
3822 return 0;
20346722 3823
20346722 3824hw_init_failed:
bea3348e 3825 napi_disable(&sp->napi);
cc6e7c44 3826 if (sp->intr_type == MSI_X) {
491976b2 3827 if (sp->entries) {
cc6e7c44 3828 kfree(sp->entries);
491976b2
SH
3829 sp->mac_control.stats_info->sw_stat.mem_freed
3830 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3831 }
3832 if (sp->s2io_entries) {
cc6e7c44 3833 kfree(sp->s2io_entries);
491976b2
SH
3834 sp->mac_control.stats_info->sw_stat.mem_freed
3835 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3836 }
cc6e7c44 3837 }
20346722 3838 return err;
1da177e4
LT
3839}
3840
3841/**
3842 * s2io_close -close entry point of the driver
3843 * @dev : device pointer.
3844 * Description:
3845 * This is the stop entry point of the driver. It needs to undo exactly
3846 * whatever was done by the open entry point,thus it's usually referred to
3847 * as the close function.Among other things this function mainly stops the
3848 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3849 * Return value:
3850 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3851 * file on failure.
3852 */
3853
ac1f60db 3854static int s2io_close(struct net_device *dev)
1da177e4 3855{
1ee6dd77 3856 struct s2io_nic *sp = dev->priv;
cc6e7c44 3857
1da177e4 3858 netif_stop_queue(dev);
bea3348e 3859 napi_disable(&sp->napi);
1da177e4 3860 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3861 s2io_card_down(sp);
cc6e7c44 3862
1da177e4
LT
3863 return 0;
3864}
3865
3866/**
3867 * s2io_xmit - Tx entry point of te driver
3868 * @skb : the socket buffer containing the Tx data.
3869 * @dev : device pointer.
3870 * Description :
3871 * This function is the Tx entry point of the driver. S2IO NIC supports
3872 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3873 * NOTE: when device cant queue the pkt,just the trans_start variable will
3874 * not be upadted.
3875 * Return value:
3876 * 0 on success & 1 on failure.
3877 */
3878
ac1f60db 3879static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3880{
1ee6dd77 3881 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3882 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3883 register u64 val64;
1ee6dd77
RB
3884 struct TxD *txdp;
3885 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3886 unsigned long flags;
be3a6b02
K
3887 u16 vlan_tag = 0;
3888 int vlan_priority = 0;
1ee6dd77 3889 struct mac_info *mac_control;
1da177e4 3890 struct config_param *config;
75c30b13 3891 int offload_type;
491abf25 3892 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3893
3894 mac_control = &sp->mac_control;
3895 config = &sp->config;
3896
20346722 3897 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
3898
3899 if (unlikely(skb->len <= 0)) {
3900 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3901 dev_kfree_skb_any(skb);
3902 return 0;
3903}
3904
1da177e4 3905 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3906 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3907 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3908 dev->name);
3909 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3910 dev_kfree_skb(skb);
3911 return 0;
1da177e4
LT
3912 }
3913
3914 queue = 0;
be3a6b02
K
3915 /* Get Fifo number to Transmit based on vlan priority */
3916 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3917 vlan_tag = vlan_tx_tag_get(skb);
3918 vlan_priority = vlan_tag >> 13;
3919 queue = config->fifo_mapping[vlan_priority];
3920 }
3921
20346722
K
3922 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3923 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 3924 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
3925 list_virt_addr;
3926
3927 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3928 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3929 if (txdp->Host_Control ||
3930 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3931 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3932 netif_stop_queue(dev);
3933 dev_kfree_skb(skb);
3934 spin_unlock_irqrestore(&sp->tx_lock, flags);
3935 return 0;
3936 }
0b1f7ebe 3937
75c30b13 3938 offload_type = s2io_offload_type(skb);
75c30b13 3939 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 3940 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 3941 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 3942 }
84fa7933 3943 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
3944 txdp->Control_2 |=
3945 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3946 TXD_TX_CKO_UDP_EN);
3947 }
fed5eccd
AR
3948 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3949 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3950 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3951
be3a6b02
K
3952 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3953 txdp->Control_2 |= TXD_VLAN_ENABLE;
3954 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3955 }
3956
fed5eccd 3957 frg_len = skb->len - skb->data_len;
75c30b13 3958 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
3959 int ufo_size;
3960
75c30b13 3961 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
3962 ufo_size &= ~7;
3963 txdp->Control_1 |= TXD_UFO_EN;
3964 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3965 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3966#ifdef __BIG_ENDIAN
3967 sp->ufo_in_band_v[put_off] =
3968 (u64)skb_shinfo(skb)->ip6_frag_id;
3969#else
3970 sp->ufo_in_band_v[put_off] =
3971 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3972#endif
3973 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3974 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3975 sp->ufo_in_band_v,
3976 sizeof(u64), PCI_DMA_TODEVICE);
491abf25
VP
3977 if((txdp->Buffer_Pointer == 0) ||
3978 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3979 goto pci_map_failed;
fed5eccd 3980 txdp++;
fed5eccd 3981 }
1da177e4 3982
fed5eccd
AR
3983 txdp->Buffer_Pointer = pci_map_single
3984 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
491abf25
VP
3985 if((txdp->Buffer_Pointer == 0) ||
3986 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3987 goto pci_map_failed;
3988
fed5eccd
AR
3989 txdp->Host_Control = (unsigned long) skb;
3990 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 3991 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3992 txdp->Control_1 |= TXD_UFO_EN;
3993
3994 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3995 /* For fragmented SKB. */
3996 for (i = 0; i < frg_cnt; i++) {
3997 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3998 /* A '0' length fragment will be ignored */
3999 if (!frag->size)
4000 continue;
1da177e4
LT
4001 txdp++;
4002 txdp->Buffer_Pointer = (u64) pci_map_page
4003 (sp->pdev, frag->page, frag->page_offset,
4004 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4005 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4006 if (offload_type == SKB_GSO_UDP)
fed5eccd 4007 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4008 }
4009 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4010
75c30b13 4011 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4012 frg_cnt++; /* as Txd0 was used for inband header */
4013
1da177e4 4014 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 4015 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
4016 writeq(val64, &tx_fifo->TxDL_Pointer);
4017
4018 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4019 TX_FIFO_LAST_LIST);
75c30b13 4020 if (offload_type)
fed5eccd 4021 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4022
1da177e4
LT
4023 writeq(val64, &tx_fifo->List_Control);
4024
303bcb4b
K
4025 mmiowb();
4026
1da177e4 4027 put_off++;
863c11a9
AR
4028 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4029 put_off = 0;
20346722 4030 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4031
4032 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4033 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4034 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4035 DBG_PRINT(TX_DBG,
4036 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4037 put_off, get_off);
4038 netif_stop_queue(dev);
4039 }
491976b2 4040 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4
LT
4041 dev->trans_start = jiffies;
4042 spin_unlock_irqrestore(&sp->tx_lock, flags);
4043
491abf25
VP
4044 return 0;
4045pci_map_failed:
4046 stats->pci_map_fail_cnt++;
4047 netif_stop_queue(dev);
4048 stats->mem_freed += skb->truesize;
4049 dev_kfree_skb(skb);
4050 spin_unlock_irqrestore(&sp->tx_lock, flags);
1da177e4
LT
4051 return 0;
4052}
4053
25fff88e
K
4054static void
4055s2io_alarm_handle(unsigned long data)
4056{
1ee6dd77 4057 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e
K
4058
4059 alarm_intr_handler(sp);
4060 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4061}
4062
1ee6dd77 4063static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4064{
4065 int rxb_size, level;
4066
4067 if (!sp->lro) {
4068 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4069 level = rx_buffer_level(sp, rxb_size, rng_n);
4070
4071 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4072 int ret;
4073 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4074 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4075 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
0c61ed5f 4076 DBG_PRINT(INFO_DBG, "Out of memory in %s",
75c30b13
AR
4077 __FUNCTION__);
4078 clear_bit(0, (&sp->tasklet_status));
4079 return -1;
4080 }
4081 clear_bit(0, (&sp->tasklet_status));
4082 } else if (level == LOW)
4083 tasklet_schedule(&sp->task);
4084
4085 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
0c61ed5f
RV
4086 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4087 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
75c30b13
AR
4088 }
4089 return 0;
4090}
4091
7d12e780 4092static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4093{
1ee6dd77
RB
4094 struct ring_info *ring = (struct ring_info *)dev_id;
4095 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4096
4097 atomic_inc(&sp->isr_cnt);
cc6e7c44 4098
75c30b13
AR
4099 rx_intr_handler(ring);
4100 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4101
cc6e7c44 4102 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4103 return IRQ_HANDLED;
4104}
4105
7d12e780 4106static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4107{
1ee6dd77
RB
4108 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4109 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4110
4111 atomic_inc(&sp->isr_cnt);
4112 tx_intr_handler(fifo);
4113 atomic_dec(&sp->isr_cnt);
4114 return IRQ_HANDLED;
4115}
1ee6dd77 4116static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4117{
1ee6dd77 4118 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4119 u64 val64;
4120
4121 val64 = readq(&bar0->pic_int_status);
4122 if (val64 & PIC_INT_GPIO) {
4123 val64 = readq(&bar0->gpio_int_reg);
4124 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4125 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4126 /*
4127 * This is unstable state so clear both up/down
4128 * interrupt and adapter to re-evaluate the link state.
4129 */
a371a07d
K
4130 val64 |= GPIO_INT_REG_LINK_DOWN;
4131 val64 |= GPIO_INT_REG_LINK_UP;
4132 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4133 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4134 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4135 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4136 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4137 }
c92ca04b
AR
4138 else if (val64 & GPIO_INT_REG_LINK_UP) {
4139 val64 = readq(&bar0->adapter_status);
c92ca04b 4140 /* Enable Adapter */
19a60522
SS
4141 val64 = readq(&bar0->adapter_control);
4142 val64 |= ADAPTER_CNTL_EN;
4143 writeq(val64, &bar0->adapter_control);
4144 val64 |= ADAPTER_LED_ON;
4145 writeq(val64, &bar0->adapter_control);
4146 if (!sp->device_enabled_once)
4147 sp->device_enabled_once = 1;
c92ca04b 4148
19a60522
SS
4149 s2io_link(sp, LINK_UP);
4150 /*
4151 * unmask link down interrupt and mask link-up
4152 * intr
4153 */
4154 val64 = readq(&bar0->gpio_int_mask);
4155 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4156 val64 |= GPIO_INT_MASK_LINK_UP;
4157 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4158
c92ca04b
AR
4159 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4160 val64 = readq(&bar0->adapter_status);
19a60522
SS
4161 s2io_link(sp, LINK_DOWN);
4162 /* Link is down so unmaks link up interrupt */
4163 val64 = readq(&bar0->gpio_int_mask);
4164 val64 &= ~GPIO_INT_MASK_LINK_UP;
4165 val64 |= GPIO_INT_MASK_LINK_DOWN;
4166 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4167
4168 /* turn off LED */
4169 val64 = readq(&bar0->adapter_control);
4170 val64 = val64 &(~ADAPTER_LED_ON);
4171 writeq(val64, &bar0->adapter_control);
a371a07d
K
4172 }
4173 }
c92ca04b 4174 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4175}
4176
1da177e4
LT
4177/**
4178 * s2io_isr - ISR handler of the device .
4179 * @irq: the irq of the device.
4180 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4181 * Description: This function is the ISR handler of the device. It
4182 * identifies the reason for the interrupt and calls the relevant
4183 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4184 * recv buffers, if their numbers are below the panic value which is
4185 * presently set to 25% of the original number of rcv buffers allocated.
4186 * Return value:
20346722 4187 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4188 * IRQ_NONE: will be returned if interrupt is not from our device
4189 */
7d12e780 4190static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4191{
4192 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4193 struct s2io_nic *sp = dev->priv;
4194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4195 int i;
19a60522 4196 u64 reason = 0;
1ee6dd77 4197 struct mac_info *mac_control;
1da177e4
LT
4198 struct config_param *config;
4199
d796fdb7
LV
4200 /* Pretend we handled any irq's from a disconnected card */
4201 if (pci_channel_offline(sp->pdev))
4202 return IRQ_NONE;
4203
7ba013ac 4204 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4205 mac_control = &sp->mac_control;
4206 config = &sp->config;
4207
20346722 4208 /*
1da177e4
LT
4209 * Identify the cause for interrupt and call the appropriate
4210 * interrupt handler. Causes for the interrupt could be;
4211 * 1. Rx of packet.
4212 * 2. Tx complete.
4213 * 3. Link down.
20346722 4214 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4215 */
4216 reason = readq(&bar0->general_int_status);
4217
4218 if (!reason) {
19a60522
SS
4219 /* The interrupt was not raised by us. */
4220 atomic_dec(&sp->isr_cnt);
4221 return IRQ_NONE;
4222 }
4223 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4224 /* Disable device and get out */
7ba013ac 4225 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4226 return IRQ_NONE;
4227 }
5d3213cc 4228
db874e65
SS
4229 if (napi) {
4230 if (reason & GEN_INTR_RXTRAFFIC) {
bea3348e
SH
4231 if (likely (netif_rx_schedule_prep(dev, &sp->napi))) {
4232 __netif_rx_schedule(dev, &sp->napi);
19a60522 4233 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4234 }
19a60522
SS
4235 else
4236 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4237 }
4238 } else {
4239 /*
4240 * Rx handler is called by default, without checking for the
4241 * cause of interrupt.
4242 * rx_traffic_int reg is an R1 register, writing all 1's
4243 * will ensure that the actual interrupt causing bit get's
4244 * cleared and hence a read can be avoided.
4245 */
19a60522
SS
4246 if (reason & GEN_INTR_RXTRAFFIC)
4247 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4248
db874e65
SS
4249 for (i = 0; i < config->rx_ring_num; i++) {
4250 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4251 }
4252 }
1da177e4 4253
863c11a9
AR
4254 /*
4255 * tx_traffic_int reg is an R1 register, writing all 1's
4256 * will ensure that the actual interrupt causing bit get's
4257 * cleared and hence a read can be avoided.
4258 */
19a60522
SS
4259 if (reason & GEN_INTR_TXTRAFFIC)
4260 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4261
863c11a9
AR
4262 for (i = 0; i < config->tx_fifo_num; i++)
4263 tx_intr_handler(&mac_control->fifos[i]);
20346722 4264
a371a07d
K
4265 if (reason & GEN_INTR_TXPIC)
4266 s2io_txpic_intr_handle(sp);
20346722
K
4267 /*
4268 * If the Rx buffer count is below the panic threshold then
4269 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4270 * else schedule a tasklet to reallocate the buffers.
4271 */
db874e65
SS
4272 if (!napi) {
4273 for (i = 0; i < config->rx_ring_num; i++)
4274 s2io_chk_rx_buffers(sp, i);
4275 }
4276
4277 writeq(0, &bar0->general_int_mask);
4278 readl(&bar0->general_int_status);
4279
7ba013ac 4280 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4281 return IRQ_HANDLED;
4282}
4283
7ba013ac
K
4284/**
4285 * s2io_updt_stats -
4286 */
1ee6dd77 4287static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4288{
1ee6dd77 4289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4290 u64 val64;
4291 int cnt = 0;
4292
4293 if (atomic_read(&sp->card_state) == CARD_UP) {
4294 /* Apprx 30us on a 133 MHz bus */
4295 val64 = SET_UPDT_CLICKS(10) |
4296 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4297 writeq(val64, &bar0->stat_cfg);
4298 do {
4299 udelay(100);
4300 val64 = readq(&bar0->stat_cfg);
4301 if (!(val64 & BIT(0)))
4302 break;
4303 cnt++;
4304 if (cnt == 5)
4305 break; /* Updt failed */
4306 } while(1);
363dc367 4307 }
7ba013ac
K
4308}
4309
1da177e4 4310/**
20346722 4311 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4312 * @dev : pointer to the device structure.
4313 * Description:
20346722 4314 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4315 * structure and returns a pointer to the same.
4316 * Return value:
4317 * pointer to the updated net_device_stats structure.
4318 */
4319
ac1f60db 4320static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4321{
1ee6dd77
RB
4322 struct s2io_nic *sp = dev->priv;
4323 struct mac_info *mac_control;
1da177e4
LT
4324 struct config_param *config;
4325
20346722 4326
1da177e4
LT
4327 mac_control = &sp->mac_control;
4328 config = &sp->config;
4329
7ba013ac
K
4330 /* Configure Stats for immediate updt */
4331 s2io_updt_stats(sp);
4332
4333 sp->stats.tx_packets =
4334 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4335 sp->stats.tx_errors =
4336 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4337 sp->stats.rx_errors =
ee705dba 4338 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4339 sp->stats.multicast =
4340 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4341 sp->stats.rx_length_errors =
ee705dba 4342 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4343
4344 return (&sp->stats);
4345}
4346
4347/**
4348 * s2io_set_multicast - entry point for multicast address enable/disable.
4349 * @dev : pointer to the device structure
4350 * Description:
20346722
K
4351 * This function is a driver entry point which gets called by the kernel
4352 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4353 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4354 * determine, if multicast address must be enabled or if promiscuous mode
4355 * is to be disabled etc.
4356 * Return value:
4357 * void.
4358 */
4359
4360static void s2io_set_multicast(struct net_device *dev)
4361{
4362 int i, j, prev_cnt;
4363 struct dev_mc_list *mclist;
1ee6dd77
RB
4364 struct s2io_nic *sp = dev->priv;
4365 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4366 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4367 0xfeffffffffffULL;
4368 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4369 void __iomem *add;
4370
4371 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4372 /* Enable all Multicast addresses */
4373 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4374 &bar0->rmac_addr_data0_mem);
4375 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4376 &bar0->rmac_addr_data1_mem);
4377 val64 = RMAC_ADDR_CMD_MEM_WE |
4378 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4379 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4380 writeq(val64, &bar0->rmac_addr_cmd_mem);
4381 /* Wait till command completes */
c92ca04b 4382 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4383 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4384 S2IO_BIT_RESET);
1da177e4
LT
4385
4386 sp->m_cast_flg = 1;
4387 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4388 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4389 /* Disable all Multicast addresses */
4390 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4391 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4392 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4393 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4394 val64 = RMAC_ADDR_CMD_MEM_WE |
4395 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4396 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4397 writeq(val64, &bar0->rmac_addr_cmd_mem);
4398 /* Wait till command completes */
c92ca04b 4399 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4400 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4401 S2IO_BIT_RESET);
1da177e4
LT
4402
4403 sp->m_cast_flg = 0;
4404 sp->all_multi_pos = 0;
4405 }
4406
4407 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4408 /* Put the NIC into promiscuous mode */
4409 add = &bar0->mac_cfg;
4410 val64 = readq(&bar0->mac_cfg);
4411 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4412
4413 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4414 writel((u32) val64, add);
4415 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4416 writel((u32) (val64 >> 32), (add + 4));
4417
926930b2
SS
4418 if (vlan_tag_strip != 1) {
4419 val64 = readq(&bar0->rx_pa_cfg);
4420 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4421 writeq(val64, &bar0->rx_pa_cfg);
4422 vlan_strip_flag = 0;
4423 }
4424
1da177e4
LT
4425 val64 = readq(&bar0->mac_cfg);
4426 sp->promisc_flg = 1;
776bd20f 4427 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4428 dev->name);
4429 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4430 /* Remove the NIC from promiscuous mode */
4431 add = &bar0->mac_cfg;
4432 val64 = readq(&bar0->mac_cfg);
4433 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4434
4435 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4436 writel((u32) val64, add);
4437 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4438 writel((u32) (val64 >> 32), (add + 4));
4439
926930b2
SS
4440 if (vlan_tag_strip != 0) {
4441 val64 = readq(&bar0->rx_pa_cfg);
4442 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4443 writeq(val64, &bar0->rx_pa_cfg);
4444 vlan_strip_flag = 1;
4445 }
4446
1da177e4
LT
4447 val64 = readq(&bar0->mac_cfg);
4448 sp->promisc_flg = 0;
776bd20f 4449 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4450 dev->name);
4451 }
4452
4453 /* Update individual M_CAST address list */
4454 if ((!sp->m_cast_flg) && dev->mc_count) {
4455 if (dev->mc_count >
4456 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4457 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4458 dev->name);
4459 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4460 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4461 return;
4462 }
4463
4464 prev_cnt = sp->mc_addr_count;
4465 sp->mc_addr_count = dev->mc_count;
4466
4467 /* Clear out the previous list of Mc in the H/W. */
4468 for (i = 0; i < prev_cnt; i++) {
4469 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4470 &bar0->rmac_addr_data0_mem);
4471 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4472 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4473 val64 = RMAC_ADDR_CMD_MEM_WE |
4474 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4475 RMAC_ADDR_CMD_MEM_OFFSET
4476 (MAC_MC_ADDR_START_OFFSET + i);
4477 writeq(val64, &bar0->rmac_addr_cmd_mem);
4478
4479 /* Wait for command completes */
c92ca04b 4480 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4481 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4482 S2IO_BIT_RESET)) {
1da177e4
LT
4483 DBG_PRINT(ERR_DBG, "%s: Adding ",
4484 dev->name);
4485 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4486 return;
4487 }
4488 }
4489
4490 /* Create the new Rx filter list and update the same in H/W. */
4491 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4492 i++, mclist = mclist->next) {
4493 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4494 ETH_ALEN);
a7a80d5a 4495 mac_addr = 0;
1da177e4
LT
4496 for (j = 0; j < ETH_ALEN; j++) {
4497 mac_addr |= mclist->dmi_addr[j];
4498 mac_addr <<= 8;
4499 }
4500 mac_addr >>= 8;
4501 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4502 &bar0->rmac_addr_data0_mem);
4503 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4504 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4505 val64 = RMAC_ADDR_CMD_MEM_WE |
4506 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4507 RMAC_ADDR_CMD_MEM_OFFSET
4508 (i + MAC_MC_ADDR_START_OFFSET);
4509 writeq(val64, &bar0->rmac_addr_cmd_mem);
4510
4511 /* Wait for command completes */
c92ca04b 4512 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4513 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4514 S2IO_BIT_RESET)) {
1da177e4
LT
4515 DBG_PRINT(ERR_DBG, "%s: Adding ",
4516 dev->name);
4517 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4518 return;
4519 }
4520 }
4521 }
4522}
4523
4524/**
20346722 4525 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4526 * @dev : pointer to the device structure.
4527 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4528 * Description : This procedure will program the Xframe to receive
1da177e4 4529 * frames with new Mac Address
20346722 4530 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4531 * as defined in errno.h file on failure.
4532 */
4533
26df54bf 4534static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4535{
1ee6dd77
RB
4536 struct s2io_nic *sp = dev->priv;
4537 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4538 register u64 val64, mac_addr = 0;
4539 int i;
d8d70caf 4540 u64 old_mac_addr = 0;
1da177e4 4541
20346722 4542 /*
1da177e4
LT
4543 * Set the new MAC address as the new unicast filter and reflect this
4544 * change on the device address registered with the OS. It will be
20346722 4545 * at offset 0.
1da177e4
LT
4546 */
4547 for (i = 0; i < ETH_ALEN; i++) {
4548 mac_addr <<= 8;
4549 mac_addr |= addr[i];
d8d70caf
SS
4550 old_mac_addr <<= 8;
4551 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4552 }
4553
4554 if(0 == mac_addr)
4555 return SUCCESS;
4556
4557 /* Update the internal structure with this new mac address */
4558 if(mac_addr != old_mac_addr) {
4559 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4560 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4561 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4562 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4563 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4564 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4565 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4566 }
4567
4568 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4569 &bar0->rmac_addr_data0_mem);
4570
4571 val64 =
4572 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4573 RMAC_ADDR_CMD_MEM_OFFSET(0);
4574 writeq(val64, &bar0->rmac_addr_cmd_mem);
4575 /* Wait till command completes */
c92ca04b 4576 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4577 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4578 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4579 return FAILURE;
4580 }
4581
4582 return SUCCESS;
4583}
4584
4585/**
20346722 4586 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4587 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4588 * @info: pointer to the structure with parameters given by ethtool to set
4589 * link information.
4590 * Description:
20346722 4591 * The function sets different link parameters provided by the user onto
1da177e4
LT
4592 * the NIC.
4593 * Return value:
4594 * 0 on success.
4595*/
4596
4597static int s2io_ethtool_sset(struct net_device *dev,
4598 struct ethtool_cmd *info)
4599{
1ee6dd77 4600 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4601 if ((info->autoneg == AUTONEG_ENABLE) ||
4602 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4603 return -EINVAL;
4604 else {
4605 s2io_close(sp->dev);
4606 s2io_open(sp->dev);
4607 }
4608
4609 return 0;
4610}
4611
4612/**
20346722 4613 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4614 * @sp : private member of the device structure, pointer to the
4615 * s2io_nic structure.
4616 * @info : pointer to the structure with parameters given by ethtool
4617 * to return link information.
4618 * Description:
4619 * Returns link specific information like speed, duplex etc.. to ethtool.
4620 * Return value :
4621 * return 0 on success.
4622 */
4623
4624static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4625{
1ee6dd77 4626 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4627 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4628 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4629 info->port = PORT_FIBRE;
4630 /* info->transceiver?? TODO */
4631
4632 if (netif_carrier_ok(sp->dev)) {
4633 info->speed = 10000;
4634 info->duplex = DUPLEX_FULL;
4635 } else {
4636 info->speed = -1;
4637 info->duplex = -1;
4638 }
4639
4640 info->autoneg = AUTONEG_DISABLE;
4641 return 0;
4642}
4643
4644/**
20346722
K
4645 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4646 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4647 * s2io_nic structure.
4648 * @info : pointer to the structure with parameters given by ethtool to
4649 * return driver information.
4650 * Description:
4651 * Returns driver specefic information like name, version etc.. to ethtool.
4652 * Return value:
4653 * void
4654 */
4655
4656static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4657 struct ethtool_drvinfo *info)
4658{
1ee6dd77 4659 struct s2io_nic *sp = dev->priv;
1da177e4 4660
dbc2309d
JL
4661 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4662 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4663 strncpy(info->fw_version, "", sizeof(info->fw_version));
4664 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4665 info->regdump_len = XENA_REG_SPACE;
4666 info->eedump_len = XENA_EEPROM_SPACE;
4667 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
4668
4669 if (sp->device_type == XFRAME_I_DEVICE)
4670 info->n_stats = XFRAME_I_STAT_LEN;
4671 else
4672 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
4673}
4674
4675/**
4676 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4677 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4678 * s2io_nic structure.
20346722 4679 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4680 * dumping the registers.
4681 * @reg_space: The input argumnet into which all the registers are dumped.
4682 * Description:
4683 * Dumps the entire register space of xFrame NIC into the user given
4684 * buffer area.
4685 * Return value :
4686 * void .
4687*/
4688
4689static void s2io_ethtool_gregs(struct net_device *dev,
4690 struct ethtool_regs *regs, void *space)
4691{
4692 int i;
4693 u64 reg;
4694 u8 *reg_space = (u8 *) space;
1ee6dd77 4695 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4696
4697 regs->len = XENA_REG_SPACE;
4698 regs->version = sp->pdev->subsystem_device;
4699
4700 for (i = 0; i < regs->len; i += 8) {
4701 reg = readq(sp->bar0 + i);
4702 memcpy((reg_space + i), &reg, 8);
4703 }
4704}
4705
4706/**
4707 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4708 * @data : address of the private member of the device structure, which
1da177e4 4709 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4710 * Description: This is actually the timer function that alternates the
4711 * adapter LED bit of the adapter control bit to set/reset every time on
4712 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4713 * once every second.
4714*/
4715static void s2io_phy_id(unsigned long data)
4716{
1ee6dd77
RB
4717 struct s2io_nic *sp = (struct s2io_nic *) data;
4718 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4719 u64 val64 = 0;
4720 u16 subid;
4721
4722 subid = sp->pdev->subsystem_device;
541ae68f
K
4723 if ((sp->device_type == XFRAME_II_DEVICE) ||
4724 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4725 val64 = readq(&bar0->gpio_control);
4726 val64 ^= GPIO_CTRL_GPIO_0;
4727 writeq(val64, &bar0->gpio_control);
4728 } else {
4729 val64 = readq(&bar0->adapter_control);
4730 val64 ^= ADAPTER_LED_ON;
4731 writeq(val64, &bar0->adapter_control);
4732 }
4733
4734 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4735}
4736
4737/**
4738 * s2io_ethtool_idnic - To physically identify the nic on the system.
4739 * @sp : private member of the device structure, which is a pointer to the
4740 * s2io_nic structure.
20346722 4741 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4742 * ethtool.
4743 * Description: Used to physically identify the NIC on the system.
20346722 4744 * The Link LED will blink for a time specified by the user for
1da177e4 4745 * identification.
20346722 4746 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4747 * identification is possible only if it's link is up.
4748 * Return value:
4749 * int , returns 0 on success
4750 */
4751
4752static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4753{
4754 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4755 struct s2io_nic *sp = dev->priv;
4756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4757 u16 subid;
4758
4759 subid = sp->pdev->subsystem_device;
4760 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4761 if ((sp->device_type == XFRAME_I_DEVICE) &&
4762 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4763 val64 = readq(&bar0->adapter_control);
4764 if (!(val64 & ADAPTER_CNTL_EN)) {
4765 printk(KERN_ERR
4766 "Adapter Link down, cannot blink LED\n");
4767 return -EFAULT;
4768 }
4769 }
4770 if (sp->id_timer.function == NULL) {
4771 init_timer(&sp->id_timer);
4772 sp->id_timer.function = s2io_phy_id;
4773 sp->id_timer.data = (unsigned long) sp;
4774 }
4775 mod_timer(&sp->id_timer, jiffies);
4776 if (data)
20346722 4777 msleep_interruptible(data * HZ);
1da177e4 4778 else
20346722 4779 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4780 del_timer_sync(&sp->id_timer);
4781
541ae68f 4782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4783 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4784 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4785 }
4786
4787 return 0;
4788}
4789
0cec35eb
SH
4790static void s2io_ethtool_gringparam(struct net_device *dev,
4791 struct ethtool_ringparam *ering)
4792{
4793 struct s2io_nic *sp = dev->priv;
4794 int i,tx_desc_count=0,rx_desc_count=0;
4795
4796 if (sp->rxd_mode == RXD_MODE_1)
4797 ering->rx_max_pending = MAX_RX_DESC_1;
4798 else if (sp->rxd_mode == RXD_MODE_3B)
4799 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
4800
4801 ering->tx_max_pending = MAX_TX_DESC;
b6627672 4802 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 4803 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
b6627672 4804
0cec35eb
SH
4805 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4806 ering->tx_pending = tx_desc_count;
4807 rx_desc_count = 0;
b6627672 4808 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 4809 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 4810
0cec35eb
SH
4811 ering->rx_pending = rx_desc_count;
4812
4813 ering->rx_mini_max_pending = 0;
4814 ering->rx_mini_pending = 0;
4815 if(sp->rxd_mode == RXD_MODE_1)
4816 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4817 else if (sp->rxd_mode == RXD_MODE_3B)
4818 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4819 ering->rx_jumbo_pending = rx_desc_count;
4820}
4821
1da177e4
LT
4822/**
4823 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4824 * @sp : private member of the device structure, which is a pointer to the
4825 * s2io_nic structure.
1da177e4
LT
4826 * @ep : pointer to the structure with pause parameters given by ethtool.
4827 * Description:
4828 * Returns the Pause frame generation and reception capability of the NIC.
4829 * Return value:
4830 * void
4831 */
4832static void s2io_ethtool_getpause_data(struct net_device *dev,
4833 struct ethtool_pauseparam *ep)
4834{
4835 u64 val64;
1ee6dd77
RB
4836 struct s2io_nic *sp = dev->priv;
4837 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4838
4839 val64 = readq(&bar0->rmac_pause_cfg);
4840 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4841 ep->tx_pause = TRUE;
4842 if (val64 & RMAC_PAUSE_RX_ENABLE)
4843 ep->rx_pause = TRUE;
4844 ep->autoneg = FALSE;
4845}
4846
4847/**
4848 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4849 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4850 * s2io_nic structure.
4851 * @ep : pointer to the structure with pause parameters given by ethtool.
4852 * Description:
4853 * It can be used to set or reset Pause frame generation or reception
4854 * support of the NIC.
4855 * Return value:
4856 * int, returns 0 on Success
4857 */
4858
4859static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4860 struct ethtool_pauseparam *ep)
1da177e4
LT
4861{
4862 u64 val64;
1ee6dd77
RB
4863 struct s2io_nic *sp = dev->priv;
4864 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4865
4866 val64 = readq(&bar0->rmac_pause_cfg);
4867 if (ep->tx_pause)
4868 val64 |= RMAC_PAUSE_GEN_ENABLE;
4869 else
4870 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4871 if (ep->rx_pause)
4872 val64 |= RMAC_PAUSE_RX_ENABLE;
4873 else
4874 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4875 writeq(val64, &bar0->rmac_pause_cfg);
4876 return 0;
4877}
4878
4879/**
4880 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4881 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4882 * s2io_nic structure.
4883 * @off : offset at which the data must be written
4884 * @data : Its an output parameter where the data read at the given
20346722 4885 * offset is stored.
1da177e4 4886 * Description:
20346722 4887 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4888 * read data.
4889 * NOTE: Will allow to read only part of the EEPROM visible through the
4890 * I2C bus.
4891 * Return value:
4892 * -1 on failure and 0 on success.
4893 */
4894
4895#define S2IO_DEV_ID 5
1ee6dd77 4896static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
4897{
4898 int ret = -1;
4899 u32 exit_cnt = 0;
4900 u64 val64;
1ee6dd77 4901 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4902
ad4ebed0 4903 if (sp->device_type == XFRAME_I_DEVICE) {
4904 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4905 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4906 I2C_CONTROL_CNTL_START;
4907 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4908
ad4ebed0 4909 while (exit_cnt < 5) {
4910 val64 = readq(&bar0->i2c_control);
4911 if (I2C_CONTROL_CNTL_END(val64)) {
4912 *data = I2C_CONTROL_GET_DATA(val64);
4913 ret = 0;
4914 break;
4915 }
4916 msleep(50);
4917 exit_cnt++;
1da177e4 4918 }
1da177e4
LT
4919 }
4920
ad4ebed0 4921 if (sp->device_type == XFRAME_II_DEVICE) {
4922 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4923 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 4924 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4925 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4926 val64 |= SPI_CONTROL_REQ;
4927 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4928 while (exit_cnt < 5) {
4929 val64 = readq(&bar0->spi_control);
4930 if (val64 & SPI_CONTROL_NACK) {
4931 ret = 1;
4932 break;
4933 } else if (val64 & SPI_CONTROL_DONE) {
4934 *data = readq(&bar0->spi_data);
4935 *data &= 0xffffff;
4936 ret = 0;
4937 break;
4938 }
4939 msleep(50);
4940 exit_cnt++;
4941 }
4942 }
1da177e4
LT
4943 return ret;
4944}
4945
4946/**
4947 * write_eeprom - actually writes the relevant part of the data value.
4948 * @sp : private member of the device structure, which is a pointer to the
4949 * s2io_nic structure.
4950 * @off : offset at which the data must be written
4951 * @data : The data that is to be written
20346722 4952 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4953 * the Eeprom. (max of 3)
4954 * Description:
4955 * Actually writes the relevant part of the data value into the Eeprom
4956 * through the I2C bus.
4957 * Return value:
4958 * 0 on success, -1 on failure.
4959 */
4960
1ee6dd77 4961static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
4962{
4963 int exit_cnt = 0, ret = -1;
4964 u64 val64;
1ee6dd77 4965 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4966
ad4ebed0 4967 if (sp->device_type == XFRAME_I_DEVICE) {
4968 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4969 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4970 I2C_CONTROL_CNTL_START;
4971 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4972
4973 while (exit_cnt < 5) {
4974 val64 = readq(&bar0->i2c_control);
4975 if (I2C_CONTROL_CNTL_END(val64)) {
4976 if (!(val64 & I2C_CONTROL_NACK))
4977 ret = 0;
4978 break;
4979 }
4980 msleep(50);
4981 exit_cnt++;
4982 }
4983 }
1da177e4 4984
ad4ebed0 4985 if (sp->device_type == XFRAME_II_DEVICE) {
4986 int write_cnt = (cnt == 8) ? 0 : cnt;
4987 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4988
4989 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4990 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 4991 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4992 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4993 val64 |= SPI_CONTROL_REQ;
4994 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4995 while (exit_cnt < 5) {
4996 val64 = readq(&bar0->spi_control);
4997 if (val64 & SPI_CONTROL_NACK) {
4998 ret = 1;
4999 break;
5000 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5001 ret = 0;
ad4ebed0 5002 break;
5003 }
5004 msleep(50);
5005 exit_cnt++;
1da177e4 5006 }
1da177e4 5007 }
1da177e4
LT
5008 return ret;
5009}
1ee6dd77 5010static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5011{
b41477f3
AR
5012 u8 *vpd_data;
5013 u8 data;
9dc737a7
AR
5014 int i=0, cnt, fail = 0;
5015 int vpd_addr = 0x80;
5016
5017 if (nic->device_type == XFRAME_II_DEVICE) {
5018 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5019 vpd_addr = 0x80;
5020 }
5021 else {
5022 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5023 vpd_addr = 0x50;
5024 }
19a60522 5025 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5026
b41477f3 5027 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5028 if (!vpd_data) {
5029 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5030 return;
c53d4945 5031 }
491976b2 5032 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5033
9dc737a7
AR
5034 for (i = 0; i < 256; i +=4 ) {
5035 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5036 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5037 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5038 for (cnt = 0; cnt <5; cnt++) {
5039 msleep(2);
5040 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5041 if (data == 0x80)
5042 break;
5043 }
5044 if (cnt >= 5) {
5045 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5046 fail = 1;
5047 break;
5048 }
5049 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5050 (u32 *)&vpd_data[i]);
5051 }
19a60522
SS
5052
5053 if(!fail) {
5054 /* read serial number of adapter */
5055 for (cnt = 0; cnt < 256; cnt++) {
5056 if ((vpd_data[cnt] == 'S') &&
5057 (vpd_data[cnt+1] == 'N') &&
5058 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5059 memset(nic->serial_num, 0, VPD_STRING_LEN);
5060 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5061 vpd_data[cnt+2]);
5062 break;
5063 }
5064 }
5065 }
5066
5067 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5068 memset(nic->product_name, 0, vpd_data[1]);
5069 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5070 }
b41477f3 5071 kfree(vpd_data);
491976b2 5072 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5073}
5074
1da177e4
LT
5075/**
5076 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5077 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5078 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5079 * containing all relevant information.
5080 * @data_buf : user defined value to be written into Eeprom.
5081 * Description: Reads the values stored in the Eeprom at given offset
5082 * for a given length. Stores these values int the input argument data
5083 * buffer 'data_buf' and returns these to the caller (ethtool.)
5084 * Return value:
5085 * int 0 on success
5086 */
5087
5088static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5089 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5090{
ad4ebed0 5091 u32 i, valid;
5092 u64 data;
1ee6dd77 5093 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5094
5095 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5096
5097 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5098 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5099
5100 for (i = 0; i < eeprom->len; i += 4) {
5101 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5102 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5103 return -EFAULT;
5104 }
5105 valid = INV(data);
5106 memcpy((data_buf + i), &valid, 4);
5107 }
5108 return 0;
5109}
5110
5111/**
5112 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5113 * @sp : private member of the device structure, which is a pointer to the
5114 * s2io_nic structure.
20346722 5115 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5116 * containing all relevant information.
5117 * @data_buf ; user defined value to be written into Eeprom.
5118 * Description:
5119 * Tries to write the user provided value in the Eeprom, at the offset
5120 * given by the user.
5121 * Return value:
5122 * 0 on success, -EFAULT on failure.
5123 */
5124
5125static int s2io_ethtool_seeprom(struct net_device *dev,
5126 struct ethtool_eeprom *eeprom,
5127 u8 * data_buf)
5128{
5129 int len = eeprom->len, cnt = 0;
ad4ebed0 5130 u64 valid = 0, data;
1ee6dd77 5131 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5132
5133 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5134 DBG_PRINT(ERR_DBG,
5135 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5136 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5137 eeprom->magic);
5138 return -EFAULT;
5139 }
5140
5141 while (len) {
5142 data = (u32) data_buf[cnt] & 0x000000FF;
5143 if (data) {
5144 valid = (u32) (data << 24);
5145 } else
5146 valid = data;
5147
5148 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5149 DBG_PRINT(ERR_DBG,
5150 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5151 DBG_PRINT(ERR_DBG,
5152 "write into the specified offset\n");
5153 return -EFAULT;
5154 }
5155 cnt++;
5156 len--;
5157 }
5158
5159 return 0;
5160}
5161
5162/**
20346722
K
5163 * s2io_register_test - reads and writes into all clock domains.
5164 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5165 * s2io_nic structure.
5166 * @data : variable that returns the result of each of the test conducted b
5167 * by the driver.
5168 * Description:
5169 * Read and write into all clock domains. The NIC has 3 clock domains,
5170 * see that registers in all the three regions are accessible.
5171 * Return value:
5172 * 0 on success.
5173 */
5174
1ee6dd77 5175static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5176{
1ee6dd77 5177 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5178 u64 val64 = 0, exp_val;
1da177e4
LT
5179 int fail = 0;
5180
20346722
K
5181 val64 = readq(&bar0->pif_rd_swapper_fb);
5182 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5183 fail = 1;
5184 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5185 }
5186
5187 val64 = readq(&bar0->rmac_pause_cfg);
5188 if (val64 != 0xc000ffff00000000ULL) {
5189 fail = 1;
5190 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5191 }
5192
5193 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5194 if (sp->device_type == XFRAME_II_DEVICE)
5195 exp_val = 0x0404040404040404ULL;
5196 else
5197 exp_val = 0x0808080808080808ULL;
5198 if (val64 != exp_val) {
1da177e4
LT
5199 fail = 1;
5200 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5201 }
5202
5203 val64 = readq(&bar0->xgxs_efifo_cfg);
5204 if (val64 != 0x000000001923141EULL) {
5205 fail = 1;
5206 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5207 }
5208
5209 val64 = 0x5A5A5A5A5A5A5A5AULL;
5210 writeq(val64, &bar0->xmsi_data);
5211 val64 = readq(&bar0->xmsi_data);
5212 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5213 fail = 1;
5214 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5215 }
5216
5217 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5218 writeq(val64, &bar0->xmsi_data);
5219 val64 = readq(&bar0->xmsi_data);
5220 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5221 fail = 1;
5222 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5223 }
5224
5225 *data = fail;
ad4ebed0 5226 return fail;
1da177e4
LT
5227}
5228
5229/**
20346722 5230 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5231 * @sp : private member of the device structure, which is a pointer to the
5232 * s2io_nic structure.
5233 * @data:variable that returns the result of each of the test conducted by
5234 * the driver.
5235 * Description:
20346722 5236 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5237 * register.
5238 * Return value:
5239 * 0 on success.
5240 */
5241
1ee6dd77 5242static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5243{
5244 int fail = 0;
ad4ebed0 5245 u64 ret_data, org_4F0, org_7F0;
5246 u8 saved_4F0 = 0, saved_7F0 = 0;
5247 struct net_device *dev = sp->dev;
1da177e4
LT
5248
5249 /* Test Write Error at offset 0 */
ad4ebed0 5250 /* Note that SPI interface allows write access to all areas
5251 * of EEPROM. Hence doing all negative testing only for Xframe I.
5252 */
5253 if (sp->device_type == XFRAME_I_DEVICE)
5254 if (!write_eeprom(sp, 0, 0, 3))
5255 fail = 1;
5256
5257 /* Save current values at offsets 0x4F0 and 0x7F0 */
5258 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5259 saved_4F0 = 1;
5260 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5261 saved_7F0 = 1;
1da177e4
LT
5262
5263 /* Test Write at offset 4f0 */
ad4ebed0 5264 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5265 fail = 1;
5266 if (read_eeprom(sp, 0x4F0, &ret_data))
5267 fail = 1;
5268
ad4ebed0 5269 if (ret_data != 0x012345) {
26b7625c
AM
5270 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5271 "Data written %llx Data read %llx\n",
5272 dev->name, (unsigned long long)0x12345,
5273 (unsigned long long)ret_data);
1da177e4 5274 fail = 1;
ad4ebed0 5275 }
1da177e4
LT
5276
5277 /* Reset the EEPROM data go FFFF */
ad4ebed0 5278 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5279
5280 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5281 if (sp->device_type == XFRAME_I_DEVICE)
5282 if (!write_eeprom(sp, 0x07C, 0, 3))
5283 fail = 1;
1da177e4 5284
ad4ebed0 5285 /* Test Write Request at offset 0x7f0 */
5286 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5287 fail = 1;
ad4ebed0 5288 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5289 fail = 1;
5290
ad4ebed0 5291 if (ret_data != 0x012345) {
26b7625c
AM
5292 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5293 "Data written %llx Data read %llx\n",
5294 dev->name, (unsigned long long)0x12345,
5295 (unsigned long long)ret_data);
1da177e4 5296 fail = 1;
ad4ebed0 5297 }
1da177e4
LT
5298
5299 /* Reset the EEPROM data go FFFF */
ad4ebed0 5300 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5301
ad4ebed0 5302 if (sp->device_type == XFRAME_I_DEVICE) {
5303 /* Test Write Error at offset 0x80 */
5304 if (!write_eeprom(sp, 0x080, 0, 3))
5305 fail = 1;
1da177e4 5306
ad4ebed0 5307 /* Test Write Error at offset 0xfc */
5308 if (!write_eeprom(sp, 0x0FC, 0, 3))
5309 fail = 1;
1da177e4 5310
ad4ebed0 5311 /* Test Write Error at offset 0x100 */
5312 if (!write_eeprom(sp, 0x100, 0, 3))
5313 fail = 1;
1da177e4 5314
ad4ebed0 5315 /* Test Write Error at offset 4ec */
5316 if (!write_eeprom(sp, 0x4EC, 0, 3))
5317 fail = 1;
5318 }
5319
5320 /* Restore values at offsets 0x4F0 and 0x7F0 */
5321 if (saved_4F0)
5322 write_eeprom(sp, 0x4F0, org_4F0, 3);
5323 if (saved_7F0)
5324 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5325
5326 *data = fail;
ad4ebed0 5327 return fail;
1da177e4
LT
5328}
5329
5330/**
5331 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5332 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5333 * s2io_nic structure.
20346722 5334 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5335 * the driver.
5336 * Description:
5337 * This invokes the MemBist test of the card. We give around
5338 * 2 secs time for the Test to complete. If it's still not complete
20346722 5339 * within this peiod, we consider that the test failed.
1da177e4
LT
5340 * Return value:
5341 * 0 on success and -1 on failure.
5342 */
5343
1ee6dd77 5344static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5345{
5346 u8 bist = 0;
5347 int cnt = 0, ret = -1;
5348
5349 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5350 bist |= PCI_BIST_START;
5351 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5352
5353 while (cnt < 20) {
5354 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5355 if (!(bist & PCI_BIST_START)) {
5356 *data = (bist & PCI_BIST_CODE_MASK);
5357 ret = 0;
5358 break;
5359 }
5360 msleep(100);
5361 cnt++;
5362 }
5363
5364 return ret;
5365}
5366
5367/**
20346722
K
5368 * s2io-link_test - verifies the link state of the nic
5369 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5370 * s2io_nic structure.
5371 * @data: variable that returns the result of each of the test conducted by
5372 * the driver.
5373 * Description:
20346722 5374 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5375 * argument 'data' appropriately.
5376 * Return value:
5377 * 0 on success.
5378 */
5379
1ee6dd77 5380static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5381{
1ee6dd77 5382 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5383 u64 val64;
5384
5385 val64 = readq(&bar0->adapter_status);
c92ca04b 5386 if(!(LINK_IS_UP(val64)))
1da177e4 5387 *data = 1;
c92ca04b
AR
5388 else
5389 *data = 0;
1da177e4 5390
b41477f3 5391 return *data;
1da177e4
LT
5392}
5393
5394/**
20346722
K
5395 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5396 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5397 * s2io_nic structure.
20346722 5398 * @data - variable that returns the result of each of the test
1da177e4
LT
5399 * conducted by the driver.
5400 * Description:
20346722 5401 * This is one of the offline test that tests the read and write
1da177e4
LT
5402 * access to the RldRam chip on the NIC.
5403 * Return value:
5404 * 0 on success.
5405 */
5406
1ee6dd77 5407static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5408{
1ee6dd77 5409 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5410 u64 val64;
ad4ebed0 5411 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5412
5413 val64 = readq(&bar0->adapter_control);
5414 val64 &= ~ADAPTER_ECC_EN;
5415 writeq(val64, &bar0->adapter_control);
5416
5417 val64 = readq(&bar0->mc_rldram_test_ctrl);
5418 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5419 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5420
5421 val64 = readq(&bar0->mc_rldram_mrs);
5422 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5423 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5424
5425 val64 |= MC_RLDRAM_MRS_ENABLE;
5426 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5427
5428 while (iteration < 2) {
5429 val64 = 0x55555555aaaa0000ULL;
5430 if (iteration == 1) {
5431 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5432 }
5433 writeq(val64, &bar0->mc_rldram_test_d0);
5434
5435 val64 = 0xaaaa5a5555550000ULL;
5436 if (iteration == 1) {
5437 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5438 }
5439 writeq(val64, &bar0->mc_rldram_test_d1);
5440
5441 val64 = 0x55aaaaaaaa5a0000ULL;
5442 if (iteration == 1) {
5443 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5444 }
5445 writeq(val64, &bar0->mc_rldram_test_d2);
5446
ad4ebed0 5447 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5448 writeq(val64, &bar0->mc_rldram_test_add);
5449
ad4ebed0 5450 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5451 MC_RLDRAM_TEST_GO;
5452 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5453
5454 for (cnt = 0; cnt < 5; cnt++) {
5455 val64 = readq(&bar0->mc_rldram_test_ctrl);
5456 if (val64 & MC_RLDRAM_TEST_DONE)
5457 break;
5458 msleep(200);
5459 }
5460
5461 if (cnt == 5)
5462 break;
5463
ad4ebed0 5464 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5465 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5466
5467 for (cnt = 0; cnt < 5; cnt++) {
5468 val64 = readq(&bar0->mc_rldram_test_ctrl);
5469 if (val64 & MC_RLDRAM_TEST_DONE)
5470 break;
5471 msleep(500);
5472 }
5473
5474 if (cnt == 5)
5475 break;
5476
5477 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5478 if (!(val64 & MC_RLDRAM_TEST_PASS))
5479 test_fail = 1;
1da177e4
LT
5480
5481 iteration++;
5482 }
5483
ad4ebed0 5484 *data = test_fail;
1da177e4 5485
ad4ebed0 5486 /* Bring the adapter out of test mode */
5487 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5488
5489 return test_fail;
1da177e4
LT
5490}
5491
5492/**
5493 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5494 * @sp : private member of the device structure, which is a pointer to the
5495 * s2io_nic structure.
5496 * @ethtest : pointer to a ethtool command specific structure that will be
5497 * returned to the user.
20346722 5498 * @data : variable that returns the result of each of the test
1da177e4
LT
5499 * conducted by the driver.
5500 * Description:
5501 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5502 * the health of the card.
5503 * Return value:
5504 * void
5505 */
5506
5507static void s2io_ethtool_test(struct net_device *dev,
5508 struct ethtool_test *ethtest,
5509 uint64_t * data)
5510{
1ee6dd77 5511 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5512 int orig_state = netif_running(sp->dev);
5513
5514 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5515 /* Offline Tests. */
20346722 5516 if (orig_state)
1da177e4 5517 s2io_close(sp->dev);
1da177e4
LT
5518
5519 if (s2io_register_test(sp, &data[0]))
5520 ethtest->flags |= ETH_TEST_FL_FAILED;
5521
5522 s2io_reset(sp);
1da177e4
LT
5523
5524 if (s2io_rldram_test(sp, &data[3]))
5525 ethtest->flags |= ETH_TEST_FL_FAILED;
5526
5527 s2io_reset(sp);
1da177e4
LT
5528
5529 if (s2io_eeprom_test(sp, &data[1]))
5530 ethtest->flags |= ETH_TEST_FL_FAILED;
5531
5532 if (s2io_bist_test(sp, &data[4]))
5533 ethtest->flags |= ETH_TEST_FL_FAILED;
5534
5535 if (orig_state)
5536 s2io_open(sp->dev);
5537
5538 data[2] = 0;
5539 } else {
5540 /* Online Tests. */
5541 if (!orig_state) {
5542 DBG_PRINT(ERR_DBG,
5543 "%s: is not up, cannot run test\n",
5544 dev->name);
5545 data[0] = -1;
5546 data[1] = -1;
5547 data[2] = -1;
5548 data[3] = -1;
5549 data[4] = -1;
5550 }
5551
5552 if (s2io_link_test(sp, &data[2]))
5553 ethtest->flags |= ETH_TEST_FL_FAILED;
5554
5555 data[0] = 0;
5556 data[1] = 0;
5557 data[3] = 0;
5558 data[4] = 0;
5559 }
5560}
5561
5562static void s2io_get_ethtool_stats(struct net_device *dev,
5563 struct ethtool_stats *estats,
5564 u64 * tmp_stats)
5565{
5566 int i = 0;
1ee6dd77
RB
5567 struct s2io_nic *sp = dev->priv;
5568 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5569
7ba013ac 5570 s2io_updt_stats(sp);
541ae68f
K
5571 tmp_stats[i++] =
5572 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5573 le32_to_cpu(stat_info->tmac_frms);
5574 tmp_stats[i++] =
5575 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5576 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5577 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5578 tmp_stats[i++] =
5579 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5580 le32_to_cpu(stat_info->tmac_mcst_frms);
5581 tmp_stats[i++] =
5582 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5583 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5584 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5585 tmp_stats[i++] =
5586 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5587 le32_to_cpu(stat_info->tmac_ttl_octets);
5588 tmp_stats[i++] =
5589 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5590 le32_to_cpu(stat_info->tmac_ucst_frms);
5591 tmp_stats[i++] =
5592 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5593 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5594 tmp_stats[i++] =
5595 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5596 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5597 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5598 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5599 tmp_stats[i++] =
5600 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5601 le32_to_cpu(stat_info->tmac_vld_ip);
5602 tmp_stats[i++] =
5603 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5604 le32_to_cpu(stat_info->tmac_drop_ip);
5605 tmp_stats[i++] =
5606 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5607 le32_to_cpu(stat_info->tmac_icmp);
5608 tmp_stats[i++] =
5609 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5610 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5611 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5612 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5613 le32_to_cpu(stat_info->tmac_udp);
5614 tmp_stats[i++] =
5615 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5616 le32_to_cpu(stat_info->rmac_vld_frms);
5617 tmp_stats[i++] =
5618 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5619 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5622 tmp_stats[i++] =
5623 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5624 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5625 tmp_stats[i++] =
5626 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5627 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5628 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5629 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5630 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5631 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5632 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5633 tmp_stats[i++] =
5634 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5635 le32_to_cpu(stat_info->rmac_ttl_octets);
5636 tmp_stats[i++] =
5637 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5638 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5639 tmp_stats[i++] =
5640 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5641 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5642 tmp_stats[i++] =
5643 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5644 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5645 tmp_stats[i++] =
5646 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5647 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5649 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5650 tmp_stats[i++] =
5651 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5652 le32_to_cpu(stat_info->rmac_usized_frms);
5653 tmp_stats[i++] =
5654 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5655 le32_to_cpu(stat_info->rmac_osized_frms);
5656 tmp_stats[i++] =
5657 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5658 le32_to_cpu(stat_info->rmac_frag_frms);
5659 tmp_stats[i++] =
5660 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5661 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5662 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5663 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5664 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5665 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5666 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5667 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5668 tmp_stats[i++] =
5669 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5670 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5671 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5673 tmp_stats[i++] =
5674 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5675 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5676 tmp_stats[i++] =
5677 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5678 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5679 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5680 tmp_stats[i++] =
5681 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5682 le32_to_cpu(stat_info->rmac_udp);
5683 tmp_stats[i++] =
5684 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5685 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5686 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5695 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5696 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5697 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5698 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5699 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5700 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5701 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5702 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5703 tmp_stats[i++] =
5704 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5705 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5706 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5707 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5708 tmp_stats[i++] =
5709 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5710 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5711 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5712 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5713 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5714 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5715 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5716 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5717 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5718 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5719 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5720 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5721 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5722 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5723 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5724 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5725 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5726 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5727 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5728 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5729 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
5730
5731 /* Enhanced statistics exist only for Hercules */
5732 if(sp->device_type == XFRAME_II_DEVICE) {
5733 tmp_stats[i++] =
5734 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5735 tmp_stats[i++] =
5736 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5737 tmp_stats[i++] =
5738 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5739 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5740 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5741 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5742 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5743 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5744 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5745 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5746 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5747 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5748 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5749 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5750 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5751 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5752 }
5753
7ba013ac
K
5754 tmp_stats[i++] = 0;
5755 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5756 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5757 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5758 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5759 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5760 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5761 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5762 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5763 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5764 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5765 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5766 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5767 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5768 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5769 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5770 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5771 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5772 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5773 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5774 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5775 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5776 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5777 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5778 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5779 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5780 int count = 0;
6aa20a22 5781 /*
bd1034f0
AR
5782 * Since 64-bit divide does not work on all platforms,
5783 * do repeated subtraction.
5784 */
5785 while (tmp >= stat_info->sw_stat.num_aggregations) {
5786 tmp -= stat_info->sw_stat.num_aggregations;
5787 count++;
5788 }
5789 tmp_stats[i++] = count;
fe931395 5790 }
bd1034f0
AR
5791 else
5792 tmp_stats[i++] = 0;
c53d4945 5793 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 5794 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 5795 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
5796 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5797 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5798 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5799 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5800 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5801 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5802
5803 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5804 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5805 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5806 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5807 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5808
5809 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5810 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5811 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5812 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5813 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5814 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5815 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5816 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5817 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
1da177e4
LT
5818}
5819
ac1f60db 5820static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5821{
5822 return (XENA_REG_SPACE);
5823}
5824
5825
ac1f60db 5826static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5827{
1ee6dd77 5828 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5829
5830 return (sp->rx_csum);
5831}
ac1f60db
AB
5832
5833static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5834{
1ee6dd77 5835 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5836
5837 if (data)
5838 sp->rx_csum = 1;
5839 else
5840 sp->rx_csum = 0;
5841
5842 return 0;
5843}
ac1f60db
AB
5844
5845static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5846{
5847 return (XENA_EEPROM_SPACE);
5848}
5849
ac1f60db 5850static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5851{
5852 return (S2IO_TEST_LEN);
5853}
ac1f60db
AB
5854
5855static void s2io_ethtool_get_strings(struct net_device *dev,
5856 u32 stringset, u8 * data)
1da177e4 5857{
fa1f0cb3
SS
5858 int stat_size = 0;
5859 struct s2io_nic *sp = dev->priv;
5860
1da177e4
LT
5861 switch (stringset) {
5862 case ETH_SS_TEST:
5863 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5864 break;
5865 case ETH_SS_STATS:
fa1f0cb3
SS
5866 stat_size = sizeof(ethtool_xena_stats_keys);
5867 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5868 if(sp->device_type == XFRAME_II_DEVICE) {
5869 memcpy(data + stat_size,
5870 &ethtool_enhanced_stats_keys,
5871 sizeof(ethtool_enhanced_stats_keys));
5872 stat_size += sizeof(ethtool_enhanced_stats_keys);
5873 }
5874
5875 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5876 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
5877 }
5878}
1da177e4
LT
5879static int s2io_ethtool_get_stats_count(struct net_device *dev)
5880{
fa1f0cb3
SS
5881 struct s2io_nic *sp = dev->priv;
5882 int stat_count = 0;
5883 switch(sp->device_type) {
5884 case XFRAME_I_DEVICE:
5885 stat_count = XFRAME_I_STAT_LEN;
5886 break;
5887
5888 case XFRAME_II_DEVICE:
5889 stat_count = XFRAME_II_STAT_LEN;
5890 break;
5891 }
5892
5893 return stat_count;
1da177e4
LT
5894}
5895
ac1f60db 5896static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5897{
5898 if (data)
5899 dev->features |= NETIF_F_IP_CSUM;
5900 else
5901 dev->features &= ~NETIF_F_IP_CSUM;
5902
5903 return 0;
5904}
5905
75c30b13
AR
5906static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5907{
5908 return (dev->features & NETIF_F_TSO) != 0;
5909}
5910static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5911{
5912 if (data)
5913 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5914 else
5915 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5916
5917 return 0;
5918}
1da177e4 5919
7282d491 5920static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
5921 .get_settings = s2io_ethtool_gset,
5922 .set_settings = s2io_ethtool_sset,
5923 .get_drvinfo = s2io_ethtool_gdrvinfo,
5924 .get_regs_len = s2io_ethtool_get_regs_len,
5925 .get_regs = s2io_ethtool_gregs,
5926 .get_link = ethtool_op_get_link,
5927 .get_eeprom_len = s2io_get_eeprom_len,
5928 .get_eeprom = s2io_ethtool_geeprom,
5929 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 5930 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
5931 .get_pauseparam = s2io_ethtool_getpause_data,
5932 .set_pauseparam = s2io_ethtool_setpause_data,
5933 .get_rx_csum = s2io_ethtool_get_rx_csum,
5934 .set_rx_csum = s2io_ethtool_set_rx_csum,
5935 .get_tx_csum = ethtool_op_get_tx_csum,
5936 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5937 .get_sg = ethtool_op_get_sg,
5938 .set_sg = ethtool_op_set_sg,
75c30b13
AR
5939 .get_tso = s2io_ethtool_op_get_tso,
5940 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
5941 .get_ufo = ethtool_op_get_ufo,
5942 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5943 .self_test_count = s2io_ethtool_self_test_count,
5944 .self_test = s2io_ethtool_test,
5945 .get_strings = s2io_ethtool_get_strings,
5946 .phys_id = s2io_ethtool_idnic,
5947 .get_stats_count = s2io_ethtool_get_stats_count,
5948 .get_ethtool_stats = s2io_get_ethtool_stats
5949};
5950
5951/**
20346722 5952 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5953 * @dev : Device pointer.
5954 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5955 * a proprietary structure used to pass information to the driver.
5956 * @cmd : This is used to distinguish between the different commands that
5957 * can be passed to the IOCTL functions.
5958 * Description:
20346722
K
5959 * Currently there are no special functionality supported in IOCTL, hence
5960 * function always return EOPNOTSUPPORTED
1da177e4
LT
5961 */
5962
ac1f60db 5963static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5964{
5965 return -EOPNOTSUPP;
5966}
5967
5968/**
5969 * s2io_change_mtu - entry point to change MTU size for the device.
5970 * @dev : device pointer.
5971 * @new_mtu : the new MTU size for the device.
5972 * Description: A driver entry point to change MTU size for the device.
5973 * Before changing the MTU the device must be stopped.
5974 * Return value:
5975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5976 * file on failure.
5977 */
5978
ac1f60db 5979static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 5980{
1ee6dd77 5981 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5982
5983 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5984 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5985 dev->name);
5986 return -EPERM;
5987 }
5988
1da177e4 5989 dev->mtu = new_mtu;
d8892c6e 5990 if (netif_running(dev)) {
e6a8fee2 5991 s2io_card_down(sp);
d8892c6e
K
5992 netif_stop_queue(dev);
5993 if (s2io_card_up(sp)) {
5994 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5995 __FUNCTION__);
5996 }
5997 if (netif_queue_stopped(dev))
5998 netif_wake_queue(dev);
5999 } else { /* Device is down */
1ee6dd77 6000 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6001 u64 val64 = new_mtu;
6002
6003 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6004 }
1da177e4
LT
6005
6006 return 0;
6007}
6008
6009/**
6010 * s2io_tasklet - Bottom half of the ISR.
6011 * @dev_adr : address of the device structure in dma_addr_t format.
6012 * Description:
6013 * This is the tasklet or the bottom half of the ISR. This is
20346722 6014 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 6015 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 6016 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
6017 * replenish the Rx buffers in the Rx buffer descriptors.
6018 * Return value:
6019 * void.
6020 */
6021
6022static void s2io_tasklet(unsigned long dev_addr)
6023{
6024 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 6025 struct s2io_nic *sp = dev->priv;
1da177e4 6026 int i, ret;
1ee6dd77 6027 struct mac_info *mac_control;
1da177e4
LT
6028 struct config_param *config;
6029
6030 mac_control = &sp->mac_control;
6031 config = &sp->config;
6032
6033 if (!TASKLET_IN_USE) {
6034 for (i = 0; i < config->rx_ring_num; i++) {
6035 ret = fill_rx_buffers(sp, i);
6036 if (ret == -ENOMEM) {
0c61ed5f 6037 DBG_PRINT(INFO_DBG, "%s: Out of ",
1da177e4 6038 dev->name);
491976b2 6039 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
1da177e4
LT
6040 break;
6041 } else if (ret == -EFILL) {
0c61ed5f 6042 DBG_PRINT(INFO_DBG,
1da177e4
LT
6043 "%s: Rx Ring %d is full\n",
6044 dev->name, i);
6045 break;
6046 }
6047 }
6048 clear_bit(0, (&sp->tasklet_status));
6049 }
6050}
6051
6052/**
6053 * s2io_set_link - Set the LInk status
6054 * @data: long pointer to device private structue
6055 * Description: Sets the link status for the adapter
6056 */
6057
c4028958 6058static void s2io_set_link(struct work_struct *work)
1da177e4 6059{
1ee6dd77 6060 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6061 struct net_device *dev = nic->dev;
1ee6dd77 6062 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6063 register u64 val64;
6064 u16 subid;
6065
22747d6b
FR
6066 rtnl_lock();
6067
6068 if (!netif_running(dev))
6069 goto out_unlock;
6070
1da177e4
LT
6071 if (test_and_set_bit(0, &(nic->link_state))) {
6072 /* The card is being reset, no point doing anything */
22747d6b 6073 goto out_unlock;
1da177e4
LT
6074 }
6075
6076 subid = nic->pdev->subsystem_device;
a371a07d
K
6077 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6078 /*
6079 * Allow a small delay for the NICs self initiated
6080 * cleanup to complete.
6081 */
6082 msleep(100);
6083 }
1da177e4
LT
6084
6085 val64 = readq(&bar0->adapter_status);
19a60522
SS
6086 if (LINK_IS_UP(val64)) {
6087 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6088 if (verify_xena_quiescence(nic)) {
6089 val64 = readq(&bar0->adapter_control);
6090 val64 |= ADAPTER_CNTL_EN;
1da177e4 6091 writeq(val64, &bar0->adapter_control);
19a60522
SS
6092 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6093 nic->device_type, subid)) {
6094 val64 = readq(&bar0->gpio_control);
6095 val64 |= GPIO_CTRL_GPIO_0;
6096 writeq(val64, &bar0->gpio_control);
6097 val64 = readq(&bar0->gpio_control);
6098 } else {
6099 val64 |= ADAPTER_LED_ON;
6100 writeq(val64, &bar0->adapter_control);
a371a07d 6101 }
1da177e4 6102 nic->device_enabled_once = TRUE;
19a60522
SS
6103 } else {
6104 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6105 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6106 netif_stop_queue(dev);
1da177e4 6107 }
19a60522
SS
6108 }
6109 val64 = readq(&bar0->adapter_status);
6110 if (!LINK_IS_UP(val64)) {
6111 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6112 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6113 DBG_PRINT(ERR_DBG, "device \n");
6114 } else
1da177e4 6115 s2io_link(nic, LINK_UP);
19a60522
SS
6116 } else {
6117 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6118 subid)) {
6119 val64 = readq(&bar0->gpio_control);
6120 val64 &= ~GPIO_CTRL_GPIO_0;
6121 writeq(val64, &bar0->gpio_control);
6122 val64 = readq(&bar0->gpio_control);
1da177e4 6123 }
19a60522 6124 s2io_link(nic, LINK_DOWN);
1da177e4
LT
6125 }
6126 clear_bit(0, &(nic->link_state));
22747d6b
FR
6127
6128out_unlock:
d8d70caf 6129 rtnl_unlock();
1da177e4
LT
6130}
6131
1ee6dd77
RB
6132static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6133 struct buffAdd *ba,
6134 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6135 u64 *temp2, int size)
5d3213cc
AR
6136{
6137 struct net_device *dev = sp->dev;
491abf25 6138 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6139
6140 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6141 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6142 /* allocate skb */
6143 if (*skb) {
6144 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6145 /*
6146 * As Rx frame are not going to be processed,
6147 * using same mapped address for the Rxd
6148 * buffer pointer
6149 */
6d517a27 6150 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6151 } else {
6152 *skb = dev_alloc_skb(size);
6153 if (!(*skb)) {
0c61ed5f 6154 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6155 DBG_PRINT(INFO_DBG, "memory to allocate ");
6156 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6157 sp->mac_control.stats_info->sw_stat. \
6158 mem_alloc_fail_cnt++;
5d3213cc
AR
6159 return -ENOMEM ;
6160 }
491976b2
SH
6161 sp->mac_control.stats_info->sw_stat.mem_allocated
6162 += (*skb)->truesize;
5d3213cc
AR
6163 /* storing the mapped addr in a temp variable
6164 * such it will be used for next rxd whose
6165 * Host Control is NULL
6166 */
6d517a27 6167 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6168 pci_map_single( sp->pdev, (*skb)->data,
6169 size - NET_IP_ALIGN,
6170 PCI_DMA_FROMDEVICE);
491abf25
VP
6171 if( (rxdp1->Buffer0_ptr == 0) ||
6172 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6173 goto memalloc_failed;
6174 }
5d3213cc
AR
6175 rxdp->Host_Control = (unsigned long) (*skb);
6176 }
6177 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6178 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6179 /* Two buffer Mode */
6180 if (*skb) {
6d517a27
VP
6181 rxdp3->Buffer2_ptr = *temp2;
6182 rxdp3->Buffer0_ptr = *temp0;
6183 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6184 } else {
6185 *skb = dev_alloc_skb(size);
2ceaac75 6186 if (!(*skb)) {
c53d4945
SH
6187 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6188 DBG_PRINT(INFO_DBG, "memory to allocate ");
6189 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6190 sp->mac_control.stats_info->sw_stat. \
6191 mem_alloc_fail_cnt++;
2ceaac75
DR
6192 return -ENOMEM;
6193 }
491976b2
SH
6194 sp->mac_control.stats_info->sw_stat.mem_allocated
6195 += (*skb)->truesize;
6d517a27 6196 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6197 pci_map_single(sp->pdev, (*skb)->data,
6198 dev->mtu + 4,
6199 PCI_DMA_FROMDEVICE);
491abf25
VP
6200 if( (rxdp3->Buffer2_ptr == 0) ||
6201 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6202 goto memalloc_failed;
6203 }
6d517a27 6204 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6205 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6206 PCI_DMA_FROMDEVICE);
491abf25
VP
6207 if( (rxdp3->Buffer0_ptr == 0) ||
6208 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6209 pci_unmap_single (sp->pdev,
3e847423 6210 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6211 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6212 goto memalloc_failed;
6213 }
5d3213cc
AR
6214 rxdp->Host_Control = (unsigned long) (*skb);
6215
6216 /* Buffer-1 will be dummy buffer not used */
6d517a27 6217 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6218 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6219 PCI_DMA_FROMDEVICE);
491abf25
VP
6220 if( (rxdp3->Buffer1_ptr == 0) ||
6221 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6222 pci_unmap_single (sp->pdev,
3e847423
AV
6223 (dma_addr_t)rxdp3->Buffer0_ptr,
6224 BUF0_LEN, PCI_DMA_FROMDEVICE);
6225 pci_unmap_single (sp->pdev,
6226 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6227 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6228 goto memalloc_failed;
6229 }
5d3213cc
AR
6230 }
6231 }
6232 return 0;
491abf25
VP
6233 memalloc_failed:
6234 stats->pci_map_fail_cnt++;
6235 stats->mem_freed += (*skb)->truesize;
6236 dev_kfree_skb(*skb);
6237 return -ENOMEM;
5d3213cc 6238}
491abf25 6239
1ee6dd77
RB
6240static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6241 int size)
5d3213cc
AR
6242{
6243 struct net_device *dev = sp->dev;
6244 if (sp->rxd_mode == RXD_MODE_1) {
6245 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6246 } else if (sp->rxd_mode == RXD_MODE_3B) {
6247 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6248 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6249 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6250 }
6251}
6252
1ee6dd77 6253static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6254{
6255 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6256 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6257 struct config_param *config = &sp->config;
6258 struct net_device *dev = sp->dev;
1ee6dd77 6259 struct RxD_t *rxdp = NULL;
5d3213cc 6260 struct sk_buff *skb = NULL;
1ee6dd77 6261 struct buffAdd *ba = NULL;
5d3213cc
AR
6262 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6263
6264 /* Calculate the size based on ring mode */
6265 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6266 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6267 if (sp->rxd_mode == RXD_MODE_1)
6268 size += NET_IP_ALIGN;
6269 else if (sp->rxd_mode == RXD_MODE_3B)
6270 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6271
6272 for (i = 0; i < config->rx_ring_num; i++) {
6273 blk_cnt = config->rx_cfg[i].num_rxd /
6274 (rxd_count[sp->rxd_mode] +1);
6275
6276 for (j = 0; j < blk_cnt; j++) {
6277 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6278 rxdp = mac_control->rings[i].
6279 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6280 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6281 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6282 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6283 &skb,(u64 *)&temp0_64,
6284 (u64 *)&temp1_64,
ac1f90d6
SS
6285 (u64 *)&temp2_64,
6286 size) == ENOMEM) {
6287 return 0;
6288 }
5d3213cc
AR
6289
6290 set_rxd_buffer_size(sp, rxdp, size);
6291 wmb();
6292 /* flip the Ownership bit to Hardware */
6293 rxdp->Control_1 |= RXD_OWN_XENA;
6294 }
6295 }
6296 }
6297 return 0;
6298
6299}
6300
1ee6dd77 6301static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6302{
e6a8fee2 6303 int ret = 0;
c92ca04b 6304 struct net_device *dev = sp->dev;
e6a8fee2 6305 int err = 0;
1da177e4 6306
eccb8628 6307 if (sp->intr_type == MSI_X)
e6a8fee2
AR
6308 ret = s2io_enable_msi_x(sp);
6309 if (ret) {
6310 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6311 sp->intr_type = INTA;
20346722 6312 }
1da177e4 6313
1ee6dd77 6314 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6315 store_xmsi_data(sp);
c92ca04b 6316
e6a8fee2 6317 /* After proper initialization of H/W, register ISR */
e6a8fee2 6318 if (sp->intr_type == MSI_X) {
fb6a825b 6319 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6320
e6a8fee2
AR
6321 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6322 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6323 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6324 dev->name, i);
6325 err = request_irq(sp->entries[i].vector,
6326 s2io_msix_fifo_handle, 0, sp->desc[i],
6327 sp->s2io_entries[i].arg);
fb6a825b
SS
6328 /* If either data or addr is zero print it */
6329 if(!(sp->msix_info[i].addr &&
6330 sp->msix_info[i].data)) {
6331 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6332 "Data:0x%lx\n",sp->desc[i],
6333 (unsigned long long)
6334 sp->msix_info[i].addr,
6335 (unsigned long)
6336 ntohl(sp->msix_info[i].data));
6337 } else {
6338 msix_tx_cnt++;
6339 }
e6a8fee2
AR
6340 } else {
6341 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6342 dev->name, i);
6343 err = request_irq(sp->entries[i].vector,
6344 s2io_msix_ring_handle, 0, sp->desc[i],
6345 sp->s2io_entries[i].arg);
fb6a825b
SS
6346 /* If either data or addr is zero print it */
6347 if(!(sp->msix_info[i].addr &&
6348 sp->msix_info[i].data)) {
6349 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6350 "Data:0x%lx\n",sp->desc[i],
6351 (unsigned long long)
6352 sp->msix_info[i].addr,
6353 (unsigned long)
6354 ntohl(sp->msix_info[i].data));
6355 } else {
6356 msix_rx_cnt++;
6357 }
c92ca04b 6358 }
e6a8fee2
AR
6359 if (err) {
6360 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6361 "failed\n", dev->name, i);
6362 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6363 return -1;
6364 }
6365 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6366 }
fb6a825b
SS
6367 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6368 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2
AR
6369 }
6370 if (sp->intr_type == INTA) {
6371 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6372 sp->name, dev);
6373 if (err) {
6374 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6375 dev->name);
6376 return -1;
6377 }
6378 }
6379 return 0;
6380}
1ee6dd77 6381static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6382{
6383 int cnt = 0;
6384 struct net_device *dev = sp->dev;
6385
6386 if (sp->intr_type == MSI_X) {
6387 int i;
6388 u16 msi_control;
6389
6390 for (i=1; (sp->s2io_entries[i].in_use ==
6391 MSIX_REGISTERED_SUCCESS); i++) {
6392 int vector = sp->entries[i].vector;
6393 void *arg = sp->s2io_entries[i].arg;
6394
6395 free_irq(vector, arg);
6396 }
6397 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6398 msi_control &= 0xFFFE; /* Disable MSI */
6399 pci_write_config_word(sp->pdev, 0x42, msi_control);
6400
6401 pci_disable_msix(sp->pdev);
6402 } else {
6403 free_irq(sp->pdev->irq, dev);
c92ca04b
AR
6404 }
6405 /* Waiting till all Interrupt handlers are complete */
6406 cnt = 0;
6407 do {
6408 msleep(10);
6409 if (!atomic_read(&sp->isr_cnt))
6410 break;
6411 cnt++;
6412 } while(cnt < 5);
e6a8fee2
AR
6413}
6414
d796fdb7 6415static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
6416{
6417 int cnt = 0;
1ee6dd77 6418 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6419 unsigned long flags;
6420 register u64 val64 = 0;
6421
6422 del_timer_sync(&sp->alarm_timer);
6423 /* If s2io_set_link task is executing, wait till it completes. */
6424 while (test_and_set_bit(0, &(sp->link_state))) {
6425 msleep(50);
6426 }
6427 atomic_set(&sp->card_state, CARD_DOWN);
6428
6429 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
6430 if (do_io)
6431 stop_nic(sp);
e6a8fee2
AR
6432
6433 s2io_rem_isr(sp);
1da177e4
LT
6434
6435 /* Kill tasklet. */
6436 tasklet_kill(&sp->task);
6437
6438 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 6439 while(do_io) {
5d3213cc
AR
6440 /* As per the HW requirement we need to replenish the
6441 * receive buffer to avoid the ring bump. Since there is
6442 * no intention of processing the Rx frame at this pointwe are
6443 * just settting the ownership bit of rxd in Each Rx
6444 * ring to HW and set the appropriate buffer size
6445 * based on the ring mode
6446 */
6447 rxd_owner_bit_reset(sp);
6448
1da177e4 6449 val64 = readq(&bar0->adapter_status);
19a60522
SS
6450 if (verify_xena_quiescence(sp)) {
6451 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6452 break;
6453 }
6454
6455 msleep(50);
6456 cnt++;
6457 if (cnt == 10) {
6458 DBG_PRINT(ERR_DBG,
6459 "s2io_close:Device not Quiescent ");
6460 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6461 (unsigned long long) val64);
6462 break;
6463 }
d796fdb7
LV
6464 }
6465 if (do_io)
6466 s2io_reset(sp);
1da177e4 6467
7ba013ac
K
6468 spin_lock_irqsave(&sp->tx_lock, flags);
6469 /* Free all Tx buffers */
1da177e4 6470 free_tx_buffers(sp);
7ba013ac
K
6471 spin_unlock_irqrestore(&sp->tx_lock, flags);
6472
6473 /* Free all Rx buffers */
6474 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6475 free_rx_buffers(sp);
7ba013ac 6476 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6477
1da177e4
LT
6478 clear_bit(0, &(sp->link_state));
6479}
6480
d796fdb7
LV
6481static void s2io_card_down(struct s2io_nic * sp)
6482{
6483 do_s2io_card_down(sp, 1);
6484}
6485
1ee6dd77 6486static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6487{
cc6e7c44 6488 int i, ret = 0;
1ee6dd77 6489 struct mac_info *mac_control;
1da177e4
LT
6490 struct config_param *config;
6491 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6492 u16 interruptible;
1da177e4
LT
6493
6494 /* Initialize the H/W I/O registers */
6495 if (init_nic(sp) != 0) {
6496 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6497 dev->name);
e6a8fee2 6498 s2io_reset(sp);
1da177e4
LT
6499 return -ENODEV;
6500 }
6501
20346722
K
6502 /*
6503 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6504 * Rx ring and initializing buffers into 30 Rx blocks
6505 */
6506 mac_control = &sp->mac_control;
6507 config = &sp->config;
6508
6509 for (i = 0; i < config->rx_ring_num; i++) {
6510 if ((ret = fill_rx_buffers(sp, i))) {
6511 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6512 dev->name);
6513 s2io_reset(sp);
6514 free_rx_buffers(sp);
6515 return -ENOMEM;
6516 }
6517 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6518 atomic_read(&sp->rx_bufs_left[i]));
6519 }
19a60522
SS
6520 /* Maintain the state prior to the open */
6521 if (sp->promisc_flg)
6522 sp->promisc_flg = 0;
6523 if (sp->m_cast_flg) {
6524 sp->m_cast_flg = 0;
6525 sp->all_multi_pos= 0;
6526 }
1da177e4
LT
6527
6528 /* Setting its receive mode */
6529 s2io_set_multicast(dev);
6530
7d3d0439 6531 if (sp->lro) {
b41477f3 6532 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6533 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6534 /* Check if we can use(if specified) user provided value */
6535 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6536 sp->lro_max_aggr_per_sess = lro_max_pkts;
6537 }
6538
1da177e4
LT
6539 /* Enable Rx Traffic and interrupts on the NIC */
6540 if (start_nic(sp)) {
6541 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6542 s2io_reset(sp);
e6a8fee2
AR
6543 free_rx_buffers(sp);
6544 return -ENODEV;
6545 }
6546
6547 /* Add interrupt service routine */
6548 if (s2io_add_isr(sp) != 0) {
6549 if (sp->intr_type == MSI_X)
6550 s2io_rem_isr(sp);
6551 s2io_reset(sp);
1da177e4
LT
6552 free_rx_buffers(sp);
6553 return -ENODEV;
6554 }
6555
25fff88e
K
6556 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6557
e6a8fee2
AR
6558 /* Enable tasklet for the device */
6559 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6560
6561 /* Enable select interrupts */
6562 if (sp->intr_type != INTA)
6563 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6564 else {
6565 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6566 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6567 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6568 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6569 }
6570
6571
1da177e4
LT
6572 atomic_set(&sp->card_state, CARD_UP);
6573 return 0;
6574}
6575
20346722 6576/**
1da177e4
LT
6577 * s2io_restart_nic - Resets the NIC.
6578 * @data : long pointer to the device private structure
6579 * Description:
6580 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6581 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6582 * the run time of the watch dog routine which is run holding a
6583 * spin lock.
6584 */
6585
c4028958 6586static void s2io_restart_nic(struct work_struct *work)
1da177e4 6587{
1ee6dd77 6588 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6589 struct net_device *dev = sp->dev;
1da177e4 6590
22747d6b
FR
6591 rtnl_lock();
6592
6593 if (!netif_running(dev))
6594 goto out_unlock;
6595
e6a8fee2 6596 s2io_card_down(sp);
1da177e4
LT
6597 if (s2io_card_up(sp)) {
6598 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6599 dev->name);
6600 }
6601 netif_wake_queue(dev);
6602 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6603 dev->name);
22747d6b
FR
6604out_unlock:
6605 rtnl_unlock();
1da177e4
LT
6606}
6607
20346722
K
6608/**
6609 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6610 * @dev : Pointer to net device structure
6611 * Description:
6612 * This function is triggered if the Tx Queue is stopped
6613 * for a pre-defined amount of time when the Interface is still up.
6614 * If the Interface is jammed in such a situation, the hardware is
6615 * reset (by s2io_close) and restarted again (by s2io_open) to
6616 * overcome any problem that might have been caused in the hardware.
6617 * Return value:
6618 * void
6619 */
6620
6621static void s2io_tx_watchdog(struct net_device *dev)
6622{
1ee6dd77 6623 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6624
6625 if (netif_carrier_ok(dev)) {
c53d4945 6626 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 6627 schedule_work(&sp->rst_timer_task);
bd1034f0 6628 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6629 }
6630}
6631
6632/**
6633 * rx_osm_handler - To perform some OS related operations on SKB.
6634 * @sp: private member of the device structure,pointer to s2io_nic structure.
6635 * @skb : the socket buffer pointer.
6636 * @len : length of the packet
6637 * @cksum : FCS checksum of the frame.
6638 * @ring_no : the ring from which this RxD was extracted.
20346722 6639 * Description:
b41477f3 6640 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6641 * some OS related operations on the SKB before passing it to the upper
6642 * layers. It mainly checks if the checksum is OK, if so adds it to the
6643 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6644 * to the upper layer. If the checksum is wrong, it increments the Rx
6645 * packet error count, frees the SKB and returns error.
6646 * Return value:
6647 * SUCCESS on success and -1 on failure.
6648 */
1ee6dd77 6649static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6650{
1ee6dd77 6651 struct s2io_nic *sp = ring_data->nic;
1da177e4 6652 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6653 struct sk_buff *skb = (struct sk_buff *)
6654 ((unsigned long) rxdp->Host_Control);
6655 int ring_no = ring_data->ring_no;
1da177e4 6656 u16 l3_csum, l4_csum;
863c11a9 6657 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6658 struct lro *lro;
f9046eb3 6659 u8 err_mask;
da6971d8 6660
20346722 6661 skb->dev = dev;
c92ca04b 6662
863c11a9 6663 if (err) {
bd1034f0
AR
6664 /* Check for parity error */
6665 if (err & 0x1) {
6666 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6667 }
f9046eb3
OH
6668 err_mask = err >> 48;
6669 switch(err_mask) {
491976b2
SH
6670 case 1:
6671 sp->mac_control.stats_info->sw_stat.
6672 rx_parity_err_cnt++;
6673 break;
6674
6675 case 2:
6676 sp->mac_control.stats_info->sw_stat.
6677 rx_abort_cnt++;
6678 break;
6679
6680 case 3:
6681 sp->mac_control.stats_info->sw_stat.
6682 rx_parity_abort_cnt++;
6683 break;
6684
6685 case 4:
6686 sp->mac_control.stats_info->sw_stat.
6687 rx_rda_fail_cnt++;
6688 break;
6689
6690 case 5:
6691 sp->mac_control.stats_info->sw_stat.
6692 rx_unkn_prot_cnt++;
6693 break;
6694
6695 case 6:
6696 sp->mac_control.stats_info->sw_stat.
6697 rx_fcs_err_cnt++;
6698 break;
bd1034f0 6699
491976b2
SH
6700 case 7:
6701 sp->mac_control.stats_info->sw_stat.
6702 rx_buf_size_err_cnt++;
6703 break;
6704
6705 case 8:
6706 sp->mac_control.stats_info->sw_stat.
6707 rx_rxd_corrupt_cnt++;
6708 break;
6709
6710 case 15:
6711 sp->mac_control.stats_info->sw_stat.
6712 rx_unkn_err_cnt++;
6713 break;
6714 }
863c11a9
AR
6715 /*
6716 * Drop the packet if bad transfer code. Exception being
6717 * 0x5, which could be due to unsupported IPv6 extension header.
6718 * In this case, we let stack handle the packet.
6719 * Note that in this case, since checksum will be incorrect,
6720 * stack will validate the same.
6721 */
f9046eb3
OH
6722 if (err_mask != 0x5) {
6723 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6724 dev->name, err_mask);
863c11a9 6725 sp->stats.rx_crc_errors++;
491976b2
SH
6726 sp->mac_control.stats_info->sw_stat.mem_freed
6727 += skb->truesize;
863c11a9
AR
6728 dev_kfree_skb(skb);
6729 atomic_dec(&sp->rx_bufs_left[ring_no]);
6730 rxdp->Host_Control = 0;
6731 return 0;
6732 }
20346722 6733 }
1da177e4 6734
20346722 6735 /* Updating statistics */
573608e4 6736 sp->stats.rx_packets++;
20346722 6737 rxdp->Host_Control = 0;
da6971d8
AR
6738 if (sp->rxd_mode == RXD_MODE_1) {
6739 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6740
da6971d8
AR
6741 sp->stats.rx_bytes += len;
6742 skb_put(skb, len);
6743
6d517a27 6744 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
6745 int get_block = ring_data->rx_curr_get_info.block_index;
6746 int get_off = ring_data->rx_curr_get_info.offset;
6747 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6748 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6749 unsigned char *buff = skb_push(skb, buf0_len);
6750
1ee6dd77 6751 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6752 sp->stats.rx_bytes += buf0_len + buf2_len;
6753 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 6754 skb_put(skb, buf2_len);
da6971d8 6755 }
20346722 6756
7d3d0439
RA
6757 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6758 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6759 (sp->rx_csum)) {
6760 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6761 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6762 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6763 /*
1da177e4
LT
6764 * NIC verifies if the Checksum of the received
6765 * frame is Ok or not and accordingly returns
6766 * a flag in the RxD.
6767 */
6768 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6769 if (sp->lro) {
6770 u32 tcp_len;
6771 u8 *tcp;
6772 int ret = 0;
6773
6774 ret = s2io_club_tcp_session(skb->data, &tcp,
6775 &tcp_len, &lro, rxdp, sp);
6776 switch (ret) {
6777 case 3: /* Begin anew */
6778 lro->parent = skb;
6779 goto aggregate;
6780 case 1: /* Aggregate */
6781 {
6782 lro_append_pkt(sp, lro,
6783 skb, tcp_len);
6784 goto aggregate;
6785 }
6786 case 4: /* Flush session */
6787 {
6788 lro_append_pkt(sp, lro,
6789 skb, tcp_len);
6790 queue_rx_frame(lro->parent);
6791 clear_lro_session(lro);
6792 sp->mac_control.stats_info->
6793 sw_stat.flush_max_pkts++;
6794 goto aggregate;
6795 }
6796 case 2: /* Flush both */
6797 lro->parent->data_len =
6798 lro->frags_len;
6799 sp->mac_control.stats_info->
6800 sw_stat.sending_both++;
6801 queue_rx_frame(lro->parent);
6802 clear_lro_session(lro);
6803 goto send_up;
6804 case 0: /* sessions exceeded */
c92ca04b
AR
6805 case -1: /* non-TCP or not
6806 * L2 aggregatable
6807 */
7d3d0439
RA
6808 case 5: /*
6809 * First pkt in session not
6810 * L3/L4 aggregatable
6811 */
6812 break;
6813 default:
6814 DBG_PRINT(ERR_DBG,
6815 "%s: Samadhana!!\n",
6816 __FUNCTION__);
6817 BUG();
6818 }
6819 }
1da177e4 6820 } else {
20346722
K
6821 /*
6822 * Packet with erroneous checksum, let the
1da177e4
LT
6823 * upper layers deal with it.
6824 */
6825 skb->ip_summed = CHECKSUM_NONE;
6826 }
6827 } else {
6828 skb->ip_summed = CHECKSUM_NONE;
6829 }
491976b2 6830 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439
RA
6831 if (!sp->lro) {
6832 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
6833 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6834 vlan_strip_flag)) {
7d3d0439 6835 /* Queueing the vlan frame to the upper layer */
db874e65
SS
6836 if (napi)
6837 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6838 RXD_GET_VLAN_TAG(rxdp->Control_2));
6839 else
6840 vlan_hwaccel_rx(skb, sp->vlgrp,
6841 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 6842 } else {
db874e65
SS
6843 if (napi)
6844 netif_receive_skb(skb);
6845 else
6846 netif_rx(skb);
7d3d0439 6847 }
7d3d0439
RA
6848 } else {
6849send_up:
6850 queue_rx_frame(skb);
6aa20a22 6851 }
1da177e4 6852 dev->last_rx = jiffies;
7d3d0439 6853aggregate:
1da177e4 6854 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6855 return SUCCESS;
6856}
6857
6858/**
6859 * s2io_link - stops/starts the Tx queue.
6860 * @sp : private member of the device structure, which is a pointer to the
6861 * s2io_nic structure.
6862 * @link : inidicates whether link is UP/DOWN.
6863 * Description:
6864 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6865 * status of the NIC is is down or up. This is called by the Alarm
6866 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6867 * Return value:
6868 * void.
6869 */
6870
1ee6dd77 6871static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
6872{
6873 struct net_device *dev = (struct net_device *) sp->dev;
6874
6875 if (link != sp->last_link_state) {
6876 if (link == LINK_DOWN) {
6877 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6878 netif_carrier_off(dev);
491976b2
SH
6879 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6880 sp->mac_control.stats_info->sw_stat.link_up_time =
6881 jiffies - sp->start_time;
6882 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
6883 } else {
6884 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2
SH
6885 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6886 sp->mac_control.stats_info->sw_stat.link_down_time =
6887 jiffies - sp->start_time;
6888 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4
LT
6889 netif_carrier_on(dev);
6890 }
6891 }
6892 sp->last_link_state = link;
491976b2 6893 sp->start_time = jiffies;
1da177e4
LT
6894}
6895
20346722
K
6896/**
6897 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6898 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6899 * s2io_nic structure.
6900 * Description:
6901 * This function initializes a few of the PCI and PCI-X configuration registers
6902 * with recommended values.
6903 * Return value:
6904 * void
6905 */
6906
1ee6dd77 6907static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 6908{
20346722 6909 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6910
6911 /* Enable Data Parity Error Recovery in PCI-X command register. */
6912 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6913 &(pcix_cmd));
1da177e4 6914 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6915 (pcix_cmd | 1));
1da177e4 6916 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6917 &(pcix_cmd));
1da177e4
LT
6918
6919 /* Set the PErr Response bit in PCI command register. */
6920 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6921 pci_write_config_word(sp->pdev, PCI_COMMAND,
6922 (pci_cmd | PCI_COMMAND_PARITY));
6923 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6924}
6925
9dc737a7
AR
6926static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6927{
6928 if ( tx_fifo_num > 8) {
6929 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6930 "supported\n");
6931 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6932 tx_fifo_num = 8;
6933 }
6934 if ( rx_ring_num > 8) {
6935 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6936 "supported\n");
6937 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6938 rx_ring_num = 8;
6939 }
db874e65
SS
6940 if (*dev_intr_type != INTA)
6941 napi = 0;
6942
9dc737a7
AR
6943#ifndef CONFIG_PCI_MSI
6944 if (*dev_intr_type != INTA) {
6945 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6946 "MSI/MSI-X. Defaulting to INTA\n");
6947 *dev_intr_type = INTA;
6948 }
6949#else
eccb8628 6950 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
6951 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6952 "Defaulting to INTA\n");
6953 *dev_intr_type = INTA;
6954 }
6955#endif
6956 if ((*dev_intr_type == MSI_X) &&
6957 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6958 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 6959 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
6960 "Defaulting to INTA\n");
6961 *dev_intr_type = INTA;
6962 }
fb6a825b 6963
6d517a27 6964 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 6965 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
6966 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
6967 rx_ring_mode = 1;
9dc737a7
AR
6968 }
6969 return SUCCESS;
6970}
6971
9fc93a41
SS
6972/**
6973 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6974 * or Traffic class respectively.
6975 * @nic: device peivate variable
6976 * Description: The function configures the receive steering to
6977 * desired receive ring.
6978 * Return Value: SUCCESS on success and
6979 * '-1' on failure (endian settings incorrect).
6980 */
6981static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6982{
6983 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6984 register u64 val64 = 0;
6985
6986 if (ds_codepoint > 63)
6987 return FAILURE;
6988
6989 val64 = RTS_DS_MEM_DATA(ring);
6990 writeq(val64, &bar0->rts_ds_mem_data);
6991
6992 val64 = RTS_DS_MEM_CTRL_WE |
6993 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6994 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6995
6996 writeq(val64, &bar0->rts_ds_mem_ctrl);
6997
6998 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6999 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7000 S2IO_BIT_RESET);
7001}
7002
1da177e4 7003/**
20346722 7004 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7005 * @pdev : structure containing the PCI related information of the device.
7006 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7007 * Description:
7008 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7009 * All OS related initialization including memory and device structure and
7010 * initlaization of the device private variable is done. Also the swapper
7011 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7012 * registers of the device.
7013 * Return value:
7014 * returns 0 on success and negative on failure.
7015 */
7016
7017static int __devinit
7018s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7019{
1ee6dd77 7020 struct s2io_nic *sp;
1da177e4 7021 struct net_device *dev;
1da177e4
LT
7022 int i, j, ret;
7023 int dma_flag = FALSE;
7024 u32 mac_up, mac_down;
7025 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7026 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7027 u16 subid;
1ee6dd77 7028 struct mac_info *mac_control;
1da177e4 7029 struct config_param *config;
541ae68f 7030 int mode;
cc6e7c44 7031 u8 dev_intr_type = intr_type;
1da177e4 7032
9dc737a7
AR
7033 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7034 return ret;
1da177e4
LT
7035
7036 if ((ret = pci_enable_device(pdev))) {
7037 DBG_PRINT(ERR_DBG,
7038 "s2io_init_nic: pci_enable_device failed\n");
7039 return ret;
7040 }
7041
1e7f0bd8 7042 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7043 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7044 dma_flag = TRUE;
1da177e4 7045 if (pci_set_consistent_dma_mask
1e7f0bd8 7046 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7047 DBG_PRINT(ERR_DBG,
7048 "Unable to obtain 64bit DMA for \
7049 consistent allocations\n");
7050 pci_disable_device(pdev);
7051 return -ENOMEM;
7052 }
1e7f0bd8 7053 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7054 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7055 } else {
7056 pci_disable_device(pdev);
7057 return -ENOMEM;
7058 }
eccb8628
VP
7059 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7060 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7061 pci_disable_device(pdev);
7062 return -ENODEV;
1da177e4
LT
7063 }
7064
1ee6dd77 7065 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7066 if (dev == NULL) {
7067 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7068 pci_disable_device(pdev);
7069 pci_release_regions(pdev);
7070 return -ENODEV;
7071 }
7072
7073 pci_set_master(pdev);
7074 pci_set_drvdata(pdev, dev);
7075 SET_MODULE_OWNER(dev);
7076 SET_NETDEV_DEV(dev, &pdev->dev);
7077
7078 /* Private member variable initialized to s2io NIC structure */
7079 sp = dev->priv;
1ee6dd77 7080 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7081 sp->dev = dev;
7082 sp->pdev = pdev;
1da177e4 7083 sp->high_dma_flag = dma_flag;
1da177e4 7084 sp->device_enabled_once = FALSE;
da6971d8
AR
7085 if (rx_ring_mode == 1)
7086 sp->rxd_mode = RXD_MODE_1;
7087 if (rx_ring_mode == 2)
7088 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7089
cc6e7c44 7090 sp->intr_type = dev_intr_type;
1da177e4 7091
541ae68f
K
7092 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7093 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7094 sp->device_type = XFRAME_II_DEVICE;
7095 else
7096 sp->device_type = XFRAME_I_DEVICE;
7097
7d3d0439 7098 sp->lro = lro;
6aa20a22 7099
1da177e4
LT
7100 /* Initialize some PCI/PCI-X fields of the NIC. */
7101 s2io_init_pci(sp);
7102
20346722 7103 /*
1da177e4 7104 * Setting the device configuration parameters.
20346722
K
7105 * Most of these parameters can be specified by the user during
7106 * module insertion as they are module loadable parameters. If
7107 * these parameters are not not specified during load time, they
1da177e4
LT
7108 * are initialized with default values.
7109 */
7110 mac_control = &sp->mac_control;
7111 config = &sp->config;
7112
7113 /* Tx side parameters. */
1da177e4
LT
7114 config->tx_fifo_num = tx_fifo_num;
7115 for (i = 0; i < MAX_TX_FIFOS; i++) {
7116 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7117 config->tx_cfg[i].fifo_priority = i;
7118 }
7119
20346722
K
7120 /* mapping the QoS priority to the configured fifos */
7121 for (i = 0; i < MAX_TX_FIFOS; i++)
7122 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7123
1da177e4
LT
7124 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7125 for (i = 0; i < config->tx_fifo_num; i++) {
7126 config->tx_cfg[i].f_no_snoop =
7127 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7128 if (config->tx_cfg[i].fifo_len < 65) {
7129 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7130 break;
7131 }
7132 }
fed5eccd
AR
7133 /* + 2 because one Txd for skb->data and one Txd for UFO */
7134 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7135
7136 /* Rx side parameters. */
1da177e4
LT
7137 config->rx_ring_num = rx_ring_num;
7138 for (i = 0; i < MAX_RX_RINGS; i++) {
7139 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7140 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7141 config->rx_cfg[i].ring_priority = i;
7142 }
7143
7144 for (i = 0; i < rx_ring_num; i++) {
7145 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7146 config->rx_cfg[i].f_no_snoop =
7147 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7148 }
7149
7150 /* Setting Mac Control parameters */
7151 mac_control->rmac_pause_time = rmac_pause_time;
7152 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7153 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7154
7155
7156 /* Initialize Ring buffer parameters. */
7157 for (i = 0; i < config->rx_ring_num; i++)
7158 atomic_set(&sp->rx_bufs_left[i], 0);
7159
7ba013ac
K
7160 /* Initialize the number of ISRs currently running */
7161 atomic_set(&sp->isr_cnt, 0);
7162
1da177e4
LT
7163 /* initialize the shared memory used by the NIC and the host */
7164 if (init_shared_mem(sp)) {
7165 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7166 dev->name);
1da177e4
LT
7167 ret = -ENOMEM;
7168 goto mem_alloc_failed;
7169 }
7170
7171 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7172 pci_resource_len(pdev, 0));
7173 if (!sp->bar0) {
19a60522 7174 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7175 dev->name);
7176 ret = -ENOMEM;
7177 goto bar0_remap_failed;
7178 }
7179
7180 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7181 pci_resource_len(pdev, 2));
7182 if (!sp->bar1) {
19a60522 7183 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7184 dev->name);
7185 ret = -ENOMEM;
7186 goto bar1_remap_failed;
7187 }
7188
7189 dev->irq = pdev->irq;
7190 dev->base_addr = (unsigned long) sp->bar0;
7191
7192 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7193 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7194 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7195 (sp->bar1 + (j * 0x00020000));
7196 }
7197
7198 /* Driver entry points */
7199 dev->open = &s2io_open;
7200 dev->stop = &s2io_close;
7201 dev->hard_start_xmit = &s2io_xmit;
7202 dev->get_stats = &s2io_get_stats;
7203 dev->set_multicast_list = &s2io_set_multicast;
7204 dev->do_ioctl = &s2io_ioctl;
7205 dev->change_mtu = &s2io_change_mtu;
7206 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7207 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7208 dev->vlan_rx_register = s2io_vlan_rx_register;
20346722 7209
1da177e4
LT
7210 /*
7211 * will use eth_mac_addr() for dev->set_mac_address
7212 * mac address will be set every time dev->open() is called
7213 */
bea3348e 7214 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
1da177e4 7215
612eff0e
BH
7216#ifdef CONFIG_NET_POLL_CONTROLLER
7217 dev->poll_controller = s2io_netpoll;
7218#endif
7219
1da177e4
LT
7220 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7221 if (sp->high_dma_flag == TRUE)
7222 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7223 dev->features |= NETIF_F_TSO;
f83ef8c0 7224 dev->features |= NETIF_F_TSO6;
db874e65 7225 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7226 dev->features |= NETIF_F_UFO;
7227 dev->features |= NETIF_F_HW_CSUM;
7228 }
1da177e4
LT
7229
7230 dev->tx_timeout = &s2io_tx_watchdog;
7231 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7232 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7233 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7234
e960fc5c 7235 pci_save_state(sp->pdev);
1da177e4
LT
7236
7237 /* Setting swapper control on the NIC, for proper reset operation */
7238 if (s2io_set_swapper(sp)) {
7239 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7240 dev->name);
7241 ret = -EAGAIN;
7242 goto set_swap_failed;
7243 }
7244
541ae68f
K
7245 /* Verify if the Herc works on the slot its placed into */
7246 if (sp->device_type & XFRAME_II_DEVICE) {
7247 mode = s2io_verify_pci_mode(sp);
7248 if (mode < 0) {
7249 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7250 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7251 ret = -EBADSLT;
7252 goto set_swap_failed;
7253 }
7254 }
7255
7256 /* Not needed for Herc */
7257 if (sp->device_type & XFRAME_I_DEVICE) {
7258 /*
7259 * Fix for all "FFs" MAC address problems observed on
7260 * Alpha platforms
7261 */
7262 fix_mac_address(sp);
7263 s2io_reset(sp);
7264 }
1da177e4
LT
7265
7266 /*
1da177e4
LT
7267 * MAC address initialization.
7268 * For now only one mac address will be read and used.
7269 */
7270 bar0 = sp->bar0;
7271 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7272 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7273 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7274 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7275 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7276 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7277 mac_down = (u32) tmp64;
7278 mac_up = (u32) (tmp64 >> 32);
7279
1da177e4
LT
7280 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7281 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7282 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7283 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7284 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7285 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7286
1da177e4
LT
7287 /* Set the factory defined MAC address initially */
7288 dev->addr_len = ETH_ALEN;
7289 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7290
b41477f3
AR
7291 /* reset Nic and bring it to known state */
7292 s2io_reset(sp);
7293
1da177e4 7294 /*
20346722 7295 * Initialize the tasklet status and link state flags
541ae68f 7296 * and the card state parameter
1da177e4
LT
7297 */
7298 atomic_set(&(sp->card_state), 0);
7299 sp->tasklet_status = 0;
7300 sp->link_state = 0;
7301
1da177e4
LT
7302 /* Initialize spinlocks */
7303 spin_lock_init(&sp->tx_lock);
db874e65
SS
7304
7305 if (!napi)
7306 spin_lock_init(&sp->put_lock);
7ba013ac 7307 spin_lock_init(&sp->rx_lock);
1da177e4 7308
20346722
K
7309 /*
7310 * SXE-002: Configure link and activity LED to init state
7311 * on driver load.
1da177e4
LT
7312 */
7313 subid = sp->pdev->subsystem_device;
7314 if ((subid & 0xFF) >= 0x07) {
7315 val64 = readq(&bar0->gpio_control);
7316 val64 |= 0x0000800000000000ULL;
7317 writeq(val64, &bar0->gpio_control);
7318 val64 = 0x0411040400000000ULL;
7319 writeq(val64, (void __iomem *) bar0 + 0x2700);
7320 val64 = readq(&bar0->gpio_control);
7321 }
7322
7323 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7324
7325 if (register_netdev(dev)) {
7326 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7327 ret = -ENODEV;
7328 goto register_failed;
7329 }
9dc737a7 7330 s2io_vpd_read(sp);
0c61ed5f 7331 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 7332 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 7333 sp->product_name, pdev->revision);
b41477f3
AR
7334 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7335 s2io_driver_version);
9dc737a7 7336 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7337 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7338 sp->def_mac_addr[0].mac_addr[0],
7339 sp->def_mac_addr[0].mac_addr[1],
7340 sp->def_mac_addr[0].mac_addr[2],
7341 sp->def_mac_addr[0].mac_addr[3],
7342 sp->def_mac_addr[0].mac_addr[4],
7343 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7344 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7345 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7346 mode = s2io_print_pci_mode(sp);
541ae68f 7347 if (mode < 0) {
9dc737a7 7348 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7349 ret = -EBADSLT;
9dc737a7 7350 unregister_netdev(dev);
541ae68f
K
7351 goto set_swap_failed;
7352 }
541ae68f 7353 }
9dc737a7
AR
7354 switch(sp->rxd_mode) {
7355 case RXD_MODE_1:
7356 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7357 dev->name);
7358 break;
7359 case RXD_MODE_3B:
7360 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7361 dev->name);
7362 break;
9dc737a7 7363 }
db874e65
SS
7364
7365 if (napi)
7366 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7367 switch(sp->intr_type) {
7368 case INTA:
7369 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7370 break;
9dc737a7
AR
7371 case MSI_X:
7372 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7373 break;
7374 }
7d3d0439
RA
7375 if (sp->lro)
7376 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7377 dev->name);
db874e65
SS
7378 if (ufo)
7379 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7380 " enabled\n", dev->name);
7ba013ac 7381 /* Initialize device name */
9dc737a7 7382 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7383
b6e3f982
K
7384 /* Initialize bimodal Interrupts */
7385 sp->config.bimodal = bimodal;
7386 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7387 sp->config.bimodal = 0;
7388 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7389 dev->name);
7390 }
7391
20346722
K
7392 /*
7393 * Make Link state as off at this point, when the Link change
7394 * interrupt comes the state will be automatically changed to
1da177e4
LT
7395 * the right state.
7396 */
7397 netif_carrier_off(dev);
1da177e4
LT
7398
7399 return 0;
7400
7401 register_failed:
7402 set_swap_failed:
7403 iounmap(sp->bar1);
7404 bar1_remap_failed:
7405 iounmap(sp->bar0);
7406 bar0_remap_failed:
7407 mem_alloc_failed:
7408 free_shared_mem(sp);
7409 pci_disable_device(pdev);
eccb8628 7410 pci_release_regions(pdev);
1da177e4
LT
7411 pci_set_drvdata(pdev, NULL);
7412 free_netdev(dev);
7413
7414 return ret;
7415}
7416
7417/**
20346722 7418 * s2io_rem_nic - Free the PCI device
1da177e4 7419 * @pdev: structure containing the PCI related information of the device.
20346722 7420 * Description: This function is called by the Pci subsystem to release a
1da177e4 7421 * PCI device and free up all resource held up by the device. This could
20346722 7422 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7423 * from memory.
7424 */
7425
7426static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7427{
7428 struct net_device *dev =
7429 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7430 struct s2io_nic *sp;
1da177e4
LT
7431
7432 if (dev == NULL) {
7433 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7434 return;
7435 }
7436
22747d6b
FR
7437 flush_scheduled_work();
7438
1da177e4
LT
7439 sp = dev->priv;
7440 unregister_netdev(dev);
7441
7442 free_shared_mem(sp);
7443 iounmap(sp->bar0);
7444 iounmap(sp->bar1);
eccb8628 7445 pci_release_regions(pdev);
1da177e4 7446 pci_set_drvdata(pdev, NULL);
1da177e4 7447 free_netdev(dev);
19a60522 7448 pci_disable_device(pdev);
1da177e4
LT
7449}
7450
7451/**
7452 * s2io_starter - Entry point for the driver
7453 * Description: This function is the entry point for the driver. It verifies
7454 * the module loadable parameters and initializes PCI configuration space.
7455 */
7456
7457int __init s2io_starter(void)
7458{
29917620 7459 return pci_register_driver(&s2io_driver);
1da177e4
LT
7460}
7461
7462/**
20346722 7463 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7464 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7465 */
7466
372cc597 7467static __exit void s2io_closer(void)
1da177e4
LT
7468{
7469 pci_unregister_driver(&s2io_driver);
7470 DBG_PRINT(INIT_DBG, "cleanup done\n");
7471}
7472
7473module_init(s2io_starter);
7474module_exit(s2io_closer);
7d3d0439 7475
6aa20a22 7476static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7477 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7478{
7479 int ip_off;
7480 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7481
7482 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7483 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7484 __FUNCTION__);
7485 return -1;
7486 }
7487
7488 /* TODO:
7489 * By default the VLAN field in the MAC is stripped by the card, if this
7490 * feature is turned off in rx_pa_cfg register, then the ip_off field
7491 * has to be shifted by a further 2 bytes
7492 */
7493 switch (l2_type) {
7494 case 0: /* DIX type */
7495 case 4: /* DIX type with VLAN */
7496 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7497 break;
7498 /* LLC, SNAP etc are considered non-mergeable */
7499 default:
7500 return -1;
7501 }
7502
7503 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7504 ip_len = (u8)((*ip)->ihl);
7505 ip_len <<= 2;
7506 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7507
7508 return 0;
7509}
7510
1ee6dd77 7511static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7512 struct tcphdr *tcp)
7513{
7514 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7515 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7516 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7517 return -1;
7518 return 0;
7519}
7520
7521static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7522{
7523 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7524}
7525
1ee6dd77 7526static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7527 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7528{
7529 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7530 lro->l2h = l2h;
7531 lro->iph = ip;
7532 lro->tcph = tcp;
7533 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7534 lro->tcp_ack = ntohl(tcp->ack_seq);
7535 lro->sg_num = 1;
7536 lro->total_len = ntohs(ip->tot_len);
7537 lro->frags_len = 0;
6aa20a22 7538 /*
7d3d0439
RA
7539 * check if we saw TCP timestamp. Other consistency checks have
7540 * already been done.
7541 */
7542 if (tcp->doff == 8) {
7543 u32 *ptr;
7544 ptr = (u32 *)(tcp+1);
7545 lro->saw_ts = 1;
7546 lro->cur_tsval = *(ptr+1);
7547 lro->cur_tsecr = *(ptr+2);
7548 }
7549 lro->in_use = 1;
7550}
7551
1ee6dd77 7552static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7553{
7554 struct iphdr *ip = lro->iph;
7555 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7556 __sum16 nchk;
1ee6dd77 7557 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7558 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7559
7560 /* Update L3 header */
7561 ip->tot_len = htons(lro->total_len);
7562 ip->check = 0;
7563 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7564 ip->check = nchk;
7565
7566 /* Update L4 header */
7567 tcp->ack_seq = lro->tcp_ack;
7568 tcp->window = lro->window;
7569
7570 /* Update tsecr field if this session has timestamps enabled */
7571 if (lro->saw_ts) {
7572 u32 *ptr = (u32 *)(tcp + 1);
7573 *(ptr+2) = lro->cur_tsecr;
7574 }
7575
7576 /* Update counters required for calculation of
7577 * average no. of packets aggregated.
7578 */
7579 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7580 statinfo->sw_stat.num_aggregations++;
7581}
7582
1ee6dd77 7583static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7584 struct tcphdr *tcp, u32 l4_pyld)
7585{
7586 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7587 lro->total_len += l4_pyld;
7588 lro->frags_len += l4_pyld;
7589 lro->tcp_next_seq += l4_pyld;
7590 lro->sg_num++;
7591
7592 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7593 lro->tcp_ack = tcp->ack_seq;
7594 lro->window = tcp->window;
6aa20a22 7595
7d3d0439
RA
7596 if (lro->saw_ts) {
7597 u32 *ptr;
7598 /* Update tsecr and tsval from this packet */
7599 ptr = (u32 *) (tcp + 1);
6aa20a22 7600 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7601 lro->cur_tsecr = *(ptr + 2);
7602 }
7603}
7604
1ee6dd77 7605static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7606 struct tcphdr *tcp, u32 tcp_pyld_len)
7607{
7d3d0439
RA
7608 u8 *ptr;
7609
79dc1901
AM
7610 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7611
7d3d0439
RA
7612 if (!tcp_pyld_len) {
7613 /* Runt frame or a pure ack */
7614 return -1;
7615 }
7616
7617 if (ip->ihl != 5) /* IP has options */
7618 return -1;
7619
75c30b13
AR
7620 /* If we see CE codepoint in IP header, packet is not mergeable */
7621 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7622 return -1;
7623
7624 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7625 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7626 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7627 /*
7628 * Currently recognize only the ack control word and
7629 * any other control field being set would result in
7630 * flushing the LRO session
7631 */
7632 return -1;
7633 }
7634
6aa20a22 7635 /*
7d3d0439
RA
7636 * Allow only one TCP timestamp option. Don't aggregate if
7637 * any other options are detected.
7638 */
7639 if (tcp->doff != 5 && tcp->doff != 8)
7640 return -1;
7641
7642 if (tcp->doff == 8) {
6aa20a22 7643 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7644 while (*ptr == TCPOPT_NOP)
7645 ptr++;
7646 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7647 return -1;
7648
7649 /* Ensure timestamp value increases monotonically */
7650 if (l_lro)
7651 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7652 return -1;
7653
7654 /* timestamp echo reply should be non-zero */
6aa20a22 7655 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7656 return -1;
7657 }
7658
7659 return 0;
7660}
7661
7662static int
1ee6dd77
RB
7663s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7664 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7665{
7666 struct iphdr *ip;
7667 struct tcphdr *tcph;
7668 int ret = 0, i;
7669
7670 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7671 rxdp))) {
7672 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7673 ip->saddr, ip->daddr);
7674 } else {
7675 return ret;
7676 }
7677
7678 tcph = (struct tcphdr *)*tcp;
7679 *tcp_len = get_l4_pyld_length(ip, tcph);
7680 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7681 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7682 if (l_lro->in_use) {
7683 if (check_for_socket_match(l_lro, ip, tcph))
7684 continue;
7685 /* Sock pair matched */
7686 *lro = l_lro;
7687
7688 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7689 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7690 "0x%x, actual 0x%x\n", __FUNCTION__,
7691 (*lro)->tcp_next_seq,
7692 ntohl(tcph->seq));
7693
7694 sp->mac_control.stats_info->
7695 sw_stat.outof_sequence_pkts++;
7696 ret = 2;
7697 break;
7698 }
7699
7700 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7701 ret = 1; /* Aggregate */
7702 else
7703 ret = 2; /* Flush both */
7704 break;
7705 }
7706 }
7707
7708 if (ret == 0) {
7709 /* Before searching for available LRO objects,
7710 * check if the pkt is L3/L4 aggregatable. If not
7711 * don't create new LRO session. Just send this
7712 * packet up.
7713 */
7714 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7715 return 5;
7716 }
7717
7718 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7719 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7720 if (!(l_lro->in_use)) {
7721 *lro = l_lro;
7722 ret = 3; /* Begin anew */
7723 break;
7724 }
7725 }
7726 }
7727
7728 if (ret == 0) { /* sessions exceeded */
7729 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7730 __FUNCTION__);
7731 *lro = NULL;
7732 return ret;
7733 }
7734
7735 switch (ret) {
7736 case 3:
7737 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7738 break;
7739 case 2:
7740 update_L3L4_header(sp, *lro);
7741 break;
7742 case 1:
7743 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7744 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7745 update_L3L4_header(sp, *lro);
7746 ret = 4; /* Flush the LRO */
7747 }
7748 break;
7749 default:
7750 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7751 __FUNCTION__);
7752 break;
7753 }
7754
7755 return ret;
7756}
7757
1ee6dd77 7758static void clear_lro_session(struct lro *lro)
7d3d0439 7759{
1ee6dd77 7760 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
7761
7762 memset(lro, 0, lro_struct_size);
7763}
7764
7765static void queue_rx_frame(struct sk_buff *skb)
7766{
7767 struct net_device *dev = skb->dev;
7768
7769 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
7770 if (napi)
7771 netif_receive_skb(skb);
7772 else
7773 netif_rx(skb);
7d3d0439
RA
7774}
7775
1ee6dd77
RB
7776static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7777 struct sk_buff *skb,
7d3d0439
RA
7778 u32 tcp_len)
7779{
75c30b13 7780 struct sk_buff *first = lro->parent;
7d3d0439
RA
7781
7782 first->len += tcp_len;
7783 first->data_len = lro->frags_len;
7784 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
7785 if (skb_shinfo(first)->frag_list)
7786 lro->last_frag->next = skb;
7d3d0439
RA
7787 else
7788 skb_shinfo(first)->frag_list = skb;
372cc597 7789 first->truesize += skb->truesize;
75c30b13 7790 lro->last_frag = skb;
7d3d0439
RA
7791 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7792 return;
7793}
d796fdb7
LV
7794
7795/**
7796 * s2io_io_error_detected - called when PCI error is detected
7797 * @pdev: Pointer to PCI device
8453d43f 7798 * @state: The current pci connection state
d796fdb7
LV
7799 *
7800 * This function is called after a PCI bus error affecting
7801 * this device has been detected.
7802 */
7803static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7804 pci_channel_state_t state)
7805{
7806 struct net_device *netdev = pci_get_drvdata(pdev);
7807 struct s2io_nic *sp = netdev->priv;
7808
7809 netif_device_detach(netdev);
7810
7811 if (netif_running(netdev)) {
7812 /* Bring down the card, while avoiding PCI I/O */
7813 do_s2io_card_down(sp, 0);
d796fdb7
LV
7814 }
7815 pci_disable_device(pdev);
7816
7817 return PCI_ERS_RESULT_NEED_RESET;
7818}
7819
7820/**
7821 * s2io_io_slot_reset - called after the pci bus has been reset.
7822 * @pdev: Pointer to PCI device
7823 *
7824 * Restart the card from scratch, as if from a cold-boot.
7825 * At this point, the card has exprienced a hard reset,
7826 * followed by fixups by BIOS, and has its config space
7827 * set up identically to what it was at cold boot.
7828 */
7829static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7830{
7831 struct net_device *netdev = pci_get_drvdata(pdev);
7832 struct s2io_nic *sp = netdev->priv;
7833
7834 if (pci_enable_device(pdev)) {
7835 printk(KERN_ERR "s2io: "
7836 "Cannot re-enable PCI device after reset.\n");
7837 return PCI_ERS_RESULT_DISCONNECT;
7838 }
7839
7840 pci_set_master(pdev);
7841 s2io_reset(sp);
7842
7843 return PCI_ERS_RESULT_RECOVERED;
7844}
7845
7846/**
7847 * s2io_io_resume - called when traffic can start flowing again.
7848 * @pdev: Pointer to PCI device
7849 *
7850 * This callback is called when the error recovery driver tells
7851 * us that its OK to resume normal operation.
7852 */
7853static void s2io_io_resume(struct pci_dev *pdev)
7854{
7855 struct net_device *netdev = pci_get_drvdata(pdev);
7856 struct s2io_nic *sp = netdev->priv;
7857
7858 if (netif_running(netdev)) {
7859 if (s2io_card_up(sp)) {
7860 printk(KERN_ERR "s2io: "
7861 "Can't bring device back up after reset.\n");
7862 return;
7863 }
7864
7865 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7866 s2io_card_down(sp);
7867 printk(KERN_ERR "s2io: "
7868 "Can't resetore mac addr after reset.\n");
7869 return;
7870 }
7871 }
7872
7873 netif_device_attach(netdev);
7874 netif_wake_queue(netdev);
7875}